

Thinking in Java,
2nd Edition, Release 7

To be published by Prentice-Hall mid-June, 2000

Bruce Eckel, President,
MindView, Inc.

Planet PDF brings you the Portable Document
Format (PDF) version of Thinking in Java (2nd
Edition). Planet PDF is the premier PDF-related
site on the web. There is news, software, white
papers, interviews, product reviews, Web links,
code samples, a forum, and regular articles by
many of the most prominent and respected PDF
experts in the world. Visit our sites for more detail:

http://www.planetpdf.com/
http://www.codecuts.com/
http://www.pdfforum.com/
http://www.pdfstore.com/

http://www.bruceeckel.com/TIJ2/RevisionHistory.html
http://www.planetpdf.com/
http://www.planetpdf.com/
http://www.codecuts.com/
http://www.pdfstore.com/
http://www.pdfforum.com/

Thinking
in

Java
Second Edition

Bruce Eckel
President, MindView, Inc.

Comments from readers:
Much better than any other Java book I’ve seen. Make that “by an
order of magnitude”... very complete, with excellent right-to-the-
point examples and intelligent, not dumbed-down, explanations ...
In contrast to many other Java books I found it to be unusually
mature, consistent, intellectually honest, well-written and precise.
IMHO, an ideal book for studying Java. Anatoly Vorobey,
Technion University, Haifa, Israel

One of the absolutely best programming tutorials I’ve seen for any
language. Joakim Ziegler, FIX sysop

Thank you for your wonderful, wonderful book on Java. Dr. Gavin
Pillay, Registrar, King Edward VIII Hospital, South Africa

Thank you again for your awesome book. I was really floundering
(being a non-C programmer), but your book has brought me up to
speed as fast as I could read it. It’s really cool to be able to
understand the underlying principles and concepts from the start,
rather than having to try to build that conceptual model through
trial and error. Hopefully I will be able to attend your seminar in
the not-too-distant future. Randall R. Hawley, Automation
Technician, Eli Lilly & Co.

The best computer book writing I have seen. Tom Holland

This is one of the best books I’ve read about a programming
language… Chapter 16 on design patterns is one of the most
interesting things I’ve read in a long time. Ilan Finci, graduate
student and teaching assistant, Institute of Computer
Science, The Hebrew University of Jerusalem, Israel

The best book ever written on Java. Ravindra Pai, Oracle
Corporation, SUNOS product line

This is the best book on Java that I have ever found! You have done
a great job. Your depth is amazing. I will be purchasing the book
when it is published. I have been learning Java since October 96. I
have read a few books, and consider yours a “MUST READ.” These
past few months we have been focused on a product written entirely

in Java. Your book has helped solidify topics I was shaky on and has
expanded my knowledge base. I have even used some of your
explanations as information in interviewing contractors to help our
team. I have found how much Java knowledge they have by asking
them about things I have learned from reading your book (e.g. the
difference between arrays and Vectors). Your book is great! Steve
Wilkinson, Senior Staff Specialist, MCI
Telecommunications

Great book. Best book on Java I have seen so far. Jeff Sinclair,
Software Engineer, Kestral Computing

Thank you for Thinking in Java. It’s time someone went beyond
mere language description to a thoughtful, penetrating analytic
tutorial that doesn’t kowtow to The Manufacturers. I’ve read almost
all the others–only yours and Patrick Winston’s have found a place
in my heart. I’m already recommending it to customers. Thanks
again. Richard Brooks, Java Consultant, Sun Professional
Services, Dallas

Other books cover the WHAT of Java (describing the syntax and the
libraries) or the HOW of Java (practical programming examples).
Thinking in Java is the only book I know that explains the WHY of
Java; why it was designed the way it was, why it works the way it
does, why it sometimes doesn’t work, why it’s better than C++, why
it’s not. Although it also does a good job of teaching the what and
how of the language, Thinking in Java is definitely the thinking
person’s choice in a Java book. Robert S. Stephenson

Thanks for writing a great book. The more I read it the better I like
it. My students like it, too. Chuck Iverson

I just want to commend you for your work on Thinking in Java. It
is people like you that dignify the future of the Internet and I just
want to thank you for your effort. It is very much appreciated.
Patrick Barrell, Network Officer Mamco-QAF Mfg. Inc.

Most of the Java books out there are fine for a start, and most just
have beginning stuff and a lot of the same examples. Yours is by far
the best advanced thinking book I’ve seen. Please publish it soon! ...
I also bought Thinking in C++ just because I was so impressed with

Thinking in Java. George Laframboise, LightWorx
Technology Consulting, Inc.

I wrote to you earlier about my favorable impressions regarding
your Thinking in C++ (a book that stands prominently on my shelf
here at work). And today I’ve been able to delve into Java with your
e-book in my virtual hand, and I must say (in my best Chevy Chase
from “Modern Problems”) “I like it!” Very informative and
explanatory, without reading like a dry textbook. You cover the
most important yet the least covered concepts of Java development:
the whys. Sean Brady

Your examples are clear and easy to understand. You took care of
many important details of Java that can’t be found easily in the
weak Java documentation. And you don’t waste the reader’s time
with the basic facts a programmer already knows. Kai Engert,
Innovative Software, Germany

I’m a great fan of your Thinking in C++ and have recommended it
to associates. As I go through the electronic version of your Java
book, I’m finding that you’ve retained the same high level of
writing. Thank you! Peter R. Neuwald

VERY well-written Java book ... I think you’ve done a GREAT job
on it. As the leader of a Chicago-area Java special interest group,
I’ve favorably mentioned your book and website several times at our
recent meetings. I would like to use Thinking in Java as the basis
for a part of each monthly SIG meeting, in which we review and
discuss each chapter in succession. Mark Ertes

I really appreciate your work and your book is good. I recommend it
here to our users and Ph.D. students. Hugues Leroy // Irisa-
Inria Rennes France, Head of Scientific Computing and
Industrial Tranfert

OK, I’ve only read about 40 pages of Thinking in Java, but I’ve
already found it to be the most clearly-written and presented
programming book I’ve come across ... and I’m a writer, myself, so I
am probably a little critical. I have Thinking in C++ on order and
can’t wait to crack it – I’m fairly new to programming and am
hitting learning curves head-on everywhere. So this is just a quick

note to say thanks for your excellent work. I had begun to burn a
little low on enthusiasm from slogging through the mucky, murky
prose of most computer books – even ones that came with glowing
recommendations. I feel a whole lot better now. Glenn Becker,
Educational Theatre Association

Thank you for making your wonderful book available. I have found
it immensely useful in finally understanding what I experienced as
confusing in Java and C++. Reading your book has been very
satisfying. Felix Bizaoui, Twin Oaks Industries, Louisa, Va.

I must congratulate you on an excellent book. I decided to have a
look at Thinking in Java based on my experience with Thinking in
C++, and I was not disappointed. Jaco van der Merwe,
Software Specialist, DataFusion Systems Ltd,
Stellenbosch, South Africa

This has to be one of the best Java books I’ve seen. E.F.
Pritchard, Senior Software Engineer, Cambridge
Animation Systems Ltd., United Kingdom

Your book makes all the other Java books I’ve read or flipped
through seem doubly useless and insulting. Brett g Porter,
Senior Programmer, Art & Logic

I have been reading your book for a week or two and compared to
the books I have read earlier on Java, your book seems to have
given me a great start. I have recommended this book to lot of my
friends and they have rated it excellent. Please accept my
congratulations for coming out with an excellent book. Rama
Krishna Bhupathi, Software Engineer, TCSI Corporation,
San Jose

Just wanted to say what a “brilliant” piece of work your book is. I’ve
been using it as a major reference for in-house Java work. I find
that the table of contents is just right for quickly locating the section
that is required. It’s also nice to see a book that is not just a rehash
of the API nor treats the programmer like a dummy. Grant Sayer,
Java Components Group Leader, Ceedata Systems Pty Ltd,
Australia

Wow! A readable, in-depth Java book. There are a lot of poor (and
admittedly a couple of good) Java books out there, but from what
I’ve seen yours is definitely one of the best. John Root, Web
Developer, Department of Social Security, London

I’ve *just* started Thinking in Java. I expect it to be very good
because I really liked Thinking in C++ (which I read as an
experienced C++ programmer, trying to stay ahead of the curve).
I’m somewhat less experienced in Java, but expect to be very
satisfied. You are a wonderful author. Kevin K. Lewis,
Technologist, ObjectSpace, Inc.

I think it’s a great book. I learned all I know about Java from this
book. Thank you for making it available for free over the Internet. If
you wouldn’t have I’d know nothing about Java at all. But the best
thing is that your book isn’t a commercial brochure for Java. It also
shows the bad sides of Java. YOU have done a great job here.
Frederik Fix, Belgium

I have been hooked to your books all the time. A couple of years
ago, when I wanted to start with C++, it was C++ Inside & Out
which took me around the fascinating world of C++. It helped me in
getting better opportunities in life. Now, in pursuit of more
knowledge and when I wanted to learn Java, I bumped into
Thinking in Java – No doubts in my mind as to whether I need
some other book. Just fantastic. It is more like rediscovering myself
as I get along with the book. It is just a month since I started with
Java, and heartfelt thanks to you, I am understanding it better now.
Anand Kumar S., Software Engineer, Computervision,
India

Your book stands out as an excellent general introduction. Peter
Robinson, University of Cambridge Computer Laboratory

It’s by far the best material I have come across to help me learn Java
and I just want you to know how lucky I feel to have found it.
THANKS! Chuck Peterson, Product Leader, Internet
Product Line, IVIS International

The book is great. It’s the third book on Java I’ve started and I’m
about two-thirds of the way through it now. I plan to finish this one.

I found out about it because it is used in some internal classes at
Lucent Technologies and a friend told me the book was on the Net.
Good work. Jerry Nowlin, MTS, Lucent Technologies

Of the six or so Java books I’ve accumulated to date, your Thinking
in Java is by far the best and clearest. Michael Van Waas,
Ph.D., President, TMR Associates

I just want to say thanks for Thinking in Java. What a wonderful
book you’ve made here! Not to mention downloadable for free! As a
student I find your books invaluable (I have a copy of C++ Inside
Out, another great book about C++), because they not only teach
me the how-to, but also the whys, which are of course very
important in building a strong foundation in languages such as C++
or Java. I have quite a lot of friends here who love programming
just as I do, and I’ve told them about your books. They think it’s
great! Thanks again! By the way, I’m Indonesian and I live in Java.
Ray Frederick Djajadinata, Student at Trisakti University,
Jakarta

The mere fact that you have made this work free over the Net puts
me into shock. I thought I’d let you know how much I appreciate
and respect what you’re doing. Shane LeBouthillier, Computer
Engineering student, University of Alberta, Canada

I have to tell you how much I look forward to reading your monthly
column. As a newbie to the world of object oriented programming, I
appreciate the time and thoughtfulness that you give to even the
most elementary topic. I have downloaded your book, but you can
bet that I will purchase the hard copy when it is published. Thanks
for all of your help. Dan Cashmer, B. C. Ziegler & Co.

Just want to congratulate you on a job well done. First I stumbled
upon the PDF version of Thinking in Java. Even before I finished
reading it, I ran to the store and found Thinking in C++. Now, I
have been in the computer business for over eight years, as a
consultant, software engineer, teacher/trainer, and recently as self-
employed, so I’d like to think that I have seen enough (not “have
seen it all,” mind you, but enough). However, these books cause my
girlfriend to call me a ”geek.” Not that I have anything against the
concept – it is just that I thought this phase was well beyond me.

But I find myself truly enjoying both books, like no other computer
book I have touched or bought so far. Excellent writing style, very
nice introduction of every new topic, and lots of wisdom in the
books. Well done. Simon Goland, simonsez@smartt.com,
Simon Says Consulting, Inc.

I must say that your Thinking in Java is great! That is exactly the
kind of documentation I was looking for. Especially the sections
about good and poor software design using Java. Dirk Duehr,
Lexikon Verlag, Bertelsmann AG, Germany

Thank you for writing two great books (Thinking in C++, Thinking
in Java). You have helped me immensely in my progression to
object oriented programming. Donald Lawson, DCL
Enterprises

Thank you for taking the time to write a really helpful book on Java.
If teaching makes you understand something, by now you must be
pretty pleased with yourself. Dominic Turner, GEAC Support

It’s the best Java book I have ever read – and I read some. Jean-
Yves MENGANT, Chief Software Architect NAT-SYSTEM,
Paris, France

Thinking in Java gives the best coverage and explanation. Very easy
to read, and I mean the code fragments as well. Ron Chan, Ph.D.,
Expert Choice, Inc., Pittsburgh PA

Your book is great. I have read lots of programming books and your
book still adds insights to programming in my mind. Ningjian
Wang, Information System Engineer, The Vanguard
Group

Thinking in Java is an excellent and readable book. I recommend it
to all my students. Dr. Paul Gorman, Department of
Computer Science, University of Otago, Dunedin, New
Zealand

You make it possible for the proverbial free lunch to exist, not just a
soup kitchen type of lunch but a gourmet delight for those who
appreciate good software and books about it. Jose Suriol, Scylax
Corporation

Thanks for the opportunity of watching this book grow into a
masterpiece! IT IS THE BEST book on the subject that I’ve read or
browsed. Jeff Lapchinsky, Programmer, Net Results
Technologies

Your book is concise, accessible and a joy to read. Keith Ritchie,
Java Research & Development Team, KL Group Inc.

It truly is the best book I’ve read on Java! Daniel Eng

The best book I have seen on Java! Rich Hoffarth, Senior
Architect, West Group

Thank you for a wonderful book. I’m having a lot of fun going
through the chapters. Fred Trimble, Actium Corporation

You have mastered the art of slowly and successfully making us
grasp the details. You make learning VERY easy and satisfying.
Thank you for a truly wonderful tutorial. Rajesh Rau, Software
Consultant

Thinking in Java rocks the free world! Miko O’Sullivan,
President, Idocs Inc.

About Thinking in C++:

Best Book! Winner of the
1995 Software Development Magazine Jolt Award!

“This book is a tremendous achievement. You owe it to yourself to have
a copy on your shelf. The chapter on iostreams is the most
comprehensive and understandable treatment of that subject I’ve seen
to date.”

Al Stevens
Contributing Editor, Doctor Dobbs Journal

“Eckel’s book is the only one to so clearly explain how to rethink
program construction for object orientation. That the book is also an
excellent tutorial on the ins and outs of C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with his insight into C++, and Thinking
in C++ is his best collection of ideas yet. If you want clear answers to
difficult questions about C++, buy this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of
when and how to use inlines, references, operator overloading,
inheritance, and dynamic objects, as well as advanced topics such as
the proper use of templates, exceptions and multiple inheritance. The
entire effort is woven in a fabric that includes Eckel’s own philosophy
of object and program design. A must for every C++ developer’s
bookshelf, Thinking in C++ is the one C++ book you must have if
you’re doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine

Thinking
in

Java
Second Edition

Bruce Eckel
President, MindView Inc.

Prentice Hall
Upper Saddle River, New Jersey 07458
http://www.prenhall.com

Library of Congress Cataloging-in-Publication Data

Eckel, Bruce.
Thinking in Java / Bruce Eckel.

p. cm.
Includes index.
ISBN 0-13-659723-8
1. Java (Computer program language) I. Title.
QA76.73.J38E25 1998
005.13'3--dc21 97-52713

CIP
Editorial/Production Supervision: Craig Little
Acquisitions Editor: Jeffrey Pepper
Manufacturing Manager: Alexis R. Heydt
Marketing Manager: Miles Williams
Cover Design: Daniel Will-Harris
Interior Design: Daniel Will-Harris, www.will-harris.com

© 2000 by Bruce Eckel, President, MindView, Inc.
Published by Prentice-Hall Inc.
Pearson Higher Education
Upper Saddle River, NJ 07458

The information in this book is distributed on an “as is” basis, without warranty. While every precaution has been taken in
the preparation of this book, neither the author nor the publisher shall have any liability to any person or entitle with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by instructions contained in this
book or by the computer software or hardware products described herein.

All rights reserved. No part of this book may be
reproduced, in any form or by any means, without
permission in writing from the publisher.

Prentice Hall books are widely used by corporations and government agencies for training, marketing, and resale. The
publisher offers discounts on this book when ordered in bulk quantities. For more information, contact the Corporate Sales
Department at 800-382-3419, fax: 201-236-7141, email: corpsales@prenhall.com or write: Corporate Sales Department,
Prentice Hall PTR, One Lake Street, Upper Saddle River, New Jersey 07458.

Java is a registered trademark of Sun Microsystems, Inc. Windows 95 and Windows NT are trademarks of Microsoft
Corporation. All other product names and company names mentioned herein are the property of their respective owners.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-659723-8

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Pearson Education Asia Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

mailto:corpsales@prenhall.com

Based on

Taught by

Personal
and his se

Includes

Intermed

Hundred
see the W
Check www.BruceEckel.com for
in-depth details and

the date and location of the next
Hands-On Java Seminar

 this book

 Bruce Eckel

attention from Bruce Eckel
minar assistants

in-class programming exercises

iate/Advanced seminars also offered

s have already enjoyed this seminar –
eb site for their testimonials

Th

Ov
lec

Cre

Ba

De
Bruce Eckel’s Hands-On Java Seminar
Multimedia CD

It’s like coming to the seminar!
Available at http://www.BruceEckel.com

e Hands-On Java Seminar captured on a MultiMedia CD!

erhead slides and synchronized audio voice narration for all the
tures. Just play it to see and hear the lectures!

ated and narrated by Bruce Eckel.

sed on the material in this book.

mo lecture available at http://www.BruceEckel.com

Dedication
To the person who, even now,

is creating the next great computer language

Overview
Preface 1

Introduction 9

1: Introduction to Objects 31

2: Everything is an Object 107

3: Controlling Program Flow 139

4: Initialization & Cleanup 197

5: Hiding the Implementation 251

6: Reusing Classes 281

7: Polymorphism 319

8: Interfaces & Inner Classes 359

9: Holding Your Objects 411

10: Error Handling with Exceptions 499

11: The Java IO System 541

12: Run-Time Type Identification 641

13: Creating Windows & Applets 669

14: Multiple Threads 859

15: Distributed Computing 941

16: Design Patterns 1045

A: Passing & Returning Objects 1145

B: The Java Native Interface (JNI) 1197

C: Java Programming Guidelines 1209

D: Recommended Reading 1215

Index 1217

What’s Inside
Preface 1

Preface to the 2nd edition 4
Java 2..6

The CD ROM...................8

Introduction 9
Prerequisites 9
Learning Java................ 10
Goals............................... 11
Online documentation .. 12
Chapters 13
Exercises........................20
Multimedia CD ROM20
Source code 21

Coding standards22
Java versions................. 23
Seminars and mentoring24
Errors24
Note on the cover design25
Acknowledgements26

Internet contributors28

1: Introduction
to Objects 31

The progress of
abstraction 32
An object has an interface34
The hidden
implementation............. 37
Reusing the
implementation.............39
Inheritance: reusing the
interface40

Is-a vs. is-like-a relationships45

Interchangeable objects
with polymorphism47

Abstract base classes and interfaces51
Object landscapes and
lifetimes52

Collections and iterators.............. 54
The singly-rooted hierarchy 56
Collection libraries and support for

easy collection use.........................57
The housekeeping dilemma: who

should clean up? 59
Exception handling:
dealing with errors 61
Multithreading62
Persistence.....................63
Java and the Internet64

What is the Web?......................... 64
Client-side programming 67
Server-side programming............ 74
A separate arena: applications75

Analysis and design.......76
Phase 0: Make a plan................... 79
Phase 1: What are we making?80
Phase 2: How will we build it?..... 84
Phase 3: Build the core 89
Phase 4: Iterate the use cases 89
Phase 5: Evolution 90
Plans pay off................................. 92

Extreme programming..93
Write tests first 94
Pair programming 95

Why Java succeeds97
Systems are easier to express and

understand................................... 97
Maximal leverage with libraries .. 97
Error handling 98
Programming in the large............ 98

Strategies for transition 98
Guidelines 99
Management obstacles 101

Java vs. C++?...............103
Summary105

2: Everything is
an Object 107

You manipulate objects
with handles107
You must create all the
objects..........................109

Where storage lives.....................109
Special case: primitive types111
Arrays in Java 113

You never need to destroy
an object....................... 114

Scoping.. 114
Scope of objects 115

Creating new data types:
class.............................. 116

Fields and methods..................... 117
Methods, arguments and
return values................ 119

The argument list........................120
Building a Java program121

Name visibility............................122
Using other components122
The static keyword123

Your first Java program126
Compiling and running128

Comments and embedded
documentation.............129

Comment documentation...........130
Syntax ...130
Embedded HTML 131
@see: referring to other classes 132
Class documentation tags...........133
Variable documentation tags133
Method documentation tags134
Documentation example 135

Coding style136

Summary..................... 136
Exercises137

3: Controlling
Program Flow 139

Using Java operators .. 139
Precedence.................................. 140
Assignment................................. 140
Mathematical operators............. 143
Auto increment and decrement . 146
Relational operators................... 147
Logical operators........................ 149
Bitwise operators........................ 152
Shift operators............................ 153
Ternary if-else operator 158
The comma operator 159
String operator + 159
Common pitfalls when using

operators 160
Casting operators 160
Java has no “sizeof”.................... 164
Precedence revisited................... 165
A compendium of operators 165

Execution control.........176
true and false...............................177
if-else ...177
Iteration...................................... 178
do-while...................................... 179
for ... 179
break and continue181
switch.. 189

Summary..................... 194
Exercises 194

4: Initialization
& Cleanup 197

Guaranteed initialization
with the constructor.....197
Method overloading....200

Distinguishing overloaded methods202
Overloading with primitives203
Overloading on return values208
Default constructors...................208

The this keyword 209
Cleanup: finalization and
garbage collection 213

What is finalize() for? 215
You must perform cleanup......... 216
The death condition220
How a garbage collector works ..222

Member initialization .226
Specifying initialization228
Constructor initialization...........229

Array initialization 237
Multidimensional arrays............243

Summary.....................246
Exercises...................... 247

5: Hiding the
Implementation 251

package: the library unit252
Creating unique package names 255
A custom tool library..................259
Using imports to change behavior260
Package caveat............................263

Java access specifiers ..263
“Friendly”263
public: interface access.............265
private: you can’t touch that! ...267
protected: “sort of friendly”.....268

Interface and
implementation...........270
Class access 272
Summary..................... 275
Exercises...................... 277

6: Reusing Classes 281
Composition syntax 281
Inheritance syntax285

Initializing the base class 288
Combining composition
and inheritance 291

Guaranteeing proper cleanup293
Name hiding297

Choosing composition vs.
inheritance.................. 298
protected..................... 300
Incremental development301
Upcasting.................... 302

Why “upcasting”?....................... 303
The final keyword 304

Final data304
Final methods309
Final classes 310
Final caution 311

Initialization and class
loading 312

Initialization with inheritance....313
Summary 315
Exercises...................... 316

7: Polymorphism 319
Upcasting.................... 320

Why upcast?................................321
The twist323

Method call binding................... 324
Producing the right behavior..... 325
Extensibility 328

Overriding vs. overloading332
Abstract classes and
methods333
Constructors and
polymorphism 338

Order of constructor calls 338
Inheritance and finalize()341
Behavior of polymorphic methods

inside constructors 345
Designing with
inheritance.................. 348

Pure inheritance vs. extension .. 350
Downcasting and run-time type

identification.............................. 352
Summary354
Exercises......................355

8: Interfaces
& Inner Classes 359

Interfaces 359
“Multiple inheritance” in Java .. 364
Extending an interface with

inheritance................................. 366
Grouping constants 368
Initializing fields in interfaces... 370

Inner classes 371
Inner classes and upcasting373
Inner classes in methods and

scopes..376
Anonymous inner classes 378
The link to the outer class.......... 382
static inner classes 384
Referring to the outer class object387
Inheriting from inner classes 388
Can inner classes be overridden?389
Inner class identifiers 392
Why inner classes: control

frameworks 393
Summary 406
Exercises 407

9: Holding
Your Objects 411

Arrays........................... 411
Arrays are first-class objects413
Returning an array417

Collections419
Disadvantage: unknown type.... 420

Iterators 426
Types of collections 430

ArrayList 430
BitSet ...431
Stack ... 434
Map ... 435
Enumerators revisited............... 444

Sorting 445
Java 2 Collections....... 452

Using Collections457
Using Lists461

Using Sets466
Using Maps469
Choosing an implementation 472
Unsupported operations482
Sorting and searching485
Utilities 491

Summary.....................494
Exercises496

10: Error Handling
with Exceptions 499

Basic exceptions..........500
Exception arguments502

Catching an exception.503
The try block..............................503
Exception handlers504
The exception specification........505
Catching any exception507
Rethrowing an exception509

Standard Java exceptions513
The special case of

RuntimeException 514
Creating your own
exceptions516
Exception restrictions.520
Performing cleanup with
finally 524

What’s finally for?526
Pitfall: the lost exception529

Constructors................ 530
Exception matching 534

Exception guidelines..................536
Summary..................... 536
Exercises 537

11: The Java IO System 541
Input and output......... 542

Types of InputStream542
Types of OutputStream544

Adding attributes and
useful interfaces.......... 547

Reading from an InputStream

with FilterInputStream.........548
Writing to an OutputStream

with FilterOutputStream550
Off by itself:
RandomAccessFile...... 552
The File class.............. 553

A directory lister.........................553
Checking for and creating

directories...................................559
Typical uses of IO streams562

Input streams565
Output streams...........................568
Shorthand for file manipulation 569
Reading from standard input..... 572
Piped streams 573

StreamTokenizer.... 573
StringTokenizer 577

Java 1.1 IO streams580
Sources and sinks of data........... 581
Modifying stream behavior........582
Unchanged Classes.....................583
An example.................................584
A cross-reference generator589
Redirecting standard IO.............590

Compression 592
Simple compression with GZIP .593
Multi-file storage with Zip595
The Java archive (jar) utility598

Object serialization 601
Finding the class........................ 606
Controlling serialization607
Using persistence618

Checking capitalization
style 627
Summary..................... 637
Exercises......................638

12: Run-Time Type
Identification 641

The need for RTTI....... 641
The Class object644

Checking before a cast 647
RTTI syntax654
Reflection: run-time class
information657

A class method extractor 659
Summary665
Exercises..................... 666

13: Creating Windows
& Applets 669

The basic applet........... 671
Running applets inside a Web

browser....................................... 673
Using Appletviewer 675
Testing applets 676

Making a button677
Capturing an event678
Text fields 682
Text areas 684
Labels.......................... 686

HTML text on Swing components687
Check boxes 688
Radio buttons 690
Drop-down lists...........691
List boxes.....................693
Tabbed panes...............695
Message boxes 696
Menus 698
Dialog Boxes 699
Controlling layout 700

FlowLayout701
BorderLayout 702
GridLayout 703
GridBagLayout........................... 703
BoxLayout 704
Absolute positioning.................. 708

Alternatives to action 708
Closing the window..................... 715

Applet restrictions....... 715
Applet advantages....................... 717

Windowed applications717

Combined application/applet 719
Menus .. 720
Dialog boxes................................725

The event model732
Event and listener types734

Making windows and
applets..........................742

Packaging the applet into a JAR file744
Revisiting the earlier
examples745

Demonstrating the framework

methods 746
Text fields....................................747
Text areas................................... 750
Check boxes and radio buttons ..753
Drop-down lists755
Lists...757
Menus ...759
Dialog boxes................................765

Selecting Look & Feel . 768
Binding events
dynamically.................. 771
Separating business logic
from UI logic................773
Recommended coding
approaches...................776

Baseline: the good way to do it...777
Implementing the main class as a

listener ..779
Mixing the approaches781
Inheriting a component............. 782
Ugly component inheritance 789

JFC APIs795
Desktop colors 796
The clipboard............................. 796

Visual programming and
Beans........................... 799

What is a Bean? 801
Extracting BeanInfo with the

Introspector804
A more sophisticated Bean......... 811
Packaging a Bean........................815

More complex Bean support...... 817
More to Beans 818

Introduction to Swing. 818
Benefits of Swing........................ 819
Easy conversion..........................820
A display framework822
Tool tips......................................823
Borders823
Buttons824
Button groups.............................826
Icons ...828
Menus...830
Popup menus..............................835
List boxes and combo boxes836
Sliders and progress bars...........837
Trees ...838
Tables ... 841
Tabbed Panes843
More to Swing846

Using URLs from within
an applet...................... 847

Reading a file from the server....848
A method lookup tool .849
Summary..................... 855
Exercises856

14: Multiple Threads 859
Responsive user interfaces860

Inheriting from Thread............863
Threading for a responsive interface

..865
Combining the thread with the

main class870
Making many threads873
Daemon threads 877

Sharing limited resources879
Improperly accessing resources 880
How Java shares resources885
Java Beans revisited................... 891

Blocking 897
Becoming blocked898
Deadlock..................................... 910

Priorities.......................915

Thread groups 920
Runnable revisited ...929

Too many threads.......................932
Summary.....................936
Exercises......................938

15: Distributed Computing
 941

Identifying a machine .942
Servers and clients944
Port: a unique place within the

machine945
Sockets946

A simple server and client947
Serving multiple clients954
Datagrams...................960
Enterprise programming
concepts....................... 961
Java Database
Connectivity (JDBC) ...962

Getting the example to work966
A GUI version of the lookup

program 971
Why the JDBC API seems so

complex.......................................974
A more sophisticated JDBC

Example......................................975
Servlets........................982
The basic servlet..........983

Servlets and Multithreading987
Handling Sessions with Servlets988
Getting the Servlet examples to

work ..994
Java Server Pages........994

Basic operations996
JSP Page Attributes and Scope 1002
Manipulating sessions in JSP ..1004
Creating and modifying Cookies1006

RMI (Remote Method
Invocation)................ 1007

Remote interfaces.....................1007
Implementing the remote interface1008

Creating stubs and skeletons....1012
Using the remote object............1013

Introduction to CORBA1015
CORBA Fundamentals 1015
An example1018
Java Applets and CORBA 1024
CORBA vs. RMI 1024

Enterprise Java Beans1025
What’s defined in the EJB

specification?1027
What makes up an EJB

component? 1030
How does EJB work?1031
How does EJB work? 1032
Types of EJB’s 1033
How do I put the ‘E’ in my existing

JavaBeans?................................1035
Jini: distributed services1036

Jini in context 1036
What is Jini?1037
How Jini works 1038
The discovery process 1038
The join process 1039
The lookup process 1040
Separation of interface and

implementation1041
Abstracting distributed systems1042

JavaSpaces.................1043
Summary1043
Exercises....................1043

16: Design Patterns 1045
The pattern concept ..1045

The singleton.............................1047
Classifying patterns 1049

Building application
frameworks................1050

Template method..................... 1050
Fronting for an
implementation.........1052

Proxy ...1053
State ... 1054
StateMachine1057

Factories: encapsulating
object creation 1060

Polymorphic factories...............1062
Abstract factories..................... 1066

Functors.................... 1069
Command 1069
Strategy 1071
Chain of responsibility1073

Changing the interface1075
Adapter1076
Façade1078

Interpreter: run-time
flexibility1079
Callbacks................... 1080

Observer................................... 1080
A visual example of observers . 1086

Multiple dispatching 1089
Visitor, a type of multiple

dispatching1093
Pattern refactoring ... 1096

Simulating the trash recycler .. 1096
Improving the design 1100

“Make more objects”................. 1101
A pattern for prototyping creation1104

Abstracting usage1115
Multiple dispatching . 1120

Implementing the double dispatch1121
The Visitor pattern 1128
RTTI considered harmful?1138
Summary1141
Exercises 1143

A: Passing &
Returning Objects 1145

Passing handles around1146
Aliasing 1146

Making local copies ... 1149
Pass by value............................. 1150
Cloning objects1151

Adding cloneability to a class....1152
Successful cloning 1155
The effect of Object.clone() ..1158
Cloning a composed object 1160
A deep copy with ArrayList1162
Deep copy via serialization1164
Adding cloneability further down a

hierarchy....................................1167
Why this strange design?1168

Controlling cloneability1169
The copy-constructor 1175

Read-only classes.......1180
Creating read-only classes1182
The drawback to immutability..1183
Immutable Strings1185
The String and StringBuffer

classes..1189
Strings are special1194

Summary....................1194
Exercises 1195

B: The Java Native
Interface (JNI) 1197

The Java Native Interface1197
Calling a native method1198
Accessing JNI functions: The

JNIEnv argument................... 1202
Passing and using Java objects 1203
JNI and Java exceptions 1206
JNI and threading 1207
Using a pre-existing code base 1208

The Microsoft wayError! Bookmark not define

C: Java Programming
Guidelines 1209

D: Recommended Reading
 1215

Index 1217

 1

Preface
I suggested to my brother Todd, who is making the leap
from hardware into programming, that the next big
revolution will be in genetic engineering.

We’ll have microbes designed to make food, fuel and plastic; they’ll
clean up pollution and in general allow us to master the
manipulation of the physical world for a fraction of what it costs
now. I claimed that it would make the computer revolution look
small in comparison.

Then I realized I was making a mistake common to science fiction
writers: getting lost in the technology (which is of course easy to do
in science fiction). An experienced writer knows that the story is
never about the things; it’s about the people. Genetics will have a
very large impact on our lives, but I’m not so sure it will dwarf the
computer revolution (which enables the genetic revolution) – or at
least the information revolution. Information is about talking to
each other: yes, cars and shoes and especially genetic cures are
important, but in the end those are just trappings. What truly
matters is how we relate to the world. And so much of that is about
communication.

This book is a case in point. A majority of folks thought I was very
bold or a little crazy to put the entire thing up on the Web. “Why
would anyone buy it?” they asked. If I had been of a more
conservative nature I wouldn’t have done it, but I really didn’t want
to write another computer book in the same old way. I didn’t know
what would happen but it turned out to be the smartest thing I’ve
ever done with a book.

For one thing, people started sending in corrections. This has been
an amazing process, because folks have looked into every nook and
cranny and caught both technical and grammatical errors, and I’ve
been able to eliminate bugs of all sorts that I know would have
otherwise slipped through. People have been simply terrific about

2 Thinking in Java www.BruceEckel.com

this, very often saying “Now, I don’t mean this in a critical way” and
then giving me a collection of errors I’m sure I never would have
found. I feel like this has been a kind of group process and it has
really made the book into something special.

But then I started hearing “OK, fine, it’s nice you’ve put up an
electronic version, but I want a printed and bound copy from a real
publisher.” I tried very hard to make it easy for everyone to print it
out in a nice looking format but that didn’t stem the demand for the
published book. Most people don’t want to read the entire book on
screen, and hauling around a sheaf of papers, no matter how nicely
printed, didn’t appeal to them either (plus I think it’s not so cheap
in terms of laser printer toner). It seems that the computer
revolution won’t put publishers out of business, after all. However,
one student suggested this may become a model for future
publishing: books will be published on the Web first, and only if
sufficient interest warrants it will the book be put on paper.
Currently, the great majority of books of all kinds are financial
failures, and perhaps this new approach could make the publishing
industry more profitable.

This book became an enlightening experience for me in another
way. I originally approached Java as “just another programming
language,” which in many senses it is. But as time passed and I
studied it more deeply, I began to see that the fundamental
intention of this language is different from all the other languages I
have seen.

Programming is about managing complexity: the complexity of the
problem you want to solve laid upon the complexity of the machine
in which it is solved. Because of this complexity, most of our
programming projects fail. And yet of all the programming
languages that I am aware, none of them have gone all out and
decided that their main design goal would be to conquer the
complexity of developing and maintaining programs1. Of course,
many language design decisions were made with complexity in

1 I take this back on the 2nd edition: I believe that the Python language comes closest to
doing exactly that. See www.Python.org.

Preface 3

mind, but at some point there were always some other issues that
were considered essential to be added into the mix. Inevitably, those
other issues are what causes programmers to eventually “hit the
wall” with that language. For example, C++ had to be backwards-
compatible with C (to allow easy migration for C programmers), as
well as efficient. Those are both very useful goals and account for
much of the success of C++, but they also expose extra complexity
that prevents some projects from being finished (certainly, you can
blame programmers and management, but if a language can help by
catching your mistakes, why shouldn’t it?). As another example,
Visual Basic (VB) was tied to BASIC, which wasn’t really designed to
be an extensible language, so all the extensions piled upon VB have
produced some truly horrible and un-maintainable syntax. Perl is
backwards-compatible with Awk, Sed, Grep, and other Unix tools it
was meant to replace, and as a result is often accused of producing
“write-only code” (that is, after a few months you can’t read it). On
the other hand, C++, VB, Perl, and other languages like Smalltalk
had some of their design efforts focused on the issue of complexity
and as a result are remarkably successful in solving certain types of
problems.

What has impressed me most as I have come to understand Java is
what seems like an unflinching goal of reducing complexity for the
programmer. As if to say “we don’t care about anything except
reducing the time and difficulty of producing robust code.” In the
early days, this goal has resulted in code that doesn’t run very fast
(although there have been many promises made about how quickly
Java will someday run) but it has indeed produced amazing
reductions in development time; half or less of the time that it takes
to create an equivalent C++ program. This result alone can save
incredible amounts of time and money, but Java doesn’t stop there.
It goes on to wrap all the complex tasks that have become
important, such as multithreading and network programming, in
language features or libraries that can at times make those tasks
trivial. And finally, it tackles some really big complexity problems:
cross-platform programs, dynamic code changes, and even security,
each of which can fit on your complexity spectrum anywhere from
“impediment” to “show-stopper.” So despite the performance

4 Thinking in Java www.BruceEckel.com

problems we’ve seen, the promise of Java is tremendous: it can
make us significantly more productive programmers.

One of the places I see the greatest impact for this is on the Web.
Network programming has always been hard, and Java makes it
easy (and they’re working on making it easier all the time). Network
programming is how we talk to each other more effectively and
cheaply than we ever have with telephones (email alone has
revolutionized many businesses). As we talk to each other more,
amazing things begin to happen, possibly more amazing even than
the promise of genetic engineering.

In all ways: creating the programs, working in teams to create the
programs, building user interfaces so the programs can
communicate with the user, running the programs on different
types of machines, and easily writing programs that communicate
across the Internet – Java increases the communication bandwidth
between people. And I think that perhaps the results of the
communication revolution will not be seen from the effects of
moving large quantities of bits around. We shall see the true
revolution because we will all be able to talk to each other more
easily – one-on-one, but also in groups and as a planet. I've heard it
suggested that the next revolution is the formation of a kind of
global mind which results from enough people and enough
interconnectedness. Java may or may not be the tool that foments
that revolution, but at least the possibility has made me feel like I'm
doing something meaningful here by attempting to teach the
language.

Preface to the 2nd edition
People have made many, many wonderful comments about the first
edition of this book, which has naturally been very pleasant.
However, every now and then someone will have complaints, and
for some reason a complaint that comes up periodically is that “the
book is too big.” In my mind it is faint damnation indeed if “too
many pages” is your only complaint (one is reminded of the
Emperor of Austria’s complaint about Mozart’s work: “Too many
notes!” Not that I am in any way trying to compare myself to

Preface 5

Mozart). In addition, I can only assume that such a complaint
comes from someone who is yet to be acquainted with the vastness
of the Java language itself, and has not seen the rest of the books on
the subject – for example, my favorite reference is Cay Horstmann
& Gary Cornell’s Core Java (from Prentice-Hall) which grew so big
it had to be broken into two volumes. Despite this, one of the things
I have attempted to do in this edition is trim out the portions that
have become obsolete, or at least non-essential. I feel comfortable
doing this because the original material remains on the web site and
the CD ROM that accompanies this book, in the form of the freely-
downloadable first edition of the book (at www.BruceEckel.com). If
you want the old stuff, it’s still there, and this is a wonderful relief
for an author. For example, you may notice that the last chapter
“Projects” is no longer there; two of the projects have been
integrated into other chapters and the rest was no longer
appropriate. So by all rights the book should be thinner.

But alas, it is not to be.

The biggest issue is the continuing development of the Java
language itself, and in particular the expanding APIs which promise
to provide standard interfaces for just about everything you’d like to
do (and I won’t be surprised to see the “JToaster” API eventually
appear). Covering all these APIs is obviously beyond the scope of
this book and is a task relegated to other book authors, but some
issues cannot be ignored. The biggest of these include server-side
Java (primarily Servlets & Java Server pages – JSPs) which is truly
an excellent solution to the World Wide Web problem, wherein
we’ve discovered that the various Web browser platforms are just
not consistent enough to support client-side programming. In
addition, there is the whole problem of easily creating applications
to interact with databases, transactions, security, and the like which
is involved with Enterprise Java Beans (EJBs). These topics are
wrapped into the chapter formerly called Network Programming
and now called Distributed Computing, a subject that is becoming
essential to everyone. You’ll also find this chapter has been
expanded to include Jini (pronounced “genie” and it isn’t an
acronym, just a name) and JavaSpaces, two cutting-edge
technologies that allow us to change the way we think about
interconnected applications. And of course the book has been

6 Thinking in Java www.BruceEckel.com

changed to use the Swing GUI library throughout – again, if you
want the old Java 1.0/1.1 stuff you can get it from the freely-
downloadable book (which is also included on this edition’s new CD
ROM, bound into the book. More on that a little later).

Aside from additional small language features added in Java 2 and
corrections made throughout the book, the other major change is in
the collections chapter (9), which now focuses on the Java 2
collections, which are used throughout the book. I’ve also improved
that chapter to more deeply go into some of the important issues of
collections, in particular how a hash function works (so that you can
know how to properly create one). There have been other
movements and changes, including a rewrite of Chapter 1, removal
of some appendices and other material that I consider no longer
necessary for the printed book, but those are the bulk of them. In
general, I’ve tried to go over everything, remove what is no longer
necessary (but which still exists in the electronic first edition),
include changes, and improve everything I know how. As the
language continues to change – albeit not quite at the same
breakneck pace as before – there will no doubt be further editions
of this book.

For those of you who still can’t stand the size of the book, I do
apologize. Believe it or not, I have worked hard to keep it small.
Despite the bulk, I feel like there may be enough alternatives to
satisfy you. For one thing, the book is available electronically (from
the Web site, and also on the CD ROM that accompanies this book),
so if you carry your laptop you can carry the book on that with no
extra weight. If you’re really into slimming down, there are actually
Palm Pilot versions of the book floating around. (One person told
me he would read the book in bed on his Palm with the backlighting
on to keep from annoying his wife. I can only hope that it helps send
him to slumberland.) If you need it on paper, I know of people who
print out a chapter at a time and carry it in their briefcase to read on
the train.

Java 2
At this writing, the release of Sun’s Java Development Kit (JDK) 1.3
is imminent, and the proposed changes for JDK 1.4 have been

Preface 7

publicized. Although these version numbers are still in the “ones,”
the standard way to refer to any version of the language which is
JDK 1.2 or greater is to call it “Java 2.” This indicates the very
significant changes between “old Java” – which had many warts
that I complained about in the first edition of this book – and this
more modern and improved version of the language which has far
fewer warts and many additions and nice designs.

This book is written for Java 2. I have the great luxury of getting rid
of all the old stuff and writing to only the new, improved language
because the old information still exists in the electronic 1st edition
on the Web and on the CD ROM (which is where you can go if
you’re stuck using a pre-Java-2 version of the language). Also
because anyone can freely download the JDK from java.sun.com, it
means that by writing to Java 2 I’m not imposing a financial
hardship on someone by forcing them to upgrade.

There is a bit of a catch, however. JDK 1.3 has some improvements
that I’d really like to use, but the version of Java that is currently
being released for Linux is JDK 1.2.2. And Linux (see
www.Linux.org) is a very important development in conjunction
with Java, because it is fast becoming the most important server
platform out there – fast, reliable, robust, secure, well-maintained,
and free, a true revolution in the history of computing (I don’t think
we’ve ever seen all of those features in any tool before). And Java
has found a very important niche in server-side programming in the
form of Servlets, a technology that is a huge improvement over the
traditional CGI programming (this is covered in the Distributed
Programming chapter).

So although I would like to only use the very newest features, it’s
critical that everything compiles under Linux, and so when you
unpack the source code and compile it under that OS (with the
latest JDK) you’ll discover that everything will compile. However,
you will find that I’ve put notes about features in JDK 1.3 here and
there.

8 Thinking in Java www.BruceEckel.com

The CD ROM
Another bonus with the 2nd edition is the CD ROM that is packaged
in the back of the book. I’ve resisted putting CD ROMs in the back
of my books in the past because I felt the extra charge for a few
Kbytes of source code on this enormous CD was not justified,
preferring instead to allow people to download such things from my
Web site. However, you’ll soon see that this CD ROM is different.

The CD does contain the source code from the book, but it also
contains the book in its entirety, in several electronic formats. My
favorite of these is the HTML format because it is fast and fully
indexed – you just click on an entry in the index or table of contents
and you’re immediately at that portion of the book.

The bulk of the 300+ Megabytes of the CD, however, is a full
multimedia course called Thinking in C: Foundations for C++ &
Java. I originally commissioned Chuck Allison to create this
seminar-on-CD-ROM as a stand-alone product, but decided to
include it with the second editions of both Thinking in C++ and
Thinking in Java because of the consistent experience of having
people come to seminars without an adequate background in C. The
thinking apparently goes “I’m a smart programmer and I don’t
want to learn C, but rather C++ or Java, so I’ll just skip C and go
directly to C++/Java.” After arriving at the seminar, it slowly dawns
on folks that the prerequisite of understanding C syntax is there for
a very good reason. By including the CD ROM with the book, we can
ensure that everyone attends a seminar with adequate preparation.

The CD also allows the book to appeal to a wider audience. Even
though Chapter 3 (Controlling program flow) does cover the
fundamentals of the parts of Java that come from C, the CD is a
gentler introduction and assumes even less about the student’s
programming background than does the book. It is my hope that by
including the CD more people will be able to be brought into the
fold of Java programming.

 9

Introduction
Like any human language, Java provides a way to express
concepts. If successful, this medium of expression will be
significantly easier and more flexible than the alternatives
as problems grow larger and more complex.

You can’t look at Java as just a collection of features – some of the
features make no sense in isolation. You can use the sum of the
parts only if you are thinking about design, not simply coding. And
to understand Java in this way, you must understand the problems
with it and with programming in general. This book discusses
programming problems, why they are problems, and the approach
Java has taken to solve them. Thus, the set of features I explain in
each chapter are based on the way I see a particular type of problem
being solved with the language. In this way I hope to move you, a
little at a time, to the point where the Java mindset becomes your
native tongue.

Throughout, I’ll be taking the attitude that you want to build a
model in your head that allows you to develop a deep understanding
of the language; if you encounter a puzzle you’ll be able to feed it to
your model and deduce the answer.

Prerequisites
This book assumes that you have some programming familiarity:
you understand that a program is a collection of statements, the
idea of a subroutine/function/macro, control statements such as
“if” and looping constructs such as “while,” etc. However, you might
have learned this in many places, such as programming with a
macro language or working with a tool like Perl. As long as you’ve
programmed to the point where you feel comfortable with the basic
ideas of programming, you’ll be able to work through this book. Of
course, the book will be easier for the C programmers and more so

10 Thinking in Java www.BruceEckel.com

for the C++ programmers, but don’t count yourself out if you’re not
experienced with those languages (but come willing to work hard;
also, the multimedia CD that accompanies this book will bring you
up to speed on the basic C syntax necessary to learn Java). I’ll be
introducing the concepts of object-oriented programming (OOP)
and Java’s basic control mechanisms, so you’ll be exposed to those,
and the first exercises will involve the basic control-flow statements.

Although references will often be made to C and C++ language
features, these are not intended to be insider comments, but instead
to help all programmers put Java in perspective with those
languages, from which, after all, Java is descended. I will attempt to
make these references simple and to explain anything that I think a
non- C/C++ programmer would not be familiar with.

Learning Java
At about the same time that my first book Using C++
(Osborne/McGraw-Hill 1989) came out, I began teaching that
language. Teaching programming languages has become my
profession; I’ve seen nodding heads, blank faces, and puzzled
expressions in audiences all over the world since 1989. As I began
giving in-house training with smaller groups of people, I discovered
something during the exercises. Even those people who were
smiling and nodding were confused about many issues. I found out,
by chairing the C++ track at the Software Development Conference
for a number of years (and later the Java track), that I and other
speakers tended to give the typical audience too many topics too
fast. So eventually, through both variety in the audience level and
the way that I presented the material, I would end up losing some
portion of the audience. Maybe it’s asking too much, but because I
am one of those people resistant to traditional lecturing (and for
most people, I believe, such resistance results from boredom), I
wanted to try to keep everyone up to speed.

For a time, I was creating a number of different presentations in
fairly short order. Thus, I ended up learning by experiment and
iteration (a technique that also works well in Java program design).
Eventually I developed a course using everything I had learned from

Introduction 11

my teaching experience – one that I would be happy giving for a
long time. It tackles the learning problem in discrete, easy-to-digest
steps and in a hands-on seminar (the ideal learning situation), there
are exercises following each of the short lessons. I now give this
course in public Java seminars, which you can find out about at
http://www.BruceEckel.com. (The introductory seminar is also
available as a CD ROM. Information is available at the same Web
site.)

The feedback that I get from each seminar helps me change and
refocus the material until I think it works well as a teaching
medium. But this book isn’t just seminar notes – I tried to pack as
much information as I could within these pages and structured it to
draw you through onto the next subject. More than anything, the
book is designed to serve the solitary reader who is struggling with a
new programming language.

Goals
Like my previous book Thinking in C++, this book has come to be
structured around the process of teaching the language. In
particular, my motivation is to create something that provides me
with a way to teach the language in my own seminars. When I think
of a chapter in the book, I think in terms of what makes a good
lesson during a seminar. My goal is to get bite-sized pieces that can
be taught in a reasonable amount of time, followed by exercises that
are feasible to accomplish in a classroom situation.

My goals in this book are to:

1. Present the material one simple step at a time so that you can
easily digest each concept before moving on.

2. Use examples that are as simple and short as possible. This
sometimes prevents me from tackling “real world” problems,
but I’ve found that beginners are usually happier when they
can understand every detail of an example rather than being
impressed by the scope of the problem it solves. Also, there’s
a severe limit to the amount of code that can be absorbed in a

12 Thinking in Java www.BruceEckel.com

classroom situation. For this I will no doubt receive criticism
for using “toy examples,” but I’m willing to accept that in
favor of producing something pedagogically useful.

3. Carefully sequence the presentation of features so that you
aren’t seeing something that you haven’t been exposed to. Of
course, this isn’t always possible; in those situations, a brief
introductory description is given.

4. Give you what I think is important for you to understand
about the language, rather than everything I know. I believe
there is an information importance hierarchy, and that there
are some facts that 95 percent of programmers will never
need to know and that just confuses people and adds to their
perception of the complexity of the language. To take an
example from C, if you memorize the operator precedence
table (I never did), you can write clever code. But if you need
to think about it, it will also confuse the reader/maintainer of
that code. So forget about precedence, and use parentheses
when things aren’t clear.

5. Keep each section focused enough so that the lecture time –
and the time between exercise periods – is small. Not only
does this keep the audience’s minds more active and involved
during a hands-on seminar, but it gives the reader a greater
sense of accomplishment.

6. Provide you with a solid foundation so that you can
understand the issues well enough to move on to more
difficult coursework and books.

Online documentation
The Java language and libraries from Sun Microsystems (a free
download) come with documentation in electronic form, readable
using a Web browser, and virtually every third party
implementation of Java has this or an equivalent documentation
system. Almost all the books published on Java have duplicated this
documentation. So you either already have it or you can download

Introduction 13

it, and unless necessary, this book will not repeat that
documentation because it’s usually much faster if you find the class
descriptions with your Web browser than if you look them up in a
book. (Plus it will be up-to-date.) This book will provide extra
descriptions of the classes only when it’s necessary to supplement
the documentation so you can understand a particular example.

Chapters
This book was designed with one thing in mind: the way people
learn the Java language. Seminar audience feedback helped me
understand the difficult parts that needed illumination. In the areas
where I got ambitious and included too many features all at once, I
came to know – through the process of presenting the material –
that if you include a lot of new features, you need to explain them
all, and this easily compounds the student’s confusion. As a result,
I’ve taken a great deal of trouble to introduce the features as few at
a time as possible.

The goal, then, is for each chapter to teach a single feature, or a
small group of associated features, in such a way that no additional
features are relied upon. That way you can digest each piece in the
context of your current knowledge before moving on.

Here is a brief description of the chapters contained in the book,
which correspond to lectures and exercise periods in my hands-on
seminars.

Chapter 1: Introduction to Objects
This chapter is an overview of what object-oriented
programming is all about, including the answer to the
basic question “What’s an object?”, interface vs.
implementation, abstraction and encapsulation,
messages and functions, inheritance and composition,
and the all-important polymorphism. You’ll also get an
overview of issues of object creation such as
constructors, where the objects live, where to put them
once they’re created, and the magical garbage collector
that cleans up the objects that are no longer needed.

14 Thinking in Java www.BruceEckel.com

Other issues will be introduced, including error handling
with exceptions, multithreading for responsive user
interfaces, and networking and the Internet. You’ll learn
what makes Java special, why it’s been so successful, and
about object-oriented analysis and design.

Chapter 2: Everything is an Object
This chapter moves you to the point where you can write
your first Java program, so it must give an overview of
the essentials, including the concept of a “handle” to an
object; how to create an object; an introduction to
primitive types and arrays; scoping and the way objects
are destroyed by the garbage collector; how everything in
Java is a new data type (class) and how to create your
own classes; functions, arguments, and return values;
name visibility and using components from other
libraries; the static keyword; and comments and
embedded documentation.

Chapter 3: Controlling Program Flow
This chapter begins with all of the operators that come to
Java from C and C++. In addition, you’ll discover
common operator pitfalls, casting, promotion, and
precedence. This is followed by the basic control-flow
and selection operations that you get with virtually any
programming language: choice with if-else; looping with
for and while; quitting a loop with break and continue as
well as Java’s labeled break and labeled continue (which
account for the “missing goto” in Java); and selection
using switch. Although much of this material has
common threads with C and C++ code, there are some
differences. In addition, all the examples will be full Java
examples so you’ll get more comfortable with what Java
looks like.

Chapter 4: Initialization & Cleanup
This chapter begins by introducing the constructor,
which guarantees proper initialization. The definition of
the constructor leads into the concept of function
overloading (since you might want several constructors).

Introduction 15

This is followed by a discussion of the process of
cleanup, which is not always as simple as it seems.
Normally, you just drop an object when you’re done with
it and the garbage collector eventually comes along and
releases the memory. This portion explores the garbage
collector and some of its idiosyncrasies. The chapter
concludes with a closer look at how things are initialized:
automatic member initialization, specifying member
initialization, the order of initialization, static
initialization and array initialization.

Chapter 5: Hiding the Implementation
This chapter covers the way that code is packaged
together, and why some parts of a library are exposed
while other parts are hidden. It begins by looking at the
package and import keywords, which perform file-
level packaging and allow you to build libraries of
classes. The subject of directory paths and file names is
also examined. The remainder of the chapter looks at the
public, private, and protected keywords, the concept
of “friendly” access, and what the different levels of
access control mean when used in various contexts.

Chapter 6: Reusing Classes
The concept of inheritance is standard in virtually all
OOP languages. It’s a way to take an existing class and
add to its functionality (as well as change it, the subject
of Chapter 7). Inheritance is often a way to reuse code by
leaving the “base class” the same, and just patching
things here and there to produce what you want.
However, inheritance isn’t the only way to make new
classes from existing ones. You can also embed an object
inside your new class with composition. In this chapter
you’ll learn about these two ways to reuse code in Java,
and how to apply them.

Chapter 7: Polymorphism
On your own, you might take nine months to discover
and understand polymorphism, a cornerstone of OOP.
Through small, simple examples you’ll see how to create

16 Thinking in Java www.BruceEckel.com

a family of types with inheritance and manipulate
objects in that family through their common base class.
Java’s polymorphism allows you to treat all objects in
this family generically, which means the bulk of your
code doesn’t rely on specific type information. This
makes your programs extensible, so building programs
and code maintenance is easier and cheaper.

Chapter 8: Interfaces & Inner Classes
Java provides a third way to set up a reuse relationship,
through the interface, which is a pure abstraction of the
interface of an object. The interface is more than just
an abstract class taken to the extreme, since it allows you
to perform a variation on C++’s “multiple inheritance,”
by creating a class that can be upcast to more than one
base type.

At first, inner classes look like a simple code hiding
mechanism: you place classes inside other classes. You’ll
learn, however, that the inner class does more than that
– it knows about and can communicate with the
surrounding class – and that the kind of code you can
write with inner classes is more elegant and clear,
although it is a new concept to most and takes some time
to become comfortable with design using inner classes.

Chapter 9: Holding your Objects
It’s a fairly simple program that has only a fixed quantity
of objects with known lifetimes. In general, your
programs will always be creating new objects at a variety
of times that will be known only while the program is
running. In addition, you won’t know until run-time the
quantity or even the exact type of the objects you need.
To solve the general programming problem, you need to
create any number of objects, anytime, anywhere. This
chapter explores in depth the collections library that
Java 2 supplies to hold objects while you’re working with
them: the simple arrays and more sophisticated
collections (data structures) such as ArrayList and
HashMap.

Introduction 17

Chapter 10: Error Handling with Exceptions
The basic philosophy of Java is that badly-formed code
will not be run. As much as possible, the compiler
catches problems, but sometimes the problems – either
programmer error or a natural error condition that
occurs as part of the normal execution of the program –
can be detected and dealt with only at run-time. Java has
exception handling to deal with any problems that arise
while the program is running. This chapter examines
how the keywords try, catch, throw, throws, and
finally work in Java; when you should throw exceptions
and what to do when you catch them. In addition, you’ll
see Java’s standard exceptions, how to create your own,
what happens with exceptions in constructors, and how
exception handlers are located.

Chapter 11: The Java IO System
Theoretically, you can divide any program into three
parts: input, process, and output. This implies that IO
(input/output) is an important part of the equation. In
this chapter you’ll learn about the different classes that
Java provides for reading and writing files, blocks of
memory, and the console. The distinction between “old”
IO and “new” Java IO will be shown. In addition, this
section examines the process of taking an object,
“streaming” it (so that it can be placed on disk or sent
across a network) and reconstructing it, which is
handled for you with Java’s object serialization. Also,
Java’s compression libraries, which are used in the Java
ARchive file format (JAR), are examined.

Chapter 12: Run-Time Type Identification
Java run-time type identification (RTTI) lets you find
the exact type of an object when you have a handle to
only the base type. Normally, you’ll want to intentionally
ignore the exact type of an object and let Java’s dynamic
binding mechanism (polymorphism) implement the
correct behavior for that type. But occasionally it is very
helpful to know the exact type of an object for which you
have only a base handle. Often this information allows

18 Thinking in Java www.BruceEckel.com

you to perform a special-case operation more efficiently.
This chapter explains what RTTI is for, how to use it and
how to get rid of it when it doesn’t belong there. In
addition, the Java reflection mechanism is introduced.

Chapter 13: Creating Windows and Applets
Java comes with the “Swing” GUI library, which is a set
of classes that handle windowing in a portable fashion.
These windowed programs can either be applets or
stand-alone applications. This chapter is an introduction
to Swing and the creation of World Wide Web applets.
The important “Java Beans” technology is introduced.
This is fundamental for the creation of Rapid-
Application Development (RAD) program-building
tools.

Chapter 14: Multiple Threads
Java provides a built-in facility to support multiple
concurrent subtasks, called threads, running within a
single program. (Unless you have multiple processors on
your machine, this is only the appearance of multiple
subtasks.) Although these can be used anywhere, threads
are most apparent when trying to create a responsive
user interface so, for example, a user isn’t prevented
from pressing a button or entering data while some
processing is going on. This chapter looks at the syntax
and semantics of multithreading in Java.

Chapter 15: Distributed Computing
All the Java features and libraries seem to really come
together when you start writing programs to work across
networks. This chapter explores communication across
networks and the Internet, and the classes that Java
provides to make this easier. It introduces the very
important concepts of Servlets and JSPs (for server-side
programming), along with Java DataBase Connectivity
(JDBC) and Remote Method Invocation (RMI). Finally,
there’s an introduction to the new technologies of JINI,
JavaSpaces and Enterprise JavaBeans (EJBs).

Introduction 19

Chapter 16: Design Patterns
This chapter introduces the very important and yet non-
traditional “patterns” approach to program design. An
example of the design evolution process is studied,
starting with an initial solution and moving through the
logic and process of evolving the solution to more
appropriate designs. You’ll see how a design can
materialize over time.

Appendix A: Passing & Returning Objects
Since the only way you talk to objects in Java is through
“handles,” the concepts of passing an object into a
function and returning an object from a function have
some interesting consequences. This chapter explains
what you need to know to manage objects when you’re
moving in and out of functions, and also shows the
String class, which uses a different approach to the
problem.

Appendix B: The Java Native Interface (JNI)
A totally portable Java program has serious drawbacks:
speed and the inability to access platform-specific
services. When you know the platform that you’re
running on, it’s possible to dramatically speed up certain
operations by making them native methods, which are
functions that are written in another programming
language (currently, only C/C++ is supported). This
appendix gives you enough of an introduction to this
feature that you should be able to create simple
examples that interface with non-Java code.

Appendix C: Java Programming Guidelines
This appendix contains suggestions to help guide you
while performing low-level program design and writing
code.

Appendix D: Recommended Reading
A list of some of the Java books I’ve found particularly
useful.

20 Thinking in Java www.BruceEckel.com

Exercises
I’ve discovered that simple exercises are exceptionally useful to
complete a student’s understanding during a seminar, so you’ll find
a set at the end of each chapter.

Most exercises are designed to be easy enough that they can be
finished in a reasonable amount of time in a classroom situation
while the instructor observes, making sure that all the students are
absorbing the material. Some exercises are more advanced to
prevent boredom for experienced students. The majority are
designed to be solved in a short time and test and polish your
knowledge. Some are more challenging, but none present major
challenges. (Presumably, you’ll find those on your own – or more
likely they’ll find you).

Multimedia CD ROM
There are two multimedia CDs associated with this book. The first is
bound into the book itself: Thinking in C, described at the end of
the preface, which prepares you for the book by bringing you up to
speed on the necessary C syntax you need to be able to understand
Java.

A second Multimedia CD ROM is available which is based on the
contents of the book. This CD ROM is a separate product and
contains the entire contents of the week-long “Hands-On Java”
training seminar. This is more than 15 hours of lectures that I have
recorded, synchronized with hundreds of slides of information.
Because the seminar is based on this book, it is an ideal
accompaniment.

The CD ROM contains all the lectures (with the important
exception of personalized attention!) from the five-day full-
immersion training seminars. We believe that it sets a new standard
for quality.

The Hands-On Java CD ROM is available only by ordering directly
from the Web site www.BruceEckel.com.

Introduction 21

Source code
All the source code for this book is available as copyrighted
freeware, distributed as a single package, by visiting the Web site
http://www.BruceEckel.com. To make sure that you get the most
current version, this is the official site for distribution of the code
and the electronic version of the book. You can find mirrored
versions of the electronic book and the code on other sites (some of
these sites are found at http://www.BruceEckel.com), but you
should check the official site to ensure that the mirrored version is
actually the most recent edition. You may distribute the code in
classroom and other educational situations.

The primary goal of the copyright is to ensure that the source of the
code is properly cited, and to prevent you from republishing the
code in print media without permission. (As long as the source is
cited, using examples from the book in most media is generally not
a problem.)

In each source code file you will find a reference to the following
copyright notice:

//:! :CopyRight.txt

Copyright ©2000 Bruce Eckel

Source code file from the 2nd edition of the book

"Thinking in Java." All rights reserved EXCEPT as

allowed by the following statements:

You can freely use this file

for your own work (personal or commercial),

including modifications and distribution in

executable form only. Permission is granted to use

this file in classroom situations, including its

use in presentation materials, as long as the book

"Thinking in Java" is cited as the source.

Except in classroom situations, you cannot copy

and distribute this code; instead, the sole

distribution point is http://www.BruceEckel.com

(and official mirror sites) where it is

freely available. You cannot remove this

copyright and notice. You cannot distribute

modified versions of the source code in this

package. You cannot use this file in printed

22 Thinking in Java www.BruceEckel.com

media without the express permission of the

author. Bruce Eckel makes no representation about

the suitability of this software for any purpose.

It is provided "as is" without express or implied

warranty of any kind, including any implied

warranty of merchantability, fitness for a

particular purpose or non-infringement. The entire

risk as to the quality and performance of the

software is with you. Bruce Eckel and the

publisher shall not be liable for any damages

suffered by you or any third party as a result of

using or distributing software. In no event will

Bruce Eckel or the publisher be liable for any

lost revenue, profit, or data, or for direct,

indirect, special, consequential, incidental, or

punitive damages, however caused and regardless of

the theory of liability, arising out of the use of

or inability to use software, even if Bruce Eckel

and the publisher have been advised of the

possibility of such damages. Should the software

prove defective, you assume the cost of all

necessary servicing, repair, or correction. If you

think you've found an error, please submit the

correction using the form you will find at

www.BruceEckel.com. (Please use the same

form for non-code errors found in the book.)

///:~

You may use the code in your projects and in the classroom
(including your presentation materials) as long as the copyright
notice that appears in each source file is retained.

Coding standards
In the text of this book, identifiers (function, variable and class
names) will be set in bold. Most keywords will also be set in bold,
except for those keywords that are used so much that the bolding
can become tedious, such as “class.”

I use a particular coding style for the examples in this book. This
style follows the style that Sun itself uses in virtually all of the code
you will find at its site (java.sun.com), and seems to be supported
by most Java development environments. If you’ve read my other

Introduction 23

works, you’ll also notice that somehow, Sun’s coding style coincides
with mine – this pleases me although I had nothing to do with it.
The subject of formatting style is good for hours of hot debate, so
I’ll just say I’m not trying to dictate correct style via my examples; I
have my own motivation for using the style that I do. Because Java
is a free-form programming language, you can continue to use
whatever style you’re comfortable with.

The programs in this book are files that are included by the word
processor in the text, directly from compiled files. Thus, the code
files printed in the book should all work without compiler errors.
The errors that should cause compile-time error messages are
commented out with the comment //! so they can be easily
discovered and tested using automatic means. Errors discovered
and reported to the author will appear first in the distributed source
code and later in updates of the book (which will also appear on the
Web site http://www.BruceEckel.com).

Java versions
I generally rely on the Sun implementation of Java as a reference
when determining whether behavior is correct.

Over time, Sun has released three major versions of Java: 1.0, 1.1
and 2 (which is called version two even though the releases of the
JDK from sun continue to use the numbering scheme of 1.2, 1.3, 1.4,
etc.). Version 2 seems to finally bring Java into the prime time, in
particular where user interface tools are concerned. This book
focuses on and is tested with Java 2, although I do sometimes make
concessions to earlier features of Java 2 so that the code will
compile under Linux (via the Linux JDK that was available at this
writing).

If you need to learn about earlier releases of the language that are
not covered in this edition, the first edition of the book is freely
downloadable at www.BruceEckel.com and is contained on the CD
that is bound in with this book.

24 Thinking in Java www.BruceEckel.com

One thing you’ll notice is that, when I do need to mention earlier
versions of the language, I don’t use the sub-revision numbers. In
this book I will refer to Java 1.0, Java 1.1 and Java 2 only, to guard
against typographical errors produced by further sub-revisioning of
these products.

Seminars and mentoring
My company provides five-day, hands-on, public and in-house
training seminars based on the material in this book. Selected
material from each chapter represents a lesson, which is followed by
a monitored exercise period so each student receives personal
attention. The audio lectures and slides for the introductory
seminar are also captured on CD-ROM to provide at least some of
the experience of the seminar without the travel and expense. For
more information, go to:

http://www.BruceEckel.com

My company also provides consulting, mentoring and walkthrough
services to help guide your project through its development cycle –
especially your company’s first Java project.

Errors
No matter how many tricks a writer uses to detect errors, some
always creep in and these often leap off the page for a fresh reader.

There is an error submission form linked from the beginning of
each chapter in the HTML version of this book (on the on the CD
ROM bound into the back of this book, and downloadable from
www.BruceEckel.com) and also on the web site itself, on the page
for this book. If you discover anything you believe to be an error,
please use this form to submit the error along with your suggested
correction. If necessary, include the original source file and note any
suggested modifications. Your help is appreciated.

Introduction 25

Note on the cover design
The cover of Thinking in Java is inspired by the American Arts &
Crafts Movement, which began near the turn of the century and
reached its zenith between 1900 and 1920. It began in England as a
reaction to both the machine production of the Industrial
Revolution and the highly ornamental style of the Victorian era.
Arts & Crafts emphasized spare design, the forms of nature as seen
in the art nouveau movement, hand-crafting, and the importance of
the individual craftsperson, and yet it did not eschew the use of
modern tools. There are many echoes with the situation we have
today: the turn of the century, the evolution from the raw
beginnings of the computer revolution to something more refined
and meaningful to individual persons, and the emphasis on
software craftsmanship rather than just manufacturing code.

I see Java in this same way: as an attempt to elevate the
programmer away from an operating-system mechanic and towards
being a “software craftsman.”

Both the author and the book/cover designer (who have been
friends since childhood) find inspiration in this movement, and
both own furniture, lamps and other pieces that are either original
or inspired by this period.

The other theme in this cover suggests a collection box that a
naturalist might use to display the insect specimens that he or she
has preserved. These insects are objects, placed within the box
objects which are themselves placed within the “cover object,”
which illustrates the fundamental concept of aggregation in object-
oriented programming. Of course, a programmer cannot help but
make the association with “bugs,” and here the bugs have been
captured and presumably killed in a specimen jar, and finally
confined within a small display box, as if to imply Java’s ability to
find, display and subdue bugs (which is truly one of its most
powerful attributes).

26 Thinking in Java www.BruceEckel.com

Acknowledgements
Thanks to the Doyle Street Cohousing Community for putting up
with me for the two years that it took me to write the first edition of
this book (and for putting up with me at all). Thanks very much to
Kevin and Sonda Donovan for subletting their great place in
gorgeous Crested Butte, Colorado for the summer while I worked on
the book. Also thanks to the friendly residents of Crested Butte and
the Rocky Mountain Biological Laboratory who made me feel so
welcome.

Thanks to Claudette Moore at Moore Literary Agency for her
tremendous patience and perseverance in getting me exactly what I
wanted.

My first two books were published with Jeff Pepper as editor at
Osborne/McGraw-Hill. Jeff appeared at the right place and the
right time at Prentice-Hall and has cleared the path and made all
the right things happen to make this the most pleasant publishing
experience I’ve ever had. Thanks, Jeff – it means a lot to me.

I’m especially indebted to Gen Kiyooka and his company Digigami,
who graciously provided my Web server for the first several years of
my presence on the Web. This was an invaluable learning aid.

Thanks to Cay Horstmann (co-author of Core Java, Prentice Hall
1997), D’Arcy Smith (Symantec), and Paul Tyma (co-author of Java
Primer Plus, The Waite Group 1996), for helping me clarify
concepts in the language.

Thanks to people who have spoken in my Java track at the Software
Development Conference, and students in my seminars, who ask
the questions I need to hear in order to make the material more
clear.

Special thanks to Larry and Tina O’Brien, who helped turned this
my seminar into the original Hands-On Java CD ROM. (You can
find out more at http://www.BruceEckel.com.)

Lots of people sent in corrections and I am indebted to them all, but
particular thanks go to (for the first edition): Kevin Raulerson

Introduction 27

(found tons of great bugs), Bob Resendes (simply incredible), John
Pinto, Joe Dante, Joe Sharp (all three were fabulous), David Combs
(many grammar and clarification corrections), Dr. Robert
Stephenson, Franklin Chen, Zev Griner, David Karr, Leander A.
Stroschein, Steve Clark, Charles A. Lee, Austin Maher, Dennis P.
Roth, Roque Oliveira, Douglas Dunn, Dejan Ristic, Neil Galarneau,
David B. Malkovsky, Steve Wilkinson, and a host of others.

Prof. Ir. Marc Meurrens put in a great deal of effort to publicize and
make the electronic version of the first edition of the book available
in Europe.

There have been a spate of smart technical people in my life who
have become friends and have also been both influential and
unusual in that they do yoga and practice other forms of spiritual
enhancement, which I find quite inspirational and instructional.
They are Kraig Brockschmidt, Gen Kiyooka and Andrea Provaglio,
(who helps in the understanding of Java and programming in
general in Italy, and now in the United States as an associate of the
MindView team).

It’s not that much of a surprise to me that understanding Delphi
helped me understand Java, since there are many concepts and
language design decisions in common. My Delphi friends provided
assistance by helping me gain insight into that marvelous
programming environment. They are Marco Cantu (another Italian
– perhaps being steeped in Latin gives one aptitude for
programming languages?), Neil Rubenking (who used to do the
yoga/vegetarian/Zen thing but discovered computers) and of course
Zack Urlocker, a long-time pal whom I’ve traveled the world with.

My friend Richard Hale Shaw’s insights and support have been very
helpful (and Kim’s, too). Richard and I spent many months giving
seminars together and trying to work out the perfect learning
experience for the attendees. Thanks also to KoAnn Vikoren, Eric
Faurot, Marco Pardi, and the rest of the cast and crew at MFI.
Thanks especially to Tara Arrowood, who re-inspired me about the
possibilities of conferences.

The book design, cover design, and cover photo were created by my
friend Daniel Will-Harris, noted author and designer

28 Thinking in Java www.BruceEckel.com

(http://www.Will-Harris.com), who used to play with rub-on
letters in junior high school while he awaited the invention of
computers and desktop publishing, and complained of me
mumbling over my algebra problems. However, I produced the
camera-ready pages myself, so the typesetting errors are mine.
Microsoft® Word 97 for Windows was used to write the book and to
create camera-ready pages. The body typeface is Georgia and the
headlines are in Verdana. The cover typeface is ITC Rennie
Mackintosh.

Thanks to the vendors who created the compilers: Borland, the
Blackdown group (for Linux), and of course, Sun.

A special thanks to all my teachers and all my students (who are my
teachers as well). The most fun writing teacher was Gabrielle Rico
(author of Writing the Natural Way, Putnam 1983). I’ll always
treasure the terrific week at Esalen.

The supporting cast of friends includes, but is not limited to:
Andrew Binstock, Steve Sinofsky, JD Hildebrandt, Tom Keffer,
Brian McElhinney, Brinkley Barr, Bill Gates at Midnight
Engineering Magazine, Larry Constantine and Lucy Lockwood,
Greg Perry, Dan Putterman, Christi Westphal, Gene Wang, Dave
Mayer, David Intersimone, Andrea Rosenfield, Claire Sawyers,
more Italians (Laura Fallai, Corrado, Ilsa, and Cristina Giustozzi),
Chris and Laura Strand, the Almquists, Brad Jerbic, Marilyn
Cvitanic, the Mabrys, the Haflingers, the Pollocks, Peter Vinci, the
Robbins Families, the Moelter Families (and the McMillans),
Michael Wilk, Dave Stoner, Laurie Adams, the Cranstons, Larry
Fogg, Mike and Karen Sequeira, Gary Entsminger and Allison
Brody, Kevin Donovan and Sonda Eastlack, Chester and Shannon
Andersen, Joe Lordi, Dave and Brenda Bartlett, David Lee, the
Rentschlers, the Sudeks, Dick, Patty, and Lee Eckel, Lynn and Todd,
and their families. And of course, Mom and Dad.

Internet contributors
Thanks to those who helped me rewrite the examples to use the
Swing library: Jon Shvarts, Thomas Kirsch, Rahim Adatia, Rajesh
Jain, Ravi Manthena, Banu Rajamani, Jens Brandt, Nitin Shivaram,

Introduction 29

and everyone who expressed support. This really helped me jump-
start the project.

 31

1: Introduction
to Objects

The genesis of the computer revolution was in a machine.
The genesis of our programming languages thus tends to
look like that machine.

But computers are not so much machines as they are mind
amplification tools (“bicycles for the mind,” as Steve Jobs is fond of
saying) and a different kind of expressive medium. As a result, the
tools are beginning to look less like machines and more like parts of
our minds, and also like other expressive mediums such as writing,
painting, sculpture, animation, and filmmaking. Object-oriented
programming (OOP) is part of this movement toward using the
computer as an expressive medium.

This chapter will introduce you to the basic concepts of OOP,
including an overview of development methods. This chapter, and
this book, assume that you have had experience in a procedural
programming language, although not necessarily C. If you think you
need more preparation in programming and the syntax of C before
tackling this book, you should work through the Thinking in C:
Foundations for C++ and Java training CD ROM, bound in with
this book and also available at www.BruceEckel.com.

This chapter is background and supplementary material. Many
people do not feel comfortable wading into object-oriented
programming without understanding the big picture first. Thus,
there are many concepts that are introduced here to give you a solid
overview of OOP. However, many other people don’t get the big
picture concepts until they’ve seen some of the mechanics first;
these people may become bogged down and lost without some code
to get their hands on. If you’re part of this latter group and are eager
to get to the specifics of the language, feel free to jump past this

32 Thinking in Java www.BruceEckel.com

chapter – skipping it at this point will not prevent you from writing
programs or learning the language. However, you will want to come
back here eventually to fill in your knowledge so you can
understand why objects are important and how to design with
them.

The progress of
abstraction

All programming languages provide abstractions. It can be argued
that the complexity of the problems you’re able to solve is directly
related to the kind and quality of abstraction. By “kind” I mean,
“What is it that you are abstracting?” Assembly language is a small
abstraction of the underlying machine. Many so-called “imperative”
languages that followed (such as Fortran, BASIC, and C) were
abstractions of assembly language. These languages are big
improvements over assembly language, but their primary
abstraction still requires you to think in terms of the structure of
the computer rather than the structure of the problem you are
trying to solve. The programmer must establish the association
between the machine model (in the “solution space,” which is the
place where you’re modeling that problem, such as a computer) and
the model of the problem that is actually being solved (in the
“problem space,” which is the place where the problem exists). The
effort required to perform this mapping, and the fact that it is
extrinsic to the programming language, produces programs that are
difficult to write and expensive to maintain, and as a side effect
created the entire “programming methods” industry.

The alternative to modeling the machine is to model the problem
you’re trying to solve. Early languages such as LISP and APL chose
particular views of the world (“All problems are ultimately lists” or
“All problems are algorithmic”). PROLOG casts all problems into
chains of decisions. Languages have been created for constraint-
based programming and for programming exclusively by
manipulating graphical symbols. (The latter proved to be too
restrictive.) Each of these approaches is a good solution to the

Chapter 1: Introduction to Objects 33

particular class of problem they’re designed to solve, but when you
step outside of that domain they become awkward.

The object-oriented approach goes a step farther by providing tools
for the programmer to represent elements in the problem space.
This representation is general enough that the programmer is not
constrained to any particular type of problem. We refer to the
elements in the problem space and their representations in the
solution space as “objects.” (Of course, you will also need other
objects that don’t have problem-space analogs.) The idea is that the
program is allowed to adapt itself to the lingo of the problem by
adding new types of objects, so when you read the code describing
the solution, you’re reading words that also express the problem.
This is a more flexible and powerful language abstraction than what
we’ve had before. Thus, OOP allows you to describe the problem in
terms of the problem, rather than in terms of the computer where
the solution will run. There’s still a connection back to the
computer, though. Each object looks quite a bit like a little
computer; it has a state, and it has operations that you can ask it to
perform. However, this doesn’t seem like such a bad analogy to
objects in the real world – they all have characteristics and
behaviors.

Some language designers have decided that object-oriented
programming by itself is not adequate to easily solve all
programming problems, and advocate the combination of various
approaches into multiparadigm programming languages.1

Alan Kay summarized five basic characteristics of Smalltalk, the
first successful object-oriented language and one of the languages
upon which Java is based. These characteristics represent a pure
approach to object-oriented programming:

1. Everything is an object. Think of an object as a fancy
variable; it stores data, but you can “make requests” to that
object, asking it to perform operations on itself. In theory,
you can take any conceptual component in the problem you’re

1 See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley 1995).

34 Thinking in Java www.BruceEckel.com

trying to solve (dogs, buildings, services, etc.) and represent it
as an object in your program.

2. A program is a bunch of objects telling each
other what to do by sending messages. To make a
request of an object, you “send a message” to that object.
More concretely, you can think of a message as a request to
call a function that belongs to a particular object.

3. Each object has its own memory made up of
other objects. Put another way, you create a new kind of
object by making a package containing existing objects. Thus,
you can build complexity in a program while hiding it behind
the simplicity of objects.

4. Every object has a type. Using the parlance, each
object is an instance of a class, in which “class” is
synonymous with “type.” The most important distinguishing
characteristic of a class is “What messages can you send to
it?”

5. All objects of a particular type can receive the
same messages. This is actually a loaded statement, as
you will see later. Because an object of type “circle” is also an
object of type “shape,” a circle is guaranteed to accept shape
messages. This means you can write code that talks to shapes
and automatically handle anything that fits the description of
a shape. This substitutability is one of the most powerful
concepts in OOP.

An object has an interface
Aristotle was probably the first to begin a careful study of the
concept of type; he spoke of “the class of fishes and the class of
birds.” The idea that all objects, while being unique, are also part of
a class of objects that have characteristics and behaviors in common
was used directly in the first object-oriented language, Simula-67,
with its fundamental keyword class that introduces a new type into
a program.

Chapter 1: Introduction to Objects 35

Simula, as its name implies, was created for developing simulations
such as the classic “bank teller problem.” In this, you have a bunch
of tellers, customers, accounts, transactions, and units of money – a
lot of “objects.” Objects that are identical except for their state
during a program’s execution are grouped together into “classes of
objects” and that’s where the keyword class came from. Creating
abstract data types (classes) is a fundamental concept in object-
oriented programming. Abstract data types work almost exactly like
built-in types: You can create variables of a type (called objects or
instances in object-oriented parlance) and manipulate those
variables (called sending messages or requests; you send a message
and the object figures out what to do with it). The members
(elements) of each class share some commonality: every account
has a balance, every teller can accept a deposit, etc. At the same
time, each member has its own state, each account has a different
balance, each teller has a name. Thus, the tellers, customers,
accounts, transactions, etc., can each be represented with a unique
entity in the computer program. This entity is the object, and each
object belongs to a particular class that defines its characteristics
and behaviors.

So, although what we really do in object-oriented programming is
create new data types, virtually all object-oriented programming
languages use the “class” keyword. When you see the word “type”
think “class” and vice versa2.

Since a class describes a set of objects that have identical
characteristics (data elements) and behaviors (functionality), a class
is really a data type because a floating point number, for example,
also has a set of characteristics and behaviors. The difference is that
a programmer defines a class to fit a problem rather than being
forced to use an existing data type that was designed to represent a
unit of storage in a machine. You extend the programming language
by adding new data types specific to your needs. The programming
system welcomes the new classes and gives them all the care and
type-checking that it gives to built-in types.

2 Some people make a distinction, stating that type determines the interface while class is
a particular implementation of that interface.

36 Thinking in Java www.BruceEckel.com

The object-oriented approach is not limited to building simulations.
Whether or not you agree that any program is a simulation of the
system you’re designing, the use of OOP techniques can easily
reduce a large set of problems to a simple solution.

Once a class is established, you can make as many objects of that
class as you like, and then manipulate those objects as if they are
the elements that exist in the problem you are trying to solve.
Indeed, one of the challenges of object-oriented programming is to
create a one-to-one mapping between the elements in the problem
space and objects in the solution space.

But how do you get an object to do useful work for you? There must
be a way to make a request of the object so that it will do something,
such as complete a transaction, draw something on the screen or
turn on a switch. And each object can satisfy only certain requests.
The requests you can make of an object are defined by its interface,
and the type is what determines the interface. A simple example
might be a representation of a light bulb:

Light

 on()
 off()
 brighten()
 dim()

Type Name

Interface

Light lt = new Light();
lt.on();

The interface establishes what requests you can make for a
particular object. However, there must be code somewhere to
satisfy that request. This, along with the hidden data, comprises the
implementation. From a procedural programming standpoint, it’s
not that complicated. A type has a function associated with each
possible request, and when you make a particular request to an
object, that function is called. This process is usually summarized
by saying that you “send a message” (make a request) to an object,

Chapter 1: Introduction to Objects 37

and the object figures out what to do with that message (it executes
code).

Here, the name of the type/class is Light, the name of this
particular Light object is lt, and the requests that you can make of
a Light object are to turn it on, turn it off, make it brighter or make
it dimmer. You create a Light object by defining a “handle” (lt) for
that object and calling new to request a new object of that type. To
send a message to the object, you state the name of the object and
connect it to the message request with a period (dot). From the
standpoint of the user of a pre-defined class, that’s pretty much all
there is to programming with objects.

The diagram shown above follows the format of the Unified
Modeling Language (UML). Each class is represented by a box,
with the type name in the top portion of the box, any data members
that you care to describe in the middle portion of the box, and the
member functions (the functions that belong to this object, which
receive any messages you send to that object) in the bottom portion
of the box. Often, only the name of the class and the public member
functions are shown in UML design diagrams, and so the middle
portion is not shown. If you’re interested only in the class name,
then the bottom portion doesn’t need to be shown, either.

The hidden
implementation

It is helpful to break up the playing field into class creators (those
who create new data types) and client programmers3 (the class
consumers who use the data types in their applications). The goal of
the client programmer is to collect a toolbox full of classes to use for
rapid application development. The goal of the class creator is to
build a class that exposes only what’s necessary to the client
programmer and keeps everything else hidden. Why? Because if it’s

3 I’m indebted to my friend Scott Meyers for this term.

38 Thinking in Java www.BruceEckel.com

hidden, the client programmer can’t use it, which means that the
class creator can change the hidden portion at will without worrying
about the impact to anyone else. The hidden portion usually
represents the tender insides of an object that could easily be
corrupted by a careless or uninformed client programmer, so hiding
the implementation reduces program bugs. The concept of
implementation hiding cannot be overemphasized.

In any relationship it’s important to have boundaries that are
respected by all parties involved. When you create a library, you
establish a relationship with the client programmer, who is also a
programmer, but one who is putting together an application by
using your library, possibly to build a bigger library.

If all the members of a class are available to everyone, then the
client programmer can do anything with that class and there’s no
way to enforce rules. Even though you might really prefer that the
client programmer not directly manipulate some of the members of
your class, without access control there’s no way to prevent it.
Everything’s naked to the world.

So the first reason for access control is to keep client programmers’
hands off portions they shouldn’t touch – parts that are necessary
for the internal machinations of the data type but not part of the
interface that users need in order to solve their particular problems.
This is actually a service to users because they can easily see what’s
important to them and what they can ignore.

The second reason for access control is to allow the library designer
to change the internal workings of the class without worrying about
how it will affect the client programmer. For example, you might
implement a particular class in a simple fashion to ease
development, and then later discover that you need to rewrite it in
order to make it run faster. If the interface and implementation are
clearly separated and protected, you can accomplish this easily and
require only a relink by the user.

Java uses three explicit keywords to set the boundaries in a class:
public, private, and protected. Their use and meaning are quite
straightforward. These access specifiers determine who can use the
definitions that follow. public means the following definitions are

Chapter 1: Introduction to Objects 39

available to everyone. The private keyword, on the other hand,
means that no one can access those definitions except you, the
creator of the type, inside member functions of that type. private is
a brick wall between you and the client programmer. If someone
tries to access a private member, they’ll get a compile-time error.
protected acts like private, with the exception that an inheriting
class has access to protected members, but not private members.
Inheritance will be introduced shortly.

Java also has a “default” access, which comes into play if you don’t
use one of the aforementioned specifiers. This is sometimes called
“friendly” access because classes can access the friendly members of
other classes in the same package, but outside of the package those
same friendly members appear to be private.

Reusing the
implementation

Once a class has been created and tested, it should (ideally)
represent a useful unit of code. It turns out that this reusability is
not nearly so easy to achieve as many would hope; it takes
experience and insight to produce a good design. But once you have
such a design, it begs to be reused. Code reuse is one of the greatest
advantages that object-oriented programming languages provide.

The simplest way to reuse a class is to just use an object of that class
directly, but you can also place an object of that class inside a new
class. We call this “creating a member object.” Your new class can
be made up of any number and type of other objects, in any
combination that you need to achieve the functionality desired in
your new class. Because you are composing a new class from
existing classes, this concept is called composition (or more
generally, aggregation). Composition is often referred to as a “has-
a” relationship, as in “a car has an engine.”

40 Thinking in Java www.BruceEckel.com

Car Engine

(The above UML diagram indicates composition with the filled
diamond, which states there is one car. I will typically use a simpler
form: just a line, without the diamond, to indicate an association.4)

Composition comes with a great deal of flexibility. The member
objects of your new class are usually private, making them
inaccessible to the client programmers who are using the class. This
allows you to change those members without disturbing existing
client code. You can also change the member objects at runtime, to
dynamically change the behavior of your program. Inheritance,
which is described next, does not have this flexibility since the
compiler must place compile-time restrictions on classes created
with inheritance.

Because inheritance is so important in object-oriented
programming it is often highly emphasized, and the new
programmer can get the idea that inheritance should be used
everywhere. This can result in awkward and overly-complicated
designs. Instead, you should first look to composition when creating
new classes, since it is simpler and more flexible. If you take this
approach, your designs will be cleaner. Once you’ve had some
experience, it will be reasonably obvious when you need
inheritance.

Inheritance:
reusing the interface

By itself, the idea of an object is a convenient tool. It allows you to
package data and functionality together by concept, so you can

4 This is usually enough detail for most diagrams, and you don’t need to get specific about
whether you’re using aggregation or composition.

Chapter 1: Introduction to Objects 41

represent an appropriate problem-space idea rather than being
forced to use the idioms of the underlying machine. These concepts
are expressed as fundamental units in the programming language
by using the class keyword.

It seems a pity, however, to go to all the trouble to create a class and
then be forced to create a brand new one that might have similar
functionality. It’s nicer if we can take the existing class, clone it, and
then make additions and modifications to the clone. This is
effectively what you get with inheritance, with the exception that if
the original class (called the base or super or parent class) is
changed, the modified “clone” (called the derived or inherited or
sub or child class) also reflects those changes.

Base

Derived

(The arrow in the above UML diagram points from the derived class
to the base class. As you will see, there can be more than one
derived class.)

A type does more than describe the constraints on a set of objects; it
also has a relationship with other types. Two types can have
characteristics and behaviors in common, but one type may contain
more characteristics than another and may also handle more
messages (or handle them differently). Inheritance expresses this
similarity between types using the concept of base types and derived
types. A base type contains all of the characteristics and behaviors
that are shared among the types derived from it. You create a base
type to represent the core of your ideas about some objects in your
system. From the base type, you derive other types to express the
different ways that this core can be realized.

42 Thinking in Java www.BruceEckel.com

For example, a trash-recycling machine sorts pieces of trash. The
base type is “trash,” and each piece of trash has a weight, a value,
and so on, and can be shredded, melted, or decomposed. From this,
more specific types of trash are derived that may have additional
characteristics (a bottle has a color) or behaviors (an aluminum can
may be crushed, a steel can is magnetic). In addition, some
behaviors may be different (the value of paper depends on its type
and condition). Using inheritance, you can build a type hierarchy
that expresses the problem you’re trying to solve in terms of its
types.

A second example is the classic “shape” example, perhaps used in a
computer-aided design system or game simulation. The base type is
“shape,” and each shape has a size, a color, a position, and so on.
Each shape can be drawn, erased, moved, colored, etc. From this,
specific types of shapes are derived (inherited): circle, square,
triangle, and so on, each of which may have additional
characteristics and behaviors. Certain shapes can be flipped, for
example. Some behaviors may be different, such as when you want
to calculate the area of a shape. The type hierarchy embodies both
the similarities and differences between the shapes.

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Circle Square Triangle

Casting the solution in the same terms as the problem is
tremendously beneficial because you don’t need a lot of

Chapter 1: Introduction to Objects 43

intermediate models to get from a description of the problem to a
description of the solution. With objects, the type hierarchy is the
primary model, so you go directly from the description of the
system in the real world to the description of the system in code.
Indeed, one of the difficulties people have with object-oriented
design is that it’s too simple to get from the beginning to the end. A
mind trained to look for complex solutions is often stumped by this
simplicity at first.

When you inherit from an existing type, you create a new type. This
new type contains not only all the members of the existing type
(although the private ones are hidden away and inaccessible), but
more importantly it duplicates the interface of the base class. That
is, all the messages you can send to objects of the base class you can
also send to objects of the derived class. Since we know the type of a
class by the messages we can send to it, this means that the derived
class is the same type as the base class. In the previous example, “a
circle is a shape.” This type equivalence via inheritance is one of the
fundamental gateways in understanding the meaning of object-
oriented programming.

Since both the base class and derived class have the same interface,
there must be some implementation to go along with that interface.
That is, there must be some code to execute when an object receives
a particular message. If you simply inherit a class and don’t do
anything else, the methods from the base-class interface come right
along into the derived class. That means objects of the derived class
have not only the same type, they also have the same behavior,
which isn’t particularly interesting.

You have two ways to differentiate your new derived class from the
original base class. The first is quite straightforward: You simply
add brand new functions to the derived class. These new functions
are not part of the base class interface. This means that the base
class simply didn’t do as much as you wanted it to, so you added
more functions. This simple and primitive use for inheritance is, at
times, the perfect solution to your problem. However, you should
look closely for the possibility that your base class might also need
these additional functions. This process of discovery and iteration of
your design happens regularly in object-oriented programming.

44 Thinking in Java www.BruceEckel.com

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Circle Square Triangle

 FlipVertical()
 FlipHorizontal()

Although inheritance may sometimes imply (especially in Java,
where the keyword that indicates inheritance is extends) that you
are going to add new functions to the interface, that’s not
necessarily true. The second and more important way to
differentiate your new class is to change the behavior of an existing
base-class function. This is referred to as overriding that function.

Chapter 1: Introduction to Objects 45

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Triangle

 draw()
 erase()

Circle

 draw()
 erase()

Square

 draw()
 erase()

To override a function, you simply create a new definition for the
function in the derived class. You’re saying, “I’m using the same
interface function here, but I want it to do something different for
my new type.”

Is-a vs. is-like-a relationships
There’s a certain debate that can occur about inheritance: Should
inheritance override only base-class functions (and not add new
member functions that aren’t in the base class)? This would mean
that the derived type is exactly the same type as the base class since
it has exactly the same interface. As a result, you can exactly
substitute an object of the derived class for an object of the base
class. This can be thought of as pure substitution, and it’s often
referred to as the substitution principle. In a sense, this is the ideal
way to treat inheritance. We often refer to the relationship between
the base class and derived classes in this case as an is-a relationship,
because you can say “a circle is a shape.” A test for inheritance is to
determine whether you can state the is-a relationship about the
classes and have it make sense.

46 Thinking in Java www.BruceEckel.com

There are times when you must add new interface elements to a
derived type, thus extending the interface and creating a new type.
The new type can still be substituted for the base type, but the
substitution isn’t perfect because your new functions are not
accessible from the base type. This can be described as an is-like-a5
relationship; the new type has the interface of the old type but it
also contains other functions, so you can’t really say it’s exactly the
same. For example, consider an air conditioner. Suppose your
house is wired with all the controls for cooling; that is, it has an
interface that allows you to control cooling. Imagine that the air
conditioner breaks down and you replace it with a heat pump,
which can both heat and cool. The heat pump is-like-an air
conditioner, but it can do more. Because the control system of your
house is designed only to control cooling, it is restricted to
communication with the cooling part of the new object. The
interface of the new object has been extended, and the existing
system doesn’t know about anything except the original interface.

Cooling System

 cool()

Air Conditioner

 cool()

Heat Pump

 cool()
 heat()

Thermostat

 lowerTemperature()

Controls

Of course, once you see this design it becomes clear that the base
class “cooling system” is not general enough, and should be
renamed to “temperature control system” so that it can also include
heating – at which point the substitution principle will work.

5 My term.

Chapter 1: Introduction to Objects 47

However, the diagram above is an example of what can happen in
design and in the real world.

When you see the substitution principle it’s easy to feel like this
approach (pure substitution) is the only way to do things, and in
fact it is nice if your design works out that way. But you’ll find that
there are times when it’s equally clear that you must add new
functions to the interface of a derived class. With inspection both
cases should be reasonably obvious.

Interchangeable objects
with polymorphism

When dealing with type hierarchies, you often want to treat an
object not as the specific type that it is, but instead as its base type.
This allows you to write code that doesn’t depend on specific types.
In the shape example, functions manipulate generic shapes without
respect to whether they’re circles, squares, triangles, and so on. All
shapes can be drawn, erased, and moved, so these functions simply
send a message to a shape object; they don’t worry about how the
object copes with the message.

Such code is unaffected by the addition of new types, and adding
new types is the most common way to extend an object-oriented
program to handle new situations. For example, you can derive a
new subtype of shape called pentagon without modifying the
functions that deal only with generic shapes. This ability to extend a
program easily by deriving new subtypes is important because it
greatly improves designs while reducing the cost of software
maintenance.

There’s a problem, however, with attempting to treat derived-type
objects as their generic base types (circles as shapes, bicycles as
vehicles, cormorants as birds, etc.). If a function is going to tell a
generic shape to draw itself, or a generic vehicle to steer, or a
generic bird to move, the compiler cannot know at compile-time
precisely what piece of code will be executed. That’s the whole point

48 Thinking in Java www.BruceEckel.com

– when the message is sent, the programmer doesn’t want to know
what piece of code will be executed; the draw function can be
applied equally to a circle, a square, or a triangle, and the object will
execute the proper code depending on its specific type. If you don’t
have to know what piece of code will be executed, then when you
add a new subtype, the code it executes can be different without
requiring changes to the function call. Therefore, the compiler
cannot know precisely what piece of code is executed, so what does
it do? For example, in the following diagram the BirdController
object just works with generic Bird objects, and does not know
what exact type they are. This is convenient from
BirdController’s perspective because it doesn’t have to write
special code to determine the exact type of Bird it’s working with,
or that Bird’s behavior. So how does it happen that, when move()
is called while ignoring the specific type of Bird, the right behavior
will occur (a Goose runs, flies, or swims, and a Penguin runs or
swims)?

What happens
when move() is

called?

Bird

 move()

Goose

 move()

Penguin

 move()

BirdController

 reLocate()

The answer is the primary twist in object-oriented programming:
The compiler cannot make a function call in the traditional sense.
The function call generated by a non-OOP compiler causes what is
called early binding, a term you may not have heard before because
you’ve never thought about it any other way. It means the compiler
generates a call to a specific function name, and the linker resolves
this call to the absolute address of the code to be executed. In OOP,
the program cannot determine the address of the code until
runtime, so some other scheme is necessary when a message is sent
to a generic object.

Chapter 1: Introduction to Objects 49

To solve the problem, object-oriented languages use the concept of
late binding. When you send a message to an object, the code being
called isn’t determined until runtime. The compiler does ensure
that the function exists and performs type checking on the
arguments and return value (a language in which this isn’t true is
called weakly typed), but it doesn’t know the exact code to execute.

To perform late binding, Java uses a special bit of code in lieu of the
absolute call. This code calculates the address of the function body,
using information stored in the object (this process is covered in
great detail in Chapter 7). Thus, each object can behave differently
according to the contents of that special bit of code. When you send
a message to an object, the object actually does figure out what to
do with that message.

In some languages (C++, in particular) you must explicitly state
that you want a function to have the flexibility of late-binding
properties. In these languages, by default, member functions are
not dynamically bound. This caused problems, so in Java dynamic
binding is the default and you don’t need to remember to add any
extra keywords in order to get polymorphism.

Consider the shape example. The family of classes (all based on the
same uniform interface) was diagrammed earlier in the chapter. To
demonstrate polymorphism, we want to write a single piece of code
that ignores the specific details of type and talks only to the base
class. That code is decoupled from type-specific information, and
thus is simpler to write and easier to understand. And, if a new type
– a Hexagon, for example – is added through inheritance, the code
you write will work just as well for the new type of Shape as it did
on the existing types. Thus, the program is extensible.

If you write a method in Java (as you will soon learn how to do):

void doStuff(Shape s) {
s.erase();
// ...
s.draw();

}

50 Thinking in Java www.BruceEckel.com

This function speaks to any Shape, so it is independent of the
specific type of object that it’s drawing and erasing. If in some other
part of the program we use the doStuff() function:

Circle c = new Circle();
Triangle t = new Triangle();
Line l = new Line();
doStuff(c);
doStuff(t);
doStuff(l);

The calls to doStuff() automatically work right, regardless of the
exact type of the object.

This is actually a pretty amazing trick. Consider the line:

doStuff(c);

What’s happening here is that a Circle is being passed into a
function that’s expecting a Shape. Since a Circle is a Shape it can
be treated as one by doStuff(). That is, any message that
doStuff() can send to a Shape, a Circle can accept. So it is a
completely safe and logical thing to do.

We call this process of treating a derived type as though it were its
base type upcasting. The name cast is used in the sense of casting
into a mold and the up comes from the way the inheritance diagram
is typically arranged, with the base type at the top and the derived
classes fanning out downward. Thus, casting to a base type is
moving up the inheritance diagram: “upcasting.”

Shape

Circle Square Triangle

"Upcasting"

Chapter 1: Introduction to Objects 51

An object-oriented program contains some upcasting somewhere,
because that’s how you decouple yourself from knowing about the
exact type you’re working with. Look at the code in doStuff():

s.erase();
// ...
s.draw();

Notice that it doesn’t say “If you’re a Circle, do this, if you’re a
Square, do that, etc.” If you write that kind of code, which checks
for all the possible types that a Shape can actually be, it’s messy
and you need to change it every time you add a new kind of Shape.
Here, you just say “You’re a shape, I know you can erase() and
draw() yourself, do it, and take care of the details correctly.”

What’s impressive about the code in doStuff() is that, somehow,
the right thing happens. Calling draw() for Circle causes different
code to be executed than when calling draw() for a Square or a
Line, but when the draw() message is sent to an anonymous
Shape, the correct behavior occurs based on the actual type of the
Shape. This is amazing because, as mentioned earlier, when the
Java compiler is compiling the code for doStuff(), it cannot know
exactly what types it is dealing with. So ordinarily, you’d expect it to
end up calling the version of erase() and draw() for the base
class Shape, and not for the specific Circle, Square, or Line. And
yet the right thing happens because of polymorphism. The compiler
and runtime system handle the details; all you need to know is that
it happens and more importantly how to design with it. When you
send a message to an object, the object will do the right thing, even
when upcasting is involved.

Abstract base classes and
interfaces
Often in a design, you want the base class to present only an
interface for its derived classes. That is, you don’t want anyone to
actually create an object of the base class, only to upcast to it so that
its interface can be used. This is accomplished by making that class
abstract using the abstract keyword. If anyone tries to make an

52 Thinking in Java www.BruceEckel.com

object of an abstract class, the compiler prevents them. This is a
tool to enforce a particular design.

You can also use the abstract keyword to describe a method that
hasn’t been implemented yet – as a stub indicating “here is an
interface function for all types inherited from this class, but at this
point I don’t have any implementation for it.” An abstract method
may be created only inside an abstract class. When the class is
inherited, that method must be implemented, or the inheriting class
becomes abstract as well. Creating an abstract method allows
you to put a method in an interface without being forced to provide
a possibly meaningless body of code for that method.

The interface keyword takes the concept of an abstract class one
step further by preventing any function definitions at all. The
interface is a very useful and commonly-used tool, as it provides
the perfect separation of interface and implementation. In addition,
you can combine many interfaces together, if you wish. (You cannot
inherit from more than one regular class or abstract class.)

Object landscapes and
lifetimes

Technically, OOP is just about abstract data typing, inheritance and
polymorphism, but other issues can be at least as important. The
remainder of this section will cover these issues.

One of the most important factors is the way objects are created and
destroyed. Where is the data for an object and how is the lifetime of
the object controlled? There are different philosophies at work here.
C++ takes the approach that control of efficiency is the most
important issue, so it gives the programmer a choice. For maximum
run-time speed, the storage and lifetime can be determined while
the program is being written, by placing the objects on the stack
(these are sometimes called automatic or scoped variables) or in the
static storage area. This places a priority on the speed of storage
allocation and release, and control of these can be very valuable in
some situations. However, you sacrifice flexibility because you must

Chapter 1: Introduction to Objects 53

know the exact quantity, lifetime and type of objects while you're
writing the program. If you are trying to solve a more general
problem such as computer-aided design, warehouse management
or air-traffic control, this is too restrictive.

The second approach is to create objects dynamically in a pool of
memory called the heap. In this approach you don't know until run
time how many objects you need, what their lifetime is or what their
exact type is. Those are determined at the spur of the moment while
the program is running. If you need a new object, you simply make
it on the heap at the point that you need it. Because the storage is
managed dynamically, at run time, the amount of time required to
allocate storage on the heap is significantly longer than the time to
create storage on the stack. (Creating storage on the stack is often a
single assembly instruction to move the stack pointer down, and
another to move it back up.) The dynamic approach makes the
generally logical assumption that objects tend to be complicated, so
the extra overhead of finding storage and releasing that storage will
not have an important impact on the creation of an object. In
addition, the greater flexibility is essential to solve the general
programming problem.

Java uses the second approach, exclusively6. Every time you want to
create an object, you use the new keyword to build a dynamic
instance of that object.

There's another issue, however, and that's the lifetime of an object.
With languages that allow objects to be created on the stack, the
compiler determines how long the object lasts and can
automatically destroy it. However, if you create it on the heap the
compiler has no knowledge of its lifetime. In a language like C++,
the you must determine programmatically when to destroy the
object, which can lead to memory leaks if you don’t do it right (and
this is a common problem in C++ programs). Java provides a
feature called a garbage collector that automatically discovers when
an object is no longer in use and destroys it. A garbage collector is
much more convenient because it reduces the number of issues that

6 Primitive types, which you’ll learn about later, are a special case.

54 Thinking in Java www.BruceEckel.com

you must track and the code you must write. More importantly, the
garbage collector provides a much higher level of insurance against
the insidious problem of memory leaks (which has brought many a
C++ project to its knees).

The rest of this section looks at additional factors concerning object
lifetimes and landscapes.

Collections and iterators
If you don’t know how many objects you’re going to need to solve a
particular problem, or how long they will last, you also don’t know
how to store those objects. How can you know how much space to
create for those objects? You can’t, since that information isn’t
known until run time.

The solution to most problems in object-oriented design seems
flippant: you create another type of object. The new type of object
that solves this particular problem holds handles to other objects.
Of course, you can do the same thing with an array, which is
available in most languages. But there’s more. This new object,
generally called a collection (also called a container, but the Swing
GUI library uses that term in a different sense so this book will use
“collection”), will expand itself whenever necessary to accommodate
everything you place inside it. So you don’t need to know how many
objects you’re going to hold in a collection. Just create a collection
object and let it take care of the details.

Fortunately, a good OOP language comes with a set of collections as
part of the package. In C++, it’s part of the Standard C++ Library
and is often called the Standard Template Library (STL). Object
Pascal has collections in its Visual Component Library (VCL).
Smalltalk has a very complete set of collections. Java also has
collections in its standard library. In some libraries, a generic
collection is considered good enough for all needs, and in others
(Java, for example) the library has different types of collections for
different needs: a vector (called an ArrayList in Java) for
consistent access to all elements, and a linked list for consistent
insertion at all elements, for example, so you can choose the

Chapter 1: Introduction to Objects 55

particular type that fits your needs. Collection libraries may also
include sets, queues, hash tables, trees, stacks, etc.

All collections have some way to put things in and get things out;
there are usually functions to add elements to a collection, and
others to fetch those elements back out. But fetching elements can
be more problematic, because a single-selection function is
restrictive. What if you want to manipulate or compare a set of
elements in the collection instead of just one?

The solution is an iterator, which is an object whose job is to select
the elements within a collection and present them to the user of the
iterator. As a class, it also provides a level of abstraction. This
abstraction can be used to separate the details of the collection from
the code that’s accessing that collection. The collection, via the
iterator, is abstracted to be simply a sequence. The iterator allows
you to traverse that sequence without worrying about the
underlying structure – that is, whether it’s an ArrayList, a
LinkedList, a Stack, or something else. This gives you the
flexibility to easily change the underlying data structure without
disturbing the code in your program. Java began (in version 1.0 and
1.1) with a standard iterator, called Enumeration, for all of its
collection classes. Java 2 has added a much more complete
collection library which contains an iterator called Iterator that
does more than the older Enumeration.

From a design standpoint, all you really want is a sequence that can
be manipulated to solve your problem. If a single type of sequence
satisfied all of your needs, there’d be no reason to have different
kinds. There are two reasons that you need a choice of collections.
First, collections provide different types of interfaces and external
behavior. A stack has a different interface and behavior than that of
a queue, which is different from that of a set or a list. One of these
might provide a more flexible solution to your problem than the
other. Second, different collections have different efficiencies for
certain operations. The best example is an ArrayList and a
LinkedList. Both are simple sequences that can have identical
interfaces and external behaviors. But certain operations can have
radically different costs. Randomly accessing elements in an
ArrayList is a constant-time operation; it takes the same amount

56 Thinking in Java www.BruceEckel.com

of time regardless of the element you select. However, in a
LinkedList it is expensive to move through the list to randomly
select an element, and it takes longer to find an element that is
further down the list. On the other hand, if you want to insert an
element in the middle of a sequence, it’s much cheaper in a
LinkedList than in an ArrayList. These and other operations
have different efficiencies depending upon the underlying structure
of the sequence. In the design phase, you might start with a
LinkedList and, when tuning for performance, change to an
ArrayList. Because of the abstraction via iterators, you can change
from one to the other with minimal impact on your code.

In the end, remember that a collection is only a storage cabinet to
put objects in. If that cabinet solves all of your needs, it doesn’t
really matter how it is implemented (a basic concept with most
types of objects). If you’re working in a programming environment
that has built-in overhead due to other factors, then the cost
difference between an ArrayList and a LinkedList might not
matter. You might need only one type of sequence. You can even
imagine the “perfect” collection abstraction, which can
automatically change its underlying implementation according to
the way it is used.

The singly-rooted hierarchy
One of the issues in OOP that has become especially prominent
since the introduction of C++ is whether all classes should
ultimately be inherited from a single base class. In Java (as with
virtually all other OOP languages) the answer is “yes” and the name
of this ultimate base class is simply Object. It turns out that the
benefits of the singly-rooted hierarchy are many.

All objects in a singly-rooted hierarchy have an interface in
common, so they are all ultimately the same type. The alternative
(provided by C++) is that you don’t know that everything is the
same fundamental type. From a backwards-compatibility
standpoint this fits the model of C better and can be thought of as
less restrictive, but when you want to do full-on object-oriented
programming you must then build your own hierarchy to provide
the same convenience that’s built into other OOP languages. And in

Chapter 1: Introduction to Objects 57

any new class library you acquire, some other incompatible
interface will be used. It requires effort (and possibly multiple
inheritance) to work the new interface into your design. Is the extra
“flexibility” of C++ worth it? If you need it – if you have a large
investment in C – it’s quite valuable. If you’re starting from scratch,
other alternatives such as Java can often be more productive.

All objects in a singly-rooted hierarchy (such as Java provides) can
be guaranteed to have certain functionality. You know you can
perform certain basic operations on every object in your system. A
singly-rooted hierarchy, along with creating all objects on the heap,
greatly simplifies argument passing (one of the more complex
topics in C++).

A singly-rooted hierarchy makes it much easier to implement a
garbage collector (which is conveniently built into Java). The
necessary support can be installed in the base class, and the garbage
collector can thus send the appropriate messages to every object in
the system. Without a singly-rooted hierarchy and a system to
manipulate an object via a handle, it is difficult to implement a
garbage collector.

Since run-time type information is guaranteed to be in all objects,
you’ll never end up with an object whose type you cannot
determine. This is especially important with system level
operations, such as exception handling, and to allow greater
flexibility in programming.

Collection libraries and support for
easy collection use
Because a collection is a tool that you’ll use frequently, it makes
sense to have a library of collections that are built in a reusable
fashion, so you can take one off the shelf and plug it into your
program. Java provides such a library, which should satisfy most
needs.

58 Thinking in Java www.BruceEckel.com

Downcasting vs. templates/generics
To make these collections reusable, they hold the one universal type
in Java that was previously mentioned: Object. The singly-rooted
hierarchy means that everything is an Object, so a collection that
holds Objects can hold anything. This makes collections easy to
reuse.

To use such a collection, you simply add object handles to it, and
later ask for them back. But, since the collection holds only
Objects, when you add your object handle into the collection it is
upcast to Object, thus losing its identity. When you fetch it back,
you get an Object handle, and not a handle to the type that you put
in. So how do you turn it back into something that has the useful
interface of the object that you put into the collection?

Here, the cast is used again, but this time you’re not casting up the
inheritance hierarchy to a more general type, you cast down the
hierarchy to a more specific type. This manner of casting is called
downcasting. With upcasting, you know, for example, that a Circle
is a type of Shape so it’s safe to upcast, but you don’t know that an
Object is necessarily a Circle or a Shape so it’s hardly safe to
downcast unless you know that’s what you’re dealing with.

It’s not completely dangerous, however, because if you downcast to
the wrong thing you’ll get a run-time error called an exception,
which will be described shortly. When you fetch object handles from
a collection, though, you must have some way to remember exactly
what they are so you can perform a proper downcast.

Downcasting and the run-time checks require extra time for the
running program, and extra effort from the programmer. Wouldn’t
it make sense to somehow create the collection so that it knows the
types that it holds, eliminating the need for the downcast and
possible mistake? The solution is parameterized types, which are
classes that the compiler can automatically customize to work with
particular types. For example, with a parameterized collection, the
compiler could customize that collection so that it would accept
only Shapes and fetch only Shapes.

Chapter 1: Introduction to Objects 59

Parameterized types are an important part of C++, partly because
C++ has no singly-rooted hierarchy. In C++, the keyword that
implements parameterized types is “template.” Java currently has
no parameterized types since it is possible for it to get by – however
awkwardly – using the singly-rooted hierarchy. However, a current
proposal for parameterized types uses a syntax that is strikingly
similar to C++ templates.

The housekeeping dilemma: who
should clean up?
Each object requires resources in order to exist, most notably
memory. When an object is no longer needed it must be cleaned up
so that these resources are released for reuse. In simple
programming situations the question of how an object is cleaned up
doesn’t seem too challenging: you create the object, use it for as
long as it’s needed, and then it should be destroyed. It’s not too
hard, however, to encounter situations in which the situation is
more complex.

Suppose, for example, you are designing a system to manage air
traffic for an airport. (The same model might also work for
managing crates in a warehouse, or a video rental system, or a
kennel for boarding pets.) At first it seems simple: make a collection
to hold airplanes, then create a new airplane and place it in the
collection for each airplane that enters the air-traffic-control zone.
For cleanup, simply delete the appropriate airplane object when a
plane leaves the zone.

But perhaps you have some other system to record data about the
planes; perhaps data that doesn’t require such immediate attention
as the main controller function. Maybe it’s a record of the flight
plans of all the small planes that leave the airport. So you have a
second collection of small planes, and whenever you create a plane
object you also put it in this second collection if it’s a small plane.
Then some background process performs operations on the objects
in this collection during idle moments.

60 Thinking in Java www.BruceEckel.com

Now the problem is more difficult: how can you possibly know
when to destroy the objects? When you’re done with the object,
some other part of the system might not be. This same problem can
arise in a number of other situations, and in programming systems
(such as C++) in which you must explicitly delete an object when
you’re done with it this can become quite complex.

With Java, the garbage collector is designed to take care of the
problem of releasing the memory (although this doesn’t include
other aspects of cleaning up an object). The garbage collector
“knows” when an object is no longer in use, and it then
automatically releases the memory for that object. This (combined
with the fact that all objects are inherited from the single root class
Object and that you can create objects only one way, on the heap)
makes the process of programming in Java much simpler than
programming in C++. You have far fewer decisions to make and
hurdles to overcome.

Garbage collectors vs. efficiency and
flexibility

If all this is such a good idea, why didn’t they do the same thing in
C++? Well of course there’s a price you pay for all this
programming convenience, and that price is run-time overhead. As
mentioned before, in C++ you can create objects on the stack, and
in this case they’re automatically cleaned up (but you don’t have the
flexibility of creating as many as you want at run-time). Creating
objects on the stack is the most efficient way to allocate storage for
objects and to free that storage. Creating objects on the heap can be
much more expensive. Always inheriting from a base class and
making all function calls polymorphic also exacts a small toll. But
the garbage collector is a particular problem because you never
quite know when it’s going to start up or how long it will take. This
means that there’s an inconsistency in the rate of execution of a
Java program, so you can’t use it in certain situations, such as when
the rate of execution of a program is uniformly critical. (These are
generally called real time programs, although not all real-time
programming problems are this stringent.)

Chapter 1: Introduction to Objects 61

The designers of the C++ language, trying to woo C programmers
(and most successfully, at that), did not want to add any features to
the language that would impact the speed or the use of C++ in any
situation where programmers might otherwise choose C. This goal
was realized, but at the price of greater complexity when
programming in C++. Java is simpler than C++, but the tradeoff is
in efficiency and sometimes applicability. For a significant portion
of programming problems, however, Java is the superior choice.

Exception handling:
dealing with errors

Ever since the beginning of programming languages, error handling
has been one of the most difficult issues. Because it’s so hard to
design a good error-handling scheme, many languages simply
ignore the issue, passing the problem on to library designers who
come up with halfway measures that can work in many situations
but can easily be circumvented, generally by just ignoring them. A
major problem with most error-handling schemes is that they rely
on programmer vigilance in following an agreed-upon convention
that is not enforced by the language. If the programmer is not
vigilant, which is often if they are in a hurry, these schemes can
easily be forgotten.

Exception handling wires error handling directly into the
programming language and sometimes even the operating system.
An exception is an object that is “thrown” from the site of the error
and can be “caught” by an appropriate exception handler designed
to handle that particular type of error. It’s as if exception handling
is a different, parallel path of execution that can be taken when
things go wrong. And because it uses a separate execution path, it
doesn’t need to interfere with your normally-executing code. This
makes that code simpler to write since you aren’t constantly forced
to check for errors. In addition, a thrown exception is unlike an
error value that’s returned from a function or a flag that’s set by a
function in order to indicate an error condition – these can be
ignored. An exception cannot be ignored, so it’s guaranteed to be

62 Thinking in Java www.BruceEckel.com

dealt with at some point. Finally, exceptions provide a way to
reliably recover from a bad situation. Instead of just exiting you are
often able to set things right and restore the execution of a program,
which produces much more robust programs.

Java’s exception handling stands out among programming
languages, because in Java, exception-handling was wired in from
the beginning and you’re forced to use it. If you don’t write your
code to properly handle exceptions, you’ll get a compile-time error
message. This guaranteed consistency makes error-handling much
easier.

It’s worth noting that exception handling isn’t an object-oriented
feature, although in object-oriented languages the exception is
normally represented with an object. Exception handling existed
before object-oriented languages.

Multithreading
A fundamental concept in computer programming is the idea of
handling more than one task at a time. Many programming
problems require that the program be able to stop what it’s doing,
deal with some other problem and return to the main process. The
solution has been approached in many ways. Initially, programmers
with low-level knowledge of the machine wrote interrupt service
routines and the suspension of the main process was initiated
through a hardware interrupt. Although this worked well, it was
difficult and non-portable, so it made moving a program to a new
type of machine slow and expensive.

Sometimes interrupts are necessary for handling time-critical tasks,
but there’s a large class of problems in which you’re simply trying to
partition the problem into separately-running pieces so that the
whole program can be more responsive. Within a program, these
separately-running pieces are called threads and the general
concept is called multithreading. A common example of
multithreading is the user interface. By using threads, a user can
press a button and get a quick response rather than being forced to
wait until the program finishes its current task.

Chapter 1: Introduction to Objects 63

Ordinarily, threads are just a way to allocate the time of a single
processor. But if the operating system supports multiple processors,
each thread can be assigned to a different processor and they can
truly run in parallel. One of the convenient features of
multithreading at the language level is that the programmer doesn’t
need to worry about whether there are many processors or just one.
The program is logically divided into threads and if the machine has
more than one processor then the program runs faster, without any
special adjustments.

All this makes threading sound pretty simple. There is a catch:
shared resources. If you have more than one thread running that’s
expecting to access the same resource you have a problem. For
example, two processes can’t simultaneously send information to a
printer. To solve the problem, resources that can be shared, such as
the printer, must be locked while they are being used. So a thread
locks a resource, completes its task and then releases the lock so
that someone else can use the resource.

Java’s threading is built into the language, which makes a
complicated subject much simpler. The threading is supported on
an object level, so one thread of execution is represented by one
object. Java also provides limited resource locking. It can lock the
memory of any object (which is, after all, one kind of shared
resource) so that only one thread can use it at a time. This is
accomplished with the synchronized keyword. Other types of
resources must be locked explicitly by the programmer, typically by
creating an object to represent the lock that all threads must check
before accessing that resource.

Persistence
When you create an object, it exists for as long as you need it, but
under no circumstances does it exist when the program terminates.
While this makes sense at first, there are situations in which it
would be incredibly useful if an object could exist and hold its
information even while the program wasn’t running. Then the next
time you started the program, the object would be there and it
would have the same information it had the previous time the

64 Thinking in Java www.BruceEckel.com

program was running. Of course you can get a similar effect by
writing the information to a file or to a database, but in the spirit of
making everything an object it would be quite convenient to be able
to declare an object persistent and have all the details taken care of
for you.

Java provides support for “lightweight persistence,” which means
that you can easily store objects on disk and later retrieve them. The
reason it’s “lightweight” is that you’re still forced to make explicit
calls to do the storage and retrieval. In addition, JavaSpaces
(described in Chapter 15) provide for a kind of persistent storage of
objects. In some future release more complete support for
persistence might appear.

Java and the Internet
If Java is, in fact, yet another computer programming language, you
may question why it is so important and why it is being promoted as
a revolutionary step in computer programming. The answer isn’t
immediately obvious if you’re coming from a traditional
programming perspective. Although Java is very useful for solving
traditional stand-alone programming problems, it is also important
because it will solve programming problems on the World Wide
Web.

What is the Web?
The Web can seem a bit of a mystery at first, with all this talk of
“surfing,” “presence” and “home pages.” There has even been a
growing reaction against “Internet-mania,” questioning the
economic value and outcome of such a sweeping movement. It’s
helpful to step back and see what it really is, but to do this you must
understand client/server systems, another aspect of computing
that’s full of confusing issues.

Client/Server computing
The primary idea of a client/server system is that you have a central
repository of information – some kind of data, often in a database –

Chapter 1: Introduction to Objects 65

that you want to distribute on demand to some set of people or
machines. A key to the client/server concept is that the repository of
information is centrally located so that it can be changed and so that
those changes will propagate out to the information consumers.
Taken together, the information repository, the software that
distributes the information and the machine(s) where the
information and software reside is called the server. The software
that resides on the remote machine, and that communicates with
the server, fetches the information, processes it, and displays it on
the remote machine is called the client.

The basic concept of client/server computing, then, is not so
complicated. The problems arise because you have a single server
trying to serve many clients at once. Generally a database
management system is involved so the designer “balances” the
layout of data into tables for optimal use. In addition, systems often
allow a client to insert new information into a server. This means
you must ensure that one client’s new data doesn’t walk over
another client’s new data, or that data isn’t lost in the process of
adding it to the database. (This is called transaction processing.) As
client software changes, it must be built, debugged and installed on
the client machines, which turns out to be more complicated and
expensive than you might think. It’s especially problematic to
support multiple types of computers and operating systems. Finally,
there’s the all-important performance issue: you might have
hundreds of clients making requests of your server at any one time,
and so any small delay is crucial. To minimize latency,
programmers work hard to offload processing tasks, often to the
client machine but sometimes to other machines at the server site
using so-called middleware. (Middleware is also used to improve
maintainability.)

So the simple idea of distributing information to people has so
many layers of complexity in implementing it that the whole
problem can seem hopelessly enigmatic. And yet it’s crucial:
client/server computing accounts for roughly half of all
programming activities. It’s responsible for everything from taking
orders and credit-card transactions to the distribution of any kind
of data – stock market, scientific, government – you name it. What
we’ve come up with in the past is individual solutions to individual

66 Thinking in Java www.BruceEckel.com

problems, inventing a new solution each time. These were hard to
create and hard to use and the user had to learn a new interface for
each one. The entire client/server problem needs to be solved in a
big way.

The Web as a giant server
The Web is actually one giant client-server system. It’s a bit worse
than that, since you have all the servers and clients coexisting on a
single network at once. You don’t need to know that, since all you
care about is connecting to and interacting with one server at a time
(even though you might be hopping around the world in your
search for the correct server).

Initially it was a simple one-way process. You made a request of a
server and it handed you a file, which your machine’s browser
software (i.e. the client) would interpret by formatting onto your
local machine. But in short order people began wanting to do more
than just deliver pages from a server. They wanted full client/server
capability so that the client could feed information back to the
server, for example, to do database lookups on the server, to add
new information to the server or to place an order (which required
more security than the original systems offered). These are the
changes we’ve been seeing in the development of the Web.

The Web browser was a big step forward: the concept that one piece
of information could be displayed on any type of computer without
change. However, browsers were still rather primitive and rapidly
bogged down by the demands placed on them. They weren’t
particularly interactive and tended to clog up both the server and
the Internet because any time you needed to do something that
required programming you had to send information back to the
server to be processed. It could take many seconds or minutes to
find out you had misspelled something in your request. Since the
browser was just a viewer it couldn’t perform even the simplest
computing tasks. (On the other hand, it was safe, since it couldn’t
execute any programs on your local machine that contained bugs or
viruses.)

To solve this problem, different approaches have been taken. To
begin with, graphics standards have been enhanced to allow better

Chapter 1: Introduction to Objects 67

animation and video within browsers. The remainder of the
problem can be solved only by incorporating the ability to run
programs on the client end, under the browser. This is called client-
side programming.

Client-side programming
The Web’s initial server-browser design provided for interactive
content, but the interactivity was completely provided by the server.
The server produced static pages for the client browser, which
would simply interpret and display them. Basic HTML contains
simple mechanisms for data gathering: text-entry boxes, check
boxes, radio boxes, lists and drop-down lists, as well as a button
that can only be programmed to reset the data on the form or
“submit” the data on the form back to the server. This submission
passes through the Common Gateway Interface (CGI) provided on
all Web servers. The text within the submission tells CGI what to do
with it. The most common action is to run a program located on the
server in a directory that’s typically called “cgi-bin.” (If you watch
the address window at the top of your browser when you push a
button on a Web page, you can sometimes see “cgi-bin” within all
the gobbledygook there.) These programs can be written in most
languages. Perl is a common choice because it is designed for text
manipulation and is interpreted, so it can be installed on any server
regardless of processor or operating system.

Many powerful Web sites today are built strictly on CGI, and you
can in fact do nearly anything with it. However, web sites built on
CGI programs can rapidly become overly-complicated to maintain,
and there is also the problem of response time. The response of a
CGI program depends on how much data must be sent as well as the
load on both the server and the Internet. (On top of this, starting a
CGI program tends to be slow.) The initial designers of the Web did
not foresee how rapidly this bandwidth would be exhausted for the
kinds of applications people developed. For example, any sort of
dynamic graphing is nearly impossible to perform with consistency
because a GIF file must be created and moved from the server to the
client for each version of the graph. And you’ve no doubt had direct
experience with something as simple as validating the data on an

68 Thinking in Java www.BruceEckel.com

input form. You press the submit button on a page; the data is
shipped back to the server; the server starts a CGI program that
discovers an error, formats an HTML page informing you of the
error and sends the page back to you; you must then back up a page
and try again. Not only is this slow, it’s inelegant.

The solution is client-side programming. Most machines that run
Web browsers are powerful engines capable of doing vast work, and
with the original static HTML approach they are sitting there, just
idly waiting for the server to dish up the next page. Client-side
programming means that the Web browser is harnessed to do
whatever work it can, and the result for the user is a much speedier
and more interactive experience at your Web site.

The problem with discussions of client-side programming is that
they aren’t very different from discussions of programming in
general. The parameters are almost the same, but the platform is
different: a Web browser is like a limited operating system. In the
end, you must still program and this accounts for the dizzying array
of problems and solutions produced by client-side programming.
The rest of this section provides an overview of the issues and
approaches in client-side programming.

Plug-ins
One of the most significant steps forward in client-side
programming is the development of the plug-in. This is a way for a
programmer to add new functionality to the browser by
downloading a piece of code that plugs itself into the appropriate
spot in the browser. It tells the browser “from now on you can
perform this new activity.” (You need to download the plug-in only
once.) Some fast and powerful behavior is added to browsers via
plug-ins, but writing a plug-in is not a trivial task and isn’t
something you’d want to do as part of the process of building a
particular site. The value of the plug-in for client-side programming
is that it allows an expert programmer to develop a new language
and add that language to a browser without the permission of the
browser manufacturer. Thus, plug-ins provide a back door that
allows the creation of new client-side programming languages
(although not all languages are implemented as plug-ins).

Chapter 1: Introduction to Objects 69

Scripting languages
Plug-ins resulted in an explosion of scripting languages. With a
scripting language you embed the source code for your client-side
program directly into the HTML page and the plug-in that
interprets that language is automatically activated while the HTML
page is being displayed. Scripting languages tend to be reasonably
simple to understand, and because they are simply text that is part
of an HTML page they load very quickly as part of the single server
hit required to procure that page. The trade-off is that your code is
exposed for everyone to see (and steal) but generally you aren’t
doing amazingly sophisticated things with scripting languages so it’s
not too much of a hardship.

This points out that the scripting languages used inside Web
browsers are really intended to solve specific types of problems,
primarily the creation of richer and more interactive graphical user
interfaces (GUIs). However, a scripting language might solve 80
percent of the problems encountered in client-side programming.
Your problems might very well fit completely within that 80
percent, and since scripting languages can allow easier and faster
development, you should probably consider a scripting language
before looking at a more involved solution such as Java or ActiveX
programming.

The most commonly-discussed browser scripting languages are
JavaScript (which has nothing to do with Java; it’s named that way
just to grab some of Java’s marketing momentum), VBScript (which
looks like Visual Basic) and Tcl/Tk, which comes from the popular
cross-platform GUI-building language. There are others out there
and no doubt more in development.

JavaScript is probably the most commonly supported. It comes
built into both Netscape Navigator and the Microsoft Internet
Explorer (IE). In addition, there are probably more JavaScript
books out than for the other browser languages, and some tools
automatically create pages using JavaScript. However, if you’re
already fluent in Visual Basic or Tcl/Tk, you’ll be more productive
using those scripting languages rather than learning a new one.
(You’ll have your hands full dealing with the Web issues already.)

70 Thinking in Java www.BruceEckel.com

Java
If a scripting language can solve 80 percent of the client-side
programming problems, what about the other 20 percent – the
“really hard stuff?” The most popular solution today is Java. Not
only is it a powerful programming language built to be secure,
cross-platform and international, but Java is being continuously
extended to provide language features and libraries that elegantly
handle problems that are difficult in traditional programming
languages, such as multithreading, database access, network
programming and distributed computing. Java allows client-side
programming via the applet.

An applet is a mini-program that will run only under a Web
browser. The applet is downloaded automatically as part of a Web
page (just as, for example, a graphic is automatically downloaded).
When the applet is activated it executes a program. This is part of
its beauty – it provides you with a way to automatically distribute
the client software from the server at the time the user needs the
client software, and no sooner. The user gets the latest version of
the client software without fail and without difficult re-installation.
Because of the way Java is designed, the programmer needs to
create only a single program, and that program automatically works
with all computers that have browsers with built-in Java
interpreters. (This safely includes the vast majority of machines.)
Since Java is a full-fledged programming language, you can do as
much work as possible on the client before and after making
requests of the server. For example, you won’t need to send a
request form across the Internet to discover that you’ve gotten a
date or some other parameter wrong, and your client computer can
quickly do the work of plotting data instead of waiting for the server
to make a plot and ship a graphic image back to you. Not only do
you get the immediate win of speed and responsiveness, but the
general network traffic and load upon servers can be reduced,
preventing the entire Internet from slowing down.

One advantage a Java applet has over a scripted program is that it’s
in compiled form, so the source code isn’t available to the client. On
the other hand, a Java applet can be decompiled without too much
trouble, and hiding your code is often not an important issue

Chapter 1: Introduction to Objects 71

anyway. Two other factors can be important. As you will see later in
the book, a compiled Java applet can comprise many modules and
take multiple server “hits” (accesses) to download. (In Java 1.1 and
higher this is minimized by Java archives, called JAR files, that
allow all the required modules to be packaged together and
compressed for a single download.) A scripted program will just be
integrated into the Web page as part of its text (and will generally
be smaller and reduce server hits). This could be important to the
responsiveness of your Web site. Another factor is the all-important
learning curve. Regardless of what you’ve heard, Java is not a trivial
language to learn. If you’re a Visual Basic programmer, moving to
VBScript will be your fastest solution and since it will probably
solve most typical client/server problems you might be hard
pressed to justify learning Java. If you’re experienced with a
scripting language you will certainly benefit from looking at
JavaScript or VBScript before committing to Java, since they might
fit your needs handily and you’ll be more productive sooner.

ActiveX
To some degree, the competitor to Java is Microsoft’s ActiveX,
although it takes a completely different approach. ActiveX is
originally a Windows-only solution, although it is now being
developed via an independent consortium to become cross-
platform. Effectively, ActiveX says “if your program connects to its
environment just so, it can be dropped into a Web page and run
under a browser that supports ActiveX.” (IE directly supports
ActiveX and Netscape does so using a plug-in.) Thus, ActiveX does
not constrain you to a particular language. If, for example, you’re
already an experienced Windows programmer using a language
such as C++, Visual Basic, or Borland’s Delphi, you can create
ActiveX components with almost no changes to your programming
knowledge. ActiveX also provides a path for the use of legacy code
in your Web pages.

Security
Automatically downloading and running programs across the
Internet can sound like a virus-builder’s dream. ActiveX especially
brings up the thorny issue of security in client-side programming. If

72 Thinking in Java www.BruceEckel.com

you click on a Web site, you might automatically download any
number of things along with the HTML page: GIF files, script code,
compiled Java code, and ActiveX components. Some of these are
benign; GIF files can’t do any harm, and scripting languages are
generally limited in what they can do. Java was also designed to run
its applets within a “sandbox” of safety, which prevents it from
writing to disk or accessing memory outside the sandbox.

ActiveX is at the opposite end of the spectrum. Programming with
ActiveX is like programming Windows – you can do anything you
want. So if you click on a page that downloads an ActiveX
component, that component might cause damage to the files on
your disk. Of course, programs that you load onto your computer
that are not restricted to running inside a Web browser can do the
same thing. Viruses downloaded from Bulletin-Board Systems
(BBSs) have long been a problem, but the speed of the Internet
amplifies the difficulty.

The solution seems to be “digital signatures,” whereby code is
verified to show who the author is. This is based on the idea that a
virus works because its creator can be anonymous, so if you remove
the anonymity individuals will be forced to be responsible for their
actions. This seems like a good plan because it allows programs to
be much more functional, and I suspect it will eliminate malicious
mischief. If, however, a program has an unintentional bug that’s
destructive it will still cause problems.

The Java approach is to prevent these problems from occurring, via
the sandbox. The Java interpreter that lives on your local Web
browser examines the applet for any untoward instructions as the
applet is being loaded. In particular, the applet cannot write files to
disk or erase files (one of the mainstays of viruses). Applets are
generally considered to be safe, and since this is essential for
reliable client-server systems, any bugs in the Java language that
allow viruses are rapidly repaired. (It’s worth noting that the
browser software actually enforces these security restrictions, and
some browsers allow you to select different security levels to
provide varying degrees of access to your system.)

Chapter 1: Introduction to Objects 73

You might be skeptical of this rather draconian restriction against
writing files to your local disk. For example, you may want to build
a local database or save data for later use offline. The initial vision
seemed to be that eventually everyone would get online to do
anything important, but that was soon seen to be impractical
(although low-cost “Internet appliances” might someday satisfy the
needs of a significant segment of users). The solution is the “signed
applet” that uses public-key encryption to verify that an applet does
indeed come from where it claims it does. A signed applet can then
go ahead and trash your disk, but the theory is that since you can
now hold the applet creator accountable they won’t do vicious
things. Java provides a framework for digital signatures so that you
will eventually be able to allow an applet to step outside the
sandbox if necessary.

Digital signatures have missed an important issue, which is the
speed that people move around on the Internet. If you download a
buggy program and it does something untoward, how long will it be
before you discover the damage? It could be days or even weeks.
And by then, how will you track down the program that’s done it
(and what good will it do at that point?).

Internet vs. Intranet
The Web is the most general solution to the client/server problem,
so it makes sense that you can use the same technology to solve a
subset of the problem, in particular the classic client/server
problem within a company. With traditional client/server
approaches you have the problem of multiple types of client
computers, as well as the difficulty of installing new client software,
both of which are handily solved with Web browsers and client-side
programming. When Web technology is used for an information
network that is restricted to a particular company, it is referred to
as an Intranet. Intranets provide much greater security than the
Internet, since you can physically control access to the servers
within your company. In terms of training, it seems that once
people understand the general concept of a browser it’s much easier
for them to deal with differences in the way pages and applets look,
so the learning curve for new kinds of systems seems to be reduced.

74 Thinking in Java www.BruceEckel.com

The security problem brings us to one of the divisions that seems to
be automatically forming in the world of client-side programming.
If your program is running on the Internet, you don’t know what
platform it will be working under and you want to be extra careful
that you don’t disseminate buggy code. You need something cross-
platform and secure, like a scripting language or Java.

If you’re running on an Intranet, you might have a different set of
constraints. It’s not uncommon that your machines could all be
Intel/Windows platforms. On an Intranet, you’re responsible for
the quality of your own code and can repair bugs when they’re
discovered. In addition, you might already have a body of legacy
code that you’ve been using in a more traditional client/server
approach, whereby you must physically install client programs
every time you do an upgrade. The time wasted in installing
upgrades is the most compelling reason to move to browsers
because upgrades are invisible and automatic. If you are involved in
such an Intranet, the most sensible approach to take is the shortest
path that allows you to use your existing code base, rather than
trying to recode your programs in a new language.

When faced with this bewildering array of solutions to the client-
side programming problem, the best plan of attack is a cost-benefit
analysis. Consider the constraints of your problem and what would
be the shortest path to your solution. Since client-side
programming is still programming, it’s always a good idea to take
the fastest development approach for your particular situation. This
is an aggressive stance to prepare for inevitable encounters with the
problems of program development.

Server-side programming
This whole discussion has ignored the issue of server-side
programming. What happens when you make a request of a server?
Most of the time the request is simply “send me this file.” Your
browser then interprets the file in some appropriate fashion: as an
HTML page, a graphic image, a Java applet, a script program, etc. A
more complicated request to a server generally involves a database
transaction. A common scenario involves a request for a complex
database search, which the server then formats into an HTML page

Chapter 1: Introduction to Objects 75

and sends to you as the result. (Of course, if the client has more
intelligence via Java or a scripting language, the raw data can be
sent and formatted at the client end, which will be faster and less
load on the server.) Or you might want to register your name in a
database when you join a group or place an order, which will
involve changes to that database. These database requests must be
processed via some code on the server side, which is generally
referred to as server-side programming. Traditionally, server-side
programming has been performed using Perl and CGI scripts, but
more sophisticated systems have been appearing. These include
Java-based Web servers that allow you to perform all your server-
side programming in Java by writing what are called servlets.
Servlets and their offspring, JSPs, are one of the most compelling
reasons that companies who develop web sites are moving to Java,
especially because they eliminate the problems of dealing with
differently-abled browsers.

A separate arena: applications
Much of the brouhaha over Java has been over applets. Java is
actually a general-purpose programming language that can solve
any type of problem, at least in theory. And as pointed out
previously, there might be more effective ways to solve most
client/server problems. When you move out of the applet arena
(and simultaneously release the restrictions, such as the one against
writing to disk) you enter the world of general-purpose applications
that run standalone, without a Web browser, just like any ordinary
program does. Here, Java’s strength is not only in its portability,
but also its programmability. As you’ll see throughout this book,
Java has many features that allow you to create robust programs in
a shorter period than with previous programming languages.

Be aware that this is a mixed blessing. You pay for the
improvements through slower execution speed (although there is
significant work going on in this area – JDK 1.3, in particular,
introduces the so-called “hotspot” performance improvements).
Like any language, Java has built-in limitations that might make it
inappropriate to solve certain types of programming problems. Java
is a rapidly-evolving language, however, and as each new release

76 Thinking in Java www.BruceEckel.com

comes out it becomes more and more attractive for solving larger
sets of problems.

Analysis and design
The object-oriented paradigm is a new and different way of thinking
about programming and many folks have trouble at first knowing
how to approach an OOP project. Once you know that everything is
supposed to be an object, and as you learn to think more in an
object-oriented style, you can begin to create “good” designs that
take advantage of all the benefits that OOP has to offer.

A method (often called a methodology) is a set of processes and
heuristics used to break down the complexity of a programming
problem. Many OOP methods have been formulated since the dawn
of object-oriented programming. This section will give you a feel for
what you’re trying to accomplish when using a method.

Especially in OOP, methodology is a field of many experiments, so it
is important to understand what problem the method is trying to
solve before you consider adopting one. This is particularly true
with Java, in which the programming language is intended to
reduce the complexity (compared to C) involved in expressing a
program. This may in fact alleviate the need for ever-more-complex
methodologies. Instead, simple methodologies may suffice in Java
for a much larger class of problems than you could handle using
simple methodologies with procedural languages.

It’s also important to realize that the term “methodology” is often
too grand and promises too much. Whatever you do now when you
design and write a program is a method. It may be your own
method, and you may not be conscious of doing it, but it is a process
you go through as you create. If it is an effective process, it may
need only a small tune-up to work with Java. If you are not satisfied
with your productivity and the way your programs turn out, you
may want to consider adopting a formal method, or choosing pieces
from among the many formal methods.

Chapter 1: Introduction to Objects 77

While you’re going through the development process, the most
important issue is this: Don’t get lost. It’s easy to do. Most of the
analysis and design methods are intended to solve the largest of
problems. Remember that most projects don’t fit into that category,
so you can usually have successful analysis and design with a
relatively small subset of what a method recommends7. But some
sort of process, no matter how limited, will generally get you on
your way in a much better fashion than simply beginning to code.

It’s also easy to get stuck, to fall into “analysis paralysis,” where you
feel like you can’t move forward because you haven’t nailed down
every little detail at the current stage. Remember, no matter how
much analysis you do, there are some things about a system that
won’t reveal themselves until design time, and more things that
won’t reveal themselves until you’re coding, or not even until a
program is up and running. Because of this, it’s crucial to move
fairly quickly through analysis and design, and to implement a test
of the proposed system.

This point is worth emphasizing. Because of the history we’ve had
with procedural languages, it is commendable that a team will want
to proceed carefully and understand every minute detail before
moving to design and implementation. Certainly, when creating a
DBMS, it pays to understand a customer’s needs thoroughly. But a
DBMS is in a class of problems that is very well-posed and well-
understood; in many such programs, the database structure is the
problem to be tackled. The class of programming problem discussed
in this chapter is of the “wild-card” (my term) variety, in which the
solution isn’t simply re-forming a well-known solution, but instead
involves one or more “wild-card factors” – elements for which there
is no well-understood previous solution, and for which research is
necessary8. Attempting to thoroughly analyze a wild-card problem

7 An excellent example of this is UML Distilled, by Martin Fowler (Addison-Wesley 2000),
which reduces the sometimes-overwhelming UML process to a manageable subset.

8 My rule of thumb for estimating such projects: If there’s more than one wild card, don’t
even try to plan how long it’s going to take or how much it will cost until you’ve created a
working prototype. There are too many degrees of freedom.

78 Thinking in Java www.BruceEckel.com

before moving into design and implementation results in analysis
paralysis because you don’t have enough information to solve this
kind of problem during the analysis phase. Solving such a problem
requires iteration through the whole cycle, and that requires risk-
taking behavior (which makes sense, because you’re trying to do
something new and the potential rewards are higher). It may seem
like the risk is compounded by “rushing” into a preliminary
implementation, but it can instead reduce the risk in a wild-card
project because you’re finding out early whether a particular
approach to the problem is viable. Product development is risk
management.

It’s often proposed that you “build one to throw away.” With OOP,
you may still throw part of it away, but because code is
encapsulated into classes, during the first pass you will inevitably
produce some useful class designs and develop some worthwhile
ideas about the system design that do not need to be thrown away.
Thus, the first rapid pass at a problem not only produces critical
information for the next analysis, design, and implementation pass,
it also creates a code foundation.

That said, if you’re looking at a methodology that contains
tremendous detail and suggests many steps and documents, it’s still
difficult to know when to stop. Keep in mind what you’re trying to
discover:

1. What are the objects? (How do you partition your project into
its component parts?)

2. What are their interfaces? (What messages do you need to
send to each object?)

If you come up with nothing more than the objects and their
interfaces, then you can write a program. For various reasons you
might need more descriptions and documents than this, but you
can’t get away with any less.

The process can be undertaken in five phases, and a phase 0 that is
just the initial commitment to using some kind of structure.

Chapter 1: Introduction to Objects 79

Phase 0: Make a plan
You must first decide what steps you’re going to have in your
process. It sounds simple (in fact, all of this sounds simple) and yet
people often don’t make this decision before they start coding. If
your plan is “let’s jump in and start coding,” fine. (Sometimes that’s
appropriate when you have a well-understood problem.) At least
agree that this is the plan.

You might also decide at this phase that some additional process
structure is necessary, but not the whole nine yards.
Understandably enough, some programmers like to work in
“vacation mode” in which no structure is imposed on the process of
developing their work; “It will be done when it’s done.” This can be
appealing for awhile, but I’ve found that having a few milestones
along the way helps to focus and galvanize your efforts around those
milestones instead of being stuck with the single goal of “finish the
project.” In addition, it divides the project into more bite-sized
pieces and makes it seem less threatening (plus the milestones offer
more opportunities for celebration).

When I began to study story structure (so that I will someday write
a novel) I was initially resistant to the idea of structure, feeling that
when I wrote I simply let it flow onto the page. But I later realized
that when I write about computers the structure is clear enough so
that I don’t think much about it. But I still structure my work, albeit
only semi-consciously in my head. So even if you think that your
plan is to just start coding, you still somehow go through the
subsequent phases while asking and answering certain questions.

The mission statement
Any system you build, no matter how complicated, has a
fundamental purpose, the business that it’s in, the basic need that it
satisfies. If you can look past the user interface, the hardware- or
system-specific details, the coding algorithms and the efficiency
problems, you will eventually find the core of its being, simple and
straightforward. Like the so-called high concept from a Hollywood
movie, you can describe it in one or two sentences. This pure
description is the starting point.

80 Thinking in Java www.BruceEckel.com

The high concept is quite important because it sets the tone for your
project; it’s a mission statement. You won’t necessarily get it right
the first time (you may be in a later phase of the project before it
becomes completely clear), but keep trying until it feels right. For
example, in an air-traffic control system you may start out with a
high concept focused on the system that you’re building: “The tower
program keeps track of the aircraft.” But consider what happens
when you shrink the system to a very small airfield; perhaps there’s
only a human controller or none at all. A more useful model won’t
concern the solution you’re creating as much as it describes the
problem: “Aircraft arrive, unload, service and reload, and depart.”

Phase 1: What are we making?
In the previous generation of program design (called procedural
design), this is called “creating the requirements analysis and
system specification.” These, of course, were places to get lost;
intimidatingly-named documents that could become big projects in
their own right. Their intention was good, however. The
requirements analysis says “Make a list of the guidelines we will use
to know when the job is done and the customer is satisfied.” The
system specification says “Here’s a description of what the program
will do (not how) to satisfy the requirements.” The requirements
analysis is really a contract between you and the customer (even if
the customer works within your company or is some other object or
system). The system specification is a top-level exploration into the
problem and in some sense a discovery of whether it can be done
and how long it will take. Since both of these will require consensus
among people (and because they will usually change over time), I
think it’s best to keep them as bare as possible – ideally, to lists and
basic diagrams – to save time. You might have other constraints
that require you to expand them into bigger documents, but by
keeping the initial document small and concise, it can be created in
a few sessions of group brainstorming with a leader who
dynamically creates the description. This not only solicits input
from everyone, it also fosters initial buy-in and agreement by
everyone on the team. Perhaps most importantly, it can kick off a
project with a lot of enthusiasm.

Chapter 1: Introduction to Objects 81

It’s necessary to stay focused on the heart of what you’re trying to
accomplish in this phase: determine what the system is supposed to
do. The most valuable tool for this is a collection of what are called
“use cases.” Use cases identify key features in the system that will
reveal some of the fundamental classes you’ll be using. These are
essentially descriptive answers to questions like9:

• “Who will use this system?”

• “What can those actors do with the system?”

• “How does this actor do that with this system?”

• “How else might this work if someone else were doing this,
or if the same actor had a different objective?” (to reveal
variations)

• “What problems might happen while doing this with the
system?” (to reveal exceptions)

If you are designing an auto-teller, for example, the use case for a
particular aspect of the functionality of the system is able to
describe what the auto-teller does in every possible situation. Each
of these “situations” is referred to as a scenario, and a use case can
be considered a collection of scenarios. You can think of a scenario
as a question that starts with: “What does the system do if…?” For
example, “What does the auto-teller do if a customer has just
deposited a check within 24 hours and there’s not enough in the
account without the check to provide the desired withdrawal?”

Use case diagrams are intentionally simple to prevent you from
getting bogged down in system implementation details
prematurely:

9 Thanks for help from James H Jarrett.

82 Thinking in Java www.BruceEckel.com

Customer

Uses

Transfer
Between
Accounts

Teller

Bank

Make
Withdrawal

Get Account
Balance

Make
Deposit

ATM

Each stick person represents an “actor,” which is typically a human
or some other kind of free agent. (These can even be other computer
systems, as is the case with “ATM.”) The box represents the
boundary of your system. The ellipses represent the use cases,
which are descriptions of valuable work that can be performed with
the system. The lines between the actors and the use cases represent
the interactions.

It doesn’t matter how the system is actually implemented, as long as
it looks like this to the user.

A use case does not need to be terribly complex, even if the
underlying system is complex. It is only intended to show the
system as it appears to the user. For example:

Gardener

Maintain
Growing

Temperature

Greenhouse

The use cases produce the requirements specifications by
determining all the interactions that the user may have with the
system. You try to discover a full set of use cases for your system,

Chapter 1: Introduction to Objects 83

and once you’ve done that you have the core of what the system is
supposed to do. The nice thing about focusing on use cases is that
they always bring you back to the essentials and keep you from
drifting off into issues that aren’t critical for getting the job done.
That is, if you have a full set of use cases you can describe your
system and move onto the next phase. You probably won’t get it all
figured out perfectly on the first try, but that’s OK. Everything will
reveal itself in time, and if you demand a perfect system
specification at this point you’ll get stuck.

If you get stuck, you can kick-start this phase by using a rough
approximation tool: describe the system in a few paragraphs and
then look for nouns and verbs. The nouns can suggest actors,
context of the use case (e.g. “lobby”), or artifacts manipulated in the
use case. Verbs can suggest interactions between actors and use
cases, and specify steps within the use case. You’ll also discover that
nouns and verbs produce objects and messages during the design
phase (and note that use cases describe interactions between
subsystems, so the “noun and verb” technique can be used only as a
brainstorming tool as it does not generate use cases) 10.

The boundary between a use case and an actor can point out the
existence of a user interface, but it does not define such a user
interface. For a process of defining and creating user interfaces, see
Software for Use by Larry Constantine and Lucy Lockwood,
(Addison Wesley Longman, 1999) or go to www.ForUse.com.

Although it’s a black art, at this point some kind of basic scheduling
is important. You now have an overview of what you’re building so
you’ll probably be able to get some idea of how long it will take. A
lot of factors come into play here. If you estimate a long schedule
then the company might decide not to build it (and thus use their
resources on something more reasonable – that’s a good thing). Or
a manager might have already decided how long the project should
take and will try to influence your estimate. But it’s best to have an

10 More information on use cases can be found in Applying Use Cases by Schneider &
Winters (Addison-Wesley 1998) and Use Case Driven Object Modeling with UML by
Rosenberg (Addison-Wesley 1999).

84 Thinking in Java www.BruceEckel.com

honest schedule from the beginning and deal with the tough
decisions early. There have been a lot of attempts to come up with
accurate scheduling techniques (like techniques to predict the stock
market), but probably the best approach is to rely on your
experience and intuition. Get a gut feeling for how long it will really
take, then double that and add 10 percent. Your gut feeling is
probably correct; you can get something working in that time. The
“doubling” will turn that into something decent, and the 10 percent
will deal with the final polishing and details11. However you want to
explain it, and regardless of the moans and manipulations that
happen when you reveal such a schedule, it just seems to work out
that way.

Phase 2: How will we build it?
In this phase you must come up with a design that describes what
the classes look like and how they will interact. An excellent
technique in determining classes and interactions is the Class-
Responsibility-Collaboration (CRC) card. Part of the value of this
tool is that it’s so low-tech: you start out with a set of blank 3” by 5”
cards, and you write on them. Each card represents a single class,
and on the card you write:

1. The name of the class. It’s important that this name capture
the essence of what the class does, so that it makes sense at a
glance.

2. The “responsibilities” of the class: what it should do. This can
typically be summarized by just stating the names of the
member functions (since those names should be descriptive
in a good design), but it does not preclude other notes. If you
need to seed the process, look at the problem from a lazy

11 My personal take on this has changed lately. Doubling and adding 10 percent will give
you a reasonably accurate estimate (assuming there are not too many wild-card factors),
but you still have to work quite diligently to finish in that time. If you want time to really
make it elegant and to enjoy yourself in the process, the correct multiplier is more like
three or four times, I believe.

Chapter 1: Introduction to Objects 85

programmer’s standpoint: What objects would you like to
magically appear to solve your problem?

3. The “collaborations” of the class: what other classes does it
interact with? “Interact” is an intentionally broad term; it
could mean aggregation or simply that some other object
exists that will perform services for an object of the class.
Collaborations should also consider the audience for this
class. For example, if you create a class Firecracker, who is
going to observe it, a Chemist or a Spectator? The former
will want to know what chemicals go into the construction,
and the latter will respond to the colors and shapes released
when it explodes.

You may feel like the cards should be bigger because of all the
information you’d like to get on them, but they are intentionally
small, not only to keep your classes small but also to keep you from
getting into too much detail too early. If you can’t fit all you need to
know about a class on a small card, the class is too complex (either
you’re getting too detailed, or you should create more than one
class). The ideal class should be understood at a glance. The idea of
CRC cards is to assist you in coming up with a first cut of the design
so that you can get the big picture and then refine your design.

One of the great benefits of CRC cards is in communication. It’s best
done real-time, in a group, without computers. Each person takes
responsibility for several classes (which at first have no names or
other information). You run a live simulation by solving one
scenario at a time, deciding which messages are sent to the various
objects to satisfy each scenario. As you go through this process, you
discover the classes that you need along with their responsibilities
and collaborations, and you fill out the cards as you do this. When
you’ve moved through all the use cases, you should have a fairly
complete first cut of your design.

Before I began using CRC cards, the most successful consulting
experiences I had when coming up with an initial design involved
standing in front of a team, who hadn’t built an OOP project before,
and drawing objects on a whiteboard. We talked about how the
objects should communicate with each other, and erased some of

86 Thinking in Java www.BruceEckel.com

them and replaced them with other objects. Effectively, I was
managing all the “CRC cards” on the whiteboard. The team (who
knew what the project was supposed to do) actually created the
design; they “owned” the design rather than having it given to them.
All I was doing was guiding the process by asking the right
questions, trying out the assumptions, and taking the feedback from
the team to modify those assumptions. The true beauty of the
process was that the team learned how to do object-oriented design
not by reviewing abstract examples, but by working on the one
design that was most interesting to them at that moment: theirs.

Once you’ve come up with a set of CRC cards, you may want to
create a more formal description of your design using UML12. You
don’t need to use UML, but it can be helpful, especially if you want
to put up a diagram on the wall for everyone to ponder, which is a
good idea. An alternative to UML is a textual description of the
objects and their interfaces, or, depending on your programming
language, the code itself13.

UML also provides an additional diagramming notation for
describing the dynamic model of your system. This is helpful in
situations in which the state transitions of a system or subsystem
are dominant enough that they need their own diagrams (such as in
a control system). You may also need to describe the data
structures, for systems or subsystems in which data is a dominant
factor (such as a database).

You’ll know you’re done with phase 2 when you have described the
objects and their interfaces. Well, most of them – there are usually a
few that slip through the cracks and don’t make themselves known
until phase 3. But that’s OK. All you are concerned with is that you
eventually discover all of your objects. It’s nice to discover them
early in the process but OOP provides enough structure so that it’s
not so bad if you discover them later. In fact, the design of an object

12 For starters, I recommend the aforementioned UML Distilled.

13 Python (www.Python.org) is often used as “executable pseudocode.”

Chapter 1: Introduction to Objects 87

tends to happen in five stages, throughout the process of program
development.

Five stages of object design
The design life of an object is not limited to the time when you’re
writing the program. Instead, the design of an object appears over a
sequence of stages. It’s helpful to have this perspective because you
stop expecting perfection right away; instead, you realize that the
understanding of what an object does and what it should look like
happens over time. This view also applies to the design of various
types of programs; the pattern for a particular type of program
emerges through struggling again and again with that problem
(This is chronicled in Chapter 16: Design Patterns). Objects, too,
have their patterns that emerge through understanding, use, and
reuse.

1. Object discovery. This stage occurs during the initial
analysis of a program. Objects may be discovered by looking for
external factors and boundaries, duplication of elements in the
system, and the smallest conceptual units. Some objects are obvious
if you already have a set of class libraries. Commonality between
classes suggesting base classes and inheritance may appear right
away, or later in the design process.

2. Object assembly. As you’re building an object you’ll
discover the need for new members that didn’t appear during
discovery. The internal needs of the object may require other classes
to support it.

3. System construction. Once again, more requirements for
an object may appear at this later stage. As you learn, you evolve
your objects. The need for communication and interconnection with
other objects in the system may change the needs of your classes or
require new classes. For example, you may discover the need for
facilitator or helper classes, such as a linked list, that contain little
or no state information and simply help other classes function.

4. System extension. As you add new features to a system you
may discover that your previous design doesn’t support easy system

88 Thinking in Java www.BruceEckel.com

extension. With this new information, you can restructure parts of
the system, possibly adding new classes or class hierarchies.

5. Object reuse. This is the real stress test for a class. If
someone tries to reuse it in an entirely new situation, they’ll
probably discover some shortcomings. As you change a class to
adapt to more new programs, the general principles of the class will
become clearer, until you have a truly reusable type. However, don’t
expect most objects from a system design to be reusable – it is
perfectly acceptable for the bulk of your objects to be system-
specific. Reusable types tend to be less common, and they must
solve more general problems in order to be reusable.

Guidelines for object development
These stages suggest some guidelines when thinking about
developing your classes:

1. Let a specific problem generate a class, then let the class grow
and mature during the solution of other problems.

2. Remember, discovering the classes you need (and their
interfaces) is the majority of the system design. If you already
had those classes, this would be an easy project.

3. Don’t force yourself to know everything at the beginning;
learn as you go. This will happen anyway.

4. Start programming; get something working so you can prove
or disprove your design. Don’t fear that you’ll end up with
procedural-style spaghetti code – classes partition the
problem and help control anarchy and entropy. Bad classes
do not break good classes.

5. Always keep it simple. Little clean objects with obvious utility
are better than big complicated interfaces. When decision
points come up, use an Occam’s Razor approach: Consider
the choices and select the one that is simplest, because simple
classes are almost always best. Start small and simple, and
you can expand the class interface when you understand it

Chapter 1: Introduction to Objects 89

better, but as time goes on, it’s difficult to remove elements
from a class.

Phase 3: Build the core
This is the initial conversion from the rough design into a compiling
and executing body of code that can be tested, and especially that
will prove or disprove your architecture. This is not a one-pass
process, but rather the beginning of a series of steps that will
iteratively build the system, as you’ll see in phase 4.

Your goal is to find the core of your system architecture that needs
to be implemented in order to generate a running system, no matter
how incomplete that system is in this initial pass. You’re creating a
framework that you can build upon with further iterations. You’re
also performing the first of many system integrations and tests, and
giving the stakeholders feedback about what their system will look
like and how it is progressing. Ideally, you are also exposing some of
the critical risks. You’ll probably also discover changes and
improvements that can be made to your original architecture –
things you would not have learned without implementing the
system.

Part of building the system is the reality check that you get from
testing against your requirements analysis and system specification
(in whatever form they exist). Make sure that your tests verify the
requirements and use cases. When the core of the system is stable,
you’re ready to move on and add more functionality.

Phase 4: Iterate the use cases
Once the core framework is running, each feature set you add is a
small project in itself. You add a feature set during an iteration, a
reasonably short period of development.

How big is an iteration? Ideally, each iteration lasts one to three
weeks (this can vary based on the implementation language). At the
end of that period, you have an integrated, tested system with more
functionality than it had before. But what’s particularly interesting
is the basis for the iteration: a single use case. Each use case is a

90 Thinking in Java www.BruceEckel.com

package of related functionality that you build into the system all at
once, during one iteration. Not only does this give you a better idea
of what the scope of a use case should be, but it also gives more
validation to the idea of a use case, since the concept isn’t discarded
after analysis and design, but instead it is a fundamental unit of
development throughout the software-building process.

You stop iterating when you achieve target functionality or an
external deadline arrives and the customer can be satisfied with the
current version. (Remember, software is a subscription business.)
Because the process is iterative, you have many opportunities to
ship a product rather than a single endpoint; open-source projects
work exclusively in an iterative, high-feedback environment, which
is precisely what makes them successful.

An iterative development process is valuable for many reasons. You
can reveal and resolve critical risks early, the customers have ample
opportunity to change their minds, programmer satisfaction is
higher, and the project can be steered with more precision. But an
additional important benefit is the feedback to the stakeholders,
who can see by the current state of the product exactly where
everything lies. This may reduce or eliminate the need for mind-
numbing status meetings and increase the confidence and support
from the stakeholders.

Phase 5: Evolution
This is the point in the development cycle that has traditionally
been called “maintenance,” a catch-all term that can mean
everything from “getting it to work the way it was really supposed to
in the first place” to “adding features that the customer forgot to
mention” to the more traditional “fixing the bugs that show up” and
“adding new features as the need arises.” So many misconceptions
have been applied to the term “maintenance” that it has taken on a
slightly deceiving quality, partly because it suggests that you’ve
actually built a pristine program and all you need to do is change
parts, oil it, and keep it from rusting. Perhaps there’s a better term
to describe what’s going on.

Chapter 1: Introduction to Objects 91

I’ll use the term evolution14. That is, “You won’t get it right the first
time, so give yourself the latitude to learn and to go back and make
changes.” You might need to make a lot of changes as you learn and
understand the problem more deeply. The elegance you’ll produce if
you evolve until you get it right will pay off, both in the short and
the long term. Evolution is where your program goes from good to
great, and where those issues that you didn’t really understand in
the first pass become clear. It’s also where your classes can evolve
from single-project usage to reusable resources.

What it means to “get it right” isn’t just that the program works
according to the requirements and the use cases. It also means that
the internal structure of the code makes sense to you, and feels like
it fits together well, with no awkward syntax, oversized objects, or
ungainly exposed bits of code. In addition, you must have some
sense that the program structure will survive the changes that it will
inevitably go through during its lifetime, and that those changes can
be made easily and cleanly. This is no small feat. You must not only
understand what you’re building, but also how the program will
evolve (what I call the vector of change15). Fortunately, object-
oriented programming languages are particularly adept at
supporting this kind of continuing modification – the boundaries
created by the objects are what tend to keep the structure from
breaking down. They also allow you to make changes – ones that
would seem drastic in a procedural program – without causing
earthquakes throughout your code. In fact, support for evolution
might be the most important benefit of OOP.

With evolution, you create something that at least approximates
what you think you’re building, and then you kick the tires,
compare it to your requirements and see where it falls short. Then
you can go back and fix it by redesigning and re-implementing the

14 At least one aspect of evolution is covered in Martin Fowler’s book Refactoring:
improving the design of existing code (Addison-Wesley 1999), which uses Java examples
exclusively.

15 This term is explored in Chapter 15: Design Patterns.

92 Thinking in Java www.BruceEckel.com

portions of the program that didn’t work right16. You might actually
need to solve the problem, or an aspect of the problem, several
times before you hit on the right solution. (A study of Design
Patterns, described Chapter 16, is usually helpful here.)

Evolution also occurs when you build a system, see that it matches
your requirements, and then discover it wasn’t actually what you
wanted. When you see the system in operation, you find that you
really wanted to solve a different problem. If you think this kind of
evolution is going to happen, then you owe it to yourself to build
your first version as quickly as possible so you can find out if it is
indeed what you want.

Perhaps the most important thing to remember is that by default –
by definition, really – if you modify a class then its super- and
subclasses will still function. You need not fear modification
(especially if you have a built-in set of unit tests to verify the
correctness of your modifications). Modification won’t necessarily
break the program, and any change in the outcome will be limited
to subclasses and/or specific collaborators of the class you change.

Plans pay off
Of course you wouldn’t build a house without a lot of carefully-
drawn plans. If you build a deck or a dog house, your plans won’t be
so elaborate but you’ll probably still start with some kind of
sketches to guide you on your way. Software development has gone
to extremes. For a long time, people didn’t have much structure in
their development, but then big projects began failing. In reaction,
we ended up with methodologies that had an intimidating amount
of structure and detail, primarily intended for those big projects.
These methodologies were too scary to use – it looked like you’d
spend all your time writing documents and no time programming.

16 This is something like “rapid prototyping,” where you were supposed to build a quick-
and-dirty version so that you could learn about the system, and then throw away your
prototype and build it right. The trouble with rapid prototyping is that people didn’t throw
away the prototype, but instead built upon it. Combined with the lack of structure in
procedural programming, this often leads to messy systems that are expensive to maintain.

Chapter 1: Introduction to Objects 93

(This was often the case.) I hope that what I’ve shown you here
suggests a middle path – a sliding scale. Use an approach that fits
your needs (and your personality). No matter how minimal you
choose to make it, some kind of plan will make a big improvement
in your project as opposed to no plan at all. Remember that, by
most estimates, over 50 percent of projects fail (some estimates go
up to 70 percent!).

By following a plan – preferably one that is simple and brief – and
coming up with design structure before coding, you’ll discover that
things fall together far more easily than if you dive in and start
hacking, and you’ll also realize a great deal of satisfaction. It’s my
experience that coming up with an elegant solution is deeply
satisfying at an entirely different level; it feels closer to art than
technology. And elegance always pays off; it’s not a frivolous
pursuit. Not only does it give you a program that’s easier to build
and debug, but it’s also easier to understand and maintain, and
that’s where the financial value lies.

Extreme programming
I have studied analysis and design techniques, on and off, since I
was in graduate school. The concept of Extreme Programming (XP)
is the most radical, and delightful, that I’ve seen. You can find it
chronicled in Extreme Programming Explained by Kent Beck
(Addison-Wesley 2000) and on the Web at
www.xprogramming.com.

XP is both a philosophy about programming work and a set of
guidelines to do it. Some of these guidelines are reflected in other
recent methodologies, but the two most important and distinct
contributions, in my opinion, are “write tests first” and “pair
programming.” Although he argues strongly for the whole process,
Beck points out that if you adopt only these two practices you’ll
greatly improve your productivity and reliability.

94 Thinking in Java www.BruceEckel.com

Write tests first
Testing has traditionally been relegated to the last part of a project,
after you’ve “gotten everything working, but just to be sure.” It’s
implicitly had a low priority, and people who specialize in it have
not been given a lot of status and have often even been cordoned off
in a basement, away from the “real programmers.” Test teams have
responded in kind, going so far as to wear black clothing and
cackling with glee whenever they break something (to be honest,
I’ve had this feeling myself when breaking compilers).

XP completely revolutionizes the concept of testing by giving it
equal (or even greater) priority than the code. In fact, you write the
tests before you write the code that’s being tested, and the tests stay
with the code forever. The tests must be executed successfully every
time you do an integration of the project (which is often, sometimes
more than once a day).

Writing tests first has two extremely important effects.

First, it forces a clear definition of the interface of a class. I’ve often
suggested that people “imagine the perfect class to solve a particular
problem” as a tool when trying to design the system. The XP testing
strategy goes further than that – it specifies exactly what the class
must look like, to the consumer of that class, and exactly how the
class must behave. In no uncertain terms. You can write all the
prose, or create all the diagrams you want describing how a class
should behave and what it looks like, but nothing is as real as a set
of tests. The former is a wish list, but the tests are a contract that is
enforced by the compiler and the running program. It’s hard to
imagine a more concrete description of a class than the tests.

While creating the tests, you are forced to completely think out the
class and will often discover needed functionality that might be
missed during the thought experiments of UML diagrams, CRC
cards, use cases, etc.

The second important effect of writing the tests first comes from
running the tests every time you do a build of your software. This
activity gives you the other half of the testing that’s performed by
the compiler. If you look at the evolution of programming languages

Chapter 1: Introduction to Objects 95

from this perspective, you’ll see that the real improvements in the
technology have actually revolved around testing. Assembly
language checked only for syntax, but C imposed some semantic
restrictions, and these prevented you from making certain types of
mistakes. OOP languages impose even more semantic restrictions,
which if you think about it are actually forms of testing. “Is this data
type being used properly? Is this function being called properly?”
are the kinds of tests that are being performed by the compiler or
run-time system. We’ve seen the results of having these tests built
into the language: people have been able to write more complex
systems, and get them to work, with much less time and effort. I’ve
puzzled over why this is, but now I realize it’s the tests: you do
something wrong, and the safety net of the built-in tests tells you
there’s a problem and points you to where it is.

But the built-in testing afforded by the design of the language can
only go so far. At some point, you must step in and add the rest of
the tests that produce a full suite (in cooperation with the compiler
and run-time system) that verifies all of your program. And, just
like having a compiler watching over your shoulder, wouldn’t you
want these tests helping you right from the beginning? That’s why
you write them first, and run them automatically with every build of
your system. Your tests become an extension of the safety net
provided by the language.

One of the things that I’ve discovered about the use of more and
more powerful programming languages is that I am emboldened to
try more brazen experiments, because I know that the language will
keep me from wasting my time chasing bugs. The XP test scheme
does the same thing for your entire project. Because you know your
tests will always catch any problems that you introduce (and you
regularly add any new tests as you think of them), you can make big
changes when you need to without worrying that you’ll throw the
whole project into complete disarray. This is incredibly powerful.

Pair programming
Pair programming goes against the rugged individualism that we’ve
been indoctrinated into from the beginning, through school (where
we succeed or fail on our own, and working with our neighbors is

96 Thinking in Java www.BruceEckel.com

considered “cheating”) and media, especially Hollywood movies in
which the hero is usually fighting against mindless conformity17.
Programmers, too, are considered paragons of individuality –
“cowboy coders” as Larry Constantine likes to say. And yet XP,
which is itself battling against conventional thinking, says that code
should be written with two people per workstation. And that this
should be done in an area with a group of workstations, without the
barriers that the facilities design people are so fond of. In fact, Beck
says that the first task of converting to XP is to arrive with
screwdrivers and Allen wrenches and take apart everything that gets
in the way.18 (This will require a manager who can deflect the ire of
the facilities department.)

The value of pair programming is that one person is actually doing
the coding while the other is thinking about it. The thinker keeps
the big picture in mind, not only the picture of the problem at hand,
but the guidelines of XP. If two people are working, it’s less likely
that one of them will get away with saying, “I don’t want to write the
tests first,” for example. And if the coder gets stuck, they can swap
places. If both of them get stuck, their musings may be overheard by
someone else in the work area who can contribute. Working in pairs
keeps things flowing and on track. Probably more important, it
makes programming a lot more social and fun.

I’ve begun using pair programming during the exercise periods in
some of my seminars and it seems to significantly improve
everyone’s experience.

17 Although this may be a more American perspective, the stories of Hollywood reach
everywhere.

18 Including (especially) the PA system. I once worked in a company that insisted on
broadcasting every phone call that arrived for every executive, and it constantly
interrupted our productivity (but the managers couldn’t begin to conceive of stifling such
an important service as the PA). Finally, when no one was looking I started snipping
speaker wires.

Chapter 1: Introduction to Objects 97

Why Java succeeds
The reason Java has been so successful is that the goal was to solve
many of the problems facing developers today. The goal of Java is
improved productivity. This productivity comes in many ways, but
the language is designed to aid you as much as possible, while
hindering you as little as possible with arbitrary rules or any
requirement that you use a particular set of features. Java is
designed to be practical; Java language design decisions were based
on providing the maximum benefits to the programmer.

Systems are easier
to express and understand
Classes designed to fit the problem tend to express it better. This
means that when you write the code, you’re describing your solution
in the terms of the problem space (“Put the grommet in the bin”)
rather than the terms of the computer, which is the solution space
(“Set the bit in the chip that means that the relay will close”). You
deal with higher-level concepts and can do much more with a single
line of code.

The other benefit of this ease of expression is maintenance, which
(if reports can be believed) takes a huge portion of the cost over a
program’s lifetime. If a program is easier to understand, then it’s
easier to maintain. This can also reduce the cost of creating and
maintaining the documentation.

Maximal leverage with libraries
The fastest way to create a program is to use code that’s already
written: a library. A major goal in Java is to make library use easier.
This is accomplished by casting libraries into new data types
(classes), so that bringing in a library means adding new types to
the language. Because the Java compiler takes care of how the
library is used – guaranteeing proper initialization and cleanup, and
ensuring that functions are called properly – you can focus on what
you want the library to do, not how you have to do it.

98 Thinking in Java www.BruceEckel.com

Error handling
Error handling in C is a notorious problem, and one that is often
ignored – finger-crossing is usually involved. If you’re building a
large, complex program, there’s nothing worse than having an error
buried somewhere with no clue as to where it came from. Java
exception handling is a way to guarantee that an error is noticed
and that something happens as a result.

Programming in the large
Many traditional languages have built-in limitations to program
size and complexity. BASIC, for example, can be great for pulling
together quick solutions for certain classes of problems, but if the
program gets more than a few pages long or ventures out of the
normal problem domain of that language, it’s like trying to swim
through an ever-more viscous fluid. There’s no clear line that tells
you when your language is failing you, and even if there were, you’d
ignore it. You don’t say, “My BASIC program just got too big; I’ll
have to rewrite it in C!” Instead, you try to shoehorn a few more
lines in to add that one new feature. So the extra costs come
creeping up on you.

Java is designed to aid programming in the large, that is, to erase
those creeping-complexity boundaries between a small program
and a large one. You certainly don’t need to use OOP when you’re
writing a hello-world style utility program, but the features are
there when you need them. And the compiler is aggressive about
ferreting out bug-producing errors for small and large programs
alike.

Strategies for transition
If you buy into OOP, your next question is probably, “How can I get
my manager/colleagues/department/peers to start using objects?”
Think about how you – one independent programmer – would go
about learning to use a new language and a new programming
paradigm. You’ve done it before. First comes education and

Chapter 1: Introduction to Objects 99

examples; then comes a trial project to give you a feel for the basics
without doing anything too confusing. Then comes a “real world”
project that actually does something useful. Throughout your first
projects you continue your education by reading, asking questions
of experts, and trading hints with friends. This is the approach
many experienced programmers suggest for the switch to Java.
Switching an entire company will of course introduce certain group
dynamics, but it will help at each step to remember how one person
would do it.

Guidelines
Here are some guidelines to consider when making the transition to
OOP and Java:

1. Training
The first step is some form of education. Remember the company’s
investment in code, and try not to throw everything into disarray for
six to nine months while everyone puzzles over how interfaces
work. Pick a small group for indoctrination, preferably one
composed of people who are curious, work well together, and can
function as their own support network while they’re learning Java.

An alternative approach that is sometimes suggested is the
education of all company levels at once, including overview courses
for strategic managers as well as design and programming courses
for project builders. This is especially good for smaller companies
making fundamental shifts in the way they do things, or at the
division level of larger companies. Because the cost is higher,
however, some may choose to start with project-level training, do a
pilot project (possibly with an outside mentor), and let the project
team become the teachers for the rest of the company.

2. Low-risk project
Try a low-risk project first and allow for mistakes. Once you’ve
gained some experience, you can either seed other projects from
members of this first team or use the team members as an OOP
technical support staff. This first project may not work right the

100 Thinking in Java www.BruceEckel.com

first time, so it should not be mission-critical for the company. It
should be simple, self-contained, and instructive; this means that it
should involve creating classes that will be meaningful to the other
programmers in the company when they get their turn to learn
Java.

3. Model from success
Seek out examples of good object-oriented design before starting
from scratch. There’s a good probability that someone has solved
your problem already, and if they haven’t solved it exactly you can
probably apply what you’ve learned about abstraction to modify an
existing design to fit your needs. This is the general concept of
design patterns, covered at the end of the book.

4. Use existing class libraries
The primary economic motivation for switching to OOP is the easy
use of existing code in the form of class libraries (in particular, the
Standard Java libraries, which are covered throughout this book).
The shortest application development cycle will result when you can
creating and use objects from off-the-shelf libraries. However, some
new programmers don’t understand this, are unaware of existing
class libraries, or, through fascination with the language, desire to
write classes that may already exist. Your success with OOP and
Java will be optimized if you make an effort to seek out and reuse
other people’s code early in the transition process.

5. Don’t rewrite existing code in Java
It is not usually the best use of your time to take existing, functional
code and rewrite it in Java. (If you must turn it into objects, you can
interface to the C or C++ code using the Java Native Interface,
described in Appendix B.) There are incremental benefits, especially
if the code is slated for reuse. But chances are you aren’t going to
see the dramatic increases in productivity that you hope for in your
first few projects unless that project is a new one. Java and OOP
shine best when taking a project from concept to reality.

Chapter 1: Introduction to Objects 101

Management obstacles
If you’re a manager, your job is to acquire resources for your team,
to overcome barriers to your team’s success, and in general to try to
provide the most productive and enjoyable environment so your
team is most likely to perform those miracles that are always being
asked of you. Moving to Java falls in all three of these categories,
and it would be wonderful if it didn’t cost you anything as well.
Although moving to Java may be cheaper – depending on your
constraints – than the OOP alternatives for a team of C
programmers (and probably for programmers in other procedural
languages), it isn’t free, and there are obstacles you should be aware
of before trying to sell the move to Java within your company and
embarking on the move itself.

Startup costs
The cost of moving to Java is more than just the acquisition of Java
compilers (the Sun Java compiler is free, so this is hardly an
obstacle). Your medium- and long-term costs will be minimized if
you invest in training (and possibly mentoring for your first project)
and also if you identify and purchase class libraries that solve your
problem rather than trying to build those libraries yourself. These
are hard-money costs that must be factored into a realistic proposal.
In addition, there are the hidden costs in loss of productivity while
learning a new language and possibly a new programming
environment. Training and mentoring can certainly minimize these,
but team members must overcome their own struggles to
understand the new technology. During this process they will make
more mistakes (this is a feature, because acknowledged mistakes
are the fastest path to learning) and be less productive. Even then,
with some types of programming problems, the right classes, and
the right development environment, it’s possible to be more
productive while you’re learning Java (even considering that you’re
making more mistakes and writing fewer lines of code per day) than
if you’d stayed with C.

102 Thinking in Java www.BruceEckel.com

Performance issues
A common question is, “Doesn’t OOP automatically make my
programs a lot bigger and slower?” The answer is, “It depends.” The
extra safety features in Java have traditionally extracted a
performance penalty over a language like C++. Technologies such
as “hotspot” and compilation technologies have improved the speed
significantly in most cases, and efforts continue towards higher
performance.

When your focus is on rapid prototyping, you can throw together
components as fast as possible while ignoring efficiency issues. If
you’re using any third party libraries, these are usually already
optimized by their vendors; in any case it’s not an issue while you’re
in rapid-development mode. When you have a system that you like,
if it’s small and fast enough, then you’re done. If not, you begin
tuning with a profiling tool, looking first for speedups that can be
done by rewriting small portions of code. If that doesn’t help, you
look for modifications that can be made in the underlying
implementation so no code that uses a particular class needs to be
changed. Only if nothing else solves the problem do you need to
change the design. The fact that performance is so critical in that
portion of the design is an indicator that it must be part of the
primary design criteria. You have the benefit of finding this out
early using rapid development.

If you find a function that is a particular bottleneck, you can rewrite
it in C/C++ using Java’s native methods, the subject of Appendix B.

Common design errors
When starting your team into OOP and Java, programmers will
typically go through a series of common design errors. This often
happens because of too little feedback from experts during the
design and implementation of early projects, because no experts
have been developed within the company and there may be
resistance to retaining consultants. It’s easy to feel that you
understand OOP too early in the cycle and go off on a bad tangent.
Something that’s obvious to someone experienced with the
language may be a subject of great internal debate for a novice.

Chapter 1: Introduction to Objects 103

Much of this trauma can be skipped by using an experienced
outside expert for training and mentoring.

Java vs. C++?
Java looks a lot like C++, and so naturally it would seem that C++
will be replaced by Java. But I’m starting to question this logic. For
one thing, C++ still has some features that Java doesn’t, and
although there have been a lot of promises about Java someday
being as fast or faster than C++, we’ve seen steady improvements
but no dramatic breakthroughs. Also, there seems to be a
continuing interest in C++, so I don’t think that language is going
away any time soon. (Languages seem to hang around. Speaking at
one of my “Intermediate/Advanced Java Seminars,” Allen Holub
asserted that the two most commonly-used languages are Rexx and
COBOL, in that order.)

I’m beginning to think that the strength of Java lies in a slightly
different arena than that of C++. C++ is a language that doesn’t try
to fit a mold. Certainly it has been adapted in a number of ways to
solve particular problems. Some C++ tools combine libraries,
component models and code generation tools to solve the problem
of developing windowed end-user applications (for Microsoft
Windows). And yet, what do the vast majority of Windows
developers use? Microsoft’s Visual Basic (VB). This despite the fact
that VB produces the kind of code that becomes unmanageable
when the program is only a few pages long (and syntax that can be
positively mystifying). As successful and popular as VB is, it’s not a
very good example of language design. It would be nice to have the
ease and power of VB without the resulting unmanageable code.
And that’s where I think Java will shine: as the “next VB.” You may
or may not shudder to hear this, but think about it: so much of Java
is intended to make it easy for the programmer to solve application-
level problems like networking and cross-platform UI, and yet it has
a language design that allows the creation of very large and flexible
bodies of code. Add to this the fact that Java has the most robust
type checking and error-handling systems I’ve ever seen in a

104 Thinking in Java www.BruceEckel.com

language and you have the makings of a significant leap forward in
programming productivity.

Should you use Java instead of C++ for your project? Other than
Web applets, there are two issues to consider. First, if you want to
use a lot of existing C++ libraries (and you’ll certainly get a lot of
productivity gains there), or if you have an existing C or C++ code
base, Java might slow your development down rather than speeding
it up.

If you’re developing all your code primarily from scratch, then the
simplicity of Java over C++ will significantly shorten your
development time – the anecdotal evidence (stories from C++
teams that I’ve talked to who have switched to Java) suggests a
doubling of development speed over C++. If Java performance
doesn’t matter or you can somehow compensate for it, sheer time-
to-market issues make it difficult to choose C++ over Java.

The biggest issue is performance. Interpreted Java has been slow,
even 20 to 50 times slower than C in the original Java interpreters.
This has improved greatly over time, but it will still remain an
important number. Computers are about speed; if it wasn’t
significantly faster to do something on a computer then you’d do it
by hand. (I’ve even heard it suggested that you start with Java, to
gain the short development time, then use a tool and support
libraries to translate your code to C++, if you need faster execution
speed.)

The key to making Java feasible for most development projects is
the appearance of speed improvements like so-called “just-in time”
(JIT) compilers, Sun’s own “hotspot” technology, and even native
code compilers. Of course, native-code compilers will eliminate the
touted cross-platform execution of the compiled programs, but they
will also bring the speed of the executable closer to that of C and
C++. And cross-compiling a program in Java should be a lot easier
than doing so in C or C++. (In theory, you just recompile, but that
promise has been made before for other languages.)

You can find comparisons of Java and C++ and observations about
Java realities in the appendices of the first edition of this book

Chapter 1: Introduction to Objects 105

(Available on this book’s accompanying CD ROM as well as at
www.BruceEckel.com).

Summary
This chapter attempts to give you a feel for the broad issues of
object-oriented programming and Java, including why OOP is
different, and why Java in particular is different, concepts of OOP
methodologies, and finally the kinds of issues you will encounter
when moving your own company to OOP and Java.

OOP and Java may not be for everyone. It’s important to evaluate
your own needs and decide whether Java will optimally satisfy those
needs, or if you might be better off with another programming
system (including the one you’re currently using). If you know that
your needs will be very specialized for the foreseeable future and if
you have specific constraints that may not be satisfied by Java, then
you owe it to yourself to investigate the alternatives19. Even if you
eventually choose Java as your language, you’ll at least understand
what the options were and have a clear vision of why you took that
direction.

You know what a procedural program looks like: data definitions
and function calls. To find the meaning of such a program you have
to work a little, looking through the function calls and low-level
concepts to create a model in your mind. This is the reason we need
intermediate representations when designing procedural programs
– by themselves, these programs tend to be confusing because the
terms of expression are oriented more toward the computer than to
the problem you’re solving.

Because Java adds many new concepts on top of what you find in a
procedural language, your natural assumption may be that the
main() in a Java program will be far more complicated than for
the equivalent C program. Here, you’ll be pleasantly surprised: A
well-written Java program is generally far simpler and much easier

19 In particular, I recommend looking at Python (http://www.Python.org).

106 Thinking in Java www.BruceEckel.com

to understand than the equivalent C program. What you’ll see are
the definitions of the objects that represent concepts in your
problem space (rather than the issues of the computer
representation) and messages sent to those objects to represent the
activities in that space. One of the delights of object-oriented
programming is that, with a well-designed program, it’s easy to
understand the code by reading it. Usually there’s a lot less code, as
well, because many of your problems will be solved by reusing
existing library code.

 107

2: Everything
is an Object

Although it is based on C++, Java is more of a “pure”
object-oriented language.

Both C++ and Java are hybrid languages, but in Java the designers
felt that the hybridization was not as important as it was in C++. A
hybrid language allows multiple programming styles; the reason
C++ is hybrid is to support backward compatibility with the C
language. Because C++ is a superset of the C language, it includes
many of that language’s undesirable features which can make some
aspects of C++ overly complicated.

The Java language assumes that you want to do only object-
oriented programming. This means that before you can begin you
must shift your mindset into an object-oriented world (unless it’s
already there). The benefit of this initial effort is the ability to
program in a language that is simpler to learn and to use than many
other OOP languages. In this chapter we’ll see the basic components
of a Java program and we’ll learn that everything in Java is an
object, even a Java program.

You manipulate objects
with handles

Each programming language has its own means of manipulating
data. Sometimes the programmer must constantly be aware of what
type of manipulation is going on. Are you manipulating the object
directly or are you dealing with some kind of indirect representation
(a pointer in C or C++) that must be treated with a special syntax?

108 Thinking in Java www.BruceEckel.com

All this is simplified in Java. You treat everything as an object, so
there is a single consistent syntax that you use everywhere.
Although you treat everything as an object, the identifier you
manipulate is actually a “handle” to an object. (“Handle” is the term
that I choose to use; you might see this called a reference or even a
pointer in other discussions of Java1.) You might imagine this scene
as a television (the object) with your remote control (the handle). As
long as you’re holding this handle, you have a connection to the
television, but when someone says “change the channel” or “lower
the volume,” what you’re manipulating is the handle, which in turn
modifies the object. If you want to move around the room and still
control the television, you take the remote/handle with you, not the
television.

Also, the remote control can stand on its own, with no television.
That is, just because you have a handle doesn’t mean there’s
necessarily an object connected to it. So if you want to hold a word
or sentence, you create a String handle:

String s;

But here you’ve created only the handle, not an object. If you
decided to send a message to s at this point, you’ll get an error (at
run-time) because s isn’t actually attached to anything (there’s no
television). A safer practice, then, is always to initialize a handle
when you create it:

1 This seems to be a flashpoint. There are those who say “clearly, it’s a pointer,” but this
presumes an underlying implementation. Also, Java handles are much more akin to C++
references than pointers in their syntax, and there are those who follow that and call them
references. I am most sympathetic to these arguments, but again, I choose “handle”
because C++ references and Java handles have some important differences. Finally, I read
in one book where it was “completely wrong to say that Java supports pass by reference,”
because Java object identifiers (according to that author) are actually “object references.”
And (he goes on) everything is actually pass by value. So you’re not passing by reference,
you’re “passing an object reference by value.” One could argue for the precision of such
convoluted explanations, but by stepping aside and giving it a new name (“handle”), I can
dramatically simplify the understanding of the concept without hurting anything (well, the
language lawyers may claim that I’m lying to you, but I’ll say that I’m providing an
appropriate abstraction.)

Chapter 2: Everything is an Object 109

String s = "asdf";

However, this uses a special Java feature: strings can be initialized
with quoted text. Normally, you must use a more general type of
initialization for objects.

You must create
all the objects

When you create a handle, you want to connect it with a new object.
You do so, in general, with the new keyword. new says, “Make me
a new one of these objects.” So in the above example, you can say:

String s = new String("asdf");

Not only does this mean “Make me a new String,” but it also gives
information about how to make the String by supplying an initial
character string.

Of course, String is not the only type that exists. Java comes with a
plethora of ready-made types. What’s more important is that you
can create your own types. In fact, that’s the fundamental activity in
Java programming, and it’s what you’ll be learning about in the rest
of this book.

Where storage lives
It’s useful to visualize some aspects of how things are laid out while
the program is running, in particular how memory is arranged.
There are six different places to store data:

1. Registers. This is the fastest storage because it exists in a
place different from that of other storage: inside the
processor. However, the number of registers is severely
limited, so registers are allocated by the compiler according
to its needs. You don’t have direct control, nor do you see any
evidence in your programs that registers even exist.

110 Thinking in Java www.BruceEckel.com

2. The stack. This lives in the general RAM (random-access
memory) area, but has direct support from the processor via
its stack pointer. The stack pointer is moved down to create
new memory and moved up to release that memory. This is
an extremely fast and efficient way to allocate storage,
second only to registers. The Java compiler must know, while
it is creating the program, the exact size and lifetime of all
the data that is stored on the stack, because it must generate
the code to move the stack pointer up and down. This
constraint places limits on the flexibility of your programs, so
while some Java storage exists on the stack – in particular,
object handles – Java objects themselves are not placed on
the stack.

3. The heap. This is a general-purpose pool of memory (also in
the RAM area) where all Java objects live. The nice thing
about the heap is that, unlike the stack, the compiler doesn’t
need to know how much storage it needs to allocate from the
heap or how long that storage must stay on the heap. Thus,
there’s a great deal of flexibility in using storage on the heap.
Whenever you need to create an object, you simply write the
code to create it using new and the storage is allocated on
the heap when that code is executed. Of course there’s a price
you pay for this flexibility: it takes more time to allocate heap
storage than it does to allocate stack storage (that is, if you
even could create objects on the stack in Java, as you can in
C++).

4. Static storage. “Static” is used here in the sense of “in a
fixed location” (although it’s also in RAM). Static storage
contains data that is available for the entire time a program
is running. You can use the static keyword to specify that a
particular element of an object is static, but Java objects
themselves are never placed in static storage.

5. Constant storage. Constant values are often placed
directly in the program code, which is safe since they can
never change. Sometimes constants are cordoned off by
themselves so that they can be optionally placed in read-only
memory (ROM).

Chapter 2: Everything is an Object 111

6. Non-RAM storage. If data lives completely outside a
program it can exist while the program is not running,
outside the control of the program. The two primary
examples of this are streamed objects, in which objects are
turned into streams of bytes, generally to be sent to another
machine, and persistent objects, in which the objects are
placed on disk so they will hold their state even when the
program is terminated. The trick with these types of storage
is turning the objects into something that can exist on the
other medium, and yet can be resurrected into a regular
RAM-based object when necessary. Java provides support
for lightweight persistence, and future versions of Java
might provide more complete solutions for persistence.

Special case: primitive types
There is a group of types that gets special treatment; you can think
of these as “primitive” types that you use quite often in your
programming. The reason for the special treatment is that to create
an object with new, especially a small, simple variable, isn’t very
efficient because new places objects on the heap. For these types
Java falls back on the approach taken by C and C++. That is, instead
of creating the variable using new, an “automatic” variable is
created that is not a handle. The variable holds the value, and it’s
placed on the stack so it’s much more efficient.

Java determines the size of each primitive type. These sizes don’t
change from one machine architecture to another as they do in most
languages. This size invariance is one reason Java programs are so
portable.

Primitive
type

Size Minimum Maximum Wrapper
type

boolean 1-bit – – Boolean
char 16-bit Unicode 0 Unicode 216- 1 Character
byte 8-bit -128 +127 Byte
short 16-bit -215 +215 – 1 Short
int 32-bit -231 +231 – 1 Integer
long 64-bit -263 +263 – 1 Long

112 Thinking in Java www.BruceEckel.com

Primitive
type

Size Minimum Maximum Wrapper
type

float 32-bit IEEE754 IEEE754 Float
double 64-bit IEEE754 IEEE754 Double
void – – – Void

All numeric types are signed, so don’t go looking for unsigned types.

The primitive data types also have “wrapper” classes for them. That
means that if you want to make a non-primitive object on the heap
to represent that primitive type, you use the associated wrapper.
For example:

char c = 'x';
Character C = new Character(c);

or you could also use:

Character C = new Character('x');

The reasons for doing this will be shown in a later chapter.

High-precision numbers
Java includes two classes for performing high-precision arithmetic:
BigInteger and BigDecimal. Although these approximately fit
into the same category as the “wrapper” classes, neither one has a
primitive analogue.

Both classes have methods that provide analogues for the
operations that you perform on primitive types. That is, you can do
anything with a BigInteger or BigDecimal that you can with an
int or float, it’s just that you must use method calls instead of
operators. Also, since there’s more involved, the operations will be
slower. You’re exchanging speed for accuracy.

BigInteger supports arbitrary-precision integers. This means that
you can accurately represent integral values of any size without
losing any information during operations.

BigDecimal is for arbitrary-precision fixed-point numbers; you
can use these for accurate monetary calculations, for example.

Chapter 2: Everything is an Object 113

Consult your online documentation for details about the
constructors and methods you can call for these two classes.

Arrays in Java
Virtually all programming languages support arrays. Using arrays
in C and C++ is perilous because those arrays are only blocks of
memory. If a program accesses the array outside of its memory
block or uses the memory before initialization (common
programming errors) there will be unpredictable results.2

One of the primary goals of Java is safety, so many of the problems
that plague programmers in C and C++ are not repeated in Java. A
Java array is guaranteed to be initialized and cannot be accessed
outside of its range. The range checking comes at the price of having
a small amount of memory overhead on each array as well as
verifying the index at run time, but the assumption is that the safety
and increased productivity is worth the expense.

When you create an array of objects, you are really creating an array
of handles, and each of those handles is automatically initialized to
a special value with its own keyword: null. When Java sees null, it
recognizes that the handle in question isn’t pointing to an object.
You must assign an object to each handle before you use it, and if
you try to use a handle that’s still null, the problem will be reported
at run-time. Thus, typical array errors are prevented in Java.

You can also create an array of primitives. Again, the compiler
guarantees initialization because it zeroes the memory for that
array.

Arrays will be covered in detail in later chapters.

2 In C++ you should often use the safer containers in the Standard Template Library as an
alternative to arrays.

114 Thinking in Java www.BruceEckel.com

You never need to
destroy an object

In most programming languages, the concept of the lifetime of a
variable occupies a significant portion of the programming effort.
How long does the variable last? If you are supposed to destroy it,
when should you? Confusion over variable lifetimes can lead to a lot
of bugs, and this section shows how Java greatly simplifies the issue
by doing all the cleanup work for you.

Scoping
Most procedural languages have the concept of scope. This
determines both the visibility and lifetime of the names defined
within that scope. In C, C++ and Java, scope is determined by the
placement of curly braces {}. So for example:

{
int x = 12;
/* only x available */
{

int q = 96;
/* both x & q available */

}
/* only x available */
/* q “out of scope” */

}

A variable defined within a scope is available only to the end of that
scope.

Indentation makes Java code easier to read. Since Java is a free
form language, the extra spaces, tabs and carriage returns do not
affect the resulting program.

Note that you cannot do the following, even though it is legal in C
and C++:

{

Chapter 2: Everything is an Object 115

int x = 12;
{

int x = 96; /* illegal */
}

}

The compiler will announce that the variable x has already been
defined. Thus the C and C++ ability to “hide” a variable in a larger
scope is not allowed because the Java designers thought that it led
to confusing programs.

Scope of objects
Java objects do not have the same lifetimes as primitives. When you
create a Java object using new, it hangs around past the end of the
scope. Thus if you use:

{
String s = new String("a string");

} /* end of scope */

the handle s vanishes at the end of the scope. However, the String
object that s was pointing to is still occupying memory. In this bit of
code, there is no way to access the object because the only handle to
it is out of scope. In later chapters you’ll see how the handle to the
object can be passed around and duplicated during the course of a
program.

It turns out that because objects created with new stay around for
as long as you want them, a whole slew of C++ programming
problems simply vanish in Java. The hardest problems seem to
occur in C++ because you don’t get any help from the language in
making sure that the objects are available when they’re needed. And
more importantly, in C++ you must make sure that you destroy the
objects when you’re done with them.

That brings up an interesting question. If Java leaves the objects
lying around, what keeps them from filling up memory and halting
your program? This is exactly the kind of problem that would occur
in C++. This is where a bit of magic happens. Java has a garbage
collector, which looks at all the objects that were created with new

116 Thinking in Java www.BruceEckel.com

and figures out which ones are not being referenced anymore. Then
it releases the memory for those objects, so the memory can be used
for new objects. This means that you never need to worry about
reclaiming memory yourself. You simply create objects, and when
you no longer need them they will go away by themselves. This
eliminates a certain class of programming problem: the so-called
“memory leak,” in which a programmer forgets to release memory.

Creating new
data types: class

If everything is an object, what determines how a particular class of
object looks and behaves? Put another way, what establishes the
type of an object? You might expect there to be a keyword called
“type” and that certainly would have made sense. Historically,
however, most object-oriented languages have used the keyword
class to mean “I’m about to tell you what a new type of object looks
like.” The class keyword (which is so common that it will not be
emboldened throughout the book) is followed by the name of the
new type. For example:

class ATypeName { /* class body goes here */ }

This introduces a new type, so you can now create an object of this
type using new:

ATypeName a = new ATypeName();

In ATypeName, the class body consists only of a comment (the
stars and slashes and what is inside, which will be discussed later in
this chapter) so there is not too much that you can do with it. In
fact, you cannot tell it to do much of anything (that is, you cannot
send it any interesting messages) until you define some methods for
it.

Chapter 2: Everything is an Object 117

Fields and methods
When you define a class (and all you do in Java is define classes,
make objects of those classes and send messages to those objects),
you can put two types of elements in your class: data members
(sometimes called fields) and member functions (typically called
methods). A data member is an object of any type that you can
communicate with via its handle. It can also be one of the primitive
types (which isn’t a handle). If it is a handle to an object, you must
initialize that handle to connect it to an actual object (using new, as
seen earlier) in a special function called a constructor (described
fully in Chapter 4). If it is a primitive type you can initialize it
directly at the point of definition in the class. (As you’ll see later,
handles can also be initialized at the point of definition.)

Each object keeps its own storage for its data members; the data
members are not shared among objects. Here is an example of a
class with some data members:

class DataOnly {
int i;
float f;
boolean b;

}

This class doesn’t do anything, but you can create an object:

DataOnly d = new DataOnly();

You can assign values to the data members, but you must first know
how to refer to a member of an object. This is accomplished by
stating the name of the object handle, followed by a period (dot),
followed by the name of the member inside the object
(objectHandle.member). For example:

d.i = 47;
d.f = 1.1f;
d.b = false;

It is also possible that your object might contain other objects that
contain data you’d like to modify. For this, you just keep
“connecting the dots.” For example:

118 Thinking in Java www.BruceEckel.com

myPlane.leftTank.capacity = 100;

The DataOnly class cannot do much of anything except hold data,
because it has no member functions (methods). To understand how
those work, you must first understand arguments and return
values, which will be described shortly.

Default values for primitive members
When a primitive data type is a member of a class, it is guaranteed
to get a default value if you do not initialize it:

Primitive type Default
boolean false
char ‘\u0000’ (null)
byte (byte)0
short (short)0
int 0
long 0L
float 0.0f
double 0.0d

Note carefully that the default values are what Java guarantees
when the variable is used as a member of a class. This ensures that
member variables of primitive types will always be initialized
(something C++ doesn’t do), reducing a source of bugs. However,
this initial value may not be correct or even legal for the program
you are writing. It’s best to always explicitly initialize your variables.

This guarantee doesn’t apply to “local” variables – those that are not
fields of a class. Thus, if within a function definition you have:

int x;

Then x will get some random value (as in C and C++); it will not
automatically be initialized to zero. You are responsible for
assigning an appropriate value before you use x. If you forget, Java
definitely improves on C++: you get a compile-time error telling you
the variable might not have been initialized. (Many C++ compilers
will warn you about uninitialized variables, but in Java these are
errors.)

Chapter 2: Everything is an Object 119

Methods, arguments
and return values

Up until now, the term function has been used to describe a named
subroutine. The term that is more commonly used in Java is
method, as in “a way to do something.” If you want, you can
continue thinking in terms of functions. It’s really only a syntactic
difference, but from now on “method” will be used in this book
rather than “function.”

Methods in Java determine the messages an object can receive. In
this section you will learn how simple it is to define a method.

The fundamental parts of a method are the name, the arguments,
the return type, and the body. Here is the basic form:

returnType methodName(/* argument list */) {
/* Method body */

}

The return type is the type of the value that pops out of the method
after you call it. The method name, as you might imagine, identifies
the method. The argument list gives the types and names for the
information you want to pass into the method.

Methods in Java can be created only as part of a class. A method can
be called only for an object,3 and that object must be able to
perform that method call. If you try to call the wrong method for an
object, you’ll get an error message at compile time. You call a
method for an object by naming the object followed by a period
(dot), followed by the name of the method and its argument list, like
this: objectName.methodName(arg1, arg2, arg3). For
example, suppose you have a method f() that takes no arguments
and returns a value of type int. Then, if you have an object called a
for which f() can be called, you can say this:

3 static methods, which you’ll learn about soon, can be called for the class, without an
object.

120 Thinking in Java www.BruceEckel.com

int x = a.f();

The type of the return value must be compatible with the type of x.

This act of calling a method is commonly referred to as sending a
message to an object. In the above example, the message is f() and
the object is a. Object-oriented programming is often summarized
as simply “sending messages to objects.”

The argument list
The method argument list specifies what information you pass into
the method. As you might guess, this information – like everything
else in Java – takes the form of objects. So, what you must specify in
the argument list are the types of the objects to pass in and the
name to use for each one. As in any situation in Java where you
seem to be handing objects around, you are actually passing
handles4. The type of the handle must be correct, however. If the
argument is supposed to be a String, what you pass in must be a
string.

Consider a method that takes a String as its argument. Here is the
definition, which must be placed within a class definition for it to be
compiled:

int storage(String s) {
return s.length() * 2;

}

This method tells you how many bytes are required to hold the
information in a particular String. (Each char in a String is 16
bits, or two bytes, long, to support Unicode characters.) The
argument is of type String and is called s. Once s is passed into the
method, you can treat it just like any other object. (You can send
messages to it.) Here, the length() method is called, which is one

4 With the usual exception of the aforementioned “special” data types boolean, char,
byte, short, int, long, float, and double. In general, though, you pass objects, which
really means you pass handles to objects.

Chapter 2: Everything is an Object 121

of the methods for Strings; it returns the number of characters in a
string.

You can also see the use of the return keyword, which does two
things. First, it means “leave the method, I’m done.” Second, if the
method produces a value, that value is placed right after the return
statement. In this case, the return value is produced by evaluating
the expression s.length() * 2.

You can return any type you want, but if you don’t want to return
anything at all, you do so by indicating that the method returns
void. Here are some examples:

boolean flag() { return true; }
float naturalLogBase() { return 2.718f; }
void nothing() { return; }
void nothing2() {}

When the return type is void, then the return keyword is used
only to exit the method, and is therefore unnecessary when you
reach the end of the method. You can return from a method at any
point, but if you’ve given a non-void return type then the compiler
will force you (with error messages) to return the appropriate type
of value regardless of where you return.

At this point, it can look like a program is just a bunch of objects
with methods that take other objects as arguments and send
messages to those other objects. That is indeed much of what goes
on, but in the following chapter you’ll learn how to do the detailed
low-level work by making decisions within a method. For this
chapter, sending messages will suffice.

Building a Java program
There are several other issues you must understand before seeing
your first Java program.

122 Thinking in Java www.BruceEckel.com

Name visibility
A problem in any programming language is the control of names. If
you use a name in one module of the program, and another
programmer uses the same name in another module, how do you
distinguish one name from another and prevent the two names
from “clashing?” In C this is a particular problem because a
program is often an unmanageable sea of names. C++ classes (on
which Java classes are based) nest functions within classes so they
cannot clash with function names nested within other classes.
However, C++ still allowed global data and global functions, so
clashing was still possible. To solve this problem, C++ introduced
namespaces using additional keywords.

Java was able to avoid all of this by taking a fresh approach. To
produce an unambiguous name for a library, the specifier used is
not unlike an Internet domain name. In fact, the Java creators want
you to use your Internet domain name in reverse since those are
guaranteed to be unique. Since my domain name is
BruceEckel.com, my utility library of foibles would be named
com.bruceeckel.utility.foibles. After your reversed domain
name, the dots are intended to represent subdirectories.

In Java 1.0 and Java 1.1 the domain extension com, edu, org, net,
etc., was capitalized by convention, so the library would appear:
COM.bruceeckel.utility.foibles. Partway through the
development of Java 2, however, it was discovered that this caused
problems and so now the entire package name is lowercase.

This mechanism means that all of your files automatically live in
their own namespaces, and each class within a file must have a
unique identifier. So you do not need to learn special language
features to solve this problem – the language takes care of it for
you.

Using other components
Whenever you want to use a predefined class in your program, the
compiler must know how to locate it. Of course, the class might
already exist in the same source code file that it’s being called from.

Chapter 2: Everything is an Object 123

In that case, you simply use the class – even if the class doesn’t get
defined until later in the file. Java eliminates the “forward
referencing” problem so you don’t need to think about it.

What about a class that exists in some other file? You might think
that the compiler should be smart enough to simply go and find it,
but there is a problem. Imagine that you want to use a class of a
particular name, but more than one definition for that class exists
(presumably these are different definitions). Or worse, imagine that
you’re writing a program, and as you’re building it you add a new
class to your library that conflicts with the name of an existing class.

To solve this problem, you must eliminate all potential ambiguities.
This is accomplished by telling the Java compiler exactly what
classes you want using the import keyword. import tells the
compiler to bring in a package, which is a library of classes. (In
other languages, a library could consist of functions and data as well
as classes, but remember that all code in Java must be written
inside a class.)

Most of the time you’ll be using components from the standard Java
libraries that come with your compiler. With these, you don’t need
to worry about long, reversed domain names; you just say, for
example:

import java.util.ArrayList;

to tell the compiler that you want to use Java’s ArrayList class.
However, util contains a number of classes and you might want to
use several of them without declaring them all explicitly. This is
easily accomplished by using ‘*’ to indicate a wildcard:

import java.util.*;

It is more common to import a collection of classes in this manner
than to import classes individually.

The static keyword
Ordinarily, when you create a class you are describing how objects
of that class look and how they will behave. You don’t actually get

124 Thinking in Java www.BruceEckel.com

anything until you create an object of that class with new, and at
that point data storage is created and methods become available.

But there are two situations in which this approach is not sufficient.
One is if you want to have only one piece of storage for a particular
piece of data, regardless of how many objects are created, or even if
no objects are created. The other is if you need a method that isn’t
associated with any particular object of this class. That is, you need
a method that you can call even if no objects are created. You can
achieve both of these effects with the static keyword. When you say
something is static, it means that data or method is not tied to any
particular object instance of that class. So even if you’ve never
created an object of that class you can call a static method or access
a piece of static data. With ordinary, non-static data and methods
you must create an object and use that object to access the data or
method, since non-static data and methods must know the
particular object they are working with. Of course, since static
methods don’t need any objects to be created before they are used,
they cannot directly access non-static members or methods by
simply calling those other members without referring to a named
object (since non-static members and methods must be tied to a
particular object).

Some object-oriented languages use the terms class data and class
methods, meaning that the data and methods exist only for the class
as a whole, and not for any particular objects of the class.
Sometimes the Java literature uses these terms too.

To make a data member or method static, you simply place the
keyword before the definition. For example, the following produces
a static data member and initializes it:

class StaticTest {
static int i = 47;

}

Now even if you make two StaticTest objects, there will still be
only one piece of storage for StaticTest.i. Both objects will share
the same i. Consider:

StaticTest st1 = new StaticTest();

Chapter 2: Everything is an Object 125

StaticTest st2 = new StaticTest();

At this point, both st1.i and st2.i have the same value of 47 since
they refer to the same piece of memory.

There are two ways to refer to a static variable. As indicated above,
you can name it via an object, by saying, for example, st2.i. You can
also refer to it directly through its class name, something you
cannot do with a non-static member. (This is the preferred way to
refer to a static variable since it emphasizes that variable’s static
nature.)

StaticTest.i++;

The ++ operator increments the variable. At this point, both st1.i
and st2.i will have the value 48.

Similar logic applies to static methods. You can refer to a static
method either through an object as you can with any method, or
with the special additional syntax ClassName.method(). You
define a static method in a similar way:

class StaticFun {
static void incr() { StaticTest.i++; }

}

You can see that the StaticFun method incr() increments the
static data i. You can call incr() in the typical way, through an
object:

StaticFun sf = new StaticFun();
sf.incr();

Or, because incr() is a static method, you can call it directly
through its class:

StaticFun.incr();

While static, when applied to a data member, definitely changes
the way the data is created (one for each class vs. the non-static
one for each object), when applied to a method it’s not so dramatic.
An important use of static for methods is to allow you to call that
method without creating an object. This is essential, as we will see,

126 Thinking in Java www.BruceEckel.com

in defining the main() method that is the entry point for running
an application.

Like any method, a static method can create or use named objects
of its type, so a static method is often used as a “shepherd” for a
flock of instances of its own type.

Your first Java program
Finally, here’s the program.5 It starts by printing a string, and then
the date, using the Date class from the Java standard library. Note
that an additional style of comment is introduced here: the ‘//’,
which is a comment until the end of the line:

// HelloDate.java
import java.util.*;

public class HelloDate {
public static void main(String[] args) {

System.out.println("Hello, it's: ");
System.out.println(new Date());

}
}

At the beginning of each program file, you must place the import
statement to bring in any extra classes you’ll need for the code in
that file. Note that I say “extra.” That’s because there’s a certain
library of classes that are automatically brought into every Java file:

5 Some programming environments will flash programs up on the screen and close them
before you've had a chance to see the results. You can put in the following bit of code at the
end of main() to pause the output:

try {

System.in.read();

} catch(Exception e) {}

This will pause the output until you press “Enter” (or any other key). This code involves
concepts that will not be introduced until much later in the book, so you won’t understand
it until then, but it will do the trick.

Chapter 2: Everything is an Object 127

java.lang. Start up your Web browser and look at the
documentation from Sun. (If you haven’t downloaded it from
java.sun.com or otherwise installed the Java documentation, do so
now). If you look at the list of the packages, you’ll see all the
different class libraries that come with Java. Select java.lang. This
will bring up a list of all the classes that are part of that library.
Since java.lang is implicitly included in every Java code file, these
classes are automatically available. There’s no Date class listed in
java.lang, which means you must import another library to use
that. If you don’t know the library where a particular class is, or if
you want to see all of the classes, you can select “Tree” in the Java
documentation. Now you can find every single class that comes with
Java. Then you can use the browser’s “find” function to find Date.
When you do you’ll see it listed as java.util.Date, which lets you
know that it’s in the util library and that you must import
java.util.* in order to use Date.

If you go back to the beginning, select java.lang and then System,
you’ll see that the System class has several fields, and if you select
out you’ll discover that it’s a static PrintStream object. Since it’s
static you don’t need to create anything. The out object is always
there and you can just use it. What you can do with this out object
is determined by the type it is: a PrintStream. Conveniently,
PrintStream is shown in the description as a hyperlink, so if you
click on that you’ll see a list of all the methods you can call for
PrintStream. There are quite a few and these will be covered later
in the book. For now all we’re interested in is println(), which in
effect means “print what I’m giving you out to the console and end
with a new line.” Thus, in any Java program you write you can say
System.out.println(“things”) whenever you want to print
something to the console.

The name of the class is the same as the name of the file. When
you’re creating a stand-alone program such as this one, one of the
classes in the file must have the same name as the file. (The
compiler complains if you don’t do this.) That class must contain a
method called main() with the signature shown:

public static void main(String[] args) {

128 Thinking in Java www.BruceEckel.com

The public keyword means that the method is available to the
outside world (described in detail in Chapter 5). The argument to
main() is an array of String objects. The args won’t be used in
this program, but the Java compiler insists that they be there
because they hold the arguments invoked on the command line.

The line that prints the date is quite interesting:

System.out.println(new Date());

Consider the argument: a Date object is being created just to send
its value to println(). As soon as this statement is finished, that
Date is unnecessary, and the garbage collector can come along and
get it anytime. We don’t need to worry about cleaning it up.

Compiling and running
To compile and run this program, and all the other programs in the
book, you must first have a Java programming environment. There
are a number of third-party development environments, but in this
book we will assume that you are using the JDK from Sun, which is
free. If you are using another development system, you will need to
look in the documentation for that system to determine how to
compile and run programs.

Get on the Internet and go to http://java.sun.com. There you will
find information and links that will lead you through the process of
downloading and installing the JDK for your particular platform.

Once the JDK is installed and you’ve set up your computer’s path
information so that it will find javac and java, download and
unpack the source code for this book (you can find it on the CD
ROM that’s bound in with the book, or at www.BruceEckel.com).
This will create a subdirectory for each chapter in the book. Move to
subdirectory c02 and type:

javac HelloDate.java

This command should produce no response. If you get any kind of
an error message it means you haven’t installed the JDK properly
and you need to investigate those problems.

Chapter 2: Everything is an Object 129

On the other hand, if you just get your command prompt back, you
can type:

java HelloDate

and you’ll get the message and the date as output.

This is the process you can use to compile and run each of the
programs in this book. However, you will see that the source code
for the book also has a file called makefile in each chapter, and
this contains “make” commands for automatically building the files
for that chapter. See this book’s Web page at www.BruceEckel.com
for details on how to use the makefiles.

Comments and embedded
documentation

There are two types of comments in Java. The first is the traditional
C-style comment that was inherited by C++. These comments begin
with a /* and continue, possibly across many lines, until a */. Note
that many programmers will begin each line of a continued
comment with a *, so you’ll often see:

/* This is a comment
* that continues
* across lines
*/

Remember, however, that everything inside the /* and */ is ignored
so it’s no different to say:

/* This is a comment that
continues across lines */

The second form of comment comes from C++. It is the single-line
comment, which starts at a // and continues until the end of the
line. This type of comment is convenient and commonly used
because it’s easy. You don’t need to hunt on the keyboard to find /
and then * (you just press the same key twice), and you don’t need
to close the comment. So you will often see:

130 Thinking in Java www.BruceEckel.com

// this is a one-line comment

Comment documentation
One of the thoughtful parts of the Java language is that the
designers didn’t consider writing code to be the only important
activity – they also thought about documenting it. Possibly the
biggest problem with documenting code has been maintaining that
documentation. If the documentation and the code are separate, it
becomes a hassle to change the documentation every time you
change the code. The solution seems simple: link the code to the
documentation. The easiest way to do this is to put everything in the
same file. To complete the picture, however, you need a special
comment syntax to mark special documentation and a tool to
extract those comments and put them in a useful form. This is what
Java has done.

The tool to extract the comments is called javadoc. It uses some of
the technology from the Java compiler to look for special comment
tags you put in your programs. It not only extracts the information
marked by these tags, but it also pulls out the class name or method
name that adjoins the comment. This way you can get away with the
minimal amount of work to generate decent program
documentation.

The output of javadoc is an HTML file that you can view with your
Web browser. This tool allows you to create and maintain a single
source file and automatically generate useful documentation.
Because of javadoc we have a standard for creating documentation,
and it’s easy enough that we can expect or even demand
documentation with all Java libraries.

Syntax
All of the javadoc commands occur only within /** comments. The
comments end with */ as usual. There are two primary ways to use
javadoc: embed HTML, or use “doc tags.” Doc tags are commands
that start with a ‘@’ and are placed at the beginning of a comment
line. (A leading ‘*’, however, is ignored.)

Chapter 2: Everything is an Object 131

There are three “types” of comment documentation, which
correspond to the element the comment precedes: class, variable, or
method. That is, a class comment appears right before the
definition of a class; a variable comment appears right in front of
the definition of a variable and a method comment appears right in
front of the definition of a method. As a simple example:

/** A class comment */
public class docTest {
/** A variable comment */
public int i;
/** A method comment */
public void f() {}

}

Note that javadoc will process comment documentation for only
public and protected members. Comments for private and
“friendly” (see Chapter 5) members are ignored and you’ll see no
output. (However, you can use the -private flag to include private
members as well.) This makes sense, since only public and
protected members are available outside the file, which is the
client programmer’s perspective. However, all class comments are
included in the output.

The output for the above code is an HTML file that has the same
standard format as all the rest of the Java documentation, so users
will be comfortable with the format and can easily navigate your
classes. It’s worth entering the above code, sending it through
javadoc and viewing the resulting HTML file to see the results.

Embedded HTML
Javadoc passes HTML commands through to the generated HTML
document. This allows you full use of HTML; however, the primary
motive is to let you format code, such as:

/**
* <pre>
* System.out.println(new Date());
* </pre>
*/

132 Thinking in Java www.BruceEckel.com

You can also use HTML just as you would in any other Web
document to format the regular text in your descriptions:

/**
* You can even insert a list:
*
* Item one
* Item two
* Item three
*
*/

Note that within the documentation comment, asterisks at the
beginning of a line are thrown away by javadoc, along with leading
spaces. Javadoc reformats everything so that it conforms to the
standard documentation appearance. Don’t use headings such as
<h1> or <hr> as embedded HTML because javadoc inserts its own
headings and yours will interfere with them.

All types of comment documentation – class, variable, and method
– can support embedded HTML.

@see: referring to other classes
All three types of comment documentation (class, variable and
method) can contain @see tags, which allow you to refer to the
documentation in other classes. Javadoc will generate HTML with
the @see tags hyperlinked to the other documentation. The forms
are:

@see classname
@see fully-qualified-classname
@see fully-qualified-classname#method-name

Each one adds a hyperlinked “See Also” entry to the generated
documentation. Javadoc will not check the hyperlinks you give it to
make sure they are valid.

Chapter 2: Everything is an Object 133

Class documentation tags
Along with embedded HTML and @see references, class
documentation can include tags for version information and the
author’s name. Class documentation can also be used for interfaces
(described later in the book).

@version
This is of the form:

@version version-information

in which version-information is any significant information you
see fit to include. When the -version flag is placed on the javadoc
command line, the version information will be called out specially
in the generated HTML documentation.

@author
This is of the form:

@author author-information

in which author-information is, presumably, your name, but it
could also include your email address or any other appropriate
information. When the -author flag is placed on the javadoc
command line, the author information will be called out specially in
the generated HTML documentation.

You can have multiple author tags for a list of authors, but they
must be placed consecutively. All the author information will be
lumped together into a single paragraph in the generated HTML.

Variable documentation tags
Variable documentation can include only embedded HTML and
@see references.

134 Thinking in Java www.BruceEckel.com

Method documentation tags
As well as embedded documentation and @see references, methods
allow documentation tags for parameters, return values, and
exceptions.

@param
This is of the form:

@param parameter-name description

in which parameter-name is the identifier in the parameter list,
and description is text that can continue on subsequent lines. The
description is considered finished when a new documentation tag is
encountered. You can have any number of these, presumably one
for each parameter.

@return
This is of the form:

@return description

in which description gives you the meaning of the return value. It
can continue on subsequent lines.

@exception
Exceptions will be demonstrated in Chapter 10, but briefly they are
objects that can be “thrown” out of a method if that method fails.
Although only one exception object can emerge when you call a
method, a particular method might produce any number of
different types of exceptions, all of which need descriptions. So the
form for the exception tag is:

@exception fully-qualified-class-name description

in which fully-qualified-class-name gives an unambiguous
name of an exception class that’s defined somewhere, and
description (which can continue on subsequent lines) tells you
why this particular type of exception can emerge from the method
call.

Chapter 2: Everything is an Object 135

@deprecated
This is used to tag features that were superseded by an improved
feature. The deprecated tag is a suggestion that you no longer use
this particular feature, since sometime in the future it is likely to be
removed. A method that is marked @deprecated causes the
compiler to issue a warning if it is used.

Documentation example
 Here is the first Java program again, this time with documentation
comments added:

//: c02:HelloDate.java
import java.util.*;

/** The first Thinking in Java example program.
* Displays a string and today's date.
* @author Bruce Eckel
* @author http://www.BruceEckel.com
* @version 2.0
*/
public class HelloDate {
/** Sole entry point to class & application
* @param args array of string arguments
* @return No return value
* @exception exceptions No exceptions thrown
*/
public static void main(String[] args) {

System.out.println("Hello, it's: ");
System.out.println(new Date());

}
} ///:~

The first line of the file uses my own technique of putting a ‘:’ as a
special marker for the comment line containing the source file
name. That line contains the path information to the file (in this
case, c02 indicates Chapter 2) followed by the file name6. The last

6 A tool that I created using Python (see www.Python.org) uses this information to extract
the code files, put them in appropriate subdirectories, and create makefiles.

136 Thinking in Java www.BruceEckel.com

line also finishes with a comment, and this one indicates the end of
the source code listing, which allows it to be automatically extracted
from the text of the book and checked with a compiler.

Coding style
The unofficial standard in Java is to capitalize the first letter of a
class name. If the class name consists of several words, they are run
together (that is, you don’t use underscores to separate the names)
and the first letter of each embedded word is capitalized, such as:

class AllTheColorsOfTheRainbow { // ...

For almost everything else: methods, fields (member variables) and
object handle names, the accepted style is just as it is for classes
except that the first letter of the identifier is lower case. For
example:

class AllTheColorsOfTheRainbow {
int anIntegerRepresentingColors;
void changeTheHueOfTheColor(int newHue) {

// ...
}
// ...

}

Of course, you should remember that the user must also type all
these long names, and so be merciful.

The Java code you will see in the Sun libraries also follows the
placement of open and close curly-braces that you see used in this
book.

Summary
In this chapter you have seen enough of Java programming to
understand how to write a simple program, and you have gotten an
overview of the language and some of its basic ideas. However, the
examples so far have all been of the form “do this, then do that, then
do something else.” What if you want the program to make choices,

Chapter 2: Everything is an Object 137

such as “if the result of doing this is red, do that, if not, then do
something else”? The support in Java for this fundamental
programming activity will be covered in the next chapter.

Exercises
1. Following the HelloDate.java example in this chapter,

create a “Hello, World” program that simply prints out that
statement. You need only a single method in your class (the
“main” one that gets executed when the program starts).
Remember to make it static and to include the argument list,
even though you don’t use the argument list. Compile the
program with javac and run it using java. If you are using a
different development environment than the JDK, learn how
to compile and run programs in that environment.

2. Find the code fragments involving ATypeName and turn
them into a program that compiles and runs.

3. Turn the DataOnly code fragments into a program that
compiles and runs.

4. Modify Exercise 3 so that the values of the data in DataOnly
are assigned to and printed in main().

5. Write a program that includes and calls the storage()
method defined as a code fragment in this chapter.

6. Turn the StaticFun code fragments into a working program.

7. Write a program that prints three arguments taken from the
command line. To do this, you’ll need to index into the
command-line array of Strings.

8. Turn the AllTheColorsOfTheRainbow example into a
program that compiles and runs.

9. Find the code for the second version of HelloDate.java,
which is the simple comment documentation example.

138 Thinking in Java www.BruceEckel.com

Execute javadoc on the file and view the results with your
Web browser.

10. Turn docTest into a file that compiles and then run it
through javadoc. Verify the resulting documentation with
your Web browser.

11. Add an HTML list of items to the documentation in Exercise
10.

12. Take the program in Exercise 1 and add comment
documentation to it. Extract this comment documentation
into an HTML file using javadoc and view it with your Web
browser.

 139

3: Controlling
Program Flow

Like a sentient creature, a program must manipulate its
world and make choices during execution.

In Java you manipulate objects and data using operators, and you
make choices with execution control statements. Java was inherited
from C++, so most of these statements and operators will be
familiar to C and C++ programmers. Java has also added some
improvements and simplifications.

If you find yourself floundering a bit in this chapter, make sure you
go through the multimedia CD ROM bound into this book:
Thinking in C: Foundations for Java and C++. It contains audio
lectures, slides, exercises and solutions specifically designed to
bring you up to speed with the C syntax necessary to learn Java.

Using Java operators
An operator takes one or more arguments and produces a new
value. The arguments are in a different form than ordinary method
calls, but the effect is the same. You should be reasonably
comfortable with the general concept of operators from your
previous programming experience. Addition (+), subtraction and
unary minus (-), multiplication (*), division (/) and assignment (=)
all work much the same in any programming language.

All operators produce a value from their operands. In addition, an
operator can change the value of an operand. This is called a side
effect. The most common use for operators that modify their
operands is to generate the side effect, but you should keep in mind
that the value produced is available for your use just as in operators
without side effects.

140 Thinking in Java www.BruceEckel.com

Almost all operators work only with primitives. The exceptions are
‘=’, ‘==’ and ‘!=’, which work with all objects (and are a point of
confusion for objects). In addition, the String class supports ‘+’
and ‘+=’.

Precedence
Operator precedence defines how an expression evaluates when
several operators are present. Java has specific rules that determine
the order of evaluation. The easiest one to remember is that
multiplication and division happen before addition and subtraction.
Programmers often forget the other precedence rules, so you should
use parentheses to make the order of evaluation explicit. For
example:

A = X + Y - 2/2 + Z;

has a very different meaning from the same statement with a
particular grouping of parentheses:

A = X + (Y - 2)/(2 + Z);

Assignment
Assignment is performed with the operator =. It means “take the
value of the right-hand side (often called the rvalue) and copy it
into the left-hand side (often called the lvalue). An rvalue is any
constant, variable or expression that can produce a value, but an
lvalue must be a distinct, named variable. (That is, there must be a
physical space to store a value.) For instance, you can assign a
constant value to a variable (A = 4;), but you cannot assign
anything to constant value – it cannot be an lvalue. (You can’t say 4
= A;.)

Assignment of primitives is quite straightforward. Since the
primitive holds the actual value and not a handle to an object, when
you assign primitives you copy the contents from one place to
another. For example, if you say A = B for primitives, then the
contents of B is copied into A. If you then go on to modify A, B is

Chapter 3: Controlling Program Flow 141

naturally unaffected by this modification. This is what you’ve come
to expect as a programmer for most situations.

When you assign objects, however, things change. Whenever you
manipulate an object, what you’re manipulating is the handle, so
when you assign “from one object to another” you’re actually
copying a handle from one place to another. This means that if you
say C = D for objects, you end up with both C and D pointing to the
object that, originally, only D pointed to. The following example will
demonstrate this.

Here’s the example:

//: c03:Assignment.java
// Assignment with objects is a bit tricky.

class Number {
int i;

}

public class Assignment {
public static void main(String[] args) {

Number n1 = new Number();
Number n2 = new Number();
n1.i = 9;
n2.i = 47;
System.out.println("1: n1.i: " + n1.i +
", n2.i: " + n2.i);

n1 = n2;
System.out.println("2: n1.i: " + n1.i +
", n2.i: " + n2.i);

n1.i = 27;
System.out.println("3: n1.i: " + n1.i +
", n2.i: " + n2.i);

}
} ///:~

The Number class is simple, and two instances of it (n1 and n2)
are created within main(). The i value within each Number is
given a different value, and then n2 is assigned to n1, and n1 is
changed. In many programming languages you would expect n1

142 Thinking in Java www.BruceEckel.com

and n2 to be independent at all times, but because you’ve assigned
a handle here’s the output you’ll see:

1: n1.i: 9, n2.i: 47
2: n1.i: 47, n2.i: 47
3: n1.i: 27, n2.i: 27

Changing the n1 object appears to change the n2 object as well!
This is because both n1 and n2 contain the same handle, which is
pointing to the same object. (The original handle that was in n1 that
pointed to the object holding a value of 9 was overwritten during
the assignment and effectively lost; its object will be cleaned up by
the garbage collector.)

This phenomenon is often called aliasing and it’s a fundamental
way that Java works with objects. But what if you don’t want
aliasing to occur in this case? You could forego the assignment and
say:

n1.i = n2.i;

This retains the two separate objects instead of tossing one and
tying n1 and n2 to the same object, but you’ll soon realize that
manipulating the fields within objects is messy and goes against
good object-oriented design principles. This is a non-trivial topic, so
it is left for Appendix A, which is devoted to aliasing. In the
meantime, you should keep in mind that assignment for objects can
add surprises.

Aliasing during method calls
Aliasing will also occur when you pass an object into a method:

//: c03:PassObject.java
// Passing objects to methods may not be what
// you're used to.

class Letter {
char c;

}

public class PassObject {
static void f(Letter y) {

Chapter 3: Controlling Program Flow 143

y.c = 'z';
}
public static void main(String[] args) {

Letter x = new Letter();
x.c = 'a';
System.out.println("1: x.c: " + x.c);
f(x);
System.out.println("2: x.c: " + x.c);

}
} ///:~

In many programming languages, the method f() would appear to
be making a copy of its argument Letter y inside the scope of the
method. But once again a handle is being passed so the line

y.c = 'z';

is actually changing the object outside of f(). The output shows
this:

1: x.c: a
2: x.c: z

Aliasing and its solution is a complex issue and, although you must
wait until Appendix A for all the answers, you should be aware of it
at this point so you can watch for pitfalls.

Mathematical operators
The basic mathematical operators are the same as the ones available
in most programming languages: addition (+), subtraction (-),
division (/), multiplication (*) and modulus (%, which produces the
remainder from integer division). Integer division truncates, rather
than rounds, the result.

Java also uses a shorthand notation to perform an operation and an
assignment at the same time. This is denoted by an operator
followed by an equal sign, and is consistent with all the operators in
the language (whenever it makes sense). For example, to add 4 to
the variable x and assign the result to x, use: x += 4.

This example shows the use of the mathematical operators:

144 Thinking in Java www.BruceEckel.com

//: c03:MathOps.java
// Demonstrates the mathematical operators.
import java.util.*;

public class MathOps {
// Create a shorthand to save typing:
static void prt(String s) {

System.out.println(s);
}
// shorthand to print a string and an int:
static void pInt(String s, int i) {

prt(s + " = " + i);
}
// shorthand to print a string and a float:
static void pFlt(String s, float f) {

prt(s + " = " + f);
}
public static void main(String[] args) {

// Create a random number generator,
// seeds with current time by default:
Random rand = new Random();
int i, j, k;
// '%' limits maximum value to 99:
j = rand.nextInt() % 100;
k = rand.nextInt() % 100;
pInt("j",j); pInt("k",k);
i = j + k; pInt("j + k", i);
i = j - k; pInt("j - k", i);
i = k / j; pInt("k / j", i);
i = k * j; pInt("k * j", i);
i = k % j; pInt("k % j", i);
j %= k; pInt("j %= k", j);
// Floating-point number tests:
float u,v,w; // applies to doubles, too
v = rand.nextFloat();
w = rand.nextFloat();
pFlt("v", v); pFlt("w", w);
u = v + w; pFlt("v + w", u);
u = v - w; pFlt("v - w", u);
u = v * w; pFlt("v * w", u);
u = v / w; pFlt("v / w", u);
// the following also works for

Chapter 3: Controlling Program Flow 145

// char, byte, short, int, long,
// and double:
u += v; pFlt("u += v", u);
u -= v; pFlt("u -= v", u);
u *= v; pFlt("u *= v", u);
u /= v; pFlt("u /= v", u);

}
} ///:~

The first thing you will see are some shorthand methods for
printing: the prt() method prints a String, the pInt() prints a
String followed by an int and the pFlt() prints a String followed
by a float. Of course, they all ultimately end up using
System.out.println().

To generate numbers, the program first creates a Random object.
Because no arguments are passed during creation, Java uses the
current time as a seed for the random number generator. The
program generates a number of different types of random numbers
with the Random object simply by calling different methods:
nextInt(), nextLong(), nextFloat() or nextDouble().

The modulus operator, when used with the result of the random
number generator, limits the result to an upper bound of the
operand minus one (99 in this case).

Unary minus and plus operators
The unary minus (-) and unary plus (+) are the same operators as
binary minus and plus. The compiler figures out which use is
intended by the way you write the expression. For instance, the
statement

x = -a;

has an obvious meaning. The compiler is able to figure out:

x = a * -b;

but the reader might get confused, so it is clearer to say:

x = a * (-b);

146 Thinking in Java www.BruceEckel.com

The unary minus produces the negative of the value. Unary plus
provides symmetry with unary minus, although it doesn’t have any
effect.

Auto increment and decrement
Java, like C, is full of shortcuts. Shortcuts can make code much
easier to type, and either easier or harder to read.

Two of the nicer shortcuts are the increment and decrement
operators (often referred to as the auto-increment and auto-
decrement operators). The decrement operator is -- and means
“decrease by one unit.” The increment operator is ++ and means
“increase by one unit.” If a is an int, for example, the expression
++a is equivalent to (a = a + 1). Increment and decrement
operators produce the value of the variable as a result.

There are two versions of each type of operator, often called the
prefix and postfix versions. Pre-increment means the ++ operator
appears before the variable or expression, and post-increment
means the ++ operator appears after the variable or expression.
Similarly, pre-decrement means the -- operator appears before the
variable or expression, and post-decrement means the -- operator
appears after the variable or expression. For pre-increment and pre-
decrement, (i.e., ++a or --a), the operation is performed and the
value is produced. For post-increment and post-decrement (i.e.
a++ or a--), the value is produced, then the operation is performed.
As an example:

//: c03:AutoInc.java
// Demonstrates the ++ and -- operators.

public class AutoInc {
public static void main(String[] args) {

int i = 1;
prt("i : " + i);
prt("++i : " + ++i); // Pre-increment
prt("i++ : " + i++); // Post-increment
prt("i : " + i);
prt("--i : " + --i); // Pre-decrement
prt("i-- : " + i--); // Post-decrement

Chapter 3: Controlling Program Flow 147

prt("i : " + i);
}
static void prt(String s) {

System.out.println(s);
}

} ///:~

The output for this program is:

i : 1
++i : 2
i++ : 2
i : 3
--i : 2
i-- : 2
i : 1

You can see that for the prefix form you get the value after the
operation has been performed, but with the postfix form you get the
value before the operation is performed. These are the only
operators (other than those involving assignment) that have side
effects. (That is, they change the operand rather than using just its
value.)

The increment operator is one explanation for the name C++,
implying “one step beyond C.” In an early Java speech, Bill Joy (one
of the creators), said that “Java=C++--” (C plus plus minus minus),
suggesting that Java is C++ with the unnecessary hard parts
removed and therefore a much simpler language. As you progress in
this book you’ll see that many parts are simpler, and yet Java isn’t
that much easier than C++.

Relational operators
Relational operators generate a boolean result. They evaluate the
relationship between the values of the operands. A relational
expression produces true if the relationship is true, and false if the
relationship is untrue. The relational operators are less than (<),
greater than (>), less than or equal to (<=), greater than or equal to
(>=), equivalent (==) and not equivalent (!=). Equivalence and

148 Thinking in Java www.BruceEckel.com

nonequivalence works with all built-in data types, but the other
comparisons won’t work with type boolean.

Testing object equivalence
The relational operators == and != also work with all objects, but
their meaning often confuses the first-time Java programmer.
Here’s an example:

//: c03:Equivalence.java

public class Equivalence {
public static void main(String[] args) {

Integer n1 = new Integer(47);
Integer n2 = new Integer(47);
System.out.println(n1 == n2);
System.out.println(n1 != n2);

}
} ///:~

The expression System.out.println(n1 == n2) will print out the
result of the boolean comparison within it. Surely the output
should be true and then false, since both Integer objects are the
same. But while the contents of the objects are the same, the
handles are not the same and the operators == and != compare
object handles. So the output is actually false and then true.
Naturally, this surprises people at first.

What if you want to compare the actual contents of an object for
equivalence? You must use the special method equals() that exists
for all objects (not primitives, which work fine with == and !=).
Here’s how it’s used:

//: c03:EqualsMethod.java

public class EqualsMethod {
public static void main(String[] args) {

Integer n1 = new Integer(47);
Integer n2 = new Integer(47);
System.out.println(n1.equals(n2));

}
} ///:~

Chapter 3: Controlling Program Flow 149

The result will be true, as you would expect. Ah, but it’s not as
simple as that. If you create your own class, like this:

//: c03:EqualsMethod2.java

class Value {
int i;

}

public class EqualsMethod2 {
public static void main(String[] args) {

Value v1 = new Value();
Value v2 = new Value();
v1.i = v2.i = 100;
System.out.println(v1.equals(v2));

}
} ///:~

you’re back to square one: the result is false. This is because the
default behavior of equals() is to compare handles. So unless you
override equals() in your new class you won’t get the desired
behavior. Unfortunately, you won’t learn about overriding until
Chapter 7, but being aware of the way equals() behaves might
save you some grief in the meantime.

Most of the Java library classes implement equals() so that it
compares the contents of objects instead of their handles.

Logical operators
The logical operators AND (&&), OR (||) and NOT (!) produce a
boolean value of true or false based on the logical relationship of
its arguments. This example uses the relational and logical
operators:

//: c03:Bool.java
// Relational and logical operators.
import java.util.*;

public class Bool {
public static void main(String[] args) {

Random rand = new Random();

150 Thinking in Java www.BruceEckel.com

int i = rand.nextInt() % 100;
int j = rand.nextInt() % 100;
prt("i = " + i);
prt("j = " + j);
prt("i > j is " + (i > j));
prt("i < j is " + (i < j));
prt("i >= j is " + (i >= j));
prt("i <= j is " + (i <= j));
prt("i == j is " + (i == j));
prt("i != j is " + (i != j));

// Treating an int as a boolean is
// not legal Java

//! prt("i && j is " + (i && j));
//! prt("i || j is " + (i || j));
//! prt("!i is " + !i);

prt("(i < 10) && (j < 10) is "
+ ((i < 10) && (j < 10)));

prt("(i < 10) || (j < 10) is "
+ ((i < 10) || (j < 10)));

}
static void prt(String s) {

System.out.println(s);
}

} ///:~

You can apply AND, OR, or NOT to boolean values only. You can’t
use a non-boolean as if it were a boolean in a logical expression
as you can in C and C++. You can see the failed attempts at doing
this commented out with a //! comment marker. The subsequent
expressions, however, produce boolean values using relational
comparisons, then use logical operations on the results.

One output listing looked like this:

i = 85
j = 4
i > j is true
i < j is false
i >= j is true
i <= j is false

Chapter 3: Controlling Program Flow 151

i == j is false
i != j is true
(i < 10) && (j < 10) is false
(i < 10) || (j < 10) is true

Note that a boolean value is automatically converted to an
appropriate text form if it’s used where a String is expected.

You can replace the definition for int in the above program with
any other primitive data type except boolean. Be aware, however,
that the comparison of floating-point numbers is very strict. A
number that is the tiniest fraction different from another number is
still “not equal.” A number that is the tiniest bit above zero is still
nonzero.

Short-circuiting
When dealing with logical operators you run into a phenomenon
called “short circuiting.” This means that the expression will be
evaluated only until the truth or falsehood of the entire expression
can be unambiguously determined. As a result, all the parts of a
logical expression might not be evaluated. Here’s an example that
demonstrates short-circuiting:

//: c03:ShortCircuit.java
// Demonstrates short-circuiting behavior.
// with logical operators.

public class ShortCircuit {
static boolean test1(int val) {

System.out.println("test1(" + val + ")");
System.out.println("result: " + (val < 1));
return val < 1;

}
static boolean test2(int val) {

System.out.println("test2(" + val + ")");
System.out.println("result: " + (val < 2));
return val < 2;

}
static boolean test3(int val) {

System.out.println("test3(" + val + ")");
System.out.println("result: " + (val < 3));

152 Thinking in Java www.BruceEckel.com

return val < 3;
}
public static void main(String[] args) {

if(test1(0) && test2(2) && test3(2))
System.out.println("expression is true");

else
System.out.println("expression is false");

}
} ///:~

Each test performs a comparison against the argument and returns
true or false. It also prints information to show you that it’s being
called. The tests are used in the expression:

if(test1(0) && test2(2) && test3(2))

You might naturally think that all three tests would be executed, but
the output shows otherwise:

test1(0)
result: true
test2(2)
result: false
expression is false

The first test produced a true result, so the expression evaluation
continues. However, the second test produced a false result. Since
this means that the whole expression must be false, why continue
evaluating the rest of the expression? It could be expensive. The
reason for short-circuiting, in fact, is precisely that; you can get a
potential performance increase if all the parts of a logical expression
do not need to be evaluated.

Bitwise operators
The bitwise operators allow you to manipulate individual bits in an
integral primitive data type. Bitwise operators perform boolean
algebra on the corresponding bits in the two arguments to produce
the result.

The bitwise operators come from C’s low-level orientation; you were
often manipulating hardware directly and had to set the bits in

Chapter 3: Controlling Program Flow 153

hardware registers. Java was originally designed to be embedded in
TV set-top boxes, so this low-level orientation still made sense.
However, you probably won’t use the bitwise operators much.

The bitwise AND operator (&) produces a one in the output bit if
both input bits are one; otherwise it produces a zero. The bitwise
OR operator (|) produces a one in the output bit if either input bit is
a one and produces a zero only if both input bits are zero. The
bitwise EXCLUSIVE OR, or XOR (^), produces a one in the output
bit if one or the other input bit is a one, but not both. The bitwise
NOT (~, also called the ones complement operator) is a unary
operator; it takes only one argument. (All other bitwise operators
are binary operators.) Bitwise NOT produces the opposite of the
input bit – a one if the input bit is zero, a zero if the input bit is one.

The bitwise operators and logical operators use the same characters,
so it is helpful to have a mnemonic device to help you remember the
meanings: since bits are “small,” there is only one character in the
bitwise operators.

Bitwise operators can be combined with the = sign to unite the
operation and assignment: &=, |= and ^= are all legitimate. (Since
~ is a unary operator it cannot be combined with the = sign.)

The boolean type is treated as a one-bit value so it is somewhat
different. You can perform a bitwise AND, OR and XOR, but you
can’t perform a bitwise NOT (presumably to prevent confusion with
the logical NOT). For booleans the bitwise operators have the
same effect as the logical operators except that they do not short
circuit. Also, bitwise operations on booleans include an XOR
logical operator that is not included under the list of “logical”
operators. You’re prevented from using booleans in shift
expressions, which is described next.

Shift operators
The shift operators also manipulate bits. They can be used solely
with primitive, integral types. The left-shift operator (<<) produces
the operand to the left of the operator shifted to the left by the
number of bits specified after the operator (inserting zeroes at the

154 Thinking in Java www.BruceEckel.com

lower-order bits). The signed right-shift operator (>>) produces the
operand to the left of the operator shifted to the right by the
number of bits specified after the operator. The signed right shift
>> uses sign extension: if the value is positive, zeroes are inserted
at the higher-order bits; if the value is negative, ones are inserted at
the higher-order bits. Java has also added the unsigned right shift
>>>, which uses zero extension: regardless of the sign, zeroes are
inserted at the higher-order bits. This operator does not exist in C
or C++.

If you shift a char, byte, or short, it will be promoted to int
before the shift takes place, and the result will be an int. Only the
five low-order bits of the right-hand side will be used. This prevents
you from shifting more than the number of bits in an int. If you’re
operating on a long, you’ll get a long result. Only the six low-order
bits of the right-hand side will be used so you can’t shift more than
the number of bits in a long. There is a problem, however, with the
unsigned right shift. If you use it with byte or short you don’t get
the correct results. Instead, these are promoted to int and right
shifted, but the zero extension does not occur, so you get -1 in those
cases. The following example demonstrates this:

//: c03:URShift.java
// Test of unsigned right shift.

public class URShift {
public static void main(String[] args) {

int i = -1;
i >>>= 10;
System.out.println(i);
long l = -1;
l >>>= 10;
System.out.println(l);
short s = -1;
s >>>= 10;
System.out.println(s);
byte b = -1;
b >>>= 10;
System.out.println(b);

}
} ///:~

Chapter 3: Controlling Program Flow 155

Shifts can be combined with the equal sign (<<= or >>= or >>>=).
The lvalue is replaced by the lvalue shifted by the rvalue.

Here’s an example that demonstrates the use of all the operators
involving bits:

//: c03:BitManipulation.java
// Using the bitwise operators.
import java.util.*;

public class BitManipulation {
public static void main(String[] args) {

Random rand = new Random();
int i = rand.nextInt();
int j = rand.nextInt();
pBinInt("-1", -1);
pBinInt("+1", +1);
int maxpos = 2147483647;
pBinInt("maxpos", maxpos);
int maxneg = -2147483648;
pBinInt("maxneg", maxneg);
pBinInt("i", i);
pBinInt("~i", ~i);
pBinInt("-i", -i);
pBinInt("j", j);
pBinInt("i & j", i & j);
pBinInt("i | j", i | j);
pBinInt("i ^ j", i ^ j);
pBinInt("i << 5", i << 5);
pBinInt("i >> 5", i >> 5);
pBinInt("(~i) >> 5", (~i) >> 5);
pBinInt("i >>> 5", i >>> 5);
pBinInt("(~i) >>> 5", (~i) >>> 5);

long l = rand.nextLong();
long m = rand.nextLong();
pBinLong("-1L", -1L);
pBinLong("+1L", +1L);
long ll = 9223372036854775807L;
pBinLong("maxpos", ll);
long lln = -9223372036854775808L;

156 Thinking in Java www.BruceEckel.com

pBinLong("maxneg", lln);
pBinLong("l", l);
pBinLong("~l", ~l);
pBinLong("-l", -l);
pBinLong("m", m);
pBinLong("l & m", l & m);
pBinLong("l | m", l | m);
pBinLong("l ^ m", l ^ m);
pBinLong("l << 5", l << 5);
pBinLong("l >> 5", l >> 5);
pBinLong("(~l) >> 5", (~l) >> 5);
pBinLong("l >>> 5", l >>> 5);
pBinLong("(~l) >>> 5", (~l) >>> 5);

}
static void pBinInt(String s, int i) {

System.out.println(
s + ", int: " + i + ", binary: ");

System.out.print(" ");
for(int j = 31; j >=0; j--)
if(((1 << j) & i) != 0)
System.out.print("1");

else
System.out.print("0");

System.out.println();
}
static void pBinLong(String s, long l) {

System.out.println(
s + ", long: " + l + ", binary: ");

System.out.print(" ");
for(int i = 63; i >=0; i--)
if(((1L << i) & l) != 0)
System.out.print("1");

else
System.out.print("0");

System.out.println();
}

} ///:~

The two methods at the end, pBinInt() and pBinLong() take an
int or a long, respectively, and print it out in binary format along
with a descriptive string. You can ignore the implementation of
these for now.

Chapter 3: Controlling Program Flow 157

You’ll note the use of System.out.print() instead of
System.out.println(). The print() method does not emit a new
line, so it allows you to output a line in pieces.

As well as demonstrating the effect of all the bitwise operators for
int and long, this example also shows the minimum, maximum, +1
and -1 values for int and long so you can see what they look like.
Note that the high bit represents the sign: 0 means positive and 1
means negative. The output for the int portion looks like this:

-1, int: -1, binary:
11111111111111111111111111111111

+1, int: 1, binary:
00000000000000000000000000000001

maxpos, int: 2147483647, binary:
01111111111111111111111111111111

maxneg, int: -2147483648, binary:
10000000000000000000000000000000

i, int: 59081716, binary:
00000011100001011000001111110100

~i, int: -59081717, binary:
11111100011110100111110000001011

-i, int: -59081716, binary:
11111100011110100111110000001100

j, int: 198850956, binary:
00001011110110100011100110001100

i & j, int: 58720644, binary:
00000011100000000000000110000100

i | j, int: 199212028, binary:
00001011110111111011101111111100

i ^ j, int: 140491384, binary:
00001000010111111011101001111000

i << 5, int: 1890614912, binary:
01110000101100000111111010000000

i >> 5, int: 1846303, binary:
00000000000111000010110000011111

(~i) >> 5, int: -1846304, binary:
11111111111000111101001111100000

i >>> 5, int: 1846303, binary:
00000000000111000010110000011111

(~i) >>> 5, int: 132371424, binary:
00000111111000111101001111100000

158 Thinking in Java www.BruceEckel.com

The binary representation of the numbers is referred to as signed
two’s complement.

Ternary if-else operator
This operator is unusual because it has three operands. It is truly an
operator because it produces a value, unlike the ordinary if-else
statement that you’ll see in the next section of this chapter. The
expression is of the form:

boolean-exp ? value0 : value1

If boolean-exp evaluates to true, value0 is evaluated and its result
becomes the value produced by the operator. If boolean-exp is
false, value1 is evaluated and its result becomes the value produced
by the operator.

Of course, you could use an ordinary if-else statement (described
later), but the ternary operator is much terser. Although C (where
this operator originated) prides itself on being a terse language, and
the ternary operator might have been introduced partly for
efficiency, you should be somewhat wary of using it on an everyday
basis – it’s easy to produce unreadable code.

The conditional operator can be used for its side effects or for the
value it produces, but in general you want the value since that’s
what makes the operator distinct from the if-else. Here’s an
example:

static int ternary(int i) {
return i < 10 ? i * 100 : i * 10;

}

You can see that this code is more compact than what you’d need to
write without the ternary operator:

static int alternative(int i) {
if (i < 10)

return i * 100;
else

return i * 10;
}

Chapter 3: Controlling Program Flow 159

The second form is easier to understand, and doesn’t require a lot
more typing. So be sure to ponder your reasons when choosing the
ternary operator.

The comma operator
The comma is used in C and C++ not only as a separator in function
argument lists, but also as an operator for sequential evaluation.
The sole place that the comma operator is used in Java is in for
loops, which will be described later in this chapter.

String operator +
There’s one special usage of an operator in Java: the + operator can
be used to concatenate strings, as you’ve already seen. It seems a
natural use of the + even though it doesn’t fit with the traditional
way that + is used. This capability seemed like a good idea in C++,
so operator overloading was added to C++ to allow the C++
programmer to add meanings to almost any operator.
Unfortunately, operator overloading combined with some of the
other restrictions in C++ turns out to be a fairly complicated feature
for programmers to design into their classes. Although operator
overloading would have been much simpler to implement in Java
than it was in C++, this feature was still considered too complex, so
Java programmers cannot implement their own overloaded
operators as C++ programmers can.

The use of the String + has some interesting behavior. If an
expression begins with a String, then all operands that follow must
be Strings (remember that the compiler will turn a quoted
sequence of characters into a String):

int x = 0, y = 1, z = 2;
String sString = "x, y, z ";
System.out.println(sString + x + y + z);

Here, the Java compiler will convert x, y, and z into their String
representations instead of adding them together first. And if you
say:

160 Thinking in Java www.BruceEckel.com

System.out.println(x + sString);

Java will turn x into a String.

Common pitfalls when using
operators
One of the pitfalls when using operators is trying to get away
without parentheses when you are even the least bit uncertain about
how an expression will evaluate. This is still true in Java.

An extremely common error in C and C++ looks like this:

while(x = y) {
//

}

The programmer was trying to test for equivalence (==) rather than
do an assignment. In C and C++ the result of this assignment will
always be true if y is nonzero, and you’ll probably get an infinite
loop. In Java, the result of this expression is not a boolean, and
the compiler expects a boolean and won’t convert from an int, so
it will conveniently give you a compile-time error and catch the
problem before you ever try to run the program. So the pitfall never
happens in Java. (The only time you won’t get a compile-time error
is when x and y are boolean, in which case x = y is a legal
expression, and in the above case, probably an error.)

A similar problem in C and C++ is using bitwise AND and OR
instead of the logical versions. Bitwise AND and OR use one of the
characters (& or |) while logical AND and OR use two (&& and ||).
Just as with = and ==, it’s easy to type just one character instead of
two. In Java, the compiler again prevents this because it won’t let
you cavalierly use one type where it doesn’t belong.

Casting operators
The word cast is used in the sense of “casting into a mold.” Java will
automatically change one type of data into another when
appropriate. For instance, if you assign an integral value to a

Chapter 3: Controlling Program Flow 161

floating-point variable, the compiler will automatically convert the
int to a float. Casting allows you to make this type conversion
explicit, or to force it when it wouldn’t normally happen.

To perform a cast, put the desired data type (including all
modifiers) inside parentheses to the left of any value. Here’s an
example:

void casts() {
int i = 200;
long l = (long)i;
long l2 = (long)200;

}

As you can see, it’s possible to perform a cast on a numeric value as
well as on a variable. In both casts shown here, however, the cast is
superfluous, since the compiler will automatically promote an int
value to a long when necessary. However, you allowed use
superfluous casts in to make a point or to make your code more
clear. In other situations, a cast may be essential just to get the code
to compile.

In C and C++, casting can cause some headaches. In Java, casting is
safe, with the exception that when you perform a so-called
narrowing conversion (that is, when you go from a data type that
can hold more information to one that doesn’t hold as much) you
run the risk of losing information. Here the compiler forces you to
do a cast, in effect saying “this can be a dangerous thing to do – if
you want me to do it anyway you must make the cast explicit.” With
a widening conversion an explicit cast is not needed because the
new type will more than hold the information from the old type so
that no information is ever lost.

Java allows you to cast any primitive type to any other primitive
type, except for boolean, which doesn’t allow any casting at all.
Class types do not allow casting. To convert one to the other there
must be special methods. (String is a special case, and you’ll find
out later in the book that objects can be cast within a family of
types; an Oak can be cast to a Tree and vice-versa, but not to a
foreign type such as a Rock.)

162 Thinking in Java www.BruceEckel.com

Literals
Ordinarily when you insert a literal value into a program the
compiler knows exactly what type to make it. Sometimes, however,
the type is ambiguous. When this happens you must guide the
compiler by adding some extra information in the form of
characters associated with the literal value. The following code
shows these characters:

//: c03:Literals.java

class Literals {
char c = 0xffff; // max char hex value
byte b = 0x7f; // max byte hex value
short s = 0x7fff; // max short hex value
int i1 = 0x2f; // Hexadecimal (lowercase)
int i2 = 0X2F; // Hexadecimal (uppercase)
int i3 = 0177; // Octal (leading zero)
// Hex and Oct also work with long.
long n1 = 200L; // long suffix
long n2 = 200l; // long suffix
long n3 = 200;
//! long l6(200); // not allowed
float f1 = 1;
float f2 = 1F; // float suffix
float f3 = 1f; // float suffix
float f4 = 1e-45f; // 10 to the power
float f5 = 1e+9f; // float suffix
double d1 = 1d; // double suffix
double d2 = 1D; // double suffix
double d3 = 47e47d; // 10 to the power

} ///:~

Hexadecimal (base 16), which works with all the integral data types,
is denoted by a leading 0x or 0X followed by 0–9 and a–f either in
upper or lower case. If you try to initialize a variable with a value
bigger than it can hold (regardless of the numerical form of the
value), the compiler will give you an error message. Notice in the
above code the maximum possible hexadecimal values for char,
byte, and short. If you exceed these, the compiler will
automatically make the value an int and tell you that you need a

Chapter 3: Controlling Program Flow 163

narrowing cast for the assignment. You’ll know you’ve stepped over
the line.

Octal (base 8) is denoted by a leading zero in the number and digits
from 0-7. There is no literal representation for binary numbers in C,
C++ or Java.

A trailing character after a literal value establishes its type. Upper or
lowercase L means long, upper or lowercase F means float and
upper or lowercase D means double.

Exponents use a notation that I’ve always found rather dismaying:
1.39 e-47f. In science and engineering, ‘e’ refers to the base of
natural logarithms, approximately 2.718. (A more precise double
value is available in Java as Math.E.) This is used in
exponentiation expressions such as 1.39 x e-47, which means 1.39 x
2.718-47. However, when FORTRAN was invented they decided that
e would naturally mean “ten to the power,” which is an odd decision
because FORTRAN was designed for science and engineering and
one would think its designers would be sensitive about introducing
such an ambiguity.1 At any rate, this custom was followed in C, C++
and now Java. So if you’re used to thinking in terms of e as the base
of natural logarithms, you must do a mental translation when you
see an expression such as 1.39 e-47f in Java; it means 1.39 x 10-47.

Note that you don’t need to use the trailing character when the
compiler can figure out the appropriate type. With

1 John Kirkham writes, “I started computing in 1962 using FORTRAN II on an IBM 1620.
At that time, and throughout the 1960s and into the 1970s, FORTRAN was an all
uppercase language. This probably started because many of the early input devices were
old teletype units that used 5 bit Baudot code, which had no lowercase capability. The ‘E’ in
the exponential notation was also always upper case and was never confused with the
natural logarithm base ‘e’, which is always lower case. The ‘E’ simply stood for exponential,
which was for the base of the number system used – usually 10. At the time octal was also
widely used by programmers. Although I never saw it used, if I had seen an octal number
in exponential notation I would have considered it to be base 8. The first time I remember
seeing an exponential using a lower case ‘e’ was in the late 1970s and I also found it
confusing. The problem arose as lowercase crept into FORTRAN, not at its beginning. We
actually had functions to use if you really wanted to use the natural logarithm base, but
they were all uppercase.”

164 Thinking in Java www.BruceEckel.com

long n3 = 200;

there’s no ambiguity, so an L after the 200 would be superfluous.
However, with

float f4 = 1e-47f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so
without the trailing f it will give you an error telling you that you
must use a cast to convert double to float.

Promotion
You’ll discover that if you perform any mathematical or bitwise
operations on primitive data types that are smaller than an int (that
is, char, byte, or short), those values will be promoted to int
before performing the operations, and the resulting value will be of
type int. So if you want to assign back into the smaller type, you
must use a cast. (And, since you’re assigning back into a smaller
type, you might be losing information.) In general, the largest data
type in an expression is the one that determines the size of the
result of that expression; if you multiply a float and a double, the
result will be double; if you add an int and a long, the result will
be long.

Java has no “sizeof”
In C and C++, the sizeof() operator satisfies a specific need: it tells
you the number of bytes allocated for data items. The most
compelling need for sizeof() in C and C++ is portability. Different
data types might be different sizes on different machines, so the
programmer must find out how big those types are when
performing operations that are sensitive to size. For example, one
computer might store integers in 32 bits, whereas another might
store integers as 16 bits. Programs could store larger values in
integers on the first machine. As you might imagine, portability is a
huge headache for C and C++ programmers.

Java does not need a sizeof() operator for this purpose because all
the data types are the same size on all machines. You do not need to

Chapter 3: Controlling Program Flow 165

think about portability on this level – it is designed into the
language.

Precedence revisited
Upon hearing me complain about the complexity of remembering
operator precedence during one of my seminars, a student
suggested a mnemonic that is simultaneously a commentary: “Ulcer
Addicts Really Like C A lot.”

Mnemonic Operator type Operators
Ulcer Unary + - ++ – [[rest…]]
Addicts Arithmetic (and shift) * / % + - << >>
Really Relational > < >= <= == !=
Like Logical (and bitwise) && || & | ^
C Conditional (ternary) A > B ? X : Y
A Lot Assignment = (and compound

assignment like *=)

Of course, with the shift and bitwise operators distributed around
the table it is not a perfect mnemonic, but for non-bit operations it
works.

A compendium of operators
The following example shows which primitive data types can be
used with particular operators. Basically, it is the same example
repeated over and over, but using different primitive data types. The
file will compile without error because the lines that would cause
errors are commented out with a //!.

//: c03:AllOps.java
// Tests all the operators on all the
// primitive data types to show which
// ones are accepted by the Java compiler.

class AllOps {
// To accept the results of a boolean test:
void f(boolean b) {}
void boolTest(boolean x, boolean y) {

166 Thinking in Java www.BruceEckel.com

// Arithmetic operators:
//! x = x * y;
//! x = x / y;
//! x = x % y;
//! x = x + y;
//! x = x - y;
//! x++;
//! x--;
//! x = +y;
//! x = -y;
// Relational and logical:
//! f(x > y);
//! f(x >= y);
//! f(x < y);
//! f(x <= y);
f(x == y);
f(x != y);
f(!y);
x = x && y;
x = x || y;
// Bitwise operators:
//! x = ~y;
x = x & y;
x = x | y;
x = x ^ y;
//! x = x << 1;
//! x = x >> 1;
//! x = x >>> 1;
// Compound assignment:
//! x += y;
//! x -= y;
//! x *= y;
//! x /= y;
//! x %= y;
//! x <<= 1;
//! x >>= 1;
//! x >>>= 1;
x &= y;
x ^= y;
x |= y;
// Casting:
//! char c = (char)x;

Chapter 3: Controlling Program Flow 167

//! byte B = (byte)x;
//! short s = (short)x;
//! int i = (int)x;
//! long l = (long)x;
//! float f = (float)x;
//! double d = (double)x;

}
void charTest(char x, char y) {

// Arithmetic operators:
x = (char)(x * y);
x = (char)(x / y);
x = (char)(x % y);
x = (char)(x + y);
x = (char)(x - y);
x++;
x--;
x = (char)+y;
x = (char)-y;
// Relational and logical:
f(x > y);
f(x >= y);
f(x < y);
f(x <= y);
f(x == y);
f(x != y);
//! f(!x);
//! f(x && y);
//! f(x || y);
// Bitwise operators:
x= (char)~y;
x = (char)(x & y);
x = (char)(x | y);
x = (char)(x ^ y);
x = (char)(x << 1);
x = (char)(x >> 1);
x = (char)(x >>> 1);
// Compound assignment:
x += y;
x -= y;
x *= y;
x /= y;
x %= y;

168 Thinking in Java www.BruceEckel.com

x <<= 1;
x >>= 1;
x >>>= 1;
x &= y;
x ^= y;
x |= y;
// Casting:
//! boolean b = (boolean)x;
byte B = (byte)x;
short s = (short)x;
int i = (int)x;
long l = (long)x;
float f = (float)x;
double d = (double)x;

}
void byteTest(byte x, byte y) {

// Arithmetic operators:
x = (byte)(x* y);
x = (byte)(x / y);
x = (byte)(x % y);
x = (byte)(x + y);
x = (byte)(x - y);
x++;
x--;
x = (byte)+ y;
x = (byte)- y;
// Relational and logical:
f(x > y);
f(x >= y);
f(x < y);
f(x <= y);
f(x == y);
f(x != y);
//! f(!x);
//! f(x && y);
//! f(x || y);
// Bitwise operators:
x = (byte)~y;
x = (byte)(x & y);
x = (byte)(x | y);
x = (byte)(x ^ y);
x = (byte)(x << 1);

Chapter 3: Controlling Program Flow 169

x = (byte)(x >> 1);
x = (byte)(x >>> 1);
// Compound assignment:
x += y;
x -= y;
x *= y;
x /= y;
x %= y;
x <<= 1;
x >>= 1;
x >>>= 1;
x &= y;
x ^= y;
x |= y;
// Casting:
//! boolean b = (boolean)x;
char c = (char)x;
short s = (short)x;
int i = (int)x;
long l = (long)x;
float f = (float)x;
double d = (double)x;

}
void shortTest(short x, short y) {

// Arithmetic operators:
x = (short)(x * y);
x = (short)(x / y);
x = (short)(x % y);
x = (short)(x + y);
x = (short)(x - y);
x++;
x--;
x = (short)+y;
x = (short)-y;
// Relational and logical:
f(x > y);
f(x >= y);
f(x < y);
f(x <= y);
f(x == y);
f(x != y);
//! f(!x);

170 Thinking in Java www.BruceEckel.com

//! f(x && y);
//! f(x || y);
// Bitwise operators:
x = (short)~y;
x = (short)(x & y);
x = (short)(x | y);
x = (short)(x ^ y);
x = (short)(x << 1);
x = (short)(x >> 1);
x = (short)(x >>> 1);
// Compound assignment:
x += y;
x -= y;
x *= y;
x /= y;
x %= y;
x <<= 1;
x >>= 1;
x >>>= 1;
x &= y;
x ^= y;
x |= y;
// Casting:
//! boolean b = (boolean)x;
char c = (char)x;
byte B = (byte)x;
int i = (int)x;
long l = (long)x;
float f = (float)x;
double d = (double)x;

}
void intTest(int x, int y) {

// Arithmetic operators:
x = x * y;
x = x / y;
x = x % y;
x = x + y;
x = x - y;
x++;
x--;
x = +y;
x = -y;

Chapter 3: Controlling Program Flow 171

// Relational and logical:
f(x > y);
f(x >= y);
f(x < y);
f(x <= y);
f(x == y);
f(x != y);
//! f(!x);
//! f(x && y);
//! f(x || y);
// Bitwise operators:
x = ~y;
x = x & y;
x = x | y;
x = x ^ y;
x = x << 1;
x = x >> 1;
x = x >>> 1;
// Compound assignment:
x += y;
x -= y;
x *= y;
x /= y;
x %= y;
x <<= 1;
x >>= 1;
x >>>= 1;
x &= y;
x ^= y;
x |= y;
// Casting:
//! boolean b = (boolean)x;
char c = (char)x;
byte B = (byte)x;
short s = (short)x;
long l = (long)x;
float f = (float)x;
double d = (double)x;

}
void longTest(long x, long y) {

// Arithmetic operators:
x = x * y;

172 Thinking in Java www.BruceEckel.com

x = x / y;
x = x % y;
x = x + y;
x = x - y;
x++;
x--;
x = +y;
x = -y;
// Relational and logical:
f(x > y);
f(x >= y);
f(x < y);
f(x <= y);
f(x == y);
f(x != y);
//! f(!x);
//! f(x && y);
//! f(x || y);
// Bitwise operators:
x = ~y;
x = x & y;
x = x | y;
x = x ^ y;
x = x << 1;
x = x >> 1;
x = x >>> 1;
// Compound assignment:
x += y;
x -= y;
x *= y;
x /= y;
x %= y;
x <<= 1;
x >>= 1;
x >>>= 1;
x &= y;
x ^= y;
x |= y;
// Casting:
//! boolean b = (boolean)x;
char c = (char)x;
byte B = (byte)x;

Chapter 3: Controlling Program Flow 173

short s = (short)x;
int i = (int)x;
float f = (float)x;
double d = (double)x;

}
void floatTest(float x, float y) {

// Arithmetic operators:
x = x * y;
x = x / y;
x = x % y;
x = x + y;
x = x - y;
x++;
x--;
x = +y;
x = -y;
// Relational and logical:
f(x > y);
f(x >= y);
f(x < y);
f(x <= y);
f(x == y);
f(x != y);
//! f(!x);
//! f(x && y);
//! f(x || y);
// Bitwise operators:
//! x = ~y;
//! x = x & y;
//! x = x | y;
//! x = x ^ y;
//! x = x << 1;
//! x = x >> 1;
//! x = x >>> 1;
// Compound assignment:
x += y;
x -= y;
x *= y;
x /= y;
x %= y;
//! x <<= 1;
//! x >>= 1;

174 Thinking in Java www.BruceEckel.com

//! x >>>= 1;
//! x &= y;
//! x ^= y;
//! x |= y;
// Casting:
//! boolean b = (boolean)x;
char c = (char)x;
byte B = (byte)x;
short s = (short)x;
int i = (int)x;
long l = (long)x;
double d = (double)x;

}
void doubleTest(double x, double y) {

// Arithmetic operators:
x = x * y;
x = x / y;
x = x % y;
x = x + y;
x = x - y;
x++;
x--;
x = +y;
x = -y;
// Relational and logical:
f(x > y);
f(x >= y);
f(x < y);
f(x <= y);
f(x == y);
f(x != y);
//! f(!x);
//! f(x && y);
//! f(x || y);
// Bitwise operators:
//! x = ~y;
//! x = x & y;
//! x = x | y;
//! x = x ^ y;
//! x = x << 1;
//! x = x >> 1;
//! x = x >>> 1;

Chapter 3: Controlling Program Flow 175

// Compound assignment:
x += y;
x -= y;
x *= y;
x /= y;
x %= y;
//! x <<= 1;
//! x >>= 1;
//! x >>>= 1;
//! x &= y;
//! x ^= y;
//! x |= y;
// Casting:
//! boolean b = (boolean)x;
char c = (char)x;
byte B = (byte)x;
short s = (short)x;
int i = (int)x;
long l = (long)x;
float f = (float)x;

}
} ///:~

Note that boolean is quite limited. You can assign to it the values
true and false, and you can test it for truth or falsehood, but you
cannot add booleans or perform any other type of operation on
them.

In char, byte, and short you can see the effect of promotion with
the arithmetic operators. Each arithmetic operation on any of those
types results in an int result, which must be explicitly cast back to
the original type (a narrowing conversion that might lose
information) to assign back to that type. With int values, however,
you do not need to cast, because everything is already an int. Don’t
be lulled into thinking everything is safe, though. If you multiply
two ints that are big enough, you’ll overflow the result. The
following example demonstrates this:

//: c03:Overflow.java
// Surprise! Java lets you overflow.

public class Overflow {

176 Thinking in Java www.BruceEckel.com

public static void main(String[] args) {
int big = 0x7fffffff; // max int value
prt("big = " + big);
int bigger = big * 4;
prt("bigger = " + bigger);

}
static void prt(String s) {

System.out.println(s);
}

} ///:~

The output of this is:

big = 2147483647
bigger = -4

and you get no errors or warnings from the compiler, and no
exceptions at run-time. Java is good, but it’s not that good.

Compound assignments do not require casts for char, byte, or
short, even though they are performing promotions that have the
same results as the direct arithmetic operations. On the other hand,
the lack of the cast certainly simplifies the code.

You can see that, with the exception of boolean, any primitive type
can be cast to any other primitive type. Again, you must be aware of
the effect of a narrowing conversion when casting to a smaller type,
otherwise you might unknowingly lose information during the cast.

Execution control
Java uses all of C’s execution control statements, so if you’ve
programmed with C or C++ then most of what you see will be
familiar. Most procedural programming languages have some kind
of control statements, and there is often overlap among languages.
In Java, the keywords include if-else, while, do-while, for, and a
selection statement called switch. Java does not, however, support
the much-maligned goto (which can still be the most expedient way
to solve certain types of problems). You can still do a goto-like
jump, but it is much more constrained than a typical goto.

Chapter 3: Controlling Program Flow 177

true and false
All conditional statements use the truth or falsehood of a
conditional expression to determine the execution path. An example
of a conditional expression is A == B. This uses the conditional
operator == to see if the value of A is equivalent to the value of B.
The expression returns true or false. Any of the relational
operators you’ve seen earlier in this chapter can be used to produce
a conditional statement. Note that Java doesn’t allow you to use a
number as a boolean, even though it’s allowed in C and C++
(where truth is nonzero and falsehood is zero). If you want to use a
non-boolean in a boolean test, such as if(a), you must first
convert it to a boolean value using a conditional expression, such
as if(a != 0).

if-else
The if-else statement is probably the most basic way to control
program flow. The else is optional, so you can use if in two forms:

if(Boolean-expression)
statement

or

if(Boolean-expression)
statement

else
statement

The conditional must produce a Boolean result. The statement
means either a simple statement terminated by a semicolon or a
compound statement, which is a group of simple statements
enclosed in braces. Any time the word “statement” is used, it always
implies that the statement can be simple or compound.

As an example of if-else, here is a test() method that will tell you
whether a guess is above, below, or equivalent to a target number:

static int test(int testval) {
int result = 0;
if(testval > target)

178 Thinking in Java www.BruceEckel.com

result = -1;
else if(testval < target)

result = +1;
else

result = 0; // match
return result;

}

It is conventional to indent the body of a control flow statement so
the reader might easily determine where it begins and ends.

return
The return keyword has two purposes: it specifies what value a
method will return (if it doesn’t have a void return value) and it
causes that value to be returned immediately. The test() method
above can be rewritten to take advantage of this:

static int test2(int testval) {
if(testval > target)

return -1;
if(testval < target)

return +1;
return 0; // match

}

 There’s no need for else because the method will not continue after
executing a return.

Iteration
while, do-while and for control looping and are sometimes
classified as iteration statements. A statement repeats until the
controlling Boolean-expression evaluates to false. The form for a
while loop is

while(Boolean-expression)
statement

The Boolean-expression is evaluated once at the beginning of the
loop and again before each further iteration of the statement.

Chapter 3: Controlling Program Flow 179

Here’s a simple example that generates random numbers until a
particular condition is met:

//: c03:WhileTest.java
// Demonstrates the while loop.

public class WhileTest {
public static void main(String[] args) {

double r = 0;
while(r < 0.99d) {
r = Math.random();
System.out.println(r);

}
}

} ///:~

This uses the static method random() in the Math library, which
generates a double value between 0 and 1. (It includes 0, but not
1.) The conditional expression for the while says “keep doing this
loop until the number is 0.99 or greater.” Each time you run this
program you’ll get a different-sized list of numbers.

do-while
The form for do-while is

do
statement

while(Boolean-expression);

The sole difference between while and do-while is that the
statement of the do-while always executes at least once, even if the
expression evaluates to false the first time. In a while, if the
conditional is false the first time the statement never executes. In
practice, do-while is less common than while.

for
A for loop performs initialization before the first iteration. Then it
performs conditional testing and, at the end of each iteration, some
form of “stepping.” The form of the for loop is:

180 Thinking in Java www.BruceEckel.com

for(initialization; Boolean-expression; step)
statement

Any of the expressions initialization, Boolean-expression or step
can be empty. The expression is tested before each iteration, and as
soon as it evaluates to false execution will continue at the line
following the for statement. At the end of each loop, the step
executes.

for loops are usually used for “counting” tasks:

//: c03:ListCharacters.java
// Demonstrates "for" loop by listing
// all the ASCII characters.

public class ListCharacters {
public static void main(String[] args) {
for(char c = 0; c < 128; c++)

if (c != 26) // ANSI Clear screen
System.out.println(
"value: " + (int)c +
" character: " + c);

}
} ///:~

Note that the variable c is defined at the point where it is used,
inside the control expression of the for loop, rather than at the
beginning of the block denoted by the open curly brace. The scope
of c is the expression controlled by the for.

Traditional procedural languages like C require that all variables be
defined at the beginning of a block so when the compiler creates a
block it can allocate space for those variables. In Java and C++ you
can spread your variable declarations throughout the block,
defining them at the point that you need them. This allows a more
natural coding style and makes code easier to understand.

You can define multiple variables within a for statement, but they
must be of the same type:

for(int i = 0, j = 1;
i < 10 && j != 11;
i++, j++)

Chapter 3: Controlling Program Flow 181

/* body of for loop */;

The int definition in the for statement covers both i and j. The
ability to define variables in the control expression is limited to the
for loop. You cannot use this approach with any of the other
selection or iteration statements.

The comma operator
Earlier in this chapter I stated that the comma operator (not the
comma separator, which is used to separate function arguments)
has only one use in Java: in the control expression of a for loop. In
both the initialization and step portions of the control expression
you can have a number of statements separated by commas, and
those statements will be evaluated sequentially. The previous bit of
code uses this ability. Here’s another example:

//: c03:CommaOperator.java
public class CommaOperator {
public static void main(String[] args) {

for(int i = 1, j = i + 10; i < 5;
i++, j = i * 2) {

System.out.println("i= " + i + " j= " + j);
}

}
} ///:~

Here’s the output:

i= 1 j= 11
i= 2 j= 4
i= 3 j= 6
i= 4 j= 8

You can see that in both the initialization and step portions the
statements are evaluated in sequential order. Also, the initialization
portion can have any number of definitions of one type.

break and continue
Inside the body of any of the iteration statements you can also
control the flow of the loop by using break and continue. break

182 Thinking in Java www.BruceEckel.com

quits the loop without executing the rest of the statements in the
loop. continue stops the execution of the current iteration and
goes back to the beginning of the loop to begin the next iteration.

This program shows examples of break and continue within for
and while loops:

//: c03:BreakAndContinue.java
// Demonstrates break and continue keywords.

public class BreakAndContinue {
public static void main(String[] args) {

for(int i = 0; i < 100; i++) {
if(i == 74) break; // Out of for loop
if(i % 9 != 0) continue; // Next iteration
System.out.println(i);

}
int i = 0;
// An "infinite loop":
while(true) {
i++;
int j = i * 27;
if(j == 1269) break; // Out of loop
if(i % 10 != 0) continue; // Top of loop
System.out.println(i);

}
}

} ///:~

In the for loop the value of i never gets to 100 because the break
statement breaks out of the loop when i is 74. Normally, you’d use a
break like this only if you didn’t know when the terminating
condition was going to occur. The continue statement causes
execution to go back to the top of the iteration loop (thus
incrementing i) whenever i is not evenly divisible by 9. When it is,
the value is printed.

The second portion shows an “infinite loop” that would, in theory,
continue forever. However, inside the loop there is a break
statement that will break out of the loop. In addition, you’ll see that
the continue moves back to the top of the loop without completing

Chapter 3: Controlling Program Flow 183

the remainder. (Thus printing happens only when the value of i is
divisible by 9.) The output is:

0
9
18
27
36
45
54
63
72
10
20
30
40

The value 0 is printed because 0 % 9 produces 0.

A second form of the infinite loop is for(;;). The compiler treats
both while(true) and for(;;) in the same way so whichever one
you use is a matter of programming taste.

The infamous “goto”
The goto keyword has been present in programming languages
from the beginning. Indeed, goto was the genesis of program
control in assembly language: “if condition A, then jump here,
otherwise jump there.” If you read the assembly code that is
ultimately generated by virtually any compiler, you’ll see that
program control contains many jumps. However, a goto is a jump
at the source-code level, and that’s what brought it into disrepute. If
a program will always jump from one point to another, isn’t there
some way to reorganize the code so the flow of control is not so
jumpy? goto fell into true disfavor with the publication of the
famous “Goto considered harmful” paper by Edsger Dijkstra, and
since then goto-bashing has been a popular sport, with advocates of
the cast-out keyword scurrying for cover.

As is typical in situations like this, the middle ground is the most
fruitful. The problem is not the use of goto, but the overuse of goto

184 Thinking in Java www.BruceEckel.com

– in rare situations goto is actually the best way to structure
control flow.

Although goto is a reserved word in Java, it is not used in the
language; Java has no goto. However, it does have something that
looks a bit like a jump tied in with the break and continue
keywords. It’s not a jump but rather a way to break out of an
iteration statement. The reason it’s often thrown in with discussions
of goto is because it uses the same mechanism: a label.

A label is an identifier followed by a colon, like this:

label1:

The only place a label is useful in Java is right before an iteration
statement. And that means right before – it does no good to put any
other statement between the label and the iteration. And the sole
reason to put a label before an iteration is if you’re going to nest
another iteration or a switch inside it. That’s because the break and
continue keywords will normally interrupt only the current loop,
but when used with a label they’ll interrupt the loops up to where
the label exists:

label1:
outer-iteration {
inner-iteration {

//…
break; // 1
//…
continue; // 2
//…
continue label1; // 3
//…
break label1; // 4

}
}

In case 1, the break breaks out of the inner iteration and you end
up in the outer iteration. In case 2, the continue moves back to the
beginning of the inner iteration. But in case 3, the continue label1
breaks out of the inner iteration and the outer iteration, all the way
back to label1. Then it does in fact continue the iteration, but

Chapter 3: Controlling Program Flow 185

starting at the outer iteration. In case 4, the break label1 also
breaks all the way out to label1, but it does not re-enter the
iteration. It actually does break out of both iterations.

Here is an example using for loops:

//: c03:LabeledFor.java
// Java’s "labeled for" loop.

public class LabeledFor {
public static void main(String[] args) {

int i = 0;
outer: // Can't have statements here
for(; true ;) { // infinite loop
inner: // Can't have statements here
for(; i < 10; i++) {
prt("i = " + i);
if(i == 2) {

prt("continue");
continue;

}
if(i == 3) {

prt("break");
i++; // Otherwise i never

// gets incremented.
break;

}
if(i == 7) {

prt("continue outer");
i++; // Otherwise i never

// gets incremented.
continue outer;

}
if(i == 8) {

prt("break outer");
break outer;

}
for(int k = 0; k < 5; k++) {

if(k == 3) {
prt("continue inner");
continue inner;

}

186 Thinking in Java www.BruceEckel.com

}
}

}
// Can't break or continue
// to labels here

}
static void prt(String s) {

System.out.println(s);
}

} ///:~

This uses the prt() method that has been defined in the other
examples.

Note that break breaks out of the for loop, and that the increment-
expression doesn’t occur until the end of the pass through the for
loop. Since break skips the increment expression, the increment is
performed directly in the case of i == 3. The continue outer
statement in the case of i == 7 also goes to the top of the loop and
also skips the increment, so it too is incremented directly.

Here is the output:

i = 0
continue inner
i = 1
continue inner
i = 2
continue
i = 3
break
i = 4
continue inner
i = 5
continue inner
i = 6
continue inner
i = 7
continue outer
i = 8
break outer

Chapter 3: Controlling Program Flow 187

If not for the break outer statement, there would be no way to get
out of the outer loop from within an inner loop, since break by
itself can break out of only the innermost loop. (The same is true for
continue.)

Of course, in the cases where breaking out of a loop will also exit the
method, you can simply use a return.

Here is a demonstration of labeled break and continue
statements with while loops:

//: c03:LabeledWhile.java
// Java's "labeled while" loop.

public class LabeledWhile {
public static void main(String[] args) {

int i = 0;
outer:
while(true) {
prt("Outer while loop");
while(true) {
i++;
prt("i = " + i);
if(i == 1) {

prt("continue");
continue;

}
if(i == 3) {

prt("continue outer");
continue outer;

}
if(i == 5) {

prt("break");
break;

}
if(i == 7) {

prt("break outer");
break outer;

}
}

}
}

188 Thinking in Java www.BruceEckel.com

static void prt(String s) {
System.out.println(s);

}
} ///:~

The same rules hold true for while:

1. A plain continue goes to the top of the innermost loop and
continues.

2. A labeled continue goes to the label and re-enters the loop
right after that label.

3. A break “drops out of the bottom” of the loop.

4. A labeled break drops out of the bottom of the end of the
loop denoted by the label.

The output of this method makes it clear:

Outer while loop
i = 1
continue
i = 2
i = 3
continue outer
Outer while loop
i = 4
i = 5
break
Outer while loop
i = 6
i = 7
break outer

It’s important to remember that the only reason to use labels in
Java is when you have nested loops and you want to break or
continue through more than one nested level.

In Dijkstra’s “goto considered harmful” paper, what he specifically
objected to was the labels, not the goto. He observed that the
number of bugs seems to increase with the number of labels in a
program. Labels and gotos make programs difficult to analyze

Chapter 3: Controlling Program Flow 189

statically, since it introduces cycles in the program execution graph.
Note that Java labels don’t suffer from this problem, since they are
constrained in their placement and can’t be used to transfer control
in an ad hoc manner. It’s also interesting to note that this is a case
where a language feature is made more useful by restricting the
power of the statement.

switch
The switch is sometimes classified as a selection statement. The
switch statement selects from among pieces of code based on the
value of an integral expression. Its form is:

switch(integral-selector) {
case integral-value1 : statement; break;
case integral-value2 : statement; break;
case integral-value3 : statement; break;
case integral-value4 : statement; break;
case integral-value5 : statement; break;

// …
default: statement;

}

Integral-selector is an expression that produces an integral value.
The switch compares the result of integral-selector to each
integral-value. If it finds a match, the corresponding statement
(simple or compound) executes. If no match occurs, the default
statement executes.

You will notice in the above definition that each case ends with a
break, which causes execution to jump to the end of the switch
body. This is the conventional way to build a switch statement, but
the break is optional. If it is missing, the code for the following
case statements execute until a break is encountered. Although you
don’t usually want this kind of behavior, it can be useful to an
experienced programmer. Note the last statement, following the
default, doesn’t have a break because the execution just falls
through to where the break would have taken it anyway. You could
put a break at the end of the default statement with no harm if
you considered it important for style’s sake.

190 Thinking in Java www.BruceEckel.com

The switch statement is a clean way to implement multi-way
selection (i.e., selecting from among a number of different
execution paths), but it requires a selector that evaluates to an
integral value such as int or char. If you want to use, for example, a
string or a floating-point number as a selector, it won’t work in a
switch statement. For non-integral types, you must use a series of
if statements.

Here’s an example that creates letters randomly and determines
whether they’re vowels or consonants:

//: c03:VowelsAndConsonants.java
// Demonstrates the switch statement.

public class VowelsAndConsonants {
public static void main(String[] args) {

for(int i = 0; i < 100; i++) {
char c = (char)(Math.random() * 26 + 'a');
System.out.print(c + ": ");
switch(c) {
case 'a':
case 'e':
case 'i':
case 'o':
case 'u':

System.out.println("vowel");
break;

case 'y':
case 'w':

System.out.println(
"Sometimes a vowel");

break;
default:

System.out.println("consonant");
}

}
}

} ///:~

Since Math.random() generates a value between 0 and 1, you
need only multiply it by the upper bound of the range of numbers

Chapter 3: Controlling Program Flow 191

you want to produce (26 for the letters in the alphabet) and add an
offset to establish the lower bound.

Although it appears you’re switching on a character here, the
switch statement is actually using the integral value of the
character. The singly-quoted characters in the case statements also
produce integral values that are used for comparison.

Notice how the cases can be “stacked” on top of each other to
provide multiple matches for a particular piece of code. You should
also be aware that it’s essential to put the break statement at the
end of a particular case, otherwise control will simply drop through
and continue processing on the next case.

Calculation details
The statement:

char c = (char)(Math.random() * 26 + 'a');

deserves a closer look. Math.random() produces a double, so
the value 26 is converted to a double to perform the multiplication,
which also produces a double. This means that ‘a’ must be
converted to a double to perform the addition. The double result
is turned back into a char with a cast.

What does the cast to char do? That is, if you have the value 29.7
and you cast it to a char, is the resulting value 30 or 29? The
answer to this can be seen in this example:

//: c03:CastingNumbers.java
// What happens when you cast a float
// or double to an integral value?

public class CastingNumbers {
public static void main(String[] args) {

double
above = 0.7,
below = 0.4;

System.out.println("above: " + above);
System.out.println("below: " + below);
System.out.println(
"(int)above: " + (int)above);

192 Thinking in Java www.BruceEckel.com

System.out.println(
"(int)below: " + (int)below);

System.out.println(
"(char)('a' + above): " +
(char)('a' + above));

System.out.println(
"(char)('a' + below): " +
(char)('a' + below));

}
} ///:~

The output is:

above: 0.7
below: 0.4
(int)above: 0
(int)below: 0
(char)('a' + above): a
(char)('a' + below): a

So the answer is that casting from a float or double to an integral
value always truncates.

A second question concerns Math.random(). Does it produce a
value from zero to one, inclusive or exclusive of the value ‘1’? In
math lingo, is it (0,1), or [0,1], or (0,1] or [0,1)? (The square bracket
means “includes” whereas the parenthesis means “doesn’t include.”)
Again, a test program might provide the answer:

//: c03:RandomBounds.java
// Does Math.random() produce 0.0 and 1.0?

public class RandomBounds {
static void usage() {

System.err.println("Usage: \n\t" +
"RandomBounds lower\n\t" +
"RandomBounds upper");

System.exit(1);
}
public static void main(String[] args) {

if(args.length != 1) usage();
if(args[0].equals("lower")) {
while(Math.random() != 0.0)

Chapter 3: Controlling Program Flow 193

; // Keep trying
System.out.println("Produced 0.0!");

}
else if(args[0].equals("upper")) {
while(Math.random() != 1.0)
; // Keep trying

System.out.println("Produced 1.0!");
}
else
usage();

}
} ///:~

To run the program, you type a command line of either:

java RandomBounds lower

or

java RandomBounds upper

In both cases you are forced to break out of the program manually,
so it would appear that Math.random() never produces either
0.0 or 1.0. But this is where such an experiment can be deceiving. If
you consider2 that there are about 262 different double fractions
between 0 and 1, the likelihood of reaching any one value
experimentally might exceed the lifetime of one computer, or even

2 Chuck Allison writes: The total number of numbers in a floating-point number system is
2(M-m+1)b^(p-1) + 1
where b is the base (usually 2), p is the precision (digits in the mantissa), M is the largest
exponent, and m is the smallest exponent. IEEE 754 uses:
M = 1023, m = -1022, p = 53, b = 2
so the total number of numbers is
2(1023+1022+1)2^52
= 2((2^10-1) + (2^10-1))2^52
= (2^10-1)2^54
= 2^64 - 2^54
Half of these numbers (corresponding to exponents in the range [-1022, 0]) are less than 1
in magnitude (both positive and negative), so 1/4 of that expression, or 2^62 - 2^52 + 1
(approximately 2^62) is in the range [0,1). See my paper at
http://www.freshsources.com/1995006a.htm (last of text).

194 Thinking in Java www.BruceEckel.com

one experimenter. It turns out that 0.0 is included in the output of
Math.random(). Or, in math lingo, it is [0,1).

Summary
This chapter concludes the study of fundamental features that
appear in most programming languages: calculation, operator
precedence, type casting, and selection and iteration. Now you’re
ready to begin taking steps that move you closer to the world of
object-oriented programming. The next chapter will cover the
important issues of initialization and cleanup of objects, followed in
the subsequent chapter by the essential concept of implementation
hiding.

Exercises
1. There are two expressions in the section labeled “precedence”

early in this chapter. Put these expressions into a program
and demonstrate that they produce different results.

2. Put the methods ternary() and alternative() into a
working program.

3. From the sections labeled “if-else” and “return”, put the
methods test() and test2() into a working program.

4. Write a program that prints values from one to 100.

5. Modify Exercise 4 so that the program exits by using the
break keyword at value 47. Try using return instead.

6. Write a function that takes two String arguments, and uses
all the Boolean comparisons to compare the two Strings and
print the results. For the == and !=, also perform the
equals() test. In main(), call your function with some
different String objects.

7. Write a program that generates 25 random int values. For
each value, use an if-then-else statement to classify it as

Chapter 3: Controlling Program Flow 195

greater than, less than or equal to a second randomly-
generated value.

8. Modify Exercise 7 so that your code is surrounded by an
“infinite” while loop. It will then run until you interrupt it
from the keyboard.

9. Write a program that uses two nested for loops and the
modulus operator (%) to detect and print prime numbers
(integral numbers that are not evenly divisible by any other
numbers except for themselves and 1).

10. Create a switch statement that prints a message for each
case, and put the switch inside a for loop that tries each
case. Put a break after each case and test it, then remove
the breaks and see what happens.

 197

4: Initialization
& Cleanup

As the computer revolution progresses, “unsafe”
programming has become one of the major culprits that
makes programming expensive.

Two of these safety issues are initialization and cleanup. Many C
bugs occur when the programmer forgets to initialize a variable.
This is especially true with libraries when users don’t know how to
initialize a library component, or even that they must. Cleanup is a
special problem because it’s easy to forget about an element when
you’re done with it, since it no longer concerns you. Thus, the
resources used by that element are retained and you can easily end
up running out of resources (most notably memory).

C++ introduced the concept of a constructor, a special method
automatically called when an object is created. Java also adopted
the constructor, and in addition has a garbage collector that
automatically releases memory resources when they’re no longer
being used. This chapter examines the issues of initialization and
cleanup and their support in Java.

Guaranteed initialization
with the constructor

You can imagine creating a method called initialize() for every
class you write. The name is a hint that it should be called before
using the object. Unfortunately, this means the user must
remember to call the method. In Java, the class designer can
guarantee initialization of every object by providing a special
method called a constructor. If a class has a constructor, Java

198 Thinking in Java www.BruceEckel.com

automatically calls that constructor when an object is created,
before users can even get their hands on it. So initialization is
guaranteed.

The next challenge is what to name this method. There are two
issues. The first is that any name you use could clash with a name
you might like to use as a member in the class. The second is that
because the compiler is responsible for calling the constructor, it
must always know which method to call. The C++ solution seems
the easiest and most logical, so it’s also used in Java: The name of
the constructor is the same as the name of the class. It makes sense
that such a method will be called automatically on initialization.

Here’s a simple class with a constructor:

//: c04:SimpleConstructor.java
// Demonstration of a simple constructor.

class Rock {
Rock() { // This is the constructor

System.out.println("Creating Rock");
}

}

public class SimpleConstructor {
public static void main(String[] args) {

for(int i = 0; i < 10; i++)
new Rock();

}
} ///:~

Now, when an object is created:

new Rock();

storage is allocated and the constructor is called. It is guaranteed
that the object will be properly initialized before you can get your
hands on it.

Note that the coding style of making the first letter of all methods
lower case does not apply to constructors, since the name of the
constructor must match the name of the class exactly.

Chapter 4: Initialization & Cleanup 199

Like any method, the constructor can have arguments to allow you
to specify how an object is created. The above example can easily be
changed so the constructor takes an argument:

//: c04:SimpleConstructor2.java
// Constructors can have arguments.

class Rock2 {
Rock2(int i) {

System.out.println(
"Creating Rock number " + i);

}
}

public class SimpleConstructor2 {
public static void main(String[] args) {

for(int i = 0; i < 10; i++)
new Rock2(i);

}
} ///:~

Constructor arguments provide you with a way to provide
parameters for the initialization of an object. For example, if the
class Tree has a constructor that takes a single integer argument
denoting the height of the tree, you would create a Tree object like
this:

Tree t = new Tree(12); // 12-foot tree

If Tree(int) is your only constructor, then the compiler won’t let
you create a Tree object any other way.

Constructors eliminate a large class of problems and make the code
easier to read. In the preceding code fragment, for example, you
don’t see an explicit call to some initialize() method that is
conceptually separate from definition. In Java, definition and
initialization are unified concepts – you can’t have one without the
other.

The constructor is an unusual type of method because it has no
return value. This is distinctly different from a void return value, in
which the method returns nothing but you still have the option to

200 Thinking in Java www.BruceEckel.com

make it return something else. Constructors return nothing and you
don’t have an option. If there were a return value, and if you could
select your own, the compiler would somehow need to know what to
do with that return value.

Method overloading
One of the important features in any programming language is the
use of names. When you create an object, you give a name to a
region of storage. A method is a name for an action. By using names
to describe your system, you create a program that is easier for
people to understand and change. It’s a lot like writing prose – the
goal is to communicate with your readers.

You refer to all objects and methods by using names. Well-chosen
names make it easier for you and others to understand your code.

A problem arises when mapping the concept of nuance in human
language onto a programming language. Often, the same word
expresses a number of different meanings – it’s overloaded. This is
useful, especially when it comes to trivial differences. You say “wash
the shirt,” “wash the car,” and “wash the dog.” It would be silly to be
forced to say, “shirtWash the shirt,” “carWash the car,” and
“dogWash the dog” just so the listener doesn’t need to make any
distinction about the action performed. Most human languages are
redundant, so even if you miss a few words, you can still determine
the meaning. We don’t need unique identifiers – we can deduce
meaning from context.

Most programming languages (C in particular) require you to have
a unique identifier for each function. So you could not have one
function called print() for printing integers and another called
print() for printing floats – each function requires a unique name.

In Java (and C++), another factor forces the overloading of method
names: the constructor. Because the constructor’s name is
predetermined by the name of the class, there can be only one
constructor name. But what if you want to create an object in more
than one way? For example, suppose you build a class that can

Chapter 4: Initialization & Cleanup 201

initialize itself in a standard way or by reading information from a
file. You need two constructors, one that takes no arguments (the
default constructor, also called the no-arg constructor), and one
that takes a String as an argument, which is the name of the file
from which to initialize the object. Both are constructors, so they
must have the same name – the name of the class. Thus method
overloading is essential to allow the same method name to be used
with different argument types. And although method overloading is
a must for constructors, it’s a general convenience and can be used
with any method.

Here’s an example that shows both overloaded constructors and
overloaded ordinary methods:

//: c04:Overloading.java
// Demonstration of both constructor
// and ordinary method overloading.
import java.util.*;

class Tree {
int height;
Tree() {

prt("Planting a seedling");
height = 0;

}
Tree(int i) {

prt("Creating new Tree that is "
+ i + " feet tall");

height = i;
}
void info() {

prt("Tree is " + height
+ " feet tall");

}
void info(String s) {

prt(s + ": Tree is "
+ height + " feet tall");

}
static void prt(String s) {

System.out.println(s);
}

202 Thinking in Java www.BruceEckel.com

}

public class Overloading {
public static void main(String[] args) {

for(int i = 0; i < 5; i++) {
Tree t = new Tree(i);
t.info();
t.info("overloaded method");

}
// Overloaded constructor:
new Tree();

}
} ///:~

A Tree object can be created either as a seedling, with no argument,
or as a plant grown in a nursery, with an existing height. To support
this, there are two constructors, one that takes no arguments (we
call constructors that take no arguments default constructors1) and
one that takes the existing height.

You might also want to call the info() method in more than one
way. For example, with a String argument if you have an extra
message you want printed, and without if you have nothing more to
say. It would seem strange to give two separate names to what is
obviously the same concept. Fortunately, method overloading
allows you to use the same name for both.

Distinguishing overloaded methods
If the methods have the same name, how can Java know which
method you mean? There’s a simple rule: Each overloaded method
must take a unique list of argument types.

If you think about this for a second, it makes sense: how else could a
programmer tell the difference between two methods that have the
same name, other than by the types of their arguments?

1 In some of the Java literature from Sun they instead refer to these with the clumsy but
descriptive name “no-arg constructors.” The term “default constructor” has been in use for
many years and so I will use that.

Chapter 4: Initialization & Cleanup 203

Even differences in the ordering of arguments is sufficient to
distinguish two methods: (Although you don’t normally want to
take this approach, as it produces difficult-to-maintain code.)

//: c04:OverloadingOrder.java
// Overloading based on the order of
// the arguments.

public class OverloadingOrder {
static void print(String s, int i) {

System.out.println(
"String: " + s +
", int: " + i);

}
static void print(int i, String s) {

System.out.println(
"int: " + i +
", String: " + s);

}
public static void main(String[] args) {

print("String first", 11);
print(99, "Int first");

}
} ///:~

The two print() methods have identical arguments, but the order
is different, and that’s what makes them distinct.

Overloading with primitives
A primitive can be automatically promoted from a smaller type to a
larger one and this can be slightly confusing in combination with
overloading. The following example demonstrates what happens
when a primitive is handed to an overloaded method:

//: c04:PrimitiveOverloading.java
// Promotion of primitives and overloading.

public class PrimitiveOverloading {
// boolean can't be automatically converted
static void prt(String s) {

System.out.println(s);

204 Thinking in Java www.BruceEckel.com

}

void f1(char x) { prt("f1(char)"); }
void f1(byte x) { prt("f1(byte)"); }
void f1(short x) { prt("f1(short)"); }
void f1(int x) { prt("f1(int)"); }
void f1(long x) { prt("f1(long)"); }
void f1(float x) { prt("f1(float)"); }
void f1(double x) { prt("f1(double)"); }

void f2(byte x) { prt("f2(byte)"); }
void f2(short x) { prt("f2(short)"); }
void f2(int x) { prt("f2(int)"); }
void f2(long x) { prt("f2(long)"); }
void f2(float x) { prt("f2(float)"); }
void f2(double x) { prt("f2(double)"); }

void f3(short x) { prt("f3(short)"); }
void f3(int x) { prt("f3(int)"); }
void f3(long x) { prt("f3(long)"); }
void f3(float x) { prt("f3(float)"); }
void f3(double x) { prt("f3(double)"); }

void f4(int x) { prt("f4(int)"); }
void f4(long x) { prt("f4(long)"); }
void f4(float x) { prt("f4(float)"); }
void f4(double x) { prt("f4(double)"); }

void f5(long x) { prt("f5(long)"); }
void f5(float x) { prt("f5(float)"); }
void f5(double x) { prt("f5(double)"); }

void f6(float x) { prt("f6(float)"); }
void f6(double x) { prt("f6(double)"); }

void f7(double x) { prt("f7(double)"); }

void testConstVal() {
prt("Testing with 5");
f1(5);f2(5);f3(5);f4(5);f5(5);f6(5);f7(5);

}
void testChar() {

Chapter 4: Initialization & Cleanup 205

char x = 'x';
prt("char argument:");
f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

}
void testByte() {

byte x = 0;
prt("byte argument:");
f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

}
void testShort() {

short x = 0;
prt("short argument:");
f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

}
void testInt() {

int x = 0;
prt("int argument:");
f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

}
void testLong() {

long x = 0;
prt("long argument:");
f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

}
void testFloat() {

float x = 0;
prt("float argument:");
f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

}
void testDouble() {

double x = 0;
prt("double argument:");
f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

}
public static void main(String[] args) {

PrimitiveOverloading p =
new PrimitiveOverloading();

p.testConstVal();
p.testChar();
p.testByte();
p.testShort();
p.testInt();

206 Thinking in Java www.BruceEckel.com

p.testLong();
p.testFloat();
p.testDouble();

}
} ///:~

If you view the output of this program, you’ll see that the constant
value 5 is treated as an int, so if an overloaded method is available
that takes an int it is used. In all other cases, if you have a data type
that is smaller than the argument in the method, that data type is
promoted. char produces a slightly different effect, since if it
doesn’t find an exact char match, it is promoted to int.

What happens if your argument is bigger than the argument
expected by the overloaded method? A modification of the above
program gives the answer:

//: c04:Demotion.java
// Demotion of primitives and overloading.

public class Demotion {
static void prt(String s) {

System.out.println(s);
}

void f1(char x) { prt("f1(char)"); }
void f1(byte x) { prt("f1(byte)"); }
void f1(short x) { prt("f1(short)"); }
void f1(int x) { prt("f1(int)"); }
void f1(long x) { prt("f1(long)"); }
void f1(float x) { prt("f1(float)"); }
void f1(double x) { prt("f1(double)"); }

void f2(char x) { prt("f2(char)"); }
void f2(byte x) { prt("f2(byte)"); }
void f2(short x) { prt("f2(short)"); }
void f2(int x) { prt("f2(int)"); }
void f2(long x) { prt("f2(long)"); }
void f2(float x) { prt("f2(float)"); }

void f3(char x) { prt("f3(char)"); }
void f3(byte x) { prt("f3(byte)"); }

Chapter 4: Initialization & Cleanup 207

void f3(short x) { prt("f3(short)"); }
void f3(int x) { prt("f3(int)"); }
void f3(long x) { prt("f3(long)"); }

void f4(char x) { prt("f4(char)"); }
void f4(byte x) { prt("f4(byte)"); }
void f4(short x) { prt("f4(short)"); }
void f4(int x) { prt("f4(int)"); }

void f5(char x) { prt("f5(char)"); }
void f5(byte x) { prt("f5(byte)"); }
void f5(short x) { prt("f5(short)"); }

void f6(char x) { prt("f6(char)"); }
void f6(byte x) { prt("f6(byte)"); }

void f7(char x) { prt("f7(char)"); }

void testDouble() {
double x = 0;
prt("double argument:");
f1(x);f2((float)x);f3((long)x);f4((int)x);
f5((short)x);f6((byte)x);f7((char)x);

}
public static void main(String[] args) {

Demotion p = new Demotion();
p.testDouble();

}
} ///:~

Here, the methods take narrower primitive values. If your argument
is wider then you must cast to the necessary type using the type
name in parentheses. If you don’t do this, the compiler will issue an
error message.

You should be aware that this is a narrowing conversion, which
means you might lose information during the cast. This is why the
compiler forces you to do it – to flag the narrowing conversion.

208 Thinking in Java www.BruceEckel.com

Overloading on return values
It is common to wonder “Why only class names and method
argument lists? Why not distinguish between methods based on
their return values?” For example, these two methods, which have
the same name and arguments, are easily distinguished from each
other:

void f() {}
int f() {}

This works fine when the compiler can unequivocally determine the
meaning from the context, as in int x = f(). However, you can call
a method and ignore the return value; this is often referred to as
calling a method for its side effect since you don’t care about the
return value but instead want the other effects of the method call.
So if you call the method this way:

f();

how can Java determine which f() should be called? And how could
someone reading the code see it? Because of this sort of problem,
you cannot use return value types to distinguish overloaded
methods.

Default constructors
As mentioned previously, a default constructor (a.k.a. a “no-arg”
constructor) is one without arguments, used to create a “vanilla
object.” If you create a class that has no constructors, the compiler
will automatically create a default constructor for you. For example:

//: c04:DefaultConstructor.java

class Bird {
int i;

}

public class DefaultConstructor {
public static void main(String[] args) {

Bird nc = new Bird(); // default!
}

Chapter 4: Initialization & Cleanup 209

} ///:~

The line

new Bird();

creates a new object and calls the default constructor, even though
one was not explicitly defined. Without it we would have no method
to call to build our object. However, if you define any constructors
(with or without arguments), the compiler will not synthesize one
for you:

class Bush {
Bush(int i) {}
Bush(double d) {}

}

Now if you say:

new Bush();

the compiler will complain that it cannot find a constructor that
matches. It’s as if when you don’t put in any constructors, the
compiler says “You are bound to need some constructor, so let me
make one for you.” But if you write a constructor, the compiler says
“You’ve written a constructor so you know what you’re doing; if you
didn’t put in a default it’s because you meant to leave it out.”

The this keyword
If you have two objects of the same type called a and b, you might
wonder how it is that you can call a method f() for both those
objects:

class Banana { void f(int i) { /* ... */ } }
Banana a = new Banana(), b = new Banana();
a.f(1);
b.f(2);

If there’s only one method called f(), how can that method know
whether it’s being called for the object a or b?

210 Thinking in Java www.BruceEckel.com

To allow you to write the code in a convenient object-oriented
syntax in which you “send a message to an object,” the compiler
does some undercover work for you. There’s a secret first argument
passed to the method f(), and that argument is the handle to the
object that’s being manipulated. So the two method calls above
become something like:

Banana.f(a,1);
Banana.f(b,2);

This is internal and you can’t write these expressions and get the
compiler to accept them, but it gives you an idea of what’s
happening.

Suppose you’re inside a method and you’d like to get the handle to
the current object. Since that handle is passed secretly by the
compiler, there’s no identifier for it. However, for this purpose
there’s a keyword: this. The this keyword – which can be used only
inside a method – produces the handle to the object the method has
been called for. You can treat this handle just like any other object
handle. Keep in mind that if you’re calling a method of your class
from within another method of your class, you don’t need to use
this; you simply call the method. The current this handle is
automatically used for the other method. Thus you can say:

class Apricot {
void pick() { /* ... */ }
void pit() { pick(); /* ... */ }

}

Inside pit(), you could say this.pick() but there’s no need to. The
compiler does it for you automatically. The this keyword is used
only for those special cases in which you need to explicitly use the
handle to the current object. For example, it’s often used in return
statements when you want to return the handle to the current
object:

//: c04:Leaf.java
// Simple use of the "this" keyword.

public class Leaf {
private int i = 0;

Chapter 4: Initialization & Cleanup 211

Leaf increment() {
i++;
return this;

}
void print() {

System.out.println("i = " + i);
}
public static void main(String[] args) {

Leaf x = new Leaf();
x.increment().increment().increment().print();

}
} ///:~

Because increment() returns the handle to the current object via
the this keyword, multiple operations can easily be performed on
the same object.

Calling constructors from constructors
When you write several constructors for a class, there are times
when you’d like to call one constructor from another to avoid
duplicating code. You can do this using the this keyword.

Normally, when you say this, it is in the sense of “this object” or
“the current object,” and by itself it produces the handle to the
current object. In a constructor, the this keyword takes on a
different meaning when you give it an argument list: it makes an
explicit call to the constructor that matches that argument list. Thus
you have a straightforward way to call other constructors:

//: c04:Flower.java
// Calling constructors with "this."

public class Flower {
private int petalCount = 0;
private String s = new String("null");
Flower(int petals) {

petalCount = petals;
System.out.println(
"Constructor w/ int arg only, petalCount= "
+ petalCount);

}

212 Thinking in Java www.BruceEckel.com

Flower(String ss) {
System.out.println(
"Constructor w/ String arg only, s=" + ss);

s = ss;
}
Flower(String s, int petals) {

this(petals);
//! this(s); // Can't call two!

this.s = s; // Another use of "this"
System.out.println("String & int args");

}
Flower() {

this("hi", 47);
System.out.println(
"default constructor (no args)");

}
void print() {

//! this(11); // Not inside non-constructor!
System.out.println(
"petalCount = " + petalCount + " s = "+ s);

}
public static void main(String[] args) {

Flower x = new Flower();
x.print();

}
} ///:~

The constructor Flower(String s, int petals) shows that, while
you can call one constructor using this, you cannot call two. In
addition, the constructor call must be the first thing you do or you’ll
get a compiler error message.

This example also shows another way you’ll see this used. Since the
name of the argument s and the name of the member data s are the
same, there’s an ambiguity. You can resolve it by saying this.s to
refer to the member data. You’ll often see this form used in Java
code, and it’s used in numerous places in this book.

In print() you can see that the compiler won’t let you call a
constructor from inside any method other than a constructor.

Chapter 4: Initialization & Cleanup 213

The meaning of static
With the this keyword in mind, you can more fully understand
what it means to make a method static. It means that there is no
this for that particular method. You cannot call non-static
methods from inside static methods2 (although the reverse is
possible), and you can call a static method for the class itself,
without any object. In fact, that’s primarily what a static method is
for. It’s as if you’re creating the equivalent of a global function
(from C). Except global functions are not permitted in Java, and
putting the static method inside a class allows it access to other
static methods and to static fields.

Some people argue that static methods are not object-oriented
since they do have the semantics of a global function; with a static
method you don’t send a message to an object, since there’s no this.
This is probably a fair argument, and if you find yourself using a lot
of static methods you should probably rethink your strategy.
However, statics are pragmatic and there are times when you
genuinely need them, so whether or not they are “proper OOP”
should be left to the theoreticians. Indeed, even Smalltalk has the
equivalent in its “class methods.”

Cleanup: finalization and
garbage collection

Programmers know about the importance of initialization, but often
forget the importance of cleanup. After all, who needs to clean up
an int? But with libraries, simply “letting go” of an object once
you’re done with it is not always safe. Of course, Java has the
garbage collector to reclaim the memory of objects that are no

2 The one case in which this is possible occurs if you pass a handle to an object into the
static method. Then, via the handle (which is now effectively this), you can call non-
static methods and access non-static fields. But typically if you want to do something like
this you’ll just make an ordinary, non-static method.

214 Thinking in Java www.BruceEckel.com

longer used. Now consider a very unusual case. Suppose your object
allocates “special” memory without using new. The garbage
collector knows only how to release memory allocated with new, so
it won’t know how to release the object’s “special” memory. To
handle this case, Java provides a method called finalize() that you
can define for your class. Here’s how it’s supposed to work. When
the garbage collector is ready to release the storage used for your
object, it will first call finalize(), and only on the next garbage-
collection pass will it reclaim the object’s memory. So if you choose
to use finalize(), it gives you the ability to perform some
important cleanup at the time of garbage collection.

This is a potential programming pitfall because some programmers,
especially C++ programmers, might initially mistake finalize() for
the destructor in C++, which is a function that is always called
when an object is destroyed. But it is important to distinguish
between C++ and Java here, because in C++ objects always get
destroyed (in a bug-free program), whereas in Java objects do not
always get garbage-collected. Or, put another way:

Garbage collection is not destruction.

If you remember this, you will stay out of trouble. What it means is
that if there is some activity that must be performed before you no
longer need an object, you must perform that activity yourself. Java
has no destructor or similar concept, so you must create an ordinary
method to perform this cleanup. For example, suppose in the
process of creating your object it draws itself on the screen. If you
don’t explicitly erase its image from the screen, it might never get
cleaned up. If you put some kind of erasing functionality inside
finalize(), then if an object is garbage-collected, the image will
first be removed from the screen, but if it isn’t, the image will
remain. So a second point to remember is:

Your objects might not get garbage collected.

You might find that the storage for an object never gets released
because your program never nears the point of running out of
storage. If your program completes and the garbage collector never
gets around to releasing the storage for any of your objects, that

Chapter 4: Initialization & Cleanup 215

storage will be returned to the operating system en masse as the
program exits. This is a good thing, because garbage collection has
some overhead, and if you never do it you never incur that expense.

What is finalize() for?
You might believe at this point that you should not use finalize()
as a general-purpose cleanup method. What good is it?

A third point to remember is:

Garbage collection is only about memory.

That is, the sole reason for the existence of the garbage collector is
to recover memory that your program is no longer using. So any
activity that is associated with garbage collection, most notably your
finalize() method, must also be only about memory and its
deallocation.

Does this mean that if your object contains other objects finalize()
should explicitly release those objects? Well, no – the garbage
collector takes care of the release of all object memory regardless of
how the object is created. It turns out that the need for finalize()
is limited to special cases, in which your object can allocate some
storage in some way other than creating an object. But, you might
observe, everything in Java is an object so how can this be?

It would seem that finalize() is in place because of the possibility
that you’ll do something C-like by allocating memory using a
mechanism other than the normal one in Java. This can happen
primarily through native methods, which are a way to call non-Java
code from Java. (Native methods are discussed in Appendix B.) C
and C++ are the only languages currently supported by native
methods, but since they can call subprograms in other languages,
you can effectively call anything. Inside the non-Java code, C’s
malloc() family of functions might be called to allocate storage,
and unless you call free() that storage will not be released, causing
a memory leak. Of course, free() is a C and C++ function, so you’d
need call it in a native method inside your finalize().

216 Thinking in Java www.BruceEckel.com

After reading this, you probably get the idea that you won’t use
finalize() much. You’re correct; it is not the appropriate place for
normal cleanup to occur. So where should normal cleanup be
performed?

You must perform cleanup
To clean up an object, the user of that object must call a cleanup
method at the point the cleanup is desired. This sounds pretty
straightforward, but it collides a bit with the C++ concept of the
destructor. In C++, all objects are destroyed. Or rather, all objects
should be destroyed. If the C++ object is created as a local, i.e. on
the stack (not possible in Java), then the destruction happens at the
closing curly brace of the scope in which the object was created. If
the object was created using new (like in Java) the destructor is
called when the programmer calls the C++ operator delete (which
doesn’t exist in Java). If the C++ programmer forgets to call delete,
the destructor is never called and you have a memory leak, plus the
other parts of the object never get cleaned up. This kind of bug can
be very difficult to track down.

In contrast, Java doesn’t allow you to create local objects – you
must always use new. But in Java, there’s no “delete” to call to
release the object since the garbage collector releases the storage for
you. So from a simplistic standpoint you could say that because of
garbage collection, Java has no destructor. You’ll see as this book
progresses, however, that the presence of a garbage collector does
not remove the need for or utility of destructors. (And you should
never call finalize() directly, so that’s not an appropriate avenue
for a solution.) If you want some kind of cleanup performed other
than storage release you must still explicitly call an appropriate
method in Java, which is the equivalent of a C++ destructor without
the convenience.

One of the things finalize() can be useful for is observing the
process of garbage collection. The following example shows you
what’s going on and summarizes the previous descriptions of
garbage collection:

//: c04:Garbage.java

Chapter 4: Initialization & Cleanup 217

// Demonstration of the garbage
// collector and finalization

class Chair {
static boolean gcrun = false;
static boolean f = false;
static int created = 0;
static int finalized = 0;
int i;
Chair() {

i = ++created;
if(created == 47)
System.out.println("Created 47");

}
public void finalize() {

if(!gcrun) {
// The first time finalize() is called:
gcrun = true;
System.out.println(
"Beginning to finalize after " +
created + " Chairs have been created");

}
if(i == 47) {
System.out.println(
"Finalizing Chair #47, " +
"Setting flag to stop Chair creation");

f = true;
}
finalized++;
if(finalized >= created)
System.out.println(
"All " + finalized + " finalized");

}
}

public class Garbage {
public static void main(String[] args) {

// As long as the flag hasn't been set,
// make Chairs and Strings:
while(!Chair.f) {
new Chair();
new String("To take up space");

218 Thinking in Java www.BruceEckel.com

}
System.out.println(
"After all Chairs have been created:\n" +
"total created = " + Chair.created +
", total finalized = " + Chair.finalized);

// Optional arguments force garbage
// collection & finalization:
if(args.length > 0) {
if(args[0].equals("gc") ||

args[0].equals("all")) {
System.out.println("gc():");
System.gc();

}
if(args[0].equals("finalize") ||

args[0].equals("all")) {
System.out.println("runFinalization():");
System.runFinalization();

}
}
System.out.println("bye!");

}
} ///:~

The above program creates many Chair objects, and at some point
after the garbage collector begins running, the program stops
creating Chairs. Since the garbage collector can run at any time,
you don’t know exactly when it will start up, so there’s a flag called
gcrun to indicate whether the garbage collector has started
running yet. A second flag f is a way for Chair to tell the main()
loop that it should stop making objects. Both of these flags are set
within finalize(), which is called during garbage collection.

Two other static variables, created and finalized, keep track of
the number of objs created versus the number that get finalized by
the garbage collector. Finally, each Chair has its own (non-static)
int i so it can keep track of what number it is. When Chair number
47 is finalized, the flag is set to true to bring the process of Chair
creation to a stop.

All this happens in main(), in the loop

while(!Chair.f) {

Chapter 4: Initialization & Cleanup 219

new Chair();
new String("To take up space");

}

You might wonder how this loop could ever finish, since there’s
nothing inside the loop that changes the value of Chair.f. However,
the finalize() process will, eventually, when it finalizes number
47.

The creation of a String object during each iteration is simply extra
storage being allocated to encourage the garbage collector to kick in,
which it will do when it starts to get nervous about the amount of
memory available.

When you run the program, you provide a command-line argument
of “gc,” “finalize,” or “all.” The “gc” argument will call the
System.gc() method (to force execution of the garbage collector).
Using the “finalize” argument calls System.runFinalization()
which – in theory – will cause any un-finalized objects to be
finalized. And “all” causes both methods to be called.

The behavior of this program and the version in the first edition of
this book shows that the whole issue of garbage collection and
finalization has been evolving, with much of the evolution
happening behind closed doors. In fact, by the time you read this,
the behavior of the program may have changed once again.

If System.gc() is called, then finalization happens to all the
objects. This was not necessarily the case with previous
implementations of the JDK, although the documentation claimed
otherwise. In addition, you’ll see that it doesn’t seem to make any
difference whether System.runFinalization() is called.

However, you will see that only if System.gc() is called after all
the objects are created and discarded will all the finalizers be called.
If you do not call System.gc(), then only some of the objects will
be finalized. In Java 1.1, a method
System.runFinalizersOnExit() was introduced that caused
programs to run all the finalizers as they exited, but the design
turned out to be buggy and the method was deprecated. This is yet
another clue that the Java designers were thrashing about trying to

220 Thinking in Java www.BruceEckel.com

solve the garbage collection and finalization problem. We can only
hope that things have been worked out in Java 2.

The preceding program shows that the promise that finalizers will
always be run holds true, but only if you explicitly force it to happen
yourself. If you don’t cause System.gc() to be called, you’ll get an
output like this:

Created 47
Beginning to finalize after 3486 Chairs have been
created
Finalizing Chair #47, Setting flag to stop Chair
creation
After all Chairs have been created:
total created = 3881, total finalized = 2684
bye!

Thus, not all finalizers get called by the time the program
completes. If System.gc() is called, it will finalize and destroy all
the objects that are no longer in use up to that point.

Remember that neither garbage collection nor finalization is
guaranteed. If the Java Virtual Machine (JVM) isn’t close to
running out of memory, then it will (wisely) not waste time
recovering memory through garbage collection.

The death condition
 In general, you can’t rely on finalize() being called, and you must
create separate “cleanup” functions and call them explicitly. So it
appears that finalize() is only useful for obscure memory cleanup
that most programmers will never use. However, there is a very
interesting use of finalize() which does not rely on it being called
every time. This is the verification of the death condition3 of an
object.

3 A term coined by Bill Venners (www.artima.com) during a seminar that he and I were
giving together.

Chapter 4: Initialization & Cleanup 221

At the point that you’re no longer interested in an object – when it’s
ready to be cleaned up – that object should be in a state whereby its
memory can be safely released. For example, if the object represents
an open file, that file should be closed by the programmer before
the object is garbage collected. If any portions of the object are not
properly cleaned up, then you have a bug in your program that
could be very difficult to find. The value of finalize() is that it can
be used to discover this condition, even if it isn’t always called. If
one of the finalizations happens to reveal the bug, then you discover
the problem, which is all you really care about.

Here’s a simple example of how you might use it:

//: c04:DeathCondition.java
// Using finalize() to detect an object that
// hasn't been properly cleaned up.

class Book {
boolean checkedOut = false;
public Book(boolean checkOut) {

checkedOut = checkOut;
}
public void checkIn() {

checkedOut = false;
}
public void finalize() {

if(checkedOut)
System.out.println("Error: checked out");

}
}

public class DeathCondition {
public static void main(String[] args) {

Book novel = new Book(true);
// Proper cleanup:
novel.checkIn();
// Drop the handle, forget to clean up:
new Book(true);
// Force garbage collection & finalization:
System.gc();

}

222 Thinking in Java www.BruceEckel.com

} ///:~

The death condition is that all Book objects are supposed to be
checked in before they are garbage collected, but in main() a
programmer error doesn’t check in one of the books. Without
finalize() to verify the death condition, this could be a difficult
bug to find.

Note that System.gc() is used to force finalization (and you
should do this during program development to speed debugging).
But even if it isn’t, it’s highly probable that the errant Book will
eventually be discovered through repeated executions of the
program (assuming the program allocates enough storage to cause
the garbage collector to execute).

How a garbage collector works
If you come from a programming language where allocating objects
on the heap is expensive, you may naturally assume that Java’s
scheme of allocating everything (except primitives) on the heap is
expensive. However, it turns out that the garbage collector can have
a significant impact on increasing the speed of object creation. This
might sound a bit odd at first – that storage release affects storage
allocation – but it’s the way some JVMs work and it means that
allocating storage for heap objects in Java can be nearly as fast as
creating storage on the stack in other languages.

For example, you can think of the C++ heap as a yard where each
object stakes out its own piece of turf. This real estate can become
abandoned sometime later and must be reused. In some JVMs, the
Java heap is quite different; it’s more like a conveyor belt that
moves forward every time you allocate a new object. This means
that object storage allocation is remarkably rapid. The “heap
pointer” is simply moved forward into virgin territory, so it’s
effectively the same as C++’s stack allocation. (Of course, there’s a
little extra overhead for bookkeeping but it’s nothing like searching
for storage.)

Now you might observe that the heap isn’t in fact a conveyor belt,
and if you treat it that way you’ll eventually start paging memory a

Chapter 4: Initialization & Cleanup 223

lot (which is a big performance hit) and later run out. The trick is
that the garbage collector steps in and while it collects the garbage it
compacts all the objects in the heap so that you’ve effectively moved
the “heap pointer” closer to the beginning of the conveyor belt and
further away from a page fault. The garbage collector rearranges
things and makes it possible for the high-speed, infinite-free-heap
model to be used while allocating storage.

To understand how this works, you need to get a little better idea of
the way the different garbage collector (GC) schemes work. A
simple but slow GC technique is reference counting. This means
that each object contains a reference counter, and every time a
handle is attached to an object the reference count is increased.
Every time a handle goes out of scope or is set to null, the reference
count is decreased. Thus, managing reference counts is a small but
constant overhead that happens throughout the lifetime of your
program. The garbage collector moves through the entire list of
objects and when it finds one with a reference count of zero it
releases that storage. The one drawback is that if objects circularly
refer to each other they can have non-zero reference counts while
still being garbage. Locating such self-referential groups requires
significant extra work for the garbage collector. Reference counting
is commonly used to explain one kind of garbage collection but it
doesn’t seem to be used in any JVM implementations.

In faster schemes, garbage collection is not based on reference
counting. Instead, it is based on the idea that any non-dead object
must ultimately be traceable back to a handle that lives either on
the stack or in static storage. The chain might go through several
layers of objects. Thus, if you start in the stack and the static storage
area and walk through all the handles you’ll find all the live objects.
For each handle that you find, you must trace into the object that it
points to and then follow all the handles in that object, tracing into
the objects they point to, etc., until you’ve moved through the entire
web that originated with the handle on the stack or in static storage.
Each object that you move through must still be alive. Note that
there is no problem with detached self-referential groups – these
are simply not found, and are therefore automatically garbage.

224 Thinking in Java www.BruceEckel.com

In the approach described here, the JVM uses an adaptive garbage-
collection scheme, and what it does with the live objects that it
locates depends on the variant currently being used. One of these
variants is stop-and-copy. This means that, for reasons that will
become apparent, the program is first stopped (this is not a
background collection scheme). Then, each live object that is found
is copied from one heap to another, leaving behind all the garbage.
In addition, as the objects are copied into the new heap they are
packed end-to-end, thus compacting the new heap (and allowing
new storage to simply be reeled off the end as previously described).

Of course, when an object is moved from one place to another, all
handles that point at (i.e. that reference) the object must be
changed. The handle that goes from the heap or the static storage
area to the object can be changed right away, but there can be other
handles pointing to this object that will be encountered later during
the “walk.” These are fixed up as they are found (you could imagine
a table that maps old addresses to new ones).

There are two issues that make these so-called “copy collectors”
inefficient. The first is the idea that you have two heaps and you
slosh all the memory back and forth between these two separate
heaps, maintaining twice as much memory as you actually need.
Some JVMs deal with this by allocating the heap in chunks as
needed and simply copying from one chunk to another.

The second issue is the copying. Once your program becomes stable
it might be generating little or no garbage. Despite that, a copy
collector will still copy all the memory from one place to another,
which is wasteful. To prevent this, some JVMs detect that no new
garbage is being generated and switch to a different scheme (this is
the “adaptive” part). This other scheme is called mark and sweep,
and it’s what earlier versions of Sun’s JVM used all the time. For
general use, mark and sweep is fairly slow, but when you know
you’re generating little or no garbage it’s fast.

Mark and sweep follows the same logic of starting from the stack
and static storage and tracing through all the handles to find live
objects. However, each time it finds a live object that object is
marked by setting a flag in it, but the object isn’t collected yet. Only

Chapter 4: Initialization & Cleanup 225

when the marking process is finished does the sweep occur. During
the sweep, the dead objects are released. However, no copying
happens, so if the collector chooses to compact a fragmented heap it
does so by shuffling objects around.

The “stop-and-copy” refers to the idea that this type of garbage
collection is not done in the background; instead, the program is
stopped while the GC occurs. In the Sun literature you’ll find many
references to garbage collection as a low-priority background
process, but it turns out that the GC was not implemented that way,
at least in earlier versions of the Sun JVM. Instead, the Sun garbage
collector ran when memory got low. In addition, mark-and-sweep
requires that the program be stopped.

As previously mentioned, in the JVM described here memory is
allocated in big blocks. If you allocate a large object, it gets its own
block. Strict stop-and-copy requires copying every live object from
the source heap to a new heap before you could free the old one,
which translates to lots of memory. With blocks, the GC can
typically use dead blocks to copy objects to as it collects. Each block
has a generation count to keep track of whether it’s alive. In the
normal case, only the blocks created since the last GC are
compacted; all other blocks get their generation count bumped if
they have been referenced from somewhere. This handles the
normal case of lots of short-lived temporary objects. Periodically, a
full sweep is made – large objects are still not copied (just get their
generation count bumped) and blocks containing small objects are
copied and compacted. The JVM monitors the efficiency of GC and
if it becomes a waste of time because all objects are long-lived then
it switches to mark-and-sweep. Similarly, the JVM keeps track of
how successful mark-and-sweep is, and if the heap starts to become
fragmented it switches back to stop-and-copy. This is where the
“adaptive” part comes in, so you end up with a mouthful: “adaptive
generational stop-and-copy mark-and-sweep.”

There are a number of additional speedups possible in a JVM. An
especially important one involves the operation of the loader and
Just-In-Time (JIT) compiler. When a class must be loaded
(typically, the first time you want to create an object of that class),
the .class file is located and the byte codes for that class are

226 Thinking in Java www.BruceEckel.com

brought into memory. At this point, one approach is to simply JIT
all the code, but this has two drawbacks: it takes a little more time,
which, compounded throughout the life of the program, can add up;
and it increases the size of the executable (byte codes are
significantly more compact than expanded JIT code) and this might
cause paging, which definitely slows down a program. An
alternative approach is lazy evaluation, which means that the code
is not JIT compiled until necessary. Thus, code that never gets
executed might never get JIT compiled.

Member initialization
Java goes out of its way to guarantee that variables are properly
initialized before they are used. In the case of variables that are
defined locally to a method, this guarantee comes in the form of a
compile-time error. So if you say:

void f() {
int i;
i++;

}

You’ll get an error message that says that i might not have been
initialized. Of course, the compiler could have given i a default
value, but it’s more likely that this is a programmer error and a
default value would have covered that up. Forcing the programmer
to provide an initialization value is more likely to catch a bug.

If a primitive is a data member of a class, however, things are a bit
different. Since any method can initialize or use that data, it might
not be practical to force the user to initialize it to its appropriate
value before the data is used. However, it’s unsafe to leave it with a
garbage value, so each primitive data member of a class is
guaranteed to get an initial value. Those values can be seen here:

//: c04:InitialValues.java
// Shows default initial values.

class Measurement {
boolean t;

Chapter 4: Initialization & Cleanup 227

char c;
byte b;
short s;
int i;
long l;
float f;
double d;
void print() {

System.out.println(
"Data type Initial value\n" +
"boolean " + t + "\n" +
"char " + c + "\n" +
"byte " + b + "\n" +
"short " + s + "\n" +
"int " + i + "\n" +
"long " + l + "\n" +
"float " + f + "\n" +
"double " + d);

}
}

public class InitialValues {
public static void main(String[] args) {

Measurement d = new Measurement();
d.print();
/* In this case you could also say:
new Measurement().print();
*/

}
} ///:~

The output of this program is:

Data type Initial value
boolean false
char
byte 0
short 0
int 0
long 0
float 0.0
double 0.0

228 Thinking in Java www.BruceEckel.com

The char value is a zero, which doesn’t print.

You’ll see later that when you define an object handle inside a class
without initializing it to a new object, that handle is given a special
value of null (which is a Java keyword).

You can see that even though the values are not specified, they
automatically get initialized. So at least there’s no threat of working
with uninitialized variables.

Specifying initialization
What happens if you want to give a variable an initial value? One
direct way to do this is simply to assign the value at the point you
define the variable in the class. (Notice you cannot do this in C++,
although C++ novices always try.) Here the field definitions in class
Measurement are changed to provide initial values:

class Measurement {
boolean b = true;
char c = 'x';
byte B = 47;
short s = 0xff;
int i = 999;
long l = 1;
float f = 3.14f;
double d = 3.14159;
//. . .

You can also initialize non-primitive objects in this same way. If
Depth is a class, you can insert a variable and initialize it like so:

class Measurement {
Depth o = new Depth();
boolean b = true;
// . . .

If you haven’t given o an initial value and you go ahead and try to
use it anyway, you’ll get a run-time error called an exception
(covered in Chapter 10).

You can even call a method to provide an initialization value:

Chapter 4: Initialization & Cleanup 229

class CInit {
int i = f();
//...

}

This method can have arguments, of course, but those arguments
cannot be other class members that haven’t been initialized yet.
Thus, you can do this:

class CInit {
int i = f();
int j = g(i);
//...

}

But you cannot do this:

class CInit {
int j = g(i);
int i = f();
//...

}

This is one place in which the compiler, appropriately, does
complain about forward referencing, since this has to do with the
order of initialization and not the way the program is compiled.

This approach to initialization is simple and straightforward. It has
the limitation that every object of type Measurement will get
these same initialization values. Sometimes this is exactly what you
need, but at other times you need more flexibility.

Constructor initialization
The constructor can be used to perform initialization, and this gives
you greater flexibility in your programming since you can call
methods and perform actions at run time to determine the initial
values. There’s one thing to keep in mind, however: you aren’t
precluding the automatic initialization, which happens before the
constructor is entered. So, for example, if you say:

class Counter {
int i;

230 Thinking in Java www.BruceEckel.com

Counter() { i = 7; }
// . . .

then i will first be initialized to zero, then to 7. This is true with all
the primitive types and with object handles, including those that are
given explicit initialization at the point of definition. For this
reason, the compiler doesn’t try to force you to initialize elements in
the constructor at any particular place, or before they are used –
initialization is already guaranteed4.

Order of initialization
Within a class, the order of initialization is determined by the order
that the variables are defined within the class. The variable
definitions may be scattered throughout in between method
definitions, but the variables are initialized before any methods can
be called – even the constructor. For example:

//: c04:OrderOfInitialization.java
// Demonstrates initialization order.

// When the constructor is called to create a
// Tag object, you'll see a message:
class Tag {
Tag(int marker) {

System.out.println("Tag(" + marker + ")");
}

}

class Card {
Tag t1 = new Tag(1); // Before constructor
Card() {

// Indicate we're in the constructor:
System.out.println("Card()");
t3 = new Tag(33); // Re-initialize t3

}
Tag t2 = new Tag(2); // After constructor

4 In contrast, C++ has the constructor initializer list that causes initialization to occur
before entering the constructor body, and is enforced for objects. See Thinking in C++, 2nd
edition (available on this book’s CD ROM and at www.BruceEckel.com).

Chapter 4: Initialization & Cleanup 231

void f() {
System.out.println("f()");

}
Tag t3 = new Tag(3); // At end

}

public class OrderOfInitialization {
public static void main(String[] args) {

Card t = new Card();
t.f(); // Shows that construction is done

}
} ///:~

In Card, the definitions of the Tag objects are intentionally
scattered about to prove that they’ll all get initialized before the
constructor is entered or anything else can happen. In addition, t3
is re-initialized inside the constructor. The output is:

Tag(1)
Tag(2)
Tag(3)
Card()
Tag(33)
f()

Thus, the t3 handle gets initialized twice, once before and once
during the constructor call. (The first object is dropped, so it can be
garbage-collected later.) This might not seem efficient at first, but it
guarantees proper initialization – what would happen if an
overloaded constructor were defined that did not initialize t3 and
there wasn’t a “default” initialization for t3 in its definition?

Static data initialization
When the data is static the same thing happens; if it’s a primitive
and you don’t initialize it, it gets the standard primitive initial
values. If it’s a handle to an object, it’s null unless you create a new
object and attach your handle to it.

If you want to place initialization at the point of definition, it looks
the same as for non-statics. There’s only a single piece of storage for
a static, regardless of how many objects are created. But the

232 Thinking in Java www.BruceEckel.com

question arises of when the static storage gets initialized. An
example makes this question clear:

//: c04:StaticInitialization.java
// Specifying initial values in a
// class definition.

class Bowl {
Bowl(int marker) {

System.out.println("Bowl(" + marker + ")");
}
void f(int marker) {

System.out.println("f(" + marker + ")");
}

}

class Table {
static Bowl b1 = new Bowl(1);
Table() {

System.out.println("Table()");
b2.f(1);

}
void f2(int marker) {

System.out.println("f2(" + marker + ")");
}
static Bowl b2 = new Bowl(2);

}

class Cupboard {
Bowl b3 = new Bowl(3);
static Bowl b4 = new Bowl(4);
Cupboard() {

System.out.println("Cupboard()");
b4.f(2);

}
void f3(int marker) {

System.out.println("f3(" + marker + ")");
}
static Bowl b5 = new Bowl(5);

}

public class StaticInitialization {

Chapter 4: Initialization & Cleanup 233

public static void main(String[] args) {
System.out.println(
"Creating new Cupboard() in main");

new Cupboard();
System.out.println(
"Creating new Cupboard() in main");

new Cupboard();
t2.f2(1);
t3.f3(1);

}
static Table t2 = new Table();
static Cupboard t3 = new Cupboard();

} ///:~

Bowl allows you to view the creation of a class, and Table and
Cupboard create static members of Bowl scattered through their
class definitions. Note that Cupboard creates a non-static Bowl
b3 prior to the static definitions. The output shows what happens:

Bowl(1)
Bowl(2)
Table()
f(1)
Bowl(4)
Bowl(5)
Bowl(3)
Cupboard()
f(2)
Creating new Cupboard() in main
Bowl(3)
Cupboard()
f(2)
Creating new Cupboard() in main
Bowl(3)
Cupboard()
f(2)
f2(1)
f3(1)

The static initialization occurs only if it’s necessary. If you don’t
create a Table object and you never refer to Table.b1 or
Table.b2, the static Bowl b1 and b2 will never be created.

234 Thinking in Java www.BruceEckel.com

However, they are initialized only when the first Table object is
created (or the first static access occurs). After that, the static
objects are not re-initialized.

The order of initialization is statics first, if they haven’t already
been initialized by a previous object creation, and then the non-
static objects. You can see the evidence of this in the output.

It’s helpful to summarize the process of creating an object. Consider
a class called Dog:

1. The first time an object of type Dog is created, or the first
time a static method or static field of class Dog is accessed,
the Java interpreter must locate Dog.class, which it does by
searching through the classpath.

2. As Dog.class is loaded (creating a Class object, which you’ll
learn about later), all of its static initializers are run. Thus,
static initialization takes place only once, as the Class
object is loaded for the first time.

3. When you create a new Dog(), the construction process for
a Dog object first allocates enough storage for a Dog object
on the heap.

4. This storage is wiped to zero, automatically setting all the
primitives in that Dog object to their default values (zero for
numbers and the equivalent for boolean and char) and the
handles to null.

5. Any initializations that occur at the point of field definition
are executed.

6. Constructors are executed. As you shall see in Chapter 6, this
might actually involve a fair amount of activity, especially
when inheritance is involved.

Explicit static initialization
Java allows you to group other static initializations inside a special
“static construction clause” (sometimes called a static block) in a
class. It looks like this:

Chapter 4: Initialization & Cleanup 235

class Spoon {
static int i;
static {

i = 47;
}
// . . .

It appears to be a method, but it’s just the static keyword followed
by a method body. This code, like other static initializations, is
executed only once, the first time you make an object of that class or
the first time you access a static member of that class (even if you
never make an object of that class). For example:

//: c04:ExplicitStatic.java
// Explicit static initialization
// with the "static" clause.

class Cup {
Cup(int marker) {

System.out.println("Cup(" + marker + ")");
}
void f(int marker) {

System.out.println("f(" + marker + ")");
}

}

class Cups {
static Cup c1;
static Cup c2;
static {

c1 = new Cup(1);
c2 = new Cup(2);

}
Cups() {

System.out.println("Cups()");
}

}

public class ExplicitStatic {
public static void main(String[] args) {

System.out.println("Inside main()");
Cups.c1.f(99); // (1)

236 Thinking in Java www.BruceEckel.com

}
// static Cups x = new Cups(); // (2)
// static Cups y = new Cups(); // (2)

} ///:~

The static initializers for Cups run when either the access of the
static object c1 occurs on the line marked (1), or if line (1) is
commented out and the lines marked (2) are uncommented. If both
(1) and (2) are commented out, the static initialization for Cups
never occurs. Also, it doesn’t matter if one or both of the lines
marked (2) are uncommented; the static initialization only occurs
once.

Non-static instance initialization
Java provides a similar syntax for initializing non-static variables
for each object. Here’s an example:

//: c04:Mugs.java
// Java "Instance Initialization."

class Mug {
Mug(int marker) {

System.out.println("Mug(" + marker + ")");
}
void f(int marker) {

System.out.println("f(" + marker + ")");
}

}

public class Mugs {
Mug c1;
Mug c2;
{

c1 = new Mug(1);
c2 = new Mug(2);
System.out.println("c1 & c2 initialized");

}
Mugs() {

System.out.println("Mugs()");
}
public static void main(String[] args) {

Chapter 4: Initialization & Cleanup 237

System.out.println("Inside main()");
Mugs x = new Mugs();

}
} ///:~

You can see that the instance initialization clause:

{
c1 = new Mug(1);
c2 = new Mug(2);
System.out.println("c1 & c2 initialized");

}

looks exactly like the static initialization clause except for the
missing static keyword. This syntax is necessary to support the
initialization of anonymous inner classes (see Chapter 8).

Array initialization
Initializing arrays in C is error-prone and tedious. C++ uses
aggregate initialization to make it much safer5. Java has no
“aggregates” like C++, since everything is an object in Java. It does
have arrays, and these are supported with array initialization.

An array is simply a sequence of either objects or primitives, all the
same type and packaged together under one identifier name. Arrays
are defined and used with the square-brackets indexing operator
[]. To define an array you simply follow your type name with empty
square brackets:

int[] a1;

You can also put the square brackets after the identifier to produce
exactly the same meaning:

int a1[];

5 See Thinking in C++, 2nd edition for a complete description of C++ aggregate
initialization.

238 Thinking in Java www.BruceEckel.com

This conforms to expectations from C and C++ programmers. The
former style, however, is probably a more sensible syntax, since it
says that the type is “an int array.” That style will be used in this
book.

The compiler doesn’t allow you to tell it how big the array is. This
brings us back to that issue of “handles.” All that you have at this
point is a handle to an array, and there’s been no space allocated for
the array. To create storage for the array you must write an
initialization expression. For arrays, initialization can appear
anywhere in your code, but you can also use a special kind of
initialization expression that must occur at the point where the
array is created. This special initialization is a set of values
surrounded by curly braces. The storage allocation (the equivalent
of using new) is taken care of by the compiler in this case. For
example:

int[] a1 = { 1, 2, 3, 4, 5 };

So why would you ever define an array handle without an array?

int[] a2;

Well, it’s possible to assign one array to another in Java, so you can
say:

a2 = a1;

What you’re really doing is copying a handle, as demonstrated here:

//: c04:Arrays.java
// Arrays of primitives.

public class Arrays {
public static void main(String[] args) {

int[] a1 = { 1, 2, 3, 4, 5 };
int[] a2;
a2 = a1;
for(int i = 0; i < a2.length; i++)
a2[i]++;

for(int i = 0; i < a1.length; i++)
System.out.println(
"a1[" + i + "] = " + a1[i]);

Chapter 4: Initialization & Cleanup 239

}
} ///:~

You can see that a1 is given an initialization value while a2 is not;
a2 is assigned later – in this case, to another array.

There’s something new here: all arrays have an intrinsic member
(whether they’re arrays of objects or arrays of primitives) that you
can query – but not change – to tell you how many elements there
are in the array. This member is length. Since arrays in Java, like C
and C++, start counting from element zero, the largest element you
can index is length - 1. If you go out of bounds, C and C++ quietly
accept this and allow you to stomp all over your memory, which is
the source of many infamous bugs. However, Java protects you
against such problems by causing a run-time error (an exception,
the subject of Chapter 10) if you step out of bounds. Of course,
checking every array access costs time and code and there’s no way
to turn it off, which means that array accesses might be a source of
inefficiency in your program if they occur at a critical juncture. For
Internet security and programmer productivity, the Java designers
thought that this was a worthwhile tradeoff.

What if you don’t know how many elements you’re going to need in
your array while you’re writing the program? You simply use new
to create the elements in the array. Here, new works even though
it’s creating an array of primitives (new won’t create a non-array
primitive):

//: c04:ArrayNew.java
// Creating arrays with new.
import java.util.*;

public class ArrayNew {
static Random rand = new Random();
static int pRand(int mod) {

return Math.abs(rand.nextInt()) % mod + 1;
}
public static void main(String[] args) {

int[] a;
a = new int[pRand(20)];
System.out.println(

240 Thinking in Java www.BruceEckel.com

"length of a = " + a.length);
for(int i = 0; i < a.length; i++)
System.out.println(
"a[" + i + "] = " + a[i]);

}
} ///:~

Since the size of the array is chosen at random (using the pRand()
method), it’s clear that array creation is actually happening at run-
time. In addition, you’ll see from the output of this program that
array elements of primitive types are automatically initialized to
“empty” values. (For numerics and char, this is zero, and for
boolean, it’s false.)

Of course, the array could also have been defined and initialized in
the same statement:

int[] a = new int[pRand(20)];

If you’re dealing with an array of non-primitive objects, you must
always use new. Here, the handle issue comes up again because
what you create is an array of handles. Consider the wrapper type
Integer, which is a class and not a primitive:

//: c04:ArrayClassObj.java
// Creating an array of non-primitive objects.
import java.util.*;

public class ArrayClassObj {
static Random rand = new Random();
static int pRand(int mod) {

return Math.abs(rand.nextInt()) % mod + 1;
}
public static void main(String[] args) {

Integer[] a = new Integer[pRand(20)];
System.out.println(
"length of a = " + a.length);

for(int i = 0; i < a.length; i++) {
a[i] = new Integer(pRand(500));
System.out.println(
"a[" + i + "] = " + a[i]);

}

Chapter 4: Initialization & Cleanup 241

}
} ///:~

Here, even after new is called to create the array:

Integer[] a = new Integer[pRand(20)];

it’s only an array of handles, and not until the handle itself is
initialized by creating a new Integer object is the initialization
complete:

a[i] = new Integer(pRand(500));

If you forget to create the object, however, you’ll get an exception at
run-time when you try to read the empty array location.

Take a look at the formation of the String object inside the print
statements. You can see that the handle to the Integer object is
automatically converted to produce a String representing the value
inside the object.

It’s also possible to initialize arrays of objects using the curly-brace-
enclosed list. There are two forms:

//: c04:ArrayInit.java
// Array initialization.

public class ArrayInit {
public static void main(String[] args) {

Integer[] a = {
new Integer(1),
new Integer(2),
new Integer(3),

};

Integer[] b = new Integer[] {
new Integer(1),
new Integer(2),
new Integer(3),

};
}

} ///:~

242 Thinking in Java www.BruceEckel.com

This is useful at times, but it’s more limited since the size of the
array is determined at compile time. The final comma in the list of
initializers is optional. (This feature makes for easier maintenance
of long lists.)

The second form of array initialization provides a convenient syntax
to create and call methods that can produce the same effect as C’s
variable argument lists (known as “varargs” in C). These can
include unknown quantity of arguments as well as unknown types.
Since all classes are ultimately inherited from the common root
class Object (a subject you will learn more about as the book
progresses), you can create a method that takes an array of Object
and call it like this:

//: c04:VarArgs.java
// Using the array syntax to create
// variable argument lists.

class A { int i; }

public class VarArgs {
static void f(Object[] x) {

for(int i = 0; i < x.length; i++)
System.out.println(x[i]);

}
public static void main(String[] args) {

f(new Object[] {
new Integer(47), new VarArgs(),
new Float(3.14), new Double(11.11) });

f(new Object[] {"one", "two", "three" });
f(new Object[] {new A(), new A(), new A()});

}
} ///:~

At this point, there’s not much you can do with these unknown
objects, and this program uses the automatic String conversion to
do something useful with each Object. In Chapter 12, which covers
run-time type identification (RTTI) you’ll learn how to discover the
exact type of such objects so that you can do something more
interesting with them.

Chapter 4: Initialization & Cleanup 243

Multidimensional arrays
Java allows you to easily create multidimensional arrays:

//: c04:MultiDimArray.java
// Creating multidimensional arrays.
import java.util.*;

public class MultiDimArray {
static Random rand = new Random();
static int pRand(int mod) {

return Math.abs(rand.nextInt()) % mod + 1;
}
static void prt(String s) {

System.out.println(s);
}
public static void main(String[] args) {

int[][] a1 = {
{ 1, 2, 3, },
{ 4, 5, 6, },

};
for(int i = 0; i < a1.length; i++)
for(int j = 0; j < a1[i].length; j++)
prt("a1[" + i + "][" + j +

"] = " + a1[i][j]);
// 3-D array with fixed length:
int[][][] a2 = new int[2][2][4];
for(int i = 0; i < a2.length; i++)
for(int j = 0; j < a2[i].length; j++)
for(int k = 0; k < a2[i][j].length;

k++)
prt("a2[" + i + "][" +

j + "][" + k +
"] = " + a2[i][j][k]);

// 3-D array with varied-length vectors:
int[][][] a3 = new int[pRand(7)][][];
for(int i = 0; i < a3.length; i++) {
a3[i] = new int[pRand(5)][];
for(int j = 0; j < a3[i].length; j++)
a3[i][j] = new int[pRand(5)];

}
for(int i = 0; i < a3.length; i++)

244 Thinking in Java www.BruceEckel.com

for(int j = 0; j < a3[i].length; j++)
for(int k = 0; k < a3[i][j].length;

k++)
prt("a3[" + i + "][" +

j + "][" + k +
"] = " + a3[i][j][k]);

// Array of non-primitive objects:
Integer[][] a4 = {
{ new Integer(1), new Integer(2)},
{ new Integer(3), new Integer(4)},
{ new Integer(5), new Integer(6)},

};
for(int i = 0; i < a4.length; i++)
for(int j = 0; j < a4[i].length; j++)
prt("a4[" + i + "][" + j +

"] = " + a4[i][j]);
Integer[][] a5;
a5 = new Integer[3][];
for(int i = 0; i < a5.length; i++) {
a5[i] = new Integer[3];
for(int j = 0; j < a5[i].length; j++)
a5[i][j] = new Integer(i*j);

}
for(int i = 0; i < a5.length; i++)
for(int j = 0; j < a5[i].length; j++)
prt("a5[" + i + "][" + j +

"] = " + a5[i][j]);
}

} ///:~

The code used for printing uses length so that it doesn’t depend on
fixed array sizes.

The first example shows a multidimensional array of primitives.
You delimit each vector in the array with curly braces:

int[][] a1 = {
{ 1, 2, 3, },
{ 4, 5, 6, },

};

Each set of square brackets moves you into the next level of the
array.

Chapter 4: Initialization & Cleanup 245

The second example shows a three-dimensional array allocated with
new. Here, the whole array is allocated at once:

int[][][] a2 = new int[2][2][4];

But the third example shows that each vector in the arrays that
make up the matrix can be of any length:

int[][][] a3 = new int[pRand(7)][][];
for(int i = 0; i < a3.length; i++) {
a3[i] = new int[pRand(5)][];
for(int j = 0; j < a3[i].length; j++)
a3[i][j] = new int[pRand(5)];

}

The first new creates an array with a random-length first element
and the rest undetermined. The second new inside the for loop fills
out the elements but leaves the third index undetermined until you
hit the third new.

You will see from the output that array values are automatically
initialized to zero if you don’t give them an explicit initialization
value.

You can deal with arrays of non-primitive objects in a similar
fashion, which is shown in the fourth example, demonstrating the
ability to collect many new expressions with curly braces:

Integer[][] a4 = {
{ new Integer(1), new Integer(2)},
{ new Integer(3), new Integer(4)},
{ new Integer(5), new Integer(6)},

};

The fifth example shows how an array of non-primitive objects can
be built up piece by piece:

Integer[][] a5;
a5 = new Integer[3][];
for(int i = 0; i < a5.length; i++) {
a5[i] = new Integer[3];
for(int j = 0; j < a5[i].length; j++)
a5[i][j] = new Integer(i*j);

246 Thinking in Java www.BruceEckel.com

}

The i*j is just to put an interesting value into the Integer.

Summary
This seemingly elaborate mechanism for initialization, the
constructor, should give you a strong hint about the critical
importance placed on initialization in the language. As Stroustrup
was designing C++, one of the first observations he made about
productivity in C was that improper initialization of variables causes
a significant portion of programming problems. These kinds of bugs
are hard to find, and similar issues apply to improper cleanup.
Because constructors allow you to guarantee proper initialization
and cleanup (the compiler will not allow an object to be created
without the proper constructor calls), you get complete control and
safety.

In C++, destruction is quite important because objects created with
new must be explicitly destroyed. In Java, the garbage collector
automatically releases the memory for all objects, so the equivalent
cleanup method in Java isn’t necessary much of the time. In cases
where you don’t need destructor-like behavior, Java’s garbage
collector greatly simplifies programming, and adds much-needed
safety in managing memory. Some garbage collectors can even clean
up other resources like graphics and file handles. However, the
garbage collector does add a run-time cost, the expense of which is
difficult to put into perspective because of the overall slowness of
Java interpreters at this writing. As this changes, we’ll be able to
discover if the overhead of the garbage collector will preclude the
use of Java for certain types of programs. (One of the issues is the
unpredictability of the garbage collector.)

Because of the guarantee that all objects will be constructed, there’s
actually more to the constructor than what is shown here. In
particular, when you create new classes using either composition or
inheritance the guarantee of construction also holds, and some
additional syntax is necessary to support this. You’ll learn about

Chapter 4: Initialization & Cleanup 247

composition, inheritance and how they affect constructors in future
chapters.

Exercises
1. Create a class with a default constructor (one that takes no

arguments) that prints a message. Create an object of this
class.

2. Add an overloaded constructor to Exercise 1 that takes a
String argument and prints it along with your message.

3. Create an array of object handles of the class you created in
Exercise 2, but don’t actually create objects to assign into the
array. When you run the program, notice whether the
initialization messages from the constructor calls are printed.

4. Complete Exercise 3 by creating objects to attach to the array
of handles.

5. Create an array of String objects and assign a string to each
element. Print out the array using a for loop.

6. Create a class called Dog with an overloaded bark() method.
This method should be overloaded based on various primitive
data types, and print different types of barking, howling, etc.
depending on which overloaded version is called. Write a
main() that calls all the different versions.

7. Modify Exercise 6 so that two of the overloaded methods have
two arguments (of two different types), but in reversed order
relative to each other. Verify that this works.

8. Create a class without a constructor, and then create an object
of that class in main() to verify that the default constructor is
automatically synthesized.

9. Create a class with two methods. Within the first method, call
the second method twice: the first time without using this,
and the second time using this.

248 Thinking in Java www.BruceEckel.com

10. Create a class with two (overloaded) constructors. Using this,
call the second constructor inside the first one.

11. Create a class with a finalize() method that prints a message.
In main(), create an object of your class. Explain the
behavior of your program.

12. Modify Exercise 11 so that your finalize() will always be
called.

13. Create a class called Tank that can be filled and emptied, and
has a death condition that it must be empty when the object is
cleaned up. Write a finalize() that verifies this death
condition. In main(), test the possible scenarios that can
occur when your Tank is used.

14. Create a class containing an int and a char that are not
initialized, and print out their values to verify that Java
performs default initialization.

15. Create a class containing an un-initialized String handle.
Demonstrate that this handle is initialized by Java to null.

16. Create a class with a String field that is initialized at the point
of definition, and another one that is initialized by the
constructor. What is the difference between the two
approaches?

17. Create a class with a static String field that is initialized at
the point of definition, and another one that is initialized by
the static block. Add a static method that prints both fields
and demonstrates that they are both initialized before they are
used.

18. Create a class with a String that is initialized using “instance
initialization.” Describe a use for this feature (other than the
one specified in the book).

19. Write a method that creates and initializes a two-dimensional
array of double. The size of the array is determined by the
arguments of the method, and the initialization values are a
range determined by beginning and ending values that are

Chapter 4: Initialization & Cleanup 249

also arguments of the method. Create a second method that
will print the array generated by the first method. In main()
test the methods by creating and printing several different
sizes of arrays.

20. Repeat Exercise 19 for a 3-dimensional array.

21. Comment the line marked (1) in ExplicitStatic.java and
verify that the static initialization clause is not called. Now un-
comment one of the lines marked (2) and verify that the static
initialization clause is called. Now un-comment the other line
marked (2) and verify that static initialization only occurs
once.

22. Experiment with Garbage.java by running the program
using the arguments “gc,” “finalize,” or “all.” Repeat the
process and see if you detect any patterns in the output.
Change the code so that System.runFinalization() is
called before System.gc() and observe the results.

 251

5: Hiding the
Implementation

A primary consideration in object-oriented design is
“separating the things that change from the things that
stay the same.”

This is particularly important for libraries. The user (client
programmer) of that library must be able to rely on the part they
use, and know that they won’t need to rewrite code if a new version
of the library comes out. On the flip side, the library creator must
have the freedom to make modifications and improvements with
the certainty that the client programmer’s code won’t be affected by
those changes.

This can be achieved through convention. For example, the library
programmer must agree to not remove existing methods when
modifying a class in the library, since that would break the client
programmer’s code. The reverse situation is thornier, however. In
the case of a data member, how can the library creator know which
data members have been accessed by client programmers? This is
also true with methods that are only part of the implementation of a
class, and not meant to be used directly by the client programmer.
But what if the library creator wants to rip out an old
implementation and put in a new one? Changing any of those
members might break a client programmer’s code. Thus the library
creator is in a strait jacket and can’t change anything.

To solve this problem, Java provides access specifiers to allow the
library creator to say what is available to the client programmer and
what is not. The levels of access control from “most access” to “least
access” are public, “friendly” (which has no keyword), protected,
and private. From the previous paragraph you might think that, as
a library designer, you’ll want to keep everything as “private” as

252 Thinking in Java www.BruceEckel.com

possible, and expose only the methods that you want the client
programmer to use. This is exactly right, even though it’s often
counterintuitive for people who program in other languages
(especially C) and are used to accessing everything without
restriction. By the end of this chapter you should be convinced of
the value of access control in Java.

The concept of a library of components and the control over who
can access the components of that library is not complete, however.
There’s still the question of how the components are bundled
together into a cohesive library unit. This is controlled with the
package keyword in Java, and the access specifiers are affected by
whether a class is in the same package or in a separate package. So
to begin this chapter, you’ll learn how library components are
placed into packages. Then you’ll be able to understand the
complete meaning of the access specifiers.

package: the library unit
A package is what you get when you use the import keyword to
bring in an entire library, such as

import java.util.*;

This brings in the entire utility library that’s part of the standard
Java distribution. Since, for example, the class ArrayList is in
java.util, you can now either specify the full name
java.util.ArrayList (which you can do without the import
statement), or you can simply say ArrayList (because of the
import).

If you want to bring in a single class, you can name that class in the
import statement

import java.util.ArrayList;

Now you can use ArrayList with no qualification. However, none
of the other classes in java.util are available.

The reason for all this importing is to provide a mechanism to
manage “name spaces.” The names of all your class members are

Chapter 5: Hiding the Implementation 253

insulated from each other. A method f() inside a class A will not
clash with an f() that has the same signature (argument list) in
class B. But what about the class names? Suppose you create a
stack class that is installed on a machine that already has a stack
class that’s written by someone else? With Java on the Internet, this
can happen without the user knowing it since classes can get
downloaded automatically in the process of running a Java
program.

This potential clashing of names is why it’s important to have
complete control over the name spaces in Java, and to be able to
create a completely unique name regardless of the constraints of the
Internet.

So far, most of the examples in this book have existed in a single file
and have been designed for local use, and haven’t bothered with
package names. (In this case the class name is placed in the “default
package.”) This is certainly an option, and for simplicity’s sake this
approach will be used whenever possible throughout the rest of the
book. However, if you’re planning to create libraries or programs
that are friendly to other Java programs on the same machine, you
must think about preventing class name clashes.

When you create a source-code file for Java, it’s commonly called a
compilation unit (sometimes a translation unit). Each compilation
unit must have a name ending in .java, and inside the compilation
unit there can be a public class that must have the same name as
the file (including capitalization, but excluding the .java filename
extension). There can be only one public class in each compilation
unit, otherwise the compiler will complain. The rest of the classes in
that compilation unit, if there are any, are hidden from the world
outside that package because they’re not public, and they comprise
“support” classes for the main public class.

When you compile a .java file you get an output file with exactly
the same name but an extension of .class for each class in the
.java file. Thus you can end up with quite a few .class files from a
small number of .java files. If you’ve programmed with a compiled
language, you might be used to the compiler spitting out an
intermediate form (usually an “obj” file) that is then packaged

254 Thinking in Java www.BruceEckel.com

together with others of its kind using a linker (to create an
executable file) or a librarian (to create a library). That’s not how
Java works. A working program is a bunch of .class files, which can
be packaged and compressed into a JAR file (using Java’s jar
archiver). The Java interpreter is responsible for finding, loading
and interpreting these files1.

A library is also a bunch of these class files. Each file has one class
that is public (you’re not forced to have a public class, but it’s
typical), so there’s one component for each file. If you want to say
that all these components (that are in their own separate .java and
.class files) belong together, that’s where the package keyword
comes in.

When you say:

package mypackage;

at the beginning of a file, (if you use a package statement, it must
appear as the first non-comment in the file) you’re stating that this
compilation unit is part of a library named mypackage. Or, put
another way, you’re saying that the public class name within this
compilation unit is under the umbrella of the name mypackage,
and if anyone wants to use the name they must either fully specify
the name or use the import keyword in combination with
mypackage (using the choices given previously). Note that the
convention for Java package names is to use all lowercase letters,
even for intermediate words.

For example, suppose the name of the file is MyClass.java. This
means there can be one and only one public class in that file, and
the name of that class must be MyClass (including the
capitalization):

package mypackage;
public class MyClass {
// . . .

1 There’s nothing in Java that forces the use of an interpreter. There exist native-code Java
compilers that generate a single executable file.

Chapter 5: Hiding the Implementation 255

Now, if someone wants to use MyClass or, for that matter, any of
the other public classes in mypackage, they must use the import
keyword to make the name or names in mypackage available. The
alternative is to give the fully-qualified name:

mypackage.MyClass m = new mypackage.MyClass();

The import keyword can make this much cleaner:

import mypackage.*;
// . . .
MyClass m = new MyClass();

It’s worth keeping in mind that what the package and import
keywords allow you to do, as a library designer, is to divide up the
single global name space so you won’t have clashing names, no
matter how many people get on the Internet and start writing
classes in Java.

Creating unique package names
You might observe that, since a package never really gets
“packaged” into a single file, a package could be made up of many
.class files, and things could get a bit cluttered. To prevent this, a
logical thing to do is to place all the .class files for a particular
package into a single directory; that is, use the hierarchical file
structure of the operating system to your advantage. This is one way
that Java handles the problem of clutter; you’ll see the other way
later when the jar utility is introduced.

Collecting the package files into a single subdirectory solves two
other problems: creating unique package names and finding those
classes that might be buried in a directory structure someplace. This
is accomplished, as was introduced in Chapter 2, by encoding the
path of the location of the .class file into the name of the package.
The compiler enforces this, but by convention, the first part of the
package name is the Internet domain name of the creator of the
class, reversed. Since Internet domain names are guaranteed to be
unique, if you follow this convention it’s guaranteed that your
package name will be unique and thus you’ll never have a name
clash. (That is, until you lose the domain name to someone else who

256 Thinking in Java www.BruceEckel.com

starts writing Java code with the same path names as you did.) Of
course, if you don’t have your own domain name then you must
fabricate an unlikely combination (such as your first and last name)
to create unique package names. If you’ve decided to start
publishing Java code it’s worth the relatively small effort to get a
domain name.

The second part of this trick is resolving the package name into a
directory on your machine, so when the Java program runs and it
needs to load the .class file (which it does dynamically, at the point
in the program where it needs to create an object of that particular
class, or the first time you access a static member of the class), it
can locate the directory where the .class file resides.

The Java interpreter proceeds as follows. First, it finds the
environment variable CLASSPATH (set via the operating system,
sometimes by the intstallation program that installs Java or a Java-
based tool on your machine). CLASSPATH contains one or more
directories that are used as roots for a search for .class files.
Starting at that root, the interpreter will take the package name and
replace each dot with a slash to generate a path name from the
CLASSPATH root (so package foo.bar.baz becomes
foo\bar\baz or foo/bar/baz or possibly something else,
depending on your operating system). This is then concatenated to
the various entries in the CLASSPATH. That’s where it looks for the
.class file with the name corresponding to the class you’re trying to
create. (It also searches some standard directories relative to where
the Java interpreter resides).

To understand this, consider my domain name, which is
bruceeckel.com. By reversing this, com.bruceeckel establishes
my unique global name for my classes. (The com, edu, org, etc.
extension was formerly capitalized in Java packages, but this was
changed in Java 2 so the entire package name is lowercase.) I can
further subdivide this by deciding that I want to create a library
named util, so I’ll end up with a package name:

package com.bruceeckel.util;

Now this package name can be used as an umbrella name space for
the following two files:

Chapter 5: Hiding the Implementation 257

//: com:bruceeckel:util:Vector.java
// Creating a package.
package com.bruceeckel.util;

public class Vector {
public Vector() {

System.out.println(
"com.bruceeckel.util.Vector");

}
} ///:~

When you create your own packages, you’ll discover that the
package statement must be the first non-comment code in the file.
The second file looks much the same:

//: com:bruceeckel:util:List.java
// Creating a package .
package com.bruceeckel.util;

public class List {
public List() {

System.out.println(
"com.bruceeckel.util.List");

}
} ///:~

Both of these files are placed in the subdirectory on my system:

C:\DOC\JavaT\com\bruceeckel\util

If you walk back through this, you can see the package name
com.bruceeckel.util, but what about the first portion of the
path? That’s taken care of in the CLASSPATH environment
variable, which is, on my machine:

CLASSPATH=.;D:\JAVA\LIB;C:\DOC\JavaT

You can see that the CLASSPATH can contain a number of
alternative search paths. There’s a variation when using JAR files,
however. You must put the name of the JAR file in the classpath,
not just the path where it’s located. So for a JAR named grape.jar
your classpath would include:

258 Thinking in Java www.BruceEckel.com

CLASSPATH=.;D:\JAVA\LIB;C:\flavors\grape.jar

Once the classpath is set up properly, the following file can be
placed in any directory:

//: c05:LibTest.java
// Uses the library.
import com.bruceeckel.util.*;

public class LibTest {
public static void main(String[] args) {

Vector v = new Vector();
List l = new List();

}
} ///:~

When the compiler encounters the import statement, it begins
searching at the directories specified by CLASSPATH, looking for
subdirectory com\bruceeckel\util, then seeking the compiled files
of the appropriate names (Vector.class for Vector and
List.class for List). Note that both the classes and the desired
methods in Vector and List must be public.

Setting the CLASSPATH has been such a trial for beginning Java
users (it was for me, when I started) that Sun made the JDK in Java
2 a bit smarter. You’ll find that, when you install it, even if you don’t
set a CLASSPATH you’ll be able to compile and run basic Java
programs. To compile and run the source-code package for this
book (available on the CD ROM packaged with the book, or at
www.BruceEckel.com), however, you will need to make some
modifications to your CLASSPATH (these are explained in the
source-code package).

Collisions
What happens if two libraries are imported via * and they include
the same names? For example, suppose a program does this:

import com.bruceeckel.util.*;
import java.util.*;

Since java.util.* also contains a Vector class, this causes a
potential collision. However, as long as you don’t write the code that

Chapter 5: Hiding the Implementation 259

actually causes the collision, everything is OK – this is good because
otherwise you might end up doing a lot of typing to prevent
collisions that would never happen.

The collision does occur if you now try to make a Vector:

Vector v = new Vector();

Which Vector class does this refer to? The compiler can’t know,
and the reader can’t know either. So the compiler complains and
forces you to be explicit. If I want the standard Java Vector, for
example, I must say:

java.util.Vector v = new java.util.Vector();

Since this (along with the CLASSPATH) completely specifies the
location of that Vector, there’s no need for the import java.util.*
statement unless I’m using something else from java.util.

A custom tool library
With this knowledge, you can now create your own libraries of tools
to reduce or eliminate duplicate code. Consider, for example,
creating an alias for System.out.println() to reduce typing. This
can be part of a package called tools:

//: com:bruceeckel:tools:P.java
// The P.rint & P.rintln shorthand.
package com.bruceeckel.tools;

public class P {
public static void rint(String s) {

System.out.print(s);
}
public static void rintln(String s) {

System.out.println(s);
}

} ///:~

You can use this shorthand to print a String either with a newline
(P.rintln()) or without a newline (P.rint()).

260 Thinking in Java www.BruceEckel.com

You can guess that the location of this file must be in a directory
that starts at one of the CLASSPATH locations, then continues
com/bruceeckel/tools. After compiling, the P.class file can be
used anywhere on your system with an import statement:

//: c05:ToolTest.java
// Uses the tools library.
import com.bruceeckel.tools.*;

public class ToolTest {
public static void main(String[] args) {

P.rintln("Available from now on!");
P.rintln("" + 100); // Force it to be a String
P.rintln("" + 100L);
P.rintln("" + 3.14159);

}
} ///:~

Notice that all objects can be easily be forced into String
representations by putting them in a String expression; in the
above case, starting the expression with an empty String does the
trick. But this brings up an interesting observation. If you call
System.out.println(100), it works without casting it to a
String. With some extra overloading, you can get the P class to do
this as well (this is an exercise at the end of the chapter).

So from now on, whenever you come up with a useful new utility,
you can add it to the tools directory. (Or to your own personal util
or tools directory.)

Using imports to change behavior
A feature that is missing from Java is C’s conditional compilation,
which allows you to change a switch and get different behavior
without changing any other code. The reason such a feature was left
out of Java is probably because it is most often used in C to solve
cross-platform issues: different portions of the code are compiled
depending on the platform that the code is being compiled for.
Since Java is intended to be automatically cross-platform, such a
feature should not be necessary.

Chapter 5: Hiding the Implementation 261

However, there are other valuable uses for conditional compilation.
A very common use is for debugging code. The debugging features
are enabled during development, and disabled for a shipping
product. Allen Holub (www.holub.com) came up with the idea of
using packages to mimic conditional compilation. He used this to
create a Java version of C’s very useful assertion mechanism,
whereby you can say “this should be true” or “this should be false”
and if the statement doesn’t agree with your assertion you’ll find out
about it. Such a tool is quite helpful during debugging.

Here is the class that you’ll use for debugging:

//: com:bruceeckel:tools:debug:Assert.java
// Assertion tool for debugging.
package com.bruceeckel.tools.debug;

public class Assert {
private static void perr(String msg) {

System.err.println(msg);
}
public final static void is_true(boolean exp) {

if(!exp) perr("Assertion failed");
}
public final static void is_false(boolean exp){

if(exp) perr("Assertion failed");
}
public final static void
is_true(boolean exp, String msg) {

if(!exp) perr("Assertion failed: " + msg);
}
public final static void
is_false(boolean exp, String msg) {

if(exp) perr("Assertion failed: " + msg);
}

} ///:~

This class simply encapsulates Boolean tests, which print error
messages if they fail. In Chapter 10, you’ll learn about a more
sophisticated tool for dealing with errors called exception handling,
but the perr() method will work fine in the meantime.

When you want to use this class, you add a line in your program:

262 Thinking in Java www.BruceEckel.com

import com.bruceeckel.tools.debug.*;

To remove the assertions so you can ship the code, a second Assert
class is created, but in a different package:

//: com:bruceeckel:tools:Assert.java
// Turning off the assertion output
// so you can ship the program.
package com.bruceeckel.tools;

public class Assert {
public final static void is_true(boolean exp){}
public final static void is_false(boolean exp){}
public final static void
is_true(boolean exp, String msg) {}
public final static void
is_false(boolean exp, String msg) {}

} ///:~

Now if you change the previous import statement to:

import com.bruceeckel.tools.*;

The program will no longer print out assertions. Here’s an example:

//: c05:TestAssert.java
// Demonstrating the assertion tool.
// Comment the following, and uncomment the
// subsequent line to change assertion behavior:
import com.bruceeckel.tools.debug.*;
// import com.bruceeckel.tools.*;

public class TestAssert {
public static void main(String[] args) {

Assert.is_true((2 + 2) == 5);
Assert.is_false((1 + 1) == 2);
Assert.is_true((2 + 2) == 5, "2 + 2 == 5");
Assert.is_false((1 + 1) == 2, "1 +1 != 2");

}
} ///:~

By changing the package that’s imported, you change your code
from the debug version to the production version. This technique
can be used for any kind of conditional code.

Chapter 5: Hiding the Implementation 263

Package caveat
It’s worth remembering that anytime you create a package, you
implicitly specify a directory structure when you give the package a
name. The package must live in the directory indicated by its name,
which must be a directory that is searchable starting from the
CLASSPATH. Experimenting with the package keyword can be a
bit frustrating at first, because unless you adhere to the package-
name to directory-path rule, you’ll get a lot of mysterious run-time
messages about not being able to find a particular class, even if that
class is sitting there in the same directory. If you get a message like
this, try commenting out the package statement, and if it runs
you’ll know where the problem lies.

Java access specifiers
The Java access specifiers public, protected and private are
placed in front of each definition for each member in your class,
whether it’s a field or a method. Each access specifier controls the
access for only that particular definition. This is a distinct contrast
to C++, in which the access specifier controls all the definitions
following it until another access specifier comes along.

One way or another, everything has some kind of access specified
for it. In the following sections, you’ll learn all about the various
types of access, starting with the default access.

“Friendly”
What if you give no access specifier at all, as in all the examples
before this chapter? The default access has no keyword, but it is
commonly referred to as “friendly.” It means that all the other
classes in the current package have access to the friendly member,
but to all the classes outside of this package the member appears to
be private. Since a compilation unit – a file – can belong only to a
single package, all the classes within a single compilation unit are
automatically friendly with each other. Thus, friendly elements are
also said to have package access.

264 Thinking in Java www.BruceEckel.com

Friendly access allows you to group related classes together in a
package so that they can easily interact with each other. When you
put classes together in a package (thus granting mutual access to
their friendly members; e.g. making them “friends”) you “own” the
code in that package. It makes sense that only code that you own
should have friendly access to other code that you own. You could
say that friendly access gives a meaning or a reason for grouping
classes together in a package. In many languages the way you
organize your definitions in files can be willy-nilly, but in Java
you’re compelled to organize them in a sensible fashion. In
addition, you’ll probably want to exclude classes that shouldn’t have
access to the classes being defined in the current package.

The class controls which code has access to its members. There’s no
magic way to “break in;” code from another package can’t show up
and say, “Hi, I’m a friend of Bob’s!” and expect to see the
protected, friendly, and private members of Bob. The only way
to grant access to a member is to:

1. Make the member public. Then everybody, everywhere, can
access it.

2. Make the member friendly by leaving off any access specifier,
and put the other classes in the same package. Then the
other classes can access the member.

3. As you’ll see in a later chapter where inheritance is
introduced, an inherited class can access a protected
member as well as a public member (but not private
members). It can access friendly members only if the two
classes are in the same package. But don’t worry about that
now.

4. Provide “accessor/mutator” methods (also known as
“get/set” methods) that read and change the value. This is
the most civilized approach in terms of OOP, and it is
fundamental to Java Beans, as you’ll see in Chapter 13.

Chapter 5: Hiding the Implementation 265

public: interface access
When you use the public keyword, it means that the member
declaration that immediately follows public is available to
everyone, in particular to the client programmer who uses the
library. Suppose you define a package dessert containing the
following compilation unit:

//: c05:dessert:Cookie.java
// Creates a library.
package c05.dessert;

public class Cookie {
public Cookie() {
System.out.println("Cookie constructor");
}
void bite() { System.out.println("bite"); }

} ///:~

Remember, Cookie.java must reside in a subdirectory called
dessert, in a directory under c05 (indicating Chapter 5 of this
book) that must be under one of the CLASSPATH directories. Don’t
make the mistake of thinking that Java will always look at the
current directory as one of the starting points for searching. If you
don’t have a ‘.’ as one of the paths in your CLASSPATH, Java won’t
look there.

Now if you create a program that uses Cookie:

//: c05:Dinner.java
// Uses the library.
import c05.dessert.*;

public class Dinner {
public Dinner() {
System.out.println("Dinner constructor");
}
public static void main(String[] args) {

Cookie x = new Cookie();
//! x.bite(); // Can't access

}
} ///:~

266 Thinking in Java www.BruceEckel.com

You can create a Cookie object, since its constructor is public and
the class is public. (We’ll look more at the concept of a public
class later.) However, the bite() member is inaccessible inside
Dinner.java since bite() is friendly only within package dessert.

The default package
You might be surprised to discover that the following code
compiles, even though it would appear that it breaks the rules:

//: c05:Cake.java
// Accesses a class in a
// separate compilation unit.

class Cake {
public static void main(String[] args) {

Pie x = new Pie();
x.f();

}
} ///:~

In a second file, in the same directory:

//: c05:Pie.java
// The other class.

class Pie {
void f() { System.out.println("Pie.f()"); }

} ///:~

You might initially view these as completely foreign files, and yet
Cake is able to create a Pie object and call its f() method! (Note
that you must have ‘.’ in your CLASSPATH in order for the files to
compile.) You’d typically think that Pie and f() are friendly and
therefore not available to Cake. They are friendly – that part is
correct. The reason that they are available in Cake.java is because
they are in the same directory and have no explicit package name.
Java treats files like this as implicitly part of the “default package”
for that directory, and therefore friendly to all the other files in that
directory.

Chapter 5: Hiding the Implementation 267

private: you can’t touch that!
The private keyword means that no one can access that member
except that particular class, inside methods of that class. Other
classes in the same package cannot access private members, so it’s
as if you’re even insulating the class against yourself. On the other
hand, it’s not unlikely that a package might be created by several
people collaborating together, so private allows you to freely
change that member without concern that it will affect another class
in the same package.

The default “friendly” package access often provides an adequate
amount of hiding; remember, a “friendly” member is inaccessible to
the user of the package. This is nice, since the default access is the
one that you normally use (and the one that you’ll get if you forget
to add any access control). Thus, you’ll typically think about access
for the members that you explicitly want to make public for the
client programmer, and as a result, you might not initially think
you’ll use the private keyword often since it’s tolerable to get away
without it. (This is a distinct contrast with C++.) However, it turns
out that the consistent use of private is very important, especially
where multithreading is concerned. (As you’ll see in Chapter 14.)

Here’s an example of the use of private:

//: c05:IceCream.java
// Demonstrates "private" keyword.

class Sundae {
private Sundae() {}
static Sundae makeASundae() {

return new Sundae();
}

}

public class IceCream {
public static void main(String[] args) {

//! Sundae x = new Sundae();
Sundae x = Sundae.makeASundae();

}
} ///:~

268 Thinking in Java www.BruceEckel.com

This shows an example in which private comes in handy: you
might want to control how an object is created and prevent
someone from directly accessing a particular constructor (or all of
them). In the example above, you cannot create a Sundae object
via its constructor; instead you must call the makeASundae()
method to do it for you2.

Any method that you’re certain is only a “helper” method for that
class can be made private to ensure that you don’t accidentally use
it elsewhere in the package and thus prohibit you from changing or
removing the method. Making a method private guarantees that
you retain this option.

The same is true for a private field inside a class – unless you must
expose the underlying implementation (which is a much rarer
situation than you might think) you should make all fields private.
However, just because a handle to an object is private inside a
class doesn't mean that some other object can't have a public
handle to the same object. (See Appendix A for issues about
aliasing.)

protected: “sort of friendly”
The protected access specifier requires a jump ahead to
understand. First, you should be aware that you don’t need to
understand this section to continue through the book up through
inheritance (Chapter 6). But for completeness, here is a brief
description and example using protected.

The protected keyword deals with a concept called inheritance,
which takes an existing class and adds new members to that class
without touching the existing class, which we refer to as the base
class. You can also change the behavior of existing members of the
class. To inherit from an existing class, you say that your new class
extends an existing class, like this:

2 There’s another effect in this case: Since the default constructor is the only one defined,
and it’s private, it will prevent inheritance of this class. (A subject that will be introduced
in Chapter 6.)

Chapter 5: Hiding the Implementation 269

class Foo extends Bar {

The rest of the class definition looks the same.

If you create a new package and you inherit from a class in another
package, the only members you have access to are the public
members of the original package. (Of course, if you perform the
inheritance in the same package, you have the normal package
access to all the “friendly” members.) Sometimes the creator of the
base class would like to take a particular member and grant access
to derived classes but not the world in general. That’s what
protected does. If you refer back to the file Cookie.java on page
265, the following class cannot access the “friendly” member:

//: c05:ChocolateChip.java
// Can't access friendly member
// in another class.
import c05.dessert.*;

public class ChocolateChip extends Cookie {
public ChocolateChip() {
System.out.println(

"ChocolateChip constructor");
}
public static void main(String[] args) {

ChocolateChip x = new ChocolateChip();
//! x.bite(); // Can't access bite

}
} ///:~

One of the interesting things about inheritance is that if a method
bite() exists in class Cookie, then it also exists in any class
inherited from Cookie. But since bite() is “friendly” in a foreign
package, it’s unavailable to us in this one. Of course, you could
make it public, but then everyone would have access and maybe
that’s not what you want. If we change the class Cookie as follows:

public class Cookie {
public Cookie() {

System.out.println("Cookie constructor");
}
protected void bite() {

270 Thinking in Java www.BruceEckel.com

System.out.println("bite");
}

}

then bite() still has “friendly” access within package dessert, but
it is also accessible to anyone inheriting from Cookie. However, it
is not public.

Interface and
implementation

Access control is often referred to as implementation hiding.
Wrapping data and methods within classes in combination with
implementation hiding is often called encapsulation3. The result is
a data type with characteristics and behaviors.

Access control puts boundaries within a data type for two important
reasons. The first is to establish what the client programmers can
and can’t use. You can build your internal mechanisms into the
structure without worrying that the client programmers will
accidentally treat the internals as part of the interface that they
should be using.

This feeds directly into the second reason, which is to separate the
interface from the implementation. If the structure is used in a set
of programs, but client programmers can’t do anything but send
messages to the public interface, then you can change anything
that’s not public (e.g. “friendly,” protected, or private) without
requiring modifications to client code.

We’re now in the world of object-oriented programming, where a
class is actually describing “a class of objects,” as you would
describe a class of fishes or a class of birds. Any object belonging to
this class will share these characteristics and behaviors. The class is
a description of the way all objects of this type will look and act.

3 However, people often refer to implementation hiding alone as encapsulation.

Chapter 5: Hiding the Implementation 271

In the original OOP language, Simula-67, the keyword class was
used to describe a new data type. The same keyword has been used
for most object-oriented languages. This is the focal point of the
whole language: the creation of new data types that are more than
just boxes containing data and methods.

The class is the fundamental OOP concept in Java. It is one of the
keywords that will not be set in bold in this book – it becomes
annoying with a word repeated as often as “class.”

For clarity, you might prefer a style of creating classes that puts the
public members at the beginning, followed by the protected,
friendly and private members. The advantage is that the user of
the class can then read down from the top and see first what’s
important to them (the public members, because they can be
accessed outside the file) and stop reading when they encounter the
non-public members, which are part of the internal
implementation:

public class X {
public void pub1() { /* . . . */ }
public void pub2() { /* . . . */ }
public void pub3() { /* . . . */ }
private void priv1() { /* . . . */ }
private void priv2() { /* . . . */ }
private void priv3() { /* . . . */ }
private int i;
// . . .

}

This will make it only partially easier to read because the interface
and implementation are still mixed together. That is, you still see
the source code – the implementation – because it’s right there in
the class. In addition, the comment documentation supported by
javadoc (described in Chapter 2) lessens the importance of code
readability by the client programmer. Displaying the interface to the
consumer of a class is really the job of the class browser, a tool
whose job is to look at all the available classes and show you what
you can do with them (i.e. what members are available) in a useful
fashion. By the time you read this, browsers should be an expected
part of any good Java development tool.

272 Thinking in Java www.BruceEckel.com

Class access
In Java, the access specifiers can also be used to determine which
classes within a library will be available to the users of that library.
If you want a class to be available to a client programmer, you place
the public keyword somewhere before the opening brace of the
class body. This controls whether the client programmer can even
create an object of the class.

To control the access of a class, the specifier must appear before the
keyword class. Thus you can say:

public class Widget {

Now if the name of your library is mylib any client programmer
can access Widget by saying

import mylib.Widget;

or

import mylib.*;

However, there’s an extra pair of constraints:

1. There can be only one public class per compilation unit
(file). The idea is that each compilation unit has a single
public interface represented by that public class. It can have
as many supporting “friendly” classes as you want. If you
have more than one public class inside a compilation unit,
the compiler will give you an error message.

2. The name of the public class must exactly match the name
of the file containing the compilation unit, including
capitalization. So for Widget, the name of the file must be
Widget.java, not widget.java or WIDGET.java. Again,
you’ll get a compile-time error if they don’t agree.

3. It is possible, though not typical, to have a compilation unit
with no public class at all. In this case, you can name the file
whatever you like.

Chapter 5: Hiding the Implementation 273

What if you’ve got a class inside mylib that you’re just using to
accomplish the tasks performed by Widget or some other public
class in mylib? You don’t want to go to the bother of creating
documentation for the client programmer, and you think that
sometime later you might want to completely change things and rip
out your class altogether, substituting a different one. To give you
this flexibility, you need to ensure that no client programmers
become dependent on your particular implementation details
hidden inside mylib. To accomplish this, you just leave the public
keyword off the class, in which case it becomes friendly. (That class
can be used only within that package.)

Note that a class cannot be private (that would make it accessible
to no one but the class), or protected4. So you have only two
choices for class access: “friendly” or public. If you don’t want
anyone else to have access to that class, you can make all the
constructors private, thereby preventing anyone but you, inside a
static member of the class, from creating an object of that class5.
Here’s an example:

//: c05:Lunch.java
// Demonstrates class access specifiers.
// Make a class effectively private
// with private constructors:

class Soup {
private Soup() {}
// (1) Allow creation via static method:
public static Soup makeSoup() {

return new Soup();
}
// (2) Create a static object and
// return a reference upon request.
// (The "Singleton" pattern):
private static Soup ps1 = new Soup();

4 Actually, an inner class can be private or protected, but that’s a special case. These will be
introduced in Chapter 7.

5 You can also do it by inheriting (Chapter 6) from that class.

274 Thinking in Java www.BruceEckel.com

public static Soup access() {
return ps1;

}
public void f() {}

}

class Sandwich { // Uses Lunch
void f() { new Lunch(); }

}

// Only one public class allowed per file:
public class Lunch {
void test() {

// Can't do this! Private constructor:
//! Soup priv1 = new Soup();
Soup priv2 = Soup.makeSoup();
Sandwich f1 = new Sandwich();
Soup.access().f();

}
} ///:~

Up to now, most of the methods have been returning either void or
a primitive type so the definition:

public static Soup access() {
return ps1;

}

might look a little confusing at first. The word before the method
name (access) tells what the method returns. So far this has most
often been void, which means it returns nothing. But you can also
return a handle to an object, which is what happens here. This
method returns a handle to an object of class Soup.

The class Soup shows how to prevent direct creation of a class by
making all the constructors private. Remember that if you don’t
explicitly create at least one constructor, the default constructor (a
constructor with no arguments) will be created for you. By writing
the default constructor, it won’t be created automatically. By
making it private, no one can create an object of that class. But
now how does anyone use this class? The above example shows two
options. First, a static method is created that creates a new Soup

Chapter 5: Hiding the Implementation 275

and returns a handle to it. This could be useful if you want to do
some extra operations on the Soup before returning it, or if you
want to keep count of how many Soup objects to create (perhaps to
restrict their population).

The second option uses what’s called a design pattern, which will be
discussed later in this book. This particular pattern is called a
“singleton” because it allows only a single object to ever be created.
The object of class Soup is created as a static private member of
Soup, so there’s one and only one, and you can’t get at it except
through the public method access().

As previously mentioned, if you don’t put an access specifier for
class access it defaults to “friendly.” This means that an object of
that class can be created by any other class in the package, but not
outside the package. (Remember, all the files within the same
directory that don’t have explicit package declarations are
implicitly part of the default package for that directory.) However, if
a static member of that class is public, the client programmer can
still access that static member even though they cannot create an
object of that class.

Summary
In any relationship it’s important to have boundaries that are
respected by all parties involved. When you create a library, you
establish a relationship with the user of that library – the client
programmer – who is another programmer, but one putting
together an application or using your library to build a bigger
library.

Without rules, client programmers can do anything they want with
all the members of a class, even if you might prefer they don’t
directly manipulate some of the members. Everything’s naked to
the world.

This chapter looked at how classes are built to form libraries; first,
the way a group of classes is packaged within a library, and second,
the way the class controls access to its members.

276 Thinking in Java www.BruceEckel.com

It is estimated that a C programming project begins to break down
somewhere between 50K and 100K lines of code because C has a
single “name space” so names begin to collide, causing an extra
management overhead. In Java, the package keyword, the package
naming scheme and the import keyword give you complete control
over names, so the issue of name collision is easily avoided.

There are two reasons for controlling access to members. The first is
to keep users’ hands off tools that they shouldn’t touch; tools that
are necessary for the internal machinations of the data type, but not
part of the interface that users need to solve their particular
problems. So making methods and fields private is a service to
users because they can easily see what’s important to them and
what they can ignore. It simplifies their understanding of the class.

The second and most important reason for access control is to allow
the library designer to change the internal workings of the class
without worrying about how it will affect the client programmer.
You might build a class one way at first, and then discover that
restructuring your code will provide much greater speed. If the
interface and implementation are clearly separated and protected,
you can accomplish this without forcing the user to rewrite their
code.

Access specifiers in Java give valuable control to the creator of a
class. The users of the class can clearly see exactly what they can use
and what to ignore. More important, though, is the ability to ensure
that no user becomes dependent on any part of the underlying
implementation of a class. If you know this as the creator of the
class, you can change the underlying implementation with the
knowledge that no client programmer will be affected by the
changes because they can’t access that part of the class.

When you have the ability to change the underlying
implementation, you can not only improve your design later, but
you also have the freedom to make mistakes. No matter how
carefully you plan and design you’ll make mistakes. Knowing that
it’s relatively safe to make these mistakes means you’ll be more
experimental, you’ll learn faster and you’ll finish your project
sooner.

Chapter 5: Hiding the Implementation 277

The public interface to a class is what the user does see, so that is
the most important part of the class to get “right” during analysis
and design. Even that allows you some leeway for change. If you
don’t get the interface right the first time, you can add more
methods, as long as you don’t remove any that client programmers
have already used in their code.

Exercises
1. Write a program that creates an ArrayList object without

explicitly importing java.util.*.

2. In the section labeled “package: the library unit,” turn the code
fragments concerning mypackage into a compiling and
running set of Java files.

3. In the section labeled “Collisions,” take the code fragments
and turn them into a program, and verify that collisions do in
fact occur.

4. Generalize the class P defined in this chapter by adding all the
overloaded versions of rint() and rintln() necessary to
handle all the different basic Java types.

5. Change the import statement in TestAssert.java to enable
and disable the assertion mechanism.

6. Create a class with public, private, protected, and
“friendly” data members and method members. Create an
object of this class and see what kind of compiler messages
you get when you try to access all the class members. Be aware
that classes in the same directory are part of the “default”
package.

7. Create a class with protected data. Create a second class in
the same file with a method that manipulates the protected
data in the first class.

8. Change the class Cookie as specified in the section labeled
“protected: ‘sort of friendly.’” Verify that bite() is not public.

278 Thinking in Java www.BruceEckel.com

9. In the section titled “Class access” you’ll find code fragments
describing mylib and Widget. Create this library, then create
a Widget in a class that is not part of the mylib package.

10. Create a new directory and edit your CLASSPATH to include
that new directory. Copy the P.class file to your new directory
and then change the names of the file, the P class inside and
the method names. (You might also want to add additional
output to watch how it works.) Create another program in a
different directory that uses your new class.

11. Following the form of the example Lunch.java, create a class
called ConnectionManager that manages a fixed array of
Connection objects. The client programmer must not be able
to explicitly create Connection objects, but can only get them
via a static method in ConnectionManager. When the
ConnectionManager runs out of objects, it returns a null
handle. Test the classes in main().

12. Create the following file in the c05/local directory
(presumably in your CLASSPATH):

///: c05:local:PackagedClass.java
package c05.local;
class PackagedClass {
public PackagedClass() {

System.out.println(
"Creating a packaged class");

}
} ///:~

Then create the following file in a directory other than c05:

///: c05:foreign:Foreign.java
package c05.foreign;
import c05.local.*;
public class Foreign {

public static void main (String[] args) {
PackagedClass pc = new PackagedClass();

}
} ///:~

Chapter 5: Hiding the Implementation 279

Explain why the compiler generates an error. Would making the
Foreign class part of the c05.local package change anything?

 281

6: Reusing Classes
One of the most compelling features about Java is code
reuse. But to be revolutionary, you’ve got to be able to do
a lot more than copy code and change it.

That’s the approach used in procedural languages like C, and it
hasn’t worked very well. Like everything in Java, the solution
revolves around the class. You reuse code by creating new classes,
but instead of creating them from scratch, you use existing classes
that someone has already built and debugged.

The trick is to use the classes without soiling the existing code. In
this chapter you’ll see two ways to accomplish this. The first is quite
straightforward: You simply create objects of your existing class
inside the new class. This is called composition because the new
class is composed of objects of existing classes. You’re simply
reusing the functionality of the code, not its form.

The second approach is more subtle. It creates a new class as a type
of an existing class. You literally take the form of the existing class
and add code to it without modifying the existing class. This magical
act is called inheritance, and the compiler does most of the work.
Inheritance is one of the cornerstones of object-oriented
programming and has additional implications that will be explored
in the Chapter 7.

It turns out that much of the syntax and behavior are similar for
both composition and inheritance (which makes sense because they
are both ways of making new types from existing types). In this
chapter, you’ll learn about these code reuse mechanisms.

Composition syntax
Until now, composition has been used quite frequently. You simply
place object handles inside new classes. For example, suppose you’d

282 Thinking in Java www.BruceEckel.com

like an object that holds several String objects, a couple of
primitives and an object of another class. For the non-primitive
objects, you put handles inside your new class, and for the
primitives you define them inside your class:

//: c06:SprinklerSystem.java
// Composition for code reuse.

class WaterSource {
private String s;
WaterSource() {

System.out.println("WaterSource()");
s = new String("Constructed");

}
public String toString() { return s; }

}

public class SprinklerSystem {
private String valve1, valve2, valve3, valve4;
WaterSource source;
int i;
float f;
void print() {

System.out.println("valve1 = " + valve1);
System.out.println("valve2 = " + valve2);
System.out.println("valve3 = " + valve3);
System.out.println("valve4 = " + valve4);
System.out.println("i = " + i);
System.out.println("f = " + f);
System.out.println("source = " + source);

}
public static void main(String[] args) {

SprinklerSystem x = new SprinklerSystem();
x.print();

}
} ///:~

One of the methods defined in WaterSource is special:
toString(). You will learn later that every non-primitive object has
a toString() method, and it’s called in special situations when the
compiler wants a String but it’s got one of these objects. So in the
expression:

Chapter 6: Reusing Classes 283

System.out.println("source = " + source);

the compiler sees you trying to add a String object ("source = ")
to a WaterSource. This doesn’t make sense to it, because you can
only “add” a String to another String, so it says “I’ll turn source
into a String by calling toString()!” After doing this it can
combine the two Strings and pass the resulting String to
System.out.println(). Any time you want to allow this behavior
with a class you create you need only write a toString() method.

At first glance, you might assume – Java being as safe and careful as
it is – that the compiler would automatically construct objects for
each of the handles in the above code, for example calling the
default constructor for WaterSource to initialize source. The
output of the print statement is in fact:

valve1 = null
valve2 = null
valve3 = null
valve4 = null
i = 0
f = 0.0
source = null

Primitives that are fields in a class are automatically initialized to
zero, as noted in Chapter 2. But the object handles are initialized to
null, and if you try to call methods for any of them you’ll get an
exception. It’s actually pretty good (and useful) that you can still
print them out without throwing an exception.

It makes sense that the compiler doesn’t just create a default object
for every handle because that would incur unnecessary overhead in
many cases. If you want the handles initialized, you can do it:

1. At the point the objects are defined. This means that they’ll
always be initialized before the constructor is called.

2. In the constructor for that class

3. Right before you actually need to use the object. This is often
called lazy inizialization. It can reduce overhead in

284 Thinking in Java www.BruceEckel.com

situations where the object doesn’t need to be created every
time.

All three approaches are shown here:

//: c06:Bath.java
// Constructor initialization with composition.

class Soap {
private String s;
Soap() {

System.out.println("Soap()");
s = new String("Constructed");

}
public String toString() { return s; }

}

public class Bath {
private String

// Initializing at point of definition:
s1 = new String("Happy"),
s2 = "Happy",
s3, s4;

Soap castille;
int i;
float toy;
Bath() {

System.out.println("Inside Bath()");
s3 = new String("Joy");
i = 47;
toy = 3.14f;
castille = new Soap();

}
void print() {

// Delayed initialization:
if(s4 == null)
s4 = new String("Joy");

System.out.println("s1 = " + s1);
System.out.println("s2 = " + s2);
System.out.println("s3 = " + s3);
System.out.println("s4 = " + s4);
System.out.println("i = " + i);

Chapter 6: Reusing Classes 285

System.out.println("toy = " + toy);
System.out.println("castille = " + castille);

}
public static void main(String[] args) {

Bath b = new Bath();
b.print();

}
} ///:~

Note that in the Bath constructor a statement is executed before
any of the initializations take place. When you don’t initialize at the
point of definition, there’s still no guarantee that you’ll perform any
initialization before you send a message to an object handle –
except for the inevitable run-time exception.

Here’s the output for the program:

Inside Bath()
Soap()
s1 = Happy
s2 = Happy
s3 = Joy
s4 = Joy
i = 47
toy = 3.14
castille = Constructed

When print() is called it fills in s4 so that all the fields are
properly initialized by the time they are used.

Inheritance syntax
Inheritance is an integral part of Java (and OOP languages in
general). It turns out that you’re always doing inheritance when you
create a class, because unless you explicitly inherit from some other
class, you implicitly inherit from Java’s standard root class Object.

The syntax for composition is obvious, but to perform inheritance
there’s a distinctly different form. When you inherit, you say “This
new class is like that old class.” You state this in code by giving the
name of the class as usual, but before the opening brace of the class

286 Thinking in Java www.BruceEckel.com

body, put the keyword extends followed by the name of the base
class. When you do this, you automatically get all the data members
and methods in the base class. Here’s an example:

//: c06:Detergent.java
// Inheritance syntax & properties.

class Cleanser {
private String s = new String("Cleanser");
public void append(String a) { s += a; }
public void dilute() { append(" dilute()"); }
public void apply() { append(" apply()"); }
public void scrub() { append(" scrub()"); }
public void print() { System.out.println(s); }
public static void main(String[] args) {

Cleanser x = new Cleanser();
x.dilute(); x.apply(); x.scrub();
x.print();

}
}

public class Detergent extends Cleanser {
// Change a method:
public void scrub() {

append(" Detergent.scrub()");
super.scrub(); // Call base-class version

}
// Add methods to the interface:
public void foam() { append(" foam()"); }
// Test the new class:
public static void main(String[] args) {

Detergent x = new Detergent();
x.dilute();
x.apply();
x.scrub();
x.foam();
x.print();
System.out.println("Testing base class:");
Cleanser.main(args);

}
} ///:~

Chapter 6: Reusing Classes 287

This demonstrates a number of features. First, in the Cleanser
append() method, Strings are concatenated to s using the +=
operator, which is one of the operators (along with ‘+’) that the Java
designers “overloaded” to work with Strings.

Second, both Cleanser and Detergent contain a main()
method. You can create a main() for each one of your classes, and
it’s often recommended to code this way so that your test code is
wrapped in with the class. Even if you have a lot of classes in a
program only the main() for the class invoked on the command
line will be called. (As long as main() is public, it doesn’t matter
whether the class that it’s part of is public.) So in this case, when
you say java Detergent, Detergent.main() will be called. But
you can also say java Cleanser to invoke Cleanser.main(), even
though Cleanser is not a public class. This technique of putting a
main() in each class allows easy unit testing for each class. And
you don’t need to remove the main() when you’re finished testing;
you can leave it in for later testing.

Here, you can see that Detergent.main() calls
Cleanser.main() explicitly, passing it the same arguments from
the command line (however, you could pass it any String array).

It’s important that all of the methods in Cleanser are public.
Remember that if you leave off any access specifier the member
defaults to “friendly,” which allows access only to package
members. Thus, within this package, anyone could use those
methods if there were no access specifier. Detergent would have
no trouble, for example. However, if a class from some other
package were to inherit Cleanser it could access only public
members. So to plan for inheritance, as a general rule make all
fields private and all methods public. (protected members also
allow access by derived classes; you’ll learn about this later.) Of
course, in particular cases you must make adjustments, but this is a
useful guideline.

Note that Cleanser has a set of methods in its interface:
append(), dilute(), apply(), scrub() and print(). Because
Detergent is derived from Cleanser (via the extends keyword) it
automatically gets all these methods in its interface, even though

288 Thinking in Java www.BruceEckel.com

you don’t see them all explicitly defined in Detergent. You can
think of inheritance, then, as reusing the interface. (The
implementation comes along for free, but that part isn’t the primary
point.)

As seen in scrub(), it’s possible to take a method that’s been
defined in the base class and modify it. In this case, you might want
to call the method from the base class inside the new version. But
inside scrub() you cannot simply call scrub(), since that would
produce a recursive call, which isn’t what you want. To solve this
problem Java has the keyword super that refers to the “superclass”
that the current class has been inherited from. Thus the expression
super.scrub() calls the base-class version of the method
scrub().

When inheriting you’re not restricted to using the methods of the
base class. You can also add new methods to the derived class
exactly the way you put any method in a class: just define it. The
method foam() is an example of this.

In Detergent.main() you can see that for a Detergent object
you can call all the methods that are available in Cleanser as well
as in Detergent (i.e. foam()).

Initializing the base class
Since there are now two classes involved – the base class and the
derived class – instead of just one, it can be a bit confusing to try to
imagine the resulting object produced by a derived class. From the
outside, it looks like the new class has the same interface as the base
class and maybe some additional methods and fields. But
inheritance doesn’t just copy the interface of the base class. When
you create an object of the derived class, it contains within it a
subobject of the base class. This subobject is the same as if you had
created an object of the base class by itself. It’s just that, from the
outside, the subobject of the base class is wrapped within the
derived-class object.

Of course, it’s essential that the base-class subobject be initialized
correctly and there’s only one way to guarantee that: perform the

Chapter 6: Reusing Classes 289

initialization in the constructor, by calling the base-class
constructor, which has all the appropriate knowledge and privileges
to perform the base-class initialization. Java automatically inserts
calls to the base-class constructor in the derived-class constructor.
The following example shows this working with three levels of
inheritance:

//: c06:Cartoon.java
// Constructor calls during inheritance.

class Art {
Art() {

System.out.println("Art constructor");
}

}

class Drawing extends Art {
Drawing() {

System.out.println("Drawing constructor");
}

}

public class Cartoon extends Drawing {
Cartoon() {

System.out.println("Cartoon constructor");
}
public static void main(String[] args) {

Cartoon x = new Cartoon();
}

} ///:~

The output for this program shows the automatic calls:

Art constructor
Drawing constructor
Cartoon constructor

You can see that the construction happens from the base “outward,”
so the base class is initialized before the derived-class constructors
can access it.

290 Thinking in Java www.BruceEckel.com

Even if you don’t create a constructor for Cartoon(), the compiler
will synthesize a default constructor for you that calls the base class
constructor.

Constructors with arguments
The above example has default constructors; that is, they don’t have
any arguments. It’s easy for the compiler to call these because
there’s no question about what arguments to pass. If your class
doesn’t have default arguments or if you want to call a base-class
constructor that has an argument you must explicitly write the calls
to the base-class constructor using the super keyword and the
appropriate argument list:

//: c06:Chess.java
// Inheritance, constructors and arguments.

class Game {
Game(int i) {

System.out.println("Game constructor");
}

}

class BoardGame extends Game {
BoardGame(int i) {

super(i);
System.out.println("BoardGame constructor");

}
}

public class Chess extends BoardGame {
Chess() {

super(11);
System.out.println("Chess constructor");

}
public static void main(String[] args) {

Chess x = new Chess();
}

} ///:~

If you don’t call the base-class constructor in BoardGame(), the
compiler will complain that it can’t find a constructor of the form

Chapter 6: Reusing Classes 291

Game(). In addition, the call to the base-class constructor must be
the first thing you do in the derived-class constructor. (The
compiler will remind you if you get it wrong.)

Catching base constructor exceptions
As just noted, the compiler forces you to place the base-class
constructor call first in the body of the derived-class constructor.
This means nothing else can appear before it. As you’ll see in
Chapter 10, this also prevents a derived-class constructor from
catching any exceptions that come from a base class. This can be
inconvenient at times.

Combining composition
and inheritance

It is very common to use composition and inheritance together. The
following example shows the creation of a more complex class,
using both inheritance and composition, along with the necessary
constructor initialization:

//: c06:PlaceSetting.java
// Combining composition & inheritance.

class Plate {
Plate(int i) {

System.out.println("Plate constructor");
}

}

class DinnerPlate extends Plate {
DinnerPlate(int i) {

super(i);
System.out.println(
"DinnerPlate constructor");

}
}

class Utensil {

292 Thinking in Java www.BruceEckel.com

Utensil(int i) {
System.out.println("Utensil constructor");

}
}

class Spoon extends Utensil {
Spoon(int i) {

super(i);
System.out.println("Spoon constructor");

}
}

class Fork extends Utensil {
Fork(int i) {

super(i);
System.out.println("Fork constructor");

}
}

class Knife extends Utensil {
Knife(int i) {

super(i);
System.out.println("Knife constructor");

}
}

// A cultural way of doing something:
class Custom {
Custom(int i) {

System.out.println("Custom constructor");
}

}

public class PlaceSetting extends Custom {
Spoon sp;
Fork frk;
Knife kn;
DinnerPlate pl;
PlaceSetting(int i) {

super(i + 1);
sp = new Spoon(i + 2);
frk = new Fork(i + 3);

Chapter 6: Reusing Classes 293

kn = new Knife(i + 4);
pl = new DinnerPlate(i + 5);
System.out.println(
"PlaceSetting constructor");

}
public static void main(String[] args) {

PlaceSetting x = new PlaceSetting(9);
}

} ///:~

While the compiler forces you to initialize the base classes, and
requires that you do it right at the beginning of the constructor, it
doesn’t watch over you to make sure that you initialize the member
objects, so you must remember to pay attention to that.

Guaranteeing proper cleanup
Java doesn’t have the C++ concept of a destructor, a method that is
automatically called when an object is destroyed. The reason is
probably that in Java the practice is simply to forget about objects
rather than to destroy them, allowing the garbage collector to
reclaim the memory as necessary.

Often this is fine, but there are times when your class might
perform some activities during its lifetime that require cleanup. As
mentioned in Chapter 4, you can’t know when the garbage collector
will be called, or if it will be called. So if you want something
cleaned up for a class, you must write a special method to do it
explicitly, and make sure that the client programmer knows that
they must call this method. On top of this, as described in Chapter
10 (exception handling), you must guard against an exception by
putting such cleanup in a finally clause.

Consider an example of a computer-aided design system that draws
pictures on the screen:

//: c06:CADSystem.java
// Ensuring proper cleanup.
import java.util.*;

class Shape {

294 Thinking in Java www.BruceEckel.com

Shape(int i) {
System.out.println("Shape constructor");

}
void cleanup() {

System.out.println("Shape cleanup");
}

}

class Circle extends Shape {
Circle(int i) {

super(i);
System.out.println("Drawing a Circle");

}
void cleanup() {

System.out.println("Erasing a Circle");
super.cleanup();

}
}

class Triangle extends Shape {
Triangle(int i) {

super(i);
System.out.println("Drawing a Triangle");

}
void cleanup() {

System.out.println("Erasing a Triangle");
super.cleanup();

}
}

class Line extends Shape {
private int start, end;
Line(int start, int end) {

super(start);
this.start = start;
this.end = end;
System.out.println("Drawing a Line: " +

start + ", " + end);
}
void cleanup() {

System.out.println("Erasing a Line: " +
start + ", " + end);

Chapter 6: Reusing Classes 295

super.cleanup();
}

}

public class CADSystem extends Shape {
private Circle c;
private Triangle t;
private Line[] lines = new Line[10];
CADSystem(int i) {

super(i + 1);
for(int j = 0; j < 10; j++)
lines[j] = new Line(j, j*j);

c = new Circle(1);
t = new Triangle(1);
System.out.println("Combined constructor");

}
void cleanup() {

System.out.println("CADSystem.cleanup()");
// The order of cleanup is the reverse
// of the order of initialization
t.cleanup();
c.cleanup();
for(int i = lines.length; i >= 0; i--)
lines[i].cleanup();

super.cleanup();
}
public static void main(String[] args) {

CADSystem x = new CADSystem(47);
try {
// Code and exception handling...

} finally {
x.cleanup();

}
}

} ///:~

Everything in this system is some kind of Shape (which is itself a
kind of Object since it’s implicitly inherited from the root class).
Each class redefines Shape’s cleanup() method in addition to
calling the base-class version of that method using super. The
specific Shape classes Circle, Triangle and Line all have
constructors that “draw,” although any method called during the

296 Thinking in Java www.BruceEckel.com

lifetime of the object could be responsible for doing something that
needs cleanup. Each class has its own cleanup() method to
restore non-memory things back to the way they were before the
object existed.

In main(), you can see two keywords that are new, and won’t
officially be introduced until Chapter 10: try and finally. The try
keyword indicates that the block that follows (delimited by curly
braces) is a guarded region, which means that it is given special
treatment. One of these special treatments is that the code in the
finally clause following this guarded region is always executed, no
matter how the try block exits. (With exception handling, it’s
possible to leave a try block in a number of non-ordinary ways.)
Here, the finally clause is saying “always call cleanup() for x, no
matter what happens.” These keywords will be explained
thoroughly in Chapter 10.

Note that in your cleanup method you must also pay attention to
the calling order for the base-class and member-object cleanup
methods in case one subobject depends on another. In general, you
should follow the same form that is imposed by a C++ compiler on
its destructors: First perform all of the cleanup work specific to your
class, in the reverse order of creation. (In general, this requires that
base-class elements still be viable.) Then call the base-class cleanup
method, as demonstrated here.

There can be many cases in which the cleanup issue is not a
problem; you just let the garbage collector do the work. But when
you must do it explicitly, diligence and attention is required.

Order of garbage collection
There’s not much you can rely on when it comes to garbage
collection. The garbage collector might never be called. If it is, it can
reclaim objects in any order it wants. It’s best to not rely on garbage
collection for anything but memory reclamation. If you want
cleanup to take place, make your own cleanup methods and don’t
rely on finalize(). (As mentioned in Chapter 4, Java can be forced
to call all the finalizers.)

Chapter 6: Reusing Classes 297

Name hiding
Only C++ programmers might be surprised by name hiding, since it
works differently in that language. If a Java base class has a method
name that’s overloaded several times, redefining that method name
in the derived class will not hide any of the base-class versions.
Thus overloading works regardless of whether the method was
defined at this level or in a base class:

//: c06:Hide.java
// Overloading a base-class method name
// in a derived class does not hide the
// base-class versions.

class Homer {
char doh(char c) {

System.out.println("doh(char)");
return 'd';

}
float doh(float f) {

System.out.println("doh(float)");
return 1.0f;

}
}

class Milhouse {}

class Bart extends Homer {
void doh(Milhouse m) {}

}

class Hide {
public static void main(String[] args) {

Bart b = new Bart();
b.doh(1); // doh(float) used
b.doh('x');
b.doh(1.0f);
b.doh(new Milhouse());

}
} ///:~

298 Thinking in Java www.BruceEckel.com

As you’ll see in the next chapter, it’s far more common to override
methods of the same name using exactly the same signature and
return type as in the base class. It can be confusing otherwise
(which is why C++ disallows it, to prevent you from making what is
probably a mistake).

Choosing composition
vs. inheritance

Both composition and inheritance allow you to place subobjects
inside your new class. You might wonder about the difference
between the two, and when to choose one over the other.

Composition is generally used when you want the features of an
existing class inside your new class, but not its interface. That is,
you embed an object so that you can use it to implement
functionality in your new class, but the user of your new class sees
the interface you’ve defined rather for the new class than the
interface from the embedded object. For this effect, you embed
private objects of existing classes inside your new class.

Sometimes it makes sense to allow the class user to directly access
the composition of your new class; that is, to make the member
objects public. The member objects use implementation hiding
themselves, so this is a safe thing to do and when the user knows
you’re assembling a bunch of parts, it makes the interface easier to
understand. A car object is a good example:

//: c06:Car.java
// Composition with public objects.

class Engine {
public void start() {}
public void rev() {}
public void stop() {}

}

class Wheel {

Chapter 6: Reusing Classes 299

public void inflate(int psi) {}
}

class Window {
public void rollup() {}
public void rolldown() {}

}

class Door {
public Window window = new Window();
public void open() {}
public void close() {}

}

public class Car {
public Engine engine = new Engine();
public Wheel[] wheel = new Wheel[4];
public Door left = new Door(),

right = new Door(); // 2-door
public Car() {

for(int i = 0; i < 4; i++)
wheel[i] = new Wheel();

}
public static void main(String[] args) {

Car car = new Car();
car.left.window.rollup();
car.wheel[0].inflate(72);

}
} ///:~

Because the composition of a car is part of the analysis of the
problem (and not simply part of the underlying design), making the
members public assists the client programmer’s understanding of
how to use the class and requires less code complexity for the
creator of the class. However, keep in mind that this is a special case
and that in general you should make fields private.

When you inherit, you take an existing class and make a special
version of it. In general, this means that you’re taking a general-
purpose class and specializing it for a particular need. With a little
thought, you’ll see that it would make no sense to compose a car

300 Thinking in Java www.BruceEckel.com

using a vehicle object – a car doesn’t contain a vehicle, it is a
vehicle. The is-a relationship is expressed with inheritance, and the
has-a relationship is expressed with composition.

protected
Now that you’ve been introduced to inheritance, the keyword
protected finally has meaning. In an ideal world, private
members would always be hard-and-fast private, but in real
projects there are times when you want to make something hidden
from the world at large and yet allow access for members of derived
classes. The protected keyword is a nod to pragmatism. It says
“This is private as far as the class user is concerned, but available
to anyone who inherits from this class or anyone else in the same
package.” That is, protected in Java is automatically “friendly.”

The best tack to take is to leave the data members private – you
should always preserve your right to change the underlying
implementation. You can then allow controlled access to inheritors
of your class through protected methods:

//: c06:Orc.java
// The protected keyword.
import java.util.*;

class Villain {
private int i;
protected int read() { return i; }
protected void set(int ii) { i = ii; }
public Villain(int ii) { i = ii; }
public int value(int m) { return m*i; }

}

public class Orc extends Villain {
private int j;
public Orc(int jj) { super(jj); j = jj; }
public void change(int x) { set(x); }

} ///:~

Chapter 6: Reusing Classes 301

You can see that change() has access to set() because it’s
protected.

Incremental development
One of the advantages of inheritance is that it supports incremental
development by allowing you to introduce new code without
causing bugs in existing code. This also isolates new bugs inside the
new code. By inheriting from an existing, functional class and
adding data members and methods (and redefining existing
methods), you leave the existing code – that someone else might
still be using – untouched and unbugged. If a bug happens, you
know that it’s in your new code, which is much shorter and easier to
read than if you had modified the body of existing code.

It’s rather amazing how cleanly the classes are separated. You don’t
even need the source code for the methods in order to reuse the
code. At most, you just import a package. (This is true for both
inheritance and composition.)

It’s important to realize that program development is an
incremental process, just like human learning. You can do as much
analysis as you want, but you still won’t know all the answers when
you set out on a project. You’ll have much more success – and more
immediate feedback – if you start out to “grow” your project as an
organic, evolutionary creature, rather than constructing it all at
once like a glass-box skyscraper.

Although inheritance for experimentation can be a useful
technique, at some point after things stabilize you need to take a
new look at your class hierarchy with an eye to collapsing it into a
sensible structure. Remember that underneath it all, inheritance is
meant to express a relationship that says “This new class is a type of
that old class.” Your program should not be concerned with pushing
bits around, but instead with creating and manipulating objects of
various types to express a model in the terms that come from the
problem space.

302 Thinking in Java www.BruceEckel.com

Upcasting
The most important aspect of inheritance is not that it provides
methods for the new class. It’s the relationship expressed between
the new class and the base class. This relationship can be
summarized by saying “The new class is a type of the existing class.”

This description is not just a fanciful way of explaining inheritance
– it’s supported directly by the language. As an example, consider a
base class called Instrument that represents musical instruments
and a derived class called Wind. Because inheritance means that all
of the methods in the base class are also available in the derived
class, any message you can send to the base class can also be sent to
the derived class. If the Instrument class has a play() method, so
will Wind instruments. This means we can accurately say that a
Wind object is also a type of Instrument. The following example
shows how the compiler supports this notion:

//: c06:Wind.java
// Inheritance & upcasting.
import java.util.*;

class Instrument {
public void play() {}
static void tune(Instrument i) {

// ...
i.play();

}
}

// Wind objects are instruments
// because they have the same interface:
class Wind extends Instrument {
public static void main(String[] args) {

Wind flute = new Wind();
Instrument.tune(flute); // Upcasting

}
} ///:~

What’s interesting in this example is the tune() method, which
accepts an Instrument handle. However, in Wind.main() the

Chapter 6: Reusing Classes 303

tune() method is called by giving it a Wind handle. Given that
Java is particular about type checking, it seems strange that a
method that accepts one type will readily accept another type, until
you realize that a Wind object is also an Instrument object, and
there’s no method that tune() could call for an Instrument that
isn’t also in Wind. Inside tune(), the code works for Instrument
and anything derived from Instrument, and the act of converting
a Wind handle into an Instrument handle is called upcasting.

Why “upcasting”?
The reason for the term is historical and is based on the way class
inheritance diagrams have traditionally been drawn: with the root
at the top of the page, growing downward. (Of course, you can draw
your diagrams any way you find helpful.) The inheritance diagram
for Wind.java is then:

Instrument

Wind

Casting from derived to base moves up on the inheritance diagram,
so it’s commonly referred to as upcasting. Upcasting is always safe
because you’re going from a more specific type to a more general
type. That is, the derived class is a superset of the base class. It
might contain more methods than the base class, but it must
contain at least the methods in the base class. The only thing that
can occur to the class interface during the upcast is that it can lose
methods, not gain them. This is why the compiler allows upcasting
without any explicit casts or other special notation.

You can also perform the reverse of upcasting, called downcasting,
but this involves a dilemma that is the subject of Chapter 12.

304 Thinking in Java www.BruceEckel.com

Composition vs. inheritance revisited
In object-oriented programming, the most likely way that you’ll
create and use code is by simply packaging data and methods
together into a class, and using objects of that class. You’ll also use
existing classes to build new classes with composition. Less
frequently, you’ll use inheritance. So although inheritance gets a lot
of emphasis while learning OOP, it doesn’t mean that you should
use it everywhere you possibly can. On the contrary, you should use
it sparingly, only when it’s clear that inheritance is useful. One of
the clearest ways to determine whether you should use composition
or inheritance is to ask whether you’ll ever need to upcast from your
new class to the base class. If you must upcast, then inheritance is
necessary, but if you don’t need to upcast, then you should look
closely at whether you need inheritance. The next chapter
(polymorphism) provides one of the most compelling reasons for
upcasting, but if you remember to ask “Do I need to upcast?”, you’ll
have a good tool for deciding between composition and inheritance.

The final keyword
Java’s final keyword has slightly different meanings depending on
the context, but in general it says “This cannot be changed.” You
might want to prevent changes for two reasons: design or efficiency.
Because these two reasons are quite different, it’s possible to misuse
the final keyword.

The following sections discuss the three places where final can be
used: for data, methods, and classes.

Final data
Many programming languages have a way to tell the compiler that a
piece of data is “constant.” A constant is useful for two reasons:

1. It can be a compile-time constant that won’t ever change.

2. It can be a value initialized at run-time that you don’t want
changed.

Chapter 6: Reusing Classes 305

In the case of a compile-time constant the compiler is allowed to
“fold” the constant value into any calculations in which it’s used;
that is, the calculation can be performed at compile time,
eliminating some run-time overhead. In Java, these sorts of
constants must be primitives and are expressed using the final
keyword. A value must be given at the time of definition of such a
constant.

A field that is both static and final has only one piece of storage
that cannot be changed.

When using final with object handles rather than primitives the
meaning gets a bit confusing. With a primitive, final makes the
value a constant, but with an object handle, final makes the handle
a constant. Once the handle is initialized to an object, it can never
be changed to point to another object. However, the object itself can
be modified; Java does not provide a way to make any arbitrary
object a constant. (You can, however, write your class so that
objects have the effect of being constant.) This restriction includes
arrays, which are also objects.

Here’s an example that demonstrates final fields:

//: c06:FinalData.java
// The effect of final on fields.

class Value {
int i = 1;

}

public class FinalData {
// Can be compile-time constants
final int i1 = 9;
static final int VAL_TWO = 99;
// Typical public constant:
public static final int VAL_THREE = 39;
// Cannot be compile-time constants:
final int i4 = (int)(Math.random()*20);
static final int i5 = (int)(Math.random()*20);

Value v1 = new Value();

306 Thinking in Java www.BruceEckel.com

final Value v2 = new Value();
static final Value v3 = new Value();
// Arrays:
final int[] a = { 1, 2, 3, 4, 5, 6 };

public void print(String id) {
System.out.println(
id + ": " + "i4 = " + i4 +
", i5 = " + i5);

}
public static void main(String[] args) {

FinalData fd1 = new FinalData();
//! fd1.i1++; // Error: can't change value
fd1.v2.i++; // Object isn't constant!
fd1.v1 = new Value(); // OK -- not final
for(int i = 0; i < fd1.a.length; i++)
fd1.a[i]++; // Object isn't constant!

//! fd1.v2 = new Value(); // Error: Can't
//! fd1.v3 = new Value(); // change handle
//! fd1.a = new int[3];

fd1.print("fd1");
System.out.println("Creating new FinalData");
FinalData fd2 = new FinalData();
fd1.print("fd1");
fd2.print("fd2");

}
} ///:~

Since i1 and VAL_TWO are final primitives with compile-time
values, they can both be used as compile-time constants and are not
different in any important way. VAL_THREE is the more typical
way you’ll see such constants defined: public so they’re usable
outside the package, static to emphasize that there’s only one, and
final to say that it’s a constant. Note that final static primitives
with constant initial values (that is, compile-time constants) are
named with all capitals by convention, with words separated by
underscores (this is just like C constants, which is where the
convention originated). Also note that i5 cannot be known at
compile time, so it is not capitalized.

Chapter 6: Reusing Classes 307

Just because something is final doesn’t mean that its value is
known at compile-time. This is demonstrated by initializing i4 and
i5 at run-time using randomly generated numbers. This portion of
the example also shows the difference between making a final
value static or non-static. This difference shows up only when the
values are initialized at run-time, since the compile-time values are
treated the same by the compiler. (And presumably optimized out
of existence.) The difference is shown in the output from one run:

fd1: i4 = 15, i5 = 9
Creating new FinalData
fd1: i4 = 15, i5 = 9
fd2: i4 = 10, i5 = 9

Note that the values of i4 for fd1 and fd2 are unique, but the value
for i5 is not changed by creating the second FinalData object.
That’s because it’s static and is initialized once upon loading and
not each time a new object is created.

The variables v1 through v4 demonstrate the meaning of a final
handle. As you can see in main(), just because v2 is final doesn’t
mean that you can’t change its value. However, you cannot re-bind
v2 to a new object, precisely because it’s final. That’s what final
means for a handle. You can also see the same meaning holds true
for an array, which is just another kind of handle. (There is no way
that I know of to make the array handles themselves final.) Making
handles final seems less useful than making primitives final.

Blank finals
Java allows the creation of blank finals, which are fields that are
declared as final but are not given an initialization value. In all
cases, the blank final must be initialized before it is used, and the
compiler ensures this. However, blank finals provide much more
flexibility in the use of the final keyword since, for example, a final
field inside a class can now be different for each object and yet it
retains its immutable quality. Here’s an example:

//: c06:BlankFinal.java
// "Blank" final data members.

308 Thinking in Java www.BruceEckel.com

class Poppet { }

class BlankFinal {
final int i = 0; // Initialized final
final int j; // Blank final
final Poppet p; // Blank final handle
// Blank finals MUST be initialized
// in the constructor:
BlankFinal() {

j = 1; // Initialize blank final
p = new Poppet();

}
BlankFinal(int x) {

j = x; // Initialize blank final
p = new Poppet();

}
public static void main(String[] args) {

BlankFinal bf = new BlankFinal();
}

} ///:~

You’re forced to perform assignments to finals either with an
expression at the point of definition of the field or in every
constructor. This way it’s guaranteed that the final field is always
initialized before use.

Final arguments
Java allows you to make arguments final by declaring them as such
in the argument list. This means that inside the method you cannot
change what the argument handle points to:

//: c06:FinalArguments.java
// Using "final" with method arguments.

class Gizmo {
public void spin() {}

}

public class FinalArguments {
void with(final Gizmo g) {

//! g = new Gizmo(); // Illegal -- g is final

Chapter 6: Reusing Classes 309

g.spin();
}
void without(Gizmo g) {

g = new Gizmo(); // OK -- g not final
g.spin();

}
// void f(final int i) { i++; } // Can't change
// You can only read from a final primitive:
int g(final int i) { return i + 1; }
public static void main(String[] args) {

FinalArguments bf = new FinalArguments();
bf.without(null);
bf.with(null);

}
} ///:~

Note that you can still assign a null handle to an argument that’s
final without the compiler catching it, just like you can with a non-
final argument.

The methods f() and g() show what happens when primitive
arguments are final: you can read the argument, but you can't
change it.

Final methods
There are two reasons for final methods. The first is to put a “lock”
on the method to prevent any inheriting class from changing its
meaning. This is done for design reasons when you want to make
sure that a method’s behavior is retained during inheritance and
cannot be overridden.

The second reason for final methods is efficiency. If you make a
method final, you are allowing the compiler to turn any calls to
that method into inline calls. When the compiler sees a final
method call it can (at its discretion) skip the normal approach of
inserting code to perform the method call mechanism (push
arguments on the stack, hop over to the method code and execute it,
hop back and clean off the stack arguments, and deal with the
return value) and instead replace the method call with a copy of the
actual code in the method body. This eliminates the overhead of the

310 Thinking in Java www.BruceEckel.com

method call. Of course, if a method is big, then your code begins to
bloat and you probably won’t see any performance gains from
inlining since any improvements will be dwarfed by the amount of
time spent inside the method. It is implied that the Java compiler is
able to detect these situations and choose wisely whether to inline a
final method. However, it’s better to not trust that the compiler is
able to do this and make a method final only if it’s quite small or if
you want to explicitly prevent overriding.

Any private methods in a class are implicitly final. Because you
can’t access a private method, you can’t override it (even though
the compiler doesn’t give an error message if you try to override it,
you haven’t overridden the method, you’ve just created a new
method). You can add the final specifier to a private method but it
doesn’t give that method any extra meaning.

Final classes
When you say that an entire class is final (by preceding its
definition with the final keyword), you state that you don’t want to
inherit from this class or allow anyone else to do so. In other words,
for some reason the design of your class is such that there is never a
need to make any changes, or for safety or security reasons you
don’t want subclassing. Alternatively, you might be dealing with an
efficiency issue and you want to make sure that any activity
involved with objects of this class is as efficient as possible.

//: c06:Jurassic.java
// Making an entire class final.

class SmallBrain {}

final class Dinosaur {
int i = 7;
int j = 1;
SmallBrain x = new SmallBrain();
void f() {}

}

//! class Further extends Dinosaur {}

Chapter 6: Reusing Classes 311

// error: Cannot extend final class 'Dinosaur'

public class Jurassic {
public static void main(String[] args) {

Dinosaur n = new Dinosaur();
n.f();
n.i = 40;
n.j++;

}
} ///:~

Note that the data members can be final or not, as you choose. The
same rules apply to final for data members regardless of whether
the class is defined as final. Defining the class as final simply
prevents inheritance – nothing more. However, because it prevents
inheritance all methods in a final class are implicitly final, since
there’s no way to override them. So the compiler has the same
efficiency options as it does if you explicitly declare a method final.

You can add the final specifier to a method in a final class, but it
doesn’t add any meaning.

Final caution
It can seem to be sensible to make a method final while you’re
designing a class. You might feel that efficiency is very important
when using your class and that no one could possibly want to
override your methods anyway. Sometimes this is true.

But be careful with your assumptions. In general, it’s difficult to
anticipate how a class can be reused, especially a general-purpose
class. If you define a method as final you might prevent the
possibility of reusing your class through inheritance in some other
programmer’s project simply because you couldn’t imagine it being
used that way.

The standard Java library is a good example of this. In particular,
the Java 1.0/1.1 Vector class was commonly used and might have
been even more useful if, in the name of efficiency, all the methods
hadn’t been made final. It’s easily conceivable that you might want
to inherit and override with such a fundamentally useful class, but

312 Thinking in Java www.BruceEckel.com

the designers somehow decided this wasn’t appropriate. This is
ironic for two reasons. First, Stack is inherited from Vector, which
says that a Stack is a Vector, which isn’t really true from a logical
standpoint. Second, many of the most important methods of
Vector, such as addElement() and elementAt() are
synchronized, which as you will see in Chapter 14 incurs a
significant performance overhead that probably wipes out any gains
provided by final. This lends credence to the theory that
programmers are consistently bad at guessing where optimizations
should occur. It’s just too bad that such a clumsy design made it
into the standard library where we must all cope with it.
(Fortunately, the Java 2 collection library replaces Vector with
ArrayList, which behaves much more civilly. Unfortunately,
there’s still plent of new code being written that uses the old
collection library.)

It’s also interesting to note that Hashtable, another important
standard library class, does not have any final methods. As
mentioned elsewhere in this book, it’s quite obvious that some
classes were designed by completely different people than others.
(You’ll see that the method names in Hashtable are much briefer
compared to those in Vector, another piece of evidence.) This is
precisely the sort of thing that should not be obvious to consumers
of a class library. When things are inconsistent it just makes more
work for the user. Yet another paean to the value of design and code
walkthroughs. (Note that the Java 2 collection library replaces
Hashtable with Hashmap.)

Initialization and
class loading

In more traditional languages, programs are loaded all at once as
part of the startup process. This is followed by initialization, and
then the program begins. The process of initialization in these
languages must be carefully controlled so that the order of
initialization of statics doesn’t cause trouble. C++, for example, has

Chapter 6: Reusing Classes 313

problems if one static expects another static to be valid before the
second one has been initialized.

Java doesn’t have this problem because it takes a different approach
to loading. Because everything in Java is an object, many activities
become easier, and this is one of them. As you will learn more fully
in the next chapter, the compiled code for each class exists in its
own separate file. That file isn’t loaded until the code is needed. In
general, you can say that “Class code is loaded at the point of first
use.” This is often not until the first object of that class is
constructed, but loading also occurs when a static field or static
method is accessed.

The point of first use is also where the static initialization takes
place. All the static objects and the static code block will be
initialized in textual order (that is, the order that you write them
down in the class definition) at the point of loading. The statics, of
course, are initialized only once.

Initialization with inheritance
It’s helpful to look at the whole initialization process, including
inheritance, to get a full picture of what happens. Consider the
following code:

//: c06:Beetle.java
// The full process of initialization.

class Insect {
int i = 9;
int j;
Insect() {

prt("i = " + i + ", j = " + j);
j = 39;

}
static int x1 =

prt("static Insect.x1 initialized");
static int prt(String s) {

System.out.println(s);
return 47;

}

314 Thinking in Java www.BruceEckel.com

}

public class Beetle extends Insect {
int k = prt("Beetle.k initialized");
Beetle() {

prt("k = " + k);
prt("j = " + j);

}
static int x2 =

prt("static Beetle.x2 initialized");
public static void main(String[] args) {

prt("Beetle constructor");
Beetle b = new Beetle();

}
} ///:~

The output for this program is:

static Insect.x1 initialized
static Beetle.x2 initialized
Beetle constructor
i = 9, j = 0
Beetle.k initialized
k = 47
j = 39

The first thing that happens when you run Java on Beetle is that
you try to access Beetle.main() (a static method), so the loader
goes out and finds the compiled code for the Beetle class (this
happens to be in a file called Beetle.class). In the process of
loading it, the loader notices that it has a base class (that’s what the
extends keyword says), which it then loads. This will happen
whether or not you’re going to make an object of that base class.
(Try commenting out the object creation to prove it to yourself.)

If the base class has a base class, that second base class would then
be loaded, and so on. Next, the static initialization in the root base
class (in this case, Insect) is performed, and then the next derived
class, and so on. This is important because the derived-class static
initialization might depend on the base class member being
initialized properly.

Chapter 6: Reusing Classes 315

At this point, the necessary classes have all been loaded so the
object can be created. First, all the primitives in this object are set to
their default values and the object handles are set to null – this
happens in one fell swoop by setting the memory in the object to
binary zero. Then the base-class constructor will be called. In this
case the call is automatic, but you can also specify the base-class
constructor call (as the first operation in the Beetle() constructor)
using super. The base class construction goes through the same
process in the same order as the derived-class constructor. After the
base-class constructor completes, the instance variables are
initialized in textual order. Finally, the rest of the body of the
constructor is executed.

Summary
Both inheritance and composition allow you to create a new type
from existing types. Typically, however, you use composition to
reuse existing types as part of the underlying implementation of the
new type and inheritance when you want to reuse the interface.
Since the derived class has the base-class interface, it can be upcast
to the base, which is critical for polymorphism, as you’ll see in the
next chapter.

Despite the strong emphasis on inheritance in object-oriented
programming, when you start a design you should generally prefer
composition during the first cut and use inheritance only when it is
clearly necessary. Composition tends to be more flexible. In
addition, by using the added artifice of inheritance with your
member type, you can change the exact type, and thus the behavior,
of those member objects at run-time. Therefore, you can change the
behavior of the composed object at run-time.

Although code reuse through composition and inheritance is helpful
for rapid project development, you’ll generally want to redesign
your class hierarchy before allowing other programmers to become
dependent on it. Your goal is a hierarchy in which each class has a
specific use and is neither too big (encompassing so much
functionality that it’s unwieldy to reuse) nor annoyingly small (you
can’t use it by itself or without adding functionality).

316 Thinking in Java www.BruceEckel.com

Exercises
1. Create two classes, A and B, with default constructors (empty

argument lists) that announce themselves. Inherit a new class
called C from A, and create a member of class B inside C. Do
not create a constructor for C. Create an object of class C and
observe the results.

2. Modify Exercise 1 so that A and B have constructors with
arguments instead of default constructors. Write a constructor
for C and perform all initialization within C’s constructor.

3. Create a simple class. Inside a second class, define a field for
an object of the first class. Use lazy initialization to instantiate
this object.

4. Inherit a new class from class Detergent. Override scrub()
and add anew method called sterilize().

5. Take the file Cartoon.java and comment out the constructor
for the Cartoon class. Explain what happens.

6. Take the file Chess.java and comment out the constructor
for the Chess class. Explain what happens.

7. Prove that default constructors are created for you by the
compiler.

8. Prove that the base-class constructors are (a) always called,
and (b) called before derived-class constructors.

9. Create a base class with only a non-default constructor, and a
derived class with both a default and non-default constructor.
In the derived-class constructors, call the base-class
constructor.

10. Create a class called Root which contains an instance of each
of classes (that you also create) named Component1,
Component2, and Component3. Derive a class Stem from
Root which also contains an instance of each “component.”

Chapter 6: Reusing Classes 317

All classes should have default constructors that print a
message about that class.

11. Modify Exercise 10 so that each class only has non-default
constructors.

12. Add a proper hierarchy of cleanup() methods to all the
classes in Exercise 11.

13. Create a class with a method that is overloaded three times.
Inherit a new class, add a new overloading of the method and
show that all four methods are available in the derived class.

14. In Car.java add a service() method to Engine and call this
method in main().

15. Create a class inside a package. Your class should contain a
protected method. Outside of the package, try to call the
protected method and explain the results. Now inherit from
your class and call the protected method from inside a
method of your derived class.

16. Create a class called Amphibian. From this, inherit a class
called Frog. Put appropriate methods in the base class. In
main(), create a Frog and upcast it to Amphibian, and
demonstrate that all the methods still work.

17. Modify Exercise 16 so that Frog overrides the method
definitions from the base class (provides new definitions using
the same method signatures). Note what happens in main().

18. Create a class with a static final field and a final field and
demonstrate the difference between the two.

19. Create a class with a blank final handle to an object. Perform
the initialization of the blank final inside a method (not the
constructor) right before you use it. Demonstrate the
guarantee that the final must be initialized before use, and
that it cannot be changed once initialized.

20. Create a class with a final method. Inherit from that class and
attempt to override that method.

318 Thinking in Java www.BruceEckel.com

21. Create a final class and attempt to inherit from it.

22. Prove that class loading takes place only once. Prove that
loading may be caused by either the creation of the first
instance of that class, or the access of a static member.

23. In Beetle.java, inherit a specific type of beetle from class
Beetle, following the same format as the existing classes.
Trace and explain the output.

 319

7: Polymorphism
Polymorphism is the third essential feature of an object-
oriented programming language, after data abstraction
and inheritance.

It provides another dimension of separation of interface from
implementation, to decouple what from how. Polymorphism allows
improved code organization and readability as well as the creation
of extensible programs that can be “grown” not only during the
original creation of the project but also when new features are
desired.

Encapsulation creates new data types by combining characteristics
and behaviors. Implementation hiding separates the interface from
the implementation by making the details private. This sort of
mechanical organization makes ready sense to someone with a
procedural programming background. But polymorphism deals
with decoupling in terms of types. In the last chapter, you saw how
inheritance allows the treatment of an object as its own type or its
base type. This ability is critical because it allows many types
(derived from the same base type) to be treated as if they were one
type, and a single piece of code to work on all those different types
equally. The polymorphic method call allows one type to express its
distinction from another, similar type, as long as they’re both
derived from the same base type. This distinction is expressed
through differences in behavior of the methods that you can call
through the base class.

In this chapter, you’ll learn about polymorphism (also called
dynamic binding or late binding or run-time binding) starting
from the basics, with simple examples that strip away everything
but the polymorphic behavior of the program.

320 Thinking in Java www.BruceEckel.com

Upcasting
In Chapter 6 you saw how an object can be used as its own type or
as an object of its base type. Taking an object handle and treating it
as a handle to its base type is called upcasting because of the way
inheritance trees are drawn with the base class at the top.

You also saw a problem arise, which is embodied in the following:

//: c07:music:Music.java
// Inheritance & upcasting.

class Note {
private int value;
private Note(int val) { value = val; }
public static final Note

MIDDLE_C = new Note(0),
C_SHARP = new Note(1),
B_FLAT = new Note(2);

} // Etc.

class Instrument {
public void play(Note n) {

System.out.println("Instrument.play()");
}

}

// Wind objects are instruments
// because they have the same interface:
class Wind extends Instrument {
// Redefine interface method:
public void play(Note n) {

System.out.println("Wind.play()");
}

}

public class Music {
public static void tune(Instrument i) {

// ...
i.play(Note.MIDDLE_C);

}

Chapter 7: Polymorphism 321

public static void main(String[] args) {
Wind flute = new Wind();
tune(flute); // Upcasting

}
} ///:~

The method Music.tune() accepts an Instrument handle, but
also anything derived from Instrument. In main(), you can see
this happening as a Wind handle is passed to tune(), with no cast
necessary. This is acceptable; the interface in Instrument must
exist in Wind, because Wind is inherited from Instrument.
Upcasting from Wind to Instrument may “narrow” that interface,
but it cannot make it anything less than the full interface to
Instrument.

Why upcast?
This program might seem strange to you. Why should anyone
intentionally forget the type of an object? This is what happens
when you upcast, and it seems like it could be much more
straightforward if tune() simply takes a Wind handle as its
argument. This brings up an essential point: If you did that, you’d
need to write a new tune() for every type of Instrument in your
system. Suppose we follow this reasoning and add Stringed and
Brass instruments:

//: c07:music2:Music2.java
// Overloading instead of upcasting.

class Note {
private int value;
private Note(int val) { value = val; }
public static final Note

MIDDLE_C = new Note(0),
C_SHARP = new Note(1),
B_FLAT = new Note(2);

} // Etc.

class Instrument {
public void play(Note n) {

System.out.println("Instrument.play()");

322 Thinking in Java www.BruceEckel.com

}
}

class Wind extends Instrument {
public void play(Note n) {

System.out.println("Wind.play()");
}

}

class Stringed extends Instrument {
public void play(Note n) {

System.out.println("Stringed.play()");
}

}

class Brass extends Instrument {
public void play(Note n) {

System.out.println("Brass.play()");
}

}

public class Music2 {
public static void tune(Wind i) {

i.play(Note.MIDDLE_C);
}
public static void tune(Stringed i) {

i.play(Note.MIDDLE_C);
}
public static void tune(Brass i) {

i.play(Note.MIDDLE_C);
}
public static void main(String[] args) {

Wind flute = new Wind();
Stringed violin = new Stringed();
Brass frenchHorn = new Brass();
tune(flute); // No upcasting
tune(violin);
tune(frenchHorn);

}
} ///:~

Chapter 7: Polymorphism 323

This works, but there’s a major drawback: You must write type-
specific methods for each new Instrument class you add. This
means more programming in the first place, but it also means that if
you want to add a new method like tune() or a new type of
Instrument, you’ve got a lot of work to do. Add the fact that the
compiler won’t give you any error messages if you forget to overload
one of your methods and the whole process of working with types
becomes unmanageable.

Wouldn’t it be much nicer if you could just write a single method
that takes the base class as its argument, and not any of the specific
derived classes? That is, wouldn’t it be nice if you could forget that
there are derived classes, and write your code to talk only to the
base class?

That’s exactly what polymorphism allows you to do. However, most
programmers (who come from a procedural programming
background) have a bit of trouble with the way polymorphism
works.

The twist
The difficulty with Music.java can be seen by running the
program. The output is Wind.play(). This is clearly the desired
output, but it doesn’t seem to make sense that it would work that
way. Look at the tune() method:

public static void tune(Instrument i) {
// ...
i.play(Note.MIDDLE_C);

}

It receives an Instrument handle. So how can the compiler
possibly know that this Instrument handle points to a Wind in
this case and not a Brass or Stringed? The compiler can’t. To get
a deeper understanding of the issue, it’s helpful to examine the
subject of binding.

324 Thinking in Java www.BruceEckel.com

Method call binding
Connecting a method call to a method body is called binding. When
binding is performed before the program is run (by the compiler
and linker, if there is one), it’s called early binding. You might not
have heard the term before because it has never been an option with
procedural languages. C compilers have only one kind of method
call, and that’s early binding.

The confusing part of the above program revolves around early
binding because the compiler cannot know the correct method to
call when it has only an Instrument handle.

The solution is called late binding, which means that the binding
occurs at run-time based on the type of object. Late binding is also
called dynamic binding or run-time binding. When a language
implements late binding, there must be some mechanism to
determine the type of the object at run-time and to call the
appropriate method. That is, the compiler still doesn’t know the
object type, but the method-call mechanism finds out and calls the
correct method body. The late-binding mechanism varies from
language to language, but you can imagine that some sort of type
information must be installed in the objects.

All method binding in Java uses late binding unless a method has
been declared final. This means that ordinarily you don’t need to
make any decisions about whether late binding will occur – it
happens automatically.

Why would you declare a method final? As noted in the last
chapter, it prevents anyone from overriding that method. Perhaps
more importantly, it effectively “turns off” dynamic binding, or
rather it tells the compiler that dynamic binding isn’t necessary.
This allows the compiler to generate slightly more efficient code for
final method calls. However, in most cases it won’t make any
overall performance difference in your program, so it’s best to only
use final as a design decision, and not as an attempt to improve
performance.

Chapter 7: Polymorphism 325

Producing the right behavior
Once you know that all method binding in Java happens
polymorphically via late binding, you can write your code to talk to
the base-class and know that all the derived-class cases will work
correctly using the same code. Or to put it another way, you “send a
message to an object and let the object figure out the right thing to
do.”

The classic example in OOP is the “shape” example. This is
commonly used because it is easy to visualize, but unfortunately it
can confuse novice programmers into thinking that OOP is just for
graphics programming, which is of course not the case.

The shape example has a base class called Shape and various
derived types: Circle, Square, Triangle, etc. The reason the
example works so well is that it’s easy to say “a circle is a type of
shape” and be understood. The inheritance diagram shows the
relationships:

Cast "up" the
inheritance

diagram

Circle
Handle

Shape

draw()
erase()

Circle

draw()
erase()

Square

draw()
erase()

Triangle

draw()
erase()

The upcast could occur in a statement as simple as:

Shape s = new Circle();

Here, a Circle object is created and the resulting handle is
immediately assigned to a Shape, which would seem to be an error
(assigning one type to another) and yet it’s fine because a Circle is

326 Thinking in Java www.BruceEckel.com

a Shape by inheritance. So the compiler agrees with the statement
and doesn’t issue an error message.

Suppose you call one of the base class methods (that have been
overridden in the derived classes):

s.draw();

Again, you might expect that Shape’s draw() is called because
this is, after all, a Shape handle, so how could the compiler know to
do anything else? And yet the proper Circle.draw() is called
because of late binding (polymorphism).

The following example puts it a slightly different way:

//: c07:Shapes.java
// Polymorphism in Java.

class Shape {
void draw() {}
void erase() {}

}

class Circle extends Shape {
void draw() {

System.out.println("Circle.draw()");
}
void erase() {

System.out.println("Circle.erase()");
}

}

class Square extends Shape {
void draw() {

System.out.println("Square.draw()");
}
void erase() {

System.out.println("Square.erase()");
}

}

class Triangle extends Shape {
void draw() {

Chapter 7: Polymorphism 327

System.out.println("Triangle.draw()");
}
void erase() {

System.out.println("Triangle.erase()");
}

}

public class Shapes {
public static Shape randShape() {

switch((int)(Math.random() * 3)) {
default:
case 0: return new Circle();
case 1: return new Square();
case 2: return new Triangle();

}
}
public static void main(String[] args) {

Shape[] s = new Shape[9];
// Fill up the array with shapes:
for(int i = 0; i < s.length; i++)
s[i] = randShape();

// Make polymorphic method calls:
for(int i = 0; i < s.length; i++)
s[i].draw();

}
} ///:~

The base class Shape establishes the common interface to anything
inherited from Shape – that is, all shapes can be drawn and erased.
The derived classes override these definitions to provide unique
behavior for each specific type of shape.

The main class Shapes contains a static method randShape()
that produces a handle to a randomly-selected Shape object each
time you call it. Note that the upcasting happens in each of the
return statements, which take a handle to a Circle, Square, or
Triangle and sends it out of the method as the return type, Shape.
So whenever you call this method you never get a chance to see
what specific type it is, since you always get back a plain Shape
handle.

328 Thinking in Java www.BruceEckel.com

main() contains an array of Shape handles filled through calls to
randShape(). At this point you know you have Shapes, but you
don’t know anything more specific than that (and neither does the
compiler). However, when you step through this array and call
draw() for each one, the correct type-specific behavior magically
occurs, as you can see from one output example:

Circle.draw()
Triangle.draw()
Circle.draw()
Circle.draw()
Circle.draw()
Square.draw()
Triangle.draw()
Square.draw()
Square.draw()

Of course, since the shapes are all chosen randomly each time, your
runs will have different results. The point of choosing the shapes
randomly is to drive home the understanding that the compiler can
have no special knowledge that allows it to make the correct calls at
compile time. All the calls to draw() are made through dynamic
binding.

Extensibility
Now let’s return to the musical instrument example. Because of
polymorphism, you can add as many new types as you want to the
system without changing the tune() method. In a well-designed
OOP program, most or all of your methods will follow the model of
tune() and communicate only with the base-class interface. Such a
program is extensible because you can add new functionality by
inheriting new data types from the common base class. The
methods that manipulate the base-class interface will not need to be
changed at all to accommodate the new classes.

Consider what happens if you take the instrument example and add
more methods in the base class and a number of new classes. Here’s
the diagram:

Chapter 7: Polymorphism 329

Instrument

void play()
String what()
void adjust()

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

All these new classes work correctly with the old, unchanged
tune() method. Even if tune() is in a separate file and new
methods are added to the interface of Instrument, tune() works
correctly without recompilation. Here is the implementation of the
above diagram:

//: c07:music3:Music3.java
// An extensible program.
import java.util.*;

class Instrument {
public void play() {

System.out.println("Instrument.play()");
}
public String what() {

return "Instrument";
}
public void adjust() {}

330 Thinking in Java www.BruceEckel.com

}

class Wind extends Instrument {
public void play() {

System.out.println("Wind.play()");
}
public String what() { return "Wind"; }
public void adjust() {}

}

class Percussion extends Instrument {
public void play() {

System.out.println("Percussion.play()");
}
public String what() { return "Percussion"; }
public void adjust() {}

}

class Stringed extends Instrument {
public void play() {

System.out.println("Stringed.play()");
}
public String what() { return "Stringed"; }
public void adjust() {}

}

class Brass extends Wind {
public void play() {

System.out.println("Brass.play()");
}
public void adjust() {

System.out.println("Brass.adjust()");
}

}

class Woodwind extends Wind {
public void play() {

System.out.println("Woodwind.play()");
}
public String what() { return "Woodwind"; }

}

Chapter 7: Polymorphism 331

public class Music3 {
// Doesn't care about type, so new types
// added to the system still work right:
static void tune(Instrument i) {

// ...
i.play();

}
static void tuneAll(Instrument[] e) {

for(int i = 0; i < e.length; i++)
tune(e[i]);

}
public static void main(String[] args) {

Instrument[] orchestra = new Instrument[5];
int i = 0;
// Upcasting during addition to the array:
orchestra[i++] = new Wind();
orchestra[i++] = new Percussion();
orchestra[i++] = new Stringed();
orchestra[i++] = new Brass();
orchestra[i++] = new Woodwind();
tuneAll(orchestra);

}
} ///:~

The new methods are what(), which returns a String handle with
a description of the class, and adjust(), which provides some way
to adjust each instrument.

In main(), when you place something inside the Instrument
array you automatically upcast to Instrument.

You can see that the tune() method is blissfully ignorant of all the
code changes that have happened around it, and yet it works
correctly. This is exactly what polymorphism is supposed to
provide. Your code changes don’t cause damage to parts of the
program that should not be affected. Put another way,
polymorphism is one of the most important techniques that allow
the programmer to “separate the things that change from the things
that stay the same.”

332 Thinking in Java www.BruceEckel.com

Overriding vs. overloading
Let’s take a different look at the first example in this chapter. In the
following program, the interface of the method play() is changed
in the process of overriding it, which means that you haven’t
overridden the method, but instead overloaded it. The compiler
allows you to overload methods so it gives no complaint. But the
behavior is probably not what you want. Here’s the example:

//: c07:WindError.java
// Accidentally changing the interface.

class NoteX {
public static final int

MIDDLE_C = 0, C_SHARP = 1, C_FLAT = 2;
}

class InstrumentX {
public void play(int NoteX) {

System.out.println("InstrumentX.play()");
}

}

class WindX extends InstrumentX {
// OOPS! Changes the method interface:
public void play(NoteX n) {

System.out.println("WindX.play(NoteX n)");
}

}

public class WindError {
public static void tune(InstrumentX i) {

// ...
i.play(NoteX.MIDDLE_C);

}
public static void main(String[] args) {

WindX flute = new WindX();
tune(flute); // Not the desired behavior!

}
} ///:~

Chapter 7: Polymorphism 333

There’s another confusing aspect thrown in here. In InstrumentX,
the play() method takes an int that has the identifier NoteX. That
is, even though NoteX is a class name, it can also be used as an
identifier without complaint. But in WindX, play() takes a
NoteX handle that has an identifier n. (Although you could even
say play(NoteX NoteX) without an error.) Thus it appears that
the programmer intended to override play() but mistyped the
method a bit. The compiler, however, assumed that an overload and
not an override was intended. Note that if you follow the standard
Java naming convention, the argument identifier would be noteX
(lowercase ‘n’), which would distinguish it from the class name.

In tune, the InstrumentX i is sent the play() message, with one
of NoteX’s members (MIDDLE_C) as an argument. Since NoteX
contains int definitions, this means that the int version of the now-
overloaded play() method is called, and since that has not been
overridden the base-class version is used.

The output is:

InstrumentX.play()

This certainly doesn’t appear to be a polymorphic method call. Once
you understand what’s happening, you can fix the problem fairly
easily, but imagine how difficult it might be to find the bug if it’s
buried in a program of significant size.

Abstract classes
and methods

In all the instrument examples, the methods in the base class
Instrument were always “dummy” methods. If these methods are
ever called, you’ve done something wrong. That’s because the intent
of Instrument is to create a common interface for all the classes
derived from it.

The only reason to establish this common interface is so it can be
expressed differently for each different subtype. It establishes a
basic form, so you can say what’s in common with all the derived

334 Thinking in Java www.BruceEckel.com

classes. Another way of saying this is to call Instrument an
abstract base class (or simply an abstract class). You create an
abstract class when you want to manipulate a set of classes through
this common interface. All derived-class methods that match the
signature of the base-class declaration will be called using the
dynamic binding mechanism. (However, as seen in the last section,
if the method’s name is the same as the base class but the
arguments are different, you’ve got overloading, which probably
isn’t what you want.)

If you have an abstract class like Instrument, objects of that class
almost always have no meaning. That is, Instrument is meant to
express only the interface, and not a particular implementation, so
creating an Instrument object makes no sense, and you’ll
probably want to prevent the user from doing it. This can be
accomplished by making all the methods in Instrument print
error messages, but that delays the information until run-time and
requires reliable exhaustive testing on the user’s part. It’s always
better to catch problems at compile time.

Java provides a mechanism for doing this called the abstract
method1. This is a method that is incomplete; it has only a
declaration and no method body. Here is the syntax for an abstract
method declaration:

abstract void f();

A class containing abstract methods is called an abstract class. If a
class contains one or more abstract methods, the class must be
qualified as abstract. (Otherwise, the compiler gives you an error
message.)

If an abstract class is incomplete, what is the compiler supposed to
do when someone tries to make an object of that class? It cannot
safely create an object of an abstract class, so you get an error
message from the compiler. This way the compiler ensures the
purity of the abstract class, and you don’t need to worry about
misusing it.

1 For C++ programmers, this is the analogue of C++’s pure virtual function.

Chapter 7: Polymorphism 335

If you inherit from an abstract class and you want to make objects
of the new type, you must provide method definitions for all the
abstract methods in the base class. If you don’t (and you may
choose not to), then the derived class is also abstract and the
compiler will force you to qualify that class with the abstract
keyword.

It’s possible to create a class as abstract without including any
abstract methods. This is useful when you’ve got a class in which it
doesn’t make sense to have any abstract methods, and yet you
want to prevent any instances of that class.

The Instrument class can easily be turned into an abstract class.
Only some of the methods will be abstract, since making a class
abstract doesn’t force you to make all the methods abstract. Here’s
what it looks like:

abstract Instrument

abstract void play();
String what() { /* ... */ }
abstract void adjust();

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

extendsextends

extends extends extends

336 Thinking in Java www.BruceEckel.com

Here’s the orchestra example modified to use abstract classes and
methods:

//: c07:music4:Music4.java
// Abstract classes and methods.
import java.util.*;

abstract class Instrument {
int i; // storage allocated for each
public abstract void play();
public String what() {

return "Instrument";
}
public abstract void adjust();

}

class Wind extends Instrument {
public void play() {

System.out.println("Wind.play()");
}
public String what() { return "Wind"; }
public void adjust() {}

}

class Percussion extends Instrument {
public void play() {

System.out.println("Percussion.play()");
}
public String what() { return "Percussion"; }
public void adjust() {}

}

class Stringed extends Instrument {
public void play() {

System.out.println("Stringed.play()");
}
public String what() { return "Stringed"; }
public void adjust() {}

}

class Brass extends Wind {
public void play() {

Chapter 7: Polymorphism 337

System.out.println("Brass.play()");
}
public void adjust() {

System.out.println("Brass.adjust()");
}

}

class Woodwind extends Wind {
public void play() {

System.out.println("Woodwind.play()");
}
public String what() { return "Woodwind"; }

}

public class Music4 {
// Doesn't care about type, so new types
// added to the system still work right:
static void tune(Instrument i) {

// ...
i.play();

}
static void tuneAll(Instrument[] e) {

for(int i = 0; i < e.length; i++)
tune(e[i]);

}
public static void main(String[] args) {

Instrument[] orchestra = new Instrument[5];
int i = 0;
// Upcasting during addition to the array:
orchestra[i++] = new Wind();
orchestra[i++] = new Percussion();
orchestra[i++] = new Stringed();
orchestra[i++] = new Brass();
orchestra[i++] = new Woodwind();
tuneAll(orchestra);

}
} ///:~

You can see that there’s really no change except in the base class.

338 Thinking in Java www.BruceEckel.com

It’s helpful to create abstract classes and methods because they
make the abstractness of a class explicit and tell both the user and
the compiler how it was intended to be used.

Constructors and
polymorphism

As usual, constructors are different from other kinds of methods.
This is also true when polymorphism is involved. Even though
constructors are not polymorphic (although you can have a kind of
“virtual constructor,” as you will see in Chapter 12), it’s important
to understand the way constructors work in complex hierarchies
and with polymorphism. This understanding will help you avoid
unpleasant entanglements.

Order of constructor calls
The order of constructor calls was briefly discussed in Chapter 4
and again in Chapter 7, but that was before polymorphism was
introduced.

A constructor for the base class is always called in the constructor
for a derived class, chaining up the inheritance hierarchy so that a
constructor for every base class is called. This makes sense because
the constructor has a special job: to see that the object is built
properly. A derived class has access to its own members only, and
not to those of the base class (whose members are typically
private). Only the base-class constructor has the proper knowledge
and access to initialize its own elements. Therefore, it’s essential
that all constructors get called, otherwise the entire object wouldn’t
be constructed. That’s why the compiler enforces a constructor call
for every portion of a derived class. It will silently call the default
constructor if you don’t explicitly call a base-class constructor in the
derived-class constructor body. If there is no default constructor,
the compiler will complain. (In the case where a class has no
constructors, the compiler will automatically synthesize a default
constructor.)

Chapter 7: Polymorphism 339

Let’s take a look at an example that shows the effects of
composition, inheritance, and polymorphism on the order of
construction:

//: c07:Sandwich.java
// Order of constructor calls.

class Meal {
Meal() { System.out.println("Meal()"); }

}

class Bread {
Bread() { System.out.println("Bread()"); }

}

class Cheese {
Cheese() { System.out.println("Cheese()"); }

}

class Lettuce {
Lettuce() { System.out.println("Lettuce()"); }

}

class Lunch extends Meal {
Lunch() { System.out.println("Lunch()");}

}

class PortableLunch extends Lunch {
PortableLunch() {

System.out.println("PortableLunch()");
}

}

class Sandwich extends PortableLunch {
Bread b = new Bread();
Cheese c = new Cheese();
Lettuce l = new Lettuce();
Sandwich() {

System.out.println("Sandwich()");
}
public static void main(String[] args) {

new Sandwich();

340 Thinking in Java www.BruceEckel.com

}
} ///:~

This example creates a complex class out of other classes, and each
class has a constructor that announces itself. The important class is
Sandwich, which reflects three levels of inheritance (four, if you
count the implicit inheritance from Object) and three member
objects. When a Sandwich object is created in main(), the output
is:

Meal()
Lunch()
PortableLunch()
Bread()
Cheese()
Lettuce()
Sandwich()

This means that the order of constructor calls for a complex object
is as follows:

1. The base-class constructor is called. This step is repeated
recursively such that the root of the hierarchy is constructed
first, followed by the next-derived class, etc., until the most-
derived class is reached.

2. Member initializers are called in the order of declaration.

3. The body of the derived-class constructor is called.

The order of the constructor calls is important. When you inherit,
you know all about the base class and can access any public and
protected members of the base class. This means that you must be
able to assume that all the members of the base class are valid when
you’re in the derived class. In a normal method, construction has
already taken place, so all the members of all parts of the object
have been built. Inside the constructor, however, you must be able
to assume that all members that you use have been built. The only
way to guarantee this is for the base-class constructor to be called
first. Then when you’re in the derived-class constructor, all the
members you can access in the base class have been initialized.
“Knowing that all members are valid” inside the constructor is also

Chapter 7: Polymorphism 341

the reason that, whenever possible, you should initialize all member
objects (that is, objects placed in the class using composition) at
their point of definition in the class (e.g.: b, c, and l in the example
above). If you follow this practice, you will help ensure that all base
class members and member objects of the current object have been
initialized. Unfortunately, this doesn’t handle every case, as you will
see in the next section.

Inheritance and finalize()
When you use composition to create a new class, you never worry
about finalizing the member objects of that class. Each member is
an independent object and thus is garbage collected and finalized
regardless of whether it happens to be a member of your class. With
inheritance, however, you must override finalize() in the derived
class if you have any special cleanup that must happen as part of
garbage collection. When you override finalize() in an inherited
class, it’s important to remember to call the base-class version of
finalize(), since otherwise the base-class finalization will not
happen. The following example proves this:

//: c07:Frog.java
// Testing finalize with inheritance.

class DoBaseFinalization {
public static boolean flag = false;

}

class Characteristic {
String s;
Characteristic(String c) {

s = c;
System.out.println(
"Creating Characteristic " + s);

}
protected void finalize() {

System.out.println(
"finalizing Characteristic " + s);

}
}

342 Thinking in Java www.BruceEckel.com

class LivingCreature {
Characteristic p =

new Characteristic("is alive");
LivingCreature() {

System.out.println("LivingCreature()");
}
protected void finalize() {

System.out.println(
"LivingCreature finalize");

// Call base-class version LAST!
if(DoBaseFinalization.flag)
try {
super.finalize();

} catch(Throwable t) {}
}

}

class Animal extends LivingCreature {
Characteristic p =

new Characteristic("has heart");
Animal() {

System.out.println("Animal()");
}
protected void finalize() {

System.out.println("Animal finalize");
if(DoBaseFinalization.flag)
try {
super.finalize();

} catch(Throwable t) {}
}

}

class Amphibian extends Animal {
Characteristic p =

new Characteristic("can live in water");
Amphibian() {

System.out.println("Amphibian()");
}
protected void finalize() {

System.out.println("Amphibian finalize");
if(DoBaseFinalization.flag)

Chapter 7: Polymorphism 343

try {
super.finalize();

} catch(Throwable t) {}
}

}

public class Frog extends Amphibian {
Frog() {

System.out.println("Frog()");
}
protected void finalize() {

System.out.println("Frog finalize");
if(DoBaseFinalization.flag)
try {
super.finalize();

} catch(Throwable t) {}
}
public static void main(String[] args) {

if(args.length != 0 &&
args[0].equals("finalize"))
DoBaseFinalization.flag = true;

else
System.out.println("not finalizing bases");

new Frog(); // Instantly becomes garbage
System.out.println("bye!");
// Force finalizers to be called:
System.gc();

}
} ///:~

The class DoBaseFinalization simply holds a flag that indicates
to each class in the hierarchy whether to call super.finalize().
This flag is set based on a command-line argument, so you can view
the behavior with and without base-class finalization.

Each class in the hierarchy also contains a member object of class
Characteristic. You will see that regardless of whether the base
class finalizers are called, the Characteristic member objects are
always finalized.

Each overridden finalize() must have access to at least protected
members since the finalize() method in class Object is

344 Thinking in Java www.BruceEckel.com

protected and the compiler will not allow you to reduce the access
during inheritance. (“Friendly” is less accessible than protected.)

In Frog.main(), the DoBaseFinalization flag is configured and
a single Frog object is created. Remember that garbage collection
and in particular finalization might not happen for any particular
object so to enforce this, so System.gc() forces garbage collection,
and thus finalization. Without base-class finalization, the output is:

not finalizing bases
Creating Characteristic is alive
LivingCreature()
Creating Characteristic has heart
Animal()
Creating Characteristic can live in water
Amphibian()
Frog()
bye!
Frog finalize
finalizing Characteristic is alive
finalizing Characteristic has heart
finalizing Characteristic can live in water

You can see that, indeed, no finalizers are called for the base classes
of Frog (the member objects are finalized, as you would expect).
But if you add the “finalize” argument on the command line, you
get:

Creating Characteristic is alive
LivingCreature()
Creating Characteristic has heart
Animal()
Creating Characteristic can live in water
Amphibian()
Frog()
bye!
Frog finalize
Amphibian finalize
Animal finalize
LivingCreature finalize
finalizing Characteristic is alive
finalizing Characteristic has heart

Chapter 7: Polymorphism 345

finalizing Characteristic can live in water

Although the order the member objects are finalized is the same
order that they are created, technically the order of finalization of
objects is unspecified. With base classes, however, you have control
over the order of finalization. The best order to use is the one that’s
shown here, which is the reverse of the order of initialization.
Following the form that’s used in C++ for destructors, you should
perform the derived-class finalization first, then the base-class
finalization. That’s because the derived-class finalization could call
some methods in the base class that require that the base-class
components are still alive, so you must not destroy them
prematurely.

Behavior of polymorphic methods
inside constructors
The hierarchy of constructor calls brings up an interesting dilemma.
What happens if you’re inside a constructor and you call a
dynamically-bound method of the object being constructed? Inside
an ordinary method you can imagine what will happen – the
dynamically-bound call is resolved at run-time because the object
cannot know whether it belongs to the class the method is in or
some class derived from it. For consistency, you might think this is
what should happen inside constructors.

This is not exactly the case. If you call a dynamically-bound method
inside a constructor, the overridden definition for that method is
used. However, the effect can be rather unexpected, and can conceal
some difficult-to-find bugs.

Conceptually, the constructor’s job is to bring the object into
existence (which is hardly an ordinary feat). Inside any constructor,
the entire object might be only partially formed – you can know
only that the base-class objects have been initialized, but you cannot
know which classes are inherited from you. A dynamically-bound
method call, however, reaches “outward” into the inheritance
hierarchy. It calls a method in a derived class. If you do this inside a

346 Thinking in Java www.BruceEckel.com

constructor, you call a method that might manipulate members that
haven’t been initialized yet – a sure recipe for disaster.

You can see the problem in the following example:

//: c07:PolyConstructors.java
// Constructors and polymorphism
// don't produce what you might expect.

abstract class Glyph {
abstract void draw();
Glyph() {

System.out.println("Glyph() before draw()");
draw();
System.out.println("Glyph() after draw()");

}
}

class RoundGlyph extends Glyph {
int radius = 1;
RoundGlyph(int r) {

radius = r;
System.out.println(
"RoundGlyph.RoundGlyph(), radius = "
+ radius);

}
void draw() {

System.out.println(
"RoundGlyph.draw(), radius = " + radius);

}
}

public class PolyConstructors {
public static void main(String[] args) {

new RoundGlyph(5);
}

} ///:~

In Glyph, the draw() method is abstract, so it is designed to be
overridden. Indeed, you are forced to override it in RoundGlyph.
But the Glyph constructor calls this method, and the call ends up in

Chapter 7: Polymorphism 347

RoundGlyph.draw(), which would seem to be the intent. But
look at the output:

Glyph() before draw()
RoundGlyph.draw(), radius = 0
Glyph() after draw()
RoundGlyph.RoundGlyph(), radius = 5

When Glyph’s constructor calls draw(), the value of radius isn’t
even the default initial value 1. It’s zero. This would probably result
in either a dot or nothing at all being drawn on the screen, and
you’d be staring, trying to figure out why the program won’t work.

The order of initialization described in the previous section isn’t
quite complete, and that’s the key to solving the mystery. The actual
process of initialization is:

1. The storage allocated for the object is initialized to binary
zero before anything else happens.

2. The base-class constructors are called as described
previously. At this point, the overridden draw() method is
called, (yes, before the RoundGlyph constructor is called),
which discovers a radius value of zero, due to step 1.

3. Member initializers are called in the order of declaration.

4. The body of the derived-class constructor is called.

There’s an upside to this, which is that everything is at least
initialized to zero (or whatever zero means for that particular data
type) and not just left as garbage. This includes object handles that
are embedded inside a class via composition, which become null.
So if you forget to initialize that handle you’ll get an exception at
run time. Everything else gets zero, which is usually a telltale value
when looking at output.

On the other hand, you should be pretty horrified at the outcome of
this program. You’ve done a perfectly logical thing and yet the
behavior is mysteriously wrong, with no complaints from the
compiler. (C++ produces more rational behavior in this situation.)

348 Thinking in Java www.BruceEckel.com

Bugs like this could easily be buried and take a long time to
discover.

As a result, a good guideline for constructors is, “Do as little as
possible to set the object into a good state, and if you can possibly
avoid it, don’t call any methods.” The only safe methods to call
inside a constructor are those that are final in the base class. (This
also applies to private methods, which are automatically final.)
These cannot be overridden and thus cannot produce this kind of
surprise.

Designing with inheritance
Once you learn about polymorphism, it can seem that everything
ought to be inherited because polymorphism is such a clever tool.
This can burden your designs; in fact if you choose inheritance first
when you’re using an existing class to make a new class, things can
become needlessly complicated.

A better approach is to choose composition first, when it’s not
obvious which one you should use. Composition does not force a
design into an inheritance hierarchy. But composition is also more
flexible since it’s possible to dynamically choose a type (and thus
behavior) when using composition, whereas inheritance requires an
exact type to be known at compile time. The following example
illustrates this:

//: c07:Transmogrify.java
// Dynamically changing the behavior of
// an object via composition.

abstract class Actor {
abstract void act();

}

class HappyActor extends Actor {
public void act() {

System.out.println("HappyActor");
}

}

Chapter 7: Polymorphism 349

class SadActor extends Actor {
public void act() {

System.out.println("SadActor");
}

}

class Stage {
Actor a = new HappyActor();
void change() { a = new SadActor(); }
void go() { a.act(); }

}

public class Transmogrify {
public static void main(String[] args) {

Stage s = new Stage();
s.go(); // Prints "HappyActor"
s.change();
s.go(); // Prints "SadActor"

}
} ///:~

A Stage object contains a handle to an Actor, which is initialized to
a HappyActor object. This means go() produces a particular
behavior. But since a handle can be re-bound to a different object at
run time, a handle for a SadActor object can be substituted in a
and then the behavior produced by go() changes. Thus you gain
dynamic flexibility at run time. In contrast, you can’t decide to
inherit differently at run time; that must be completely determined
at compile time.

A general guideline is “Use inheritance to express differences in
behavior, and fields to express variations in state.” In the above
example, both are used: two different classes are inherited to
express the difference in the act() method, and Stage uses
composition to allow its state to be changed. In this case, that
change in state happens to produce a change in behavior.

350 Thinking in Java www.BruceEckel.com

Pure inheritance vs. extension
When studying inheritance, it would seem that the cleanest way to
create an inheritance hierarchy is to take the “pure” approach. That
is, only methods that have been established in the base class or
interface are to be overridden in the derived class, as seen in this
diagram:

Shape

draw()
erase()

Circle

draw()
erase()

Square

draw()
erase()

Triangle

draw()
erase()

This can be termed a pure “is-a” relationship because the interface
of a class establishes what it is. Inheritance guarantees that any
derived class will have the interface of the base class and nothing
less. If you follow the above diagram, derived classes will also have
no more than the base class interface.

This can be thought of as pure substitution, because derived class
objects can be perfectly substituted for the base class, and you never
need to know any extra information about the subclasses when
you’re using them:

Circle, Square,
Line, or new type

of Shape

Talks to Shape
Message

"Is-a"
relationship

That is, the base class can receive any message you can send to the
derived class because the two have exactly the same interface. All
you need to do is upcast from the derived class and never look back

Chapter 7: Polymorphism 351

to see what exact type of object you’re dealing with. Everything is
handled through polymorphism.

When you see it this way, it seems like a pure “is-a” relationship is
the only sensible way to do things, and any other design indicates
muddled thinking and is by definition broken. This too is a trap. As
soon as you start thinking this way, you’ll turn around and discover
that extending the interface (which, unfortunately, the keyword
extends seems to encourage) is the perfect solution to a particular
problem. This could be termed an “is-like-a” relationship because
the derived class is like the base class – it has the same fundamental
interface – but it has other features that require additional methods
to implement:

Useful

void f()
void g()

void f()

void g()

void u()

void v()

void w()

MoreUseful

}
Assume this

represents a big
interface

"Is-like-a"

} Extending
the interface

While this is also a useful and sensible approach (depending on the
situation) it has a drawback. The extended part of the interface in
the derived class is not available from the base class, so once you
upcast you can’t call the new methods:

Useful part
Talks to Useful

object Message

MoreUseful
part

352 Thinking in Java www.BruceEckel.com

If you’re not upcasting in this case, it won’t bother you, but often
you’ll get into a situation in which you need to rediscover the exact
type of the object so you can access the extended methods of that
type. The following section shows how this is done.

Downcasting and run-time
type identification
Since you lose the specific type information via an upcast (moving
up the inheritance hierarchy), it makes sense that to retrieve the
type information – that is, to move back down the inheritance
hierarchy – you use a downcast. However, you know an upcast is
always safe; the base class cannot have a bigger interface than the
derived class, therefore every message you send through the base
class interface is guaranteed to be accepted. But with a downcast,
you don’t really know that a shape (for example) is actually a circle.
It could instead be a triangle or square or some other type.

Useful

void f()
void g()

void f()

void g()

void u()

void v()

void w()

MoreUseful

Downcast:
must be
checked

Upcast:
always
safe

To solve this problem there must be some way to guarantee that a
downcast is correct, so you won’t accidentally cast to the wrong type
and then send a message that the object can’t accept. This would be
quite unsafe.

Chapter 7: Polymorphism 353

In some languages (like C++) you must perform a special operation
in order to get a type-safe downcast, but in Java every cast is
checked! So even though it looks like you’re just performing an
ordinary parenthesized cast, at run time this cast is checked to
ensure that it is in fact the type you think it is. If it isn’t, you get a
ClassCastException. This act of checking types at run time is
called run-time type identification (RTTI). The following example
demonstrates the behavior of RTTI:

//: c07:RTTI.java
// Downcasting & Run-Time Type
// Identification (RTTI).
import java.util.*;

class Useful {
public void f() {}
public void g() {}

}

class MoreUseful extends Useful {
public void f() {}
public void g() {}
public void u() {}
public void v() {}
public void w() {}

}

public class RTTI {
public static void main(String[] args) {

Useful[] x = {
new Useful(),
new MoreUseful()

};
x[0].f();
x[1].g();
// Compile-time: method not found in Useful:
//! x[1].u();
((MoreUseful)x[1]).u(); // Downcast/RTTI
((MoreUseful)x[0]).u(); // Exception thrown

}
} ///:~

354 Thinking in Java www.BruceEckel.com

As in the diagram, MoreUseful extends the interface of Useful.
But since it’s inherited, it can also be upcast to a Useful. You can
see this happening in the initialization of the array x in main().
Since both objects in the array are of class Useful, you can send the
f() and g() methods to both, and if you try to call u() (which
exists only in MoreUseful) you’ll get a compile-time error
message.

If you want to access the extended interface of a MoreUseful
object, you can try to downcast. If it’s the correct type, it will be
successful. Otherwise, you’ll get a ClassCastException. You don’t
need to write any special code for this exception, since it indicates a
programmer error that could happen anywhere in a program.

There’s more to RTTI than a simple cast. For example, there’s a way
to see what type you’re dealing with before you try to downcast it.
All of Chapter 12 is devoted to the study of different aspects of Java
run-time type identification.

Summary
Polymorphism means “different forms.” In object-oriented
programming, you have the same face (the common interface in the
base class) and different forms using that face: the different
versions of the dynamically-bound methods.

You’ve seen in this chapter that it’s impossible to understand, or
even create, an example of polymorphism without using data
abstraction and inheritance. Polymorphism is a feature that cannot
be viewed in isolation (like a switch statement can, for example),
but instead works only in concert, as part of a “big picture” of class
relationships. People are often confused by other, non-object-
oriented features of Java, like method overloading, which are
sometimes presented as object-oriented. Don’t be fooled: If it isn’t
late binding, it isn’t polymorphism.

To use polymorphism – and thus object-oriented techniques –
effectively in your programs you must expand your view of
programming to include not just members and messages of an

Chapter 7: Polymorphism 355

individual class, but also the commonality among classes and their
relationships with each other. Although this requires significant
effort, it’s a worthy struggle, because the results are faster program
development, better code organization, extensible programs, and
easier code maintenance.

Exercises
1. Add a new method in the base class of Shapes.java that

prints a message, but don’t override it in the derived classes.
Explain what happens. Now override it in one of the derived
classes but not the others, and see what happens. Finally,
override it in all the derived classes.

2. Add a new type of Shape to Shapes.java and verify in
main() that polymorphism works for your new type as it
does in the old types.

3. Change Music3.java so that what() becomes the root
Object method toString(). Try printing the Instrument
objects using System.out.println() (without any casting).

4. Add a new type of Instrument to Music3.java and verify
that polymorphism works for your new type.

5. Modify Music3.java so that it randomly creates
Instrument objects the way Shapes.java does.

6. Create an inheritance hierarchy of Rodent: Mouse, Gerbil,
Hamster, etc. In the base class, provide methods that are
common to all Rodents, and override these in the derived
classes to perform different behaviors depending on the
specific type of Rodent. Create an array of Rodent, fill it
with different specific types of Rodents, and call your base-
class methods to see what happens.

7. Modify Exercise 6 so that Rodent is an abstract class. Make
the methods of Rodent abstract whenever possible.

356 Thinking in Java www.BruceEckel.com

8. Create a class as abstract without including any abstract
methods, and verify that you cannot create any instances of
that class.

9. Add class Pickle to Sandwich.java.

10. Modify Exercise 6 so that it demonstrates the order of
initialization of the base classes and derived classes. Now add
member objects to both the base and derived classes, and
show the order in which their initialization occurs during
construction.

11. Create a 3-level inheritance hierarchy. Each class in the
hierarchy should have a finalize() method, and it should
properly call the base-class version of finalize().
Demonstrate that your hierarchy works properly.

12. Create a base class with two methods. In the first method, call
the second method. Inherit a class and override the second
method. Create an object of the derived class, upcast it to the
base type, and call the first method. Explain what happens.

13. Create a base class with an abstract print() method that is
overridden in a derived class. The overridden version of the
method prints the value of an int variable defined in the
derived class. At the point of definition of this variable, give it
a non-zero value. In the base-class constructor, call this
method. In main(), create an object of the derived type, and
then call its print() method. Explain the results.

14. Following the example in Transmogrify.java, create a
Starship class that has an AlertStatus handle which can
indicate three different states. Include methods to change the
states.

15. Create an abstract class with no methods. Derive a class and
add a method. Create a static method that takes a handle to
the base class, downcasts it to the derived class, and calls the
method. In main(), demonstrate that it works. Now put the
abstract declaration for the method in the base class, thus
eliminating the need for the downcast.

Chapter 7: Polymorphism 357

 359

8: Interfaces &
Inner Classes

Interfaces and inner classes provide more sophisticated
ways to organize and control the objects in your system.

C++, for example, does not contain such mechanisms, although the
clever programmer may simulate them. The fact that they exist in
Java indicates that they were considered important enough to
provide direct support through language keywords.

In Chapter 7, you learned about the abstract keyword, which
allows you to create one or more methods in a class that have no
definitions – you provide part of the interface without providing a
corresponding implementation, which is created by inheritors. The
interface keyword produces a completely abstract class, one that
provides no implementation at all. You’ll learn that the interface is
more than just an abstract class taken to the extreme, since it allows
you to perform a variation on C++’s “multiple inheritance,” by
creating a class that can be upcast to more than one base type.

At first, inner classes look like a simple code hiding mechanism: you
place classes inside other classes. You’ll learn, however, that the
inner class does more than that – it knows about and can
communicate with the surrounding class – and that the kind of code
you can write with inner classes is more elegant and clear, although
it is a new concept to most so it takes some time to become
comfortable with design using inner classes.

Interfaces
The interface keyword takes the abstract concept one step
further. You could think of it as a “pure” abstract class. It allows
the creator to establish the form for a class: method names,

360 Thinking in Java www.BruceEckel.com

argument lists, and return types, but no method bodies. An
interface can also contain fields, but these are implicitly static
and final. An interface provides only a form, but no
implementation.

An interface says: “This is what all classes that implement this
particular interface will look like.” Thus, any code that uses a
particular interface knows what methods might be called for that
interface, and that’s all. So the interface is used to establish a
“protocol” between classes. (Some object-oriented programming
languages have a keyword called protocol to do the same thing.)

To create an interface, use the interface keyword instead of the
class keyword. Like a class, you can add the public keyword before
the interface keyword (but only if that interface is defined in a
file of the same name) or leave it off to give “friendly” status so that
it is only usable within the same package.

To make a class that conforms to a particular interface (or group
of interfaces) use the implements keyword. You’re saying “The
interface is what it looks like but now I’m going to say how it
works.” Other than that, it looks like inheritance. The diagram for
the instrument example shows this:

Chapter 8: Interfaces & Inner Classes 361

interface Instrument

void play();
String what();
void adjust();

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

extendsextends

implements implements implements

Once you’ve implemented an interface, that implementation
becomes an ordinary class that can be extended in the regular way.

You can choose to explicitly declare the method declarations in an
interface as public. But they are public even if you don’t say it.
So when you implement an interface, the methods from the
interface must be defined as public. Otherwise they would default
to “friendly” and you’d be reducing the accessibility of a method
during inheritance, which is not allowed by the Java compiler.

You can see this in the modified version of the Instrument
example. Note that every method in the interface is strictly a
declaration, which is the only thing the compiler allows. In addition,
none of the methods in Instrument are declared as public, but
they’re automatically public anyway:

//: c08:music5:Music5.java
// Interfaces.

362 Thinking in Java www.BruceEckel.com

import java.util.*;

interface Instrument {
// Compile-time constant:
int i = 5; // static & final
// Cannot have method definitions:
void play(); // Automatically public
String what();
void adjust();

}

class Wind implements Instrument {
public void play() {

System.out.println("Wind.play()");
}
public String what() { return "Wind"; }
public void adjust() {}

}

class Percussion implements Instrument {
public void play() {

System.out.println("Percussion.play()");
}
public String what() { return "Percussion"; }
public void adjust() {}

}

class Stringed implements Instrument {
public void play() {

System.out.println("Stringed.play()");
}
public String what() { return "Stringed"; }
public void adjust() {}

}

class Brass extends Wind {
public void play() {

System.out.println("Brass.play()");
}
public void adjust() {

System.out.println("Brass.adjust()");
}

Chapter 8: Interfaces & Inner Classes 363

}

class Woodwind extends Wind {
public void play() {

System.out.println("Woodwind.play()");
}
public String what() { return "Woodwind"; }

}

public class Music5 {
// Doesn't care about type, so new types
// added to the system still work right:
static void tune(Instrument i) {

// ...
i.play();

}
static void tuneAll(Instrument[] e) {

for(int i = 0; i < e.length; i++)
tune(e[i]);

}
public static void main(String[] args) {

Instrument[] orchestra = new Instrument[5];
int i = 0;
// Upcasting during addition to the array:
orchestra[i++] = new Wind();
orchestra[i++] = new Percussion();
orchestra[i++] = new Stringed();
orchestra[i++] = new Brass();
orchestra[i++] = new Woodwind();
tuneAll(orchestra);

}
} ///:~

The rest of the code works the same. It doesn’t matter if you are
upcasting to a “regular” class called Instrument, an abstract
class called Instrument, or to an interface called Instrument.
The behavior is the same. In fact, you can see in the tune() method
that there isn’t any evidence about whether Instrument is a
“regular” class, an abstract class or an interface. This is the
intent: Each approach gives the programmer different control over
the way objects are created and used.

364 Thinking in Java www.BruceEckel.com

“Multiple inheritance” in Java
The interface isn’t simply a “more pure” form of abstract class. It
has a higher purpose than that. Because an interface has no
implementation at all – that is, there is no storage associated with
an interface – there’s nothing to prevent many interfaces from
being combined. This is valuable because there are times when you
need to say “An x is an a and a b and a c.” In C++, this act of
combining multiple class interfaces is called multiple inheritance,
and it carries some rather sticky baggage because each class can
have an implementation. In Java, you can perform the same act, but
only one of the classes can have an implementation, so the
problems seen in C++ do not occur with Java when combining
multiple interfaces:

Abstract or Concrete
 Base Class

interface 1

interface 2

interface n

Base Class Functions interface 1 ...interface 2 interface n

......

In a derived class, you aren’t forced to have a base class that is
either an abstract or “concrete” (one with no abstract methods).
If you do inherit from a non-interface, you can inherit from only
one. All the rest of the base elements must be interfaces. You place
all the interface names after the implements keyword and
separate them with commas. You can have as many interfaces as
you want – each one becomes an independent type that you can
upcast to. The following example shows a concrete class combined
with several interfaces to produce a new class:

//: c08:Adventure.java
// Multiple interfaces.
import java.util.*;

interface CanFight {

Chapter 8: Interfaces & Inner Classes 365

void fight();
}

interface CanSwim {
void swim();

}

interface CanFly {
void fly();

}

class ActionCharacter {
public void fight() {}

}

class Hero extends ActionCharacter
implements CanFight, CanSwim, CanFly {

public void swim() {}
public void fly() {}

}

public class Adventure {
static void t(CanFight x) { x.fight(); }
static void u(CanSwim x) { x.swim(); }
static void v(CanFly x) { x.fly(); }
static void w(ActionCharacter x) { x.fight(); }
public static void main(String[] args) {

Hero i = new Hero();
t(i); // Treat it as a CanFight
u(i); // Treat it as a CanSwim
v(i); // Treat it as a CanFly
w(i); // Treat it as an ActionCharacter

}
} ///:~

You can see that Hero combines the concrete class
ActionCharacter with the interfaces CanFight, CanSwim, and
CanFly. When you combine a concrete class with interfaces this
way, the concrete class must come first, then the interfaces. (The
compiler gives an error otherwise.)

366 Thinking in Java www.BruceEckel.com

Note that the signature for fight() is the same in the interface
CanFight and the class ActionCharacter, and that fight() is not
provided with a definition in Hero. The rule for an interface is
that you can inherit from it (as you will see shortly), but then you’ve
got another interface. If you want to create an object of the new
type, it must be a class with all definitions provided. Even though
Hero does not explicitly provide a definition for fight(), the
definition comes along with ActionCharacter so it is
automatically provided and it’s possible to create objects of Hero.

In class Adventure, you can see that there are four methods that
take as arguments the various interfaces and the concrete class.
When a Hero object is created, it can be passed to any of these
methods, which means it is being upcast to each interface in turn.
Because of the way interfaces are designed in Java, this works
without a hitch and without any particular effort on the part of the
programmer.

Keep in mind that the core reason for interfaces is shown in the
above example: to be able to upcast to more than one base type.
However, a second reason for using interfaces is the same as using
an abstract base class: to prevent the client programmer from
making an object of this class and to establish that it is only an
interface. This brings up a question: Should you use an interface
or an abstract class? An interface gives you the benefits of an
abstract class and the benefits of an interface, so if it’s possible
to create your base class without any method definitions or member
variables you should always prefer interfaces to abstract classes.
In fact, if you know something is going to be a base class, your first
choice should be to make it an interface, and only if you’re forced
to have method definitions or member variables should you change
to an abstract class, or if necessary a concrete class.

Extending an interface
with inheritance
You can easily add new method declarations to an interface using
inheritance, and you can also combine several interfaces into a

Chapter 8: Interfaces & Inner Classes 367

new interface with inheritance. In both cases you get a new
interface, as seen in this example:

//: c08:HorrorShow.java
// Extending an interface with inheritance.

interface Monster {
void menace();

}

interface DangerousMonster extends Monster {
void destroy();

}

interface Lethal {
void kill();

}

class DragonZilla implements DangerousMonster {
public void menace() {}
public void destroy() {}

}

interface Vampire
extends DangerousMonster, Lethal {

void drinkBlood();
}

class HorrorShow {
static void u(Monster b) { b.menace(); }
static void v(DangerousMonster d) {

d.menace();
d.destroy();

}
public static void main(String[] args) {

DragonZilla if2 = new DragonZilla();
u(if2);
v(if2);

}
} ///:~

368 Thinking in Java www.BruceEckel.com

DangerousMonster is a simple extension to Monster that
produces a new interface. This is implemented in DragonZilla.

The syntax used in Vampire works only when inheriting
interfaces. Normally, you can use extends with only a single class,
but since an interface can be made from multiple other interfaces,
extends can refer to multiple base interfaces when building a new
interface. As you can see, the interface names are simply
separated with commas.

Grouping constants
Because any fields you put into an interface are automatically
static and final, the interface is a convenient tool for creating
groups of constant values, much as you would with an enum in C
or C++. For example:

//: c08:Months.java
// Using interfaces to create groups of constants.
package c08;

public interface Months {
int

JANUARY = 1, FEBRUARY = 2, MARCH = 3,
APRIL = 4, MAY = 5, JUNE = 6, JULY = 7,
AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10,
NOVEMBER = 11, DECEMBER = 12;

} ///:~

Notice the Java style of using all uppercase letters (with
underscores to separate multiple words in a single identifier) for
static finals that have constant initializers.

The fields in an interface are automatically public, so it’s
unnecessary to specify that.

Now you can use the constants from outside the package by
importing c08.* or c08.Months just as you would with any other
package, and referencing the values with expressions like
Months.JANUARY. Of course, what you get is just an int so
there isn’t the extra type safety that C++’s enum has, but this

Chapter 8: Interfaces & Inner Classes 369

(commonly-used) technique is certainly an improvement over hard-
coding numbers into your programs. (That approach is often
referred to as using “magic numbers” and it produces very difficult-
to-maintain code.)

If you do want extra type safety, you can build a class like this:1

//: c08:Month2.java
// A more robust enumeration system.
package c08;

public final class Month2 {
private String name;
private Month2(String nm) { name = nm; }
public String toString() { return name; }
public final static Month2

JAN = new Month2("January"),
FEB = new Month2("February"),
MAR = new Month2("March"),
APR = new Month2("April"),
MAY = new Month2("May"),
JUN = new Month2("June"),
JUL = new Month2("July"),
AUG = new Month2("August"),
SEP = new Month2("September"),
OCT = new Month2("October"),
NOV = new Month2("November"),
DEC = new Month2("December");

public final static Month2 month[] = {
JAN, JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC

};
public static void main(String[] args) {

Month2 m = Month2.JAN;
System.out.println(m);
m = Month2.month[12];
System.out.println(m);
System.out.println(m == Month2.DEC);

1 This approach was inspired by an e-mail from Rich Hoffarth.

370 Thinking in Java www.BruceEckel.com

System.out.println(m.equals(Month2.DEC));
}

} ///:~

The class is called Month2 since there’s already a Month in the
standard Java library. It’s a final class with a private constructor
so no one can inherit from it or make any instances of it. The only
instances are the final static ones created in the class itself: JAN,
FEB, MAR, etc. These objects are also used in the array month,
which lets you choose months by number instead of by name.
(Notice the extra JAN in the array to provide an offset by one, so
that December is month 12.) In main() you can see the type safety:
m is a Month2 object so it can be assigned only to a Month2. The
previous example Months.java provided only int values, so an int
variable intended to represent a month could actually be given any
integer value, which wasn’t too safe.

This approach also allows you to use == or equals()
interchangeably, as shown at the end of main().

Initializing fields in interfaces
Fields defined in interfaces are automatically static and final.
These cannot be “blank finals,” but they can be initialized with non-
constant expressions. For example:

//: c08:RandVals.java
// Initializing interface fields with
// non-constant initializers.
import java.util.*;

public interface RandVals {
int rint = (int)(Math.random() * 10);
long rlong = (long)(Math.random() * 10);
float rfloat = (float)(Math.random() * 10);
double rdouble = Math.random() * 10;

} ///:~

Since the fields are static, they are initialized when the class is first
loaded, which happens when any of the fields are accessed for the
first time. Here’s a simple test:

Chapter 8: Interfaces & Inner Classes 371

//: c08:TestRandVals.java

public class TestRandVals {
public static void main(String[] args) {

System.out.println(RandVals.rint);
System.out.println(RandVals.rlong);
System.out.println(RandVals.rfloat);
System.out.println(RandVals.rdouble);

}
} ///:~

The fields, of course, are not part of the interface but instead are
stored in the static storage area for that interface.

Inner classes
It’s possible to place a class definition within another class
definition. This is called an inner class. The inner class is a useful
feature because it allows you to group classes that logically belong
together and to control the visibility of one within the other.
However, it’s important to understand that inner classes are
distinctly different from composition.

Often, while you’re learning about them, the need for inner classes
isn’t immediately obvious. At the end of this section, after all of the
syntax and semantics of inner classes have been described, you’ll
find examples that should make clear the benefits of inner classes.

You create an inner class just as you’d expect: by placing the class
definition inside a surrounding class:

//: c08:Parcel1.java
// Creating inner classes.

public class Parcel1 {
class Contents {

private int i = 11;
public int value() { return i; }

}
class Destination {

private String label;

372 Thinking in Java www.BruceEckel.com

Destination(String whereTo) {
label = whereTo;

}
String readLabel() { return label; }

}
// Using inner classes looks just like
// using any other class, within Parcel1:
public void ship(String dest) {

Contents c = new Contents();
Destination d = new Destination(dest);
System.out.println(d.readLabel());

}
public static void main(String[] args) {

Parcel1 p = new Parcel1();
p.ship("Tanzania");

}
} ///:~

The inner classes, when used inside ship(), look just like the use of
any other classes. Here, the only practical difference is that the
names are nested within Parcel1. You’ll see in a while that this isn’t
the only difference.

More typically, an outer class will have a method that returns a
handle to an inner class, like this:

//: c08:Parcel2.java
// Returning a handle to an inner class.

public class Parcel2 {
class Contents {

private int i = 11;
public int value() { return i; }

}
class Destination {

private String label;
Destination(String whereTo) {
label = whereTo;

}
String readLabel() { return label; }

}
public Destination to(String s) {

Chapter 8: Interfaces & Inner Classes 373

return new Destination(s);
}
public Contents cont() {

return new Contents();
}
public void ship(String dest) {

Contents c = cont();
Destination d = to(dest);
System.out.println(d.readLabel());

}
public static void main(String[] args) {

Parcel2 p = new Parcel2();
p.ship("Tanzania");
Parcel2 q = new Parcel2();
// Defining handles to inner classes:
Parcel2.Contents c = q.cont();
Parcel2.Destination d = q.to("Borneo");

}
} ///:~

If you want to make an object of the inner class anywhere except
from within a non-static method of the outer class, you must
specify the type of that object as OuterClassName.InnerClassName,
as seen in main().

Inner classes and upcasting
So far, inner classes don’t seem that dramatic. After all, if it’s hiding
you’re after, Java already has a perfectly good hiding mechanism –
just allow the class to be “friendly” (visible only within a package)
rather than creating it as an inner class.

However, inner classes really come into their own when you start
upcasting to a base class, and in particular to an interface. (The
effect of producing an interface handle from an object that
implements it is essentially the same as upcasting to a base class.)
That’s because the inner class – the implementation of the
interface – can then be completely unseen and unavailable to
anyone, which is convenient for hiding the implementation. All you
get back is a handle to the base class or the interface.

374 Thinking in Java www.BruceEckel.com

First, the common interfaces will be defined in their own files so
they can be used in all the examples:

//: c08:Destination.java
public interface Destination {
String readLabel();

} ///:~

//: c08:Contents.java
public interface Contents {
int value();

} ///:~

Now Contents and Destination represent interfaces available to
the client programmer. (The interface, remember, automatically
makes all of its members public.)

When you get back a handle to the base class or the interface, it’s
possible that you can’t even find out the exact type, as shown here:

//: c08:Parcel3.java
// Returning a handle to an inner class.

public class Parcel3 {
private class PContents implements Contents {

private int i = 11;
public int value() { return i; }

}
protected class PDestination

implements Destination {
private String label;
private PDestination(String whereTo) {
label = whereTo;

}
public String readLabel() { return label; }

}
public Destination dest(String s) {

return new PDestination(s);
}
public Contents cont() {

return new PContents();
}

}

Chapter 8: Interfaces & Inner Classes 375

class Test {
public static void main(String[] args) {

Parcel3 p = new Parcel3();
Contents c = p.cont();
Destination d = p.dest("Tanzania");
// Illegal -- can't access private class:
//! Parcel3.PContents pc = p.new PContents();

}
} ///:~

Note: since main() is in Test, when you want to run this program
you don’t execute Parcel3, but instead:

java Test

In the example, main() must be in a separate class in order to
demonstrate the privateness of the inner class PContents.

In Parcel3, something new has been added: the inner class
PContents is private so no one but Parcel3 can access it.
PDestination is protected, so no one but Parcel3, classes in the
Parcel3 package (since protected also gives package access – that
is, protected is also “friendly”), and the inheritors of Parcel3 can
access PDestination. This means that the client programmer has
restricted knowledge and access to these members. In fact, you can’t
even downcast to a private inner class (or a protected inner class
unless you’re an inheritor), because you can’t access the name, as
you can see in class Test. Thus, the private inner class provides a
way for the class designer to completely prevent any type-coding
dependencies and to completely hide details about implementation.
In addition, extension of an interface is useless from the client
programmer’s perspective since the client programmer cannot
access any additional methods that aren’t part of the public
interface class. This also provides an opportunity for the Java
compiler to generate more efficient code.

Normal (non-inner) classes cannot be made private or protected
– only public or “friendly.”

376 Thinking in Java www.BruceEckel.com

Inner classes
in methods and scopes
What you’ve seen so far encompasses the typical use for inner
classes. In general, the code that you’ll write and read involving
inner classes will be “plain” inner classes that are simple and easy to
understand. However, the design for inner classes is quite complete
and there are a number of other, more obscure, ways that you can
use them if you choose: inner classes can be created within a
method or even an arbitrary scope. There are two reasons for doing
this:

1. As shown previously, you’re implementing an interface of
some kind so that you can create and return a handle.

2. You’re solving a complicated problem and you want to create
a class to aid in your solution, but you don’t want it publicly
available.

In the following examples, the previous code will be modified to
use:

1. A class defined within a method

2. A class defined within a scope inside a method

3. An anonymous class implementing an interface

4. An anonymous class extending a class that has a non-default
constructor

5. An anonymous class that performs field initialization

6. An anonymous class that performs construction using
instance initialization (anonymous inner classes cannot have
constructors)

Although it’s an ordinary class with an implementation, Wrapping
is also being used as a common “interface” to its derived classes:

//: c08:Wrapping.java
public class Wrapping {

Chapter 8: Interfaces & Inner Classes 377

private int i;
public Wrapping(int x) { i = x; }
public int value() { return i; }

} ///:~

You’ll notice above that Wrapping has a constructor that requires
an argument, to make things a bit more interesting.

The first example shows the creation of an entire class within the
scope of a method (instead of the scope of another class):

//: c08:Parcel4.java
// Nesting a class within a method.

public class Parcel4 {
public Destination dest(String s) {

class PDestination
implements Destination {

private String label;
private PDestination(String whereTo) {
label = whereTo;

}
public String readLabel() { return label; }

}
return new PDestination(s);

}
public static void main(String[] args) {

Parcel4 p = new Parcel4();
Destination d = p.dest("Tanzania");

}
} ///:~

The class PDestination is part of dest() rather than being part of
Parcel4. (Also notice that you could use the class identifier
PDestination for an inner class inside each class in the same
subdirectory without a name clash.) Therefore, PDestination
cannot be accessed outside of dest(). Notice the upcasting that
occurs in the return statement – nothing comes out of dest()
except a handle to Destination, the base class. Of course, the fact
that the name of the class PDestination is placed inside dest()
doesn’t mean that PDestination is not a valid object once dest()
returns.

378 Thinking in Java www.BruceEckel.com

The next example shows how you can nest an inner class within any
arbitrary scope:

//: c08:Parcel5.java
// Nesting a class within a scope.

public class Parcel5 {
private void internalTracking(boolean b) {

if(b) {
class TrackingSlip {
private String id;
TrackingSlip(String s) {

id = s;
}
String getSlip() { return id; }

}
TrackingSlip ts = new TrackingSlip("slip");
String s = ts.getSlip();

}
// Can't use it here! Out of scope:
//! TrackingSlip ts = new TrackingSlip("x");

}
public void track() { internalTracking(true); }
public static void main(String[] args) {

Parcel5 p = new Parcel5();
p.track();

}
} ///:~

The class TrackingSlip is nested inside the scope of an if
statement. This does not mean that the class is conditionally created
– it gets compiled along with everything else. However, it’s not
available outside the scope in which it is defined. Other than that, it
looks just like an ordinary class.

Anonymous inner classes
The next example looks a little strange:

//: c08:Parcel6.java
// A method that returns an anonymous inner class.

Chapter 8: Interfaces & Inner Classes 379

public class Parcel6 {
public Contents cont() {

return new Contents() {
private int i = 11;
public int value() { return i; }

}; // Semicolon required in this case
}
public static void main(String[] args) {

Parcel6 p = new Parcel6();
Contents c = p.cont();

}
} ///:~

The cont() method combines the creation of the return value with
the definition of the class that represents that return value! In
addition, the class is anonymous – it has no name. To make matters
a bit worse, it looks like you’re starting out to create a Contents
object:

return new Contents()

but then, before you get to the semicolon, you say, “But wait, I think
I’ll slip in a class definition”:

return new Contents() {
private int i = 11;
public int value() { return i; }

};

What this strange syntax means is “create an object of an
anonymous class that’s inherited from Contents.” The handle
returned by the new expression is automatically upcast to a
Contents handle. The anonymous inner class syntax is a shorthand
for:

class MyContents implements Contents {
private int i = 11;
public int value() { return i; }

}
return new MyContents();

380 Thinking in Java www.BruceEckel.com

In the anonymous inner class, Contents is created using a default
constructor. The following code shows what to do if your base class
needs a constructor with an argument:

//: c08:Parcel7.java
// An anonymous inner class that calls
// the base-class constructor.

public class Parcel7 {
public Wrapping wrap(int x) {

// Base constructor call:
return new Wrapping(x) {
public int value() {
return super.value() * 47;

}
}; // Semicolon required

}
public static void main(String[] args) {

Parcel7 p = new Parcel7();
Wrapping w = p.wrap(10);

}
} ///:~

That is, you simply pass the appropriate argument to the base-class
constructor, seen here as the x passed in new Wrapping(x). An
anonymous class cannot have a constructor where you would
normally call super().

In both of the previous examples, the semicolon doesn’t mark the
end of the class body (as it does in C++). Instead, it marks the end
of the expression that happens to contain the anonymous class.
Thus, it’s identical to the use of the semicolon everywhere else.

What happens if you need to perform some kind of initialization for
an object of an anonymous inner class? Since it’s anonymous,
there’s no name to give the constructor – so you can’t have a
constructor. You can, however, perform initialization at the point of
definition of your fields:

//: c08:Parcel8.java
// An anonymous inner class that performs
// initialization. A briefer version

Chapter 8: Interfaces & Inner Classes 381

// of Parcel5.java.

public class Parcel8 {
// Argument must be final to use inside
// anonymous inner class:
public Destination dest(final String dest) {

return new Destination() {
private String label = dest;
public String readLabel() { return label; }

};
}
public static void main(String[] args) {

Parcel8 p = new Parcel8();
Destination d = p.dest("Tanzania");

}
} ///:~

If you’re defining an anonymous inner class and want to use an
object that’s defined outside the anonymous inner class, the
compiler requires that the outside object be final. This is why the
argument to dest() is final. If you forget, you’ll get a compile-time
error message.

As long as you’re simply assigning a field, the above approach is
fine. But what if you need to perform some constructor-like
activity? With instance initialization, you can, in effect, create a
constructor for an anonymous inner class:

//: c08:Parcel9.java
// Using "instance initialization" to perform
// construction on an anonymous inner class.

public class Parcel9 {
public Destination
dest(final String dest, final float price) {

return new Destination() {
private int cost;
// Instance initialization for each object:
{
cost = Math.round(price);
if(cost > 100)

System.out.println("Over budget!");

382 Thinking in Java www.BruceEckel.com

}
private String label = dest;
public String readLabel() { return label; }

};
}
public static void main(String[] args) {

Parcel9 p = new Parcel9();
Destination d = p.dest("Tanzania", 101.395F);

}
} ///:~

Inside the instance initializer you can see code that couldn’t be
executed as part of a field initializer (that is, the if statement). So in
effect, an instance initializer is the constructor for an anonymous
inner class. Of course, it’s limited; you can’t overload instance
initializers so you can have only one of these constructors.

The link to the outer class
So far, it appears that inner classes are just a name-hiding and code-
organization scheme, which is helpful but not totally compelling.
However, there’s another twist. When you create an inner class,
objects of that inner class have a link to the enclosing object that
made them, and so they can access the members of that enclosing
object – without any special qualifications. In addition, inner
classes have access rights to all the elements in the enclosing class2.
The following example demonstrates this:

//: c08:Sequence.java
// Holds a sequence of Objects.

interface Selector {
boolean end();
Object current();
void next();

}

2 This is very different from the design of nested classes in C++, which is simply a name-
hiding mechanism. There is no link to an enclosing object and no implied permissions in
C++.

Chapter 8: Interfaces & Inner Classes 383

public class Sequence {
private Object[] obs;
private int next = 0;
public Sequence(int size) {

obs = new Object[size];
}
public void add(Object x) {

if(next < obs.length) {
obs[next] = x;
next++;

}
}
private class SSelector implements Selector {

int i = 0;
public boolean end() {
return i == obs.length;

}
public Object current() {
return obs[i];

}
public void next() {
if(i < obs.length) i++;

}
}
public Selector getSelector() {

return new SSelector();
}
public static void main(String[] args) {

Sequence s = new Sequence(10);
for(int i = 0; i < 10; i++)
s.add(Integer.toString(i));

Selector sl = s.getSelector();
while(!sl.end()) {
System.out.println(sl.current());
sl.next();

}
}

} ///:~

The Sequence is simply a fixed-sized array of Object with a class
wrapped around it. You call add() to add a new Object to the end

384 Thinking in Java www.BruceEckel.com

of the sequence (if there’s room left). To fetch each of the objects in
a Sequence, there’s an interface called Selector, which allows you
to see if you’re at the end(), to look at the current() Object, and
to move to the next() Object in the Sequence. Because Selector
is an interface, many other classes can implement the interface
in their own ways, and many methods can take the interface as an
argument, in order to create generic code.

Here, the SSelector is a private class that provides Selector
functionality. In main(), you can see the creation of a Sequence,
followed by the addition of a number of String objects. Then, a
Selector is produced with a call to getSelector() and this is used
to move through the Sequence and select each item.

At first, the creation of SSelector looks like just another inner
class. But examine it closely. Note that each of the methods end(),
current(), and next() refer to obs, which is a handle that isn’t
part of SSelector, but is instead a private field in the enclosing
class. However, the inner class can access methods and fields from
the enclosing class as if they owned them. This turns out to be very
convenient, as you can see in the above example.

So an inner class has automatic access to the members of the
enclosing class. How can this happen? The inner class must keep a
reference to the particular object of the enclosing class that was
responsible for creating it. Then when you refer to a member of the
enclosing class, that (hidden) reference is used to select that
member. Fortunately, the compiler takes care of all these details for
you, but you can also understand now that an object of an inner
class can be created only in association with an object of the
enclosing class. Construction of the inner class object requires the
handle to the object of the enclosing class, and the compiler will
complain if it cannot access that handle. Most of the time this
occurs without any intervention on the part of the programmer.

static inner classes
If you don’t need a connection between the inner class object and
the outer class object, then you can make the inner class static. To
understand the meaning of static when applied to inner classes,

Chapter 8: Interfaces & Inner Classes 385

you must remember that the object of an ordinary inner class
implicitly keeps a handle to the object of the enclosing class that
created it. This is not true, however, when you say an inner class is
static. A static inner class means:

1. You don’t need an outer-class object in order to create an
object of a static inner class.

2. You can’t access an outer-class object from an object of a
static inner class.

static inner classes are different than non-static inner classes in
another way, as well. Fields and methods in non-static inner
classes can only be at the outer level of a class, so non-static inner
classes cannot have static data, static fields, or static inner
classes. However, static inner classes can have all of these:

//: c08:Parcel10.java
// Static inner classes.

interface Contents {
int value();

}

interface Destination {
String readLabel();

}

public class Parcel10 {
private static class PContents
implements Contents {

private int i = 11;
public int value() { return i; }

}
protected static class PDestination

implements Destination {
private String label;
private PDestination(String whereTo) {
label = whereTo;

}
public String readLabel() { return label; }
// Static inner classes can contain

386 Thinking in Java www.BruceEckel.com

// other static elements:
public static void f() {}
static int x = 10;
static class AnotherLevel {
public static void f() {}
static int x = 10;

}
}
public static Destination dest(String s) {

return new PDestination(s);
}
public static Contents cont() {

return new PContents();
}
public static void main(String[] args) {

Contents c = cont();
Destination d = dest("Tanzania");

}
} ///:~

In main(), no object of Parcel10 is necessary; instead you use the
normal syntax for selecting a static member to call the methods
that return handles to Contents and Destination.

As you will see shortly, in an ordinary (non-static) inner class, the
link to the outer class object is achieved with a special this handle.
A static inner class does not have this special this handle, which
makes it analogous to a static method.

Normally you can’t put any code inside an interface, but a static
inner class can be part of an interface. Since the class is static it
doesn’t violate the rules for interfaces – the static inner class is
only placed inside the namespace of the interface:

//: c08:IInterface.java
// Static inner classes inside interfaces.

interface IInterface {
static class Inner {

int i, j, k;
public Inner() {}
void f() {}

Chapter 8: Interfaces & Inner Classes 387

}
} ///:~

Earlier in the book I suggested putting a main() in every class to
act as a test bed for that class. One drawback to this is the amount
of extra compiled code you must carry around. If this is a problem,
you can use a static inner class to hold your test code:

//: c08:TestBed.java
// Putting test code in a static inner class.

class TestBed {
TestBed() {}
void f() { System.out.println("f()"); }
public static class Tester {

public static void main(String[] args) {
TestBed t = new TestBed();
t.f();

}
}

} ///:~

This generates a separate class called TestBed$Tester (to run the
program you say java TestBed$Tester). You can use this class for
testing, but you don’t need to include it in your shipping product.

Referring to the outer class object
If you need to produce the handle to the outer class object, you
name the outer class followed by a dot and this. For example, in the
class Sequence.SSelector, any of its methods can produce the
stored handle to the outer class Sequence by saying
Sequence.this. The resulting handle is automatically the correct
type. (This is known and checked at compile time, so there is no
run-time overhead.)

Sometimes you want to tell some other object to create an object of
one of its inner classes. To do this you must provide a handle to the
other outer class object in the new expression, like this:

//: c08:Parcel11.java
// Creating inner classes.

388 Thinking in Java www.BruceEckel.com

public class Parcel11 {
class Contents {

private int i = 11;
public int value() { return i; }

}
class Destination {

private String label;
Destination(String whereTo) {
label = whereTo;

}
String readLabel() { return label; }

}
public static void main(String[] args) {

Parcel11 p = new Parcel11();
// Must use instance of outer class
// to create an instances of the inner class:
Parcel11.Contents c = p.new Contents();
Parcel11.Destination d =
p.new Destination("Tanzania");

}
} ///:~

To create an object of the inner class directly, you don’t follow the
same form and refer to the outer class name Parcel11 as you might
expect, but instead you must use an object of the outer class to
make an object of the inner class:

Parcel11.Contents c = p.new Contents();

Thus, it’s not possible to create an object of the inner class unless
you already have an object of the outer class. This is because the
object of the inner class is quietly connected to the object of the
outer class that it was made from. However, if you make a static
inner class, then it doesn’t need a handle to the outer class object.

Inheriting from inner classes
Because the inner class constructor must attach to a handle of the
enclosing class object, things are slightly complicated when you
inherit from an inner class. The problem is that the “secret” handle
to the enclosing class object must be initialized, and yet in the

Chapter 8: Interfaces & Inner Classes 389

derived class there’s no longer a default object to attach to. The
answer is to use a syntax provided to make the association explicit:

//: c08:InheritInner.java
// Inheriting an inner class.

class WithInner {
class Inner {}

}

public class InheritInner
extends WithInner.Inner {

//! InheritInner() {} // Won't compile
InheritInner(WithInner wi) {

wi.super();
}
public static void main(String[] args) {

WithInner wi = new WithInner();
InheritInner ii = new InheritInner(wi);

}
} ///:~

You can see that InheritInner is extending only the inner class,
not the outer one. But when it comes time to create a constructor,
the default one is no good and you can’t just pass a handle to an
enclosing object. In addition, you must use the syntax

enclosingClassHandle.super();

inside the constructor. This provides the necessary handle and the
program will then compile.

Can inner classes be overridden?
What happens when you create an inner class, then inherit from the
enclosing class and redefine the inner class? That is, is it possible to
override an inner class? This seems like it would be a powerful
concept, but “overriding” an inner class as if it were another method
of the outer class doesn’t really do anything:

//: c08:BigEgg.java
// An inner class cannot be overriden

390 Thinking in Java www.BruceEckel.com

// like a method.

class Egg {
protected class Yolk {

public Yolk() {
System.out.println("Egg.Yolk()");

}
}
private Yolk y;
public Egg() {

System.out.println("New Egg()");
y = new Yolk();

}
}

public class BigEgg extends Egg {
public class Yolk {

public Yolk() {
System.out.println("BigEgg.Yolk()");

}
}
public static void main(String[] args) {

new BigEgg();
}

} ///:~

The default constructor is synthesized automatically by the
compiler, and this calls the base-class default constructor. You
might think that since a BigEgg is being created, the “overridden”
version of Yolk would be used, but this is not the case. The output
is:

New Egg()
Egg.Yolk()

This example simply shows that there isn’t any extra inner class
magic going on when you inherit from the outer class. The two
inner classes are completely separate entities, each in their own
namespace. However, it’s still possible to explicitly inherit from the
inner class:

//: c08:BigEgg2.java

Chapter 8: Interfaces & Inner Classes 391

// Proper inheritance of an inner class.

class Egg2 {
protected class Yolk {

public Yolk() {
System.out.println("Egg2.Yolk()");

}
public void f() {
System.out.println("Egg2.Yolk.f()");

}
}
private Yolk y = new Yolk();
public Egg2() {

System.out.println("New Egg2()");
}
public void insertYolk(Yolk yy) { y = yy; }
public void g() { y.f(); }

}

public class BigEgg2 extends Egg2 {
public class Yolk extends Egg2.Yolk {

public Yolk() {
System.out.println("BigEgg2.Yolk()");

}
public void f() {
System.out.println("BigEgg2.Yolk.f()");

}
}
public BigEgg2() { insertYolk(new Yolk()); }
public static void main(String[] args) {

Egg2 e2 = new BigEgg2();
e2.g();

}
} ///:~

Now BigEgg2.Yolk explicitly extends Egg2.Yolk and overrides
its methods. The method insertYolk() allows BigEgg2 to upcast
one of its own Yolk objects into the y handle in Egg2, so when g()
calls y.f() the overridden version of f() is used. The output is:

Egg2.Yolk()
New Egg2()

392 Thinking in Java www.BruceEckel.com

Egg2.Yolk()
BigEgg2.Yolk()
BigEgg2.Yolk.f()

The second call to Egg2.Yolk() is the base-class constructor call of
the BigEgg2.Yolk constructor. You can see that the overridden
version of f() is used when g() is called.

Inner class identifiers
Since every class produces a .class file that holds all the
information about how to create objects of this type (this
information produces a “meta-class” called the Class object), you
might guess that inner classes must also produce .class files to
contain the information for their Class objects. The names of these
files/classes have a strict formula: the name of the enclosing class,
followed by a ‘$’, followed by the name of the inner class. For
example, the .class files created by InheritInner.java include:

InheritInner.class
WithInner$Inner.class
WithInner.class

If inner classes are anonymous, the compiler simply starts
generating numbers as inner class identifiers. If inner classes are
nested within inner classes, their names are simply appended after
a ‘$’ and the outer class identifier(s).

Although this scheme of generating internal names is simple and
straightforward, it’s also robust and handles most situations3. Since
it is the standard naming scheme for Java, the generated files are
automatically platform-independent. (Note that the Java compiler
is changing your inner classes in all sorts of other ways in order to
make them work.)

3 On the other hand, ‘$’ is a meta-character to the Unix shell and so you’ll sometimes have
trouble when listing the .class files. This is a bit strange coming from Sun, a Unix-based
company. My guess is that they weren’t considering this issue, but instead thought you’d
naturally focus on the source-code files.

Chapter 8: Interfaces & Inner Classes 393

Why inner classes?
At this point you’ve seen a lot of syntax and semantics describing
the way inner classes work, but this doesn’t answer the question of
why they exist. Why did Sun go to so much trouble to add this
fundamental language feature?

Typically, the inner class inherits from a class or implements an
interface, and the code in the inner class manipulates the outer
class object that it was created within. So you could say that an
inner class provides a kind of window into the outer class.

A question that cuts to the heart of inner classes is this: if I just need
a handle to an interface, why don’t I just make the outer class
implement that interface? The answer is “If that’s all you need,
then that’s how you should do it.” So what is it that distinguishes an
inner class implementing an interface from an outer class
implementing the same interface? The answer is that you can’t
always have the convenience of interfaces – sometimes you’re
working with implementations. So the most compelling reason for
inner classes is:

Each inner class can independently inherit from an
implementation. Thus, the inner class is not limited by whether
the outer class is already inheriting from an implementation.

Without the ability that inner classes provide to inherit – in effect –
from more than one concrete or abstract class, some design and
programming problems would be intractable. So one way to look at
the inner class is as the completion of the solution of the multiple-
inheritance problem. Interfaces solve part of the problem, but inner
classes effectively allow “multiple implementation inheritance.”
That is, inner classes effectively allow you to inherit from more than
one non-interface.

To see this in more detail, consider a situation where you have two
interfaces that must somehow be implemented within a class.
Because of the flexibility of interfaces, you have two choices: a
single class or an inner class:

//: c08:MultiInterfaces.java

394 Thinking in Java www.BruceEckel.com

// Two ways a that class can
// implement multiple interfaces.

interface A {}
interface B {}

class X implements A, B {}

class Y implements A {
B makeB() {

// Anonymous inner class:
return new B() {};

}
}

public class MultiInterfaces {
static void takesA(A a) {}
static void takesB(B b) {}
public static void main(String[] args) {

X x = new X();
Y y = new Y();
takesA(x);
takesA(y);
takesB(x);
takesB(y.makeB());

}
} ///:~

Of course, this assumes that the structure of your code makes
logical sense either way. However, you’ll ordinarily have some kind
of guidance from the nature of the problem about whether to use a
single class or an inner class. But without any other constraints, in
the above example the approach you take doesn’t really make much
difference from an implementation standpoint. Both of them work.

However, if you have abstract or concrete classes instead of
interfaces, you are suddenly limited to using inner classes if your
class must somehow implement both of the others:

//: c08:MultiImplementation.java
// With concrete or abstract classes, inner
// classes are the only way to produce the effect

Chapter 8: Interfaces & Inner Classes 395

// of "multiple implementation inheritance."

class C {}
abstract class D {}

class Z extends C {
D makeD() { return new D() {}; }

}

public class MultiImplementation {
static void takesC(C c) {}
static void takesD(D d) {}
public static void main(String[] args) {

Z z = new Z();
takesC(z);
takesD(z.makeD());

}
} ///:~

If you didn’t need to solve the “multiple implementation
inheritance” problem, you could conceivably code around
everything else without the need for inner classes. But with inner
classes you have these additional features:

1. The inner class can have multiple instances, each with its
own state information that is independent of the information
in the outer class object.

2. In a single outer class you can have several inner classes,
each of which implement the same interface or inherit from
the same class in a different way. An example of this will be
shown shortly.

3. The point of creation of the inner class object is not tied to
the creation of the outer class object.

4. There is no potentially confusing “is-a” relationship with the
inner class; it’s a separate entity.

As an example, if Sequence.java did not use inner classes, you’d
have to say “a Sequence is a Selector,” and you’d only be able to
have one Selector in existence for a particular Sequence. Also,

396 Thinking in Java www.BruceEckel.com

you can have a second method, getRSelector(), that produces a
Selector that moves backwards through the sequence. This kind of
flexibility is only available with inner classes.

Closures & Callbacks
A closure is a callable object that retains information from the scope
in which it was created. From this definition, you can see that an
inner class is a object-oriented closure, because it doesn’t just
contain each piece of information from the outer class object (“the
scope in which it was created”), but it automatically holds a handle
back to the whole outer class object, where it has permission to
manipulate all the members, even private ones.

One of the most compelling arguments made to include some kind
of pointer mechanism in Java was to allow callbacks. With a
callback, some other object is given a piece of information that
allows it to call back into the originating object at some later point.
This is a very powerful concept, as you will see in Chapters 13 and
16. If a callback is implemented using a pointer, however, you must
rely on the programmer to behave and not misuse the pointer. As
you’ve seen by now, Java tends to be more careful than that so
pointers were not included in the language.

The closure provided by the inner class is a perfect solution; more
flexible and far safer than a pointer. Here’s a simple example:

//: c08:Callbacks.java
// Using inner classes for callbacks

interface Incrementable {
void increment();

}

class Callee {
private int i = 0;
private void incr() {

i++;
System.out.println(i);

}
private class Closure implements Incrementable {

Chapter 8: Interfaces & Inner Classes 397

public void increment() { incr(); }
}
Incrementable getCallbackHandle() {

return new Closure();
}

}

class Caller {
private Incrementable callbackHandle;
Caller(Incrementable cbh) {

callbackHandle = cbh;
}
void go() {

callbackHandle.increment();
}

}

public class Callbacks {
public static void main(String[] args) {

Callee c = new Callee();
Caller cc = new Caller(c.getCallbackHandle());
cc.go();
cc.go();

}
} ///:~

Notice that everything except getCallbackHandle() in Callee is
private. To allow any connection to the outside world, the
interface Incrementable is essential. Here you can see how
interfaces allow for a complete separation of interface from
implementation.

The inner class Closure simply implements Incrementable to
provide a hook back into Callee – but a safe hook. Whoever gets
the Incrementable handle can, of course, only call increment()
and has no other abilities (unlike a pointer, which would allow you
to run wild).

Caller takes an Incrementable handle in its constructor
(although the capturing of the callback handle could happen at any
time) and then, sometime latter, uses the handle to “call back” into
the Callee class.

398 Thinking in Java www.BruceEckel.com

The value of the callback is in its flexibility – you can dynamically
decide what functions will be called at runtime. The benefit of this
will become more evident in Chapter 13, where callbacks are used
everywhere to implement graphical user interface (GUI)
functionality.

Inner classes & control frameworks
A more concrete example of the use of inner classes can be found in
something that I will refer to here as a control framework.

An application framework is a class or a set of classes that’s
designed to solve a particular type of problem. To apply an
application framework, you inherit from one or more classes and
override some of the methods. The code you write in the overridden
methods customizes the general solution provided by that
application framework, in order to solve your specific problem. The
control framework is a particular type of application framework
dominated by the need to respond to events; a system that primarily
responds to events is called an event-driven system. One of the
most important problems in application programming is the
graphical user interface (GUI), which is almost entirely event-
driven. As you will see in Chapter 13, the Java Swing library is a
control framework that elegantly solves the GUI problem and that
heavily uses inner classes.

To see how inner classes allow the simple creation and use of
control frameworks, consider a control framework whose job is to
execute events whenever those events are “ready.” Although “ready”
could mean anything, in this case the default will be based on clock
time. What follows is a control framework that contains no specific
information about what it’s controlling. First, here is the interface
that describes any control event. It’s an abstract class instead of an
actual interface because the default behavior is to perform the
control based on time, so some of the implementation can be
included here:

//: c08:controller:Event.java
// The common methods for any control event.
package c08.controller;

Chapter 8: Interfaces & Inner Classes 399

abstract public class Event {
private long evtTime;
public Event(long eventTime) {

evtTime = eventTime;
}
public boolean ready() {

return System.currentTimeMillis() >= evtTime;
}
abstract public void action();
abstract public String description();

} ///:~

The constructor simply captures the time when you want the Event
to run, while ready() tells you when it’s time to run it. Of course,
ready() could be overridden in a derived class to base the Event
on something other than time.

action() is the method that’s called when the Event is ready(),
and description() gives textual information about the Event.

The following file contains the actual control framework that
manages and fires events. The first class is really just a “helper”
class whose job is to hold Event objects. You can replace it with any
appropriate collection, and in Chapter 9 you’ll discover other
collections that will do the trick without requiring you to write this
extra code:

//: c08:controller:Controller.java
// Along with Event, the generic
// framework for all control systems:
package c08.controller;

// This is just a way to hold Event objects.
class EventSet {
private Event[] events = new Event[100];
private int index = 0;
private int next = 0;
public void add(Event e) {

if(index >= events.length)
return; // (In real life, throw exception)

events[index++] = e;

400 Thinking in Java www.BruceEckel.com

}
public Event getNext() {

boolean looped = false;
int start = next;
do {
next = (next + 1) % events.length;
// See if it has looped to the beginning:
if(start == next) looped = true;
// If it loops past start, the list
// is empty:
if((next == (start + 1) % events.length)

&& looped)
return null;

} while(events[next] == null);
return events[next];

}
public void removeCurrent() {

events[next] = null;
}

}

public class Controller {
private EventSet es = new EventSet();
public void addEvent(Event c) { es.add(c); }
public void run() {

Event e;
while((e = es.getNext()) != null) {
if(e.ready()) {
e.action();
System.out.println(e.description());
es.removeCurrent();

}
}

}
} ///:~

EventSet arbitrarily holds 100 Events. (If a “real” collection from
Chapter 9 is used here you don’t need to worry about its maximum
size, since it will resize itself). The index is used to keep track of the
next available space, and next is used when you’re looking for the
next Event in the list, to see whether you’ve looped around. This is
important during a call to getNext(), because Event objects are

Chapter 8: Interfaces & Inner Classes 401

removed from the list (using removeCurrent()) once they’re run,
so getNext() will encounter holes in the list as it moves through it.

Note that removeCurrent() doesn’t just set some flag indicating
that the object is no longer in use. Instead, it sets the handle to
null. This is important because if the garbage collector sees a
handle that’s still in use then it can’t clean up the object. If you
think your handles might hang around (as they would here), then
it’s a good idea to set them to null to give the garbage collector
permission to clean them up.

Controller is where the actual work goes on. It uses an EventSet
to hold its Event objects, and addEvent() allows you to add new
events to this list. But the important method is run(). This method
loops through the EventSet, hunting for an Event object that’s
ready() to run. For each one it finds ready(), it calls the
action() method, prints out the description(), and then
removes the Event from the list.

Note that so far in this design you know nothing about exactly what
an Event does. And this is the crux of the design; how it “separates
the things that change from the things that stay the same.” Or, to
use my term, the “vector of change” is the different actions of the
various kinds of Event objects, and you express different actions by
creating different Event subclasses.

This is where inner classes come into play. They allow two things:

1. To create the entire implementation of a control-framework
application in a single class, thereby encapsulating
everything that’s unique about that implementation. Inner
classes are used to express the many different kinds of
action() necessary to solve the problem. In addition, the
following example uses private inner classes so the
implementation is completely hidden and can be changed
with impunity.

2. Inner classes keep this implementation from becoming
awkward, since you’re able to easily access any of the
members in the outer class. Without this ability the code

402 Thinking in Java www.BruceEckel.com

might become unpleasant enough that you’d end up seeking
an alternative.

Consider a particular implementation of the control framework
designed to control greenhouse functions4. Each action is entirely
different: turning lights, water, and thermostats on and off, ringing
bells, and restarting the system. But the control framework is
designed to easily isolate this different code. Inner classes allow you
to have multiple derived versions of the same base class, Event,
within a single class. For each type of action you inherit a new
Event inner class, and write the control code inside of action().

As is typical with an application framework, the class
GreenhouseControls is inherited from Controller:

//: c08:GreenhouseControls.java
// This produces a specific application of the
// control system, all in a single class. Inner
// classes allow you to encapsulate different
// functionality for each type of event.
import c08.controller.*;

public class GreenhouseControls
extends Controller {

private boolean light = false;
private boolean water = false;
private String thermostat = "Day";
private class LightOn extends Event {

public LightOn(long eventTime) {
super(eventTime);

}
public void action() {
// Put hardware control code here to
// physically turn on the light.
light = true;

}
public String description() {

4 For some reason this has always been a pleasing problem for me to solve; it came from
my earlier book C++ Inside & Out, but Java allows a much more elegant solution.

Chapter 8: Interfaces & Inner Classes 403

return "Light is on";
}

}
private class LightOff extends Event {

public LightOff(long eventTime) {
super(eventTime);

}
public void action() {
// Put hardware control code here to
// physically turn off the light.
light = false;

}
public String description() {
return "Light is off";

}
}
private class WaterOn extends Event {

public WaterOn(long eventTime) {
super(eventTime);

}
public void action() {
// Put hardware control code here
water = true;

}
public String description() {
return "Greenhouse water is on";

}
}
private class WaterOff extends Event {

public WaterOff(long eventTime) {
super(eventTime);

}
public void action() {
// Put hardware control code here
water = false;

}
public String description() {
return "Greenhouse water is off";

}
}
private class ThermostatNight extends Event {

public ThermostatNight(long eventTime) {

404 Thinking in Java www.BruceEckel.com

super(eventTime);
}
public void action() {
// Put hardware control code here
thermostat = "Night";

}
public String description() {
return "Thermostat on night setting";

}
}
private class ThermostatDay extends Event {

public ThermostatDay(long eventTime) {
super(eventTime);

}
public void action() {
// Put hardware control code here
thermostat = "Day";

}
public String description() {
return "Thermostat on day setting";

}
}
// An example of an action() that inserts a
// new one of itself into the event list:
private int rings;
private class Bell extends Event {

public Bell(long eventTime) {
super(eventTime);

}
public void action() {
// Ring every 2 seconds, 'rings' times:
System.out.println("Bing!");
if(--rings > 0)
addEvent(new Bell(

System.currentTimeMillis() + 2000));
}
public String description() {
return "Ring bell";

}
}
private class Restart extends Event {

public Restart(long eventTime) {

Chapter 8: Interfaces & Inner Classes 405

super(eventTime);
}
public void action() {
long tm = System.currentTimeMillis();
// Instead of hard-wiring, you could parse
// configuration information from a text
// file here:
rings = 5;
addEvent(new ThermostatNight(tm));
addEvent(new LightOn(tm + 1000));
addEvent(new LightOff(tm + 2000));
addEvent(new WaterOn(tm + 3000));
addEvent(new WaterOff(tm + 8000));
addEvent(new Bell(tm + 9000));
addEvent(new ThermostatDay(tm + 10000));
// Can even add a Restart object!
addEvent(new Restart(tm + 20000));

}
public String description() {
return "Restarting system";

}
}
public static void main(String[] args) {

GreenhouseControls gc =
new GreenhouseControls();

long tm = System.currentTimeMillis();
gc.addEvent(gc.new Restart(tm));
gc.run();

}
} ///:~

Note that light, water, thermostat, and rings all belong to the
outer class GreenhouseControls, and yet the inner classes can
access those fields without qualification or special permission. Also,
most of the action() methods involve some sort of hardware
control, which would most likely involve calls to non-Java code.

Most of the Event classes look similar, but Bell and Restart are
special. Bell rings, and if it hasn’t yet rung enough times it adds a
new Bell object to the event list, so it will ring again later. Notice
how inner classes almost look like multiple inheritance: Bell has all

406 Thinking in Java www.BruceEckel.com

the methods of Event and it also appears to have all the methods of
the outer class GreenhouseControls.

Restart is responsible for initializing the system, so it adds all the
appropriate events. Of course, a more flexible way to accomplish
this is to avoid hard-coding the events and instead read them from a
file. (An exercise in Chapter 11 asks you to modify this example to
do just that.) Since Restart() is just another Event object, you
can also add a Restart object within Restart.action() so that the
system regularly restarts itself. And all you need to do in main() is
create a GreenhouseControls object and add a Restart object to
get it going.

This example should move you a long way toward appreciating the
value of inner classes, especially when used within a control
framework. However, in Chapter 13 you’ll see how elegantly inner
classes are used to describe the actions of a graphical user interface.
By the time you finish that chapter you should be fully convinced.

Summary
Interfaces and inner classes are more sophisticated concepts than
what you’ll find in many OOP languages. For example, there’s
nothing like them in C++. Together, they solve the same problem
that C++ attempts to solve with its multiple inheritance (MI)
feature. However, MI in C++ turns out to be rather difficult to use,
while Java interfaces and inner classes are, by comparison, much
more accessible.

Although the features themselves are reasonably straightforward,
the use of these features is a design issue, much the same as
polymorphism. Over time, you’ll become better at recognizing
situations where you should use an interface, or an inner class, or
both. But at this point in the book you should at least be
comfortable with the syntax and semantics. As you see these
language features in use you’ll eventually internalize them.

Chapter 8: Interfaces & Inner Classes 407

Exercises
1. Prove that the fields in an interface are implicitly

static and final.

2. Create an interface containing three methods, in its
own package. Implement the interface in a different
package.

3. Prove that all the methods in an interface are
automatically public.

4. In c07:Sandwich.java, create an interface called
FastFood (with appropriate methods) and change
Sandwich so that it also implements FastFood.

5. Create three interfaces, each with two methods.
Inherit a new interface from the three, adding a new
method. Create a class by implementing the new
interface and also inheriting from a concrete class.
Now write four methods, each of which takes one of the
four interfaces as an argument. In main(), create an
object of your class and pass it to each of the methods.

6. Modify Exercise 5 by creating an abstract class and
inheriting that into the derived class.

7. Modify Music5.java by adding a Playable interface.
Remove the play() declaration from Instrument.
Add Playable to the derived classes by including it in
the implements list. Change tune() so that it takes a
Playable instead of an Instrument.

8. Change Exercise 6 in Chapter 7 so that Rodent is an
interface.

9. In Adventure.java, add an interface called
CanClimb, following the form of the other interfaces.

10. Write a program that imports and uses Month2.java.

408 Thinking in Java www.BruceEckel.com

11. Following the example given in Month2.java, create
an enumeration of days of the week.

12. Create an interface with at least one method, in its
own package. Create a class in a separate package. Add
a protected inner class that implements the
interface. In a third package, inherit from your class
and, inside a method, return an object of the
protected inner class, upcasting to the interface
during the return.

13. Create an interface with at least one method, and
implement that interface by defining an inner class
within a method, which returns a handle to your
interface.

14. Repeat Exercise 13 but define the inner class within a
scope within a method.

15. Repeat Exercise 13 using an anonymous inner class.

16. Create a private inner class that implements a public
interface. Write a method that returns a handle to an
instance of the private inner class, upcast to the
interface. Show that the inner class is completely
hidden by trying to downcast to it.

17. Create a class with a non-default constructor and no
default constructor. Create a second class that has a
method which returns a handle to the first class. Create
the object to return by making an anonymous inner
class that inherits from the first class.

18. Create a class with a private field and a private
method. Create an inner class with a method that
modifies the outer class field and calls the outer class
method. In a second outer class method, create an
object of the inner class and call it’s method, then show
the effect on the outer class object.

19. Repeat Exercise 18 using an anonymous inner class.

Chapter 8: Interfaces & Inner Classes 409

20. Create a class containing a static inner class. In
main(), create an instance of the inner class.

21. Create an interface containing a static inner class.
Implement this interface and create an instance of the
inner class.

22. Create a class containing an inner class that itself
contains an inner class. Repeat this using static inner
classes. Note the names of the .class files produced by
the compiler.

23. Create a class with an inner class. In a separate class,
make an instance of the inner class.

24. Create a class with an inner class that has a non-default
constructor. Create a second class with an inner class
that inherits from the first inner class.

25. Repair the problem in WindError.java.

26. Modify Sequence.java by adding a method
getRSelector() that produces a different
implementation of the Selector interface that moves
backwards through the sequence from the end to the
beginning.

27. Create an interface U with 3 methods. Create a class
A with a method that produces a handle to a U by
building an anonymous inner class. Create a second
class B that contains an array of U. B should have one
method that accepts and stores a handle to a U in the
array, a second method that sets a handle in the array
(specified by the method argument) to null and a third
method that moves through the array and calls the
methods in U. In main(), create a group of A objects
and a single B. Fill the B with U handles produced by
the A objects. Use the B to call back into all the A
objects. Remove some of the U handles from the B.

410 Thinking in Java www.BruceEckel.com

28. In GreenhouseControls.java, add Event inner
classes that turn fans on and off.

 411

9: Holding
Your Objects

It’s a fairly simple program that has only a fixed quantity
of objects with known lifetimes.

In general, your programs will always be creating new objects based
on some criteria that will be known only at the time the program is
running. You won’t know until run-time the quantity or even the
exact type of the objects you need. To solve the general
programming problem, you need to create any number of objects,
anytime, anywhere. So you can’t rely on creating a named handle to
hold each one of your objects:

MyObject myHandle;

since you’ll never know how many of these things you’ll actually
need.

To solve this rather essential problem, Java has several ways to hold
objects (or rather, handles to objects). The built-in type is the array,
which has been discussed before and will get additional coverage in
this chapter. Also, the Java utilities library has some collection
classes (also known as container classes, but the term “container” is
used by the Swing GUI library so “collection” will be used here) that
provide more sophisticated ways to hold and even manipulate your
objects. This will comprise the remainder of this chapter.

Arrays
Most of the necessary introduction to arrays is in the last section of
Chapter 4, which shows how you define and initialize an array.
Holding objects is the focus of this chapter, and an array is just one

412 Thinking in Java www.BruceEckel.com

way to hold objects. But there are a number of other ways to hold
objects, so what makes an array special?

There are two issues that distinguish arrays from other types of
collections: efficiency and type. The array is the most efficient way
that Java provides to store and access a sequence of objects
(actually, object handles). The array is a simple linear sequence,
which makes element access fast, but you pay for this speed: when
you create an array object, its size is fixed and cannot be changed
for the lifetime of that array object. You might suggest creating an
array of a particular size and then, if you run out of space, creating a
new one and moving all the handles from the old one to the new
one. This is the behavior of the ArrayList class, which will be
studied later in the chapter. However, because of the overhead of
this size flexibility, an ArrayList is measurably less efficient than
an array.

The vector class in C++ does know the type of objects it holds, but
it has a different drawback when compared with arrays in Java: the
C++ vector’s operator[] doesn’t do bounds checking, so you can
run past the end. (It’s possible, however, to ask how big the vector
is, and the at() method does perform bounds checking.) In Java,
you get bounds checking regardless of whether you’re using an
array or a collection – you’ll get a RuntimeException if you
exceed the bounds. As you’ll learn in Chapter 10, this type of
exception indicates a programmer error and thus you don’t need to
check for it in your code. As an aside, the reason the C++ vector
doesn’t check bounds with every access is speed – in Java you have
the constant performance overhead of bounds checking all the time
for both arrays and collections.

The other generic collection classes that will be studied in this
chapter, List, Set, and Map, all deal with objects as if they had no
specific type. That is, they treat them as type Object, the root class
of all classes in Java. This works fine from one standpoint: you need
to build only one collection, and any Java object will go into that
collection. (Except for primitives – these can be placed in
collections as constants using the Java primitive wrapper classes, or
as changeable values by wrapping in your own class.) This is the
second place where an array is superior to the generic collections:

Chapter 9: Holding Your Objects 413

when you create an array, you create it to hold a specific type. This
means that you get compile-time type checking to prevent you from
putting the wrong type in, or mistaking the type that you’re
extracting. Of course, Java will prevent you from sending an
inappropriate message to an object, either at compile-time or at
run-time. So it’s not as if it’s riskier one way or the other, it’s just
nicer if the compiler points it out to you, faster at run-time, and
there’s less likelihood that the end user will get surprised by an
exception.

For efficiency and type checking it’s always worth trying to use an
array if you can. However, when you’re trying to solve a more
general problem arrays can be too restrictive. After looking at
arrays, the rest of this chapter will be devoted to the collection
classes provided by Java.

Arrays are first-class objects
Regardless of what type of array you’re working with, the array
identifier is actually a handle to a true object that’s created on the
heap. The heap object can be created either implicitly, as part of the
array initialization syntax, or explicitly with a new expression. Part
of the heap object (in fact, the only field or method you can access)
is the read-only length member that tells you how many elements
can be stored in that array object. The ‘[]’ syntax is the only other
access that you have to the array object.

The following example shows the various ways that an array can be
initialized, and how the array handles can be assigned to different
array objects. It also shows that arrays of objects and arrays of
primitives are almost identical in their use. The only difference is
that arrays of objects hold handles while arrays of primitives hold
the primitive values directly.

//: c09:ArraySize.java
// Initialization & re-assignment of arrays.

class Weeble {} // A small mythical creature

public class ArraySize {

414 Thinking in Java www.BruceEckel.com

public static void main(String[] args) {
// Arrays of objects:
Weeble[] a; // Null handle
Weeble[] b = new Weeble[5]; // Null handles
Weeble[] c = new Weeble[4];
for(int i = 0; i < c.length; i++)
c[i] = new Weeble();

Weeble[] d = {
new Weeble(), new Weeble(), new Weeble()

};
// Compile error: variable a not initialized:
//!System.out.println("a.length=" + a.length);
System.out.println("b.length = " + b.length);
// The handles inside the array are
// automatically initialized to null:
for(int i = 0; i < b.length; i++)
System.out.println("b[" + i + "]=" + b[i]);

System.out.println("c.length = " + c.length);
System.out.println("d.length = " + d.length);
a = d;
System.out.println("a.length = " + a.length);
a = new Weeble[] {
new Weeble(), new Weeble()

};
System.out.println("a.length = " + a.length);

// Arrays of primitives:
int[] e; // Null handle
int[] f = new int[5];
int[] g = new int[4];
for(int i = 0; i < g.length; i++)
g[i] = i*i;

int[] h = { 11, 47, 93 };
// Compile error: variable e not initialized:
//!System.out.println("e.length=" + e.length);
System.out.println("f.length = " + f.length);
// The primitives inside the array are
// automatically initialized to zero:
for(int i = 0; i < f.length; i++)
System.out.println("f[" + i + "]=" + f[i]);

System.out.println("g.length = " + g.length);
System.out.println("h.length = " + h.length);

Chapter 9: Holding Your Objects 415

e = h;
System.out.println("e.length = " + e.length);
e = new int[] { 1, 2 };
System.out.println("e.length = " + e.length);

}
} ///:~

Here’s the output from the program:

b.length = 5
b[0]=null
b[1]=null
b[2]=null
b[3]=null
b[4]=null
c.length = 4
d.length = 3
a.length = 3
a.length = 2
f.length = 5
f[0]=0
f[1]=0
f[2]=0
f[3]=0
f[4]=0
g.length = 4
h.length = 3
e.length = 3
e.length = 2

The array a is initially just a null handle, and the compiler prevents
you from doing anything with this handle until you’ve properly
initialized it. The array b is initialized to point to an array of
Weeble handles, but no actual Weeble objects are ever placed in
that array. However, you can still ask what the size of the array is,
since b is pointing to a legitimate object. This brings up a slight
drawback: you can’t find out how many elements are actually in the
array, since length tells you only how many elements can be placed
in the array; that is, the size of the array object, not the number of
elements it actually holds. However, when an array object is created
its handles are automatically initialized to null so you can see
whether a particular array slot has an object in it by checking to see

416 Thinking in Java www.BruceEckel.com

whether it’s null. Similarly, an array of primitives is automatically
initialized to zero for numeric types, null for char, and false for
boolean.

Array c shows the creation of the array object followed by the
assignment of Weeble objects to all the slots in the array. Array d
shows the “aggregate initialization” syntax that causes the array
object to be created (implicitly with new on the heap, just like for
array c) and initialized with Weeble objects, all in one statement.

The expression

a = d;

shows how you can take a handle that’s attached to one array object
and assign it to another array object, just as you can do with any
other type of object handle. Now both a and d are pointing to the
same array object on the heap.

An additional array initialization syntax could be thought of as a
“dynamic aggregate initialization.” The aggregate initialization used
by d must be used at the point of d’s definition, but with the second
syntax you can create and initialize an array object anywhere. For
example, suppose hide() is a method that takes an array of
Weeble objects. You could call it by saying:

hide(d);

but you can also dynamically create the array you want to pass as
the argument:

hide(new Weeble[] { new Weeble(), new Weeble() });

This new syntax provides a more convenient way to write code in
some situations.

The second part of the above example shows that primitive arrays
work just like object arrays except that primitive arrays hold the
primitive values directly.

Chapter 9: Holding Your Objects 417

Collections of primitives
Collection classes can hold only handles to objects. An array,
however, can be created to hold primitives directly, as well as
handles to objects. It is possible to use the “wrapper” classes such as
Integer, Double, etc. to place primitive values inside a collection,
but as you’ll see later in this chapter in the WordCount.java
example, the wrapper classes for primitives are only somewhat
useful anyway. Whether you put primitives in arrays or wrap them
in a class that’s placed in a collection is a question of efficiency. It’s
much more efficient to create and access an array of primitives than
a collection of wrapped primitives.

Of course, if you’re using a primitive type and you need the
flexibility of a collection that automatically expands when more
space is needed, the array won’t work and you’re forced to use a
collection of wrapped primitives. You might think that there should
be a specialized type of Vector for each of the primitive data types,
but Java doesn’t provide this for you. Some sort of templatizing
mechanism might someday provide a better way for Java to handle
this problem.1

Returning an array
Suppose you’re writing a method and you don’t just want to return
one thing, but a whole bunch of things. Languages like C and C++
make this difficult because you can’t just return an array, only a
pointer to an array. This introduces problems because it becomes
messy to control the lifetime of the array, which easily leads to
memory leaks.

Java takes a similar approach, but you just “return an array.”
Actually, of course, you’re returning a handle to an array, but with
Java you never worry about responsibility for that array – it will be
around as long as you need it, and the garbage collector will clean it
up when you’re done.

1 This is one of the places where C++ is distinctly superior to Java, since C++ supports
parameterized types with the template keyword.

418 Thinking in Java www.BruceEckel.com

As an example, consider returning an array of String:

//: c09:IceCream.java
// Returning arrays from methods.

public class IceCream {
static String[] flav = {

"Chocolate", "Strawberry",
"Vanilla Fudge Swirl", "Mint Chip",
"Mocha Almond Fudge", "Rum Raisin",
"Praline Cream", "Mud Pie"

};
static String[] flavorSet(int n) {

// Force it to be positive & within bounds:
n = Math.abs(n) % (flav.length + 1);
String[] results = new String[n];
boolean[] picked =
new boolean[flav.length];

for (int i = 0; i < n; i++) {
int t;
do
t = (int)(Math.random() * flav.length);

while (picked[t]);
results[i] = flav[t];
picked[t] = true;

}
return results;

}
public static void main(String[] args) {

for(int i = 0; i < 20; i++) {
System.out.println(
"flavorSet(" + i + ") = ");

String[] fl = flavorSet(flav.length);
for(int j = 0; j < fl.length; j++)
System.out.println("\t" + fl[j]);

}
}

} ///:~

The method flavorSet() creates an array of String called
results. The size of this array is n, determined by the argument you
pass into the method. Then it proceeds to choose flavors randomly

Chapter 9: Holding Your Objects 419

from the array flav and place them into results, which it finally
returns. Returning an array is just like returning any other object –
it’s a handle. It’s not important that the array was created within
flavorSet(), or that the array was created anyplace else, for that
matter. The garbage collector takes care of cleaning up the array
when you’re done with it, and the array will persist for as long as
you need it.

As an aside, notice that when flavorSet() chooses flavors
randomly, it ensures that a random choice hasn’t been picked
before. This is performed in a do loop that keeps making random
choices until it finds one that’s not already in the picked array. (Of
course, a String comparison could also have been performed to see
if the random choice was already in the results array, but String
comparisons are inefficient.) If it’s successful it adds the entry and
finds the next one (i gets incremented).

main() prints out 20 full sets of flavors, so you can see that
flavorSet() chooses the flavors in a random order each time. It’s
easiest to see this if you redirect the output into a file. And while
you’re looking at the file, remember, you’re not really hungry. (You
just want the ice cream, you don’t need it.)

Collections
To summarize what we’ve seen so far, your first, most efficient
choice to hold a group of objects should be an array, and you’re
forced into this choice if you want to hold a group of primitives. In
the remainder of the chapter we’ll look at the more general case,
when you don’t know at the time you’re writing the program how
many objects you’re going to need, or if you need a more
sophisticated way to store your objects. Java provides three types of
collection classes to solve this problem: List, Set, and Map. You
can solve a surprising number of problems using these tools.

Among their other characteristics – Set, for example, holds only
one object of each value, and Map is an associative array that lets
you associate any object with any other object – the Java collection
classes will automatically resize themselves. Thus, you can put in

420 Thinking in Java www.BruceEckel.com

any number of objects and you don’t need to worry about how big to
make the collection while you’re writing the program.

Disadvantage: unknown type
The “disadvantage” to using the Java collections is that you lose
type information when you put an object into a collection. This
happens because, when the collection was written, the programmer
of that collection had no idea what specific type you wanted to put
in the collection, and making the collection hold only your type
would prevent it from being a general-purpose tool. So instead, the
collection holds handles to objects of type Object, which is of
course every object in Java, since it’s the root of all the classes. (Of
course, this doesn’t include primitive types, since they aren’t
inherited from anything.) This is a great solution, except for these
reasons:

1. Since the type information is thrown away when you put an
object handle into a collection, any type of object can be put
into your collection, even if you mean it to hold only, say,
cats. Someone could just as easily put a dog into the
collection.

2. Since the type information is lost, the only thing the
collection knows it holds is a handle to an Object. You must
perform a cast to the correct type before you use it.

On the up side, Java won’t let you misuse the objects that you put
into a collection. If you throw a dog into a collection of cats, then go
through and try to treat everything in the collection as a cat, you’ll
get an exception when you get to the dog. In the same vein, if you
try to cast the dog handle that you pull out of the cat collection into
a cat, you’ll get an exception at run-time.

Here’s an example:

//: c09:CatsAndDogs.java
// Simple collection example.
import java.util.*;

class Cat {

Chapter 9: Holding Your Objects 421

private int catNumber;
Cat(int i) {

catNumber = i;
}
void print() {

System.out.println("Cat #" + catNumber);
}

}

class Dog {
private int dogNumber;
Dog(int i) {

dogNumber = i;
}
void print() {

System.out.println("Dog #" + dogNumber);
}

}

public class CatsAndDogs {
public static void main(String[] args) {

ArrayList cats = new ArrayList();
for(int i = 0; i < 7; i++)
cats.add(new Cat(i));

// Not a problem to add a dog to cats:
cats.add(new Dog(7));
for(int i = 0; i < cats.size(); i++)
((Cat)cats.get(i)).print();

// Dog is detected only at run-time
}

} ///:~

You can see that using an ArrayList is straightforward: create one,
put objects in using add(), and later get them out with get().
(Note that Vector has a method size() to let you know how many
elements have been added so you don’t inadvertently run off the
end and cause an exception.)

The classes Cat and Dog are distinct – they have nothing in
common except that they are Objects. (If you don’t explicitly say
what class you’re inheriting from, you automatically inherit from
Object.) The Vector class, which comes from java.util, holds

422 Thinking in Java www.BruceEckel.com

Objects, so not only can you put Cat objects into this collection
using the Vector method add(), but you can also add Dog objects
without complaint at either compile-time or run-time. When you go
to fetch out what you think are Cat objects using the Vector
method get(), you get back a handle to an Object that you must
cast to a Cat. Then you need to surround the entire expression with
parentheses to force the evaluation of the cast before calling the
print() method for Cat, otherwise you’ll get a syntax error. Then,
at run-time, when you try to cast the Dog object to a Cat, you’ll get
an exception.

This is more than just an annoyance. It’s something that can create
some difficult-to-find bugs. If one part (or several parts) of a
program inserts objects into a collection, and you discover only in a
separate part of the program through an exception that a bad object
was placed in the collection, then you must find out where the bad
insert occurred. You do this by code inspection, which is about the
worst debugging tool you have. On the upside, it’s convenient to
start with some standardized collection classes for programming,
despite the scarcity and awkwardness.

Sometimes it works right anyway
It turns out that in some cases things seem to work correctly
without casting back to your original type. The first case is quite
special: the String class has some extra help from the compiler to
make it work smoothly. Whenever the compiler expects a String
object and it hasn’t got one, it will automatically call the
toString() method that’s defined in Object and can be overridden
by any Java class. This method produces the desired String object,
which is then used wherever it was wanted.

Thus, all you need to do to make objects of your class print out is to
override the toString() method, as shown in the following
example:

//: c09:WorksAnyway.java
// In special cases, things just seem
// to work correctly.
import java.util.*;

Chapter 9: Holding Your Objects 423

class Mouse {
private int mouseNumber;
Mouse(int i) {

mouseNumber = i;
}
// Magic method:
public String toString() {

return "This is Mouse #" + mouseNumber;
}
void print(String msg) {

if(msg != null) System.out.println(msg);
System.out.println(
"Mouse number " + mouseNumber);

}
}

class MouseTrap {
static void caughtYa(Object m) {

Mouse mouse = (Mouse)m; // Cast from Object
mouse.print("Caught one!");

}
}

public class WorksAnyway {
public static void main(String[] args) {

ArrayList mice = new ArrayList();
for(int i = 0; i < 3; i++)
mice.add(new Mouse(i));

for(int i = 0; i < mice.size(); i++) {
// No cast necessary, automatic call
// to Object.toString():
System.out.println(
"Free mouse: " + mice.get(i));

MouseTrap.caughtYa(mice.get(i));
}

}
} ///:~

You can see the redefinition of toString() in Mouse. In the
second for loop in main() you find the statement:

System.out.println("Free mouse: " + mice.get(i));

424 Thinking in Java www.BruceEckel.com

After the ‘+’ sign the compiler expects to see a String object. get()
produces an Object, so to get the desired String the compiler
implicitly calls toString(). Unfortunately, you can work this kind
of magic only with String; it isn’t available for any other type.

A second approach to hiding the cast has been placed inside
MouseTrap. The caughtYa() method accepts not a Mouse, but
an Object, which it then casts to a Mouse. This is quite
presumptuous, of course, since by accepting an Object anything
could be passed to the method. However, if the cast is incorrect – if
you passed the wrong type – you’ll get an exception at run-time.
This is not as good as compile-time checking but it’s still robust.
Note that in the use of this method:

MouseTrap.caughtYa(mice.get(i));

no cast is necessary.

Making a type-conscious Vector
You might not want to give up on this issue just yet. A more
ironclad solution is to create a new class using the Vector, such
that it will accept only your type and produce only your type:

//: c09:GopherList.java
// A type-conscious ArrayList.
import java.util.*;

class Gopher {
private int gopherNumber;
Gopher(int i) {

gopherNumber = i;
}
void print(String msg) {

if(msg != null)
System.out.println(msg);

System.out.println(
"Gopher number " + gopherNumber);

}
}

class GopherTrap {

Chapter 9: Holding Your Objects 425

static void caughtYa(Gopher g) {
g.print("Caught one!");

}
}

class GopherList {
private ArrayList v = new ArrayList();
public void add(Gopher m) {

v.add(m);
}
public Gopher get(int index) {

return (Gopher)v.get(index);
}
public int size() { return v.size(); }
public static void main(String[] args) {

GopherList gophers = new GopherList();
for(int i = 0; i < 3; i++)
gophers.add(new Gopher(i));

for(int i = 0; i < gophers.size(); i++)
GopherTrap.caughtYa(gophers.get(i));

}
} ///:~

This is similar to the previous example, except that the new
GopherVector class has a private member of type Vector
(inheriting from Vector tends to be frustrating, for reasons you’ll
see later), and methods just like Vector. However, it doesn’t accept
and produce generic Objects, only Gopher objects.

Because a GopherVector will accept only a Gopher, if you were
to say:

gophers.add(new Pigeon());

you would get an error message at compile time. This approach,
while more tedious from a coding standpoint, will tell you
immediately if you’re using a type improperly.

Note that no cast is necessary when using get() – it’s always a
Gopher.

426 Thinking in Java www.BruceEckel.com

Parameterized types
This kind of problem isn’t isolated – there are numerous cases in
which you need to create new types based on other types, and in
which it is useful to have specific type information at compile-time.
This is the concept of a parameterized type. In C++, this is directly
supported by the language in templates. At one point, Java had
reserved the keyword generic to someday support parameterized
types, but it’s uncertain if this will ever occur.

Iterators
In any collection class, you must have a way to put things in and a
way to get things out. After all, that’s the primary job of a collection
– to hold things. In the ArrayList, add() is the way that you
insert objects, and get() is one way to get things out. ArrayList is
quite flexible – you can select anything at any time, and select
multiple elements at once using different indexes.

If you want to start thinking at a higher level, there’s a drawback:
you need to know the exact type of the collection in order to use it.
This might not seem bad at first, but what if you start out using an
ArrayList, and later on in your program you decide, for efficiency,
that you want to change to a LinkedList? Or you’d like to write a
piece of code that doesn’t know or care what type of collection it’s
working with.

The concept of an iterator can be used to achieve this next level of
abstraction. This is an object whose job is to move through a
sequence of objects and select each object in that sequence without
the client programmer knowing or caring about the underlying
structure of that sequence. In addition, an iterator is usually what’s
called a “light-weight” object; that is, one that’s cheap to create. For
that reason, you’ll often find seemingly strange constraints for
iterators; for example, some iterators can move in only one
direction.

The Java Iterator is an example of an iterator with these kinds of
constraints. There’s not much you can do with one except:

Chapter 9: Holding Your Objects 427

1. Ask a collection to hand you an Iterator using a method
called iterator(). This Iterator will be ready to return the
first element in the sequence on your first call to its next()
method.

2. Get the next object in the sequence with next().

3. See if there are any more objects in the sequence with
hasNext().

4. Remove the last element returned by the iterator with
remove().

That’s all. It’s a simple implementation of an iterator, but still
powerful. To see how it works, let’s revisit the CatsAndDogs.java
program from earlier in the chapter. In the original version, the
method get() was used to select each element, but in the following
modified version an Iterator is used:

//: c09:CatsAndDogs2.java
// Simple collection with Iterator.
import java.util.*;

class Cat2 {
private int catNumber;
Cat2(int i) {

catNumber = i;
}
void print() {

System.out.println("Cat number " +catNumber);
}

}

class Dog2 {
private int dogNumber;
Dog2(int i) {

dogNumber = i;
}
void print() {

System.out.println("Dog number " +dogNumber);
}

}

428 Thinking in Java www.BruceEckel.com

public class CatsAndDogs2 {
public static void main(String[] args) {

ArrayList cats = new ArrayList();
for(int i = 0; i < 7; i++)
cats.add(new Cat2(i));

// Not a problem to add a dog to cats:
cats.add(new Dog2(7));
Iterator e = cats.iterator();
while(e.hasNext())
((Cat2)e.next()).print();

// Dog is detected only at run-time
}

} ///:~

You can see that the only change is in the last few lines. Instead of:

for(int i = 0; i < cats.size(); i++)
((Cat)cats.get(i)).print();

an Iterator is used to step through the sequence:

while(e.hasNext())
((Cat2)e.next()).print();

With the Iterator, you don’t need to worry about the number of
elements in the collection. That’s taken care of for you by
hasNext() and next().

As another example, consider the creation of a general-purpose
printing method:

//: c09:HamsterMaze.java
// Using an Iterator.
import java.util.*;

class Hamster {
private int hamsterNumber;
Hamster(int i) {

hamsterNumber = i;
}
public String toString() {

return "This is Hamster #" + hamsterNumber;

Chapter 9: Holding Your Objects 429

}
}

class Printer {
static void printAll(Iterator e) {

while(e.hasNext())
System.out.println(e.next());

}
}

public class HamsterMaze {
public static void main(String[] args) {

ArrayList v = new ArrayList();
for(int i = 0; i < 3; i++)
v.add(new Hamster(i));

Printer.printAll(v.iterator());
}

} ///:~

Look closely at the printing method:

static void printAll(Iterator e) {
while(e.hasNext())

System.out.println(e.next());
}

Note that there’s no information about the type of sequence. All you
have is an Iterator, and that’s all you need to know about the
sequence: that you can get the next object, and that you can know
when you’re at the end. This idea of taking a collection of objects
and passing through it to perform an operation on each one is
powerful and will be seen throughout this book.

This particular example is even more generic, since it implicitly uses
the ubiquitous toString() method (ubiquitous only because it’s
part of the Object class). This uses the “automatic conversion to
String” that’s wired into Java. When any object is handed to
println(), a String is automatically produced by calling
toString().

Although it’s unnecessary, you can be more explicit using a cast,
which has the effect of calling toString():

430 Thinking in Java www.BruceEckel.com

System.out.println((String)e.next());

In general, however, you’ll want to do something more than call
Object methods, so you’ll run up against the type-casting issue
again. You must assume you’ve gotten an Iterator to a sequence of
the particular type you’re interested in, and cast the resulting
objects to that type (getting a run-time exception if you’re wrong).

Types of collections
The standard Java 1.0 and 1.1 library comes with a bare minimum
set of collection classes, but they’re probably enough to get by with
for many of your programming projects. (As you’ll see at the end of
this chapter, Java 2 provides a radically redesigned and filled-out
library of collections.)

ArrayList
The ArrayList is quite simple to use, as you’ve seen so far.
Although most of the time you’ll just use add() to insert objects,
get() to get them out one at a time, and elements() to get an
Iterator to the sequence, there’s also a set of other methods that
can be useful. As usual with the Java libraries, we won’t use or talk
about them all here, but be sure to look them up in the electronic
documentation to get a feel for what they can do.

Crashing Java
The Java standard collections contain a toString() method so they
can produce a String representation of themselves, including the
objects they hold. Inside of ArrayList, for example, the
toString() steps through the elements of the ArrayList and calls
toString() for each one. Suppose you’d like to print out the
address of your class. It seems to make sense to simply refer to this
(in particular, C++ programmers are prone to this approach):

//: c09:CrashJava.java
// One way to crash Java.
import java.util.*;

Chapter 9: Holding Your Objects 431

public class CrashJava {
public String toString() {

return "CrashJava address: " + this + "\n";
}
public static void main(String[] args) {

ArrayList v = new ArrayList();
for(int i = 0; i < 10; i++)
v.add(new CrashJava());

System.out.println(v);
}

} ///:~

It turns out that if you simply create a CrashJava object and print
it out, you’ll get an endless sequence of exceptions. However, if you
place the CrashJava objects in an ArrayList and print out that
ArrayList as shown here, it can’t handle it and you don’t even get
an exception; Java just crashes. (But at least it didn’t bring down
my operating system.) This was tested with Java 1.1.

What’s happening is automatic type conversion for Strings. When
you say:

"CrashJava address: " + this

The compiler sees a String followed by a ‘+’ and something that’s
not a String, so it tries to convert this to a String. It does this
conversion by calling toString(), which produces a recursive call.
When this occurs inside an ArrayList, it appears that the stack
overflows without the exception-handling mechanism getting a
chance to respond.

If you really do want to print the address of the object in this case,
the solution is to call the Object toString() method, which does
just that. So instead of saying this, you’d say super.toString().
(This only works if you're directly inheriting from Object or if none
of your parent classes have overridden the toString() method).

BitSet
A BitSet is really a Vector of bits, and it is used if you want to
efficiently store a lot of on-off information. It’s efficient only from

432 Thinking in Java www.BruceEckel.com

the standpoint of size; if you’re looking for efficient access, it is
slightly slower than using an array of some native type.

In addition, the minimum size of the BitSet is that of a long: 64
bits. This implies that if you’re storing anything smaller, like 8 bits,
a BitSet will be wasteful, so you’re better off creating your own
class to hold your flags.

In a normal Vector, the collection will expand as you add more
elements. The BitSet does this as well – sort of. That is, sometimes
it works and sometimes it doesn’t, which makes it appear that the
Java version 1.0 implementation of BitSet is just badly done. (It is
fixed in Java 1.1.) The following example shows how the BitSet
works and demonstrates the version 1.0 bug:

//: c09:Bits.java
// Demonstration of BitSet.
import java.util.*;

public class Bits {
public static void main(String[] args) {

Random rand = new Random();
// Take the LSB of nextInt():
byte bt = (byte)rand.nextInt();
BitSet bb = new BitSet();
for(int i = 7; i >=0; i--)
if(((1 << i) & bt) != 0)
bb.set(i);

else
bb.clear(i);

System.out.println("byte value: " + bt);
printBitSet(bb);

short st = (short)rand.nextInt();
BitSet bs = new BitSet();
for(int i = 15; i >=0; i--)
if(((1 << i) & st) != 0)
bs.set(i);

else
bs.clear(i);

System.out.println("short value: " + st);
printBitSet(bs);

Chapter 9: Holding Your Objects 433

int it = rand.nextInt();
BitSet bi = new BitSet();
for(int i = 31; i >=0; i--)
if(((1 << i) & it) != 0)
bi.set(i);

else
bi.clear(i);

System.out.println("int value: " + it);
printBitSet(bi);

// Test bitsets >= 64 bits:
BitSet b127 = new BitSet();
b127.set(127);
System.out.println("set bit 127: " + b127);
BitSet b255 = new BitSet(65);
b255.set(255);
System.out.println("set bit 255: " + b255);
BitSet b1023 = new BitSet(512);

// Without the following, an exception is thrown
// in the Java 1.0 implementation of BitSet:
// b1023.set(1023);

b1023.set(1024);
System.out.println("set bit 1023: " + b1023);

}
static void printBitSet(BitSet b) {

System.out.println("bits: " + b);
String bbits = new String();
for(int j = 0; j < b.size() ; j++)
bbits += (b.get(j) ? "1" : "0");

System.out.println("bit pattern: " + bbits);
}

} ///:~

The random number generator is used to create a random byte,
short, and int, and each one is transformed into a corresponding
bit pattern in a BitSet. This works fine because a BitSet is 64 bits,
so none of these cause it to increase in size. But in Java 1.0, when
the BitSet is greater than 64 bits, some strange behavior occurs. If
you set a bit that’s just one greater than the BitSet’s currently-
allocated storage, it will expand nicely. But if you try to set bits at

434 Thinking in Java www.BruceEckel.com

higher locations than that without first just touching the boundary,
you’ll get an exception, since the BitSet won’t expand properly in
Java 1.0. The example shows a BitSet of 512 bits being created. The
constructor allocates storage for twice that number of bits. Then if
you try to set bit 1024 or greater without first setting bit 1023, you’ll
throw an exception in Java 1.0. Fortunately, this is fixed in Java 1.1,
but avoid using the BitSet if you write code for Java 1.0.

Stack
A Stack is sometimes referred to as a “last-in, first-out” (LIFO)
collection. That is, whatever you “push” on the Stack last is the first
item you can “pop” out. Like all of the other collections in Java,
what you push and pop are Objects, so you must cast what you
pop.

What’s rather odd is that instead of using a Vector as a building
block to create a Stack, Stack is inherited from Vector. So it has
all of the characteristics and behaviors of a Vector plus some extra
Stack behaviors. It’s difficult to know whether the designers
explicitly decided that this was an especially useful way to do things,
or whether it was just a naïve design.

Here’s a simple demonstration of Stack that reads each line from
an array and pushes it as a String:

//: c09:Stacks.java
// Demonstration of Stack Class.
import java.util.*;

public class Stacks {
static String[] months = {

"January", "February", "March", "April",
"May", "June", "July", "August", "September",
"October", "November", "December" };

public static void main(String[] args) {
Stack stk = new Stack();
for(int i = 0; i < months.length; i++)
stk.push(months[i] + " ");

System.out.println("stk = " + stk);
// Treating a stack as a Vector:

Chapter 9: Holding Your Objects 435

stk.addElement("The last line");
System.out.println(
"element 5 = " + stk.elementAt(5));

System.out.println("popping elements:");
while(!stk.empty())
System.out.println(stk.pop());

}
} ///:~

Each line in the months array is inserted into the Stack with
push(), and later fetched from the top of the stack with a pop().
To make a point, Vector operations are also performed on the
Stack object. This is possible because, by virtue of inheritance, a
Stack is a Vector. Thus, all operations that can be performed on a
Vector can also be performed on a Stack, such as elementAt().

Map
A Vector allows you to select from a sequence of objects using a
number, so in a sense it associates numbers to objects. But what if
you’d like to select from a sequence of objects using some other
criterion? A Stack is an example: its selection criterion is “the last
thing pushed on the stack.” A powerful twist on this idea of
“selecting from a sequence” is alternately termed a map, a
dictionary, or an associative array. Conceptually, it seems like a
vector, but instead of looking up objects using a number, you look
them up using another object! This is often a key process in a
program.

The concept shows up in Java as the abstract class Dictionary.
The interface for this class is straightforward: size() tells you how
many elements are within, isEmpty() is true if there are no
elements, put(Object key, Object value) adds a value (the thing
you want), and associates it with a key (the thing you look it up
with). get(Object key) produces the value given the
corresponding key, and remove(Object key) removes the key-
value pair from the list. There are Iterators: keys() produces an
Iterator of the keys, and elements() produces an Iterator of all
the values. That’s all there is to a Dictionary.

436 Thinking in Java www.BruceEckel.com

A Dictionary isn’t terribly difficult to implement. Here’s a simple
approach, which uses two Vectors, one for keys and one for values:

//: c09:AssocArray.java
// Simple version of a Map.
import java.util.*;

public class AssocArray extends AbstractMap {
private ArrayList keys = new ArrayList();
private ArrayList values = new ArrayList();
public int size() { return keys.size(); }
public boolean isEmpty() {

return keys.isEmpty();
}
public Object put(Object key, Object value) {

int index = keys.indexOf(key);
if (index == -1) { // Key not found
keys.add(key);
values.add(value);
return null;

} else { // Key already in table; replace
Object returnval = values.get(index);
values.set(index, value);
return returnval;

}
}
public Object get(Object key) {

int index = keys.indexOf(key);
// indexOf() Returns -1 if key not found:
if(index == -1) return null;
return values.get(index);

}
public Object remove(Object key) {

int index = keys.indexOf(key);
if(index == -1) return null;
keys.remove(index);
Object returnval = values.get(index);
values.remove(index);
return returnval;

}
public Set keySet() {

return new HashSet(keys);

Chapter 9: Holding Your Objects 437

}
public Collection values() {

return values;
}
public Set entrySet() {

Set set = new HashSet();
// Iterator it = keys.iterator();
// while(it.hasNext()) {
// Object k = it.next();
// Object v = values.get(values.indexOf(k));
// set.add(new Map.Entry(k, v));
// }

return set;
}
// Test it:
public static void main(String[] args) {

AssocArray aa = new AssocArray();
for(char c = 'a'; c <= 'z'; c++)
aa.put(String.valueOf(c),

String.valueOf(c)
.toUpperCase());

char[] ca = { 'a', 'e', 'i', 'o', 'u' };
for(int i = 0; i < ca.length; i++)
System.out.println("Uppercase: " +

aa.get(String.valueOf(ca[i])));
}

} ///:~

The first thing you see in the definition of AssocArray is that it
extends Dictionary. This means that AssocArray is a type of
Dictionary, so you can make the same requests of it that you can a
Dictionary. If you make your own Dictionary, as is done here, all
you need to do is fill in all the methods that are in Dictionary.
(And you must override all the methods because all of them – with
the exception of the constructor – are abstract.)

The Vectors keys and values are linked by a common index
number. That is, if you call put() with a key of “roof” and a value of
“blue” (assuming you’re associating the various parts of a house
with the colors they are to be painted) and there are already 100
elements in the AssocArray, then “roof” will be the 101 element of

438 Thinking in Java www.BruceEckel.com

keys and “blue” will be the 101 element of values. And if you look
at get(), when you pass “roof” in as the key, it produces the index
number with keys.indexOf(), and then uses that index number to
produce the value in the associated values vector.

The test in main() is simple; it’s just a map of lowercase characters
to uppercase characters, which could obviously be done in a number
of more efficient ways. But it shows that AssocArray is functional.

The standard Java library contains two different types of Maps:
HashMap and TreeMap. Both have the same interface
HashMap (since they both implement Map), but they differ in one
distinct way: efficiency. If you look at what must be done for a
get(), it seems pretty slow to search through an ArrayList for the
key. This is where HashMap speeds things up. Instead of the
tedious linear search for the key, it uses a special value called a hash
code. The hash code is a way to take some information in the object
in question and turn it into a “relatively unique” int for that object.
All objects have a hash code, and hashCode() is a method in the
root class Object. A HashMap takes the hashCode() of the
object and uses it to quickly hunt for the key. This results in a
dramatic performance improvement.2 The way that a HashMap
works is beyond the scope of this book3 – all you need to know is
that HashMap is a fast Dictionary, and that a Dictionary is a
useful tool.

As an example of the use of a HashMap, consider a program to
check the randomness of Java’s Math.random() method. Ideally,

2 If these speedups still don’t meet your performance needs, you can further accelerate
table lookup by writing your own hash table routine. This avoids delays due to casting to
and from Objects and synchronization built into the Java Class Library hash table routine.
To reach even higher levels of performance, speed enthusiasts can use Donald Knuth’s The
Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition to
replace overflow bucket lists with arrays that have two additional benefits: they can be
optimized for disk storage characteristics and they can save most of the time of creating

and garbage collecting individual records.

3 The best reference I know of is Practical Algorithms for Programmers, by Andrew
Binstock and John Rex, Addison-Wesley 1995.

Chapter 9: Holding Your Objects 439

it would produce a perfect distribution of random numbers, but to
test this you need to generate a bunch of random numbers and
count the ones that fall in the various ranges. A HashMap is
perfect for this, since it associates objects with objects (in this case,
the values produced by Math.random() with the number of
times those values appear):

//: c09:Statistics.java
// Simple demonstration of HashMap.
import java.util.*;

class Counter {
int i = 1;
public String toString() {

return Integer.toString(i);
}

}

class Statistics {
public static void main(String[] args) {

HashMap ht = new HashMap();
for(int i = 0; i < 10000; i++) {
// Produce a number between 0 and 20:
Integer r =
new Integer((int)(Math.random() * 20));

if(ht.containsKey(r))
((Counter)ht.get(r)).i++;

else
ht.put(r, new Counter());

}
System.out.println(ht);

}
} ///:~

In main(), each time a random number is generated it is wrapped
inside an Integer object so that handle can be used with the
HashMap. (You can’t use a primitive with a collection, only an
object handle.) The containsKey() method checks to see if this
key is already in the collection. (That is, has the number been found
already?) If so, the get() methods gets the associated value for the
key, which in this case is a Counter object. The value i inside the

440 Thinking in Java www.BruceEckel.com

counter is then incremented to indicate that one more of this
particular random number has been found.

If the key has not been found yet, the method put() will place a
new key-value pair into the HashMap. Since Counter
automatically initializes its variable i to one when it’s created, it
indicates the first occurrence of this particular random number.

To display the HashMap, it is simply printed out. The HashMap
toString() method moves through all the key-value pairs and calls
the toString() for each one. The Integer toString() is pre-
defined, and you can see the toString() for Counter. The output
from one run (with some line breaks added) is:

{19=526, 18=533, 17=460, 16=513, 15=521, 14=495,
13=512, 12=483, 11=488, 10=487, 9=514, 8=523,
7=497, 6=487, 5=480, 4=489, 3=509, 2=503, 1=475,
0=505}

You might wonder at the necessity of the class Counter, which
seems like it doesn’t even have the functionality of the wrapper class
Integer. Why not use int or Integer? Well, you can’t use an int
because all of the collections can hold only Object handles. After
seeing collections the wrapper classes might begin to make a little
more sense to you, since you can’t put any of the primitive types in
collections. However, the only thing you can do with the Java
wrappers is to initialize them to a particular value and read that
value. That is, there’s no way to change a value once a wrapper
object has been created. This makes the Integer wrapper
immediately useless to solve our problem, so we’re forced to create
a new class that does satisfy the need.

Creating “key” classes
In the previous example, a standard library class (Integer) was
used as a key for the HashMap. It worked fine as a key, because it
has all the necessary wiring to make it work correctly as a key. But a
common pitfall occurs when using HashMaps when you create
your own classes to be used as keys. For example, consider a
weather predicting system that matches Groundhog objects to
Prediction objects. It seems fairly straightforward: you create the

Chapter 9: Holding Your Objects 441

two classes and use Groundhog as the key and Prediction as the
value:

//: c09:SpringDetector.java
// Looks plausible, but doesn't work right.
import java.util.*;

class Groundhog {
int ghNumber;
Groundhog(int n) { ghNumber = n; }

}

class Prediction {
boolean shadow = Math.random() > 0.5;
public String toString() {

if(shadow)
return "Six more weeks of Winter!";

else
return "Early Spring!";

}
}

public class SpringDetector {
public static void main(String[] args) {

HashMap ht = new HashMap();
for(int i = 0; i < 10; i++)
ht.put(new Groundhog(i), new Prediction());

System.out.println("ht = " + ht + "\n");
System.out.println(
"Looking up prediction for groundhog #3:");

Groundhog gh = new Groundhog(3);
if(ht.containsKey(gh))
System.out.println((Prediction)ht.get(gh));

}
} ///:~

Each Groundhog is given an identity number, so you can look up a
Prediction in the HashMap by saying “Give me the Prediction
associated with Groundhog number 3.” The Prediction class
contains a boolean that is initialized using Math.random(), and
a toString() that interprets the result for you. In main(), a
HashMap is filled with Groundhogs and their associated

442 Thinking in Java www.BruceEckel.com

Predictions. The HashMap is printed so you can see that it has
been filled. Then a Groundhog with an identity number of 3 is
used to look up the prediction for Groundhog #3.

It seems simple enough, but it doesn’t work. The problem is that
Groundhog is inherited from the common root class Object
(which is what happens if you don’t specify a base class, thus all
classes are ultimately inherited from Object). It is Object’s
hashCode() method that is used to generate the hash code for
each object, and by default it just uses the address of its object.
Thus, the first instance of Groundhog(3) does not produce a hash
code equal to the hash code for the second instance of
Groundhog(3) that we tried to use as a lookup.

You might think that all you need to do is write an appropriate
override for hashCode(). But it still won’t work until you’ve done
one more thing: override the equals() that is also part of Object.
This method is used by the HashMap when trying to determine if
your key is equal to any of the keys in the table. Again, the default
Object.equals() simply compares object addresses, so one
Groundhog(3) is not equal to another Groundhog(3).

Thus, to use your own classes as keys in a HashMap, you must
override both hashCode() and equals(), as shown in the
following solution to the problem above:

//: c09:SpringDetector2.java
// If you create a class that's used as
// a key in a HashMap, you must override
// hashCode() and equals().
import java.util.*;

class Groundhog2 {
int ghNumber;
Groundhog2(int n) { ghNumber = n; }
public int hashCode() { return ghNumber; }
public boolean equals(Object o) {

return (o instanceof Groundhog2)
&& (ghNumber == ((Groundhog2)o).ghNumber);

}
}

Chapter 9: Holding Your Objects 443

public class SpringDetector2 {
public static void main(String[] args) {

HashMap ht = new HashMap();
for(int i = 0; i < 10; i++)
ht.put(new Groundhog2(i),new Prediction());

System.out.println("ht = " + ht + "\n");
System.out.println(
"Looking up prediction for groundhog #3:");

Groundhog2 gh = new Groundhog2(3);
if(ht.containsKey(gh))
System.out.println((Prediction)ht.get(gh));

}
} ///:~

Note that this uses the Prediction class from the previous
example, so SpringDetector.java must be compiled first or you’ll
get a compile-time error when you try to compile
SpringDetector2.java.

Groundhog2.hashCode() returns the ground hog number as an
identifier. (In this example, the programmer is responsible for
ensuring that no two ground hogs exist with the same ID number.)
The hashCode() is not required to return a unique identifier, but
the equals() method must be able to strictly determine whether
two objects are equivalent.

Even though it appears that the equals() method is only checking
to see whether the argument is an instance of Groundhog2 (using
the instanceof keyword, which is fully explained in Chapter 12),
the instanceof actually quietly does a second sanity check, to see if
the object is null, since instanceof produces false if the left-hand
argument is null. Assuming it’s the correct type and not null, the
comparison is based on the actual ghNumbers. This time, when
you run the program, you’ll see it produces the correct output.
(Many of the Java library classes override the hashCode() and
equals() methods to be based upon their contents.)

444 Thinking in Java www.BruceEckel.com

Properties: a type of HashMap
In the first example in this book, a type of HashMap was used
called Properties. In that example, the lines:

Properties p = System.getProperties();
p.list(System.out);

called the static method getProperties() to get a special
Properties object that described the system characteristics. The
method list() is a method of Properties that sends the contents
to any stream output that you choose. There’s also a save()
method to allow you to write your property list to a file in a way that
it can be retrieved later with the load() method.

Although the Properties class is inherited from HashMap, it also
contains a second HashMap that acts to hold the list of “default”
properties. So if a property isn’t found in the primary list, the
defaults will be searched.

The Properties class is also available for use in your programs.
You can find more complete details in the Java library
documentation.

Enumerators revisited
We can now demonstrate the true power of the Iterator: the ability
to separate the operation of traversing a sequence from the
underlying structure of that sequence. In the following example, the
class PrintData uses an Iterator to move through a sequence and
call the toString() method for every object. Two different types of
collections are created, a Vector and a HashMap, and they are
each filled with, respectively, Mouse and Hamster objects. (These
classes are defined earlier in the chapter; notice you must have
compiled HamsterMaze.java and WorksAnyway.java for the
following program to compile.) Because an Iterator hides the
structure of the underlying collection, PrintData doesn’t know or
care what kind of collection the Iterator comes from:

//: c09:Iterators2.java
// Revisiting Iterators.

Chapter 9: Holding Your Objects 445

import java.util.*;

class PrintData {
static void print(Iterator e) {

while(e.hasNext())
System.out.println(e.next());

}
}

class Enumerators2 {
public static void main(String[] args) {

ArrayList v = new ArrayList();
for(int i = 0; i < 5; i++)
v.add(new Mouse(i));

HashMap h = new HashMap();
for(int i = 0; i < 5; i++)
h.put(new Integer(i), new Hamster(i));

System.out.println("ArrayList");
PrintData.print(v.iterator());
System.out.println("HashMap");
PrintData.print(h.entrySet().iterator());

}
} ///:~

Note that PrintData.print() takes advantage of the fact that the
objects in these collections are of class Object so it can call
toString(). It’s more likely that in your problem, you must make
the assumption that your Iterator is walking through a collection
of some specific type. For example, you might assume that
everything in the collection is a Shape with a draw() method.
Then you must downcast from the Object that Iterator.next()
returns to produce a Shape.

Sorting
One of the things missing in the Java 1.0 and 1.1 libraries is
algorithmic operations, even simple sorting. So it makes sense to
create an ArrayList that sorts itself using the classic Quicksort.

446 Thinking in Java www.BruceEckel.com

A problem with writing generic sorting code is that sorting must
perform comparisons based on the actual type of the object. Of
course, one approach is to write a different sorting method for every
different type, but you should be able to recognize that this does not
produce code that is easily re-used for new types.

A primary goal of programming design is to “separate things that
change from things that stay the same,” and here, the code that
stays the same is the general sort algorithm, but the thing that
changes from one use to the next is the way objects are compared.
So instead of hard-wiring the comparison code into many different
sort routines, the technique of the callback will be used. With a
callback, the part of the code that varies from case to case is
encapsulated inside its own class, and the part of the code that’s
always the same will call back to the code that changes. That way
you can make different objects to express different ways of
comparison and feed them to the same sorting code.

The following interface describes how to compare two objects, and
thus encapsulates “the things that change” for this particular
problem:

//: c09:Compare.java
// Interface for sorting callback.
package c09;

interface Compare {
boolean lessThan(Object lhs, Object rhs);
boolean lessThanOrEqual(Object lhs, Object rhs);

} ///:~

For both methods, the lhs represents the “left hand” object and the
rhs represents the “right hand” object in the comparison.

A subclass of ArrayList can be created that implements the
Quicksort using Compare. The algorithm, which is known for its
speed, will not be explained here. For details, see Practical
Algorithms for Programmers, by Binstock & Rex, Addison-Wesley
1995.

//: c09:SortList.java
// A generic sorting list.

Chapter 9: Holding Your Objects 447

package c09;
import java.util.*;

public class SortList extends ArrayList {
private Compare compare; // To hold the callback
public SortList(Compare comp) {

compare = comp;
}
public void sort() {

quickSort(0, size() - 1);
}
private void quickSort(int left, int right) {

if(right > left) {
Object o1 = get(right);
int i = left - 1;
int j = right;
while(true) {
while(compare.lessThan(

get(++i), o1))
;

while(j > 0)
if(compare.lessThanOrEqual(

get(--j), o1))
break; // out of while

if(i >= j) break;
swap(i, j);

}
swap(i , right);
quickSort(left, i-1);
quickSort(i+1, right);

}
}
private void swap(int loc1, int loc2) {

Object tmp = get(loc1);
set(loc1, get(loc2));
set(loc2, tmp);

}
} ///:~

You can now see the reason for the term “callback,” since the
quickSort() method “calls back” to the methods in Compare.

448 Thinking in Java www.BruceEckel.com

You can also see how this technique has produced generic, reusable
code.

To use the SortList, you must create a class that implements
Compare for the kind of objects that you’re sorting. This is a place
where an inner class is not essential, but it can make sense for code
organization. Here’s an example for String objects:

//: c09:StringSortTest.java
// Testing the generic sorting ArrayList.
package c09;
import java.util.*;

public class StringSortTest {
static class StringCompare implements Compare {

public boolean lessThan(Object l, Object r) {
return ((String)l).toLowerCase().compareTo(
((String)r).toLowerCase()) < 0;

}
public boolean
lessThanOrEqual(Object l, Object r) {
return ((String)l).toLowerCase().compareTo(
((String)r).toLowerCase()) <= 0;

}
}
public static void main(String[] args) {

SortList sv =
new SortList(new StringCompare());

sv.add("d");
sv.add("A");
sv.add("C");
sv.add("c");
sv.add("b");
sv.add("B");
sv.add("D");
sv.add("a");
sv.sort();
Iterator e = sv.iterator();
while(e.hasNext())
System.out.println(e.next());

}
} ///:~

Chapter 9: Holding Your Objects 449

The inner class is static because it does not need a link to an outer
class in order for it to function.

You can see how, once the framework is set up, it’s easy to reuse a
design like this – you simply write the class that encapsulates “the
things that change” and hand an object to the SortList.

The comparison forces the strings to lower case, so that the capital
A’s end up next to the small a’s and not in some entirely different
place. This example shows, however, a slight deficiency in this
approach, since the test code above puts the uppercase and
lowercase single letters of the same letter in the order that they
appear: A a b B c C d D. This is not usually much of a problem,
because you’re usually working with longer strings and in that
situation the effect doesn’t show up. (The Java 2 collections provide
sorting functionality that solves this problem.)

Inheritance (extends) is used here to create a new type of
ArrayList – that is, SortList is an ArrayList with some added
functionality. The use of inheritance here is powerful but it presents
problems. It turns out that some methods are final (described in
Chapter 6), so you cannot override them. If you want to create a
sorted ArrayList that accepts and produces only String objects
you run into a wall, since add() and elementAt() are final, and
these are precisely the methods you’d need to override so they
accept and produce only String objects. No luck there.

On the other hand, consider composition: the placing of an object
inside a new class. Rather than rewrite the above code to
accomplish this, we can simply use a SortList inside the new class.
In this case, the inner class to implement the interface Compare
will be created anonymously:

//: c09:StrSortList.java
// Automatically sorted ArrayList that
// accepts and produces only Strings.
package c09;
import java.util.*;

public class StrSortList {
private SortList v = new SortList(

450 Thinking in Java www.BruceEckel.com

// Anonymous inner class:
new Compare() {
public boolean
lessThan(Object l, Object r) {
return

((String)l).toLowerCase().compareTo(
((String)r).toLowerCase()) < 0;

}
public boolean
lessThanOrEqual(Object l, Object r) {
return

((String)l).toLowerCase().compareTo(
((String)r).toLowerCase()) <= 0;

}
}

);
private boolean sorted = false;
public void add(String s) {

v.add(s);
sorted = false;

}
public String get(int index) {

if(!sorted) {
v.sort();
sorted = true;

}
return (String)v.get(index);

}
public Iterator iterator() {

if(!sorted) {
v.sort();
sorted = true;

}
return v.iterator();

}
// Test it:
public static void main(String[] args) {

StrSortList sv = new StrSortList();
sv.add("d");
sv.add("A");
sv.add("C");
sv.add("c");

Chapter 9: Holding Your Objects 451

sv.add("b");
sv.add("B");
sv.add("D");
sv.add("a");
Iterator e = sv.iterator();
while(e.hasNext())
System.out.println(e.next());

}
} ///:~

This quickly reuses the code from SortList to create the desired
functionality. However, not all of the public methods from
SortList and ArrayList appear in StrSortList. When reusing
code this way, you can make a definition in the new class for each
one in the contained class, or you can start with just a few and
periodically go back and add more when you need them. Eventually
the new class design will settle down.

The advantage to this approach is that it will take only String
objects and produce only String objects, and the checking happens
at compile time instead of run time. Of course, that’s only true for
add() and elementAt(); elements() still produces an Iterator
that is untyped at compile time. Type checking for the Iterator and
in StrSortList still happens, of course, it just happens at run-time
by throwing exceptions if you do something wrong. It’s a trade-off:
do you find out about something for sure at compile time or
probably at run-time? (That is, “probably not while you’re testing
the code” and “probably when the program user tries something you
didn’t test for.”) Given the choices and the hassle, it’s easier to use
inheritance and just grit your teeth while casting – again, if
parameterized types are ever added to Java, they will solve this
problem.

You can see there’s a flag called sorted in this class. You could sort
the ArrayList every time add() is called, and constantly keep it in
a sorted state. But usually people add a lot of elements to an
ArrayList before beginning to read it. So sorting after every
add() would be less efficient than waiting until someone wants to
read the ArrayList and then sorting it, which is what is done here.
The technique of delaying a process until it is absolutely necessary
is called lazy evaluation. (There is an analogous technique called

452 Thinking in Java www.BruceEckel.com

lazy initialization which waits until a field value is necessary before
initializing it.)

Java 2 Collections
To me, collection classes are one of the most powerful tools for raw
programming. You might have gathered that I’m somewhat
disappointed in the collections provided in Java through version 1.1.
As a result, it’s a tremendous pleasure to see that collections were
given proper attention in Java 2, and thoroughly redesigned (by
Joshua Bloch at Sun). I consider the collections library to be one of
the two major features in Java 2 (the other is the Swing library,
covered in Chapter 13) because they significantly increase your
programming muscle and help bring Java in line with more mature
programming systems.

Some of the redesign makes things tighter and more sensible. For
example, many names are shorter, cleaner, and easier to
understand, as well as to type. Some names are changed to conform
to accepted terminology: a particular favorite of mine is “iterator”
instead of “enumeration.”

The redesign also fills out the functionality of the collections library.
You can now have the behavior of linked lists, queues, and
dequeues (double-ended queues, pronounced “decks”).

The design of a collections library is difficult (true of most library
design problems). In C++, the STL covered the bases with many
different classes. This was better than what was available prior to
the STL (nothing), but it didn’t translate well into Java. The result
was a rather confusing morass of classes. On the other extreme, I’ve
seen a collections library that consists of a single class, “collection,”
which acts like an ArrayList and a HashMap at the same time.
The designers of the Java 2 collections library wanted to strike a
balance: the full functionality that you expect from a mature
collections library, but easier to learn and use than the STL and
other similar collections libraries. The result can seem a bit odd in
places. Unlike some of the decisions made in the early Java
libraries, these oddities were not accidents, but carefully considered

Chapter 9: Holding Your Objects 453

decisions based on tradeoffs in complexity. It might take you a little
while to get comfortable with some aspects of the library, but I
think you’ll find yourself rapidly acquiring and using these new
tools.

The Java 2 Collections library takes the issue of “holding your
objects” and divides it into two distinct concepts:

1. Collection: a group of individual elements, often with some
rule applied to them. A List must hold the elements in a
particular sequence, and a Set cannot have any duplicate
elements. (A bag, which is not implemented in the Java 2
Collections library since Lists provide you with that
functionality, has no such rules.)

2. Map: a group of key-value object pairs (what you’ve seen up
until now as a Hashtable). At first glance, this might seem
like it ought to be a Collection of pairs, but when you try to
implement it that way the design gets awkward, so it’s clearer
to make it a separate concept. On the other hand, it’s
convenient to look at portions of a Map by creating a
Collection to represent that portion. Thus, a Map can
return a Set of its keys, a List of its values, or a List of its
pairs. Maps, like arrays, can easily be expanded to multiple
dimensions without adding new concepts: you simply make a
Map whose values are Maps (and the values of those Maps
can be Maps, etc.).

Collections and Maps may be implemented in many different
ways, according to your programming needs. It’s helpful to look at a
diagram of the Java 2 Collections:

454 Thinking in Java www.BruceEckel.com

Iterator Collection Map
Produces

ListIterator

SortedMap

Produces

List Set
Produces

AbstractMap

AbstractCollection

AbstractSetAbstractList

SortedSet

HashMap TreeMap

Hashtable
(Legacy)

HashSet TreeSet

WeakHashMap

ArrayList AbstractSequentialListVector
(Legacy)

Stack
(Legacy)

LinkedList

Collections

Arrays

Utilities

Comparable Comparator

This diagram can be a bit overwhelming at first, but throughout the
rest of this section you’ll see that there are really only three
collection components: Map, List, and Set, and only two or three
implementations of each one (with, typically, a preferred version).
When you see this, the Java 2 Collections should not seem so
daunting.

The dotted boxes represent interfaces, the dashed boxes represent
abstract classes, and the solid boxes are regular (concrete) classes.
The dotted-line arrows indicate that a particular class is
implementing an interface (or in the case of an abstract class,
partially implementing that interface). The solid arrows show that
a class can produce objects of the class the arrow is pointing to. For
example, any Collection can produce an Iterator, while a List

Chapter 9: Holding Your Objects 455

can produce a ListIterator (as well as an ordinary Iterator, since
List is inherited from Collection).

The interfaces that are concerned with holding objects are
Collection, List, Set, and Map. Typically, you’ll write the bulk of
your code to talk to these interfaces, and the only place where you’ll
specify the precise type you’re using is at the point of creation. So
you can create a List like this:

List x = new LinkedList();

Of course, you can also decide to make x a LinkedList (instead of a
generic List) and carry the precise type information around with x.
The beauty (and the intent) of using the interface is that if you
decide you want to change your implementation, all you need to do
is change it at the point of creation, like this:

List x = new ArrayList();

The rest of your code can remain untouched.

In the class hierarchy, you can see a number of classes whose names
begin with “Abstract,” and these can seem a bit confusing at first.
They are simply tools that partially implement a particular
interface. If you were making your own Set, for example, you
wouldn’t start with the Set interface and implement all the
methods, instead you’d inherit from AbstractSet and do the
minimal necessary work to make your new class. However, the Java
2 Collections library contains enough functionality to satisfy your
needs virtually all the time. So for our purposes, you can ignore any
class that begins with “Abstract.”

Therefore, when you look at the diagram, you’re really concerned
with only those interfaces at the top of the diagram and the
concrete classes (those with solid boxes around them). You’ll
typically make an object of a concrete class, upcast it to the
corresponding interface, and then use the interface throughout
the rest of your code. Here’s a simple example, which fills a
Collection with String objects and then prints each element in
the Collection:

//: c09:newcollections:SimpleCollection.java

456 Thinking in Java www.BruceEckel.com

// A simple example using Java 2 Collections.
package c09.newcollections;
import java.util.*;

public class SimpleCollection {
public static void main(String[] args) {

Collection c = new ArrayList();
// Upcast because we just want to
// work with Collection features
for(int i = 0; i < 10; i++)
c.add(Integer.toString(i));

Iterator it = c.iterator();
while(it.hasNext())
System.out.println(it.next());

}
} ///:~

All the code examples for the Java 2 Collections libraries will be
placed in the subdirectory newcollections, so you’ll be reminded
that these work only with Java 2. As a result, you must invoke the
program by saying:

java c09.newcollections.SimpleCollection

with a similar syntax for the rest of the programs in the package.

You can see that the Java 2 Collections are part of the java.util
library, so you don’t need to add any extra import statements to
use them.

The first line in main() creates an ArrayList object and then
upcasts it to a Collection. Since this example uses only the
Collection methods, any object of a class inherited from
Collection would work, but ArrayList is the typical workhorse
Collection and takes the place of Vector.

The add() method, as its name suggests, puts a new element in the
Collection. However, the documentation carefully states that
add() “ensures that this Collection contains the specified element.”
This is to allow for the meaning of Set, which adds the element only
if it isn’t already there. With an ArrayList, or any sort of List,
add() always means “put it in.”

Chapter 9: Holding Your Objects 457

All Collections can produce an Iterator via their iterator()
method. An Iterator is just like an Enumeration, which it
replaces, except:

1. It uses a name (iterator) that is historically understood and
accepted in the OOP community.

2. It uses shorter method names than Enumeration:
hasNext() instead of hasMoreElements(), and next()
instead of nextElement().

3. It adds a new method, remove(), which removes the last
element produced by the Iterator. So you can call
remove() only once for every time you call next().

In SimpleCollection.java, you can see that an Iterator is
created and used to traverse the Collection, printing each element.

Using Collections
The following table shows everything you can do with a Collection,
and thus, everything you can do with a Set or a List. (List also has
additional functionality.) Maps are not inherited from Collection,
and will be treated separately.

Boolean add(Object) *Ensures that the Collection
contains the argument. Returns
false if it doesn’t add the
argument.

Boolean
addAll(Collection)

*Adds all the elements in the
argument. Returns true if any
elements were added.

void clear() *Removes all the elements in the
Collection.

Boolean
contains(Object)

True if the Collection contains the
argument.

Boolean
containsAll(Collection)

True if the Collection contains all
the elements in the argument.

Boolean isEmpty() True if the Collection has no
elements.

458 Thinking in Java www.BruceEckel.com

Iterator iterator() Returns an Iterator that you can
use to move through the elements
in the Collection.

Boolean
remove(Object)

*If the argument is in the
Collection, one instance of that
element is removed. Returns true
if a removal occurred.

Boolean
removeAll(Collection)

*Removes all the elements that
are contained in the argument.
Returns true if any removals
occurred.

Boolean
retainAll(Collection)

*Retains only elements that are
contained in the argument (an
“intersection” from set theory).
Returns true if any changes
occurred.

int size() Returns the number of elements
in the Collection.

Object[] toArray() Returns an array containing all
the elements in the Collection.

Object[]
toArray(Object[] a)

Returns an array containing all
the elements in the Collection,
whose type is that of the array a
rather than plain Object (you
must cast the array to the right
type).

 *This is an “optional” method,
which means it might not be
implemented by a particular
Collection. If not, that method
throws an
UnsupportedOperationExcep
tion. Exceptions will be covered
in Chapter 10.

The following example demonstrates all of these methods. Again,
these work with anything that inherits from Collection; an
ArrayList is used as a kind of “least-common denominator”:

Chapter 9: Holding Your Objects 459

//: c09:newcollections:Collection1.java
// Things you can do with all Collections.
package c09.newcollections;
import java.util.*;

public class Collection1 {
// Fill with 'size' elements, start
// counting at 'start':
public static Collection
fill(Collection c, int start, int size) {

for(int i = start; i < start + size; i++)
c.add(Integer.toString(i));

return c;
}
// Default to a "start" of 0:
public static Collection
fill(Collection c, int size) {

return fill(c, 0, size);
}
// Default to 10 elements:
public static Collection fill(Collection c) {

return fill(c, 0, 10);
}
// Create & upcast to Collection:
public static Collection newCollection() {

return fill(new ArrayList());
// ArrayList is used for simplicity, but it's
// only seen as a generic Collection
// everywhere else in the program.

}
// Fill a Collection with a range of values:
public static Collection
newCollection(int start, int size) {

return fill(new ArrayList(), start, size);
}
// Moving through a List with an iterator:
public static void print(Collection c) {

for(Iterator x = c.iterator(); x.hasNext();)
System.out.print(x.next() + " ");

System.out.println();
}
public static void main(String[] args) {

460 Thinking in Java www.BruceEckel.com

Collection c = newCollection();
c.add("ten");
c.add("eleven");
print(c);
// Make an array from the List:
Object[] array = c.toArray();
// Make a String array from the List:
String[] str =
(String[])c.toArray(new String[1]);

// Find max and min elements; this means
// different things depending on the way
// the Comparable interface is implemented:
System.out.println("Collections.max(c) = " +
Collections.max(c));

System.out.println("Collections.min(c) = " +
Collections.min(c));

// Add a Collection to another Collection
c.addAll(newCollection());
print(c);
c.remove("3"); // Removes the first one
print(c);
c.remove("3"); // Removes the second one
print(c);
// Remove all components that are in the
// argument collection:
c.removeAll(newCollection());
print(c);
c.addAll(newCollection());
print(c);
// Is an element in this Collection?
System.out.println(
"c.contains(\"4\") = " + c.contains("4"));

// Is a Collection in this Collection?
System.out.println(
"c.containsAll(newCollection()) = " +
c.containsAll(newCollection()));

Collection c2 = newCollection(5, 3);
// Keep all the elements that are in both
// c and c2 (an intersection of sets):
c.retainAll(c2);
print(c);
// Throw away all the elements in c that

Chapter 9: Holding Your Objects 461

// also appear in c2:
c.removeAll(c2);
System.out.println("c.isEmpty() = " +
c.isEmpty());

c = newCollection();
print(c);
c.clear(); // Remove all elements
System.out.println("after c.clear():");
print(c);

}
} ///:~

The first methods provide a way to fill any Collection with test
data, in this case just ints converted to Strings. The second
method will be used frequently throughout the rest of this chapter.

The two versions of newCollection() create ArrayLists
containing different sets of data and return them as Collection
objects, so it’s clear that nothing other than the Collection
interface is being used.

The print() method will also be used throughout the rest of this
section. Since it moves through a Collection using an Iterator,
which any Collection can produce, it will work with Lists and
Sets and any Collection that a Map produces.

main() uses simple exercises to show all of the methods in
Collection.

The following sections compare the various implementations of
List, Set, and Map and indicate in each case (with an asterisk)
which one should be your default choice. You’ll notice that the
legacy classes Vector, Stack, and Hashtable are not included
because in all cases there are preferred classes within the Java 2
Collections.

Using Lists
List
(interface)

Order is the most important feature of a List; it
promises to maintain elements in a particular
sequence. List adds a number of methods to

462 Thinking in Java www.BruceEckel.com

Collection that allow insertion and removal of
elements in the middle of a List. (This is
recommended only for a LinkedList.) A List
will produce a ListIterator, and using this you
can traverse the List in both directions, as well
as insert and remove elements in the middle of
the list (again, recommended only for a
LinkedList).

ArrayList* A List backed by an array. Use instead of
Vector as a general-purpose object holder.
Allows rapid random access to elements, but is
slow when inserting and removing elements
from the middle of a list. ListIterator should
be used only for back-and-forth traversal of an
ArrayList, but not for inserting and removing
elements, which is expensive compared to
LinkedList.

LinkedList Provides optimal sequential access, with
inexpensive insertions and deletions from the
middle of the list. Relatively slow for random
access. (Use ArrayList instead.) Also has
addFirst(), addLast(), getFirst(),
getLast(), removeFirst(), and
removeLast() (which are not defined in any
interfaces or base classes) to allow it to be used
as a stack, a queue, and a dequeue.

The methods in the following example each cover a different group
of activities: things that every list can do (basicTest()), moving
around with an Iterator (iterMotion()) versus changing things
with an Iterator (iterManipulation()), seeing the effects of List
manipulation (testVisual()), and operations available only to
LinkedLists.

//: c09:newcollections:List1.java
// Things you can do with Lists.
package c09.newcollections;
import java.util.*;

public class List1 {

Chapter 9: Holding Your Objects 463

// Wrap Collection1.fill() for convenience:
public static List fill(List a) {

return (List)Collection1.fill(a);
}
// You can use an Iterator, just as with a
// Collection, but you can also use random
// access with get():
public static void print(List a) {

for(int i = 0; i < a.size(); i++)
System.out.print(a.get(i) + " ");

System.out.println();
}
static boolean b;
static Object o;
static int i;
static Iterator it;
static ListIterator lit;
public static void basicTest(List a) {

a.add(1, "x"); // Add at location 1
a.add("x"); // Add at end
// Add a collection:
a.addAll(fill(new ArrayList()));
// Add a collection starting at location 3:
a.addAll(3, fill(new ArrayList()));
b = a.contains("1"); // Is it in there?
// Is the entire collection in there?
b = a.containsAll(fill(new ArrayList()));
// Lists allow random access, which is cheap
// for ArrayList, expensive for LinkedList:
o = a.get(1); // Get object at location 1
i = a.indexOf("1"); // Tell index of object
b = a.isEmpty(); // Any elements inside?
it = a.iterator(); // Ordinary Iterator
lit = a.listIterator(); // ListIterator
lit = a.listIterator(3); // Start at loc 3
i = a.lastIndexOf("1"); // Last match
a.remove(1); // Remove location 1
a.remove("3"); // Remove this object
a.set(1, "y"); // Set location 1 to "y"
// Keep everything that's in the argument
// (the intersection of the two sets):
a.retainAll(fill(new ArrayList()));

464 Thinking in Java www.BruceEckel.com

// Remove everything that's in the argument:
a.removeAll(fill(new ArrayList()));
i = a.size(); // How big is it?
a.clear(); // Remove all elements

}
public static void iterMotion(List a) {

ListIterator it = a.listIterator();
b = it.hasNext();
b = it.hasPrevious();
o = it.next();
i = it.nextIndex();
o = it.previous();
i = it.previousIndex();

}
public static void iterManipulation(List a) {

ListIterator it = a.listIterator();
it.add("47");
// Must move to an element after add():
it.next();
// Remove the element that was just produced:
it.remove();
// Must move to an element after remove():
it.next();
// Change the element that was just produced:
it.set("47");

}
public static void testVisual(List a) {

print(a);
List b = new ArrayList();
fill(b);
System.out.print("b = ");
print(b);
a.addAll(b);
a.addAll(fill(new ArrayList()));
print(a);
// Insert, remove, and replace elements
// using a ListIterator:
ListIterator x = a.listIterator(a.size()/2);
x.add("one");
print(a);
System.out.println(x.next());
x.remove();

Chapter 9: Holding Your Objects 465

System.out.println(x.next());
x.set("47");
print(a);
// Traverse the list backwards:
x = a.listIterator(a.size());
while(x.hasPrevious())
System.out.print(x.previous() + " ");

System.out.println();
System.out.println("testVisual finished");

}
// There are some things that only
// LinkedLists can do:
public static void testLinkedList() {

LinkedList ll = new LinkedList();
Collection1.fill(ll, 5);
print(ll);
// Treat it like a stack, pushing:
ll.addFirst("one");
ll.addFirst("two");
print(ll);
// Like "peeking" at the top of a stack:
System.out.println(ll.getFirst());
// Like popping a stack:
System.out.println(ll.removeFirst());
System.out.println(ll.removeFirst());
// Treat it like a queue, pulling elements
// off the tail end:
System.out.println(ll.removeLast());
// With the above operations, it's a dequeue!
print(ll);

}
public static void main(String args[]) {

// Make and fill a new list each time:
basicTest(fill(new LinkedList()));
basicTest(fill(new ArrayList()));
iterMotion(fill(new LinkedList()));
iterMotion(fill(new ArrayList()));
iterManipulation(fill(new LinkedList()));
iterManipulation(fill(new ArrayList()));
testVisual(fill(new LinkedList()));
testLinkedList();

}

466 Thinking in Java www.BruceEckel.com

} ///:~

In basicTest() and iterMotion() the calls are simply made to
show the proper syntax, and while the return value is captured, it is
not used. In some cases, the return value isn’t captured since it isn’t
typically used. You should look up the full usage of each of these
methods in your online documentation before you use them.

Using Sets
Set has exactly the same interface as Collection, so there isn’t any
extra functionality as there is with the two different Lists. Instead,
the Set is exactly a Collection, it just has different behavior. (This
is the ideal use of inheritance and polymorphism: to express
different behavior.) A Set allows only one instance of each object
value to exist (what constitutes the “value” of an object is more
complex, as you shall see).

Set
(interface)

Each element that you add to the Set must be
unique; otherwise the Set doesn’t add the
duplicate element. Objects added to a Set must
define equals() to establish object uniqueness.
Set has exactly the same interface as Collection.
The Set interface does not guarantee it will
maintain its elements in any particular order.

HashSet* For Sets where fast lookup time is important.
Objects must also define hashCode().

TreeSet An ordered Set backed by a red-black tree. This
way, you can extract an ordered sequence from a
Set.

The following example does not show everything you can do with a
Set, since the interface is the same as Collection and so was
exercised in the previous example. Instead, this demonstrates the
behavior that makes a Set unique:

//: c09:newcollections:Set1.java
// Things you can do with Sets.
package c09.newcollections;
import java.util.*;

Chapter 9: Holding Your Objects 467

public class Set1 {
public static void testVisual(Set a) {

Collection1.fill(a);
Collection1.fill(a);
Collection1.fill(a);
Collection1.print(a); // No duplicates!
// Add another set to this one:
a.addAll(a);
a.add("one");
a.add("one");
a.add("one");
Collection1.print(a);
// Look something up:
System.out.println("a.contains(\"one\"): " +
a.contains("one"));

}
public static void main(String[] args) {

testVisual(new HashSet());
testVisual(new TreeSet());

}
} ///:~

Duplicate values are added to the Set, but when it is printed you’ll
see the Set has accepted only one instance of each value.

When you run this program you’ll notice that the order maintained
by the HashSet is different from TreeSet, since each has a
different way of storing elements so they can be located later.
(TreeSet keeps them sorted, while HashSet uses a hashing
function, which is designed specifically for rapid lookups.) When
creating your own types, be aware that a Set needs a way to
maintain a storage order, just as with the “groundhog” examples
shown earlier in this chapter. To implement comparability with the
Java 2 Collections, however, you must implement the
Comparable interface and define the compareTo() method
(this will be described more fully later). Here’s an example:

//: c09:newcollections:Set2.java
// Putting your own type in a Set.
package c09.newcollections;
import java.util.*;

468 Thinking in Java www.BruceEckel.com

class MyType implements Comparable {
private int i;
public MyType(int n) { i = n; }
public boolean equals(Object o) {

return
(o instanceof MyType)
&& (i == ((MyType)o).i);

}
public int hashCode() { return i; }
public String toString() { return i + " "; }
public int compareTo(Object o) {

int i2 = ((MyType) o).i;
return (i2 < i ? -1 : (i2 == i ? 0 : 1));

}
}

public class Set2 {
public static Set fill(Set a, int size) {

for(int i = 0; i < size; i++)
a.add(new MyType(i));

return a;
}
public static Set fill(Set a) {

return fill(a, 10);
}
public static void test(Set a) {

fill(a);
fill(a); // Try to add duplicates
fill(a);
a.addAll(fill(new TreeSet()));
System.out.println(a);

}
public static void main(String[] args) {

test(new HashSet());
test(new TreeSet());

}
} ///:~

The definitions for equals() and hashCode() follow the form
given in the “groundhog” examples. You must define an equals()
in both cases, but the hashCode() is absolutely necessary only if

Chapter 9: Holding Your Objects 469

the class will be placed in a HashSet (which is likely, since that
should generally be your first choice as a Set implementation).
However, as a programming style you should always override
hashCode() when you override equals().

In the compareTo(), note that I did not use the “simple and
obvious” form return i-i2. Although this is a common
programming error, it would only work properly if i and i2 were
unsigned ints (if Java had an “unsigned” keyword, which it does
not). It breaks for Java’s signed int, which is not big enough to
represent the difference of two signed ints. If i is a large positive
integer and j is a large negative integer, i-j will overflow and return
a negative value, which will not work.

Using Maps
Map
(interface)

Maintains key-value associations (pairs), so you
can look up a value using a key.

HashMap* Implementation based on a hash table. (Use this
instead of Hashtable.) Provides constant-time
performance for inserting and locating pairs.
Performance can be adjusted via constructors
that allow you to set the capacity and load
factor of the hash table.

TreeMap Implementation based on a red-black tree. When
you view the keys or the pairs, they will be in
sorted order (determined by Comparable or
Comparator, discussed later). The point of a
TreeMap is that you get the results in sorted
order. TreeMap is the only Map with the
subMap() method, which allows you to return
a portion of the tree.

The following example contains two sets of test data and a fill()
method that allows you to fill any map with any two-dimensional
array of Objects. These tools will be used in other Map examples,
as well.

//: c09:newcollections:Map1.java
// Things you can do with Maps.

470 Thinking in Java www.BruceEckel.com

package c09.newcollections;
import java.util.*;

public class Map1 {
public final static String[][] testData1 = {

{ "Happy", "Cheerful disposition" },
{ "Sleepy", "Prefers dark, quiet places" },
{ "Grumpy", "Needs to work on attitude" },
{ "Doc", "Fantasizes about advanced degree"},
{ "Dopey", "'A' for effort" },
{ "Sneezy", "Struggles with allergies" },
{ "Bashful", "Needs self-esteem workshop"},

};
public final static String[][] testData2 = {

{ "Belligerent", "Disruptive influence" },
{ "Lazy", "Motivational problems" },
{ "Comatose", "Excellent behavior" }

};
public static Map fill(Map m, Object[][] o) {

for(int i = 0; i < o.length; i++)
m.put(o[i][0], o[i][1]);

return m;
}
// Producing a Set of the keys:
public static void printKeys(Map m) {

System.out.print("Size = " + m.size() +", ");
System.out.print("Keys: ");
Collection1.print(m.keySet());

}
// Producing a Collection of the values:
public static void printValues(Map m) {

System.out.print("Values: ");
Collection1.print(m.values());

}
// Iterating through Map.Entry objects (pairs):
public static void print(Map m) {

Collection entries = m.entrySet();
Iterator it = entries.iterator();
while(it.hasNext()) {
Map.Entry e = (Map.Entry)it.next();
System.out.println("Key = " + e.getKey() +
", Value = " + e.getValue());

Chapter 9: Holding Your Objects 471

}
}
public static void test(Map m) {

fill(m, testData1);
// Map has 'Set' behavior for keys:
fill(m, testData1);
printKeys(m);
printValues(m);
print(m);
String key = testData1[4][0];
String value = testData1[4][1];
System.out.println("m.containsKey(\"" + key +
"\"): " + m.containsKey(key));

System.out.println("m.get(\"" + key + "\"): "
+ m.get(key));

System.out.println("m.containsValue(\""
+ value + "\"): " +
m.containsValue(value));

Map m2 = fill(new TreeMap(), testData2);
m.putAll(m2);
printKeys(m);
m.remove(testData2[0][0]);
printKeys(m);
m.clear();
System.out.println("m.isEmpty(): "
+ m.isEmpty());

fill(m, testData1);
// Operations on the Set change the Map:
m.keySet().removeAll(m.keySet());
System.out.println("m.isEmpty(): "
+ m.isEmpty());

}
public static void main(String args[]) {

System.out.println("Testing HashMap");
test(new HashMap());
System.out.println("Testing TreeMap");
test(new TreeMap());

}
} ///:~

The printKeys(), printValues(), and print() methods are not
only useful utilities, they also demonstrate the production of

472 Thinking in Java www.BruceEckel.com

Collection views of a Map. The keySet() method produces a Set
backed by the keys in the Map; here, it is treated as only a
Collection. Similar treatment is given to values(), which
produces a List containing all the values in the Map. (Note that
keys must be unique, while values can contain duplicates.) Since
these Collections are backed by the Map, any changes in a
Collection will be reflected in the associated Map.

The print() method grabs the Iterator produced by entries and
uses it to print both the key and value for each pair. The rest of the
program provides simple examples of each Map operation, and
tests each type of Map.

When creating your own class to use as a key in a Map, you must
deal with the same issues discussed previously for Sets.

Choosing an implementation
From the diagram on page Error! Bookmark not defined. you
can see that there are really only three collection components:
Map, List, and Set, and only two or three implementations of each
interface. If you need to use the functionality offered by a particular
interface, how do you decide which particular implementation to
use?

To understand the answer, you must be aware that each different
implementation has its own features, strengths, and weaknesses.
For example, you can see in the diagram that the “feature” of
Hashtable, Vector, and Stack is that they are legacy classes, so
that existing code doesn’t break. On the other hand, it’s best if you
don’t use those for new (Java 2) code.

The distinction between the other collections often comes down to
what they are ”backed by;” that is, the data structures that
physically implement your desired interface. This means that, for
example, ArrayList, LinkedList, and Vector (which is roughly
equivalent to ArrayList) all implement the List interface so your
program will produce the same results regardless of the one you
use. However, ArrayList (and Vector) is backed by an array,
while the LinkedList is implemented in the usual way for a

Chapter 9: Holding Your Objects 473

doubly-linked list, as individual objects each containing data along
with handles to the previous and next elements in the list. Because
of this, if you want to do many insertions and removals in the
middle of a list a LinkedList is the appropriate choice.
(LinkedList also has additional functionality that is established in
AbstractSequentialList.) If not, an ArrayList is probably
faster.

As another example, a Set can be implemented as either a TreeSet
or a HashSet. A TreeSet is backed by a TreeMap and is designed
to produce a constantly-sorted set. However, if you’re going to have
larger quantities in your Set, the performance of TreeSet
insertions will get slow. When you’re writing a program that needs a
Set, you should choose HashSet by default, and change to
TreeSet when it's more important to have a constantly-sorted set.

Choosing between Lists
The most convincing way to see the differences between the
implementations of List is with a performance test. The following
code establishes an inner base class to use as a test framework, then
creates an anonymous inner class for each different test. Each of
these inner classes is called by the test() method. This approach
allows you to easily add and remove new kinds of tests.

//: c09:newcollections:ListPerformance.java
// Demonstrates performance differences in Lists.
package c09.newcollections;
import java.util.*;

public class ListPerformance {
private static final int REPS = 100;
private abstract static class Tester {

String name;
int size; // Test quantity
Tester(String name, int size) {
this.name = name;
this.size = size;

}
abstract void test(List a);

}

474 Thinking in Java www.BruceEckel.com

private static Tester[] tests = {
new Tester("get", 300) {
void test(List a) {
for(int i = 0; i < REPS; i++) {

for(int j = 0; j < a.size(); j++)
a.get(j);

}
}

},
new Tester("iteration", 300) {
void test(List a) {
for(int i = 0; i < REPS; i++) {

Iterator it = a.iterator();
while(it.hasNext())
it.next();

}
}

},
new Tester("insert", 1000) {
void test(List a) {
int half = a.size()/2;
String s = "test";
ListIterator it = a.listIterator(half);
for(int i = 0; i < size * 10; i++)

it.add(s);
}

},
new Tester("remove", 5000) {
void test(List a) {
ListIterator it = a.listIterator(3);
while(it.hasNext()) {

it.next();
it.remove();

}
}

},
};
public static void test(List a) {

// A trick to print out the class name:
System.out.println("Testing " +
a.getClass().getName());

for(int i = 0; i < tests.length; i++) {

Chapter 9: Holding Your Objects 475

Collection1.fill(a, tests[i].size);
System.out.print(tests[i].name);
long t1 = System.currentTimeMillis();
tests[i].test(a);
long t2 = System.currentTimeMillis();
System.out.println(": " + (t2 - t1));

}
}
public static void main(String[] args) {

test(new ArrayList());
test(new LinkedList());

}
} ///:~

The inner class Tester is abstract, to provide a base class for the
specific tests. It contains a String to be printed when the test starts,
a size parameter to be used by the test for quantity of elements or
repetitions of tests, a constructor to initialize the fields, and an
abstract method test() that does the work. All the different types
of tests are collected in one place, the array tests, which is
initialized with different anonymous inner classes that inherit from
Tester. To add or remove tests, simply add or remove an inner
class definition from the array, and everything else happens
automatically.

The List that’s handed to test() is first filled with elements, then
each test in the tests array is timed. The results will vary from
machine to machine; they are intended to give only an order of
magnitude comparison between the performance of the different
collections. Here is a summary of one run:

Type Get Iteration Insert Remove
ArrayList 110 490 3790 8730
LinkedList 1980 220 110 110

You can see that random accesses (get()) are cheap for
ArrayLists and expensive for LinkedLists. (Oddly, iteration is
faster for a LinkedList than an ArrayList, which is counter-
intuitive.) On the other hand, insertions and removals from the
middle of a list are dramatically cheaper for a LinkedList than for
an ArrayList. The best approach is probably to choose an

476 Thinking in Java www.BruceEckel.com

ArrayList as your default and to change to a LinkedList if you
discover performance problems because of many insertions and
removals from the middle of the list.

Choosing between Sets
You can choose between an TreeSet and a HashSet, depending on
the size of the Set (if you need to produce an ordered sequence
from a Set, use TreeSet). The following test program gives an
indication of this tradeoff:

//: c09:newcollections:SetPerformance.java
package c09.newcollections;
import java.util.*;

public class SetPerformance {
private static final int REPS = 200;
private abstract static class Tester {

String name;
Tester(String name) { this.name = name; }
abstract void test(Set s, int size);

}
private static Tester[] tests = {

new Tester("add") {
void test(Set s, int size) {
for(int i = 0; i < REPS; i++) {

s.clear();
Collection1.fill(s, size);

}
}

},
new Tester("contains") {
void test(Set s, int size) {
for(int i = 0; i < REPS; i++)

for(int j = 0; j < size; j++)
s.contains(Integer.toString(j));

}
},
new Tester("iteration") {
void test(Set s, int size) {
for(int i = 0; i < REPS * 10; i++) {

Iterator it = s.iterator();

Chapter 9: Holding Your Objects 477

while(it.hasNext())
it.next();

}
}

},
};
public static void test(Set s, int size) {

// A trick to print out the class name:
System.out.println("Testing " +
s.getClass().getName() + " size " + size);

Collection1.fill(s, size);
for(int i = 0; i < tests.length; i++) {
System.out.print(tests[i].name);
long t1 = System.currentTimeMillis();
tests[i].test(s, size);
long t2 = System.currentTimeMillis();
System.out.println(": " +
((double)(t2 - t1)/(double)size));

}
}
public static void main(String[] args) {

// Small:
test(new TreeSet(), 10);
test(new HashSet(), 10);
// Medium:
test(new TreeSet(), 100);
test(new HashSet(), 100);
// Large:
test(new HashSet(), 1000);
test(new TreeSet(), 1000);

}
} ///:~

The following table shows the results of one run (using Beta3
software on one particular platform; you should run the test
yourself as well):

Type Test
size

Add Contains Iteration

 10 22.0 11.0 16.0
TreeSet 100 22.5 13.2 12.1

478 Thinking in Java www.BruceEckel.com

 1000 31.1 18.7 11.8
 10 5.0 6.0 27.0
HashSet 100 6.6 6.6 10.9
 1000 7.4 6.6 9.5

HashSet is generally superior to TreeSet for all operations, and
the performance is effectively independent of size.

Choosing between Maps
When choosing between implementations of Map, the size of the
Map is what most strongly affects performance, and the following
test program gives an indication of this tradeoff:

//: c09:newcollections:MapPerformance.java
// Demonstrates performance differences in Maps.
package c09.newcollections;
import java.util.*;

public class MapPerformance {
private static final int REPS = 200;
public static Map fill(Map m, int size) {

for(int i = 0; i < size; i++) {
String x = Integer.toString(i);
m.put(x, x);

}
return m;

}
private abstract static class Tester {

String name;
Tester(String name) { this.name = name; }
abstract void test(Map m, int size);

}
private static Tester[] tests = {

new Tester("put") {
void test(Map m, int size) {
for(int i = 0; i < REPS; i++) {

m.clear();
fill(m, size);

}
}

Chapter 9: Holding Your Objects 479

},
new Tester("get") {
void test(Map m, int size) {
for(int i = 0; i < REPS; i++)

for(int j = 0; j < size; j++)
m.get(Integer.toString(j));

}
},
new Tester("iteration") {
void test(Map m, int size) {
for(int i = 0; i < REPS * 10; i++) {

Iterator it = m.entrySet().iterator();
while(it.hasNext())
it.next();

}
}

},
};
public static void test(Map m, int size) {

// A trick to print out the class name:
System.out.println("Testing " +
m.getClass().getName() + " size " + size);

fill(m, size);
for(int i = 0; i < tests.length; i++) {
System.out.print(tests[i].name);
long t1 = System.currentTimeMillis();
tests[i].test(m, size);
long t2 = System.currentTimeMillis();
System.out.println(": " +
((double)(t2 - t1)/(double)size));

}
}
public static void main(String[] args) {

// Small:
test(new Hashtable(), 10);
test(new HashMap(), 10);
test(new TreeMap(), 10);
// Medium:
test(new Hashtable(), 100);
test(new HashMap(), 100);
test(new TreeMap(), 100);
// Large:

480 Thinking in Java www.BruceEckel.com

test(new HashMap(), 1000);
test(new Hashtable(), 1000);
test(new TreeMap(), 1000);

}
} ///:~

Because the size of the map is the issue, you’ll see that the timing
tests divide the time by the size to normalize each measurement.
Here is one set of results. (Yours will probably be different.)

Type Test
size

Put Get Iteration

 10 11.0 5.0 44.0
Hashtable 100 7.7 7.7 16.5
 1000 8.0 8.0 14.4
 10 16.0 11.0 22.0
TreeMap 100 25.8 15.4 13.2
 1000 33.8 20.9 13.6
 10 11.0 6.0 33.0
HashMap 100 8.2 7.7 13.7
 1000 8.0 7.8 11.9

As you might expect, Hashtable performance is roughly equivalent
to HashMap (you can also see that HashMap is generally a bit
faster. Remember that HashMap is intended to replace
Hashtable). The TreeMap is generally slower than the
HashMap, so why would you use it? So you could use it not as a
Map, but as a way to create an ordered list. The behavior of a tree is
such that it’s always in order and doesn’t have to be specially sorted.
(The way it is ordered will be discussed later.) Once you fill a
TreeMap, you can call keySet() to get a Set view of the keys,
then toArray() to produce an array of those keys. You can then
use the static method Arrays.binarySearch() (discussed later)
to rapidly find objects in your sorted array. Of course, you would
probably only do this if, for some reason, the behavior of a
HashMap was unacceptable, since HashMap is designed to
rapidly find things. In the end, when you’re using a Map your first
choice should be HashMap, and only if you need a constantly-
sorted Map will you need TreeMap.

Chapter 9: Holding Your Objects 481

There is another performance issue that the above table does not
address, and that is speed of creation. The following program tests
creation speed for different types of Map:

//: c09:newcollections:MapCreation.java
// Demonstrates time differences in Map creation.
package c09.newcollections;
import java.util.*;

public class MapCreation {
public static void main(String[] args) {

final long REPS = 100000;
long t1 = System.currentTimeMillis();
System.out.print("Hashtable");
for(long i = 0; i < REPS; i++)
new Hashtable();

long t2 = System.currentTimeMillis();
System.out.println(": " + (t2 - t1));
t1 = System.currentTimeMillis();
System.out.print("TreeMap");
for(long i = 0; i < REPS; i++)
new TreeMap();

t2 = System.currentTimeMillis();
System.out.println(": " + (t2 - t1));
t1 = System.currentTimeMillis();
System.out.print("HashMap");
for(long i = 0; i < REPS; i++)
new HashMap();

t2 = System.currentTimeMillis();
System.out.println(": " + (t2 - t1));

}
} ///:~

At the time this program was written, the creation speed of
TreeMap was dramatically faster than the other two types. This,
along with the acceptable and consistent put() performance of
TreeMap, suggests a possible strategy if you’re creating many
Maps, and only later in your program doing many lookups: Create
and fill TreeMaps, and when you start looking things up, convert
the important TreeMaps into HashMaps using the
HashMap(Map) constructor. Again, you should only worry about

482 Thinking in Java www.BruceEckel.com

this sort of thing after it’s been proven that you have a performance
bottleneck. (“First make it work, then make it fast – if you must.”)

Unsupported operations
It’s possible to turn an array into a List with the static
Arrays.asList() method:

//: c09:newcollections:Unsupported.java
// Sometimes methods defined in the Collection.
// interfaces don't work!
package c09.newcollections;
import java.util.*;

public class Unsupported {
private static String[] s = {

"one", "two", "three", "four", "five",
"six", "seven", "eight", "nine", "ten",

};
static List a = Arrays.asList(s);
static List a2 = Arrays.asList(

new String[] { s[3], s[4], s[5] });
public static void main(String[] args) {

Collection1.print(a); // Iteration
System.out.println(
"a.contains(" + s[0] + ") = " +
a.contains(s[0]));

System.out.println(
"a.containsAll(a2) = " +
a.containsAll(a2));

System.out.println("a.isEmpty() = " +
a.isEmpty());

System.out.println(
"a.indexOf(" + s[5] + ") = " +
a.indexOf(s[5]));

// Traverse backwards:
ListIterator lit = a.listIterator(a.size());
while(lit.hasPrevious())
System.out.print(lit.previous());

System.out.println();
// Set the elements to different values:

Chapter 9: Holding Your Objects 483

for(int i = 0; i < a.size(); i++)
a.set(i, "47");

Collection1.print(a);
// Compiles, but won't run:
lit.add("X"); // Unsupported operation
a.clear(); // Unsupported
a.add("eleven"); // Unsupported
a.addAll(a2); // Unsupported
a.retainAll(a2); // Unsupported
a.remove(s[0]); // Unsupported
a.removeAll(a2); // Unsupported

}
} ///:~

You’ll discover that only a portion of the Collection and List
interfaces are actually implemented. The rest of the methods cause
the unwelcome appearance of something called an
UnsupportedOperationException. You’ll learn all about
exceptions in the next chapter, but the short story is that the
Collection interface, as well as some of the other interfaces in
the Java 2 Collections library, contain “optional” methods, which
might or might not be “supported” in the concrete class that
implements that interface. Calling an unsupported method
causes an UnsupportedOperationException to indicate a
programming error.

“What?!?” you say, incredulous. “The whole point of interfaces
and base classes is that they promise these methods will do
something meaningful! This breaks that promise – it says that not
only will calling some methods not perform a meaningful behavior,
they will stop the program! Type safety was just thrown out the
window!” It’s not quite that bad. With a Collection, List, Set, or
Map, the compiler still restricts you to calling only the methods in
that interface, so it’s not like Smalltalk (in which you can call any
method for any object, and find out only when you run the program
whether your call does anything). In addition, most methods that
take a Collection as an argument only read from that Collection
–all the “read” methods of Collection are not optional.

This approach prevents an explosion of interfaces in the design.
Other designs for collection libraries always seem to end up with a

484 Thinking in Java www.BruceEckel.com

confusing plethora of interfaces to describe each of the variations on
the main theme and are thus difficult to learn. It’s not even possible
to capture all of the special cases in interfaces, because someone
can always invent a new interface. The “unsupported operation”
approach achieves an important goal of the Java 2 Collections
library: it is simple to learn and use. For this approach to work,
however:

1. The UnsupportedOperationException must be a rare
event. That is, for most classes all operations should work,
and only in special cases should an operation be
unsupported. This is true in the Java 2 Collections library,
since the classes you’ll use 99 percent of the time –
ArrayList, LinkedList, HashSet, and HashMap, as well
as the other concrete implementations – support all of the
operations. The design does provide a “back door” if you
want to create a new Collection without providing
meaningful definitions for all the methods in the Collection
interface, and yet still fit it into the existing library.

2. When an operation is unsupported, there should be
reasonable likelihood that an
UnsupportedOperationException will appear at
implementation time, rather than after you’ve shipped the
product to the customer. After all, it indicates a
programming error: you’ve used a class incorrectly. This
point is less certain, and is where the experimental nature of
this design comes into play. Only over time will we find out
how well it works.

In the example above, Arrays.asList() produces a List that is
backed by a fixed-size array. Therefore it makes sense that the only
supported operations are the ones that don’t change the size of the
array. If, on the other hand, a new interface were required to
express this different kind of behavior (called, perhaps,
“FixedSizeList”), it would throw open the door to complexity and
soon you wouldn’t know where to start when trying to use the
library.

Chapter 9: Holding Your Objects 485

The documentation for a method that takes a Collection, List,
Set, or Map as an argument should specify which of the optional
methods must be implemented. For example, sorting requires the
set() and Iterator.set() methods but not add() and remove().

Sorting and searching
Java 2 adds utilities to perform sorting and searching for arrays or
Lists. These utilities are static methods of two new classes:
Arrays for sorting and searching arrays, and Collections for
sorting and searching Lists.

Arrays
The Arrays class has an overloaded sort() and binarySearch()
for arrays of all the primitive types, as well as for String and
Object. Here’s an example that shows sorting and searching an
array of byte (all the other primitives look the same) and an array
of String:

//: c09:newcollections:Array1.java
// Testing the sorting & searching in Arrays.
package c09.newcollections;
import java.util.*;

public class Array1 {
static Random r = new Random();
static String ssource =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" +
"abcdefghijklmnopqrstuvwxyz";

static char[] src = ssource.toCharArray();
// Create a random String
public static String randString(int length) {

char[] buf = new char[length];
int rnd;
for(int i = 0; i < length; i++) {
rnd = Math.abs(r.nextInt()) % src.length;
buf[i] = src[rnd];

}
return new String(buf);

}

486 Thinking in Java www.BruceEckel.com

// Create a random array of Strings:
public static
String[] randStrings(int length, int size) {

String[] s = new String[size];
for(int i = 0; i < size; i++)
s[i] = randString(length);

return s;
}
public static void print(byte[] b) {

for(int i = 0; i < b.length; i++)
System.out.print(b[i] + " ");

System.out.println();
}
public static void print(String[] s) {

for(int i = 0; i < s.length; i++)
System.out.print(s[i] + " ");

System.out.println();
}
public static void main(String[] args) {

byte[] b = new byte[15];
r.nextBytes(b); // Fill with random bytes
print(b);
Arrays.sort(b);
print(b);
int loc = Arrays.binarySearch(b, b[10]);
System.out.println("Location of " + b[10] +
" = " + loc);

// Test String sort & search:
String[] s = randStrings(4, 10);
print(s);
Arrays.sort(s);
print(s);
loc = Arrays.binarySearch(s, s[4]);
System.out.println("Location of " + s[4] +
" = " + loc);

}
} ///:~

The first part of the class contains utilities to generate random
String objects using an array of characters from which random
letters can be selected. randString() returns a string of any
length, and randStrings() creates an array of random Strings,

Chapter 9: Holding Your Objects 487

given the length of each String and the desired size of the array.
The two print() methods simplify the display of the sample arrays.
In main(), Random.nextBytes() fills the array argument with
randomly-selected bytes. (There are no corresponding Random
methods to create arrays of the other primitive data types.) Once
you have an array, you can see that it’s only a single method call to
perform a sort() or binarySearch(). There’s an important
warning concerning binarySearch(): If you do not call sort()
before you perform a binarySearch(), unpredictable behavior
can occur, including infinite loops.

Sorting and searching with Strings looks the same, but when you
run the program you’ll notice something interesting: the sorting is
lexicographic, so uppercase letters precede lowercase letters in the
character set. Thus, all the capital letters are at the beginning of the
list, followed by the lowercase letters, so ‘Z’ precedes ‘a’. It turns out
that even telephone books are typically sorted this way.

Comparable and Comparator
What if this isn’t what you want? For example, the index in this
book would not be too useful if you had to look in two places for
everything that begins with ‘A’ or ‘a’.

When you want to sort an array of Object, there’s a problem. What
determines the ordering of two Objects? Unfortunately, the
original Java designers didn’t consider this an important problem,
or it would have been defined in the root class Object. As a result,
ordering must be imposed on Objects from the outside, and the
Java 2 Collections library provides a standard way to do this (which
is almost as good as defining it in Object).

There is a sort() for arrays of Object (and String, of course, is an
Object) that takes a second argument: an object that implements
the Comparator interface (part of the Java 2 Collections library)
and performs comparisons with its single compare() method.
This method takes the two objects to be compared as its arguments
and returns a negative integer if the first argument is less than the
second, zero if they’re equal, and a positive integer if the first
argument is greater than the second. With this knowledge, the

488 Thinking in Java www.BruceEckel.com

String portion of the example above can be re-implemented to
perform an alphabetic sort:

//: c09:newcollections:AlphaComp.java
// Using Comparator to perform an alphabetic sort.
package c09.newcollections;
import java.util.*;

public class AlphaComp implements Comparator {
public int compare(Object o1, Object o2) {

// Assume it's used only for Strings...
String s1 = ((String)o1).toLowerCase();
String s2 = ((String)o2).toLowerCase();
return s1.compareTo(s2);

}
public static void main(String[] args) {

String[] s = Array1.randStrings(4, 10);
Array1.print(s);
AlphaComp ac = new AlphaComp();
Arrays.sort(s, ac);
Array1.print(s);
// Must use the Comparator to search, also:
int loc = Arrays.binarySearch(s, s[3], ac);
System.out.println("Location of " + s[3] +
" = " + loc);

}
} ///:~

By casting to String, the compare() method implicitly tests to
ensure that it is used only with String objects – the run-time
system will catch any discrepancies. After forcing both Strings to
lower case, the String.compareTo() method produces the
desired results.

When you use your own Comparator to perform a sort(), you
must use that same Comparator when using binarySearch().

The Arrays class has another sort() method that takes a single
argument: an array of Object, but with no Comparator. This
sort() method must also have some way to compare two Objects.
It uses the natural comparison method that is imparted to a class
by implementing the Comparable interface. This interface has

Chapter 9: Holding Your Objects 489

a single method, compareTo(), which compares the object to its
argument and returns negative, zero, or positive depending on
whether it is less than, equal to, or greater than the argument. A
simple example demonstrates this:

//: c09:newcollections:CompClass.java
// A class that implements Comparable.
package c09.newcollections;
import java.util.*;

public class CompClass implements Comparable {
private int i;
public CompClass(int ii) { i = ii; }
public int compareTo(Object o) {

// Implicitly tests for correct type:
int argi = ((CompClass)o).i;
if(i == argi) return 0;
if(i < argi) return -1;
return 1;

}
public static void print(Object[] a) {

for(int i = 0; i < a.length; i++)
System.out.print(a[i] + " ");

System.out.println();
}
public String toString() { return i + ""; }
public static void main(String[] args) {

CompClass[] a = new CompClass[20];
for(int i = 0; i < a.length; i++)
a[i] = new CompClass(
(int)(Math.random() *100));

print(a);
Arrays.sort(a);
print(a);
int loc = Arrays.binarySearch(a, a[3]);
System.out.println("Location of " + a[3] +
" = " + loc);

}
} ///:~

Of course, your compareTo() method can be as complex as
necessary.

490 Thinking in Java www.BruceEckel.com

Lists
A List can be sorted and searched in the same fashion as an array.
The static methods to sort and search a List are contained in the
class Collections, but they have similar signatures as the ones in
Arrays: sort(List) to sort a List of objects that implement
Comparable, binarySearch(List, Object) to find an object in
the list, sort(List, Comparator) to sort a List using a
Comparator, and binarySearch(List, Object, Comparator)
to find an object in that list.4 This example uses the previously-
defined CompClass and AlphaComp to demonstrate the sorting
tools in Collections:

//: c09:newcollections:ListSort.java
// Sorting and searching Lists with 'Collections.'
package c09.newcollections;
import java.util.*;

public class ListSort {
public static void main(String[] args) {

final int SZ = 20;
// Using "natural comparison method":
List a = new ArrayList();
for(int i = 0; i < SZ; i++)
a.add(new CompClass(
(int)(Math.random() *100)));

Collection1.print(a);
Collections.sort(a);
Collection1.print(a);
Object find = a.get(SZ/2);
int loc = Collections.binarySearch(a, find);
System.out.println("Location of " + find +
" = " + loc);
// Using a Comparator:
List b = new ArrayList();
for(int i = 0; i < SZ; i++)
b.add(Array1.randString(4));

4 At the time of this writing, Collections.sort() has been modified to use a stable sort
algorithm (one that does not reorder equal elements).

Chapter 9: Holding Your Objects 491

Collection1.print(b);
AlphaComp ac = new AlphaComp();
Collections.sort(b, ac);
Collection1.print(b);
find = b.get(SZ/2);
// Must use the Comparator to search, also:
loc = Collections.binarySearch(b, find, ac);
System.out.println("Location of " + find +
" = " + loc);

}
} ///:~

The use of these methods is identical to the ones in Arrays, but
you’re using a List instead of an array.

The TreeMap must also order its objects according to
Comparable or Comparator.

Utilities
There are a number of other useful utilities in the Collections
class:

enumeration(Collection
)

Produces an old-style
Enumeration for the
argument.

max(Collection)
min(Collection)

Produces the maximum or
minimum element in the
argument using the natural
comparison method of the
objects in the Collection.

max(Collection,
Comparator)
min(Collection,
Comparator)

Produces the maximum or
minimum element in the
Collection using the
Comparator.

nCopies(int n, Object o) Returns an immutable List of
size n whose handles all point
to o.

subList(List, int min, int
max)

Returns a new List backed by
the specified argument List

492 Thinking in Java www.BruceEckel.com

that is a window into that
argument with indexes
starting at min and stopping
just before max.

Note that min() and max() work with Collection objects, not
with Lists, so you don’t need to worry about whether the
Collection should be sorted or not. (As mentioned earlier, you do
need to sort() a List or an array before performing a
binarySearch().)

Making a Collection or Map unmodifiable
Often it is convenient to create a read-only version of a Collection
or Map. The Collections class allows you to do this by passing the
original container into a method that hands back a read-only
version. There are four variations on this method, one each for
Collection (if you don’t want to treat a Collection as a more
specific type), List, Set, and Map. This example shows the proper
way to build read-only versions of each:

//: c09:newcollections:ReadOnly.java
// Using the Collections.unmodifiable methods.
package c09.newcollections;
import java.util.*;

public class ReadOnly {
public static void main(String[] args) {

Collection c = new ArrayList();
Collection1.fill(c); // Insert useful data
c = Collections.unmodifiableCollection(c);
Collection1.print(c); // Reading is OK
//! c.add("one"); // Can't change it

List a = new ArrayList();
Collection1.fill(a);
a = Collections.unmodifiableList(a);
ListIterator lit = a.listIterator();
System.out.println(lit.next()); // Reading OK
//! lit.add("one"); // Can't change it

Chapter 9: Holding Your Objects 493

Set s = new HashSet();
Collection1.fill(s);
s = Collections.unmodifiableSet(s);
Collection1.print(s); // Reading OK
//! s.add("one"); // Can't change it

Map m = new HashMap();
Map1.fill(m, Map1.testData1);
m = Collections.unmodifiableMap(m);
Map1.print(m); // Reading OK
//! m.put("Ralph", "Howdy!");

}
} ///:~

In each case, you must fill the container with meaningful data
before you make it read-only. Once it is loaded, the best approach is
to replace the existing handle with the handle that is produced by
the “unmodifiable” call. That way, you don’t run the risk of
accidentally changing the contents once you’ve made it
unmodifiable. On the other hand, this tool also allows you to keep a
modifiable container as private within a class and to return a read-
only handle to that container from a method call. So you can change
it from within the class but everyone else can only read it.

Calling the “unmodifiable” method for a particular type does not
cause compile-time checking, but once the transformation has
occurred, any calls to methods that modify the contents of a
particular container will produce an
UnsupportedOperationException.

Synchronizing a Collection or Map
The synchronized keyword is an important part of the subject of
multithreading, a more complicated topic that will not be
introduced until Chapter 14. Here, I shall note only that the
Collections class contains a way to automatically synchronize an
entire container. The syntax is similar to the “unmodifiable”
methods:

//: c09:newcollections:Synchronization.java
// Using the Collections.synchronized methods.
package c09.newcollections;

494 Thinking in Java www.BruceEckel.com

import java.util.*;

public class Synchronization {
public static void main(String[] args) {

Collection c =
Collections.synchronizedCollection(
new ArrayList());

List list = Collections.synchronizedList(
new ArrayList());

Set s = Collections.synchronizedSet(
new HashSet());

Map m = Collections.synchronizedMap(
new HashMap());

}
} ///:~

In this case, you immediately pass the new container through the
appropriate “synchronized” method; that way there’s no chance of
accidentally exposing the unsynchronized version.

The Java 2 Collections also have a mechanism to prevent more than
one process from modifying the contents of a container. The
problem occurs if you’re iterating through a container and some
other process steps in and inserts, removes, or changes an object in
that container. Maybe you’ve already passed that object, maybe it’s
ahead of you, maybe the size of the container shrinks after you call
size() – there are many scenarios for disaster. The Java 2
Collections library incorporates a fail fast mechanism that looks for
any changes to the container other than the ones your process is
personally responsible for. If it detects that someone else is
modifying the container, it immediately produces a
ConcurrentModificationException. This is the “fail-fast”
aspect – it doesn’t try to detect a problem later on using a more
complex algorithm.

Summary
To review the collections provided in the standard Java (1.0 and 1.1)
library (BitSet is not included here since it’s more of a special-
purpose class):

Chapter 9: Holding Your Objects 495

1. An array associates numerical indices to objects. It holds
objects of a known type so you don’t have to cast the result
when you’re looking up an object. It can be
multidimensional, and it can hold primitives. However, its
size cannot be changed once you create it.

2. A Vector also associates numerical indices to objects – you
can think of arrays and Vectors as random-access
collections. The Vector automatically resizes itself as you
add more elements. But an ArrayList can hold only Object
handles, so it won’t hold primitives and you must always cast
the result when you pull an Object handle out of a
collection.

3. A Hashtable is a type of Dictionary, which is a way to
associate, not numbers, but objects with other objects. A
Hashtable also supports random access to objects, in fact,
its whole design is focused around rapid access.

4. A Stack is a last-in, first-out (LIFO) queue.

If you’re familiar with data structures, you might wonder why
there’s not a larger set of collections. From a functionality
standpoint, do you really need a larger set of collections? With a
Hashtable, you can put things in and find them quickly, and with
an Enumeration, you can iterate through the sequence and
perform an operation on every element in the sequence. That’s a
powerful tool, and maybe it should be enough.

But a Hashtable has no concept of order. Vectors and arrays give
you a linear order, but it’s expensive to insert an element into the
middle of either one. In addition, queues, dequeues, priority
queues, and trees are about ordering the elements, not just putting
them in and later finding them or moving through them linearly.
These data structures are also useful, and that’s why they were
included in Standard C++. For this reason, you should consider the
collections in the standard Java library only as a starting point, and,
if you must use Java 1.0 or 1.1, use the JGL when your needs go
beyond that.

496 Thinking in Java www.BruceEckel.com

If you can use Java 2 you should use only the Java 2 Collections,
which are likely to satisfy all your needs. Note that the bulk of this
book was created using Java 1.1, so you’ll see that the collections
used through the rest of the book are the ones that are available
only in Java 1.1: Vector and Hashtable. This is a somewhat
painful restriction at times, but it provides better backward
compatibility with older Java code. If you’re writing new code in
Java 2, the Java 2 Collections will serve you much better.

Exercises
1. Create a new class called Gerbil with an int gerbilNumber

that’s initialized in the constructor (similar to the Mouse
example in this chapter). Give it a method called hop() that
prints out which gerbil number this is and that it’s hopping.
Create an ArrayList and add a bunch of Gerbil objects to the
Vector. Now use the elementAt() method to move through
the Vector and call hop() for each Gerbil.

2. Modify Exercise 1 so you use an Iterator to move through the
Vector while calling hop().

3. In AssocArray.java, change the example so it uses a
Hashtable instead of an AssocArray.

4. Take the Gerbil class in Exercise 1 and put it into a
Hashtable instead, associating the name of the Gerbil as a
String (the key) for each Gerbil (the value) you put in the
table. Get an Iterator for the keys() and use it to move
through the Hashtable, looking up the Gerbil for each key
and printing out the key and telling the gerbil to hop().

5. Change Exercise 6 in Chapter 7 to use an ArrayList to hold
the Rodents and an Iterator to move through the sequence
of Rodents. Remember that an ArrayList holds only
Objects so you must use a cast (i.e.: RTTI) when accessing
individual Rodents.

6. (Intermediate) In Chapter 8, locate the
GreenhouseControls.java example, which consists of

Chapter 9: Holding Your Objects 497

three files. In Controller.java, the class EventSet is just a
collection. Change the code to use a LinkedList instead of an
EventSet. This will require more than just replacing
EventSet with LinkedList; you’ll also need to use an
Iterator to cycle through the set of events.

7. (Challenging). Find the source code for Vector in the Java
source code library that comes with all Java distributions.
Copy this code and make a special version called intVector
that holds only ints. Consider what it would take to make a
special version of Vector for all the primitive types. Now
consider what happens if you want to make a linked list class
that works with all the primitive types. If parameterized types
are ever implemented in Java, they will provide a way to do
this work for you automatically (as well as many other
benefits).

 499

10: Error Handling
with Exceptions

The basic philosophy of Java is that “badly-formed code
will not be run.”

The ideal time to catch an error is at compile time, before you even
try to run the program. However, not all errors can be detected at
compile time. The rest of the problems must be handled at run-time
through some formality that allows the originator of the error to
pass appropriate information to a recipient who will know how to
handle the difficulty properly.

In C and other earlier languages, there could be several of these
formalities, and they were generally established by convention and
not as part of the programming language. Typically, you returned a
special value or set a flag, and the recipient was supposed to look at
the value or the flag and determine that something was amiss.
However, as the years passed, it was discovered that programmers
who use a library tend to think of themselves as invincible, as in,
“Yes, errors might happen to others, but not in my code.” So, not
too surprisingly, they wouldn’t check for the error conditions (and
sometimes the error conditions were too silly to check for1). If you
were thorough enough to check for an error every time you called a
method, your code could turn into an unreadable nightmare.
Because programmers could still coax systems out of these
languages they were resistant to admitting the truth: This approach
to handling errors was a major limitation to creating large, robust,
maintainable programs.

1 The C programmer can look up the return value of printf() for an example of this.

500 Thinking in Java www.BruceEckel.com

The solution is to take the casual nature out of error handling and
to enforce formality. This actually has a long history, since
implementations of exception handling go back to operating
systems in the 1960s and even to BASIC’s “on error goto.” But
C++ exception handling was based on Ada, and Java’s is based
primarily on C++ (although it looks even more like Object Pascal).

The word “exception” is meant in the sense of “I take exception to
that.” At the point where the problem occurs you might not know
what to do with it, but you do know that you can’t just continue on
merrily; you must stop and somebody, somewhere, must figure out
what to do. But you don’t have enough information in the current
context to fix the problem. So you hand the problem out to a higher
context where someone is qualified to make the proper decision
(much like a chain of command).

The other rather significant benefit of exceptions is that they clean
up error handling code. Instead of checking for a particular error
and dealing with it at multiple places in your program, you no
longer need to check at the point of the method call (since the
exception will guarantee that someone catches it). And, you need to
handle the problem in only one place, the so-called exception
handler. This saves you code and it separates the code that
describes what you want to do from the code that is executed when
things go awry. In general, reading, writing, and debugging code
becomes much clearer with exceptions than when using the old way
of error handling.

Because exception handling is enforced by the Java compiler, there
are only so many examples that can be written in this book without
learning about exception handling. This chapter introduces you to
the code you need to write to properly handle exceptions, and the
way you can generate your own exceptions if one of your methods
gets into trouble.

Basic exceptions
An exceptional condition is a problem that prevents the
continuation of the method or scope that you’re in. It’s important to

Chapter 10: Error Handling with Exceptions 501

distinguish an exceptional condition from a normal problem, in
which you have enough information in the current context to
somehow cope with the difficulty. With an exceptional condition,
you cannot continue processing because you don’t have the
information necessary to deal with the problem in the current
context. All you can do is jump out of the current context and
relegate that problem to a higher context. This is what happens
when you throw an exception.

A simple example is a divide. If you’re about to divide by zero, it’s
worth checking to make sure you don’t go ahead and perform the
divide. But what does it mean that the denominator is zero? Maybe
you know, in the context of the problem you’re trying to solve in
that particular method, how to deal with a zero denominator. But if
it’s an unexpected value, you can’t deal with it and so must throw an
exception rather than continuing along that path.

When you throw an exception, several things happen. First, the
exception object is created in the same way that any Java object is
created: on the heap, with new. Then the current path of execution
(the one you couldn’t continue) is stopped and the handle for the
exception object is ejected from the current context. At this point
the exception-handling mechanism takes over and begins to look
for an appropriate place to continue executing the program. This
appropriate place is the exception handler, whose job is to recover
from the problem so the program can either try another tack or just
continue.

As a simple example of throwing an exception, consider an object
handle called t. It’s possible that you might be passed a handle that
hasn’t been initialized, so you might want to check before trying to
call a method using that object handle. You can send information
about the error into a larger context by creating an object
representing your information and “throwing” it out of your current
context. This is called throwing an exception. Here’s what it looks
like:

if(t == null)
throw new NullPointerException();

502 Thinking in Java www.BruceEckel.com

This throws the exception, which allows you – in the current
context – to abdicate responsibility for thinking about the issue
further. It’s just magically handled somewhere else. Precisely where
will be shown shortly.

Exception arguments
Like any object in Java, you always create exceptions on the heap
using new, which allocates storage and calls a constructor. There
are two constructors in all standard exceptions: the first is the
default constructor, and the second takes a string argument so you
can place pertinent information in the exception:

if(t == null)
throw new NullPointerException("t = null");

This string can later be extracted using various methods, as will be
shown later.

The keyword throw causes a number of relatively magical things to
happen. Typically, you’ll first use new to create an object that
represents the error condition. You give the resulting handle to
throw. The object is, in effect, “returned” from the method, even
though that object type isn’t normally what the method is designed
to return. A simplistic way to think about exception handling is as
an alternate return mechanism, although you get into trouble if you
take that analogy too far. You can also exit from ordinary scopes by
throwing an exception. But a value is returned, and the method or
scope exits.

Any similarity to an ordinary return from a method ends here,
because where you return is someplace completely different from
where you return for a normal method call. (You end up in an
appropriate exception handler that might be miles away – many
levels lower on the call stack – from where the exception was
thrown.)

In addition, you can throw any type of Throwable object that you
want. Typically, you’ll throw a different class of exception for each
different type of error. The information about the error is
represented both inside the exception object and implicitly in the

Chapter 10: Error Handling with Exceptions 503

type of exception object chosen, so someone in the bigger context
can figure out what to do with your exception. (Often, the only
information is the type of exception object, and nothing meaningful
is stored within the exception object.)

Catching an exception
If a method throws an exception, it must assume that exception is
“caught” and dealt with. One of the advantages of Java exception
handling is that it allows you to concentrate on the problem you’re
trying to solve in one place, and then deal with the errors from that
code in another place.

To see how an exception is caught, you must first understand the
concept of a guarded region, which is a section of code that might
produce exceptions, and which is followed by the code to handle
those exceptions.

The try block
If you’re inside a method and you throw an exception (or another
method you call within this method throws an exception), that
method will exit in the process of throwing. If you don’t want a
throw to exit the method, you can set up a special block within that
method to capture the exception. This is called the try block
because you “try” your various method calls there. The try block is
an ordinary scope, preceded by the keyword try:

try {
// Code that might generate exceptions

}

If you were checking for errors carefully in a programming language
that didn’t support exception handling, you’d have to surround
every method call with setup and error testing code, even if you call
the same method several times. With exception handling, you put
everything in a try block and capture all the exceptions in one place.
This means your code is a lot easier to write and easier to read
because the goal of the code is not confused with the error checking.

504 Thinking in Java www.BruceEckel.com

Exception handlers
Of course, the thrown exception must end up someplace. This
“place” is the exception handler, and there’s one for every exception
type you want to catch. Exception handlers immediately follow the
try block and are denoted by the keyword catch:

try {
// Code that might generate exceptions

} catch(Type1 id1) {
// Handle exceptions of Type1

} catch(Type2 id2) {
// Handle exceptions of Type2

} catch(Type3 id3) {
// Handle exceptions of Type3

}

// etc...

Each catch clause (exception handler) is like a little method that
takes one and only one argument of a particular type. The identifier
(id1, id2, and so on) can be used inside the handler, just like a
method argument. Sometimes you never use the identifier because
the type of the exception gives you enough information to deal with
the exception, but the identifier must still be there.

The handlers must appear directly after the try block. If an
exception is thrown, the exception-handling mechanism goes
hunting for the first handler with an argument that matches the
type of the exception. Then it enters that catch clause, and the
exception is considered handled. The search for handlers stops once
the catch clause is finished. Only the matching catch clause
executes; it’s not like a switch statement in which you need a
break after each case to prevent the remaining ones from
executing.

Note that, within the try block, a number of different method calls
might generate the same exception, but you need only one handler.

Chapter 10: Error Handling with Exceptions 505

Termination vs. resumption
There are two basic models in exception-handling theory. In
termination (which is what Java and C++ support), you assume the
error is so critical that there’s no way to get back to where the
exception occurred. Whoever threw the exception decided that
there was no way to salvage the situation, and they don’t want to
come back.

The alternative is called resumption. It means that the exception
handler is expected to do something to rectify the situation, and
then the faulting method is retried, presuming success the second
time. If you want resumption, it means you still hope to continue
execution after the exception is handled. In this case, your exception
is more like a method call – which is how you should set up
situations in Java in which you want resumption-like behavior.
(That is, don’t throw an exception; call a method that fixes the
problem.) Alternatively, place your try block inside a while loop
that keeps reentering the try block until the result is satisfactory.

Historically, programmers using operating systems that supported
resumptive exception handling eventually ended up using
termination-like code and skipping resumption. So although
resumption sounds attractive at first, it seems it isn’t quite so useful
in practice. The dominant reason is probably the coupling that
results: your handler must often be aware of where the exception is
thrown from and contain non-generic code specific to the throwing
location. This makes the code difficult to write and maintain,
especially for large systems where the exception can be generated
from many points.

The exception specification
In Java, you’re required to inform the client programmer, who calls
your method, of the exceptions that might be thrown from your
method. This is civilized because the caller can know exactly what
code to write to catch all potential exceptions. Of course, if source
code is available, the client programmer could hunt through and
look for throw statements, but often a library doesn’t come with
sources. To prevent this from being a problem, Java provides syntax

506 Thinking in Java www.BruceEckel.com

(and forces you to use that syntax) to allow you to politely tell the
client programmer what exceptions this method throws, so the
client programmer can handle them. This is the exception
specification and it’s part of the method declaration, appearing
after the argument list.

The exception specification uses an additional keyword, throws,
followed by a list of all the potential exception types. So your
method definition might look like this:

void f() throws tooBig, tooSmall, divZero { //...

If you say

void f() { // ...

it means that no exceptions are thrown from the method. (Except
for the exceptions of type RuntimeException, which can
reasonably be thrown anywhere – this will be described later.)

You can’t lie about an exception specification – if your method
causes exceptions and doesn’t handle them, the compiler will detect
this and tell you that you must either handle the exception or
indicate with an exception specification that it may be thrown from
your method. By enforcing exception specifications from top to
bottom, Java guarantees that exception correctness can be ensured
at compile time2.

There is one place you can lie: you can claim to throw an exception
that you don’t. The compiler takes your word for it and forces the
users of your method to treat it as if it really does throw that
exception. This has the beneficial effect of being a placeholder for
that exception, so you can actually start throwing the exception
later without requiring changes to existing code. It’s also important
for creating abstract base classes and interfaces whose derived
classes or implementations may need to throw exceptions.

2 This is a significant improvement over C++ exception handling, which doesn’t catch
violations of exception specifications until run time, when it’s not very useful.

Chapter 10: Error Handling with Exceptions 507

Catching any exception
It is possible to create a handler that catches any type of exception.
You do this by catching the base-class exception type Exception
(there are other types of base exceptions, but Exception is the base
that’s pertinent to virtually all programming activities):

catch(Exception e) {
System.out.println("caught an exception");

}

This will catch any exception, so if you use it you’ll want to put it at
the end of your list of handlers to avoid pre-empting any exception
handlers that might otherwise follow it.

Since the Exception class is the base of all the exception classes
that are important to the programmer, you don’t get much specific
information about the exception, but you can call the methods that
come from its base type Throwable:

String getMessage()
String getLocalizedMessage()
Gets the detail message, or a message adjusted for this particular
locale.

String toString()
Returns a short description of the Throwable, including the detail
message if there is one.

void printStackTrace()
void printStackTrace(PrintStream)
void printStackTrace(PrintWriter)
Prints the Throwable and the Throwable’s call stack trace. The call
stack shows the sequence of method calls that brought you to the
point at which the exception was thrown. The first version prints to
standard error, the second and third prints to a stream of your
choice (in Chapter 11, you’ll understand why there are two types of
streams).

Throwable fillInStackTrace()
Records within this Throwable object information about the

508 Thinking in Java www.BruceEckel.com

current state of the stack frames. Useful when an application is re-
throwing an error or exception (more about this shortly).

In addition, you get some other methods from Throwable’s base
type Object (everybody’s base type). The one that might come in
handy for exceptions is getClass(), which returns an object
representing the class of this object. You can in turn query this
Class object for its name with getName() or toString(). You
can also do more sophisticated things with Class objects that aren’t
necessary in exception handling. Class objects will be studied later
in the book.

Here’s an example that shows the use of the basic Exception
methods:

//: c10:ExceptionMethods.java
// Demonstrating the Exception Methods.

public class ExceptionMethods {
public static void main(String[] args) {

try {
throw new Exception("Here's my Exception");

} catch(Exception e) {
System.out.println("Caught Exception");
System.out.println(
"e.getMessage(): " + e.getMessage());

System.out.println(
"e.getLocalizedMessage(): " +
e.getLocalizedMessage());

System.out.println("e.toString(): " + e);
System.out.println("e.printStackTrace():");
e.printStackTrace();
e.printStackTrace(System.err);

}
}

} ///:~

The output for this program is:

Caught Exception
e.getMessage(): Here's my Exception
e.getLocalizedMessage(): Here's my Exception

Chapter 10: Error Handling with Exceptions 509

e.toString(): java.lang.Exception:
Here's my Exception

e.printStackTrace():
java.lang.Exception: Here's my Exception
at ExceptionMethods.main(ExceptionMethods.java:7)
java.lang.Exception:

Here's my Exception
at ExceptionMethods.main(ExceptionMethods.java:7)

You can see that the methods provide successively more
information – each is effectively a superset of the previous one.

Rethrowing an exception
Sometimes you’ll want to rethrow the exception that you just
caught, particularly when you use Exception to catch any
exception. Since you already have the handle to the current
exception, you can simply re-throw that handle:

catch(Exception e) {
System.out.println("An exception was thrown");
throw e;

}

Rethrowing an exception causes the exception to go to the exception
handlers in the next-higher context. Any further catch clauses for
the same try block are still ignored. In addition, everything about
the exception object is preserved, so the handler at the higher
context that catches the specific exception type can extract all the
information from that object.

If you simply re-throw the current exception, the information that
you print about that exception in printStackTrace() will pertain
to the exception’s origin, not the place where you re-throw it. If you
want to install new stack trace information, you can do so by calling
fillInStackTrace(), which returns an exception object that it
creates by stuffing the current stack information into the old
exception object. Here’s what it looks like:

//: c10:Rethrowing.java
// Demonstrating fillInStackTrace()

510 Thinking in Java www.BruceEckel.com

public class Rethrowing {
public static void f() throws Exception {

System.out.println(
"originating the exception in f()");

throw new Exception("thrown from f()");
}
public static void g() throws Throwable {

try {
f();

} catch(Exception e) {
System.out.println(
"Inside g(), e.printStackTrace()");

e.printStackTrace();
throw e; // 17
// throw e.fillInStackTrace(); // 18

}
}
public static void
main(String[] args) throws Throwable {

try {
g();

} catch(Exception e) {
System.out.println(
"Caught in main, e.printStackTrace()");

e.printStackTrace();
}

}
} ///:~

The important line numbers are marked as comments. With line 17
un-commented (as shown), the output is:

originating the exception in f()
Inside g(), e.printStackTrace()
java.lang.Exception: thrown from f()

at Rethrowing.f(Rethrowing.java:8)
at Rethrowing.g(Rethrowing.java:12)
at Rethrowing.main(Rethrowing.java:24)

Caught in main, e.printStackTrace()
java.lang.Exception: thrown from f()

at Rethrowing.f(Rethrowing.java:8)
at Rethrowing.g(Rethrowing.java:12)

Chapter 10: Error Handling with Exceptions 511

at Rethrowing.main(Rethrowing.java:24)

So the exception stack trace always remembers its true point of
origin, no matter how many times it gets rethrown.

With line 17 commented and line 18 un-commented,
fillInStackTrace() is used instead, and the result is:

originating the exception in f()
Inside g(), e.printStackTrace()
java.lang.Exception: thrown from f()

at Rethrowing.f(Rethrowing.java:8)
at Rethrowing.g(Rethrowing.java:12)
at Rethrowing.main(Rethrowing.java:24)

Caught in main, e.printStackTrace()
java.lang.Exception: thrown from f()

at Rethrowing.g(Rethrowing.java:18)
at Rethrowing.main(Rethrowing.java:24)

Because of fillInStackTrace(), line 18 becomes the new point of
origin of the exception.

The class Throwable must appear in the exception specification
for g() and main() because fillInStackTrace() produces a
handle to a Throwable object. Since Throwable is a base class of
Exception, it’s possible to get an object that’s a Throwable but
not an Exception, so the handler for Exception in main() might
miss it. To make sure everything is in order, the compiler forces an
exception specification for Throwable. For example, the exception
in the following program is not caught in main():

//: c10:ThrowOut.java
public class ThrowOut {
public static void
main(String[] args) throws Throwable {

try {
throw new Throwable();

} catch(Exception e) {
System.out.println("Caught in main()");

}
}

} ///:~

512 Thinking in Java www.BruceEckel.com

It’s also possible to rethrow a different exception from the one you
caught. If you do this, you get a similar effect as when you use
fillInStackTrace(): the information about the original site of the
exception is lost, and what you’re left with is the information
pertaining to the new throw:

//: c10:RethrowNew.java
// Rethrow a different object
// from the one that was caught.

public class RethrowNew {
public static void f() throws Exception {

System.out.println(
"originating the exception in f()");

throw new Exception("thrown from f()");
}
public static void main(String[] args) {

try {
f();

} catch(Exception e) {
System.out.println(
"Caught in main, e.printStackTrace()");

e.printStackTrace();
throw new NullPointerException("from main");

}
}

} ///:~

The output is:

originating the exception in f()
Caught in main, e.printStackTrace()
java.lang.Exception: thrown from f()

at RethrowNew.f(RethrowNew.java:9)
at RethrowNew.main(RethrowNew.java:13)

Exception in thread "main"
java.lang.NullPointerException: from main

at RethrowNew.main(RethrowNew.java:18)

The final exception knows only that it came from main(), and not
from f(). Note that Throwable isn’t necessary in any of the
exception specifications.

Chapter 10: Error Handling with Exceptions 513

You never have to worry about cleaning up the previous exception,
or any exceptions for that matter. They’re all heap-based objects
created with new, so the garbage collector automatically cleans
them all up.

Standard Java exceptions
The Java class Throwable describes anything that can be thrown
as an exception. There are two general types of Throwable objects
(“types of” = “inherited from”). Error represents compile-time and
system errors that you don’t worry about catching (except in special
cases). Exception is the basic type that can be thrown from any of
the standard Java library class methods and from your methods and
run-time accidents. So the Java programmer’s base type of interest
is Exception.

The best way to get an overview of the exceptions is to browse
online Java documentation from http://java.sun.com. (Of course,
it’s easier to download it first.) It’s worth doing this once just to get
a feel for the various exceptions, but you’ll soon see that there isn’t
anything special between one exception and the next except for the
name. Also, the number of exceptions in Java keeps expanding;
basically it’s pointless to print them in a book. Any new library you
get from a third-party vendor will probably have its own exceptions
as well. The important thing to understand is the concept and what
you should do with the exceptions.

java.lang.Exception

This is the basic exception class your program will catch. Other
exceptions are derived from this. The basic idea is that the name of
the exception represents the problem that occurred and the
exception name is intended to be relatively self-explanatory. The
exceptions are not all defined in java.lang; some are created to
support other libraries such as util, net, and io, which you can see
from their full class names or what they are inherited from. For
example, all IO exceptions are inherited from
java.io.IOException.

514 Thinking in Java www.BruceEckel.com

The special case of
RuntimeException
The first example in this chapter was

if(t == null)
throw new NullPointerException();

It can be a bit horrifying to think that you must check for null on
every handle that is passed into a method (since you can’t know if
the caller has passed you a valid handle). Fortunately, you don’t –
this is part of the standard run-time checking that Java performs
for you, and if any call is made to a null handle, Java will
automatically throw a NullPointerException. So the above bit of
code is always superfluous.

There’s a whole group of exception types that are in this category.
They’re always thrown automatically by Java and you don’t need to
include them in your exception specifications. Conveniently
enough, they’re all grouped together by putting them under a single
base class called RuntimeException, which is a perfect example
of inheritance: it establishes a family of types that have some
characteristics and behaviors in common. Also, you never need to
write an exception specification saying that a method might throw a
RuntimeException, since that’s just assumed. Because they
indicate bugs, you virtually never catch a RuntimeException –
it’s dealt with automatically. If you were forced to check for
RuntimeExceptions your code could get messy. Even though you
don’t typically catch RuntimeExceptions, in your own packages
you might choose to throw some of the RuntimeExceptions.

What happens when you don’t catch such exceptions? Since the
compiler doesn’t enforce exception specifications for these, it’s quite
plausible that a RuntimeException could percolate all the way
out to your main() method without being caught. To see what
happens in this case, try the following example:

//: c10:NeverCaught.java
// Ignoring RuntimeExceptions.

Chapter 10: Error Handling with Exceptions 515

public class NeverCaught {
static void f() {

throw new RuntimeException("From f()");
}
static void g() {

f();
}
public static void main(String[] args) {

g();
}

} ///:~

You can already see that a RuntimeException (or anything
inherited from it) is a special case, since the compiler doesn’t
require an exception specification for these types.

The output is:

Exception in thread "main"
java.lang.RuntimeException: From f()

at NeverCaught.f(NeverCaught.java:9)
at NeverCaught.g(NeverCaught.java:12)
at NeverCaught.main(NeverCaught.java:15)

So the answer is: If a RuntimeException gets all the way out to
main() without being caught, printStackTrace() is called for
that exception as the program exits.

Keep in mind that it’s possible to ignore only RuntimeExceptions
in your coding, since all other handling is carefully enforced by the
compiler. The reasoning is that a RuntimeException represents a
programming error:

1. An error you cannot catch (receiving a null handle handed to
your method by a client programmer, for example)

2. An error that you, as a programmer, should have checked for
in your code (such as
ArrayIndexOutOfBoundsException where you should
have paid attention to the size of the array).

You can see what a tremendous benefit it is to have exceptions in
this case, since they help in the debugging process.

516 Thinking in Java www.BruceEckel.com

It’s interesting to notice that you cannot classify Java exception
handling as a single-purpose tool. Yes, it is designed to handle those
pesky run-time errors that will occur because of forces outside your
code’s control, but it’s also essential for certain types of
programming bugs that the compiler cannot detect.

Creating your own
exceptions

You’re not stuck using the Java exceptions. This is important
because you’ll often need to create your own exceptions to denote a
special error that your library is capable of creating, but which was
not foreseen when the Java exception hierarchy was created.

To create your own exception class, you’re forced to inherit from an
existing type of exception, preferably one that is close in meaning to
your new exception (this is often not possible, however). Inheriting
an exception is quite simple:

//: c10:Inheriting.java
// Inheriting your own exceptions.

class MyException extends Exception {
public MyException() {}
public MyException(String msg) {

super(msg);
}

}

public class Inheriting {
public static void f() throws MyException {

System.out.println(
"Throwing MyException from f()");

throw new MyException();
}
public static void g() throws MyException {

System.out.println(
"Throwing MyException from g()");

throw new MyException("Originated in g()");

Chapter 10: Error Handling with Exceptions 517

}
public static void main(String[] args) {

try {
f();

} catch(MyException e) {
e.printStackTrace();

}
try {
g();

} catch(MyException e) {
e.printStackTrace();

}
}

} ///:~

The inheritance occurs in the creation of the new class:

class MyException extends Exception {
public MyException() {}
public MyException(String msg) {

super(msg);
}

}

The key phrase here is extends Exception, which says “it’s
everything an Exception is and more.” The added code is small –
the addition of two constructors that define the way MyException
is created. Remember that the compiler automatically calls the
base-class default constructor if you don’t explicitly call a base-class
constructor, as in the MyException() default constructor. In the
second constructor, the base-class constructor with a String
argument is explicitly invoked by using the super keyword.

The output of the program is:

Throwing MyException from f()
MyException

at Inheriting.f(Inheriting.java:16)
at Inheriting.main(Inheriting.java:24)

Throwing MyException from g()
MyException: Originated in g()

at Inheriting.g(Inheriting.java:20)
at Inheriting.main(Inheriting.java:29)

518 Thinking in Java www.BruceEckel.com

You can see the absence of the detail message in the MyException
thrown from f().

The process of creating your own exceptions can be taken further.
You can add extra constructors and members:

//: c10:Inheriting2.java
// Inheriting your own exceptions.

class MyException2 extends Exception {
public MyException2() {}
public MyException2(String msg) {

super(msg);
}
public MyException2(String msg, int x) {

super(msg);
i = x;

}
public int val() { return i; }
private int i;

}

public class Inheriting2 {
public static void f() throws MyException2 {

System.out.println(
"Throwing MyException2 from f()");

throw new MyException2();
}
public static void g() throws MyException2 {

System.out.println(
"Throwing MyException2 from g()");

throw new MyException2("Originated in g()");
}
public static void h() throws MyException2 {

System.out.println(
"Throwing MyException2 from h()");

throw new MyException2(
"Originated in h()", 47);

}
public static void main(String[] args) {

try {

Chapter 10: Error Handling with Exceptions 519

f();
} catch(MyException2 e) {
e.printStackTrace();

}
try {
g();

} catch(MyException2 e) {
e.printStackTrace();

}
try {
h();

} catch(MyException2 e) {
e.printStackTrace();
System.out.println("e.val() = " + e.val());

}
}

} ///:~

A data member i has been added, along with a method that reads
that value and an additional constructor that sets it. The output is:

Throwing MyException2 from f()
MyException2

at Inheriting2.f(Inheriting2.java:22)
at Inheriting2.main(Inheriting2.java:34)

Throwing MyException2 from g()
MyException2: Originated in g()

at Inheriting2.g(Inheriting2.java:26)
at Inheriting2.main(Inheriting2.java:39)

Throwing MyException2 from h()
MyException2: Originated in h()

at Inheriting2.h(Inheriting2.java:30)
at Inheriting2.main(Inheriting2.java:44)

e.val() = 47

Since an exception is just another kind of object, you can continue
this process of embellishing the power of your exception classes.
Keep in mind, however, that all this dressing up might be lost on the
client programmers using your packages, since they might simply
look for the exception to be thrown and nothing more. (That’s the
way most of the Java library exceptions are used.) If this is the case,

520 Thinking in Java www.BruceEckel.com

it’s possible to create a new exception type with almost no code at
all:

//: c10:SimpleException.java
class SimpleException extends Exception {
} ///:~

This relies on the compiler to create the default constructor (which
automatically calls the base-class default constructor). Of course, in
this case you don’t get a SimpleException(String) constructor,
but in practice that isn’t used much.

Exception restrictions
When you override a method, you can throw only the exceptions
that have been specified in the base-class version of the method.
This is a useful restriction, since it means that code that works with
the base class will automatically work with any object derived from
the base class (a fundamental OOP concept, of course), including
exceptions.

This example demonstrates the kinds of restrictions imposed (at
compile time) for exceptions:

//: c10:StormyInning.java
// Overridden methods may throw only the
// exceptions specified in their base-class
// versions, or exceptions derived from the
// base-class exceptions.

class BaseballException extends Exception {}
class Foul extends BaseballException {}
class Strike extends BaseballException {}

abstract class Inning {
Inning() throws BaseballException {}
void event () throws BaseballException {
// Doesn't actually have to throw anything
}
abstract void atBat() throws Strike, Foul;
void walk() {} // Throws nothing

Chapter 10: Error Handling with Exceptions 521

}

class StormException extends Exception {}
class RainedOut extends StormException {}
class PopFoul extends Foul {}

interface Storm {
void event() throws RainedOut;
void rainHard() throws RainedOut;

}

public class StormyInning extends Inning
implements Storm {

// OK to add new exceptions for
// constructors, but you must deal
// with the base constructor exceptions:
StormyInning() throws RainedOut,

BaseballException {}
StormyInning(String s) throws Foul,

BaseballException {}
// Regular methods must conform to base class:

//! void walk() throws PopFoul {} //Compile error
// Interface CANNOT add exceptions to existing
// methods from the base class:

//! public void event() throws RainedOut {}
// If the method doesn't already exist in the
// base class, the exception is OK:
public void rainHard() throws RainedOut {}
// You can choose to not throw any exceptions,
// even if base version does:
public void event() {}
// Overridden methods can throw
// inherited exceptions:
void atBat() throws PopFoul {}
public static void main(String[] args) {

try {
StormyInning si = new StormyInning();
si.atBat();

} catch(PopFoul e) {
} catch(RainedOut e) {
} catch(BaseballException e) {}
// Strike not thrown in derived version.

522 Thinking in Java www.BruceEckel.com

try {
// What happens if you upcast?
Inning i = new StormyInning();
i.atBat();
// You must catch the exceptions from the
// base-class version of the method:

} catch(Strike e) {
} catch(Foul e) {
} catch(RainedOut e) {
} catch(BaseballException e) {}

}
} ///:~

In Inning, you can see that both the constructor and the event()
method say they will throw an exception, but they never do. This is
legal because it allows you to force the user to catch any exceptions
that might be added in overridden versions of event(). The same
idea holds for abstract methods, as seen in atBat().

The interface Storm is interesting because it contains one
method (event()) that is defined in Inning, and one method that
isn’t. Both methods throw a new type of exception, RainedOut.
When StormyInning extends Inning and implements
Storm, you’ll see that the event() method in Storm cannot
change the exception interface of event() in Inning. Again, this
makes sense because otherwise you’d never know if you were
catching the correct thing when working with the base class. Of
course, if a method described in an interface is not in the base
class, such as rainHard(), then there’s no problem if it throws
exceptions.

The restriction on exceptions does not apply to constructors. You
can see in StormyInning that a constructor can throw anything it
wants, regardless of what the base-class constructor throws.
However, since a base-class constructor must always be called one
way or another (here, the default constructor is called
automatically), the derived-class constructor must declare any base-
class constructor exceptions in its exception specification. Note that
a derived-class constructor cannot catch exceptions thrown by its
base-class constructor.

Chapter 10: Error Handling with Exceptions 523

The reason StormyInning.walk() will not compile is that it
throws an exception, while Inning.walk() does not. If this was
allowed, then you could write code that called Inning.walk() and
that didn’t have to handle any exceptions, but then when you
substituted an object of a class derived from Inning, exceptions
would be thrown so your code would break. By forcing the derived-
class methods to conform to the exception specifications of the
base-class methods, substitutability of objects is maintained.

The overridden event() method shows that a derived-class version
of a method may choose not to throw any exceptions, even if the
base-class version does. Again, this is fine since it doesn’t break any
code that is written assuming the base-class version throws
exceptions. Similar logic applies to atBat(), which throws
PopFoul, an exception that is derived from Foul thrown by the
base-class version of atBat(). This way, if someone writes code
that works with Inning and calls atBat(), they must catch the
Foul exception. Since PopFoul is derived from Foul, the
exception handler will also catch PopFoul.

The last point of interest is in main(). Here you can see that if
you’re dealing with exactly a StormyInning object, the compiler
forces you to catch only the exceptions that are specific to that class,
but if you upcast to the base type then the compiler (correctly)
forces you to catch the exceptions for the base type. All these
constraints produce much more robust exception-handling code3.

It’s useful to realize that although exception specifications are
enforced by the compiler during inheritance, the exception
specifications are not part of the type of a method, which is
comprised of only the method name and argument types. Therefore,
you cannot overload methods based on exception specifications. In
addition, just because an exception specification exists in a base-
class version of a method doesn’t mean that it must exist in the
derived-class version of the method. This is quite different from

3 ISO C++ added similar constraints that require derived-method exceptions to be the
same as, or derived from, the exceptions thrown by the base-class method. This is one case
in which C++ is actually able to check exception specifications at compile time.

524 Thinking in Java www.BruceEckel.com

inheritance rules, where a method in the base class must also exist
in the derived class. Put another way, the “exception specification
interface” for a particular method may narrow during inheritance
and overriding, but it may not widen – this is precisely the opposite
of the rule for the class interface during inheritance.

Performing cleanup
with finally

There’s often some piece of code that you want to execute whether
or not an exception is thrown within a try block. This usually
pertains to some operation other than memory recovery (since
that’s taken care of by the garbage collector). To achieve this effect,
you use a finally clause4 at the end of all the exception handlers.
The full picture of an exception-handling section is thus:

try {
// The guarded region: Dangerous activities
// that might throw A, B, or C

} catch (A a1) {
// Handler for situation A

} catch (B b1) {
// Handler for situation B

} catch (C c1) {
// Handler for situation C

} finally {
// Activities that happen every time

}

To demonstrate that the finally clause always runs, try this
program:

//: c10:FinallyWorks.java
// The finally clause is always executed.

4 C++ exception handling does not have the finally clause because it relies on destructors
to accomplish this sort of cleanup.

Chapter 10: Error Handling with Exceptions 525

public class FinallyWorks {
static int count = 0;
public static void main(String[] args) {

while(true) {
try {
// Post-increment is zero first time:
if(count++ == 0)

throw new Exception();
System.out.println("No exception");

} catch(Exception e) {
System.out.println("Exception thrown");

} finally {
System.out.println("In finally clause");
if(count == 2) break; // out of "while"

}
}

}
} ///:~

This program also gives a hint for how you can deal with the fact
that exceptions in Java (like exceptions in C++) do not allow you to
resume back to where the exception was thrown, as discussed
earlier. If you place your try block in a loop, you can establish a
condition that must be met before you continue the program. You
can also add a static counter or some other device to allow the loop
to try several different approaches before giving up. This way you
can build a greater level of robustness into your programs.

The output is:

Exception thrown
In finally clause
No exception
In finally clause

Whether an exception is thrown or not, the finally clause is always
executed.

526 Thinking in Java www.BruceEckel.com

What’s finally for?
In a language without garbage collection and without automatic
destructor calls5, finally is important because it allows the
programmer to guarantee the release of memory regardless of what
happens in the try block. But Java has garbage collection, so
releasing memory is virtually never a problem. Also, it has no
destructors to call. So when do you need to use finally in Java?

finally is necessary when you need to set something other than
memory back to its original state. This is usually something like an
open file or network connection, something you’ve drawn on the
screen or even a switch in the outside world, as modeled in the
following example:

//: c10:Switch.java
public class Switch {
boolean state = false;
boolean read() { return state; }
void on() { state = true; }
void off() { state = false; }

} ///:~

//: c10:OnOffSwitch.java
// Why use finally?

public class OnOffSwitch {
static Switch sw = new Switch();
public static void main(String[] args) {

try {
sw.on();
// Code that can throw exceptions...
sw.off();

} catch(NullPointerException e) {
System.out.println("NullPointerException");

5 A destructor is a function that’s always called when an object becomes unused. You
always know exactly where and when the destructor gets called. C++ has automatic
destructor calls, but Delphi’s Object Pascal versions 1 and 2 do not (which changes the
meaning and use of the concept of a destructor for that language).

Chapter 10: Error Handling with Exceptions 527

sw.off();
} catch(IllegalArgumentException e) {
System.out.println("IOException");
sw.off();

}
}

} ///:~

The goal here is to make sure that the switch is off when main() is
completed, so sw.off() is placed at the end of the try block and at
the end of each exception handler. But it’s possible that an
exception could be thrown that isn’t caught here, so sw.off()
would be missed. However, with finally you can place the cleanup
code from a try block in just one place:

//: c10:WithFinally.java
// Finally Guarantees cleanup.

public class WithFinally {
static Switch sw = new Switch();
public static void main(String[] args) {

try {
sw.on();
// Code that can throw exceptions...

} catch(NullPointerException e) {
System.out.println("NullPointerException");

} catch(IllegalArgumentException e) {
System.out.println("IOException");

} finally {
sw.off();

}
}

} ///:~

Here the sw.off() has been moved to just one place, where it’s
guaranteed to run no matter what happens.

Even in cases in which the exception is not caught in the current set
of catch clauses, finally will be executed before the exception-
handling mechanism continues its search for a handler at the next
higher level:

528 Thinking in Java www.BruceEckel.com

//: c10:AlwaysFinally.java
// Finally is always executed.

class Ex extends Exception {}

public class AlwaysFinally {
public static void main(String[] args) {

System.out.println(
"Entering first try block");

try {
System.out.println(
"Entering second try block");

try {
throw new Ex();

} finally {
System.out.println(

"finally in 2nd try block");
}

} catch(Ex e) {
System.out.println(
"Caught Ex in first try block");

} finally {
System.out.println(
"finally in 1st try block");

}
}

} ///:~

The output for this program shows you what happens:

Entering first try block
Entering second try block
finally in 2nd try block
Caught Ex in first try block
finally in 1st try block

The finally statement will also be executed in situations in which
break and continue statements are involved. Note that, along
with the labeled break and labeled continue, finally eliminates
the need for a goto statement in Java.

Chapter 10: Error Handling with Exceptions 529

Pitfall: the lost exception
In general, Java’s exception implementation is quite outstanding,
but unfortunately there’s a flaw. Although exceptions are an
indication of a crisis in your program and should never be ignored,
it’s possible for an exception to simply be lost. This happens with a
particular configuration using a finally clause:

//: c10:LostMessage.java
// How an exception can be lost.

class VeryImportantException extends Exception {
public String toString() {

return "A very important exception!";
}

}

class HoHumException extends Exception {
public String toString() {

return "A trivial exception";
}

}

public class LostMessage {
void f() throws VeryImportantException {

throw new VeryImportantException();
}
void dispose() throws HoHumException {

throw new HoHumException();
}
public static void main(String[] args)

throws Exception {
LostMessage lm = new LostMessage();
try {
lm.f();

} finally {
lm.dispose();

}
}

} ///:~

The output is:

530 Thinking in Java www.BruceEckel.com

Exception in thread "main" A trivial exception
at LostMessage.dispose(LostMessage.java:21)
at LostMessage.main(LostMessage.java:29)

You can see that there’s no evidence of the
VeryImportantException, which is simply replaced by the
HoHumException in the finally clause. This is a rather serious
pitfall, since it means that an exception can be completely lost, and
in a far more subtle and difficult-to-detect fashion than the example
above. In contrast, C++ treats the situation in which a second
exception is thrown before the first one is handled as a dire
programming error. Perhaps a future version of Java will repair the
problem.

Constructors
When writing code with exceptions, it’s particularly important that
you always ask, “If an exception occurs, will this be properly cleaned
up?” Most of the time you’re fairly safe, but in constructors there’s a
problem. The constructor puts the object into a safe starting state,
but it might perform some operation – such as opening a file – that
doesn’t get cleaned up until the user is finished with the object and
calls a special cleanup method. If you throw an exception from
inside a constructor, these cleanup behaviors might not occur
properly. This means that you must be especially diligent while you
write your constructor.

Since you’ve just learned about finally, you might think that it is
the correct solution. But it’s not quite that simple, because finally
performs the cleanup code every time, even in the situations in
which you don’t want the cleanup code executed until the cleanup
method runs. Thus, if you do perform cleanup in finally, you must
set some kind of flag when the constructor finishes normally so that
you don’t do anything in the finally block if the flag is set. Because
this isn’t particularly elegant (you are coupling your code from one
place to another), it’s best if you try to avoid performing this kind of
cleanup in finally unless you are forced to.

Chapter 10: Error Handling with Exceptions 531

In the following example, a class called InputFile is created that
opens a file and allows you to read it one line (converted into a
String) at a time. It uses the classes FileReader and
BufferedReader from the Java standard IO library that will be
discussed in Chapter 11, but which are simple enough that you
probably won’t have any trouble understanding their basic use:

//: c10:Cleanup.java
// Paying attention to exceptions
// in constructors.
import java.io.*;

class InputFile {
private BufferedReader in;
InputFile(String fname) throws Exception {

try {
in =
new BufferedReader(

new FileReader(fname));
// Other code that might throw exceptions

} catch(FileNotFoundException e) {
System.out.println(
"Could not open " + fname);

// Wasn't open, so don't close it
throw e;

} catch(Exception e) {
// All other exceptions must close it
try {
in.close();

} catch(IOException e2) {
System.out.println(

"in.close() unsuccessful");
}
throw e;

} finally {
// Don't close it here!!!

}
}
String getLine() {

String s;
try {

532 Thinking in Java www.BruceEckel.com

s = in.readLine();
} catch(IOException e) {
System.out.println(
"readLine() unsuccessful");

s = "failed";
}
return s;

}
void cleanup() {

try {
in.close();

} catch(IOException e2) {
System.out.println(
"in.close() unsuccessful");

}
}

}

public class Cleanup {
public static void main(String[] args) {

try {
InputFile in =
new InputFile("Cleanup.java");

String s;
int i = 1;
while((s = in.getLine()) != null)
System.out.println(""+ i++ + ": " + s);

in.cleanup();
} catch(Exception e) {
System.out.println(
"Caught in main, e.printStackTrace()");

e.printStackTrace();
}

}
} ///:~

The constructor for InputFile takes a String argument, which is
the name of the file you want to open. Inside a try block, it creates a
FileReader using the file name. A FileReader isn’t particularly
useful until you turn around and use it to create a
BufferedReader that you can actually talk to – notice that one of
the benefits of InputFile is that it combines these two actions.

Chapter 10: Error Handling with Exceptions 533

If the FileReader constructor is unsuccessful, it throws a
FileNotFoundException, which must be caught separately
because that’s the one case in which you don’t want to close the file
since it wasn’t successfully opened. Any other catch clauses must
close the file because it was opened by the time those catch clauses
are entered. (Of course, this is trickier if more than one method can
throw a FileNotFoundException. In that case, you might want
to break things into several try blocks.) The close() method might
throw an exception so it is tried and caught even though it’s within
the block of another catch clause – it’s just another pair of curly
braces to the Java compiler. After performing local operations, the
exception is re-thrown, which is appropriate because this
constructor failed, and you wouldn’t want the calling method to
assume that the object had been properly created and was valid.

In this example, which doesn’t use the aforementioned flagging
technique, the finally clause is definitely not the place to close()
the file, since that would close it every time the constructor
completed. Since we want the file to be open for the useful lifetime
of the InputFile object this would not be appropriate.

The getLine() method returns a String containing the next line in
the file. It calls readLine(), which can throw an exception, but
that exception is caught so getLine() doesn’t throw any
exceptions. One of the design issues with exceptions is whether to
handle an exception completely at this level, to handle it partially
and pass the same exception (or a different one) on, or whether to
simply pass it on. Passing it on, when appropriate, can certainly
simplify coding. The getLine() method becomes:

String getLine() throws IOException {
return in.readLine();

}

But of course, the caller is now responsible for handling any
IOException that might arise.

The cleanup() method must be called by the user when finished
using the InputFile object. This will release the system resources

534 Thinking in Java www.BruceEckel.com

(such as file handles) that are used by the BufferedReader and/or
FileReader objects6. You don’t want to do this until you’re
finished with the InputFile object, at the point you’re going to let it
go. You might think of putting such functionality into a finalize()
method, but as mentioned in Chapter 4 you can’t always be sure
that finalize() will be called (even if you can be sure that it will be
called, you don’t know when). This is one of the downsides to Java
– all cleanup other than memory cleanup doesn’t happen
automatically, so you must inform the client programmer that they
are responsible, and possibly guarantee that cleanup occurs using
finalize().

In Cleanup.java an InputFile is created to open the same source
file that creates the program, the file is read in a line at a time, and
line numbers are added. All exceptions are caught generically in
main(), although you could choose greater granularity.

One of the benefits of this example is to show you why exceptions
are introduced at this point in the book – you can’t do basic I/O
without using exceptions. Exceptions are so integral to
programming in Java, especially because the compiler enforces
them, that you can accomplish only so much without knowing how
to work with them.

Exception matching
When an exception is thrown, the exception-handling system looks
through the “nearest” handlers in the order they are written. When
it finds a match, the exception is considered handled, and no further
searching occurs.

Matching an exception doesn’t require a perfect match between the
exception and its handler. A derived-class object will match a
handler for the base class, as shown in this example:

//: c10:Human.java

6 In C++, a destructor would handle this for you.

Chapter 10: Error Handling with Exceptions 535

// Catching exception hierarchies.

class Annoyance extends Exception {}
class Sneeze extends Annoyance {}

public class Human {
public static void main(String[] args) {

try {
throw new Sneeze();

} catch(Sneeze s) {
System.out.println("Caught Sneeze");

} catch(Annoyance a) {
System.out.println("Caught Annoyance");

}
}

} ///:~

The Sneeze exception will be caught by the first catch clause that
it matches, which is the first one, of course. However, if you remove
the first catch clause, leaving only:

try {
throw new Sneeze();

} catch(Annoyance a) {
System.out.println("Caught Annoyance");

}

The code will still work because it’s catching the base class of
Sneeze. Put another way, catch(Annoyance e) will catch a
Annoyance or any class derived from it. This is useful because if
you decide to add more exceptions to a method, if they’re all
inherited from the same base class then the client programmer’s
code will not need changing, assuming they catch the base class, at
the very least.

If you try to “mask” the derived-class exceptions by putting the
base-class catch clause first, like this:

try {
throw new Sneeze();

} catch(Annoyance a) {
System.out.println("Caught Annoyance");

536 Thinking in Java www.BruceEckel.com

} catch(Sneeze s) {
System.out.println("Caught Sneeze");

}

the compiler will give you an error message, since it sees that the
Sneeze catch-clause can never be reached.

Exception guidelines
Use exceptions to:

1. Fix the problem and call the method that caused the exception
again.

2. Patch things up and continue without retrying the method.

3. Calculate some alternative result instead of what the method
was supposed to produce.

4. Do whatever you can in the current context and rethrow the
same exception to a higher context.

5. Do whatever you can in the current context and throw a
different exception to a higher context.

6. Terminate the program.

7. Simplify. If your exception scheme makes things more
complicated, then it is painful and annoying to use.

8. Make your library and program safer. This is a short-term
investment (for debugging) and a long-term investment (for
application robustness).

Summary
Improved error recovery is one of the most powerful ways that you
can increase the robustness of your code. Error recovery is a
fundamental concern for every program you write, and it’s
especially important in Java, in which one of the primary goals is to

Chapter 10: Error Handling with Exceptions 537

create program components for others to use. To create a robust
system, each component must be robust.

The goals for exception handling in Java are to simplify the creation
of large, reliable programs using less code than currently possible,
and with more confidence that your application doesn’t have an
unhandled error.

Exceptions are not terribly difficult to learn, and are one of those
features that provide immediate and significant benefits to your
project. Fortunately, Java enforces all aspects of exceptions so it’s
guaranteed that they will be used consistently by both library
designer and client programmer.

Exercises
1. Create a class with a main() that throws an object of class

Exception inside a try block. Give the constructor for
Exception a String argument. Catch the exception inside a
catch clause and print out the String argument. Add a
finally clause and print a message to prove you were there.

2. Create your own exception class using the extends keyword.
Write a constructor for this class that takes a String
argument and stores it inside the object with a String handle.
Write a method that prints out the stored String. Create a try-
catch clause to exercise your new exception.

3. Write a class with a method that throws an exception of the
type created in Exercise 2. Try compiling it without an
exception specification to see what the compiler says. Add the
appropriate exception specification. Try out your class and its
exception inside a try-catch clause.

4. Define an object handle and initialize it to null. Try to call a
method through this handle. Now wrap the code in a try-
catch clause to catch the exception.

5. Create a class with two methods, f() and g(). In g(), throw
an exception of a new type that you define. In f(), call g(),

538 Thinking in Java www.BruceEckel.com

catch its exception and, in the catch clause, throw a different
exception (of a second type that you define). Test your code in
main().

6. Create three new types of exceptions. Write a class with a
method that throws all three. In main(), call the method but
only use a single catch clause that will catch all three types of
exceptions.

7. Write code to generate and catch an
ArrayIndexOutOfBoundsException.

8. Create your own resumption-like behavior using a while loop
that repeats until an exception is no longer thrown.

9. Create a three-level hierarchy of exceptions. Now create a
base-class A with a method that throws an exception at the
base of your hierarchy. Inherit B from A and override the
method so it throws an exception at level two of your
hierarchy. Repeat by inheriting class C from B. In main(),
create a C and upcast it to A, then call the method.

10. Demonstrate that a derived-class constructor cannot catch
exceptions thrown by its base-class constructor.

11. Show that OnOffSwitch.java can fail by throwing a
RuntimeException inside the try block.

12. Show that WithFinally.java doesn’t fail by throwing a
RuntimeException inside the try block.

13. Modify Exercise 6 by adding a finally clause. Verify your
finally clause is executed, even if a NullPointerException
is thrown.

14. Create an example where you use a flag to control whether
cleanup code is called, as described in the second paragraph
after the heading “Constructors.”

15. Modify StormyInning.java by adding an
UmpireArgument exception type, and methods that throw
this exception. Test the modified hierarchy.

Chapter 10: Error Handling with Exceptions 539

16. Remove the first catch clause in Human.java and verify that
the code still compiles and runs properly.

17. Add a second level of exception loss to LostMessage.java so
that the HoHumException is itself replaced by a third
exception.

18. In chapter 5, find the two programs called Assert.java and
modify these to throw their own type of exception instead of
printing to System.err. This exception should be an inner
class that extends RuntimeException.

19. Add an appropriate set of exceptions to
c08:GreenhouseControls.java.

 541

11: The Java
IO System

Creating a good input/output (IO) system is one of the
more difficult tasks for the language designer.

This is evidenced by the number of different approaches. The
challenge seems to be in covering all eventualities. Not only are
there different kinds of IO that you want to communicate with
(files, the console, network connections), but you need to talk to
them in a wide variety of ways (sequential, random-access, binary,
character, by lines, by words, etc.).

The Java library designers attacked the problem by creating lots of
classes. In fact, there are so many classes for Java’s IO system that it
can be intimidating at first (ironically, the Java IO design actually
prevents an explosion of classes). There was also a significant
change in the IO library after Java 1.0. Instead of simply replacing
the old library with a new one, the designers at Sun extended the
old library and added the new one alongside it. As a result you can
sometimes end up mixing the old and new libraries and creating
even more intimidating code.

This chapter will help you understand the variety of IO classes in
the standard Java library and how to use them. The first portion of
the chapter will introduce the “old” Java 1.0 IO stream library, since
there is a significant amount of existing code that uses that library.
The remainder of the chapter will introduce the new features in the
Java 1.1 IO library. Note that when you compile some of the code in
the first part of the chapter with a Java 2 compiler you can get a
“deprecated feature” warning message at compile time. The code
still works; the compiler is just suggesting that you use certain new
features that are described in the latter part of this chapter. It is
valuable, however, to see the difference between the old and new

542 Thinking in Java www.BruceEckel.com

way of doing things and that’s why it was left in – to increase your
understanding (and to allow you to read code written for Java 1.0).

Input and output
The Java library classes for IO are divided by input and output, as
you can see by looking at the online Java class hierarchy with your
Web browser. By inheritance, all classes derived from
InputStream have basic methods called read() for reading a
single byte or array of bytes. Likewise, all classes derived from
OutputStream have basic methods called write() for writing a
single byte or array of bytes. However, you won’t generally use these
methods; they exist so more sophisticated classes can use them as
they provide a more useful interface. Thus, you’ll rarely create your
stream object by using a single class, but instead will layer multiple
objects together to provide your desired functionality. The fact that
you create more than one object to create a single resulting stream
is the primary reason that Java’s stream library is confusing.

It’s helpful to categorize the classes by their functionality. The
library designers started by deciding that all classes that had
anything to do with input would be inherited from InputStream
and all classes that were associated with output would be inherited
from OutputStream.

Types of InputStream
InputStream’s job is to represent classes that produce input from
different sources. These sources can be (and each has an associated
subclass of InputStream):

1. An array of bytes

2. A String object

3. A file

4. A “pipe,” which works like a physical pipe: you put things in
one end and they come out the other

Chapter 11: The Java IO System 543

5. A sequence of other streams, so you can collect them
together into a single stream

6. Other sources, such as an Internet connection. (This will be
discussed in a later chapter.)

In addition, the FilterInputStream is also a type of
InputStream, to provide a base class for "decorator" classes that
attach attributes or useful interfaces to input streams. This is
discussed later.

Table 10-1. Types of InputStream

Constructor Arguments Class Function

How to use it

The buffer from which to
extract the bytes.

ByteArray
-
InputStre
am

Allows a
buffer in
memory to be
used as an
InputStrea
m.

As a source of data. Connect
it to a FilterInputStream
object to provide a useful
interface.
A String. The underlying
implementation actually
uses a StringBuffer.

StringBuff
er-
InputStre
am

Converts a
String into an
InputStrea
m. As a source of data. Connect

it to a FilterInputStream
object to provide a useful
interface.
A String representing the
file name, or a File or
FileDescriptor object.

File-
InputStre
am

For reading
information
from a file.

As a source of data. Connect
it to a FilterInputStream
object to provide a useful
interface.

544 Thinking in Java www.BruceEckel.com

PipedOutputStream Piped-
InputStre
am

Produces the
data that’s
being written
to the
associated
PipedOutput
-Stream.
Implements
the “piping”
concept.

As a source of data in
multithreading. Connect it
to a FilterInputStream
object to provide a useful
interface.

Two InputStream objects
or an Enumeration for a
container of InputStream
objects.

Sequence-
InputStre
am

Converts two
or more
InputStrea
m objects into
a single
InputStrea
m.

As a source of data. Connect
it to a FilterInputStream
object to provide a useful
interface.
See Table 10-3. Filter-

InputStre
am

Abstract class
which is an
interface for
decorators
that provide
useful
functionality
to the other
InputStrea
m classes. See
Table 10-3.

See Table 10-3.

Types of OutputStream
This category includes the classes that decide where your output
will go: an array of bytes (no String, however; presumably you can
create one using the array of bytes), a file, or a “pipe.”

Chapter 11: The Java IO System 545

In addition, the FilterOutputStream provides a base class for
"decorator" classes that attach attributes or useful interfaces to
output streams. This is discussed later.

546 Thinking in Java www.BruceEckel.com

Table 10-2. Types of OutputStream

Constructor Arguments Class Function
How to use it
Optional initial size of the
buffer.

ByteArray-
OutputStre
am

Creates a buffer
in memory. All
the data that
you send to the
stream is
placed in this
buffer.

To designate the
destination of your data.
Connect it to a
FilterOutputStream
object to provide a useful
interface.
A String representing the
file name, or a File or
FileDescriptor object.

File-
OutputStre
am

For sending
information to
a file.

To designate the
destination of your data.
Connect it to a
FilterOutputStream
object to provide a useful
interface.
PipedInputStream Piped-

OutputStre
am

Any
information
you write to
this
automatically
ends up as
input for the
associated
PipedInput-
Stream.
Implements
the “piping”
concept.

To designate the
destination of your data for
multithreading. Connect it
to a FilterOutputStream
object to provide a useful
interface.

Filter-
OutputStre
am

Abstract class
which is an
interface for

See Table 10-4.

Chapter 11: The Java IO System 547

Constructor Arguments Class Function
How to use it

am interface for
decorators that
provide useful
functionality to
the other
OutputStrea
m classes. See
Table 10-4.

See Table 10-4.

Adding attributes
and useful interfaces

The use of layered objects to dynamically and transparently add
responsibilities to individual objects is referred to as the decorator
pattern. (Patterns1 are the subject of Chapter 16.) The decorator
pattern specifies that all objects that wrap around your initial object
have the same interface, to make the use of the decorators
transparent – you send the same message to an object whether it’s
been decorated or not. This is the reason for the existence of the
“filter” classes in the Java IO library: the abstract “filter” class is the
base class for all the decorators. (A decorator must have the same
interface as the object it decorates, but the decorator can also
extend the interface, which occurs in several of the “filter” classes).

Decorators are often used when subclassing requires a large
number of subclasses to support every possible combination needed
– so many that subclassing becomes impractical. The Java IO
library requires many different combinations of features which is
why the decorator pattern is a good approach. There is a drawback
to the decorator pattern, however. Decorators give you much more
flexibility while you’re writing a program (since you can easily mix
and match attributes), but they add complexity to your code. The

1 In Design Patterns, Erich Gamma et al., Addison-Wesley 1995. Described in Chapter 16.

548 Thinking in Java www.BruceEckel.com

reason that the Java IO library is awkward to use is that you must
create many classes – the “core” IO type plus all the decorators – in
order to get the single IO object that you want.

The classes that provide the decorator interface to control a
particular InputStream or OutputStream are the
FilterInputStream and FilterOutputStream – which don’t
have very intuitive names. They are derived, respectively, from
InputStream and OutputStream, and they are abstract classes,
in theory to provide a common interface for all the different ways
you want to talk to a stream. In fact, FilterInputStream and
FilterOutputStream simply mimic their base classes, which is
the key requirement of the decorator.

Reading from an InputStream
with FilterInputStream

The FilterInputStream classes accomplish two significantly
different things. DataInputStream allows you to read different
types of primitive data as well as String objects. (All the methods
start with “read,” such as readByte(), readFloat(), etc.) This,
along with its companion DataOutputStream, allows you to
move primitive data from one place to another via a stream. These
“places” are determined by the classes in Table 10-1. If you’re
reading data in blocks and parsing it yourself, you won’t need
DataInputStream, but in most other cases you will want to use it
to automatically format the data you read.

The remaining classes modify the way an InputStream behaves
internally: whether it’s buffered or unbuffered, if it keeps track of
the lines it’s reading (allowing you to ask for line numbers or set the
line number), and whether you can push back a single character.
The last two classes look a lot like support for building a compiler
(that is, they were added to support the construction of the Java
compiler), so you probably won’t use them in general programming.

Chapter 11: The Java IO System 549

You’ll probably need to buffer your input almost every time,
regardless of the IO device you’re connecting to, so it would have
made more sense for the IO library to make a special case for
unbuffered input rather than buffered input.

Table 10-3. Types of FilterInputStream

Constructor Arguments Class Function

How to use it

InputStream Data-
InputStre
am

Used in concert with
DataOutputStrea
m, so you can read
primitives (int, char,
long, etc.) from a
stream in a portable
fashion.

Contains a full interface
to allow you to read
primitive types.

550 Thinking in Java www.BruceEckel.com

InputStream, with
optional buffer size.

Buffered-
InputStre
am

Use this to prevent a
physical read every
time you want more
data. You’re saying
“Use a buffer.”

This doesn’t provide an
interface per se, just a
requirement that a
buffer be used. Attach an
interface object.
InputStream LineNum

ber-
InputStre
am

Keeps track of line
numbers in the
input stream; you
can call
getLineNumber(
) and
setLineNumber(i
nt).

This just adds line
numbering, so you’ll
probably attach an
interface object.

InputStream Pushback-
InputStre
am

Has a one byte push-
back buffer so that
you can push back
the last character
read.

Generally used in the
scanner for a compiler
and probably included
because the Java
compiler needed it. You
probably won’t use this.

Writing to an OutputStream
with FilterOutputStream
The complement to DataInputStream is DataOutputStream,
which formats each of the primitive types and String objects onto a
stream in such a way that any DataInputStream, on any
machine, can read them. All the methods start with “write,” such as
writeByte(), writeFloat(), etc.

If you want to do true formatted output, for example, to the console,
use a PrintStream. This is the endpoint that allows you to print all

Chapter 11: The Java IO System 551

of the primitive data types and String objects in a viewable format
as opposed to DataOutputStream, whose goal is to put them on a
stream in a way that DataInputStream can portably reconstruct
them. The System.out static object is a PrintStream.

The two important methods in PrintStream are print() and
println(), which are overloaded to print out all the various types.
The difference between print() and println() is that the latter
adds a newline when it’s done.

BufferedOutputStream is a modifier and tells the stream to use
buffering so you don’t get a physical write every time you write to
the stream. You’ll probably always want to use this with files, and
possibly console IO.

Table 10-4. Types of FilterOutputStream

Constructor
Arguments

Class Function

How to use it

OutputStream Data-
OutputStre
am

Used in concert with
DataInputStream
so you can write
primitives (int, char,
long, etc.) to a
stream in a portable
fashion.

Contains full
interface to allow
you to write
primitive types.
OutputStream,
with optional
boolean indicating
that the buffer is
flushed with every
newline.

PrintStrea
m

For producing
formatted output.
While
DataOutputStrea
m handles the
storage of data,
PrintStream
handles display.

Should be the “final”
wrapping for your
OutputStream
object. You’ll
probably use this a
lot.

552 Thinking in Java www.BruceEckel.com

Constructor
Arguments

Class Function

How to use it

OutputStream,
with optional buffer
size.

Buffered-
OutputStre
am

Use this to prevent a
physical write every
time you send a
piece of data. You’re
saying “Use a
buffer.” You can call
flush() to flush the
buffer.

This doesn’t provide
an interface per se,
just a requirement
that a buffer is used.
Attach an interface
object.

Off by itself:
RandomAccessFile

RandomAccessFile is used for files containing records of known
size so that you can move from one record to another using seek(),
then read or change the records. The records don’t have to be the
same size; you just have to be able to determine how big they are
and where they are placed in the file.

At first it’s a little bit hard to believe that RandomAccessFile is
not part of the InputStream or OutputStream hierarchy. It has
no association with those hierarchies other than that it happens to
implement the DataInput and DataOutput interfaces (which are
also implemented by DataInputStream and
DataOutputStream). It doesn’t even use any of the functionality
of the existing InputStream or OutputStream classes – it’s a
completely separate class, written from scratch, with all of its own
(mostly native) methods. The reason for this may be that
RandomAccessFile has essentially different behavior than the
other IO types, since you can move forward and backward within a
file. In any event, it stands alone, as a direct descendant of Object.

Essentially, a RandomAccessFile works like a
DataInputStream pasted together with a DataOutputStream

Chapter 11: The Java IO System 553

and the methods getFilePointer() to find out where you are in
the file, seek() to move to a new point in the file, and length() to
determine the maximum size of the file. In addition, the
constructors require a second argument (identical to fopen() in C)
indicating whether you are just randomly reading (“r”) or reading
and writing (“rw”). There’s no support for write-only files, which
could suggest that RandomAccessFile might have worked well if
it were inherited from DataInputStream.

What’s even more frustrating is that you could easily imagine
wanting to seek within other types of streams, such as a
ByteArrayInputStream, but the seeking methods are available
only in RandomAccessFile, which works for files only.
BufferedInputStream does allow you to mark() a position
(whose value is held in a single internal variable) and reset() to
that position, but this is limited and not too useful.

The File class
The File class has a deceiving name – you might think it refers to a
file, but it doesn’t. It can represent either the name of a particular
file or the names of a set of files in a directory. If it’s a set of files,
you can ask for the set with the list() method, and this returns an
array of String. It makes sense to return an array rather than one
of the flexible collection classes because the number of elements is
fixed, and if you want a different directory listing you just create a
different File object. In fact, “FilePath” would have been a better
name. This section shows a complete example of the use of this
class, including the associated FilenameFilter interface.

A directory lister
Suppose you’d like to see a directory listing. The File object can be
listed in two ways. If you call list() with no arguments, you’ll get
the full list that the File object contains. However, if you want a
restricted list, for example, all of the files with an extension of
.java, then you use a “directory filter,” which is a class that tells
how to select the File objects for display.

554 Thinking in Java www.BruceEckel.com

Here’s the code for the example:

//: c11:DirList.java
// Displays directory listing.
import java.io.*;

public class DirList {
public static void main(String[] args) {

try {
File path = new File(".");
String[] list;
if(args.length == 0)
list = path.list();

else
list = path.list(new DirFilter(args[0]));

for(int i = 0; i < list.length; i++)
System.out.println(list[i]);

} catch(Exception e) {
e.printStackTrace();

}
}

}

class DirFilter implements FilenameFilter {
String afn;
DirFilter(String afn) { this.afn = afn; }
public boolean accept(File dir, String name) {

// Strip path information:
String f = new File(name).getName();
return f.indexOf(afn) != -1;

}
} ///:~

The DirFilter class “implements” the interface FilenameFilter.
(Interfaces were covered in Chapter 8.) It’s useful to see how simple
the FilenameFilter interface is:

public interface FilenameFilter {
boolean accept(File dir, String name);

}

It says that all that this type of object does is provide a method
called accept(). The whole reason behind the creation of this class

Chapter 11: The Java IO System 555

is to provide the accept() method to the list() method so that
list() can call back accept() to determine which file names
should be included in the list. Thus, this technique is often referred
to as a callback or sometimes a functor (that is, DirFilter is a
functor because its only job is to hold a method). Because list()
takes a FilenameFilter object as its argument, it means that you
can pass an object of any class that implements FilenameFilter to
choose (even at run-time) how the list() method will behave. The
purpose of a callback is to provide flexibility in the behavior of code.

DirFilter shows that just because an interface contains only a set
of methods, you’re not restricted to writing only those methods.
(You must at least provide definitions for all the methods in an
interface, however.) In this case, the DirFilter constructor is also
created.

The accept() method must accept a File object representing the
directory that a particular file is found in, and a String containing
the name of that file. You might choose to use or ignore either of
these arguments, but you will probably at least use the file name.
Remember that the list() method is calling accept() for each of
the file names in the directory object to see which one should be
included – this is indicated by the boolean result returned by
accept().

To make sure that what you’re working with is only the name and
contains no path information, all you have to do is take the String
object and create a File object out of it, then call getName()
which strips away all the path information (in a platform-
independent way). Then accept() uses the String class
indexOf() method to see if the search string afn appears
anywhere in the name of the file. If afn is found within the string,
the return value is the starting index of afn, but if it’s not found the
return value is -1. Keep in mind that this is a simple string search
and does not have regular expression “wildcard” matching such as
“fo?.b?r*” which is much more difficult to implement.

The list() method returns an array. You can query this array for its
length and then move through it selecting the array elements. This

556 Thinking in Java www.BruceEckel.com

ability to easily pass an array in and out of a method is a
tremendous improvement over the behavior of C and C++.

Anonymous inner classes
This example is ideal for rewriting using an anonymous inner class
(described in Chapter 8). As a first cut, a method filter() is created
that returns a handle to a FilenameFilter:

//: c11:DirList2.java
// Uses anonymous inner classes.
import java.io.*;

public class DirList2 {
public static FilenameFilter
filter(final String afn) {

// Creation of anonymous inner class:
return new FilenameFilter() {
String fn = afn;
public boolean accept(File dir, String n) {
// Strip path information:
String f = new File(n).getName();
return f.indexOf(fn) != -1;

}
}; // End of anonymous inner class

}
public static void main(String[] args) {

try {
File path = new File(".");
String[] list;
if(args.length == 0)
list = path.list();

else
list = path.list(filter(args[0]));

for(int i = 0; i < list.length; i++)
System.out.println(list[i]);

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

Chapter 11: The Java IO System 557

Note that the argument to filter() must be final. This is required
by the anonymous inner class so that it can use an object from
outside its scope.

This design is an improvement because the FilenameFilter class
is now tightly bound to DirList2. However, you can take this
approach one step further and define the anonymous inner class as
an argument to list(), in which case it’s even smaller:

//: c11:DirList3.java
// Building the anonymous inner class "in-place."
import java.io.*;

public class DirList3 {
public static void main(final String[] args) {

try {
File path = new File(".");
String[] list;
if(args.length == 0)
list = path.list();

else
list = path.list(

new FilenameFilter() {
public boolean
accept(File dir, String n) {

String f = new File(n).getName();
return f.indexOf(args[0]) != -1;

}
});

for(int i = 0; i < list.length; i++)
System.out.println(list[i]);

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

The argument to main() is now final, since the anonymous inner
class uses args[0] directly.

This shows you how anonymous inner classes allow the creation of
quick-and-dirty classes to solve problems. Since everything in Java

558 Thinking in Java www.BruceEckel.com

revolves around classes, this can be a useful coding technique. One
benefit is that it keeps the code that solves a particular problem
isolated together in one spot. On the other hand, it is not always as
easy to read, so you must use it judiciously.

A sorted directory listing
Ah, you say that you want the file names sorted? Since there’s no
support for sorting in Java 1.0 or Java 1.1 (although sorting is
included in Java 2), it will have to be added into the program
directly using the SortList created in Chapter 9:

//: c11:SortedDirList.java
// Displays sorted directory listing.
import java.io.*;
import c09.*;

public class SortedDirList {
private File path;
private String[] list;
public SortedDirList(final String afn) {

path = new File(".");
if(afn == null)
list = path.list();

else
list = path.list(

new FilenameFilter() {
public boolean
accept(File dir, String n) {

String f = new File(n).getName();
return f.indexOf(afn) != -1;

}
});

sort();
}
void print() {

for(int i = 0; i < list.length; i++)
System.out.println(list[i]);

}
private void sort() {

StrSortList sv = new StrSortList();
for(int i = 0; i < list.length; i++)

Chapter 11: The Java IO System 559

sv.add(list[i]);
// The first time an element is pulled from
// the StrSortList the list is sorted:
for(int i = 0; i < list.length; i++)
list[i] = sv.get(i);

}
// Test it:
public static void main(String[] args) {

SortedDirList sd;
if(args.length == 0)
sd = new SortedDirList(null);

else
sd = new SortedDirList(args[0]);

sd.print();
}

} ///:~

A few other improvements have been made. Instead of creating
path and list as local variables to main(), they are members of
the class so their values can be accessible for the lifetime of the
object. In fact, main() is now just a way to test the class. You can
see that the constructor of the class automatically sorts the list once
that list has been created.

The sort is case-insensitive so you don’t end up with a list of all the
words starting with capital letters, followed by the rest of the words
starting with all the lowercase letters. However, you’ll notice that
within a group of file names that begin with the same letter the
capitalized words are listed first, which is still not quite the desired
behavior for the sort. This problem will be fixed in Java 2.

Checking for and creating
directories
The File class is more than just a representation for an existing
directory path, file, or group of files. You can also use a File object
to create a new directory or an entire directory path if it doesn’t
exist. You can also look at the characteristics of files (size, last
modification date, read/write), see whether a File object represents

560 Thinking in Java www.BruceEckel.com

a file or a directory, and delete a file. This program shows the
remaining methods available with the File class:

//: c11:MakeDirectories.java
// Demonstrates the use of the File class to
// create directories and manipulate files.
import java.io.*;

public class MakeDirectories {
private final static String usage =

"Usage:MakeDirectories path1 ...\n" +
"Creates each path\n" +
"Usage:MakeDirectories -d path1 ...\n" +
"Deletes each path\n" +
"Usage:MakeDirectories -r path1 path2\n" +
"Renames from path1 to path2\n";

private static void usage() {
System.err.println(usage);
System.exit(1);

}
private static void fileData(File f) {

System.out.println(
"Absolute path: " + f.getAbsolutePath() +
"\n Can read: " + f.canRead() +
"\n Can write: " + f.canWrite() +
"\n getName: " + f.getName() +
"\n getParent: " + f.getParent() +
"\n getPath: " + f.getPath() +
"\n length: " + f.length() +
"\n lastModified: " + f.lastModified());

if(f.isFile())
System.out.println("it's a file");

else if(f.isDirectory())
System.out.println("it's a directory");

}
public static void main(String[] args) {

if(args.length < 1) usage();
if(args[0].equals("-r")) {
if(args.length != 3) usage();
File
old = new File(args[1]),
rname = new File(args[2]);

Chapter 11: The Java IO System 561

old.renameTo(rname);
fileData(old);
fileData(rname);
return; // Exit main

}
int count = 0;
boolean del = false;
if(args[0].equals("-d")) {
count++;
del = true;

}
for(; count < args.length; count++) {
File f = new File(args[count]);
if(f.exists()) {
System.out.println(f + " exists");
if(del) {

System.out.println("deleting..." + f);
f.delete();

}
}
else { // Doesn't exist
if(!del) {

f.mkdirs();
System.out.println("created " + f);

}
}
fileData(f);

}
}

} ///:~

In fileData() you can see the various file investigation methods
put to use to display information about the file or directory path.

The first method that’s exercised by main() is renameTo(),
which allows you to rename (or move) a file to an entirely new path
represented by the argument, which is another File object. This
also works with directories of any length.

If you experiment with the above program, you’ll find that you can
make a directory path of any complexity because mkdirs() will do
all the work for you. In Java 1.0, the -d flag reports that the

562 Thinking in Java www.BruceEckel.com

directory is deleted but it’s still there; in Java 1.1 the directory is
actually deleted.

Typical uses of IO streams
Although there are a lot of IO stream classes in the library that can
be combined in many different ways, there are just a few ways that
you’ll probably end up using them. However, they require attention
to get the correct combinations. The following rather long example
shows the creation and use of typical IO configurations so you can
use it as a reference when writing your own code. Note that each
configuration begins with a commented number and title that
corresponds to the heading for the appropriate explanation that
follows in the text.

//: c11:IOStreamDemo.java
// Typical IO stream configurations.
import java.io.*;
import com.bruceeckel.tools.*;

public class IOStreamDemo {
public static void main(String[] args) {

try {
// 1. Buffered input file
DataInputStream in =
new DataInputStream(

new BufferedInputStream(
new FileInputStream(args[0])));

String s, s2 = new String();
while((s = in.readLine())!= null)
s2 += s + "\n";

in.close();

// 2. Input from memory
StringBufferInputStream in2 =

new StringBufferInputStream(s2);
int c;
while((c = in2.read()) != -1)
System.out.print((char)c);

Chapter 11: The Java IO System 563

// 3. Formatted memory input
try {
DataInputStream in3 =

new DataInputStream(
new StringBufferInputStream(s2));

while(true)
System.out.print((char)in3.readByte());

} catch(EOFException e) {
System.out.println(

"End of stream encountered");
}

// 4. Line numbering & file output
try {
LineNumberInputStream li =

new LineNumberInputStream(
new StringBufferInputStream(s2));

DataInputStream in4 =
new DataInputStream(li);

PrintStream out1 =
new PrintStream(
new BufferedOutputStream(

new FileOutputStream(
"IODemo.out")));

while((s = in4.readLine()) != null)
out1.println(
"Line " + li.getLineNumber() + s);

out1.close(); // finalize() not reliable!
} catch(EOFException e) {
System.out.println(

"End of stream encountered");
}

// 5. Storing & recovering data
try {
DataOutputStream out2 =

new DataOutputStream(
new BufferedOutputStream(

new FileOutputStream("Data.txt")));
out2.writeBytes(

"Here's the value of pi: \n");
out2.writeDouble(3.14159);

564 Thinking in Java www.BruceEckel.com

out2.close();
DataInputStream in5 =

new DataInputStream(
new BufferedInputStream(

new FileInputStream("Data.txt")));
System.out.println(in5.readLine());
System.out.println(in5.readDouble());

} catch(EOFException e) {
System.out.println(

"End of stream encountered");
}

// 6. Reading/writing random access files
RandomAccessFile rf =
new RandomAccessFile("rtest.dat", "rw");

for(int i = 0; i < 10; i++)
rf.writeDouble(i*1.414);

rf.close();

rf =
new RandomAccessFile("rtest.dat", "rw");

rf.seek(5*8);
rf.writeDouble(47.0001);
rf.close();

rf =
new RandomAccessFile("rtest.dat", "r");

for(int i = 0; i < 10; i++)
System.out.println(

"Value " + i + ": " +
rf.readDouble());

rf.close();

// 7. File input shorthand
InFile in6 = new InFile(args[0]);
String s3 = new String();
System.out.println(
"First line in file: " +
in6.readLine());
in6.close();

// 8. Formatted file output shorthand

Chapter 11: The Java IO System 565

PrintFile out3 = new PrintFile("Data2.txt");
out3.print("Test of PrintFile");
out3.close();

// 9. Data file output shorthand
OutFile out4 = new OutFile("Data3.txt");
out4.writeBytes("Test of outDataFile\n\r");
out4.writeChars("Test of outDataFile\n\r");
out4.close();

} catch(FileNotFoundException e) {
System.out.println(
"File Not Found:" + args[0]);

} catch(IOException e) {
System.out.println("IO Exception");

}
}

} ///:~

Input streams
Of course, one common thing you’ll want to do is print formatted
output to the console, but that’s already been simplified in the
package com.bruceeckel.tools created in Chapter 5.

Parts 1 through 4 demonstrate the creation and use of input streams
(although part 4 also shows the simple use of an output stream as a
testing tool).

1. Buffered input file
To open a file for input, you use a FileInputStream with a String
or a File object as the file name. For speed, you’ll want that file to
be buffered so you give the resulting handle to the constructor for a
BufferedInputStream. To read input in a formatted fashion, you
give that resulting handle to the constructor for a
DataInputStream, which is your final object and the interface
you read from.

In this example, only the readLine() method is used, but of
course any of the DataInputStream methods are available. When

566 Thinking in Java www.BruceEckel.com

you reach the end of the file, readLine() returns null so that is
used to break out of the while loop.

The String s2 is used to accumulate the entire contents of the file
(including newlines that must be added since readLine() strips
them off). s2 is then used in the later portions of this program.
Finally, close() is called to close the file. Technically, close() will
be called when finalize() is run, and this is supposed to happen
(whether or not garbage collection occurs) as the program exits.
However, Java 1.0 has a rather important bug, so this doesn’t
happen. In Java 1.1 you must explicitly call
System.runFinalizersOnExit(true) to guarantee that
finalize() will be called for every object in the system. The safest
approach is to explicitly call close() for files.

2. Input from memory
This piece takes the String s2 that now contains the entire
contents of the file and uses it to create a
StringBufferInputStream. (A String, not a StringBuffer, is
required as the constructor argument.) Then read() is used to read
each character one at a time and send it out to the console. Note
that read() returns the next byte as an int and thus it must be cast
to a char to print properly.

3. Formatted memory input
The interface for StringBufferInputStream is limited, so you
usually enhance it by wrapping it inside a DataInputStream.
However, if you choose to read the characters out a byte at a time
using readByte(), any value is valid so the return value cannot be
used to detect the end of input. Instead, you can use the
available() method to find out how many more characters are
available. Here’s an example that shows how to read a file one byte
at a time:

//: c11:TestEOF.java
// Testing for the end of file
// while reading a byte at a time.
import java.io.*;

Chapter 11: The Java IO System 567

public class TestEOF {
public static void main(String[] args) {

try {
DataInputStream in =
new DataInputStream(
new BufferedInputStream(
new FileInputStream("TestEof.java")));

while(in.available() != 0)
System.out.print((char)in.readByte());

} catch (IOException e) {
System.err.println("IOException");

}
}

} ///:~

Note that available() works differently depending on what sort of
medium you’re reading from – it’s literally “the number of bytes
that can be read without blocking.” With a file this means the whole
file, but with a different kind of stream this might not be true, so
use it thoughtfully.

You could also detect the end of input in cases like these by catching
an exception. However, the use of exceptions for control flow is
considered a misuse of that feature.

4. Line numbering and file output
This example shows the use of the LineNumberInputStream to
keep track of the input line numbers. Here, you cannot simply gang
all the constructors together, since you have to keep a handle to the
LineNumberInputStream. (Note that this is not an inheritance
situation, so you cannot simply cast in4 to a
LineNumberInputStream.) Thus, li holds the handle to the
LineNumberInputStream, which is then used to create a
DataInputStream for easy reading.

This example also shows how to write formatted data to a file. First,
a FileOutputStream is created to connect to the file. For
efficiency, this is made a BufferedOutputStream, which is what
you’ll virtually always want to do, but you’re forced to do it

568 Thinking in Java www.BruceEckel.com

explicitly. Then for the formatting it’s turned into a PrintStream.
The data file created this way is readable as an ordinary text file.

One of the methods that indicates when a DataInputStream is
exhausted is readLine(), which returns null when there are no
more strings to read. Each line is printed to the file along with its
line number, which is acquired through li.

You’ll see an explicit close() for out1, which would make sense if
the program were to turn around and read the same file again.
However, this program ends without ever looking at the file
IODemo.out. As mentioned before, if you don’t call close() for
all your output files, you might discover that the buffers don’t get
flushed so they’re incomplete.

Output streams
The two primary kinds of output streams are separated by the way
they write data: one writes it for human consumption, and the other
writes it to be re-acquired by a DataInputStream. The
RandomAccessFile stands alone, although its data format is
compatible with the DataInputStream and
DataOutputStream.

5. Storing and recovering data
A PrintStream formats data so it’s readable by a human. To
output data so that it can be recovered by another stream, you use a
DataOutputStream to write the data and a DataInputStream
to recover the data. Of course, these streams could be anything, but
here a file is used, buffered for both reading and writing.

Note that the character string is written using writeBytes() and
not writeChars(). If you use the latter, you’ll be writing the 16-bit
Unicode characters. Since there is no complementary “readChars”
method in DataInputStream, you’re stuck pulling these
characters off one at a time with readChar(). So for ASCII, it’s
easier to write the characters as bytes followed by a newline; then
use readLine() to read back the bytes as a regular ASCII line.

Chapter 11: The Java IO System 569

The writeDouble() stores the double number to the stream and
the complementary readDouble() recovers it. But for any of the
reading methods to work correctly, you must know the exact
placement of the data item in the stream, since it would be equally
possible to read the stored double as a simple sequence of bytes, or
as a char, etc. So you must either have a fixed format for the data in
the file or extra information must be stored in the file that you parse
to determine where the data is located.

6. Reading and writing random access files
As previously noted, the RandomAccessFile is almost totally
isolated from the rest of the IO hierarchy, save for the fact that it
implements the DataInput and DataOutput interfaces. So you
cannot combine it with any of the aspects of the InputStream and
OutputStream subclasses. Even though it might make sense to
treat a ByteArrayInputStream as a random access element, you
can use RandomAccessFile to only open a file. You must assume
a RandomAccessFile is properly buffered since you cannot add
that.

The one option you have is in the second constructor argument: you
can open a RandomAccessFile to read (“r”) or read and write
(“rw”).

Using a RandomAccessFile is like using a combined
DataInputStream and DataOutputStream (because it
implements the equivalent interfaces). In addition, you can see that
seek() is used to move about in the file and change one of the
values.

Shorthand for file manipulation
Since there are certain canonical forms that you’ll be using regularly
with files, you may wonder why you have to do all of that typing –
this is one of the drawbacks of the decorator pattern. This portion
shows the creation and use of shorthand versions of typical file
reading and writing configurations. These shorthands are placed in
the package com.bruceeckel.tools that was begun in Chapter 5

570 Thinking in Java www.BruceEckel.com

(See page 259). To add each class to the library, simply place it in
the appropriate directory and add the package statement.

7. File input shorthand
The creation of an object that reads a file from a buffered
DataInputStream can be encapsulated into a class called InFile:

//: com:bruceeckel:tools:InFile.java
// Shorthand class for opening an input file.
package com.bruceeckel.tools;
import java.io.*;

public class InFile extends DataInputStream {
public InFile(String filename)

throws FileNotFoundException {
super(
new BufferedInputStream(
new FileInputStream(filename)));

}
public InFile(File file)

throws FileNotFoundException {
this(file.getPath());

}
} ///:~

Both the String versions of the constructor and the File versions
are included, to parallel the creation of a FileInputStream.

Now you can reduce your chances of repetitive stress syndrome
while creating files, as seen in the example.

8. Formatted file output shorthand
The same kind of approach can be taken to create a PrintStream
that writes to a buffered file. Here’s the extension to
com.bruceeckel.tools:

//: com:bruceeckel:tools:PrintFile.java
// Shorthand class for opening an output file
// for human-readable output.
package com.bruceeckel.tools;
import java.io.*;

Chapter 11: The Java IO System 571

public class PrintFile extends PrintStream {
public PrintFile(String filename)

throws IOException {
super(
new BufferedOutputStream(
new FileOutputStream(filename)));

}
public PrintFile(File file)

throws IOException {
this(file.getPath());

}
} ///:~

Note that it is not possible for a constructor to catch an exception
that’s thrown by a base-class constructor.

9. Data file output shorthand
Finally, the same kind of shorthand can create a buffered output file
for data storage (as opposed to human-readable storage):

//: com:bruceeckel:tools:OutFile.java
// Shorthand class for opening an output file
// for data storage.
package com.bruceeckel.tools;
import java.io.*;

public class OutFile extends DataOutputStream {
public OutFile(String filename)

throws IOException {
super(
new BufferedOutputStream(
new FileOutputStream(filename)));

}
public OutFile(File file)

throws IOException {
this(file.getPath());

}
} ///:~

It is curious (and unfortunate) that the Java library designers didn’t
think to provide these conveniences as part of their standard.

572 Thinking in Java www.BruceEckel.com

Reading from standard input
Following the approach pioneered in Unix of “standard input,”
“standard output,” and “standard error output,” Java has
System.in, System.out, and System.err. Throughout the book
you’ve seen how to write to standard output using System.out,
which is already pre-wrapped as a PrintStream object.
System.err is likewise a PrintStream, but System.in is a raw
InputStream, with no wrapping. This means that while you can
use System.out and System.err right away, System.in must be
wrapped before you can read from it.

Typically, you’ll want to read input a line at a time using
readLine(), so you’ll want to wrap System.in in a
DataInputStream. This is the “old” Java 1.0 way to do line input.
A bit later in the chapter you’ll see the Java 1.1 solution. Here’s an
example that simply echoes each line that you type in:

//: c11:Echo.java
// How to read from standard input.
import java.io.*;

public class Echo {
public static void main(String[] args) {

DataInputStream in =
new DataInputStream(
new BufferedInputStream(System.in));

String s;
try {
while((s = in.readLine()).length() != 0)
System.out.println(s);

// An empty line terminates the program
} catch(IOException e) {
e.printStackTrace();

}
}

} ///:~

The reason for the try block is that readLine() can throw an
IOException. Note that System.in should also be buffered, as
with most streams.

Chapter 11: The Java IO System 573

It’s a bit inconvenient that you’re forced to wrap System.in in a
DataInputStream in each program, but perhaps it was designed
this way to allow maximum flexibility.

Piped streams
The PipedInputStream and PipedOutputStream have been
mentioned only briefly in this chapter. This is not to suggest that
they aren’t useful, but their value is not apparent until you begin to
understand multithreading, since the piped streams are used to
communicate between threads. This is covered along with an
example in Chapter 14.

StreamTokenizer
Although StreamTokenizer is not derived from InputStream or
OutputStream, it works only with InputStream objects, so it
rightfully belongs in the IO portion of the library.

The StreamTokenizer class is used to break any InputStream
into a sequence of “tokens,” which are bits of text delimited by
whatever you choose. For example, your tokens could be words, and
then they would be delimited by white space and punctuation.

Consider a program to count the occurrence of words in a text file:

//: c11:SortedWordCount.java
// Counts words in a file, outputs
// results in sorted form.
import java.io.*;
import java.util.*;
import c09.*; // Contains StrSortList

class Counter {
private int i = 1;
int read() { return i; }
void increment() { i++; }

}

public class SortedWordCount {

574 Thinking in Java www.BruceEckel.com

private FileReader file;
private StreamTokenizer st;
private HashMap counts = new HashMap();
SortedWordCount(String filename)

throws FileNotFoundException {
try {
file = new FileReader(filename);
st = new StreamTokenizer(
new BufferedReader(file));

st.ordinaryChar('.');
st.ordinaryChar('-');

} catch(FileNotFoundException e) {
System.out.println(
"Could not open " + filename);

throw e;
}

}
void cleanup() {

try {
file.close();

} catch(IOException e) {
System.out.println(
"file.close() unsuccessful");

}
}
void countWords() {

try {
while(st.nextToken() !=
StreamTokenizer.TT_EOF) {
String s;
switch(st.ttype) {

case StreamTokenizer.TT_EOL:
s = new String("EOL");
break;

case StreamTokenizer.TT_NUMBER:
s = Double.toString(st.nval);
break;

case StreamTokenizer.TT_WORD:
s = st.sval; // Already a String
break;

default: // single character in ttype
s = String.valueOf((char)st.ttype);

Chapter 11: The Java IO System 575

}
if(counts.containsKey(s))

((Counter)counts.get(s)).increment();
else

counts.put(s, new Counter());
}

} catch(IOException e) {
System.out.println(
"st.nextToken() unsuccessful");

}
}
Collection values() {

return counts.values();
}
Set keySet() { return counts.keySet(); }
Counter getCounter(String s) {

return (Counter)counts.get(s);
}
Iterator sortedKeys() {

Iterator e = counts.keySet().iterator();
StrSortList sv = new StrSortList();
while(e.hasNext())
sv.add((String)e.next());

// This call forces a sort:
return sv.iterator();

}
public static void main(String[] args) {

try {
SortedWordCount wc =
new SortedWordCount(args[0]);

wc.countWords();
Iterator keys = wc.sortedKeys();
while(keys.hasNext()) {
String key = (String)keys.next();
System.out.println(key + ": "

+ wc.getCounter(key).read());
}
wc.cleanup();

} catch(Exception e) {
e.printStackTrace();

}
}

576 Thinking in Java www.BruceEckel.com

} ///:~

It makes sense to present these in a sorted form, but since Java 1.0
and Java 1.1 don’t have any sorting methods, that will have to be
mixed in. This is easy enough to do with a StrSortList. (This was
created in Chapter 9, and is part of the package created in that
chapter. Remember that the starting directory for all the
subdirectories in this book must be in your class path for the
program to compile successfully.)

To open the file, a FileInputStream is used, and to turn the file
into words a StreamTokenizer is created from the
FileInputStream. In StreamTokenizer, there is a default list of
separators, and you can add more with a set of methods. Here,
ordinaryChar() is used to say “This character has no significance
that I’m interested in,” so the parser doesn’t include it as part of any
of the words that it creates. For example, saying
st.ordinaryChar('.') means that periods will not be included as
parts of the words that are parsed. You can find more information
in the online documentation that comes with Java.

In countWords(), the tokens are pulled one at a time from the
stream, and the ttype information is used to determine what to do
with each token, since a token can be an end-of-line, a number, a
string, or a single character.

Once a token is found, the HashMap counts is queried to see if it
already contains the token as a key. If it does, the corresponding
Counter object is incremented to indicate that another instance of
this word has been found. If not, a new Counter is created – since
the Counter constructor initializes its value to one, this also acts to
count the word.

SortedWordCount is not a type of HashMap, so it wasn’t
inherited. It performs a specific type of functionality, so even
though the keys() and values() methods must be re-exposed,
that still doesn’t mean that inheritance should be used since a
number of HashMap methods are inappropriate here. In addition,
other methods like getCounter(), which get the Counter for a
particular String, and sortedKeys(), which produces an

Chapter 11: The Java IO System 577

Iterator, finish the change in the shape of SortedWordCount’s
interface.

In main() you can see the use of a SortedWordCount to open
and count the words in a file – it just takes two lines of code. Then
an Iterator to a sorted list of keys (words) is extracted, and this is
used to pull out each key and associated Count. Note that the call
to cleanup() is necessary to ensure that the file is closed.

StringTokenizer
Although it isn’t part of the IO library, the StringTokenizer has
sufficiently similar functionality to StreamTokenizer that it will
be described here.

The StringTokenizer returns the tokens within a string one at a
time. These tokens are consecutive characters delimited by tabs,
spaces, and newlines. Thus, the tokens of the string “Where is my
cat?” are “Where”, “is”, “my”, and “cat?” Like the
StreamTokenizer, you can tell the StringTokenizer to break
up the input in any way that you want, but with StringTokenizer
you do this by passing a second argument to the constructor, which
is a String of the delimiters you wish to use. In general, if you need
more sophistication, use a StreamTokenizer.

You ask a StringTokenizer object for the next token in the string
using the nextToken() method, which either returns the token or
an empty string to indicate that no tokens remain.

As an example, the following program performs a limited analysis of
a sentence, looking for key phrase sequences to indicate whether
happiness or sadness is implied.

//: c11:AnalyzeSentence.java
// Look for particular sequences
// within sentences.
import java.util.*;

public class AnalyzeSentence {
public static void main(String[] args) {

analyze("I am happy about this");

578 Thinking in Java www.BruceEckel.com

analyze("I am not happy about this");
analyze("I am not! I am happy");
analyze("I am sad about this");
analyze("I am not sad about this");
analyze("I am not! I am sad");
analyze("Are you happy about this?");
analyze("Are you sad about this?");
analyze("It's you! I am happy");
analyze("It's you! I am sad");

}
static StringTokenizer st;
static void analyze(String s) {

prt("\nnew sentence >> " + s);
boolean sad = false;
st = new StringTokenizer(s);
while (st.hasMoreTokens()) {
String token = next();
// Look until you find one of the
// two starting tokens:
if(!token.equals("I") &&

!token.equals("Are"))
continue; // Top of while loop

if(token.equals("I")) {
String tk2 = next();
if(!tk2.equals("am")) // Must be after I

break; // Out of while loop
else {

String tk3 = next();
if(tk3.equals("sad")) {
sad = true;
break; // Out of while loop

}
if (tk3.equals("not")) {
String tk4 = next();
if(tk4.equals("sad"))

break; // Leave sad false
if(tk4.equals("happy")) {

sad = true;
break;

}
}

}

Chapter 11: The Java IO System 579

}
if(token.equals("Are")) {
String tk2 = next();
if(!tk2.equals("you"))

break; // Must be after Are
String tk3 = next();
if(tk3.equals("sad"))

sad = true;
break; // Out of while loop

}
}
if(sad) prt("Sad detected");

}
static String next() {

if(st.hasMoreTokens()) {
String s = st.nextToken();
prt(s);
return s;

}
else
return "";

}
static void prt(String s) {

System.out.println(s);
}

} ///:~

For each string being analyzed, a while loop is entered and tokens
are pulled off the string. Notice the first if statement, which says to
continue (go back to the beginning of the loop and start again) if
the token is neither an “I” nor an “Are.” This means that it will get
tokens until an “I” or an “Are” is found. You might think to use the
== instead of the equals() method, but that won’t work correctly,
since == compares handle values while equals() compares
contents.

The logic of the rest of the analyze() method is that the pattern
that’s being searched for is “I am sad,” “I am not happy,” or “Are
you sad?” Without the break statement, the code for this would be
even messier than it is. You should be aware that a typical parser
(this is a primitive example of one) normally has a table of these

580 Thinking in Java www.BruceEckel.com

tokens and a piece of code that moves through the states in the table
as new tokens are read.

You should think of the StringTokenizer only as shorthand for a
simple and specific kind of StreamTokenizer. However, if you
have a String that you want to tokenize and StringTokenizer is
too limited, all you have to do is turn it into a stream with
StringBufferInputStream and then use that to create a much
more powerful StreamTokenizer.

Java 1.1 IO streams
At this point you might be scratching your head, wondering if there
is another design for IO streams that could require more typing.
Could someone have come up with an odder design?” Prepare
yourself: Java 1.1 makes some significant modifications to the IO
stream library. When you see the Reader and Writer classes your
first thought (like mine) might be that these were meant to replace
the InputStream and OutputStream classes. But that’s not the
case. Although some aspects of the original streams library are
deprecated (if you use them you will receive a warning from the
compiler), the old streams have been left in for backwards
compatibility and:

1. New classes have been put into the old hierarchy, so it’s
obvious that Sun is not abandoning the old streams.

2. There are times when you’re supposed to use classes in the
old hierarchy in combination with classes in the new
hierarchy and to accomplish this there are “bridge” classes:
InputStreamReader converts an InputStream to a
Reader and OutputStreamWriter converts an
OutputStream to a Writer.

As a result there are situations in which you have more layers of
wrapping with the new IO stream library than with the old. Again,
this is a drawback of the decorator pattern – the price you pay for
added flexibility.

Chapter 11: The Java IO System 581

The most important reason for adding the Reader and Writer
hierarchies in Java 1.1 is for internationalization. The old IO stream
hierarchy supports only 8-bit byte streams and doesn’t handle the
16-bit Unicode characters well. Since Unicode is used for
internationalization (and Java’s native char is 16-bit Unicode), the
Reader and Writer hierarchies were added to support Unicode in
all IO operations. In addition, the new libraries are designed for
faster operations than the old.

As is the practice in this book, I will attempt to provide an overview
of the classes but assume that you will use online documentation to
determine all the details, such as the exhaustive list of methods.

Sources and sinks of data
Almost all of the Java 1.0 IO stream classes have corresponding
Java 1.1 classes to provide native Unicode manipulation. It would be
easiest to say “Always use the new classes, never use the old ones,”
but things are not that simple. Sometimes you are forced into using
the Java 1.0 IO stream classes because of the library design; in
particular, the java.util.zip libraries are new additions to the old
stream library and they rely on old stream components. So the most
sensible approach to take is to try to use the Reader and Writer
classes whenever you can, and you’ll discover the situations when
you have to drop back into the old libraries because your code won’t
compile.

Here is a table that shows the correspondence between the sources
and sinks of information (that is, where the data physically comes
from or goes to) in the old and new libraries.

Sources & Sinks:
Java 1.0 class

Corresponding Java 1.1 class

InputStream Reader
converter:
InputStreamReader

OutputStream Writer
converter:
OutputStreamWriter

582 Thinking in Java www.BruceEckel.com

FileInputStream FileReader
FileOutputStream FileWriter
StringBufferInputStr
eam

StringReader

(no corresponding class) StringWriter
ByteArrayInputStrea
m

CharArrayReader

ByteArrayOutputStre
am

CharArrayWriter

PipedInputStream PipedReader
PipedOutputStream PipedWriter

In general, you’ll find that the interfaces in the old library
components and the new ones are similar if not identical.

Modifying stream behavior
In Java 1.0, streams were adapted for particular needs using
“decorator” subclasses of FilterInputStream and
FilterOutputStream. Java 1.1 IO streams continues the use of
this idea, but the model of deriving all of the decorators from the
same “filter” base class is not followed. This can make it a bit
confusing if you’re trying to understand it by looking at the class
hierarchy.

In the following table, the correspondence is a rougher
approximation than in the previous table. The difference is because
of the class organization: while BufferedOutputStream is a
subclass of FilterOutputStream, BufferedWriter is not a
subclass of FilterWriter (which, even though it is abstract, has
no subclasses and so appears to have been put in either as a
placeholder or simply so you wouldn’t wonder where it was).
However, the interfaces to the classes are quite a close match and
it’s apparent that you’re supposed to use the new versions instead of
the old whenever possible (that is, except in cases where you’re
forced to produce a Stream instead of a Reader or Writer).

Filters:
Java 1.0 class

Corresponding Java 1.1 class

Chapter 11: The Java IO System 583

Filters:
Java 1.0 class

Corresponding Java 1.1 class

FilterInputStream FilterReader
FilterOutputStream FilterWriter (abstract class

with no subclasses)
BufferedInputStrea
m

BufferedReader
(also has readLine())

BufferedOutputStre
am

BufferedWriter

DataInputStream use DataInputStream
(Except when you need to use
readLine(), when you should use
a BufferedReader)

PrintStream PrintWriter
LineNumberInputSt
ream

LineNumberReader

StreamTokenizer StreamTokenizer
(use constructor that takes a
Reader instead)

PushBackInputStrea
m

PushBackReader

There’s one direction that’s quite clear: Whenever you want to use
readLine(), you shouldn’t do it with a DataInputStream any
more (this is met with a deprecation message at compile time), but
instead use a BufferedReader. Other than this,
DataInputStream is still a “preferred” member of the Java 1.1 IO
library.

To make the transition to using a PrintWriter easier, it has
constructors that take any OutputStream object. However,
PrintWriter has no more support for formatting than
PrintStream does; the interfaces are virtually the same.

Unchanged Classes
Apparently, the Java library designers felt that they got some of the
classes right the first time so there were no changes to these and
you can go on using them as they are:

584 Thinking in Java www.BruceEckel.com

Java 1.0 classes without
corresponding Java 1.1
classes
DataOutputStream
File
RandomAccessFile
SequenceInputStream

The DataOutputStream, in particular, is used without change, so
for storing and retrieving data in a transportable format you’re
forced to stay in the InputStream and OutputStream
hierarchies.

An example
To see the effect of the new classes, let’s look at the appropriate
portion of the IOStreamDemo.java example modified to use the
Reader and Writer classes:

//: c11:NewIODemo.java
// Java 1.1 IO typical usage.
import java.io.*;

public class NewIODemo {
public static void main(String[] args) {

try {
// 1. Reading input by lines:
BufferedReader in =
new BufferedReader(

new FileReader(args[0]));
String s, s2 = new String();
while((s = in.readLine())!= null)
s2 += s + "\n";

in.close();

// 1b. Reading standard input:
BufferedReader stdin =
new BufferedReader(

new InputStreamReader(System.in));
System.out.print("Enter a line:");

Chapter 11: The Java IO System 585

System.out.println(stdin.readLine());

// 2. Input from memory
StringReader in2 = new StringReader(s2);
int c;
while((c = in2.read()) != -1)
System.out.print((char)c);

// 3. Formatted memory input
try {
DataInputStream in3 =

new DataInputStream(
// Oops: must use deprecated class:
new StringBufferInputStream(s2));

while(true)
System.out.print((char)in3.readByte());

} catch(EOFException e) {
System.out.println("End of stream");

}

// 4. Line numbering & file output
try {
LineNumberReader li =

new LineNumberReader(
new StringReader(s2));

BufferedReader in4 =
new BufferedReader(li);

PrintWriter out1 =
new PrintWriter(
new BufferedWriter(

new FileWriter("IODemo.out")));
while((s = in4.readLine()) != null)

out1.println(
"Line " + li.getLineNumber() + s);

out1.close();
} catch(EOFException e) {
System.out.println("End of stream");

}

// 5. Storing & recovering data
try {
DataOutputStream out2 =

586 Thinking in Java www.BruceEckel.com

new DataOutputStream(
new BufferedOutputStream(

new FileOutputStream("Data.txt")));
out2.writeDouble(3.14159);
out2.writeBytes("That was pi");
out2.close();
DataInputStream in5 =

new DataInputStream(
new BufferedInputStream(

new FileInputStream("Data.txt")));
BufferedReader in5br =

new BufferedReader(
new InputStreamReader(in5));

// Must use DataInputStream for data:
System.out.println(in5.readDouble());
// Can now use the "proper" readLine():
System.out.println(in5br.readLine());

} catch(EOFException e) {
System.out.println("End of stream");

}

// 6. Reading and writing random access
// files is the same as before.
// (not repeated here)

} catch(FileNotFoundException e) {
System.out.println(
"File Not Found:" + args[1]);

} catch(IOException e) {
System.out.println("IO Exception");

}
}

} ///:~

In general, you’ll see that the conversion is fairly straightforward
and the code looks quite similar. There are some important
differences, though. First of all, since random access files have not
changed, section 6 is not repeated.

Section 1 shrinks a bit because if all you’re doing is reading line
input you need only to wrap a BufferedReader around a
FileReader. Section 1b shows the new way to wrap System.in for

Chapter 11: The Java IO System 587

reading console input, and this expands because System.in is a
DataInputStream and BufferedReader needs a Reader
argument, so InputStreamReader is brought in to perform the
translation.

In section 2 you can see that if you have a String and want to read
from it you just use a StringReader instead of a
StringBufferInputStream and the rest of the code is identical.

Section 3 shows a bug in the design of the new IO stream library. If
you have a String and you want to read from it, you’re not
supposed to use a StringBufferInputStream any more. When
you compile code involving a StringBufferInputStream
constructor, you get a deprecation message telling you to not use it.
Instead, you’re supposed to use a StringReader. However, if you
want to do formatted memory input as in section 3, you’re forced to
use a DataInputStream – there is no “DataReader” to replace it –
and a DataInputStream constructor requires an InputStream
argument. So you have no choice but to use the deprecated
StringBufferInputStream class. The compiler will give you a
deprecation message but there’s nothing you can do about it.2

Section 4 is a reasonably straightforward translation from the old
streams to the new, with no surprises. In section 5, you’re forced to
use all the old streams classes because DataOutputStream and
DataInputStream require them and there are no alternatives.
However, you don’t get any deprecation messages at compile time.
If a stream is deprecated, typically its constructor produces a
deprecation message to prevent you from using the entire class, but
in the case of DataInputStream only the readLine() method is
deprecated since you’re supposed to use a BufferedReader for
readLine() (but a DataInputStream for all other formatted
input).

If you compare section 5 with that section in
IOStreamDemo.java, you’ll notice that in this version, the data is

2 Perhaps by the time you read this, the bug will be fixed.

588 Thinking in Java www.BruceEckel.com

written before the text. That’s because a bug was introduced in Java
1.1, which is shown in the following code:

//: c11:IOBug.java
// Java 1.1 (and higher?) IO Bug.
import java.io.*;

public class IOBug {
public static void main(String[] args)
throws Exception {

DataOutputStream out =
new DataOutputStream(
new BufferedOutputStream(

new FileOutputStream("Data.txt")));
out.writeDouble(3.14159);
out.writeBytes("That was the value of pi\n");
out.writeBytes("This is pi/2:\n");
out.writeDouble(3.14159/2);
out.close();

DataInputStream in =
new DataInputStream(
new BufferedInputStream(

new FileInputStream("Data.txt")));
BufferedReader inbr =
new BufferedReader(
new InputStreamReader(in));

// The doubles written BEFORE the line of text
// read back correctly:
System.out.println(in.readDouble());
// Read the lines of text:
System.out.println(inbr.readLine());
System.out.println(inbr.readLine());
// Trying to read the doubles after the line
// produces an end-of-file exception:
System.out.println(in.readDouble());

}
} ///:~

It appears that anything you write after a call to writeBytes() is
not recoverable. This is a rather limiting bug, and we can hope that
it will be fixed by the time you read this. You should run the above

Chapter 11: The Java IO System 589

program to test it; if you don’t get an exception and the values print
correctly then you’re out of the woods.

A cross-reference generator
//: c11:CrossReference.java
// Generates cross-reference listing of tokens.
import java.util.*;
import java.io.*;

class CrossReference {
// Comparator to ignore case:
static class NoCase implements Comparator {

public int compare(Object o1, Object o2) {
String s1 = (String)o1;
String s2 = (String)o2;
return s1.compareToIgnoreCase(s2);

}
}
static void process(BufferedReader r)

throws IOException {
TreeMap map = new TreeMap(new NoCase());
String line;
int lineno = 0;
// Build map, reading a line at a time:
while ((line = r.readLine()) != null) {
++lineno;
// Read each token:
String delim =
" `~!@#$%^&*()-_=+\\|[{]};:'\",<.>/?"
+ "0123456789";

StringTokenizer tokens =
new StringTokenizer(line, delim);

while (tokens.hasMoreTokens()) {
String token = tokens.nextToken();
if (!map.containsKey(token)) {

// Add token and empty list to map:
map.put(token, new LinkedList());

}
// See if this line is in there already:
LinkedList lines =

590 Thinking in Java www.BruceEckel.com

(LinkedList)map.get(token);
if (lines.isEmpty() ||

((Integer)lines.getLast()).intValue() !=
lineno) {
// Add line number to list:
lines.addLast(new Integer(lineno));

}
}

}
// Output:
Iterator p = map.entrySet().iterator();
while (p.hasNext()) {
Map.Entry e = (Map.Entry) p.next();
System.out.print(e.getKey() + ": ");
LinkedList lines = (LinkedList)e.getValue();
for (int i = 0; i < lines.size(); ++i) {
if (i > 0)

System.out.print(", ");
System.out.print(lines.get(i));

}
System.out.println();

}
}
public static void
main(String[] args) throws IOException {

// Process each file:
for (int i = 0; i < args.length; ++i) {
System.out.println("File: " + args[i]);
process(new BufferedReader(
new FileReader(args[i])));

System.out.println("====================");
}

}
} ///:~

Redirecting standard IO
Java 1.1 has added methods in class System that allow you to
redirect the standard input, output, and error IO streams using
simple static method calls:

Chapter 11: The Java IO System 591

setIn(InputStream)
setOut(PrintStream)
setErr(PrintStream)

Redirecting output is especially useful if you suddenly start creating
a large amount of output on your screen and it’s scrolling past faster
than you can read it. Redirecting input is valuable for a command-
line program in which you want to test a particular user-input
sequence repeatedly. Here’s a simple example that shows the use of
these methods:

//: c11:Redirecting.java
// Demonstrates the use of redirection
// for standard IO in Java 1.1
import java.io.*;

class Redirecting {
public static void main(String[] args) {

try {
BufferedInputStream in =
new BufferedInputStream(

new FileInputStream(
"Redirecting.java"));

// Produces deprecation message:
PrintStream out =
new PrintStream(

new BufferedOutputStream(
new FileOutputStream("test.out")));

System.setIn(in);
System.setOut(out);
System.setErr(out);

BufferedReader br =
new BufferedReader(

new InputStreamReader(System.in));
String s;
while((s = br.readLine()) != null)
System.out.println(s);

out.close(); // Remember this!
} catch(IOException e) {
e.printStackTrace();

}

592 Thinking in Java www.BruceEckel.com

}
} ///:~

This program attaches standard input to a file, and redirects
standard output and standard error to another file.

This is another example in which a deprecation message is
inevitable. The message you can get when compiling with the -
deprecation flag is:

Note: The constructor
java.io.PrintStream(java.io.OutputStream)
has been deprecated.

However, both System.setOut() and System.setErr() require
a PrintStream object as an argument, so you are forced to call the
PrintStream constructor. You might wonder, if Java 1.1
deprecates the entire PrintStream class by deprecating the
constructor, why the library designers, at the same time as they
added this deprecation, also add new methods to System that
required a PrintStream rather than a PrintWriter, which is the
new and preferred replacement. It’s a mystery.

Compression
Java 1.1 has also added some classes to support reading and writing
streams in a compressed format. These are wrapped around existing
IO classes to provide compression functionality.

One aspect of these Java 1.1 classes stands out: They are not derived
from the new Reader and Writer classes, but instead are part of
the InputStream and OutputStream hierarchies. So you might
be forced to mix the two types of streams. (Remember that you can
use InputStreamReader and OutputStreamWriter to provide
easy conversion between one type and another.)

Java 1.1 Compression
class

Function

CheckedInputStre
am

GetCheckSum() produces
checksum for any InputStream (not

Chapter 11: The Java IO System 593

Java 1.1 Compression
class

Function

just decompression)
CheckedOutputStr
eam

GetCheckSum() produces
checksum for any OutputStream
(not just compression)

DeflaterOutputStr
eam

Base class for compression classes

ZipOutputStream A DeflaterOutputStream that
compresses data into the Zip file
format

GZIPOutputStrea
m

A DeflaterOutputStream that
compresses data into the GZIP file
format

InflaterInputStrea
m

Base class for decompression classes

ZipInputStream A DeflaterInputStream that
Decompresses data that has been
stored in the Zip file format

GZIPInputStream A DeflaterInputStream that
decompresses data that has been
stored in the GZIP file format

Although there are many compression algorithms, Zip and GZIP are
possibly the most commonly used. Thus you can easily manipulate
your compressed data with the many tools available for reading and
writing these formats.

Simple compression with GZIP
The GZIP interface is simple and thus is probably more appropriate
when you have a single stream of data that you want to compress
(rather than a collection of dissimilar pieces of data). Here’s an
example that compresses a single file:

//: c11:ZipCompress.java
// Uses Java 1.1 Zip compression to compress
// any number of files whose names are passed
// on the command line.

594 Thinking in Java www.BruceEckel.com

import java.io.*;
import java.util.*;
import java.util.zip.*;

public class ZipCompress {
public static void main(String[] args) {

try {
FileOutputStream f =
new FileOutputStream("test.zip");

CheckedOutputStream csum =
new CheckedOutputStream(

f, new Adler32());
ZipOutputStream out =
new ZipOutputStream(

new BufferedOutputStream(csum));
out.setComment("A test of Java Zipping");
// Can't read the above comment, though
for(int i = 0; i < args.length; i++) {
System.out.println(

"Writing file " + args[i]);
BufferedReader in =

new BufferedReader(
new FileReader(args[i]));

out.putNextEntry(new ZipEntry(args[i]));
int c;
while((c = in.read()) != -1)

out.write(c);
in.close();

}
out.close();
// Checksum valid only after the file
// has been closed!
System.out.println("Checksum: " +
csum.getChecksum().getValue());

// Now extract the files:
System.out.println("Reading file");
FileInputStream fi =

new FileInputStream("test.zip");
CheckedInputStream csumi =
new CheckedInputStream(

fi, new Adler32());
ZipInputStream in2 =

Chapter 11: The Java IO System 595

new ZipInputStream(
new BufferedInputStream(csumi));

ZipEntry ze;
System.out.println("Checksum: " +
csumi.getChecksum().getValue());

while((ze = in2.getNextEntry()) != null) {
System.out.println("Reading file " + ze);
int x;
while((x = in2.read()) != -1)

System.out.write(x);
}
in2.close();
// Alternative way to open and read
// zip files:
ZipFile zf = new ZipFile("test.zip");
Enumeration e = zf.entries();
while(e.hasMoreElements()) {
ZipEntry ze2 = (ZipEntry)e.nextElement();
System.out.println("File: " + ze2);
// ... and extract the data as before

}
} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

The use of the compression classes is straightforward – you simply
wrap your output stream in a GZIPOutputStream or
ZipOutputStream and your input stream in a
GZIPInputStream or ZipInputStream. All else is ordinary IO
reading and writing. This is, however, a good example of when
you’re forced to mix the old IO streams with the new: in uses the
Reader classes, whereas GZIPOutputStream’s constructor can
accept only an OutputStream object, not a Writer object.

Multi-file storage with Zip
The Java 1.1 library that supports the Zip format is much more
extensive. With it you can easily store multiple files, and there’s
even a separate class to make the process of reading a Zip file easy.

596 Thinking in Java www.BruceEckel.com

The library uses the standard Zip format so that it works seamlessly
with all the tools currently downloadable on the Internet. The
following example has the same form as the previous example, but
it handles as many command-line arguments as you want. In
addition, it shows the use of the Checksum classes to calculate and
verify the checksum for the file. There are two Checksum types:
Adler32 (which is faster) and CRC32 (which is slower but slightly
more accurate).

//: c11:ZipCompress.java
// Uses Java 1.1 Zip compression to compress
// any number of files whose names are passed
// on the command line.
import java.io.*;
import java.util.*;
import java.util.zip.*;

public class ZipCompress {
public static void main(String[] args) {

try {
FileOutputStream f =
new FileOutputStream("test.zip");

CheckedOutputStream csum =
new CheckedOutputStream(

f, new Adler32());
ZipOutputStream out =
new ZipOutputStream(

new BufferedOutputStream(csum));
out.setComment("A test of Java Zipping");
// Can't read the above comment, though
for(int i = 0; i < args.length; i++) {
System.out.println(

"Writing file " + args[i]);
BufferedReader in =

new BufferedReader(
new FileReader(args[i]));

out.putNextEntry(new ZipEntry(args[i]));
int c;
while((c = in.read()) != -1)

out.write(c);
in.close();

Chapter 11: The Java IO System 597

}
out.close();
// Checksum valid only after the file
// has been closed!
System.out.println("Checksum: " +
csum.getChecksum().getValue());

// Now extract the files:
System.out.println("Reading file");
FileInputStream fi =

new FileInputStream("test.zip");
CheckedInputStream csumi =
new CheckedInputStream(

fi, new Adler32());
ZipInputStream in2 =
new ZipInputStream(

new BufferedInputStream(csumi));
ZipEntry ze;
System.out.println("Checksum: " +
csumi.getChecksum().getValue());

while((ze = in2.getNextEntry()) != null) {
System.out.println("Reading file " + ze);
int x;
while((x = in2.read()) != -1)

System.out.write(x);
}
in2.close();
// Alternative way to open and read
// zip files:
ZipFile zf = new ZipFile("test.zip");
Enumeration e = zf.entries();
while(e.hasMoreElements()) {
ZipEntry ze2 = (ZipEntry)e.nextElement();
System.out.println("File: " + ze2);
// ... and extract the data as before

}
} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

598 Thinking in Java www.BruceEckel.com

For each file to add to the archive, you must call putNextEntry()
and pass it a ZipEntry object. The ZipEntry object contains an
extensive interface that allows you to get and set all the data
available on that particular entry in your Zip file: name, compressed
and uncompressed sizes, date, CRC checksum, extra field data,
comment, compression method, and whether it’s a directory entry.
However, even though the Zip format has a way to set a password,
this is not supported in Java’s Zip library. And although
CheckedInputStream and CheckedOutputStream support
both Adler32 and CRC32 checksums, the ZipEntry class
supports only an interface for CRC. This is a restriction of the
underlying Zip format, but it might limit you from using the faster
Adler32.

To extract files, ZipInputStream has a getNextEntry() method
that returns the next ZipEntry if there is one. As a more succinct
alternative, you can read the file using a ZipFile object, which has a
method entries() to return an Enumeration to the ZipEntries.

In order to read the checksum you must somehow have access to
the associated Checksum object. Here, a handle to the
CheckedOutputStream and CheckedInputStream objects is
retained, but you could also just hold onto a handle to the
Checksum object.

A baffling method in Zip streams is setComment(). As shown
above, you can set a comment when you’re writing a file, but there’s
no way to recover the comment in the ZipInputStream.
Comments appear to be supported fully on an entry-by-entry basis
only via ZipEntry.

Of course, you are not limited to files when using the GZIP or Zip
libraries – you can compress anything, including data to be sent
through a network connection.

The Java archive (jar) utility
The Zip format is also used in the Java 1.1 JAR (Java ARchive) file
format, which is a way to collect a group of files into a single
compressed file, just like Zip. However, like everything else in Java,

Chapter 11: The Java IO System 599

JAR files are cross-platform so you don’t need to worry about
platform issues. You can also include audio and image files as well
as class files.

JAR files are particularly helpful when you deal with the Internet.
Before JAR files, your Web browser would have to make repeated
requests of a Web server in order to download all of the files that
make up an applet. In addition, each of these files was
uncompressed. By combining all of the files for a particular applet
into a single JAR file, only one server request is necessary and the
transfer is faster because of compression. And each entry in a JAR
file can be digitally signed for security (refer to the Java
documentation for details).

A JAR file consists of a single file containing a collection of zipped
files along with a “manifest” that describes them. (You can create
your own manifest file; otherwise the jar program will do it for
you.) You can find out more about JAR manifests in the online
documentation.

The jar utility that comes with Sun’s JDK automatically compresses
the files of your choice. You invoke it on the command line:

jar [options] destination [manifest] inputfile(s)

The options are simply a collection of letters (no hyphen or any
other indicator is necessary). These are:

c Creates a new or empty archive.
t Lists the table of contents.
x Extracts all files
x
file

Extracts the named file

f Says: “I’m going to give you the name of the file.” If
you don’t use this, jar assumes that its input will come
from standard input, or, if it is creating a file, its
output will go to standard output.

m Says that the first argument will be the name of the
user-created manifest file

v Generates verbose output describing what jar is doing
O Only store the files; doesn’t compress the files (use to

600 Thinking in Java www.BruceEckel.com

create a JAR file that you can put in your classpath)
M Don’t automatically create a manifest file

If a subdirectory is included in the files to be put into the JAR file,
that subdirectory is automatically added, including all of its
subdirectories, etc. Path information is also preserved.

Here are some typical ways to invoke jar:

jar cf myJarFile.jar *.class

This creates a JAR file called myJarFile.jar that contains all of the
class files in the current directory, along with an automatically-
generated manifest file.

jar cmf myJarFile.jar myManifestFile.mf *.class

Like the previous example, but adding a user-created manifest file
called myManifestFile.mf.

jar tf myJarFile.jar

Produces a table of contents of the files in myJarFile.jar.

jar tvf myJarFile.jar

Adds the “verbose” flag to give more detailed information about the
files in myJarFile.jar.

jar cvf myApp.jar audio classes image

Assuming audio, classes, and image are subdirectories, this
combines all of the subdirectories into the file myApp.jar. The
“verbose” flag is also included to give extra feedback while the jar
program is working.

If you create a JAR file using the O option, that file can be placed in
your CLASSPATH:

CLASSPATH="lib1.jar;lib2.jar;"

Then Java can search lib1.jar and lib2.jar for class files.

The jar tool isn’t as useful as a zip utility. For example, you can’t
add or update files to an existing JAR file; you can create JAR files

Chapter 11: The Java IO System 601

only from scratch. Also, you can’t move files into a JAR file, erasing
them as they are moved. However, a JAR file created on one
platform will be transparently readable by the jar tool on any other
platform (a problem that sometimes plagues zip utilities).

As you will see in Chapter 13, JAR files are also used to package
Java Beans.

Object serialization
Java 1.1 has added an interesting feature called object serialization
that allows you to take any object that implements the
Serializable interface and turn it into a sequence of bytes that can
later be restored fully into the original object. This is even true
across a network, which means that the serialization mechanism
automatically compensates for differences in operating systems.
That is, you can create an object on a Windows machine, serialize it,
and send it across the network to a Unix machine where it will be
correctly reconstructed. You don’t have to worry about the data
representations on the different machines, the byte ordering, or any
other details.

By itself, object serialization is interesting because it allows you to
implement lightweight persistence. Remember that persistence
means an object’s lifetime is not determined by whether a program
is executing – the object lives in between invocations of the
program. By taking a serializable object and writing it to disk, then
restoring that object when the program is re-invoked, you’re able to
produce the effect of persistence. The reason it’s called “lightweight”
is that you can’t simply define an object using some kind of
“persistent” keyword and let the system take care of the details
(although this might happen in the future). Instead, you must
explicitly serialize and de-serialize the objects in your program.

Object serialization was added to the language to support two major
features. Java 1.1’s remote method invocation (RMI) allows objects
that live on other machines to behave as if they live on your
machine. When sending messages to remote objects, object

602 Thinking in Java www.BruceEckel.com

serialization is necessary to transport the arguments and return
values. RMI is discussed in Chapter 15.

Object serialization is also necessary for Java Beans, introduced in
Java 1.1. When a Bean is used, its state information is generally
configured at design time. This state information must be stored
and later recovered when the program is started; object serialization
performs this task.

Serializing an object is quite simple, as long as the object
implements the Serializable interface (this interface is just a flag
and has no methods). In Java 1.1, many standard library classes
have been changed so they’re serializable, including all of the
wrappers for the primitive types, all of the collection classes, and
many others. Even Class objects can be serialized. (See Chapter 12
for the implications of this.)

To serialize an object, you create some sort of OutputStream
object and then wrap it inside an ObjectOutputStream object. At
this point you need only call writeObject() and your object is
serialized and sent to the OutputStream. To reverse the process,
you wrap an InputStream inside an ObjectInputStream and
call readObject(). What comes back is, as usual, a handle to an
upcast Object, so you must downcast to set things straight.

A particularly clever aspect of object serialization is that it not only
saves an image of your object but it also follows all the handles
contained in your object and saves those objects, and follows all the
handles in each of those objects, etc. This is sometimes referred to
as the “web of objects” that a single object can be connected to, and
it includes arrays of handles to objects as well as member objects. If
you had to maintain your own object serialization scheme,
maintaining the code to follow all these links would be a bit mind–
boggling. However, Java object serialization seems to pull it off
flawlessly, no doubt using an optimized algorithm that traverses the
web of objects. The following example tests the serialization
mechanism by making a “worm” of linked objects, each of which has
a link to the next segment in the worm as well as an array of handles
to objects of a different class, Data:

//: c11:Worm.java

Chapter 11: The Java IO System 603

// Demonstrates object serialization.
import java.io.*;

class Data implements Serializable {
private int i;
Data(int x) { i = x; }
public String toString() {

return Integer.toString(i);
}

}

public class Worm implements Serializable {
// Generate a random int value:
private static int r() {

return (int)(Math.random() * 10);
}
private Data[] d = {

new Data(r()), new Data(r()), new Data(r())
};
private Worm next;
private char c;
// Value of i == number of segments
Worm(int i, char x) {

System.out.println(" Worm constructor: " + i);
c = x;
if(--i > 0)
next = new Worm(i, (char)(x + 1));

}
Worm() {

System.out.println("Default constructor");
}
public String toString() {

String s = ":" + c + "(";
for(int i = 0; i < d.length; i++)
s += d[i].toString();

s += ")";
if(next != null)
s += next.toString();

return s;
}
public static void main(String[] args) {

Worm w = new Worm(6, 'a');

604 Thinking in Java www.BruceEckel.com

System.out.println("w = " + w);
try {
ObjectOutputStream out =
new ObjectOutputStream(

new FileOutputStream("worm.out"));
out.writeObject("Worm storage");
out.writeObject(w);
out.close(); // Also flushes output
ObjectInputStream in =
new ObjectInputStream(

new FileInputStream("worm.out"));
String s = (String)in.readObject();
Worm w2 = (Worm)in.readObject();
System.out.println(s + ", w2 = " + w2);

} catch(Exception e) {
e.printStackTrace();

}
try {
ByteArrayOutputStream bout =
new ByteArrayOutputStream();

ObjectOutputStream out =
new ObjectOutputStream(bout);

out.writeObject("Worm storage");
out.writeObject(w);
out.flush();
ObjectInputStream in =
new ObjectInputStream(

new ByteArrayInputStream(
bout.toByteArray()));

String s = (String)in.readObject();
Worm w3 = (Worm)in.readObject();
System.out.println(s + ", w3 = " + w3);

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

To make things interesting, the array of Data objects inside Worm
are initialized with random numbers. (This way you don’t suspect
the compiler of keeping some kind of meta-information.) Each
Worm segment is labeled with a char that’s automatically

Chapter 11: The Java IO System 605

generated in the process of recursively generating the linked list of
Worms. When you create a Worm, you tell the constructor how
long you want it to be. To make the next handle it calls the Worm
constructor with a length of one less, etc. The final next handle is
left as null, indicating the end of the Worm.

The point of all this was to make something reasonably complex
that couldn’t easily be serialized. The act of serializing, however, is
quite simple. Once the ObjectOutputStream is created from
some other stream, writeObject() serializes the object. Notice the
call to writeObject() for a String, as well. You can also write all
the primitive data types using the same methods as
DataOutputStream (they share the same interface).

There are two separate try blocks that look similar. The first writes
and reads a file and the second, for variety, writes and reads a
ByteArray. You can read and write an object using serialization to
any DataInputStream or DataOutputStream including, as you
will see in the networking chapter, a network. The output from one
run was:

Worm constructor: 6
Worm constructor: 5
Worm constructor: 4
Worm constructor: 3
Worm constructor: 2
Worm constructor: 1
w = :a(262):b(100):c(396):d(480):e(316):f(398)
Worm storage, w2 =
:a(262):b(100):c(396):d(480):e(316):f(398)
Worm storage, w3 =
:a(262):b(100):c(396):d(480):e(316):f(398)

You can see that the deserialized object really does contain all of the
links that were in the original object.

Note that no constructor, not even the default constructor, is called
in the process of deserializing a Serializable object. The entire
object is restored by recovering data from the InputStream.

Object serialization is another Java 1.1 feature that is not part of the
new Reader and Writer hierarchies, but instead uses the old

606 Thinking in Java www.BruceEckel.com

InputStream and OutputStream hierarchies. Thus you might
encounter situations in which you’re forced to mix the two
hierarchies.

Finding the class
You might wonder what’s necessary for an object to be recovered
from its serialized state. For example, suppose you serialize an
object and send it as a file or through a network to another
machine. Could a program on the other machine reconstruct the
object using only the contents of the file?

The best way to answer this question is (as usual) by performing an
experiment. The following file goes in the subdirectory for this
chapter:

//: c11:Alien.java
// A serializable class.
import java.io.*;

public class Alien implements Serializable {
} ///:~

The file that creates and serializes an Alien object goes in the same
directory:

//: c11:FreezeAlien.java
// Create a serialized output file.
import java.io.*;

public class FreezeAlien {
public static void main(String[] args)

throws Exception {
ObjectOutput out =
new ObjectOutputStream(
new FileOutputStream("file.x"));

Alien zorcon = new Alien();
out.writeObject(zorcon);

}
} ///:~

Chapter 11: The Java IO System 607

Rather than catching and handling exceptions, this program takes
the quick and dirty approach of passing the exceptions out of
main(), so they’ll be reported on the command line.

Once the program is compiled and run, copy the resulting file.x to
a subdirectory called xfiles, where the following code goes:

//: c11:xfiles:ThawAlien.java
// Try to recover a serialized file without the
// class of object that's stored in that file.
package c11.xfiles;
import java.io.*;

public class ThawAlien {
public static void main(String[] args)

throws Exception {
ObjectInputStream in =
new ObjectInputStream(
new FileInputStream("file.x"));

Object mystery = in.readObject();
System.out.println(mystery.getClass());

}
} ///:~

This program opens the file and reads in the object mystery
successfully. However, as soon as you try to find out anything about
the object – which requires the Class object for Alien – the Java
Virtual Machine (JVM) cannot find Alien.class (unless it happens
to be in the Classpath, which it shouldn’t be in this example). You’ll
get a ClassNotFoundException. (Once again, all evidence of
alien life vanishes before proof of its existence can be verified!)

If you expect to do much after you’ve recovered an object that has
been serialized, you must make sure that the JVM can find the
associated .class file either in the local class path or somewhere on
the Internet.

Controlling serialization
As you can see, the default serialization mechanism is trivial to use.
But what if you have special needs? Perhaps you have special

608 Thinking in Java www.BruceEckel.com

security issues and you don’t want to serialize portions of your
object, or perhaps it just doesn’t make sense for one sub-object to
be serialized if that part needs to be created anew when the object is
recovered.

You can control the process of serialization by implementing the
Externalizable interface instead of the Serializable interface.
The Externalizable interface extends the Serializable interface
and adds two methods, writeExternal() and readExternal(),
that are automatically called for your object during serialization and
deserialization so that you can perform your special operations.

The following example shows simple implementations of the
Externalizable interface methods. Note that Blip1 and Blip2 are
nearly identical except for a subtle difference (see if you can
discover it by looking at the code):

//: c11:Blips.java
// Simple use of Externalizable & a pitfall.
import java.io.*;
import java.util.*;

class Blip1 implements Externalizable {
public Blip1() {

System.out.println("Blip1 Constructor");
}
public void writeExternal(ObjectOutput out)

throws IOException {
System.out.println("Blip1.writeExternal");

}
public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException {
System.out.println("Blip1.readExternal");

}
}

class Blip2 implements Externalizable {
Blip2() {

System.out.println("Blip2 Constructor");
}
public void writeExternal(ObjectOutput out)

Chapter 11: The Java IO System 609

throws IOException {
System.out.println("Blip2.writeExternal");

}
public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException {
System.out.println("Blip2.readExternal");

}
}

public class Blips {
public static void main(String[] args) {

System.out.println("Constructing objects:");
Blip1 b1 = new Blip1();
Blip2 b2 = new Blip2();
try {
ObjectOutputStream o =
new ObjectOutputStream(

new FileOutputStream("Blips.out"));
System.out.println("Saving objects:");
o.writeObject(b1);
o.writeObject(b2);
o.close();
// Now get them back:
ObjectInputStream in =
new ObjectInputStream(

new FileInputStream("Blips.out"));
System.out.println("Recovering b1:");
b1 = (Blip1)in.readObject();
// OOPS! Throws an exception:

//! System.out.println("Recovering b2:");
//! b2 = (Blip2)in.readObject();

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

The output for this program is:

Constructing objects:
Blip1 Constructor
Blip2 Constructor

610 Thinking in Java www.BruceEckel.com

Saving objects:
Blip1.writeExternal
Blip2.writeExternal
Recovering b1:
Blip1 Constructor
Blip1.readExternal

The reason that the Blip2 object is not recovered is that trying to
do so causes an exception. Can you see the difference between
Blip1 and Blip2? The constructor for Blip1 is public, while the
constructor for Blip2 is not, and that causes the exception upon
recovery. Try making Blip2’s constructor public and removing the
//! comments to see the correct results.

When b1 is recovered, the Blip1 default constructor is called. This
is different from recovering a Serializable object, in which the
object is constructed entirely from its stored bits, with no
constructor calls. With an Externalizable object, all the normal
default construction behavior occurs (including the initializations at
the point of field definition), and then readExternal() is called.
You need to be aware of this – in particular the fact that all the
default construction always takes place – to produce the correct
behavior in your Externalizable objects.

Here’s an example that shows what you must do to fully store and
retrieve an Externalizable object:

//: c11:Blip3.java
// Reconstructing an externalizable object.
import java.io.*;
import java.util.*;

class Blip3 implements Externalizable {
int i;
String s; // No initialization
public Blip3() {

System.out.println("Blip3 Constructor");
// s, i not initialized

}
public Blip3(String x, int a) {

System.out.println("Blip3(String x, int a)");
s = x;

Chapter 11: The Java IO System 611

i = a;
// s & i initialized only in non-default
// constructor.

}
public String toString() { return s + i; }
public void writeExternal(ObjectOutput out)

throws IOException {
System.out.println("Blip3.writeExternal");
// You must do this:
out.writeObject(s); out.writeInt(i);

}
public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException {
System.out.println("Blip3.readExternal");
// You must do this:
s = (String)in.readObject();
i =in.readInt();

}
public static void main(String[] args) {

System.out.println("Constructing objects:");
Blip3 b3 = new Blip3("A String ", 47);
System.out.println(b3);
try {
ObjectOutputStream o =
new ObjectOutputStream(

new FileOutputStream("Blip3.out"));
System.out.println("Saving object:");
o.writeObject(b3);
o.close();
// Now get it back:
ObjectInputStream in =
new ObjectInputStream(

new FileInputStream("Blip3.out"));
System.out.println("Recovering b3:");
b3 = (Blip3)in.readObject();
System.out.println(b3);

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

612 Thinking in Java www.BruceEckel.com

The fields s and i are initialized only in the second constructor, but
not in the default constructor. This means that if you don’t initialize
s and i in readExternal, it will be null (since the storage for the
object gets wiped to zero in the first step of object creation). If you
comment out the two lines of code following the phrases “You must
do this” and run the program, you’ll see that when the object is
recovered, s is null and i is zero.

If you are inheriting from an Externalizable object, you’ll
typically call the base-class versions of writeExternal() and
readExternal() to provide proper storage and retrieval of the
base-class components.

So to make things work correctly you must not only write the
important data from the object during the writeExternal()
method (there is no default behavior that writes any of the member
objects for an Externalizable object), but you must also recover
that data in the readExternal() method. This can be a bit
confusing at first because the default construction behavior for an
Extetrnalizable object can make it seem like some kind of storage
and retrieval takes place automatically. It does not.

The transient keyword
When you’re controlling serialization, there might be a particular
subobject that you don’t want Java’s serialization mechanism to
automatically save and restore. This is commonly the case if that
subobject represents sensitive information that you don’t want to
serialize, such as a password. Even if that information is private in
the object, once it’s serialized it’s possible for someone to access it
by reading a file or intercepting a network transmission.

One way to prevent sensitive parts of your object from being
serialized is to implement your class as Externalizable, as shown
previously. Then nothing is automatically serialized and you can
explicitly serialize only the necessary parts inside
writeExternal().

If you’re working with a Serializable object, however, all
serialization happens automatically. To control this, you can turn
off serialization on a field-by-field basis using the transient

Chapter 11: The Java IO System 613

keyword, which says “Don’t bother saving or restoring this – I’ll
take care of it.”

For example, consider a Login object that keeps information about
a particular login session. Suppose that, once you verify the login,
you want to store the data, but without the password. The easiest
way to do this is by implementing Serializable and marking the
password field as transient. Here’s what it looks like:

//: c11:Logon.java
// Demonstrates the "transient" keyword.
import java.io.*;
import java.util.*;

class Logon implements Serializable {
private Date date = new Date();
private String username;
private transient String password;
Logon(String name, String pwd) {

username = name;
password = pwd;

}
public String toString() {

String pwd =
(password == null) ? "(n/a)" : password;

return "logon info: \n " +
"username: " + username +
"\n date: " + date +
"\n password: " + pwd;

}
public static void main(String[] args) {

Logon a = new Logon("Hulk", "myLittlePony");
System.out.println("logon a = " + a);
try {
ObjectOutputStream o =
new ObjectOutputStream(

new FileOutputStream("Logon.out"));
o.writeObject(a);
o.close();
// Delay:
int seconds = 5;
long t = System.currentTimeMillis()

614 Thinking in Java www.BruceEckel.com

+ seconds * 1000;
while(System.currentTimeMillis() < t)
;

// Now get them back:
ObjectInputStream in =
new ObjectInputStream(

new FileInputStream("Logon.out"));
System.out.println(
"Recovering object at " + new Date());

a = (Logon)in.readObject();
System.out.println("logon a = " + a);

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

You can see that the date and username fields are ordinary (not
transient), and thus are automatically serialized. However, the
password is transient, and so is not stored to disk; also the
serialization mechanism makes no attempt to recover it. The output
is:

logon a = logon info:
username: Hulk
date: Sun Mar 23 18:25:53 PST 1997
password: myLittlePony

Recovering object at Sun Mar 23 18:25:59 PST 1997
logon a = logon info:

username: Hulk
date: Sun Mar 23 18:25:53 PST 1997
password: (n/a)

When the object is recovered, the password field is null. Note that
toString() must check for a null value of password because if
you try to assemble a String object using the overloaded ‘+’
operator, and that operator encounters a null handle, you’ll get a
NullPointerException. (Newer versions of Java might contain
code to avoid this problem.)

You can also see that the date field is stored to and recovered from
disk and not generated anew.

Chapter 11: The Java IO System 615

Since Externalizable objects do not store any of their fields by
default, the transient keyword is for use with Serializable
objects only.

An alternative to Externalizable
If you’re not keen on implementing the Externalizable interface,
there’s another approach. You can implement the Serializable
interface and add (notice I say “add” and not “override” or
“implement”) methods called writeObject() and readObject()
that will automatically be called when the object is serialized and
deserialized, respectively. That is, if you provide these two methods
they will be used instead of the default serialization.

The methods must have these exact signatures:

private void
writeObject(ObjectOutputStream stream)

throws IOException;

private void
readObject(ObjectInputStream stream)

throws IOException, ClassNotFoundException

From a design standpoint, things get really weird here. First of all,
you might think that because these methods are not part of a base
class or the Serializable interface, they ought to be defined in
their own interface(s). But notice that they are defined as private,
which means they are to be called only by other members of this
class. However, you don’t actually call them from other members of
this class, but instead the writeObject() and readObject()
methods of the ObjectOutputStream and ObjectInputStream
objects call your object’s writeObject() and readObject()
methods. (Notice my tremendous restraint in not launching into a
long diatribe about using the same method names here. In a word:
confusing.) You might wonder how the ObjectOutputStream and
ObjectInputStream objects have access to private methods of
your class. We can only assume that this is part of the serialization
magic.

616 Thinking in Java www.BruceEckel.com

In any event, anything defined in an interface is automatically
public so if writeObject() and readObject() must be private,
then they can’t be part of an interface. Since you must follow the
signatures exactly, the effect is the same as if you’re implementing
an interface.

It would appear that when you call
ObjectOutputStream.writeObject(), the Serializable object
that you pass it to is interrogated (using reflection, no doubt) to see
if it implements its own writeObject(). If so, the normal
serialization process is skipped and the writeObject() is called.
The same sort of situation exists for readObject().

There’s one other twist. Inside your writeObject(), you can
choose to perform the default writeObject() action by calling
defaultWriteObject(). Likewise, inside readObject() you can
call defaultReadObject(). Here is a simple example that
demonstrates how you can control the storage and retrieval of a
Serializable object:

//: c11:SerialCtl.java
// Controlling serialization by adding your own
// writeObject() and readObject() methods.
import java.io.*;

public class SerialCtl implements Serializable {
String a;
transient String b;
public SerialCtl(String aa, String bb) {

a = "Not Transient: " + aa;
b = "Transient: " + bb;

}
public String toString() {

return a + "\n" + b;
}
private void

writeObject(ObjectOutputStream stream)
throws IOException {

stream.defaultWriteObject();
stream.writeObject(b);

}

Chapter 11: The Java IO System 617

private void
readObject(ObjectInputStream stream)
throws IOException, ClassNotFoundException {

stream.defaultReadObject();
b = (String)stream.readObject();

}
public static void main(String[] args) {

SerialCtl sc =
new SerialCtl("Test1", "Test2");

System.out.println("Before:\n" + sc);
ByteArrayOutputStream buf =
new ByteArrayOutputStream();

try {
ObjectOutputStream o =
new ObjectOutputStream(buf);

o.writeObject(sc);
// Now get it back:
ObjectInputStream in =
new ObjectInputStream(

new ByteArrayInputStream(
buf.toByteArray()));

SerialCtl sc2 = (SerialCtl)in.readObject();
System.out.println("After:\n" + sc2);

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

In this example, one String field is ordinary and the other is
transient, to prove that the non-transient field is saved by the
defaultWriteObject() method and the transient field is saved
and restored explicitly. The fields are initialized inside the
constructor rather than at the point of definition to prove that they
are not being initialized by some automatic mechanism during
deserialization.

If you are going to use the default mechanism to write the non-
transient parts of your object, you must call
defaultWriteObject() as the first operation in writeObject()
and defaultReadObject() as the first operation in

618 Thinking in Java www.BruceEckel.com

readObject(). These are strange method calls. It would appear,
for example, that you are calling defaultWriteObject() for an
ObjectOutputStream and passing it no arguments, and yet it
somehow turns around and knows the handle to your object and
how to write all the non-transient parts. Spooky.

The storage and retrieval of the transient objects uses more
familiar code. And yet, think about what happens here. In main(),
a SerialCtl object is created, and then it’s serialized to an
ObjectOutputStream. (Notice in this case that a buffer is used
instead of a file – it’s all the same to the ObjectOutputStream.)
The serialization occurs in the line:

o.writeObject(sc);

The writeObject() method must be examining sc to see if it has
its own writeObject() method. (Not by checking the interface –
there isn’t one – or the class type, but by actually hunting for the
method using reflection.) If it does, it uses that. A similar approach
holds true for readObject(). Perhaps this was the only practical
way that they could solve the problem, but it’s certainly strange.

Versioning
It’s possible that you might want to change the version of a
serializable class (objects of the original class might be stored in a
database, for example). This is supported but you’ll probably do it
only in special cases, and it requires an extra depth of
understanding that we will not attempt to achieve here. The JDK1.1
HTML documents downloadable from Sun (which might be part of
your Java package’s online documents) cover this topic quite
thoroughly.

Using persistence
It’s quite appealing to use serialization technology to store some of
the state of your program so that you can easily restore the program
to the current state later. But before you can do this, some questions
must be answered. What happens if you serialize two objects that
both have a handle to a third object? When you restore those two
objects from their serialized state, do you get only one occurrence of

Chapter 11: The Java IO System 619

the third object? What if you serialize your two objects to separate
files and deserialize them in different parts of your code?

Here’s an example that shows the problem:

//: c11:MyWorld.java
import java.io.*;
import java.util.*;

class House implements Serializable {}

class Animal implements Serializable {
String name;
House preferredHouse;
Animal(String nm, House h) {

name = nm;
preferredHouse = h;

}
public String toString() {

return name + "[" + super.toString() +
"], " + preferredHouse + "\n";

}
}

public class MyWorld {
public static void main(String[] args) {

House house = new House();
ArrayList animals = new ArrayList();
animals.add(
new Animal("Bosco the dog", house));

animals.add(
new Animal("Ralph the hamster", house));

animals.add(
new Animal("Fronk the cat", house));

System.out.println("animals: " + animals);

try {
ByteArrayOutputStream buf1 =
new ByteArrayOutputStream();

ObjectOutputStream o1 =
new ObjectOutputStream(buf1);

o1.writeObject(animals);

620 Thinking in Java www.BruceEckel.com

o1.writeObject(animals); // Write a 2nd set
// Write to a different stream:
ByteArrayOutputStream buf2 =
new ByteArrayOutputStream();

ObjectOutputStream o2 =
new ObjectOutputStream(buf2);

o2.writeObject(animals);
// Now get them back:
ObjectInputStream in1 =
new ObjectInputStream(

new ByteArrayInputStream(
buf1.toByteArray()));

ObjectInputStream in2 =
new ObjectInputStream(

new ByteArrayInputStream(
buf2.toByteArray()));

ArrayList animals1 =
(ArrayList)in1.readObject();

ArrayList animals2 =
(ArrayList)in1.readObject();

ArrayList animals3 =
(ArrayList)in2.readObject();

System.out.println("animals1: " + animals1);
System.out.println("animals2: " + animals2);
System.out.println("animals3: " + animals3);

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

One thing that’s interesting here is that it’s possible to use object
serialization to and from a byte array as a way of doing a “deep
copy” of any object that’s Serializable. (A deep copy means that
you’re duplicating the entire web of objects, rather than just the
basic object and its handles.) Copying is covered in depth in
Appendix A.

Animal objects contain fields of type House. In main(), an
ArrayList of these Animals is created and it is serialized twice to
one stream and then again to a separate stream. When these are

Chapter 11: The Java IO System 621

deserialized and printed, you see the following results for one run
(the objects will be in different memory locations each run):

animals: [Bosco the dog[Animal@1cc76c],
House@1cc769
, Ralph the hamster[Animal@1cc76d], House@1cc769
, Fronk the cat[Animal@1cc76e], House@1cc769
]
animals1: [Bosco the dog[Animal@1cca0c],
House@1cca16
, Ralph the hamster[Animal@1cca17], House@1cca16
, Fronk the cat[Animal@1cca1b], House@1cca16
]
animals2: [Bosco the dog[Animal@1cca0c],
House@1cca16
, Ralph the hamster[Animal@1cca17], House@1cca16
, Fronk the cat[Animal@1cca1b], House@1cca16
]
animals3: [Bosco the dog[Animal@1cca52],
House@1cca5c
, Ralph the hamster[Animal@1cca5d], House@1cca5c
, Fronk the cat[Animal@1cca61], House@1cca5c
]

Of course you expect that the deserialized objects have different
addresses from their originals. But notice that in animals1 and
animals2 the same addresses appear, including the references to
the House object that both share. On the other hand, when
animals3 is recovered the system has no way of knowing that the
objects in this other stream are aliases of the objects in the first
stream, so it makes a completely different web of objects.

As long as you’re serializing everything to a single stream, you’ll be
able to recover the same web of objects that you wrote, with no
accidental duplication of objects. Of course, you can change the
state of your objects in between the time you write the first and the
last, but that’s your responsibility – the objects will be written in
whatever state they are in (and with whatever connections they
have to other objects) at the time you serialize them.

The safest thing to do if you want to save the state of a system is to
serialize as an “atomic” operation. If you serialize some things, do

622 Thinking in Java www.BruceEckel.com

some other work, and serialize some more, etc., then you will not be
storing the system safely. Instead, put all the objects that comprise
the state of your system in a single collection and simply write that
collection out in one operation. Then you can restore it with a single
method call as well.

The following example is an imaginary computer-aided design
(CAD) system that demonstrates the approach. In addition, it
throws in the issue of static fields – if you look at the
documentation you’ll see that Class is Serializable, so it should
be easy to store the static fields by simply serializing the Class
object. That seems like a sensible approach, anyway.

//: c11:CADState.java
// Saving and restoring the state of a
// pretend CAD system.
import java.io.*;
import java.util.*;

abstract class Shape implements Serializable {
public static final int

RED = 1, BLUE = 2, GREEN = 3;
private int xPos, yPos, dimension;
private static Random r = new Random();
private static int counter = 0;
abstract public void setColor(int newColor);
abstract public int getColor();
public Shape(int xVal, int yVal, int dim) {

xPos = xVal;
yPos = yVal;
dimension = dim;

}
public String toString() {

return getClass() +
" color[" + getColor() +
"] xPos[" + xPos +
"] yPos[" + yPos +
"] dim[" + dimension + "]\n";

}
public static Shape randomFactory() {

int xVal = r.nextInt() % 100;

Chapter 11: The Java IO System 623

int yVal = r.nextInt() % 100;
int dim = r.nextInt() % 100;
switch(counter++ % 3) {
default:
case 0: return new Circle(xVal, yVal, dim);
case 1: return new Square(xVal, yVal, dim);
case 2: return new Line(xVal, yVal, dim);

}
}

}

class Circle extends Shape {
private static int color = RED;
public Circle(int xVal, int yVal, int dim) {

super(xVal, yVal, dim);
}
public void setColor(int newColor) {

color = newColor;
}
public int getColor() {

return color;
}

}

class Square extends Shape {
private static int color;
public Square(int xVal, int yVal, int dim) {

super(xVal, yVal, dim);
color = RED;

}
public void setColor(int newColor) {

color = newColor;
}
public int getColor() {

return color;
}

}

class Line extends Shape {
private static int color = RED;
public static void
serializeStaticState(ObjectOutputStream os)

624 Thinking in Java www.BruceEckel.com

throws IOException {
os.writeInt(color);

}
public static void
deserializeStaticState(ObjectInputStream os)

throws IOException {
color = os.readInt();

}
public Line(int xVal, int yVal, int dim) {

super(xVal, yVal, dim);
}
public void setColor(int newColor) {

color = newColor;
}
public int getColor() {

return color;
}

}

public class CADState {
public static void main(String[] args)

throws Exception {
ArrayList shapeTypes, shapes;
if(args.length == 0) {
shapeTypes = new ArrayList();
shapes = new ArrayList();
// Add handles to the class objects:
shapeTypes.add(Circle.class);
shapeTypes.add(Square.class);
shapeTypes.add(Line.class);
// Make some shapes:
for(int i = 0; i < 10; i++)
shapes.add(Shape.randomFactory());

// Set all the static colors to GREEN:
for(int i = 0; i < 10; i++)
((Shape)shapes.get(i))

.setColor(Shape.GREEN);
// Save the state vector:
ObjectOutputStream out =
new ObjectOutputStream(

new FileOutputStream("CADState.out"));
out.writeObject(shapeTypes);

Chapter 11: The Java IO System 625

Line.serializeStaticState(out);
out.writeObject(shapes);

} else { // There's a command-line argument
ObjectInputStream in =
new ObjectInputStream(

new FileInputStream(args[0]));
// Read in the same order they were written:
shapeTypes = (ArrayList)in.readObject();
Line.deserializeStaticState(in);
shapes = (ArrayList)in.readObject();

}
// Display the shapes:
System.out.println(shapes);

}
} ///:~

The Shape class implements Serializable, so anything that is
inherited from Shape is automatically Serializable as well. Each
Shape contains data, and each derived Shape class contains a
static field that determines the color of all of those types of
Shapes. (Placing a static field in the base class would result in
only one field, since static fields are not duplicated in derived
classes.) Methods in the base class can be overridden to set the color
for the various types (static methods are not dynamically bound, so
these are normal methods). The randomFactory() method
creates a different Shape each time you call it, using random values
for the Shape data.

Circle and Square are straightforward extensions of Shape; the
only difference is that Circle initializes color at the point of
definition and Square initializes it in the constructor. We’ll leave
the discussion of Line for later.

In main(), one ArrayList is used to hold the Class objects and
the other to hold the shapes. If you don’t provide a command line
argument the shapeTypes ArrayList is created and the Class
objects are added, and then the shapes ArrayList is created and
Shape objects are added. Next, all the static color values are set
to GREEN, and everything is serialized to the file CADState.out.

626 Thinking in Java www.BruceEckel.com

If you provide a command line argument (presumably
CADState.out), that file is opened and used to restore the state of
the program. In both situations, the resulting ArrayList of Shapes
is printed out. The results from one run are:

>java CADState
[class Circle color[3] xPos[-51] yPos[-99] dim[38]
, class Square color[3] xPos[2] yPos[61] dim[-46]
, class Line color[3] xPos[51] yPos[73] dim[64]
, class Circle color[3] xPos[-70] yPos[1] dim[16]
, class Square color[3] xPos[3] yPos[94] dim[-36]
, class Line color[3] xPos[-84] yPos[-21] dim[-35]
, class Circle color[3] xPos[-75] yPos[-43]
dim[22]
, class Square color[3] xPos[81] yPos[30] dim[-45]
, class Line color[3] xPos[-29] yPos[92] dim[17]
, class Circle color[3] xPos[17] yPos[90] dim[-76]
]

>java CADState CADState.out
[class Circle color[1] xPos[-51] yPos[-99] dim[38]
, class Square color[0] xPos[2] yPos[61] dim[-46]
, class Line color[3] xPos[51] yPos[73] dim[64]
, class Circle color[1] xPos[-70] yPos[1] dim[16]
, class Square color[0] xPos[3] yPos[94] dim[-36]
, class Line color[3] xPos[-84] yPos[-21] dim[-35]
, class Circle color[1] xPos[-75] yPos[-43]
dim[22]
, class Square color[0] xPos[81] yPos[30] dim[-45]
, class Line color[3] xPos[-29] yPos[92] dim[17]
, class Circle color[1] xPos[17] yPos[90] dim[-76]
]

You can see that the values of xPos, yPos, and dim were all stored
and recovered successfully, but there’s something wrong with the
retrieval of the static information. It’s all ‘3’ going in, but it doesn’t
come out that way. Circles have a value of 1 (RED, which is the
definition), and Squares have a value of 0 (remember, they are
initialized in the constructor). It’s as if the statics didn’t get
serialized at all! That’s right – even though class Class is

Chapter 11: The Java IO System 627

Serializable, it doesn’t do what you expect. So if you want to
serialize statics, you must do it yourself.

This is what the serializeStaticState() and
deserializeStaticState() static methods in Line are for. You
can see that they are explicitly called as part of the storage and
retrieval process. (Note that the order of writing to the serialize file
and reading back from it must be maintained.) Thus to make
CADState.java run correctly you must (1) Add a
serializeStaticState() and deserializeStaticState() to the
shapes, (2) Remove the ArrayList shapeTypes and all code
related to it, and (3) Add calls to the new serialize and deserialize
static methods in the shapes.

Another issue you might have to think about is security, since
serialization also saves private data. If you have a security issue,
those fields should be marked as transient. But then you have to
design a secure way to store that information so that when you do a
restore you can reset those private variables.

Checking capitalization
style

In this section we’ll look at a more complete example of the use of
Java IO. This project is directly useful because it performs a style
check to make sure that your capitalization conforms to the Java
style as found at www.JavaSoft.com. It opens each .java file in the
current directory and extracts all the class names and identifiers,
then shows you if any of them don’t meet the Java style.

For the program to operate correctly, you must first build a class
name repository to hold all the class names in the standard Java
library. You do this by moving into all the source code
subdirectories for the standard Java library and running
ClassScanner in each subdirectory. Provide as arguments the
name of the repository file (using the same path and name each
time) and the -a command-line option to indicate that the class
names should be added to the repository.

628 Thinking in Java www.BruceEckel.com

To use the program to check your code, run it and hand it the path
and name of the repository to use. It will check all the classes and
identifiers in the current directory and tell you which ones don’t
follow the typical Java capitalization style.

You should be aware that the program isn’t perfect; there a few
times when it will point out what it thinks is a problem but on
looking at the code you’ll see that nothing needs to be changed. This
is a little annoying, but it’s still much easier than trying to find all
these cases by staring at your code.

The explanation immediately follows the listing:

//: c11:ClassScanner.java
// Scans all files in directory for classes
// and identifiers, to check capitalization.
// Assumes properly compiling code listings.
// Doesn't do everything right, but is a very
// useful aid.
import java.io.*;
import java.util.*;

class MultiStringMap extends HashMap {
public void add(String key, String value) {

if(!containsKey(key))
put(key, new ArrayList());

((ArrayList)get(key)).add(value);
}
public ArrayList getArrayList(String key) {

if(!containsKey(key)) {
System.err.println(
"ERROR: can't find key: " + key);

System.exit(1);
}
return (ArrayList)get(key);

}
public void printValues(PrintStream p) {

Iterator k = keySet().iterator();
while(k.hasNext()) {
String oneKey = (String)k.next();
ArrayList val = getArrayList(oneKey);
for(int i = 0; i < val.size(); i++)

Chapter 11: The Java IO System 629

p.println((String)val.get(i));
}

}
}

public class ClassScanner {
private File path;
private String[] fileList;
private Properties classes = new Properties();
private MultiStringMap

classMap = new MultiStringMap(),
identMap = new MultiStringMap();

private StreamTokenizer in;
public ClassScanner() {

path = new File(".");
fileList = path.list(new JavaFilter());
for(int i = 0; i < fileList.length; i++) {
System.out.println(fileList[i]);
scanListing(fileList[i]);

}
}
void scanListing(String fname) {

try {
in = new StreamTokenizer(

new BufferedReader(
new FileReader(fname)));

// Doesn't seem to work:
// in.slashStarComments(true);
// in.slashSlashComments(true);
in.ordinaryChar('/');
in.ordinaryChar('.');
in.wordChars('_', '_');
in.eolIsSignificant(true);
while(in.nextToken() !=

StreamTokenizer.TT_EOF) {
if(in.ttype == '/')

eatComments();
else if(in.ttype ==

StreamTokenizer.TT_WORD) {
if(in.sval.equals("class") ||

in.sval.equals("interface")) {
// Get class name:

630 Thinking in Java www.BruceEckel.com

while(in.nextToken() !=
StreamTokenizer.TT_EOF
&& in.ttype !=
StreamTokenizer.TT_WORD)

;
classes.put(in.sval, in.sval);
classMap.add(fname, in.sval);

}
if(in.sval.equals("import") ||

in.sval.equals("package"))
discardLine();

else // It's an identifier or keyword
identMap.add(fname, in.sval);

}
}

} catch(IOException e) {
e.printStackTrace();

}
}
void discardLine() {

try {
while(in.nextToken() !=

StreamTokenizer.TT_EOF
&& in.ttype !=
StreamTokenizer.TT_EOL)

; // Throw away tokens to end of line
} catch(IOException e) {
e.printStackTrace();

}
}
// StreamTokenizer's comment removal seemed
// to be broken. This extracts them:
void eatComments() {

try {
if(in.nextToken() !=

StreamTokenizer.TT_EOF) {
if(in.ttype == '/')

discardLine();
else if(in.ttype != '*')

in.pushBack();
else

while(true) {

Chapter 11: The Java IO System 631

if(in.nextToken() ==
StreamTokenizer.TT_EOF)
break;

if(in.ttype == '*')
if(in.nextToken() !=
StreamTokenizer.TT_EOF
&& in.ttype == '/')
break;

}
}

} catch(IOException e) {
e.printStackTrace();

}
}
public String[] classNames() {

String[] result = new String[classes.size()];
Iterator e = classes.keySet().iterator();
int i = 0;
while(e.hasNext())
result[i++] = (String)e.next();

return result;
}
public void checkClassNames() {

Iterator files = classMap.keySet().iterator();
while(files.hasNext()) {
String file = (String)files.next();
ArrayList cls = classMap.getArrayList(file);
for(int i = 0; i < cls.size(); i++) {
String className = (String)cls.get(i);
if(Character.isLowerCase(

className.charAt(0)))
System.out.println(
"class capitalization error, file: "
+ file + ", class: "
+ className);

}
}

}
public void checkIdentNames() {

Iterator files = identMap.keySet().iterator();
ArrayList reportSet = new ArrayList();
while(files.hasNext()) {

632 Thinking in Java www.BruceEckel.com

String file = (String)files.next();
ArrayList ids = identMap.getArrayList(file);
for(int i = 0; i < ids.size(); i++) {
String id = (String)ids.get(i);
if(!classes.contains(id)) {

// Ignore identifiers of length 3 or
// longer that are all uppercase
// (probably static final values):
if(id.length() >= 3 &&

id.equals(
id.toUpperCase()))

continue;
// Check to see if first char is upper:
if(Character.isUpperCase(id.charAt(0))){
if(reportSet.indexOf(file + id)

== -1){ // Not reported yet
reportSet.add(file + id);
System.out.println(
"Ident capitalization error in:"
+ file + ", ident: " + id);

}
}

}
}

}
}
static final String usage =

"Usage: \n" +
"ClassScanner classnames -a\n" +
"\tAdds all the class names in this \n" +
"\tdirectory to the repository file \n" +
"\tcalled 'classnames'\n" +
"ClassScanner classnames\n" +
"\tChecks all the java files in this \n" +
"\tdirectory for capitalization errors, \n" +
"\tusing the repository file 'classnames'";

private static void usage() {
System.err.println(usage);
System.exit(1);

}
public static void main(String[] args) {

if(args.length < 1 || args.length > 2)

Chapter 11: The Java IO System 633

usage();
ClassScanner c = new ClassScanner();
File old = new File(args[0]);
if(old.exists()) {
try {
// Try to open an existing
// properties file:
InputStream oldlist =

new BufferedInputStream(
new FileInputStream(old));

c.classes.load(oldlist);
oldlist.close();

} catch(IOException e) {
System.err.println("Could not open "

+ old + " for reading");
System.exit(1);

}
}
if(args.length == 1) {
c.checkClassNames();
c.checkIdentNames();

}
// Write the class names to a repository:
if(args.length == 2) {
if(!args[1].equals("-a"))
usage();

try {
BufferedOutputStream out =

new BufferedOutputStream(
new FileOutputStream(args[0]));

c.classes.save(out,
"Classes found by ClassScanner.java");

out.close();
} catch(IOException e) {
System.err.println(

"Could not write " + args[0]);
System.exit(1);

}
}

}
}

634 Thinking in Java www.BruceEckel.com

class JavaFilter implements FilenameFilter {
public boolean accept(File dir, String name) {

// Strip path information:
String f = new File(name).getName();
return f.trim().endsWith(".java");

}
} ///:~

The class MultiStringMap is a tool that allows you to map a group
of strings onto each key entry. As in the previous example, it uses a
HashMap (this time with inheritance) with the key as the single
string that’s mapped onto the ArrayList value. The add() method
simply checks to see if there’s a key already in the HashMap, and if
not it puts one there. The getArrayList() method produces an
ArrayList for a particular key, and printValues(), which is
primarily useful for debugging, prints out all the values ArrayList
by ArrayList.

To keep life simple, the class names from the standard Java
libraries are all put into a Properties object (from the standard
Java library). Remember that a Properties object is a HashMap
that holds only String objects for both the key and value entries.
However, it can be saved to disk and restored from disk in one
method call, so it’s ideal for the repository of names. Actually, we
need only a list of names, and a HashMap can’t accept null for
either its key or its value entry. So the same object will be used for
both the key and the value.

For the classes and identifiers that are discovered for the files in a
particular directory, two MultiStringMaps are used: classMap
and identMap. Also, when the program starts up it loads the
standard class name repository into the Properties object called
classes, and when a new class name is found in the local directory
that is also added to classes as well as to classMap. This way,
classMap can be used to step through all the classes in the local
directory, and classes can be used to see if the current token is a
class name (which indicates a definition of an object or method is
beginning, so grab the next tokens – until a semicolon – and put
them into identMap).

Chapter 11: The Java IO System 635

The default constructor for ClassScanner creates a list of file
names (using the JavaFilter implementation of FilenameFilter,
as described in Chapter 11). Then it calls scanListing() for each
file name.

Inside scanListing() the source code file is opened and turned
into a StreamTokenizer. In the documentation, passing true to
slashStarComments() and slashSlashComments() is
supposed to strip those comments out, but this seems to be a bit
flawed (it doesn’t quite work in Java 1.0). Instead, those lines are
commented out and the comments are extracted by another
method. To do this, the ‘/’ must be captured as an ordinary
character rather than letting the StreamTokenizer absorb it as
part of a comment, and the ordinaryChar() method tells the
StreamTokenizer to do this. This is also true for dots (‘.’), since
we want to have the method calls pulled apart into individual
identifiers. However, the underscore, which is ordinarily treated by
StreamTokenizer as an individual character, should be left as
part of identifiers since it appears in such static final values as
TT_EOF etc., used in this very program. The wordChars()
method takes a range of characters you want to add to those that are
left inside a token that is being parsed as a word. Finally, when
parsing for one-line comments or discarding a line we need to know
when an end-of-line occurs, so by calling eolIsSignificant(true)
the eol will show up rather than being absorbed by the
StreamTokenizer.

The rest of scanListing() reads and reacts to tokens until the end
of the file, signified when nextToken() returns the final static
value StreamTokenizer.TT_EOF.

If the token is a ‘/’ it is potentially a comment, so
eatComments() is called to deal with it. The only other situation
we’re interested in here is if it’s a word, of which there are some
special cases.

If the word is class or interface then the next token represents a
class or interface name, and it is put into classes and classMap. If
the word is import or package, then we don’t want the rest of the
line. Anything else must be an identifier (which we’re interested in)

636 Thinking in Java www.BruceEckel.com

or a keyword (which we’re not, but they’re all lowercase anyway so
it won’t spoil things to put those in). These are added to identMap.

The discardLine() method is a simple tool that looks for the end
of a line. Note that any time you get a new token, you must check
for the end of the file.

The eatComments() method is called whenever a forward slash
is encountered in the main parsing loop. However, that doesn’t
necessarily mean a comment has been found, so the next token
must be extracted to see if it’s another forward slash (in which case
the line is discarded) or an asterisk. But if it’s neither of those, it
means the token you’ve just pulled out is needed back in the main
parsing loop! Fortunately, the pushBack() method allows you to
“push back” the current token onto the input stream so that when
the main parsing loop calls nextToken() it will get the one you
just pushed back.

For convenience, the classNames() method produces an array of
all the names in the classes collection. This method is not used in
the program but is helpful for debugging.

The next two methods are the ones in which the actual checking
takes place. In checkClassNames(), the class names are
extracted from the classMap (which, remember, contains only the
names in this directory, organized by file name so the file name can
be printed along with the errant class name). This is accomplished
by pulling each associated ArrayList and stepping through that,
looking to see if the first character is lower case. If so, the
appropriate error message is printed.

In checkIdentNames(), a similar approach is taken: each
identifier name is extracted from identMap. If the name is not in
the classes list, it’s assumed to be an identifier or keyword. A
special case is checked: if the identifier length is 3 or more and all
the characters are uppercase, this identifier is ignored because it’s
probably a static final value such as TT_EOF. Of course, this is
not a perfect algorithm, but it assumes that you’ll eventually notice
any all-uppercase identifiers that are out of place.

Chapter 11: The Java IO System 637

Instead of reporting every identifier that starts with an uppercase
character, this method keeps track of which ones have already been
reported in an ArrayList called reportSet(). This treats the
ArrayList as a “set” that tells you whether an item is already in the
set. The item is produced by concatenating the file name and
identifier. If the element isn’t in the set, it’s added and then the
report is made.

The rest of the listing is comprised of main(), which busies itself
by handling the command line arguments and figuring out whether
you’re building a repository of class names from the standard Java
library or checking the validity of code you’ve written. In both cases
it makes a ClassScanner object.

Whether you’re building a repository or using one, you must try to
open the existing repository. By making a File object and testing for
existence, you can decide whether to open the file and load() the
Properties list classes inside ClassScanner. (The classes from
the repository add to, rather than overwrite, the classes found by
the ClassScanner constructor.) If you provide only one command-
line argument it means that you want to perform a check of the
class names and identifier names, but if you provide two arguments
(the second being “-a”) you’re building a class name repository. In
this case, an output file is opened and the method
Properties.save() is used to write the list into a file, along with a
string that provides header file information.

Summary
The Java IO stream library does seem to satisfy the basic
requirements: you can perform reading and writing with the
console, a file, a block of memory, or even across the Internet (as
you will see in Chapter 15). It’s possible (by inheriting from
InputStream and OutputStream) to create new types of input
and output objects. And you can even add a simple extensibility to
the kinds of objects a stream will accept by redefining the
toString() method that’s automatically called when you pass an
object to a method that’s expecting a String (Java’s limited
“automatic type conversion”).

638 Thinking in Java www.BruceEckel.com

There are questions left unanswered by the documentation and
design of the IO stream library. For example, it would have been
nice if you could say that you want an exception thrown if you try to
overwrite a file when opening it for output – some programming
systems allow you to specify that you want to open an output file,
but only if it doesn’t already exist. In Java, it appears that you are
supposed to use a File object to determine whether a file exists,
because if you open it as an FileOutputStream or FileWriter it
will always get overwritten. By representing both files and directory
paths, the File class also suggests poor design by violating the
maxim “Don’t try to do too much in a single class.”

The IO stream library brings up mixed feelings. It does much of the
job and it’s portable. But if you don’t already understand the
decorator pattern, the design is non-intuitive, so there’s extra
overhead in learning and teaching it. It’s also incomplete: there’s no
support for the kind of output formatting that almost every other
language’s IO package supports. (This was not remedied in Java 1.1,
which missed the opportunity to change the library design
completely, and instead added even more special cases and
complexity.) The Java 1.1 changes to the IO library haven’t been
replacements, but rather additions, and it seems that the library
designers couldn’t quite get straight which features are deprecated
and which are preferred, resulting in annoying deprecation
messages that show up the contradictions in the library design.

However, once you do understand the decorator pattern and begin
using the library in situations that require its flexibility, you can
begin to benefit from this design, at which point its cost in extra
lines of code may not bother you as much.

Exercises
1. Open a text file so that you can read the file one line at a time.

Read each line as a String and place that String object into a
LinkedList. Print out all of the lines in the LinkedList in
reverse order.

Chapter 11: The Java IO System 639

2. Modify Exercise 1 so that the name of the file you read is
provided as a command-line argument.

3. Modify Exercise 2 to also open a text file so you can write text
into it. Write the lines in the ArrayList, along with line
numbers, out to the file.

4. Modify Exercise 2 to force all the lines in the ArrayList to
upper case and send the results to System.out.

5. Modify Exercise 2 to take additional arguments of words to
find in the file. Print out any lines in which the words match.

6. In Blips.java, copy the file and rename it to BlipCheck.java
and rename the class Blip2 to BlipCheck (making it public
and removing the public scope from the class Blips in the
process). Remove the //! marks in the file and execute the
program including the offending lines. Next, comment out the
default constructor for BlipCheck. Run it and explain why it
works. Note that after compiling, you must execute the
program with ‘java Blips’ because the main() method is
still in class Blips.

7. In Blip3.java, comment out the two lines after the phrases
“You must do this:” and run the program. Explain the result
and why it differs from when the two lines are in the program.

8. Convert the SortedWordCount.java program to use the
Java 1.1 IO Streams.

9. Repair the program CADState.java as described in the text.

10. (Intermediate) In Chapter 8, locate the
GreenhouseControls.java example, which consists of
three files. In GreenhouseControls.java, the Restart()
inner class has a hard-coded set of events. Change the
program so that it reads the events and their relative times
from a text file. (Challenging: Use a factory method from
Chapter 16 to build the events.)

 641

12: Run-Time Type
Identification

The idea of run-time type identification (RTTI) seems
fairly simple at first: it lets you find the exact type of an
object when you only have a handle to the base type.

However, the need for RTTI uncovers a whole plethora of
interesting (and often perplexing) OO design issues and raises
fundamental questions of how you should structure your programs.

This chapter looks at the ways that Java allows you to discover
information about objects and classes at run-time. This takes two
forms: “traditional” RTTI, which assumes that you have all the
types available at compile-time and run-time, and the “reflection”
mechanism, which allows you to discover class information solely at
run-time. The “traditional” RTTI will be covered first, followed by a
discussion of reflection.

The need for RTTI
Consider the now familiar example of a class hierarchy that uses
polymorphism. The generic type is the base class Shape, and the
specific derived types are Circle, Square, and Triangle:

Shape

draw()

Circle Square Triangle

642 Thinking in Java www.BruceEckel.com

This is a typical class hierarchy diagram, with the base class at the
top and the derived classes growing downward. The normal goal in
object-oriented programming is for the bulk of your code to
manipulate handles to the base type (Shape, in this case), so if you
decide to extend the program by adding a new class (Rhomboid,
derived from Shape, for example), the bulk of the code is not
affected. In this example, the dynamically bound method in the
Shape interface is draw(), so the intent is for the client
programmer to call draw() through a generic Shape handle.
draw() is overridden in all of the derived classes, and because it is
a dynamically bound method, the proper behavior will occur even
though it is called through a generic Shape handle. That’s
polymorphism.

Thus, you generally create a specific object (Circle, Square, or
Triangle), upcast it to a Shape (forgetting the specific type of the
object), and use that anonymous Shape handle in the rest of the
program.

As a brief review of polymorphism and upcasting, you might code
the above example as follows:

//: c12:Shapes.java
import java.util.*;

class Shape {
void draw() {

System.out.println(this + ".draw()");
}

}

class Circle extends Shape {
public String toString() { return "Circle"; }

}

class Square extends Shape {
public String toString() { return "Square"; }

}

class Triangle extends Shape {
public String toString() { return "Triangle"; }

Chapter 12: Run-Time Type Identification 643

}

public class Shapes {
public static void main(String[] args) {

ArrayList s = new ArrayList();
s.add(new Circle());
s.add(new Square());
s.add(new Triangle());
Iterator e = s.iterator();
while(e.hasNext())
((Shape)e.next()).draw();

}
} ///:~

The base class contains a draw() method that indirectly uses
toString() to print an identifier for the class by passing this to
System.out.println(). If that function sees an object, it
automatically calls the toString() method to produce a String
representation.

Each of the derived classes overrides the toString() method (from
Object) so that draw() ends up printing something different in
each case. In main(), specific types of Shape are created and then
added to an ArrayList. This is the point at which the upcast occurs
because the ArrayList holds only Objects. Since everything in
Java (with the exception of primitives) is an Object, an ArrayList
can also hold Shape objects. But during an upcast to Object, it
also loses any specific information, including the fact that the
objects are Shapes. To the ArrayList, they are just Objects.

At the point you fetch an element out of the ArrayList with
next(), things get a little busy. Since ArrayList holds only
Objects, next() naturally produces an Object handle. But we
know it’s really a Shape handle, and we want to send Shape
messages to that object. So a cast to Shape is necessary using the
traditional “(Shape)” cast. This is the most basic form of RTTI,
since in Java all casts are checked at run-time for correctness.
That’s exactly what RTTI means: at run-time, the type of an object
is identified.

644 Thinking in Java www.BruceEckel.com

In this case, the RTTI cast is only partial: the Object is cast to a
Shape, and not all the way to a Circle, Square, or Triangle.
That’s because the only thing we know at this point is that the
ArrayList is full of Shapes. At compile-time, this is enforced only
by your own self-imposed rules, but at run-time the cast ensures it.

Now polymorphism takes over and the exact method that’s called
for the Shape is determined by whether the handle is for a Circle,
Square, or Triangle. And in general, this is how it should be; you
want the bulk of your code to know as little as possible about
specific types of objects, and to just deal with the general
representation of a family of objects (in this case, Shape). As a
result, your code will be easier to write, read, and maintain, and
your designs will be easier to implement, understand, and change.
So polymorphism is the general goal in object-oriented
programming.

But what if you have a special programming problem that’s easiest
to solve if you know the exact type of a generic handle? For
example, suppose you want to allow your users to highlight all the
shapes of any particular type by turning them purple. This way, they
can find all the triangles on the screen by highlighting them. This is
what RTTI accomplishes: you can ask a handle to a Shape exactly
what type it’s referring to.

The Class object
To understand how RTTI works in Java, you must first know how
type information is represented at run time. This is accomplished
through a special kind of object called the Class object, which
contains information about the class. (This is sometimes called a
meta-class.) In fact, the Class object is used to create all of the
“regular” objects of your class.

There’s a Class object for each class that is part of your program.
That is, each time you write and compile a new class, a single Class
object is also created (and stored, appropriately enough, in an
identically named .class file). At run time, when you want to make
an object of that class, the Java Virtual Machine (JVM) that’s
executing your program first checks to see if the Class object for

Chapter 12: Run-Time Type Identification 645

that type is loaded. If not, the JVM loads it by finding the .class file
with that name. Thus, a Java program isn’t completely loaded
before it begins, which is different from many traditional languages.

Once the Class object for that type is in memory, it is used to create
all objects of that type.

If this seems shadowy or if you don’t really believe it, here’s a
demonstration program to prove it:

//: c12:SweetShop.java
// Examination of the way the class loader works.

class Candy {
static {

System.out.println("Loading Candy");
}

}

class Gum {
static {

System.out.println("Loading Gum");
}

}

class Cookie {
static {

System.out.println("Loading Cookie");
}

}

public class SweetShop {
public static void main(String[] args) {

System.out.println("inside main");
new Candy();
System.out.println("After creating Candy");
try {
Class.forName("Gum");

} catch(ClassNotFoundException e) {
e.printStackTrace();

}
System.out.println(

646 Thinking in Java www.BruceEckel.com

"After Class.forName(\"Gum\")");
new Cookie();
System.out.println("After creating Cookie");

}
} ///:~

Each of the classes Candy, Gum, and Cookie has a static clause
that is executed as the class is loaded for the first time. Information
will be printed out to tell you when loading occurs for that class. In
main(), the object creations are spread out between print
statements to help detect the time of loading.

A particularly interesting line is:

Class.forName("Gum");

This method is a static member of Class (to which all Class
objects belong). A Class object is like any other object and so you
can get and manipulate a handle to it. (That’s what the loader does.)
One of the ways to get a handle to the Class object is forName(),
which takes a String containing the textual name (watch the
spelling and capitalization!) of the particular class you want a
handle for. It returns a Class handle.

The output of this program for one JVM is:

inside main
Loading Candy
After creating Candy
Loading Gum
After Class.forName("Gum")
Loading Cookie
After creating Cookie

You can see that each Class object is loaded only when it’s needed,
and the static initialization is performed upon class loading.

Class literals
Java provides a second way to produce the handle to the Class
object, using a class literal. In the above program this would look
like:

Chapter 12: Run-Time Type Identification 647

Gum.class;

which is not only simpler, but also safer since it’s checked at
compile time. Because it eliminates the method call, it’s also more
efficient.

Class literals work with regular classes as well as interfaces, arrays,
and primitive types. In addition, there’s a standard field called
TYPE that exists for each of the primitive wrapper classes. The
TYPE field produces a handle to the Class object for the associated
primitive type, such that:

… is equivalent to …
boolean.class Boolean.TYPE

char.class Character.TYPE

byte.class Byte.TYPE

short.class Short.TYPE

int.class Integer.TYPE

long.class Long.TYPE

float.class Float.TYPE

double.class Double.TYPE

void.class Void.TYPE

My preference is to use the “.class” versions if you can, since
they’re more consistent with regular classes.

Checking before a cast
So far, you’ve seen RTTI forms including:

1. The classic cast, e.g. “(Shape),” which uses RTTI to make
sure the cast is correct and throws a ClassCastException if
you’ve performed a bad cast.

648 Thinking in Java www.BruceEckel.com

2. The Class object representing the type of your object. The
Class object can be queried for useful runtime information.

In C++, the classic cast “(Shape)” does not perform RTTI. It
simply tells the compiler to treat the object as the new type. In Java,
which does perform the type check, this cast is often called a “type
safe downcast.” The reason for the term “downcast” is the historical
arrangement of the class hierarchy diagram. If casting a Circle to a
Shape is an upcast, then casting a Shape to a Circle is a
downcast. However, you know a Circle is also a Shape, and the
compiler freely allows an upcast assignment, but you don’t know
that a Shape is necessarily a Circle, so the compiler doesn’t allow
you to perform a downcast assignment without using an explicit
cast.

There’s a third form of RTTI in Java. This is the keyword
instanceof that tells you if an object is an instance of a particular
type. It returns a boolean so you use it in the form of a question,
like this:

if(x instanceof Dog)
((Dog)x).bark();

The above if statement checks to see if the object x belongs to the
class Dog before casting x to a Dog. It’s important to use
instanceof before a downcast when you don’t have other
information that tells you the type of the object; otherwise you’ll
end up with a ClassCastException.

Ordinarily, you might be hunting for one type (triangles to turn
purple, for example), but the following program shows how to tally
all of the objects using instanceof.

//: c12:petcount:PetCount.java
// Using instanceof.
import java.util.*;

class Pet {}
class Dog extends Pet {}
class Pug extends Dog {}
class Cat extends Pet {}
class Rodent extends Pet {}

Chapter 12: Run-Time Type Identification 649

class Gerbil extends Rodent {}
class Hamster extends Rodent {}

class Counter { int i; }

public class PetCount {
static String[] typenames = {

"Pet", "Dog", "Pug", "Cat",
"Rodent", "Gerbil", "Hamster",

};
public static void main(String[] args) {

ArrayList pets = new ArrayList();
try {
Class[] petTypes = {
Class.forName("Dog"),
Class.forName("Pug"),
Class.forName("Cat"),
Class.forName("Rodent"),
Class.forName("Gerbil"),
Class.forName("Hamster"),

};
for(int i = 0; i < 15; i++)
pets.add(

petTypes[
(int)(Math.random()*petTypes.length)]
.newInstance());

} catch(InstantiationException e) {}
catch(IllegalAccessException e) {}
catch(ClassNotFoundException e) {}

HashMap h = new HashMap();
for(int i = 0; i < typenames.length; i++)
h.put(typenames[i], new Counter());

for(int i = 0; i < pets.size(); i++) {
Object o = pets.get(i);
if(o instanceof Pet)
((Counter)h.get("Pet")).i++;

if(o instanceof Dog)
((Counter)h.get("Dog")).i++;

if(o instanceof Pug)
((Counter)h.get("Pug")).i++;

if(o instanceof Cat)
((Counter)h.get("Cat")).i++;

650 Thinking in Java www.BruceEckel.com

if(o instanceof Rodent)
((Counter)h.get("Rodent")).i++;

if(o instanceof Gerbil)
((Counter)h.get("Gerbil")).i++;

if(o instanceof Hamster)
((Counter)h.get("Hamster")).i++;

}
for(int i = 0; i < pets.size(); i++)
System.out.println(pets.get(i).getClass());

for(int i = 0; i < typenames.length; i++)
System.out.println(
typenames[i] + " quantity: " +
((Counter)h.get(typenames[i])).i);

}
} ///:~

There’s a rather narrow restriction on instanceof: You can
compare it to a named type only, and not to a Class object. In the
example above you might feel that it’s tedious to write out all of
those instanceof expressions, and you’re right. But there is no way
to cleverly automate instanceof by creating an ArrayList of
Class objects and comparing it to those instead (stay tuned – you’ll
see an alternative). This isn’t as great a restriction as you might
think, because you’ll eventually understand that your design is
probably flawed if you end up writing a lot of instanceof
expressions.

Of course this example is contrived – you’d probably put a static
data member in each type and increment it in the constructor to
keep track of the counts. You would do something like that if you
had control of the source code for the class and could change it.
Since this is not always the case, RTTI can come in handy.

Using class literals
It’s interesting to see how the PetCount.java example can be
rewritten using class literals. The result is cleaner in many ways:

//: c12:petcount2:PetCount2.java
// Using class literals.
import java.util.*;

Chapter 12: Run-Time Type Identification 651

class Pet {}
class Dog extends Pet {}
class Pug extends Dog {}
class Cat extends Pet {}
class Rodent extends Pet {}
class Gerbil extends Rodent {}
class Hamster extends Rodent {}

class Counter { int i; }

public class PetCount2 {
public static void main(String[] args) {

ArrayList pets = new ArrayList();
Class[] petTypes = {
// Class literals:
Pet.class,
Dog.class,
Pug.class,
Cat.class,
Rodent.class,
Gerbil.class,
Hamster.class,

};
try {
for(int i = 0; i < 15; i++) {
// Offset by one to eliminate Pet.class:
int rnd = 1 + (int)(

Math.random() * (petTypes.length - 1));
pets.add(

petTypes[rnd].newInstance());
}

} catch(InstantiationException e) {}
catch(IllegalAccessException e) {}

HashMap h = new HashMap();
for(int i = 0; i < petTypes.length; i++)
h.put(petTypes[i].toString(),
new Counter());

for(int i = 0; i < pets.size(); i++) {
Object o = pets.get(i);
if(o instanceof Pet)
((Counter)h.get("class Pet")).i++;

if(o instanceof Dog)

652 Thinking in Java www.BruceEckel.com

((Counter)h.get("class Dog")).i++;
if(o instanceof Pug)
((Counter)h.get("class Pug")).i++;

if(o instanceof Cat)
((Counter)h.get("class Cat")).i++;

if(o instanceof Rodent)
((Counter)h.get("class Rodent")).i++;

if(o instanceof Gerbil)
((Counter)h.get("class Gerbil")).i++;

if(o instanceof Hamster)
((Counter)h.get("class Hamster")).i++;

}
for(int i = 0; i < pets.size(); i++)
System.out.println(pets.get(i).getClass());

Iterator keys = h.keySet().iterator();
while(keys.hasNext()) {
String nm = (String)keys.next();
Counter cnt = (Counter)h.get(nm);
System.out.println(
nm.substring(nm.lastIndexOf('.') + 1) +
" quantity: " + cnt.i);

}
}

} ///:~

Here, the typenames array has been removed in favor of getting
the type name strings from the Class object. Notice that the system
can distinguish between classes and interfaces.

You can also see that the creation of petTypes does not need to be
surrounded by a try block since it’s evaluated at compile time and
thus won’t throw any exceptions, unlike Class.forName().

When the Pet objects are dynamically created, you can see that the
random number is restricted so it is between 1 and
petTypes.length and does not include zero. That’s because zero
refers to Pet.class, and presumably a generic Pet object is not
interesting. However, since Pet.class is part of petTypes the
result is that all of the pets get counted.

Chapter 12: Run-Time Type Identification 653

A dynamic instanceof
The Class isInstance method provides a way to dynamically call
the instanceof operator. Thus, all those tedious instanceof
statements can be removed in the PetCount example:

//: c12:petcount3:PetCount3.java
// Using isInstance().
import java.util.*;

class Pet {}
class Dog extends Pet {}
class Pug extends Dog {}
class Cat extends Pet {}
class Rodent extends Pet {}
class Gerbil extends Rodent {}
class Hamster extends Rodent {}

class Counter { int i; }

public class PetCount3 {
public static void main(String[] args) {

ArrayList pets = new ArrayList();
Class[] petTypes = {
Pet.class,
Dog.class,
Pug.class,
Cat.class,
Rodent.class,
Gerbil.class,
Hamster.class,

};
try {
for(int i = 0; i < 15; i++) {
// Offset by one to eliminate Pet.class:
int rnd = 1 + (int)(

Math.random() * (petTypes.length - 1));
pets.add(

petTypes[rnd].newInstance());
}

} catch(InstantiationException e) {}
catch(IllegalAccessException e) {}

654 Thinking in Java www.BruceEckel.com

HashMap h = new HashMap();
for(int i = 0; i < petTypes.length; i++)
h.put(petTypes[i].toString(),
new Counter());

for(int i = 0; i < pets.size(); i++) {
Object o = pets.get(i);
// Using isInstance to eliminate individual
// instanceof expressions:
for (int j = 0; j < petTypes.length; ++j)
if (petTypes[j].isInstance(o)) {

String key = petTypes[j].toString();
((Counter)h.get(key)).i++;

}
}
for(int i = 0; i < pets.size(); i++)
System.out.println(pets.get(i).getClass());

Iterator keys = h.keySet().iterator();
while(keys.hasNext()) {
String nm = (String)keys.next();
Counter cnt = (Counter)h.get(nm);
System.out.println(
nm.substring(nm.lastIndexOf('.') + 1) +
" quantity: " + cnt.i);

}
}

} ///:~

You can see that the isInstance() method has eliminated the need
for the instanceof expressions. In addition, this means that you
can add new types of pets simply by changing the petTypes array;
the rest of the program does not need modification (as it did when
using the instanceof expressions).

RTTI syntax
Java performs its RTTI using the Class object, even if you’re doing
something like a cast. The class Class also has a number of other
ways you can use RTTI.

Chapter 12: Run-Time Type Identification 655

First, you must get a handle to the appropriate Class object. One
way to do this, as shown in the previous example, is to use a string
and the Class.forName() method. This is convenient because you
don’t need an object of that type in order to get the Class handle.
However, if you do already have an object of the type you’re
interested in, you can fetch the Class handle by calling a method
that’s part of the Object root class: getClass(). This returns the
Class handle representing the actual type of the object. Class has
several interesting and sometimes useful methods, demonstrated in
the following example:

//: c12:ToyTest.java
// Testing class Class.

interface HasBatteries {}
interface Waterproof {}
interface ShootsThings {}
class Toy {
// Comment out the following default
// constructor to see
// NoSuchMethodError from (*1*)
Toy() {}
Toy(int i) {}

}

class FancyToy extends Toy
implements HasBatteries,
Waterproof, ShootsThings {

FancyToy() { super(1); }
}

public class ToyTest {
public static void main(String[] args) {

Class c = null;
try {
c = Class.forName("FancyToy");

} catch(ClassNotFoundException e) {}
printInfo(c);
Class[] faces = c.getInterfaces();
for(int i = 0; i < faces.length; i++)
printInfo(faces[i]);

656 Thinking in Java www.BruceEckel.com

Class cy = c.getSuperclass();
Object o = null;
try {
// Requires default constructor:
o = cy.newInstance(); // (*1*)

} catch(InstantiationException e) {}
catch(IllegalAccessException e) {}

printInfo(o.getClass());
}
static void printInfo(Class cc) {

System.out.println(
"Class name: " + cc.getName() +
" is interface? [" +
cc.isInterface() + "]");

}
} ///:~

You can see that class FancyToy is quite complicated, since it
inherits from Toy and implements the interfaces of
HasBatteries, Waterproof, and ShootsThings. In main(), a
Class handle is created and initialized to the FancyToy Class
using forName() inside an appropriate try block.

The Class.getInterfaces() method returns an array of Class
objects representing the interfaces that are contained in the Class
object of interest.

If you have a Class object you can also ask it for its direct base class
using getSuperclass(). This, of course, returns a Class handle
that you can further query. This means that, at run time, you can
discover an object’s entire class hierarchy.

The newInstance() method of Class can, at first, seem like just
another way to clone() an object. However, you can create a new
object with newInstance() without an existing object, as seen
here, because there is no Toy object, only cy, which is a handle to
y’s Class object. This is a way to implement a “virtual constructor,”
which allows you to say “I don’t know exactly what type you are, but
create yourself properly anyway.” In the example above, cy is just a
Class handle with no further type information known at compile
time. And when you create a new instance, you get back an Object

Chapter 12: Run-Time Type Identification 657

handle. But that handle is pointing to a Toy object. Of course,
before you can send any messages other than those accepted by
Object, you have to investigate it a bit and do some casting. In
addition, the class that’s being created with newInstance() must
have a default constructor. In the next section, you’ll see how to
dynamically create objects of classes using any constructor, with the
Java reflection API.

The final method in the listing is printInfo(), which takes a Class
handle and gets its name with getName(), and finds out whether
it’s an interface with isInterface().

The output from this program is:

Class name: FancyToy is interface? [false]
Class name: HasBatteries is interface? [true]
Class name: Waterproof is interface? [true]
Class name: ShootsThings is interface? [true]
Class name: Toy is interface? [false]

Thus, with the Class object you can find out just about everything
you want to know about an object.

Reflection: run-time
class information

If you don’t know the precise type of an object, RTTI will tell you.
However, there’s a limitation: the type must be known at compile
time in order for you to be able to detect it using RTTI and do
something useful with the information. Put another way, the
compiler must know about all the classes you’re working with for
RTTI.

This doesn’t seem like that much of a limitation at first, but suppose
you’re given a handle to an object that’s not in your program space.
In fact, the class of the object isn’t even available to your program at
compile time. For example, suppose you get a bunch of bytes from a
disk file or from a network connection and you’re told that those
bytes represent a class. Since the compiler can’t know about the

658 Thinking in Java www.BruceEckel.com

class while it’s compiling the code, how can you possibly use such a
class?

In a traditional programming environment this seems like a far-
fetched scenario. But as we move into a larger programming world
there are important cases in which this happens. The first is
component-based programming in which you build projects using
Rapid Application Development (RAD) in an application builder
tool. This is a visual approach to creating a program (which you see
on the screen as a “form”) by moving icons that represent
components onto the form. These components are then configured
by setting some of their values at program time. This design-time
configuration requires that any component be instantiable, that it
exposes parts of itself, and that it allows its values to be read and
set. In addition, components that handle GUI events must expose
information about appropriate methods so that the RAD
environment can assist the programmer in overriding these event-
handling methods. Reflection provides the mechanism to detect the
available methods and produce the method names. Java provides a
structure for component-based programming through Java Beans
(described in Chapter 13).

Another compelling motivation for discovering class information at
run-time is to provide the ability to create and execute objects on
remote platforms across a network. This is called Remote Method
Invocation (RMI) and it allows a Java program to have objects
distributed across many machines. This distribution can happen for
a number of reasons: for example, perhaps you’re doing a
computation-intensive task and you want to break it up and put
pieces on machines that are idle in order to speed things up. In
some situations you might want to place code that handles
particular types of tasks (e.g. “Business Rules” in a multi-tier
client/server architecture) on a particular machine so that machine
becomes a common repository describing those actions and it can
be easily changed to affect everyone in the system. (This is an
interesting development since the machine exists solely to make
software changes easy!) Along these lines, distributed computing
also supports specialized hardware that might be good at a
particular task – matrix inversions, for example – but inappropriate
or too expensive for general purpose programming.

Chapter 12: Run-Time Type Identification 659

The class Class (described previously in this chapter) supports the
concept of reflection, and there’s an additional library,
java.lang.reflect, with classes Field, Method, and
Constructor (each of which implement the Member interface).
Objects of these types are created by the JVM at run-time to
represent the corresponding member in the unknown class. You can
then use the Constructors to create new objects, the get() and
set() methods to read and modify the fields associated with Field
objects, and the invoke() method to call a method associated with
a Method object. In addition, you can call the convenience
methods getFields(), getMethods(), getConstructors(), etc.,
to return arrays of the objects representing the fields, methods, and
constructors. (You can find out more by looking up the class Class
in your online documentation.) Thus, the class information for
anonymous objects can be completely determined at run time, and
nothing need be known at compile time.

It’s important to realize that there’s nothing magic about reflection.
When you’re using reflection to interact with an object of an
unknown type, the JVM will simply look at the object and see that it
belongs to a particular class (just like ordinary RTTI) but then,
before it can do anything else, the Class object must be loaded.
Thus, the .class file for that particular type must still be available
to the JVM, either on the local machine or across the network. So
the true difference between RTTI and reflection is that with RTTI,
the compiler opens and examines the .class file at compile time.
Put another way, you can call all the methods of an object in the
“normal” way. With reflection, the .class file is unavailable at
compile time; it is opened and examined by the run-time
environment.

A class method extractor
You’ll rarely need to use the reflection tools directly; they’re in the
language to support the other Java features such as object
serialization (Chapter 11), Java Beans (Chapter 13), and RMI
(Chapter 15). However, there are times when it’s quite useful to be
able to dynamically extract information about a class. One
extremely useful tool is a class method extractor. As mentioned

660 Thinking in Java www.BruceEckel.com

before, looking at a class definition source code or online
documentation shows only the methods that are defined or
overridden within that class definition. But there could be dozens
more available to you that have come from base classes. To locate
these is both tedious and time consuming1. Fortunately, reflection
provides a way to write a simple tool that will automatically show
you the entire interface. Here’s the way it works:

//: c12:ShowMethods.java
// Using reflection to show all the methods of
// a class, even if the methods are defined in
// the base class.
import java.lang.reflect.*;

public class ShowMethods {
static final String usage =

"usage: \n" +
"ShowMethods qualified.class.name\n" +
"To show all methods in class or: \n" +
"ShowMethods qualified.class.name word\n" +
"To search for methods involving 'word'";

public static void main(String[] args) {
if(args.length < 1) {
System.out.println(usage);
System.exit(0);

}
try {
Class c = Class.forName(args[0]);
Method[] m = c.getMethods();
Constructor[] ctor = c.getConstructors();
if(args.length == 1) {
for (int i = 0; i < m.length; i++)

System.out.println(m[i]);
for (int i = 0; i < ctor.length; i++)

System.out.println(ctor[i]);
}
else {

1 Especially in the past. However, Sun has greatly improved its HTML Java documentation
so that it’s easier to see base-class methods.

Chapter 12: Run-Time Type Identification 661

for (int i = 0; i < m.length; i++)
if(m[i].toString()

.indexOf(args[1])!= -1)
System.out.println(m[i]);

for (int i = 0; i < ctor.length; i++)
if(ctor[i].toString()

.indexOf(args[1])!= -1)
System.out.println(ctor[i]);

}
} catch (ClassNotFoundException e) {
System.out.println("No such class: " + e);

}
}

} ///:~

The Class methods getMethods() and getConstructors()
return an array of Method and Constructor, respectively. Each of
these classes has further methods to dissect the names, arguments,
and return values of the methods they represent. But you can also
just use toString(), as is done here, to produce a String with the
entire method signature. The rest of the code is just for extracting
command line information, determining if a particular signature
matches with your target string (using indexOf()), and printing
the results.

This shows reflection in action, since the result produced by
Class.forName() cannot be known at compile-time, and
therefore all the method signature information is being extracted at
run-time. If you investigate your online documentation on
reflection, you’ll see that there is enough support to actually set up
and make a method call on an object that’s totally unknown at
compile-time (there will be examples of this later in the book).
Again, this is something you may never need to do yourself – the
support is there for RMI and so a programming environment can
manipulate JavaBeans – but it’s interesting.

An interesting experiment is to run java ShowMethods
ShowMethods. This produces a listing that includes a public
default constructor, even though you can see from the code that no
constructor was defined. The constructor you see is the one that’s
automatically synthesized by the compiler. If you then make

662 Thinking in Java www.BruceEckel.com

ShowMethods a non-public class (that is, friendly), the
synthesized default constructor no longer shows up in the output.
The synthesized default constructor is automatically given the same
access as the class.

The output for ShowMethods is still a little tedious. For example,
here’s a portion of the output produced by invoking java
ShowMethods java.lang.String:

public boolean

java.lang.String.startsWith(java.lang.String,int)
public boolean
java.lang.String.startsWith(java.lang.String)

public boolean
java.lang.String.endsWith(java.lang.String)

It would be even nicer if the qualifiers like java.lang could be
stripped off. The StreamTokenizer class introduced in the
previous chapter can help solve this problem:

//: c12:ShowMethodsClean.java
// ShowMethods with the qualifiers stripped
// to make the results easier to read.
import java.lang.reflect.*;
import java.io.*;

public class ShowMethodsClean {
static final String usage =

"usage: \n" +
"ShowMethodsClean qualified.class.name\n" +
"To show all methods in class or: \n" +
"ShowMethodsClean qualif.class.name word\n" +
"To search for methods involving 'word'";

public static void main(String[] args) {
if(args.length < 1) {
System.out.println(usage);
System.exit(0);

}
try {
Class c = Class.forName(args[0]);
Method[] m = c.getMethods();

Chapter 12: Run-Time Type Identification 663

Constructor[] ctor = c.getConstructors();
// Convert to an array of cleaned Strings:
String[] n =
new String[m.length + ctor.length];

for(int i = 0; i < m.length; i++) {
String s = m[i].toString();
n[i] = StripQualifiers.strip(s);

}
for(int i = 0; i < ctor.length; i++) {
String s = ctor[i].toString();
n[i + m.length] =

StripQualifiers.strip(s);
}
if(args.length == 1)
for (int i = 0; i < n.length; i++)

System.out.println(n[i]);
else
for (int i = 0; i < n.length; i++)

if(n[i].indexOf(args[1])!= -1)
System.out.println(n[i]);

} catch (ClassNotFoundException e) {
System.out.println("No such class: " + e);

}
}

}

class StripQualifiers {
private StreamTokenizer st;
public StripQualifiers(String qualified) {

st = new StreamTokenizer(
new StringReader(qualified));

st.ordinaryChar(' '); // Keep the spaces
}
public String getNext() {

String s = null;
try {
if(st.nextToken() !=

StreamTokenizer.TT_EOF) {
switch(st.ttype) {

case StreamTokenizer.TT_EOL:
s = null;
break;

664 Thinking in Java www.BruceEckel.com

case StreamTokenizer.TT_NUMBER:
s = Double.toString(st.nval);
break;

case StreamTokenizer.TT_WORD:
s = new String(st.sval);
break;

default: // single character in ttype
s = String.valueOf((char)st.ttype);

}
}

} catch(IOException e) {
System.out.println(e);

}
return s;

}
public static String strip(String qualified) {

StripQualifiers sq =
new StripQualifiers(qualified);

String s = "", si;
while((si = sq.getNext()) != null) {
int lastDot = si.lastIndexOf('.');
if(lastDot != -1)
si = si.substring(lastDot + 1);

s += si;
}
return s;

}
} ///:~

The class ShowMethodsClean is quite similar to the previous
ShowMethods, except that it takes the arrays of Method and
Constructor and converts them into a single array of String.
Each of these String objects is then passed through
StripQualifiers.Strip() to remove all the method qualification.
As you can see, this uses the StreamTokenizer and String
manipulation to do its work.

This tool can be a real time-saver while you’re programming, when
you can’t remember if a class has a particular method and you don’t
want to go walking through the class hierarchy in the online

Chapter 12: Run-Time Type Identification 665

documentation, or if you don’t know whether that class can do
anything with, for example, Color objects.

Chapter 13 contains a GUI version of this program so you can leave
it running while you’re writing code, to allow quick lookups.

Summary
RTTI allows you to discover type information from an anonymous
base-class handle. Thus, it’s ripe for misuse by the novice since it
might make sense before polymorphic method calls do. For many
people coming from a procedural background, it’s difficult not to
organize their programs into sets of switch statements. They could
accomplish this with RTTI and thus lose the important value of
polymorphism in code development and maintenance. The intent of
Java is that you use polymorphic method calls throughout your
code, and you use RTTI only when you must.

However, using polymorphic method calls as they are intended
requires that you have control of the base-class definition because
at some point in the extension of your program you might discover
that the base class doesn’t include the method you need. If the base
class comes from a library or is otherwise controlled by someone
else, a solution to the problem is RTTI: You can inherit a new type
and add your extra method. Elsewhere in the code you can detect
your particular type and call that special method. This doesn’t
destroy the polymorphism and extensibility of the program because
adding a new type will not require you to hunt for switch statements
in your program. However, when you add new code in your main
body that requires your new feature, you must use RTTI to detect
your particular type.

Putting a feature in a base class might mean that, for the benefit of
one particular class, all of the other classes derived from that base
require some meaningless stub of a method. This makes the
interface less clear and annoys those who must override abstract
methods when they derive from that base class. For example,
consider a class hierarchy representing musical instruments.
Suppose you wanted to clear the spit valves of all the appropriate

666 Thinking in Java www.BruceEckel.com

instruments in your orchestra. One option is to put a
ClearSpitValve() method in the base class Instrument, but this
is confusing because it implies that Percussion and Electronic
instruments also have spit valves. RTTI provides a much more
reasonable solution in this case because you can place the method
in the specific class (Wind in this case), where it’s appropriate.
However, a more appropriate solution is to put a
prepareInstrument() method in the base class, but you might
not see this when you’re first solving the problem and could
mistakenly assume that you must use RTTI.

Finally, RTTI will sometimes solve efficiency problems. If your code
nicely uses polymorphism, but it turns out that one of your objects
reacts to this general purpose code in a horribly inefficient way, you
can pick out that type using RTTI and write case-specific code to
improve the efficiency. Be wary, however, of programming for
efficiency too soon. It’s a seductive trap. It’s best to get the program
working first, then decide if it’s running fast enough, and only then
should you attack efficiency issues – with a profiler.

Exercises
1. Add Rhomboid to Shapes.java. Create a Rhomboid,

upcast it to a Shape, then downcast it back to a Rhomboid.
Try downcasting to a Circle and see what happens.

2. Modify Exercise 1 so that it uses instanceof to check the type
before performing the downcast.

3. Modify Shapes.java so that it can “highlight” (set a flag) in
all shapes of a particular type. The toString() method for
each derived Shape should indicate whether that Shape is
“highlighted.”

4. Modify SweetShop.java so that each type of object creation
is controlled by a command-line argument. That is, if your
command line is “java SweetShop Candy,” then only the
Candy object is created. Notice how you can control which
Class objects are loaded via the command-line argument.

Chapter 12: Run-Time Type Identification 667

5. Add a new type of Pet to PetCount3.java. Verify that it is
created and counted correctly in main().

6. Write a method that takes an object and recursively prints all
the classes in that object’s hierarchy.

7. Modify Exercise 6 so that it uses
Class.getDeclaredFields() to also display information
about the fields in a class.

8. In ToyTest.java, comment out Toy’s default constructor and
explain what happens.

9. Incorporate a new kind of interface into ToyTest.java and
verify that it is detected and displayed properly.

10. Create a new type of collection that uses a private ArrayList
to hold the objects. Capture the type of the first object you put
in it, and then allow the user to insert objects of only that type
from then on.

11. Write a program to determine whether an array of char is a
primitive type or a true object.

12. Implement clearSpitValve() as described in the summary.

13. Implement the rotate(Shape) method described in this
chapter, such that it checks to see if it is rotating a Circle
(and, if so, doesn’t perform the operation).

14. Modify Exercise 6 so that it uses reflection instead of RTTI.

15. Modify Exercise 7 so that it uses reflection instead of RTTI.

16. In ToyTest.java, use reflection to create a Toy object using
the non-default constructor.

17. Look up the interface for java.lang.Class in the HTML Java
documentation from http://java.sun.com. Write a program
that takes the name of a class as a command-line argument,
then uses the Class methods to dump all the information
available for that class. Test your program with a standard
library class and a class you create.

668 Thinking in Java www.BruceEckel.com

 669

13: Creating
Windows
& Applets

[[[Note: please notice that only the code files have been
changed to be Swing-compliant, and the prose is
essentially the way it was before, and refers to the old
programs – that is to say, more work is going to be done
here. So please concentrate on the code listings, and if you
see changes that should be made, please include the
entire file after you’ve made the improvements, using the
correction page attached to this HTML file or at
www.BruceEckel.com]]]

A fundamental design guideline is “make simple things
easy, and difficult things possible1.”

The original design goal of the graphical user interface (GUI) library
in Java 1.0 was to allow the programmer to build a GUI that looks
good on all platforms. That goal was not achieved. Instead, the Java
1.0 Abstract Window Toolkit (AWT) produces a GUI that looks
equally mediocre on all systems. In addition it’s restrictive: you can
use only four fonts and you cannot access any of the more
sophisticated GUI elements that exist in your operating system. The
Java 1.0 AWT programming model is also awkward and non-object-
oriented. A student in one of my seminars (who had been at Sun

1 A varation on this is called “the principle of least astonishment,” which essentially says:
“don’t surprise the user.”

670 Thinking in Java www.BruceEckel.com

during the creation of Java) explained why: the original AWT had
been conceptualized, designed and implemented in a month.
Certainly a marvel of productivity, and also an object lesson in why
design is important.

Much of the situation improved with the Java 1.1 AWT event model,
which takes a much clearer, object-oriented approach, along with
the addition of Java Beans, a component programming model that
is oriented toward the easy creation of visual programming
environments. Java 2 finishes the transformation away from the old
Java 1.0 AWT by adding the Java Foundation Classes (JFC), the
GUI portion of which is called “Swing.” These are a rich set of easy-
to-use, easy-to-understand Java Beans that can be dragged and
dropped (as well as hand programmed) to create a GUI that you can
(finally) be satisfied with. The “revision 3” rule of the software
industry (a product isn’t good until revision 3) seems to hold true
with programming languages as well.

This chapter does not cover anything but the modern, Java 2 Swing
library, and makes the reasonable assumption that Swing is the
final destination GUI library for Java. If for some reason you need
to use the original “old” AWT (because you’re supporting old code
or old browsers), you can find that introduction in the online first
edition of the book at www.BruceEckel.com.

Most of the examples will show the creation of applets, primarily
because it’s easier and simpler to understand the examples that
way. In addition, you’ll see how things are different when you want
to create a regular application using Swing, and how to create
programs that are both applets and applications so they can be run
either inside a browser or from the command line.

Please be aware that this is not a comprehensive glossary of all the
methods for the described classes. This chapter just gets you started
with the essentials. When you’re looking for more sophistication,
make sure you go to your information browser to look for the
classes and methods that will solve your problem. There are
numerous books dedicated solely to Swing and you’ll want to go to
those if you need to modify the default Swing behavior.

As you learn about Swing you’ll discover:

Chapter 13: Creating Windows & Applets 671

1. Swing is a much better programming model than you’ve
probably seen in other languages and development
environments. Java Beans is the framework for that library.

2. “GUI builders” (visual programming environments) are de
rigeur for all development systems. Java Beans and the
Swing allow the GUI builder to write code for you as you
place components onto forms using graphical tools. This not
only rapidly speeds development during GUI building, but it
allows for greater experimentation and thus the ability to try
out more designs and presumably come up with a better one.

The basic applet
One of Java’s primary design goals is to create applets, which are
little programs that run inside a Web browser. Because they must
be safe, applets are limited in what they can accomplish. However,
they are a powerful tool in supporting client-side programming, a
major issue for the Web.

Programming within an applet is so restrictive that it’s often
referred to as being “inside the sandbox,” since you always have
someone – the Java run-time security system – watching over you.
Java offers digital signing for applets so you can choose to allow
trusted applets to have access to your machine. However, you can
also step outside the sandbox and write regular applications, in
which case you can access the other features of your OS. We’ve been
writing regular applications all along in this book, but they’ve been
console applications without any graphical components. Swing can
also be used to build GUI interfaces for regular applications.

Libraries are often grouped according to their functionality. Some
libraries, for example, are used as is, off the shelf. The standard
Java library String and ArrayList classes are examples of these.
Other libraries are designed specifically as building blocks to build
other classes. A certain class of library is the application
framework, whose goal is to help you build applications by
providing a class or set of classes that produces the basic behavior
that you need in every application of a particular type. Then, to

672 Thinking in Java www.BruceEckel.com

customize the behavior to your own needs you inherit from the
application class and override the methods of interest. The
application framework’s default control mechanism will call your
overridden methods at the appropriate time. An application
framework is a good example of “separating the things that change
from the things that stay the same,” since it attempts to localize all
the unique parts of a program in the overridden methods2.

Applets are built using an application framework. You inherit from
class JApplet and override the appropriate methods. There are a
few methods that control the creation and execution of an applet on
a web page:

Method Operation
init() Called when the applet is first created to perform

first-time initialization of the applet, including
component layout. You’ll always override this
method.

start() Called every time the applet moves into sight on
the Web browser to allow the applet to start up its
normal operations (especially those that are shut
off by stop()). Also called after init().

stop() Called every time the applet moves out of sight on
the Web browser to allow the applet to shut off
expensive operations. Also called right before
destroy().

destroy
()

Called when the applet is being unloaded from the
page to perform final release of resources when
the applet is no longer used

With this information you can create a simple applet:

//: c13:Applet1.java
// Very simple applet.
import javax.swing.*;
import java.awt.*;

2 This is an example of the design pattern called the template method.

Chapter 13: Creating Windows & Applets 673

public class Applet1 extends JApplet {
public void init() {

getContentPane().add(new JLabel("Applet!"));
}

} ///:~

Note that applets are not required to have a main(). That’s all
wired in to the application framework; you put any startup code in
init().

Running applets inside a Web
browser
To run this program you must place it inside a Web page and view
that page inside your Java-enabled Web browser. To place an applet
inside a Web page you put a special tag inside the HTML source for
that Web page3 to tell the page how to load and run the applet.

This process used to be very simple, when Java was simple and
everyone was on the same bandwagon and incorporated the same
Java support inside their web browsers. Then you might have been
able to get away with a very simple bit of HTML inside your Web
page, like this:

<applet code=Applet1 width=100 height=50>
</applet>

Then along came the browser & language wars, and we lost. After
awhile, Javasoft realized that we could no longer expect browsers to
support the correct flavor of Java, and the only solution was to
provide some kind of add-on that would conform to a browser’s
extension mechanism. By using the extension mechanism (which a
browser vendor cannot disable – in an attempt to gain competitive
advantage – without breaking all the 3rd party extensions) Javasoft

3 It is assumed that the reader is familiar with the basics of HTML. It’s not too hard to
figure out, and there are lots of books and resources.

674 Thinking in Java www.BruceEckel.com

guarantees that Java cannot be shut out of the web browser by an
antagonistic vendor.

With Internet Explorer, the extension mechanism is the ActiveX
control, and with Netscape the extension mechanism is the plug-in.
In your html code, you must provide tags to support both. Here’s
what the simplest resulting HTML page looks like for Applet1:

//:! c13:Applet1.html
<html><head><title>Applet1</title></head><hr>
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-
00805F499D93"

width="100" height="50" align="baseline"

codebase="http://java.sun.com/products/plugin/1.2.
2/jinstall-1_2_2-win.cab#Version=1,2,2,0">
<PARAM NAME="code" VALUE="Applet1.class">
<PARAM NAME="codebase" VALUE=".">
<PARAM NAME="type" VALUE="application/x-java-
applet;version=1.2.2">
<COMMENT>

<EMBED type="application/x-java-
applet;version=1.2.2" width="200"

height="200" align="baseline"
code="Applet1.class"

codebase="."

pluginspage="http://java.sun.com/products/plugin/1
.2/plugin-install.html">

<NOEMBED>
</COMMENT>

No Java 2 support for APPLET!!
</NOEMBED></EMBED>

</OBJECT>
<hr></body></html>
///:~

Some of these lines were too long and had to be wrapped to fit on
the page. The code in the books source-code download (from
www.BruceEckel.com) will work without having to worry about
correcting line wraps.

Chapter 13: Creating Windows & Applets 675

The code value gives the name of the .class file where the applet
resides. The width and height specify the initial size of the applet
(in pixels, as before). There are other items you can place within the
applet tag: a place to find other .class files on the Internet
(codebase), alignment information (align), a special identifier
that makes it possible for applets to communicate with each other
(name), and applet parameters to provide information that the
applet can retrieve. Parameters are in the form

<param name="identifier" value = "information">

and there can be as many as you want.

Automatically generating HTML files
There are many applets in this chapter, and it would be nice to be
able to create an HTML file that displays them all, so that you can
easily view them on a single browser page but you don’t have to
generate all those tags. At this point in the book, we have the
technology to write such a program:

Using Appletviewer
Sun’s JDK (freely downloadable from their web site) contains a tool
called the Appletviewer that picks the <applet> tags out of the
HTML file and runs the applets without displaying the surrounding
HTML text. Because the appletviewer ignores everything but
APPLET tags, you can put those tags in the Java source file as
comments:

// <applet code=MyApplet width=200 height=100>
// </applet>

This way, you can run "Appletviewer MyApplet.java" and you
don’t need to create tiny HTML files to run tests. Also, you can see
from looking at the example the HTML tag that must be inserted
into a Web page.

For example, you can add the commented HTML tags to
Applet1.java:

676 Thinking in Java www.BruceEckel.com

//: c13:Applet1b.java
// Embedding the applet tag for Appletviewer.
// <applet code=Applet1b width=100 height=50>
// </applet>
import javax.swing.*;
import java.awt.*;

public class Applet1b extends JApplet {
public void init() {

getContentPane().add(new JLabel("Applet!"));
}

} ///:~

Now you can invoke the applet with the command

Appletviewer Applet1b.java

For “plain” applets in this book, this form will be used for easy
testing (later, you’ll see another coding approach which will allow
you to execute applets from the command line without the
Appletviewer).

Testing applets
You can perform a simple test without any network connection by
starting up your Web browser and opening the HTML file
containing the applet tag. As the HTML file is loaded, the browser
will discover the applet tag and go hunt for the .class file specified
by the code value. Of course, it looks at the CLASSPATH to find out
where to hunt, and if your .class file isn’t in the CLASSPATH then
it will give an error message on the status line of the browser to the
effect that it couldn’t find that .class file.

When you want to try this out on your Web site things are a little
more complicated. First of all, you must have a Web site, which for
most people means a third-party Internet Service Provider (ISP) at
a remote location (since the applet is just a file or set of files, the ISP
does not have to provide any special support for Java). Then you
must have a way to move the HTML files and the .class files from
your site to the correct directory (your WWW directory) on the ISP
machine. This is typically done with a File Transfer Protocol (FTP)

Chapter 13: Creating Windows & Applets 677

program, of which there are many different types available for free
or as shareware. So it would seem that all you need to do is move
the files to the ISP machine with FTP, then connect to the site and
HTML file using your browser; if the applet comes up and works,
then everything checks out, right?

Here’s where you can get fooled. If the browser on the client
machine cannot locate the .class file on the server, it will hunt
through the CLASSPATH on your local machine. Thus, the applet
might not be loading properly from the server, but to you it looks
fine because the browser finds it on your machine. When someone
else logs in, however, his or her browser can’t find it. So when
you’re testing, make sure you erase the relevant .class files on your
machine to be safe.

One of the most insidious places where this happened to me is when
I innocently placed an applet inside a package. After uploading the
HTML file and applet, it turned out that the server path to the
applet was confused because of the package name. However, my
browser found it in the local CLASSPATH. So I was the only one
who could properly load the applet. It took some time to discover
that the package statement was the culprit. In general, you’ll want
to leave the package statement out of an applet.

Making a button
Making a button is quite simple: you just call the Button
constructor with the label you want on the button. (You can also use
the default constructor if you want a button with no label, but this is
not very useful.) Usually you’ll want to create a handle for the
button so you can refer to it later.

The Button is a component, like its own little window, that will
automatically get repainted as part of an update. This means that
you don’t explicitly paint a button or any other kind of control; you
simply place them on the form and let them automatically take care
of painting themselves. So to place a button on a form you override
init() instead of overriding paint():

678 Thinking in Java www.BruceEckel.com

//: c13:Button1.java
// Putting buttons on an applet.
// <applet code=Button1 width=200 height=50>
// </applet>
import javax.swing.*;
import java.awt.*;

public class Button1 extends JApplet {
JButton

b1 = new JButton("Button 1"),
b2 = new JButton("Button 2");

public void init() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(b2);

}
} ///:~

It’s not enough to create the Button (or any other control). You
must also call the Applet add() method to cause the button to be
placed on the applet’s form. This seems a lot simpler than it is,
because the call to add() actually decides, implicitly, where to
place the control on the form. Controlling the layout of a form is
examined shortly.

Capturing an event
You’ll notice that if you compile and run the applet above, nothing
happens when you press the buttons. This is where you must step in
and write some code to determine what will happen. The basis of
event-driven programming, which comprises a lot of what a GUI is
about, is tying events to code that responds to those events.

After working your way this far through the book and grasping
some of the fundamentals of object-oriented programming, you
might think that of course there will be some sort of object-oriented
approach to handling events. For example, you might have to
inherit each button and override some “button pressed” method
(this, it turns out, is too tedious and restrictive). You might also

Chapter 13: Creating Windows & Applets 679

think there’s some master “event” class that contains a method for
each event you want to respond to.

Before objects, the typical approach to handling events was the
“giant switch statement.” Each event would have a unique integer
value and inside the master event handling method you’d write a
switch on that value.

Swing in Java 1.0 doesn’t use any object-oriented approach. Neither
does it use a giant switch statement that relies on the assignment
of numbers to events. Instead, you must create a cascaded set of if
statements. What you’re trying to do with the if statements is detect
the object that was the target of the event. That is, if you click on a
button, then that particular button is the target. Normally, that’s all
you care about – if a button is the target of an event, then it was
most certainly a mouse click and you can continue based on that
assumption. However, events can contain other information as well.
For example, if you want to find out the pixel location where a
mouse click occurred so you can draw a line to that location, the
Event object will contain the location. (You should also be aware
that Java 1.0 components can be limited in the kinds of events they
generate, while Java 1.1 and Swing/JFC components produce a full
set of events.)

The Java 1.0 AWT method where your cascaded if statement resides
is called action(). Although the whole Java 1.0 Event model has
been deprecated in Java 1.1, it is still widely used for simple applets
and in systems that do not yet support Java 1.1, so I recommend you
become comfortable with it, including the use of the following
action() method approach.

action() has two arguments: the first is of type Event and
contains all the information about the event that triggered this call
to action(). For example, it could be a mouse click, a normal
keyboard press or release, a special key press or release, the fact
that the component got or lost the focus, mouse movements, or
drags, etc. The second argument is usually the target of the event,
which you’ll often ignore. The second argument is also encapsulated
in the Event object so it is redundant as an argument.

680 Thinking in Java www.BruceEckel.com

The situations in which action() gets called are extremely limited:
When you place controls on a form, some types of controls (buttons,
check boxes, drop-down lists, menus) have a “standard action” that
occurs, which causes the call to action() with the appropriate
Event object. For example, with a button the action() method is
called when the button is pressed and at no other time. Usually this
is just fine, since that’s what you ordinarily look for with a button.
However, it’s possible to deal with many other types of events via
the handleEvent() method as we will see later in this chapter.

The previous example can be extended to handle button clicks as
follows:

//: c13:Button2.java
// Capturing button presses.
// <applet code=Button2 width=200 height=50>
// </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class Button2 extends JApplet {
JButton

b1 = new JButton("Button 1"),
b2 = new JButton("Button 2");

class BL implements ActionListener {
public void actionPerformed(ActionEvent e){
String name =
((JButton)e.getSource()).getText();

getAppletContext().showStatus(name);
}

}
BL al = new BL();
public void init() {

b1.addActionListener(al);
b2.addActionListener(al);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(b2);

}

Chapter 13: Creating Windows & Applets 681

} ///:~

To see what the target is, ask the Event object what its target
member is and then use the equals() method to see if it matches
the target object handle you’re interested in. When you’ve written
handlers for all the objects you’re interested in you must call
super.action(evt, arg) in the else statement at the end, as
shown above. Remember from Chapter 7 (polymorphism) that your
overridden method is called instead of the base class version.
However, the base-class version contains code to handle all of the
cases that you’re not interested in, and it won’t get called unless you
call it explicitly. The return value indicates whether you’ve handled
it or not, so if you do match an event you should return true,
otherwise return whatever the base-class event() returns.

For this example, the simplest action is to print what button is
pressed. Some systems allow you to pop up a little window with a
message in it, but applets discourage this. However, you can put a
message at the bottom of the Web browser window on its status line
by calling the Applet method getAppletContext() to get access
to the browser and then showStatus() to put a string on the
status line.4 You can print out a complete description of an event
the same way, with getAppletContext().showStatus(evt + "").
(The empty String forces the compiler to convert evt to a String.)
Both of these reports are really useful only for testing and
debugging since the browser might overwrite your message.

It is often more convenient to code the ActionListener as an
anonymous inner class, especially since you tend to only use a single
instance of each listener class. Button2.java can be modified to
use an anonymous inner class as follows:

//: c13:Button2b.java
// Using anonymous inner classes.
// <applet code=Button2b width=200 height=50>
// </applet>
import javax.swing.*;

4 ShowStatus() is also a method of Applet, so you can call it directly, without calling
getAppletContext().

682 Thinking in Java www.BruceEckel.com

import java.awt.event.*;
import java.awt.*;

public class Button2b extends JApplet {
JButton

b1 = new JButton("Button 1"),
b2 = new JButton("Button 2");

ActionListener al = new ActionListener() {
public void actionPerformed(ActionEvent e){
String name =
((JButton)e.getSource()).getText();

getAppletContext().showStatus(name);
}

};
public void init() {

b1.addActionListener(al);
b2.addActionListener(al);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(b2);

}
} ///:~

The approach of using an anonymous inner class will be preferred
for the examples in this book.

Text fields
A TextField is a one line area that allows the user to enter and edit
text. TextField is inherited from TextComponent, which lets you
select text, get the selected text as a String, get or set the text, and
set whether the TextField is editable, along with other associated
methods that you can find in your online reference. The following
example demonstrates some of the functionality of a TextField;
you can see that the method names are fairly obvious:

//: c13:TextField1.java
// Using the text field control.
// <applet code=TextField1 width=350 height=75>

Chapter 13: Creating Windows & Applets 683

// </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class TextField1 extends JApplet {
JButton

b1 = new JButton("Get Text"),
b2 = new JButton("Set Text");

JTextField
t = new JTextField("Starting text: ", 30);

String s = new String();
ActionListener a1 = new ActionListener() {

public void actionPerformed(ActionEvent e){
getAppletContext().showStatus(t.getText());
s = t.getSelectedText();
if(s == null)
s = t.getText();

t.setEditable(true);
}

};
ActionListener a2 = new ActionListener() {

public void actionPerformed(ActionEvent e){
t.setText("Inserted by Button 2: " + s);
t.setEditable(false);

}
};
public void init() {

b1.addActionListener(a1);
b2.addActionListener(a2);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(b2);
cp.add(t);

}
} ///:~

There are several ways to construct a TextField; the one shown
here provides an initial string and sets the size of the field in
characters.

684 Thinking in Java www.BruceEckel.com

Pressing button 1 either gets the text you’ve selected with the mouse
or it gets all the text in the field and places the result in String s. It
also allows the field to be edited. Pressing button 2 puts a message
and s into the text field and prevents the field from being edited
(although you can still select the text). The editability of the text is
controlled by passing setEditable() a true or false.

Text areas
A TextArea is like a TextField except that it can have multiple
lines and has significantly more functionality. In addition to what
you can do with a TextField, you can append text and insert or
replace text at a given location. It seems like this functionality could
be useful for TextField as well, so it’s a little confusing to try to
detect how the distinction is made. You might think that if you want
TextArea functionality everywhere you can simply use a one line
TextArea in places where you would otherwise use a TextField.
In Java 1.0, you also got scroll bars with a TextArea even when
they weren’t appropriate; that is, you got both vertical and
horizontal scroll bars for a one line TextArea. In Java 1.1 this was
remedied with an extra constructor that allows you to select which
scroll bars (if any) are present. The following example shows only
the Java 1.0 behavior, in which the scrollbars are always on. Later in
the chapter you’ll see an example that demonstrates Java 1.1
TextAreas.

//: c13:TextArea1.java
// Using the text area control.
// <applet code=TextArea1 width=350 height=200>
// </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class TextArea1 extends JApplet {
JButton

b1 = new JButton("Text Area 1"),
b2 = new JButton("Text Area 2"),
b3 = new JButton("Replace Text"),

Chapter 13: Creating Windows & Applets 685

b4 = new JButton("Insert Text");
JTextArea

t1 = new JTextArea("t1", 1, 30),
t2 = new JTextArea("t2", 4, 30);

ActionListener a1 = new ActionListener() {
public void actionPerformed(ActionEvent e){
getAppletContext().showStatus(t1.getText());

}
};
ActionListener a2 = new ActionListener() {

public void actionPerformed(ActionEvent e){
t2.setText("Inserted by Button 2");
t2.append(": " + t1.getText());
getAppletContext().showStatus(t2.getText());

}
};
ActionListener a3 = new ActionListener() {

public void actionPerformed(ActionEvent e){
String s = " Replacement ";
t2.replaceRange(s, 3, 3 + s.length());

}
};
ActionListener a4 = new ActionListener() {

public void actionPerformed(ActionEvent e){
t2.insert(" Inserted ", 10);

}
};
public void init() {

b1.addActionListener(a1);
b2.addActionListener(a2);
b3.addActionListener(a3);
b4.addActionListener(a4);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(t1);
cp.add(b2);
cp.add(t2);
cp.add(b3);
cp.add(b4);

}
} ///:~

686 Thinking in Java www.BruceEckel.com

There are several different TextArea constructors, but the one
shown here gives a starting string and the number of rows and
columns. The different buttons show getting, appending, replacing,
and inserting text.

Labels
A JLabel does exactly what it sounds like it should: places a label
on the form. This is particularly important for text fields and text
areas that don’t have labels of their own, and can also be useful if
you simply want to place textual information on a form. You can, as
shown in the first example in this chapter, use drawString()
inside paint() to place text in an exact location. When you use a
JLabel it allows you to (approximately) associate the text with
some other component via the layout manager (which will be
discussed later in this chapter).

With the constructor you can create a blank label or a label with
initial text in it (which is what you’ll typically do). Less frequently
used options include changing the alignment of labels. You can also
change the label with setText() and and read the value with
getText(). This example shows things you might commonly do
with labels:

//: c13:Label1.java
// Using labels.
// <applet code=Label1 width=200 height=100>
// </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class Label1 extends JApplet {
JTextField t1 = new JTextField("t1", 10);
JLabel

labl1 = new JLabel("TextField t1"),
labl2 = new JLabel(" ");

JButton
b1 = new JButton("Test 1"),

Chapter 13: Creating Windows & Applets 687

b2 = new JButton("Test 2");
ActionListener a1 = new ActionListener() {

public void actionPerformed(ActionEvent e) {
t1.setText("Button 1");
labl2.setText("Text set into Label");

}
};
ActionListener a2 = new ActionListener() {

public void actionPerformed(ActionEvent e) {
t1.setText("Button 2");
labl1.setText("Hello");

}
};
public void init() {

b1.addActionListener(a1);
b2.addActionListener(a2);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(labl1);
cp.add(t1);
cp.add(b1);
cp.add(labl2);
cp.add(b2);

}
} ///:~

The first use of the label is the most typical: labeling a TextField or
TextArea. In the second part of the example, a bunch of empty
spaces are reserved and when you press the “Test 1” button
setText() is used to insert text into the field.

HTML text on Swing components
Any component that can take text can also take HTML text, which it
will reformat according to HTML rules. This means you can very
easily add fancy text to a Swing component. For example,

JButton bigButton =
new JButton("<html>" +
"Hello!
<i>Press me now!"));

This produces [[etc.]]

688 Thinking in Java www.BruceEckel.com

[[rewrite]] The same trick works for JLabel, JTabbedPane,
JMenuItem, and JToolTip. Future releases of Swing may also
add HTML support to JRadioButton and JCheckBox

Check boxes
A check box provides a way to make a single on-off choice; it
consists of a tiny box and a label. The box typically holds a little ‘x’
(or some other indication that it is set) or is empty depending on
whether that item was selected.

You’ll normally create a Checkbox using a constructor that takes
the label as an argument. You can get and set the state, and also get
and set the label if you want to read or change it after the
Checkbox has been created. Note that the capitalization of
Checkbox is inconsistent with the other controls, which could
catch you by surprise since you might expect it to be “CheckBox.”

Whenever a Checkbox is set or cleared an event occurs, which you
can capture the same way you do a button. The following example
uses a TextArea to enumerate all the check boxes that have been
checked:

//: c13:CheckBox1.java
// Using check boxes.
// <applet code=CheckBox1 width=200 height=200>
// </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class CheckBox1 extends JApplet {
JTextArea t = new JTextArea(6, 15);
JCheckBox

cb1 = new JCheckBox("Check Box 1"),
cb2 = new JCheckBox("Check Box 2"),
cb3 = new JCheckBox("Check Box 3");

public void init() {
cb1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){

Chapter 13: Creating Windows & Applets 689

trace("1", cb1);
}

});
cb2.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
trace("2", cb2);

}
});
cb3.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
trace("3", cb3);

}
});
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(new JScrollPane(t));
cp.add(cb1);
cp.add(cb2);
cp.add(cb3);

}
void trace(String b, JCheckBox cb) {

if(cb.isSelected())
t.append("Box " + b + " Set\n");

else
t.append("Box " + b + " Cleared\n");

}
} ///:~

Notice that in this example, the anonymous inner class that
implements ActionListener is created inline, so no intermediate
variable is used.

The trace() method sends the name of the selected Checkbox
and its current state to the TextArea using appendText() so
you’ll see a cumulative list of the checkboxes that were selected and
what their state is.

690 Thinking in Java www.BruceEckel.com

Radio buttons
The concept of a radio button in GUI programming comes from
pre-electronic car radios with mechanical buttons: when you push
one in, any other button that was pressed pops out. Thus it allows
you to force a single choice among many.

Swing does not have a separate class to represent the radio button;
instead it reuses the Checkbox. However, to put the Checkbox in
a radio button group (and to change its shape so it’s visually
different from an ordinary Checkbox) you must use a special
constructor that takes a CheckboxGroup object as an argument.
(You can also call setCheckboxGroup() after the Checkbox has
been created.)

A CheckboxGroup has no constructor argument; its sole reason
for existence is to collect some Checkboxes into a group of radio
buttons. One of the Checkbox objects must have its state set to
true before you try to display the group of radio buttons; otherwise
you’ll get an exception at run time. If you try to set more than one
radio button to true then only the final one set will be true.

Here’s a simple example of the use of radio buttons. Note that you
capture radio button events like all others:

//: c13:RadioButton1.java
// Using radio buttons.
// <applet code=RadioButton1
// width=200 height=75> </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class RadioButton1 extends JApplet {
JTextField t =

new JTextField("Radio button 2", 15);
ButtonGroup g = new ButtonGroup();
JRadioButton

rb1 = new JRadioButton("one", false),
rb2 = new JRadioButton("two", true),

Chapter 13: Creating Windows & Applets 691

rb3 = new JRadioButton("three",false);
ActionListener al = new ActionListener() {

public void actionPerformed(ActionEvent e) {
t.setText("Radio button " +
((JRadioButton)e.getSource()).getText());

}
};
public void init() {

rb1.addActionListener(al);
rb2.addActionListener(al);
rb3.addActionListener(al);
g.add(rb1); g.add(rb2); g.add(rb3);
t.setEditable(false);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);
cp.add(rb1);
cp.add(rb2);
cp.add(rb3);

}
} ///:~

To display the state, a text field is used. This field is set to non-
editable because it’s used only to display data, not to collect it. This
is shown as an alternative to using a Label. Notice the text in the
field is initialized to “Radio button two” since that’s the initial
selected radio button.

You can have any number of CheckboxGroups on a form.

Drop-down lists
Like a group of radio buttons, a drop-down list is a way to force the
user to select only one element from a group of possibilities.
However, it’s a much more compact way to accomplish this, and it’s
easier to change the elements of the list without surprising the user.
(You can change radio buttons dynamically, but that tends to be
visibly jarring).

692 Thinking in Java www.BruceEckel.com

Java’s Choice box is not like the combo box in Windows, which lets
you select from a list or type in your own selection. With a Choice
box you choose one and only one element from the list. In the
following example, the Choice box starts with a certain number of
entries and then new entries are added to the box when a button is
pressed. This allows you to see some interesting behaviors in
Choice boxes:

//: c13:Choice1.java
// Using drop-down lists.
// <applet code=Choice1
// width=200 height=100> </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class Choice1 extends JApplet {
String[] description = { "Ebullient", "Obtuse",

"Recalcitrant", "Brilliant", "Somnescent",
"Timorous", "Florid", "Putrescent" };

JTextField t = new JTextField(15);
JComboBox c = new JComboBox();
JButton b = new JButton("Add items");
int count = 0;
public void init() {

for(int i = 0; i < 4; i++)
c.addItem(description[count++]);

t.setEditable(false);
b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
if(count < description.length)

c.addItem(description[count++]);
}

});
c.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
t.setText("index: "+ c.getSelectedIndex()

+ " " + ((JComboBox)e.getSource())
.getSelectedItem());

}
});

Chapter 13: Creating Windows & Applets 693

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);
cp.add(c);
cp.add(b);

}
} ///:~

The TextField displays the “selected index,” which is the sequence
number of the currently selected element, as well as the String
representation of the second argument of action(), which is in this
case the string that was selected.

When you run this applet, pay attention to the determination of the
size of the Choice box: in Windows, the size is fixed from the first
time you drop down the list. This means that if you drop down the
list, then add more elements to the list, the elements will be there
but the drop-down list won’t get any longer5 (you can scroll through
the elements). However, if you add all the elements before the first
time the list is dropped down, then it will be sized correctly. Of
course, the user will expect to see the whole list when it’s dropped
down, so this behavior puts some significant limitations on adding
elements to Choice boxes.

List boxes
List boxes are significantly different from Choice boxes, and not
just in appearance. While a Choice box drops down when you
activate it, a List occupies some fixed number of lines on a screen
all the time and doesn’t change. In addition, a List allows multiple
selection: if you click on more than one item the original item stays
highlighted and you can select as many as you want. If you want to
see the items in a list, you simply call getSelectedItems(), which
produces an array of String of the items that have been selected. To
remove an item from a group you have to click it again.

5 This behavior is apparently a bug and will be fixed in a later version of Java.

694 Thinking in Java www.BruceEckel.com

A problem with a List is that the default action is double clicking,
not single clicking. A single click adds or removes elements from the
selected group and a double click calls action(). One way around
this is to re-educate your user, which is the assumption made in the
following program:

//: c13:List1.java
// Using lists.
// <applet code=List1
// width=200 height=350> </applet>
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

public class List1 extends JApplet {
String[] flavors = { "Chocolate", "Strawberry",

"Vanilla Fudge Swirl", "Mint Chip",
"Mocha Almond Fudge", "Rum Raisin",
"Praline Cream", "Mud Pie" };

JList list = new JList(flavors);
JTextArea t =

new JTextArea(flavors.length + 1, 15);
public void init() {

t.setEditable(false);
list.addListSelectionListener(
new ListSelectionListener() {
public void
valueChanged(ListSelectionEvent e) {
t.setText(""); // Erase the text area
Object[] items= list.getSelectedValues();
for(int i = 0; i < items.length; i++)

t.append(items[i] + "\n");
}

});
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);
cp.add(list);

}
} ///:~

Chapter 13: Creating Windows & Applets 695

When you press the button it adds items to the top of the list
(because of the second argument 0 to addItem()). Adding
elements to a List is more reasonable than the Choice box because
users expect to scroll a list box (for one thing, it has a built-in scroll
bar) but they don’t expect to have to figure out how to get a drop-
down list to scroll, as in the previous example.

However, the only way for action() to be called is through a
double-click. If you need to monitor other activities that the user is
doing on your List (in particular, single clicks) you must take an
alternative approach.

Tabbed panes
The JTabbedPane allows you to create a “tabbed dialog,” which
has file-folder tabs running across one edge, and all you have to do
is press a tab to bring forward a different dialog.

//: c13:TabbedPane1.java
// Demonstrates the Tabbed Pane.
// <applet code=TabbedPane1
// width=350 height=200> </applet>
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

public class TabbedPane1 extends JApplet {
String[] flavors = { "Chocolate", "Strawberry",

"Vanilla Fudge Swirl", "Mint Chip",
"Mocha Almond Fudge", "Rum Raisin",
"Praline Cream", "Mud Pie" };

JTabbedPane tabs = new JTabbedPane();
public void init() {

for(int i = 0; i < flavors.length; i++)
tabs.addTab(flavors[i],
new JButton("Tabbed pane " + i));

tabs.addChangeListener(new ChangeListener(){
public void stateChanged(ChangeEvent e) {
getAppletContext().showStatus(

"Tab selected: " +

696 Thinking in Java www.BruceEckel.com

tabs.getSelectedIndex());
}

});
Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(tabs);

}
} ///:~

The applet is changed to use a BorderLayout instead of its default
FlowLayout (is this true ????).

In Java, the use of some sort of “tabbed panel” mechanism is quite
important because (as you’ll see later) in applet programming the
use of pop-up dialogs is heavily discouraged.

Message boxes
Windowing environments commonly contain a standard set of
message boxes that allow you to quickly post information to the
user or to capture information from the user. In Swing, these
message boxes are contained in JOptionPane. You have many
different possibilities (some quite sophisticated), but the ones you’ll
most commonly use are probably the message dialog and
confirmation dialog, invoked using the static
JOptionPane.showMessageDialog() and JOptionPane.
showConfirmDialog().

//: c13:MessageBoxes.java
// Demonstrates JoptionPane.
// <applet code=MessageBoxes
// width=200 height=100> </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class MessageBoxes extends JApplet {
JButton b[] = { new JButton("alert"),

new JButton("yes/no"), new JButton("Color"),
new JButton("input"), new JButton("3 vals")

Chapter 13: Creating Windows & Applets 697

};
ActionListener al = new ActionListener() {

public void actionPerformed(ActionEvent e){
String id =
((JButton)e.getSource()).getText();

if(id.equals("alert"))
JOptionPane.showMessageDialog(null,

"There's a bug on you!", "Hey!",
JOptionPane.ERROR_MESSAGE);

else if(id.equals("yes/no"))
JOptionPane.showConfirmDialog(null,

"or no", "choose yes",
JOptionPane.YES_NO_OPTION);

else if(id.equals("Color")) {
Object[] options = { "Red", "Green" };
int sel = JOptionPane.showOptionDialog(

null, "Choose a Color!", "Warning",
JOptionPane.DEFAULT_OPTION,
JOptionPane.WARNING_MESSAGE, null,
options, options[0]);
if(sel != JOptionPane.CLOSED_OPTION)
getAppletContext().showStatus(

"Color Selected: " + options[sel]);
} else if(id.equals("input")) {
String val = JOptionPane.showInputDialog(

"How many fingers do you see?");
getAppletContext().showStatus(val);

} else if(id.equals("3 vals")) {
Object[] selections = {

"First", "Second", "Third" };
Object val = JOptionPane.showInputDialog(

null, "Choose one", "Input",
JOptionPane.INFORMATION_MESSAGE,
null, selections, selections[0]);

if(val != null)
getAppletContext().showStatus(
val.toString());

}
}

};
public void init() {

Container cp = getContentPane();

698 Thinking in Java www.BruceEckel.com

cp.setLayout(new FlowLayout());
for(int i = 0; i < b.length; i++) {
b[i].addActionListener(al);
cp.add(b[i]);

}
}

} ///:~

Menus
//: c13:SimpleMenus.java
// <applet code=SimpleMenus
// width=200 height=75> </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class SimpleMenus extends JApplet {
JTextField t =

new JTextField(15);
ActionListener al = new ActionListener() {

public void actionPerformed(ActionEvent e){
t.setText(
((JMenuItem)e.getSource()).getText());

}
};
JMenu menus[] = { new JMenu("Winken"),

new JMenu("Blinken"), new JMenu("Nod") };
JMenuItem items[] = {

new JMenuItem("Fee"), new JMenuItem("Fi"),
new JMenuItem("Fo"), new JMenuItem("Zip"),
new JMenuItem("Zap"), new JMenuItem("Zot"),
new JMenuItem("Olly"), new JMenuItem("Oxen"),
new JMenuItem("Free") };

public void init() {
JMenuBar mb = new JMenuBar();
setJMenuBar(mb);
for(int i = 0; i < items.length; i++) {
items[i].addActionListener(al);

Chapter 13: Creating Windows & Applets 699

menus[i%3].add(items[i]);
}
for(int i = 0; i < menus.length; i++)
mb.add(menus[i]);

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);

}
} ///:~

Dialog Boxes
//: c13:DialogDemo.java
// Creating and using Dialog Boxes.
// <applet code=DialogDemo width=125 height=50>
// </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

class MyDialog extends JDialog {
public MyDialog(JFrame parent) {

super(parent, "My dialog", true);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(new JLabel("Here is my dialog"));
JButton ok = new JButton("OK");
ok.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
setVisible(false); // Closes the dialog

}
});
cp.add(ok);
setSize(150,125);

}
}

public class DialogDemo extends JApplet {
JButton b1 = new JButton("Dialog Box");

700 Thinking in Java www.BruceEckel.com

MyDialog dlg = new MyDialog(null);
public void init() {

b1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
dlg.show();

}
});
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);

}
} ///:~

If you’ve been running these programs, you’ll note that anything
that pops up out of an applet, including dialog boxes, is “untrusted.”
That is, you get a warning in the window that’s been popped up.
This is because, in theory, it would be possible to fool the user into
thinking that they’re dealing with a regular native application and
to get them to type in their credit card number, which then goes
across the Web. An applet is always attached to a Web page and
visible within your Web browser, while a dialog box is detached so
in theory it could be possible. As a result it is not so common to see
an applet that uses a dialog box.

Controlling layout
The way that you place components on a form in Java is probably
different from any other GUI system you’ve used. First, it’s all code;
there are no “resources” that control placement of components.
Second, the way components are placed on a form is controlled by a
“layout manager” that decides how the components lie based on the
order that you add() them. The size, shape, and placement of
components will be remarkably different from one layout manager
to another. In addition, the layout managers adapt to the
dimensions of your applet or application window, so if that window
dimension is changed (for example, in the HTML page’s applet
specification) the size, shape, and placement of the components
could change.

Chapter 13: Creating Windows & Applets 701

Both the Applet and Frame classes are derived from Container,
whose job it is to contain and display Components. (The
Container is a Component so it can also react to events.) In
Container, there’s a method called setLayout() that allows you
to choose a different layout manager.

In this section we’ll explore the various layout managers by placing
buttons in them (since that’s the simplest thing to do). There won’t
be any capturing of button events since this is just intended to show
how the buttons are laid out.

FlowLayout
So far, all the applets that have been created seem to have laid out
their components using some mysterious internal logic. That’s
because the applet uses a default layout scheme: the FlowLayout.
This simply “flows” the components onto the form, from left to right
until the top space is full, then moves down a row and continues
flowing the components.

Here’s an example that explicitly (redundantly) sets the layout
manager in an applet to FlowLayout and then places buttons on
the form. You’ll notice that with FlowLayout the components take
on their “natural” size. A Button, for example, will be the size of its
string.

//: c13:FlowLayout1.java
// Demonstrates FlowLayout.
// <applet code=FlowLayout1
// width=300 height=250> </applet>
import javax.swing.*;
import java.awt.*;

public class FlowLayout1 extends JApplet {
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
for(int i = 0; i < 20; i++)
cp.add(new JButton("Button " + i));

}
} ///:~

702 Thinking in Java www.BruceEckel.com

All components will be compacted to their smallest size in a
FlowLayout, so you might get a little bit of surprising behavior.
For example, a label will be the size of its string, so right-justifying
it yields an unchanged display.

BorderLayout
This layout manager has the concept of four border regions and a
center area. When you add something to a panel that’s using a
BorderLayout you must use an add() method that takes a
String object as its first argument, and that string must specify
(with proper capitalization) “North” (top), “South” (bottom), “East”
(right), “West” (left), or “Center.” If you misspell or mis-capitalize,
you won’t get a compile-time error, but the applet simply won’t do
what you expect. Fortunately, as you will see shortly, there’s a
much-improved approach in Java 1.1.

Here’s a simple example:

//: c13:BorderLayout1.java
// Demonstrates BorderLayout.
// <applet code=BorderLayout1
// width=300 height=250> </applet>
import javax.swing.*;
import java.awt.*;

public class BorderLayout1 extends JApplet {
public void init() {

Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(BorderLayout.NORTH,
new JButton("North"));

cp.add(BorderLayout.SOUTH,
new JButton("South"));

cp.add(BorderLayout.EAST,
new JButton("East"));

cp.add(BorderLayout.WEST,
new JButton("West"));

cp.add(BorderLayout.CENTER,
new JButton("Center"));

}

Chapter 13: Creating Windows & Applets 703

} ///:~

For every placement but “Center,” the element that you add is
compressed to fit in the smallest amount of space along one
dimension while it is stretched to the maximum along the other
dimension. “Center,” however, spreads out along both dimensions
to occupy the middle.

The BorderLayout is the default layout manager for applications
and dialogs.

GridLayout
A GridLayout allows you to build a table of components, and as
you add them they are placed left-to-right and top-to-bottom in the
grid. In the constructor you specify the number of rows and
columns that you need and these are laid out in equal proportions.

//: c13:GridLayout1.java
// Demonstrates GridLayout.
// <applet code=GridLayout1
// width=300 height=250> </applet>
import javax.swing.*;
import java.awt.*;

public class GridLayout1 extends JApplet {
public void init() {

Container cp = getContentPane();
cp.setLayout(new GridLayout(7,3));
for(int i = 0; i < 20; i++)
cp.add(new JButton("Button " + i));

}
} ///:~

In this case there are 21 slots but only 20 buttons. The last slot is
left empty; no “balancing” goes on with a GridLayout.

GridBagLayout
Some time ago, it was believed that all the stars, planets, the sun,
and the moon revolved around the earth. It seemed intuitive from

704 Thinking in Java www.BruceEckel.com

observation. But then astronomers became more sophisticated and
started tracking the motion of individual objects, some of which
seemed at times to go backward in their paths. Since it was known
that everything revolved around the earth, those astronomers spent
large amounts of time coming up with equations and theories to
explain the motion of the stellar objects.

When trying to work with GridBagLayout, you can consider
yourself the analog of one of those early astronomers. The basic
precept (decreed, interestingly enough, by the designers at “Sun”) is
that everything should be done in code. The Copernican revolution
(again dripping with irony, the discovery that the planets in the
solar system revolve around the sun) is the use of resources to
determine the layout and make the programmer’s job easy. Until
these are added to Java, you’re stuck (to continue the metaphor) in
the Spanish Inquisition of GridBagLayout and
GridBagConstraints.

My recommendation is to avoid GridBagLayout. Instead, use the
other layout managers and especially the technique of combining
several panels using different layout managers within a single
program. Your applets won’t look that different; at least not enough
to justify the trouble that GridBagLayout entails. For my part, it’s
just too painful to come up with an example for this (and I wouldn’t
want to encourage this kind of library design). Instead, I’ll refer you
to Core Java 2 by Horstmann & Cornell (Prentice-Hall, 1999) to get
you started.

BoxLayout
Because so many people had so much trouble understanding and
working with GridBagLayout, Javasoft introduced BoxLayout
in Java 2, which gives you many of the benefits of GridBagLayout
without the grief. BoxLayout allows you to control the placement
of components either vertically or horizontally, and control the
space between the components using something call “Struts and
Glue.” First, let’s look at using the BoxLayout directly, as all the
other layout managers are used:

//: c13:BoxLayout1.java

Chapter 13: Creating Windows & Applets 705

// Vertical and horizontal BoxLayouts.
// <applet code=BoxLayout1
// width=450 height=200> </applet>
import javax.swing.*;
import java.awt.*;

public class BoxLayout1 extends JApplet {
public void init() {

JPanel jpv = new JPanel();
jpv.setLayout(
new BoxLayout(jpv, BoxLayout.Y_AXIS));

for(int i = 0; i < 5; i++)
jpv.add(new JButton("" + i));

JPanel jph = new JPanel();
jph.setLayout(
new BoxLayout(jph, BoxLayout.X_AXIS));

for(int i = 0; i < 5; i++)
jph.add(new JButton("" + i));

Container cp = getContentPane();
cp.add(BorderLayout.EAST, jpv);
cp.add(BorderLayout.SOUTH, jph);

}
} ///:~

The constructor for BoxLayout is a bit different than the other
layout managers – you provide the Container that is to be
controlled by the BoxLayout as the first argument, and the
direction of the layout as the second argument.

To simplify matters, there’s a special container called Box that uses
BoxLayout as its native manager. The following example lays out
components horizontally and vertically using Box, which has two
static methods to create boxes with vertical and horizontal
alignment:

//: c13:Box1.java
// Vertical and horizontal BoxLayouts.
// <applet code=Box1
// width=450 height=200> </applet>
import javax.swing.*;
import java.awt.*;

706 Thinking in Java www.BruceEckel.com

public class Box1 extends JApplet {
public void init() {

Box bv = Box.createVerticalBox();
for(int i = 0; i < 5; i++)
bv.add(new JButton("" + i));

Box bh = Box.createHorizontalBox();
for(int i = 0; i < 5; i++)
bh.add(new JButton("" + i));

Container cp = getContentPane();
cp.add(BorderLayout.EAST, bv);
cp.add(BorderLayout.SOUTH, bh);

}
} ///:~

//: c13:Box2.java
// Adding struts.
// <applet code=Box2
// width=450 height=300> </applet>
import javax.swing.*;
import java.awt.*;

public class Box2 extends JApplet {
public void init() {

Box bv = Box.createVerticalBox();
for(int i = 0; i < 5; i++) {
bv.add(new JButton("" + i));
bv.add(Box.createVerticalStrut(i*10));

}
Box bh = Box.createHorizontalBox();
for(int i = 0; i < 5; i++) {
bh.add(new JButton("" + i));
bh.add(Box.createHorizontalStrut(i*10));

}
Container cp = getContentPane();
cp.add(BorderLayout.EAST, bv);
cp.add(BorderLayout.SOUTH, bh);

}
} ///:~

Chapter 13: Creating Windows & Applets 707

//: c13:Box3.java
// Using Glue.
// <applet code=Box3
// width=450 height=300> </applet>
import javax.swing.*;
import java.awt.*;

public class Box3 extends JApplet {
public void init() {

Box bv = Box.createVerticalBox();
bv.add(new JLabel("Hello"));
bv.add(Box.createVerticalGlue());
bv.add(new JLabel("Applet"));
bv.add(Box.createVerticalGlue());
bv.add(new JLabel("World"));
Box bh = Box.createHorizontalBox();
bh.add(new JLabel("Hello"));
bh.add(Box.createHorizontalGlue());
bh.add(new JLabel("Applet"));
bh.add(Box.createHorizontalGlue());
bh.add(new JLabel("World"));
bv.add(Box.createVerticalGlue());
bv.add(bh);
bv.add(Box.createVerticalGlue());
getContentPane().add(bv);

}
} ///:~

//: c13:Box4.java
// Rigid Areas are like pairs of struts.
// <applet code=Box4
// width=450 height=300> </applet>
import javax.swing.*;
import java.awt.*;

public class Box4 extends JApplet {
public void init() {

Box bv = Box.createVerticalBox();
bv.add(new JButton("Top"));
bv.add(Box.createRigidArea(

708 Thinking in Java www.BruceEckel.com

new Dimension(120, 90)));
bv.add(new JButton("Bottom"));
Box bh = Box.createHorizontalBox();
bh.add(new JButton("Left"));
bh.add(Box.createRigidArea(
new Dimension(160, 80)));

bh.add(new JButton("Right"));
bv.add(bh);
getContentPane().add(bv);

}
} ///:~

You should be aware that rigid areas are a bit controversial. Since
they use absolute values, some people feel that they cause more
trouble than they are worth.

Absolute positioning
It is possible to set the absolute position of the graphical
components in your Frame or Applet in this way:

1. Set a null layout manager for your Container (
setLayout(null))

2. Call setBounds or reshape (depending on the language
version) for each component, passing a bounding
rectangle in pixel coordinates. You can do it in the
constructor, or in paint(), depending on what you want
to achieve.

Alternatives to action
As noted previously, action() isn’t the only method that’s
automatically called by handleEvent() once it sorts everything
out for you. There are three other sets of methods that are called,
and if you want to capture certain types of events (keyboard, mouse,
and focus events) all you have to do is override the provided
method. These methods are defined in the base class Component,
so they’re available in virtually all the controls that you might place
on a form. However, you should be aware that this approach is

Chapter 13: Creating Windows & Applets 709

deprecated in Java 1.1, so although you might see legacy code using
this technique you should use the Java 1.1 approaches (described
later in this chapter) instead.

Component method When it’s called
action (Event evt, Object
what)

When the “typical” event
occurs for this component
(for example, when a
button is pushed or a drop-
down list item is selected)

keyDown (Event evt, int
key)

A key is pressed when this
component has the focus.
The second argument is the
key that was pressed and is
redundantly copied from
evt.key.

keyUp(Event evt, int key) A key is released when this
component has the focus.

lostFocus(Event evt, Object
what)

The focus has moved away
from the target. Normally,
what is redundantly
copied from evt.arg.

gotFocus(Event evt, Object
what)

The focus has moved into
the target.

mouseDown(Event evt,
 int x, int y)

A mouse down has
occurred over the
component, at the
coordinates x, y.

mouseUp(Event evt, int x,
int y)

A mouse up has occurred
over the component.

mouseMove(Event evt, int
x, int y)

The mouse has moved
while it’s over the
component.

mouseDrag(Event evt, int x,
int y)

The mouse is being
dragged after a
mouseDown occurred
over the component. All
drag events are reported to

710 Thinking in Java www.BruceEckel.com

Component method When it’s called
the component in which
the mouseDown occurred
until there is a mouseUp.

mouseEnter(Event evt, int
x, int y)

The mouse wasn’t over the
component before, but now
it is.

mouseExit(Event evt, int x,
int y)

The mouse used to be over
the component, but now it
isn’t.

You can see that each method receives an Event object along with
some information that you’ll typically need when you’re handling
that particular situation – with a mouse event, for example, it’s
likely that you’ll want to know the coordinates where the mouse
event occurred. It’s interesting to note that when Component’s
handleEvent() calls any of these methods (the typical case), the
extra arguments are always redundant as they are contained within
the Event object. In fact, if you look at the source code for
Component.handleEvent() you can see that it explicitly plucks
the additional arguments out of the Event object. (This might be
considered inefficient coding in some languages, but remember that
Java’s focus is on safety, not necessarily speed.)

To prove to yourself that these events are in fact being called and as
an interesting experiment, it’s worth creating an applet that
overrides each of the methods above (except for action(), which is
overridden in many other places in this chapter) and displays data
about each of the events as they happen.

This example also shows you how to make your own button object
because that’s what is used as the target of all the events of interest.
You might first (naturally) assume that to make a new button, you’d
inherit from Button. But this doesn’t work. Instead, you inherit
from Canvas (a much more generic component) and paint your
button on that canvas by overriding the paint() method. As you’ll
see, it’s really too bad that overriding Button doesn’t work, since
there’s a bit of code involved to paint the button. (If you don’t
believe me, try exchanging Button for Canvas in this example,

Chapter 13: Creating Windows & Applets 711

and remember to call the base-class constructor super(label).
You’ll see that the button doesn’t get painted and the events don’t
get handled.)

The myButton class is specific: it works only with a TrackEvent
“parent window” (not a base class, but the window in which this
button is created and lives). With this knowledge, myButton can
reach into the parent window and manipulate its text fields, which
is what’s necessary to be able to write the status information into
the fields of the parent. Of course this is a much more limited
solution, since myButton can be used only in conjunction with
TrackEvent. This kind of code is sometimes called “highly
coupled.” However, to make myButton more generic requires a lot
more effort that isn’t warranted for this example (and possibly for
many of the applets that you will write). Again, keep in mind that
the following code uses APIs that are deprecated in Java 1.1.

//: c13:TrackEvent.java
// Show events as they happen.
// <applet code=TrackEvent
// width=700 height=500></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

class MyButton extends JButton {
HashMap h;
MyButton(TrackEvent parent,

Color color, String label) {
super(label);
h = parent.h;
setBackground(color);
addFocusListener(fl);
addKeyListener(kl);
addMouseListener(ml);
addMouseMotionListener(mml);

}
void report(String field, String msg) {

((JTextField)h.get(field)).setText(msg);

712 Thinking in Java www.BruceEckel.com

}
FocusListener fl = new FocusListener() {

public void focusGained(FocusEvent e) {
report("focusGained", e.paramString());

}
public void focusLost(FocusEvent e) {
report("focusLost", e.paramString());

}
};
KeyListener kl = new KeyListener() {

public void keyPressed(KeyEvent e) {
report("keyPressed", e.paramString());

}
public void keyReleased(KeyEvent e) {
report("keyReleased", e.paramString());

}
public void keyTyped(KeyEvent e) {
report("keyTyped", e.paramString());

}
};
MouseListener ml = new MouseListener() {

public void mouseClicked(MouseEvent e) {
report("mouseClicked", e.paramString());

}
public void mouseEntered(MouseEvent e) {
report("mouseEntered", e.paramString());

}
public void mouseExited(MouseEvent e) {
report("mouseExited", e.paramString());

}
public void mousePressed(MouseEvent e) {
report("mousePressed", e.paramString());

}
public void mouseReleased(MouseEvent e) {
report("mouseReleased", e.paramString());

}
};
MouseMotionListener mml =

new MouseMotionListener() {
public void mouseDragged(MouseEvent e) {
report("mouseDragged", e.paramString());

}

Chapter 13: Creating Windows & Applets 713

public void mouseMoved(MouseEvent e) {
report("mouseMoved", e.paramString());

}
};

}

public class TrackEvent extends JApplet {
HashMap h = new HashMap();
String[] event = {

"focusGained", "focusLost", "keyPressed",
"keyReleased", "keyTyped", "mouseClicked",
"mouseEntered", "mouseExited","mousePressed",
"mouseReleased", "mouseDragged", "mouseMoved"

};
MyButton

b1 = new MyButton(this, Color.blue, "test1"),
b2 = new MyButton(this, Color.red, "test2");

public void init() {
Container c = getContentPane();
c.setLayout(new GridLayout(event.length+1,2));
for(int i = 0; i < event.length; i++) {
JTextField t = new JTextField();
t.setEditable(false);
c.add(new JLabel(event[i], JLabel.RIGHT));
c.add(t);
h.put(event[i], t);

}
c.add(b1);
c.add(b2);

}
public static void main(String[] args) {

JApplet applet = new TrackEvent();
JFrame frame = new JFrame("TrackEvent");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(700, 500);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

714 Thinking in Java www.BruceEckel.com

You can see the constructor uses the technique of using the same
name for the argument as what it’s assigned to, and differentiating
between the two using this:

this.label = label;

The paint() method starts out simple: it fills a “round rectangle”
with the button’s color, and then draws a black line around it.
Notice the use of size() to determine the width and height of the
component (in pixels, of course). After this, paint() seems quite
complicated because there’s a lot of calculation going on to figure
out how to center the button’s label inside the button using the
“font metrics.” You can get a pretty good idea of what’s going on by
looking at the method call, and it turns out that this is pretty stock
code, so you can just cut and paste it when you want to center a
label inside any component.

You can’t understand exactly how the keyDown(), keyUp(), etc.
methods work until you look down at the TrackEvent class. This
contains a HashMap to hold the strings representing the type of
event and the TextField where information about that event is
held. Of course, these could have been created statically rather than
putting them in a HashMap, but I think you’ll agree that it’s a lot
easier to use and change. In particular, if you need to add or remove
a new type of event in TrackEvent, you simply add or remove a
string in the event array – everything else happens automatically.

The place where you look up the strings is in the keyDown(),
keyUp(), etc. methods back in MyButton. Each of these methods
uses the parent handle to reach back to the parent window. Since
that parent is an TrackEvent it contains the HashMap h, and the
get() method, when provided with the appropriate String, will
produce a handle to an Object that we happen to know is a
TextField – so it is cast to that. Then the Event object is converted
to its String representation, which is displayed in the TextField.

It turns out this example is rather fun to play with since you can
really see what’s going on with the events in your program.

Chapter 13: Creating Windows & Applets 715

Closing the window
In the line:

frame.addWindowListener(new WClose()); // 1.2

You can see the addition of the window listener which is a static
object that is responsible for closing the window. Here is the code
for the class:

//: com:bruceeckel:swing:WClose.java
package com.bruceeckel.swing;
import java.awt.event.*;
public class WClose extends WindowAdapter {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

} ///:~

You’ll see on the line above this a more succinct form to close the
window:

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

This works with JDK 1.3, but is commented out here for backward
compatibility with JDK 1.2.

Applet restrictions
For safety’s sake, applets are quite restricted and there are many
things you can’t do. You can generally answer the question of what
an applet is able to do by looking at what it is supposed to do:
extend the functionality of a Web page in a browser. Since, as a net
surfer, you never really know if a Web page is from a friendly place
or not, you want any code that it runs to be safe. So the biggest
restrictions you’ll notice are probably:

1) An applet can’t touch the local disk. This means writing or
reading, since you wouldn’t want an applet to read and transmit
important information about you across the Web. Writing is
prevented, of course, since that would be an open invitation to a

716 Thinking in Java www.BruceEckel.com

virus. These restrictions can be relaxed when digital signing is fully
implemented.

Many applet restrictions are relaxed for trusted applets (those
signed by a trusted source) in newer browsers.

There are other issues when thinking about applet development:

♦ Applets take longer to download since you must download
the whole thing every time, including a separate server hit for
each different class. Your browser can cache the applet, but
there are no guarantees. One improvement in Java 1.1 is the
JAR (Java ARchive) file that allows packaging of all the
applet components (including other .class files as well as
images and sounds) together into a single compressed file
that can be downloaded in a single server transaction.
“Digital signing” (the ability to verify the creator of a class) is
available for each individual entry in the JAR file.

♦ Because of security issues you must work harder to do
certain things such as accessing databases and sending email.
In addition, the security restrictions make accessing multiple
hosts difficult, since everything has to be routed through the
Web server, which then becomes a performance bottleneck
and a single failure point that can stop the entire process.

♦ An applet within the browser doesn’t have the same kind of
control that a native application does. For example, you can’t
have a modal dialog box within an applet, since the user can
always switch the page. When the user does change from a
Web page or even exit the browser, the results can be
catastrophic for your applet – there’s no way to save the state
so if you’re in the middle of a transaction or other operation
the information can be lost. In addition, different browsers
do different things to your applet when you leave a Web page
so the results are essentially undefined.

Chapter 13: Creating Windows & Applets 717

Applet advantages
If you can live within the restrictions, applets have definite
advantages, especially when building client/server or other
networked applications:

♦ There is no installation issue. An applet has true platform
independence (including the ability to easily play audio files,
etc.) so you don’t need to make any changes in your code for
different platforms nor does anyone have to perform any
“tweaking” upon installation. In fact, installation is
automatic every time the user loads the Web page along with
the applets, so updates happen silently and automatically. In
traditional client/server systems, building and installing a
new version of the client software is often a nightmare.

♦ Because of the security built into the core Java language and
the applet structure, you don’t have to worry about bad code
causing damage to someone’s system. This, along with the
previous point, makes Java (as well as alternative client-side
Web programming tools like JavaScript and VBScript)
popular for so-called Intranet client/server applications that
live only within the company and don’t move out onto the
Internet.

♦ Because applets are automatically integrated with HTML,
you have a built-in platform-independent documentation
system to support the applet. It’s an interesting twist, since
we’re used to having the documentation part of the program
rather than vice versa.

Windowed applications
It’s possible to see that for safety’s sake you can have only limited
behavior within an applet. In a real sense, the applet is a temporary
extension to the Web browser so its functionality must be limited
along with its knowledge and control. There are times, however,
when you’d like to make a windowed program do something else
than sit on a Web page, and perhaps you’d like it to do some of the

718 Thinking in Java www.BruceEckel.com

things a “regular” application can do and yet have the vaunted
instant portability provided by Java. In previous chapters in this
book we’ve made command-line applications, but in some operating
environments (the Macintosh, for example) there isn’t a command
line. So for any number of reasons you’d like to build a windowed,
non-applet program using Java. This is certainly a reasonable
desire.

A Java windowed application can have menus and dialog boxes
(impossible or difficult with an applet), and yet if you’re using an
older version of Java you sacrifice the native operating
environment’s look and feel. The JFC/Swing library allows you to
make an application that preserves the look and feel of the
underlying operating environment. If you want to build windowed
applications, it makes sense to do so only if you can use the latest
version of Java and associated tools so you can deliver applications
that won’t confound your users. If for some reason you’re forced to
use an older version of Java, think hard before committing to
building a significant windowed application.

Here’s an example of a windowed application:

//: c13:ButtonApp.java
// Creating an application.
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class ButtonApp extends JFrame {
JButton

b1 = new JButton("Hello"),
b2 = new JButton("Howdy");

JTextField t = new JTextField(15);
ActionListener al = new ActionListener() {

public void actionPerformed(ActionEvent e){
String name =
((JButton)e.getSource()).getText();

t.setText(name);
}

};

Chapter 13: Creating Windows & Applets 719

public ButtonApp(String name) {
super(name);
b1.addActionListener(al);
b2.addActionListener(al);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(b2);
cp.add(t);

}
public static void main(String[] args) {

JFrame frame = new ButtonApp("ButtonApp");
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.setSize(400,100);
frame.setVisible(true);

}
} ///:~

Combined application/applet
//: c13:ButtonAppApplet.java
// Creating an applet-application.
// <applet code=ButtonAppApplet
// width=375 height=50> </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class ButtonAppApplet extends JApplet {
JButton

b1 = new JButton("Hello"),
b2 = new JButton("Howdy");

JTextField t = new JTextField(15);
ActionListener al = new ActionListener() {

public void actionPerformed(ActionEvent e){
String name =
((JButton)e.getSource()).getText();

t.setText(name);

720 Thinking in Java www.BruceEckel.com

}
};
public void init() {

b1.addActionListener(al);
b2.addActionListener(al);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(b2);
cp.add(t);

}
public static void main(String[] args) {

JApplet applet = new ButtonAppApplet();
JFrame frame = new JFrame("ButtonAppApplet");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(400,100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

Menus
There are four different types inherited from the abstract class
MenuComponent: MenuBar (you can have one MenuBar only
on a particular Frame), Menu to hold one individual drop-down
menu or submenu, MenuItem to represent one single element on
a menu, and CheckboxMenuItem, which is derived from
MenuItem and produces a checkmark to indicate whether that
menu item is selected.

Unlike a system that uses resources, with Java and Swing you must
hand assemble all the menus in source code. Here are the ice cream
flavors again, used to create menus:

Chapter 13: Creating Windows & Applets 721

//: c13:Menu1.java
// Shows submenus, checkbox menu items.
// and swapping menus
// <applet code=Menu1
// width=300 height=100> </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class Menu1 extends JApplet {
String[] flavors = { "Chocolate", "Strawberry",

"Vanilla Fudge Swirl", "Mint Chip",
"Mocha Almond Fudge", "Rum Raisin",
"Praline Cream", "Mud Pie"

};
JTextField t = new JTextField("No flavor", 30);
JMenuBar mb1 = new JMenuBar();
JMenu

f = new JMenu("File"),
m = new JMenu("Flavors"),
s = new JMenu("Safety");

// Alternative approach:
JCheckBoxMenuItem[] safety = {

new JCheckBoxMenuItem("Guard"),
new JCheckBoxMenuItem("Hide")

};
JMenuItem[] file = {

new JMenuItem("Open"),
new JMenuItem("Exit")

};
// A second menu bar to swap to:
JMenuBar mb2 = new JMenuBar();
JMenu fooBar = new JMenu("fooBar");
JMenuItem[] other = {

new JMenuItem("Foo"),
new JMenuItem("Bar"),
new JMenuItem("Baz"),

};
JButton b = new JButton("Swap Menus");
public void init() {

for(int i = 0; i < flavors.length; i++) {

722 Thinking in Java www.BruceEckel.com

JMenuItem mi = new JMenuItem(flavors[i]);
mi.addActionListener(al);
m.add(mi);
// Add separators at intervals:
if((i+1) % 3 == 0)
m.addSeparator();

}
for(int i = 0; i < safety.length; i++) {
safety[i].addActionListener(al);
s.add(safety[i]);

}
f.add(s);
for(int i = 0; i < file.length; i++) {
file[i].addActionListener(al);
f.add(file[i]);

}
mb1.add(f);
mb1.add(m);
t.setEditable(false);
Container cp = getContentPane();
cp.add(t, BorderLayout.CENTER);
// Set up the system for swapping menus:
b.addActionListener(al);
cp.add(b, BorderLayout.NORTH);
for(int i = 0; i < other.length; i++) {
other[i].addActionListener(al);
fooBar.add(other[i]);

}
mb2.add(fooBar);
setJMenuBar(mb1);

}
ActionListener al = new ActionListener() {

public void actionPerformed(ActionEvent e) {
String arg = e.getActionCommand();
Object source = e.getSource();
if(source.equals(b)) {
JMenuBar m = getJMenuBar();
setJMenuBar(m == mb1 ? mb2 : mb1);
validate(); // Refresh the frame

} else if(source instanceof JMenuItem) {
if(arg.equals("Open")) {

String s = t.getText();

Chapter 13: Creating Windows & Applets 723

boolean chosen = false;
for(int i = 0; i < flavors.length; i++)
if(s.equals(flavors[i]))

chosen = true;
if(!chosen)
t.setText("Choose a flavor first!");

else
t.setText("Opening "+s+". Mmm, mm!");

} else if(source.equals(file[1]))
System.exit(0);

// CheckboxMenuItems cannot use String
// matching; you must match getSource():
else if(source.equals(safety[0]))

t.setText("Guard the Ice Cream! " +
"Guarding is "+safety[0].getState());

else if(source.equals(safety[1]))
t.setText("Hide the Ice Cream! " +
"Is it cold? "+safety[1].getState());

else
t.setText(arg);

}
}

};
public static void main(String[] args) {

JApplet applet = new Menu1();
JFrame frame = new JFrame("Menu1");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300, 100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

In this program I avoided the typical long lists of add() calls for
each menu because that seemed like a lot of unnecessary typing.
Instead, I placed the menu items into arrays and then simply
stepped through each array calling add() in a for loop. This makes
adding or subtracting a menu item less tedious.

724 Thinking in Java www.BruceEckel.com

As an alternative approach (which I find less desirable since it
requires more typing), the CheckboxMenuItems are created in
an array of handles called safety; this is true for the arrays file and
other as well.

This program creates not one but two MenuBars to demonstrate
that menu bars can be actively swapped while the program is
running. You can see how a MenuBar is made up of Menus, and
each Menu is made up of MenuItems, CheckboxMenuItems,
or even other Menus (which produce submenus). When a
MenuBar is assembled it can be installed into the current program
with the setMenuBar() method. Note that when the button is
pressed, it checks to see which menu is currently installed using
getMenuBar(), then puts the other menu bar in its place.

When testing for “Open,” notice that spelling and capitalization are
critical, but Java signals no error if there is no match with “Open.”
This kind of string comparison is a clear source of programming
errors.

The checking and un-checking of the menu items is taken care of
automatically, but dealing with CheckboxMenuItems can be a bit
surprising since for some reason they don’t allow string matching.
(Although string matching isn’t a good approach, this seems
inconsistent.) So you can match only the target object and not its
label. As shown, the getState() method can be used to reveal the
state. You can also change the state of a CheckboxMenuItem
with setState().

You might think that one menu could reasonably reside on more
than one menu bar. This does seem to make sense because all you’re
passing to the MenuBar add() method is a handle. However, if
you try this, the behavior will be strange and not what you expect.
(It’s difficult to know if this is a bug or if they intended it to work
this way.)

This example also shows what you need to do to create an
application instead of an applet. (Again, because an application can
support menus and an applet cannot directly have a menu.) Instead
of inheriting from Applet, you inherit from Frame. Instead of
init() to set things up, you make a constructor for your class.

Chapter 13: Creating Windows & Applets 725

Finally, you create a main() and in that you build an object of your
new type, resize it, and then call show(). It’s different from an
applet in only a few small places, but it’s now a standalone
windowed application and you’ve got menus.

Dialog boxes
A dialog box is a window that pops up out of another window. Its
purpose is to deal with some specific issue without cluttering the
original window with those details. Dialog boxes are heavily used in
windowed programming environments, but as mentioned
previously, rarely used in applets.

To create a dialog box, you inherit from Dialog, which is just
another kind of Window, like a Frame. Unlike a Frame, a
Dialog cannot have a menu bar or change the cursor, but other
than that they’re quite similar. A dialog has a layout manager
(which defaults to BorderLayout) and you override action()
etc., or handleEvent() to deal with events. One significant
difference you’ll want to note in handleEvent(): when the
WINDOW_DESTROY event occurs, you don’t want to shut down
the application! Instead, you release the resources used by the
dialog’s window by calling dispose().

In the following example, the dialog box is made up of a grid (using
GridLayout) of a special kind of button that is defined here as
class ToeButton. This button draws a frame around itself and,
depending on its state, a blank, an “x,” or an “o” in the middle. It
starts out blank, and then depending on whose turn it is, changes to
an “x” or an “o.” However, it will also flip back and forth between
“x” and “o” when you click on the button. (This makes the tic-tac-
toe concept only slightly more annoying than it already is.) In
addition, the dialog box can be set up for any number of rows and
columns by changing numbers in the main application window.

//: c13:TicTacToe.java
// Demonstration of dialog boxes
// and creating your own components.
import javax.swing.*;
import java.awt.*;

726 Thinking in Java www.BruceEckel.com

import java.awt.event.*;
import com.bruceeckel.swing.*;

class ToeButton extends JPanel {
int state = ToeDialog.BLANK;
ToeDialog p;
MouseListener ml = new MouseAdapter() {

public void mousePressed(MouseEvent e) {
if(state == ToeDialog.BLANK) {
state = p.turn;
p.turn = (p.turn == ToeDialog.XX ?

ToeDialog.OO : ToeDialog.XX);
} else
state = (state == ToeDialog.XX ?

ToeDialog.OO : ToeDialog.XX);
repaint();

}
};
ToeButton(ToeDialog parent) {

p = parent;
addMouseListener(ml);

}
public void paintComponent(Graphics g) {

super.paintComponent(g);
int x1 = 0;
int y1 = 0;
int x2 = getWidth() - 1;
int y2 = getHeight() - 1;
g.drawRect(x1, y1, x2, y2);
x1 = x2/4;
y1 = y2/4;
int wide = x2/2;
int high = y2/2;
if(state == ToeDialog.XX) {
g.drawLine(x1, y1, x1 + wide, y1 + high);
g.drawLine(x1, y1 + high, x1 + wide, y1);

}
if(state == ToeDialog.OO) {
g.drawOval(x1, y1, x1+wide/2, y1+high/2);

}
}

}

Chapter 13: Creating Windows & Applets 727

class ToeDialog extends JDialog {
static final int BLANK = 0, XX = 1, OO = 2;
int turn = XX; // Start with x's turn
// w = number of cells wide
// h = number of cells high
public ToeDialog(JFrame p, int w, int h) {

super(p, "The game itself", false);
// JDK 1.3 close dialog:
//#setDefaultCloseOperation(DISPOSE_ON_CLOSE);
// JDK 1.2 close dialog:
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e){
dispose();

}
});
Container cp = getContentPane();
cp.setLayout(new GridLayout(w, h));
for(int i = 0; i < w * h; i++)
cp.add(new ToeButton(this));

setSize(w * 50, h * 50);
}

}

public class TicTacToe extends JFrame {
JTextField

rows = new JTextField("3"),
cols = new JTextField("3");

JButton go = new JButton("go");
public TicTacToe() {

setTitle("Toe Test");
JPanel p = new JPanel();
p.setLayout(new GridLayout(2,2));
p.add(new JLabel("Rows", JLabel.CENTER));
p.add(rows);
p.add(new JLabel("Columns", JLabel.CENTER));
p.add(cols);
Container cp = getContentPane();
cp.add(p, BorderLayout.NORTH);
cp.add(go, BorderLayout.SOUTH);
//#setDefaultCloseOperation(EXIT_ON_CLOSE);
addWindowListener(new WClose()); // 1.2

728 Thinking in Java www.BruceEckel.com

go.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
JDialog d = new ToeDialog(TicTacToe.this,

Integer.parseInt(rows.getText()),
Integer.parseInt(cols.getText()));

d.setVisible(true);
}

});
}
public static void main(String[] args) {

JFrame frame = new TicTacToe();
frame.setSize(200, 100);
frame.setVisible(true);

}
} ///:~

The ToeButton class keeps a handle to its parent, which must be
of type ToeDialog. As before, this introduces high coupling
because a ToeButton can be used only with a ToeDialog, but it
solves a number of problems, and in truth it doesn’t seem like such
a bad solution because there’s no other kind of dialog that’s keeping
track of whose turn it is. Of course, you can take another approach,
which is to make ToeDialog.turn a static member of
ToeButton. This eliminates the coupling, but prevents you from
having more than one ToeDialog at a time. (More than one that
works properly, anyway.)

The paint() method is concerned with the graphics: drawing the
square around the button and drawing the “x” or the “o.” This is full
of tedious calculations, but it’s straightforward.

A mouse click is captured by the overridden mouseDown()
method, which first checks to see if the button has anything written
on it. If not, the parent window is queried to find out whose turn it
is and that is used to establish the state of the button. Note that the
button then reaches back into the parent and changes the turn. If
the button is already displaying an “x” or an “o” then that is flopped.
You can see in these calculations the convenient use of the ternary
if-else described in Chapter 3. After a button state change, the
button is repainted.

Chapter 13: Creating Windows & Applets 729

The constructor for ToeDialog is quite simple: it adds into a
GridLayout as many buttons as you request, then resizes it for 50
pixels on a side for each button. (If you don’t resize a Window, it
won’t show up!) Note that handleEvent() just calls dispose()
for a WINDOW_DESTROY so the whole application doesn’t go
away.

TicTacToe sets up the whole application by creating the
TextFields (for inputting the rows and columns of the button grid)
and the “go” button. You’ll see in action() that this program uses
the less-desirable “string match” technique for detecting the button
press (make sure you get spelling and capitalization right!). When
the button is pressed, the data in the TextFields must be fetched,
and, since they are in String form, turned into ints using the
static Integer.parseInt() method. Once the Dialog is created,
the show() method must be called to display and activate it.

You’ll notice that the ToeDialog object is assigned to a Dialog
handle d. This is an example of upcasting, although it really doesn’t
make much difference here since all that’s happening is the
show() method is called. However, if you wanted to call some
method that existed only in ToeDialog you would want to assign to
a ToeDialog handle and not lose the information in an upcast.

File dialogs
Some operating systems have a number of special built-in dialog
boxes to handle the selection of things such as fonts, colors,
printers, and the like. Virtually all graphical operating systems
support the opening and saving of files, however, and so Java’s
JFileChooser encapsulates these for easy use.

The following application exercises two forms of JFileChooser
dialogs, one for opening and one for saving. Most of the code should
by now be familiar, and all the interesting activities happen in the
actionlisteners for the two different button clicks:

//: c13:FileChooserTest.java
// Demonstration of File dialog boxes.
import javax.swing.*;
import java.awt.*;

730 Thinking in Java www.BruceEckel.com

import java.awt.event.*;
import com.bruceeckel.swing.*;

public class FileChooserTest extends JFrame {
JTextField

filename = new JTextField(),
dir = new JTextField();

JButton
open = new JButton("Open"),
save = new JButton("Save");

public FileChooserTest() {
setTitle("File Dialog Test");
JPanel p = new JPanel();
open.addActionListener(new OpenL());
p.add(open);
save.addActionListener(new SaveL());
p.add(save);
Container cp = getContentPane();
cp.add(p, BorderLayout.SOUTH);
dir.setEditable(false);
filename.setEditable(false);
p = new JPanel();
p.setLayout(new GridLayout(2,1));
p.add(filename);
p.add(dir);
cp.add(p, BorderLayout.NORTH);

}
class OpenL implements ActionListener {

public void actionPerformed(ActionEvent e) {
JFileChooser c = new JFileChooser();
// Demonstrate "Open" dialog:
int rVal =
c.showOpenDialog(FileChooserTest.this);

if(rVal == JFileChooser.APPROVE_OPTION) {
filename.setText(

c.getSelectedFile().getName());
dir.setText(
c.getCurrentDirectory().toString());

}
if(rVal == JFileChooser.CANCEL_OPTION) {
filename.setText("You pressed cancel");
dir.setText("");

Chapter 13: Creating Windows & Applets 731

}
}

}
class SaveL implements ActionListener {

public void actionPerformed(ActionEvent e) {
JFileChooser c = new JFileChooser();
// Demonstrate "Save" dialog:
int rVal =
c.showSaveDialog(FileChooserTest.this);

if(rVal == JFileChooser.APPROVE_OPTION) {
filename.setText(

c.getSelectedFile().getName());
dir.setText(
c.getCurrentDirectory().toString());

}
if(rVal == JFileChooser.CANCEL_OPTION) {
filename.setText("You pressed cancel");
dir.setText("");

}
}

}
public static void main(String[] args) {

JFrame frame = new FileChooserTest();
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.setSize(250,110);
frame.setVisible(true);

}
} ///:~

Note that there are many variations you can apply to
JFileChooser, including filters to narrow the file names that you
will allow.

For an “open file” dialog, you use the constructor that takes two
arguments; the first is the parent window handle and the second is
the title for the title bar of the FileDialog. The method setFile()
provides an initial file name – presumably the native OS supports
wildcards, so in this example all the .java files will initially be
displayed. The setDirectory() method chooses the directory

732 Thinking in Java www.BruceEckel.com

where the file selection will begin. (In general, the OS allows the
user to change directories.)

The show() command doesn’t return until the dialog is closed. The
FileDialog object still exists, so you can read data from it. If you
call getFile() and it returns null it means the user canceled out of
the dialog. Both the file name and the results of getDirectory()
are displayed in the TextFields.

The button for saving works the same way, except that it uses a
different constructor for the FileDialog. This constructor takes
three arguments and the third argument must be either
FileDialog.SAVE or FileDialog.OPEN.

The event model
In the new event model a component can initiate (“fire”) an event.
Each type of event is represented by a distinct class. When an event
is fired, it is received by one or more “listeners,” which act on that
event. Thus, the source of an event and the place where the event is
handled can be separate.

Each event listener is an object of a class that implements a
particular type of listener interface. So as a programmer, all you
do is create a listener object and register it with the component
that’s firing the event. This registration is performed by calling a
addXXXListener() method in the event-firing component, in
which XXX represents the type of event listened for. You can easily
know what types of events can be handled by noticing the names of
the addListener methods, and if you try to listen for the wrong
events you’ll find out your mistake at compile time. Java Beans also
uses the names of the addListener methods to determine what a
Bean can do.

All of your event logic, then, will go inside a listener class. When
you create a listener class, the sole restriction is that it must
implement the appropriate interface. You can create a global
listener class, but this is a situation in which inner classes tend to be
quite useful, not only because they provide a logical grouping of

Chapter 13: Creating Windows & Applets 733

your listener classes inside the UI or business logic classes they are
serving, but because (as you shall see later) the fact that an inner
class object keeps a handle to its parent object provides a nice way
to call across class and subsystem boundaries.

A simple example will make this clear. Consider the Button2.java
example from earlier in this chapter.

//: c13:Button2New.java
// Capturing button presses.
// <applet code=Button2New
// width=200 height=50> </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*; // Must add this

public class Button2New extends JApplet {
JButton

b1 = new JButton("Button 1"),
b2 = new JButton("Button 2");

public void init() {
b1.addActionListener(new B1());
b2.addActionListener(new B2());
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(b2);

}
class B1 implements ActionListener {

public void actionPerformed(ActionEvent e) {
getAppletContext().showStatus("Button 1");

}
}
class B2 implements ActionListener {

public void actionPerformed(ActionEvent e) {
getAppletContext().showStatus("Button 2");

}
}

} ///:~

734 Thinking in Java www.BruceEckel.com

So you can compare the two approaches, the old code is left in as a
comment. In init(), the only change is the addition of the two
lines:

b1.addActionListener(new B1());
b2.addActionListener(new B2());

addActionListener() tells a button which object to activate when
the button is pressed. The classes B1 and B2 are inner classes that
implement the interface ActionListener. This interface contains
a single method actionPerformed() (meaning “This is the action
that will be performed when the event is fired”). Note that
actionPerformed() does not take a generic event, but rather a
specific type of event, ActionEvent. So you don’t need to bother
testing and downcasting the argument if you want to extract specific
ActionEvent information.

One of the nicest things about actionPerformed() is how simple
it is. It’s just a method that gets called. Compare it to the old
action() method, in which you must figure out what happened
and act appropriately, and also worry about calling the base class
version of action() and return a value to indicate whether it’s been
handled. With the new event model you know that all the event-
detection logic is taken care of so you don’t have to figure that out;
you just say what happens and you’re done. If you don’t already
prefer this approach over the old one, you will soon.

Event and listener types
All Swing components have been changed to include
addXXXListener() and removeXXXListener() methods so
that the appropriate types of listeners can be added and removed
from each component. You’ll notice that the “XXX” in each case
also represents the argument for the method, for example,
addFooListener(FooListener fl). The following table includes
the associated events, listeners, methods, and the components that
support those particular events by providing the
addXXXListener() and removeXXXListener() methods.

Chapter 13: Creating Windows & Applets 735

Event, listener interface and
add- and remove-methods

Components supporting this
event

ActionEvent
ActionListener
addActionListener()
removeActionListener()

Button, List, TextField,
MenuItem, and its
derivatives including
CheckboxMenuItem,
Menu, and PopupMenu

AdjustmentEvent
AdjustmentListener
addAdjustmentListener(
)
removeAdjustmentListe
ner()

Scrollbar
Anything you create that
implements the Adjustable
interface

ComponentEvent
ComponentListener
addComponentListener(
)
removeComponentListe
ner()

Component and its
derivatives, including Button,
Canvas, Checkbox, Choice,
Container, Panel, Applet,
ScrollPane, Window,
Dialog, FileDialog, Frame,
Label, List, Scrollbar,
TextArea, and TextField

ContainerEvent
ContainerListener
addContainerListener()
removeContainerListene
r()

Container and its derivatives,
including Panel, Applet,
ScrollPane, Window,
Dialog, FileDialog, and
Frame

FocusEvent
FocusListener
addFocusListener()
removeFocusListener()

Component and its
derivatives, including Button,
Canvas, Checkbox, Choice,
Container, Panel, Applet,
ScrollPane, Window,
Dialog, FileDialog, Frame,
Label, List, Scrollbar,
TextArea, and TextField

KeyEvent
KeyListener
addKeyListener()
removeKeyListener()

Component and its
derivatives, including Button,
Canvas, Checkbox, Choice,
Container, Panel, Applet,

736 Thinking in Java www.BruceEckel.com

Event, listener interface and
add- and remove-methods

Components supporting this
event
ScrollPane, Window,
Dialog, FileDialog, Frame,
Label, List, Scrollbar,
TextArea, and TextField

MouseEvent (for both
clicks and motion)
MouseListener
addMouseListener()
removeMouseListener()

Component and its
derivatives, including Button,
Canvas, Checkbox, Choice,
Container, Panel, Applet,
ScrollPane, Window,
Dialog, FileDialog, Frame,
Label, List, Scrollbar,
TextArea, and TextField

MouseEvent6 (for both
clicks and motion)
MouseMotionListener
addMouseMotionListene
r()
removeMouseMotionLis
tener()

Component and its
derivatives, including Button,
Canvas, Checkbox, Choice,
Container, Panel, Applet,
ScrollPane, Window,
Dialog, FileDialog, Frame,
Label, List, Scrollbar,
TextArea, and TextField

WindowEvent
WindowListener
addWindowListener()
removeWindowListener(
)

Window and its derivatives,
including Dialog,
FileDialog, and Frame

ItemEvent
ItemListener
addItemListener()
removeItemListener()

Checkbox,
CheckboxMenuItem,
Choice, List, and anything
that implements the
ItemSelectable interface

TextEvent Anything derived from

6 There is no MouseMotionEvent even though it seems like there ought to be. Clicking
and motion is combined into MouseEvent, so this second appearance of MouseEvent
in the table is not an error.

Chapter 13: Creating Windows & Applets 737

Event, listener interface and
add- and remove-methods

Components supporting this
event

TextListener
addTextListener()
removeTextListener()

TextComponent, including
TextArea and TextField

You can see that each type of component supports only certain
types of events. It’s helpful to see the events supported by each
component, as shown in the following table:

Component type Events supported by this
component

Adjustable AdjustmentEvent
Applet ContainerEvent, FocusEvent,

KeyEvent, MouseEvent,
ComponentEvent

Button ActionEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

Canvas FocusEvent, KeyEvent,
MouseEvent,
ComponentEvent

Checkbox ItemEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

CheckboxMenuItem ActionEvent, ItemEvent
Choice ItemEvent, FocusEvent,

KeyEvent, MouseEvent,
ComponentEvent

Component FocusEvent, KeyEvent,
MouseEvent,
ComponentEvent

Container ContainerEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

Dialog ContainerEvent,
WindowEvent, FocusEvent,
KeyEvent, MouseEvent,

738 Thinking in Java www.BruceEckel.com

Component type Events supported by this
component
ComponentEvent

FileDialog ContainerEvent,
WindowEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

Frame ContainerEvent,
WindowEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

Label FocusEvent, KeyEvent,
MouseEvent,
ComponentEvent

List ActionEvent, FocusEvent,
KeyEvent, MouseEvent,
ItemEvent, ComponentEvent

Menu ActionEvent
MenuItem ActionEvent
Panel ContainerEvent, FocusEvent,

KeyEvent, MouseEvent,
ComponentEvent

PopupMenu ActionEvent
Scrollbar AdjustmentEvent,

FocusEvent, KeyEvent,
MouseEvent,
ComponentEvent

ScrollPane ContainerEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

TextArea TextEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

TextComponent TextEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

TextField ActionEvent, TextEvent,
FocusEvent, KeyEvent,

Chapter 13: Creating Windows & Applets 739

Component type Events supported by this
component
MouseEvent,
ComponentEvent

Window ContainerEvent,
WindowEvent, FocusEvent,
KeyEvent, MouseEvent,
ComponentEvent

Once you know which events a particular component supports, you
don’t need to look anything up to react to that event. You simply:

1. Take the name of the event class and remove the word
“Event.” Add the word “Listener” to what remains. This is
the listener interface you need to implement in your inner
class.

2. Implement the interface above and write out the methods for
the events you want to capture. For example, you might be
looking for mouse movements, so you write code for the
mouseMoved() method of the MouseMotionListener
interface. (You must implement the other methods, of
course, but there’s a shortcut for that which you’ll see soon.)

3. Create an object of the listener class in step 2. Register it with
your component with the method produced by prefixing
“add” to your listener name. For example,
addMouseMotionListener().

To finish what you need to know, here are the listener interfaces:

Listener interface
w/ adapter

Methods in interface

ActionListener actionPerformed(ActionEvent)
AdjustmentListe
ner

adjustmentValueChanged(
 AdjustmentEvent)

ComponentListe
ner
ComponentAdapt
er

componentHidden(ComponentEv
ent)
componentShown(ComponentEv
ent)

740 Thinking in Java www.BruceEckel.com

Listener interface
w/ adapter

Methods in interface

componentMoved(ComponentEv
ent)
componentResized(ComponentE
vent)

ContainerListene
r
ContainerAdapte
r

componentAdded(ContainerEven
t)
componentRemoved(ContainerE
vent)

FocusListener
FocusAdapter

focusGained(FocusEvent)
focusLost(FocusEvent)

KeyListener
KeyAdapter

keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

MouseListener
MouseAdapter

mouseClicked(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

MouseMotionList
ener
MouseMotionAda
pter

mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

WindowListener
WindowAdapter

windowOpened(WindowEvent)
windowClosing(WindowEvent)
windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated(WindowEven
t)
windowIconified(WindowEvent)
windowDeiconified(WindowEven
t)

ItemListener itemStateChanged(ItemEvent)
TextListener textValueChanged(TextEvent)

Chapter 13: Creating Windows & Applets 741

Using listener adapters for simplicity
In the table above, you can see that some listener interfaces have
only one method. These are trivial to implement since you’ll
implement them only when you want to write that particular
method. However, the listener interfaces that have multiple
methods could be less pleasant to use. For example, something you
must always do when creating an application is provide a
WindowListener to the Frame so that when you get the
windowClosing() event you can call System.exit(0) to exit the
application. But since WindowListener is an interface, you
must implement all of the other methods even if they don’t do
anything. This can be annoying.

To solve the problem, each of the listener interfaces that have more
than one method are provided with adapters, the names of which
you can see in the table above. Each adapter provides default
methods for each of the interface methods. (Alas,
WindowAdapter does not have a default windowClosing()
that calls System.exit(0).) Then all you need to do is inherit from
the adapter and override only the methods you need to change. For
example, the typical WindowListener you’ll use looks like this:

class MyWindowListener extends WindowAdapter {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

}

The whole point of the adapters is to make the creation of listener
classes easy.

There is a downside to adapters, however, in the form of a pitfall.
Suppose you write a WindowAdapter like the one above:

class MyWindowListener extends WindowAdapter {
public void WindowClosing(WindowEvent e) {

System.exit(0);
}

}

742 Thinking in Java www.BruceEckel.com

This doesn’t work, but it will drive you crazy trying to figure out
why, since everything will compile and run fine – except that
closing the window won’t exit the program. Can you see the
problem? It’s in the name of the method: WindowClosing()
instead of windowClosing(). A simple slip in capitalization
results in the addition of a completely new method. However, this is
not the method that’s called when the window is closing, so you
don’t get the desired results.

Making windows and
applets

Often you’ll want to be able to create a class that can be invoked as
either a window or an applet. To accomplish this, you simply add a
main() to your applet that builds an instance of the applet inside a
Frame. As a simple example, let’s look at Button2New.java
modified to work as both an application and an applet:

//: c13:Button2NewB.java
// An application and an applet.
// <applet code=Button2NewB width=250
// height=75></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class Button2NewB extends JApplet {
JButton

b1 = new JButton("Button 1"),
b2 = new JButton("Button 2");

JTextField t = new JTextField(20);
public void init() {

b1.addActionListener(new B1());
b2.addActionListener(new B2());
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);

Chapter 13: Creating Windows & Applets 743

cp.add(b2);
cp.add(t);

}
class B1 implements ActionListener {

public void actionPerformed(ActionEvent e) {
t.setText("Button 1");

}
}
class B2 implements ActionListener {

public void actionPerformed(ActionEvent e) {
t.setText("Button 2");

}
}
// A main() for the application:
public static void main(String[] args) {

JApplet applet = new Button2NewB();
JFrame frame = new JFrame("Button2NewB");
// To close the application:

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300,100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

main() is the only element added to the applet, and the rest of the
applet is untouched. In fact, you can usually copy and paste
main() into your own applets with little modification. You can see
that in main(), the applet is explicitly initialized and started since
in this case the browser isn’t available to do it for you. Of course,
this doesn’t provide the full behavior of the browser, which also
calls stop() and destroy(), but for most situations it’s acceptable.
If it’s a problem, you can:

1. Make the handle applet a static member of the class
(instead of a local variable of main()), and then:

744 Thinking in Java www.BruceEckel.com

2. Call applet.stop() and applet.destroy() inside
WindowAdapter.windowClosing() before you call
System.exit().

Notice the last line:

frame.setVisible(true);

This is one of the changes in the Java 1.1 AWT. The show()
method is deprecated and setVisible(true) replaces it. These sorts
of seemingly capricious changes will make more sense when you
learn about Java Beans later in the chapter.

This example is also modified to use a TextField rather than
printing to the console or to the browser status line. One restriction
in making a program that’s both an applet and an application is that
you must choose input and output forms that work for both
situations.

There’s another small new feature of the Java 1.1 AWT shown here.
You no longer need to use the error-prone approach of specifying
BorderLayout positions using a String. When adding an element
to a BorderLayout in Java 1.1, you can say:

frame.add(applet, BorderLayout.CENTER);

You name the location with one of the BorderLayout constants,
which can then be checked at compile-time (rather than just quietly
doing the wrong thing, as with the old form). This is a definite
improvement, and will be used throughout the rest of the book.

Packaging the applet into a JAR file
An important JAR use is to optimize applet loading. In Java 1.0,
people tended to try to cram all their code into a single Applet class
so the client would need only a single server hit to download the
applet code. Not only did this result in messy, hard to read (and
maintain) programs, but the .class file was still uncompressed so
downloading wasn’t as fast as it could have been.

JAR files change all of that by compressing all of your .class files
into a single file that is downloaded by the browser. Now you don’t

Chapter 13: Creating Windows & Applets 745

need to create an ugly design to minimize the number of classes you
create, and the user will get a much faster download time.

Consider the example above. It looks like Button2NewB is a
single class, but in fact it contains three inner classes, so that’s four
in all. Once you’ve compiled the program, you package it into a JAR
file with the line:

jar cf Button2NewB.jar *.class

This assumes that the only .class files in the current directory are
the ones from Button2NewB.java (otherwise you’ll get extra
baggage).

Now you can create an HTML page with the new archive tag to
indicate the name of the JAR file, like this:

<head><title>Button2NewB Example Applet
</title></head>
<body>
<applet code=Button2NewB.class

archive=Button2NewB.jar
width=200 height=150>

</applet>
</body>

Everything else about applet tags in HTML files remains the same.

Revisiting the earlier
examples

To see a number of examples using the new event model and to
study the way a program can be converted from the old to the new
event model, the following examples revisit many of the issues
demonstrated in the first part of this chapter using the old event
model. In addition, each program is now both an applet and an
application so you can run it with or without a browser.

746 Thinking in Java www.BruceEckel.com

Demonstrating
the framework methods
It’s interesting to see some of the framework methods in action.
(This example will look only at init(), start(), and stop()
because paint() and destroy() are self-evident and not so easily
traceable.) The following applet keeps track of the number of times
these methods are called and displays them using paint():

//: c13:Applet3.java
// Shows init(), start() and stop() activities.
// <applet code=Applet3 width=150 height=50>
// </applet>
import javax.swing.*;
import java.awt.*;

public class Applet3 extends JApplet {
String s;
int inits = 0;
int starts = 0;
int stops = 0;
public void init() { inits++; }
public void start() { starts++; }
public void stop() { stops++; }
public void paint(Graphics g) {

s = "inits: " + inits +
", starts: " + starts +
", stops: " + stops;

g.drawString(s, 10, 10);
}

} ///:~

Normally when you override a method you’ll want to look to see
whether you need to call the base-class version of that method, in
case it does something important. For example, with init() you
might need to call super.init(). However, the Applet
documentation specifically states that the init(), start(), and
stop() methods in Applet do nothing, so it’s not necessary to call
them here.

Chapter 13: Creating Windows & Applets 747

When you experiment with this applet you’ll discover that if you
minimize the Web browser or cover it up with another window you
might not get calls to stop() and start(). (This behavior seems to
vary among implementations; you might wish to contrast the
behavior of Web browsers with that of applet viewers.) The only
time the calls will occur is when you move to a different Web page
and then come back to the one containing the applet.

Text fields
This is similar to TextField1.java, but it adds significant extra
behavior:

//: c13:TextNew.java
// Text fields and Java events.
// <applet code=TextNew width=375
// height=125></applet>
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.text.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class TextNew extends JApplet {
JButton

b1 = new JButton("Get Text"),
b2 = new JButton("Set Text");

JTextField
t1 = new JTextField(30),
t2 = new JTextField(30),
t3 = new JTextField(30);

String s = new String();
UpperCaseDocument

ucd = new UpperCaseDocument();
public void init() {

t1.setDocument(ucd);
ucd.addDocumentListener(new T1());
b1.addActionListener(new B1());
b2.addActionListener(new B2());
DocumentListener dl = new T1();

748 Thinking in Java www.BruceEckel.com

t1.addActionListener(new T1A());
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(b1);
cp.add(b2);
cp.add(t1);
cp.add(t2);
cp.add(t3);

}
class T1 implements DocumentListener {

public void changedUpdate(DocumentEvent e){}
public void insertUpdate(DocumentEvent e){
t2.setText(t1.getText());
System.out.println("Text: "+ t1.getText());

}
public void removeUpdate(DocumentEvent e){
t2.setText(t1.getText());

}
}
class T1A implements ActionListener {

private int count = 0;
public void actionPerformed(ActionEvent e) {
t3.setText("t1 Action Event " + count++);

}
}
class B1 implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(t1.getSelectedText() == null)
s = t1.getText();

else
s = t1.getSelectedText();

t1.setEditable(true);
}

}
class B2 implements ActionListener {

public void actionPerformed(ActionEvent e) {
ucd.setUpperCase(false);
t1.setText("Inserted by Button 2: " + s);
ucd.setUpperCase(true);
t1.setEditable(false);

}
}

Chapter 13: Creating Windows & Applets 749

public static void main(String[] args) {
JApplet applet = new TextNew();
JFrame frame = new JFrame("TextNew");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(400,200);
applet.init();
applet.start();
frame.setVisible(true);

}
}

class UpperCaseDocument extends PlainDocument {
boolean upperCase = true;
public void setUpperCase(boolean flag) {

upperCase = flag;
}
public void insertString(int offset,

String string, AttributeSet attributeSet)
throws BadLocationException {
if(upperCase)
string = string.toUpperCase();

super.insertString(offset,
string, attributeSet);

}
} ///:~

The TextField t3 is included as a place to report when the action
listener for the TextField t1 is fired. You’ll see that the action
listener for a TextField is fired only when you press the “enter”
key.

The TextField t1 has several listeners attached to it. The T1
listener copies all text from t1 into t2 and the T1K listener forces all
characters to upper case. You’ll notice that the two work together,
and if you add the T1K listener after you add the T1 listener, it
doesn’t matter: all characters will still be forced to upper case in
both text fields. It would seem that keyboard events are always fired
before TextComponent events, and if you want the characters in

750 Thinking in Java www.BruceEckel.com

t2 to retain the original case that was typed in, you must do some
extra work.

T1K has some other activities of interest. You must detect a
backspace (since you’re controlling everything now) and perform
the deletion. The caret must be explicitly set to the end of the field;
otherwise it won’t behave as you expect. Finally, to prevent the
original character from being handled by the default mechanism,
the event must be “consumed” using the consume() method that
exists for event objects. This tells the system to stop firing the rest
of the event handlers for this particular event.

This example also quietly demonstrates one of the benefits of the
design of inner classes. Note that in the inner class:

class T1 implements TextListener {
public void textValueChanged(TextEvent e) {
t2.setText(t1.getText());

}
}

t1 and t2 are not members of T1, and yet they’re accessible without
any special qualification. This is because an object of an inner class
automatically captures a handle to the outer object that created it,
so you can treat members and methods of the enclosing class object
as if they’re yours. As you can see, this is quite convenient.7

Text areas
The most significant change to text areas in Java 1.1 concerns scroll
bars. With the TextArea constructor, you can now control whether
a TextArea will have scroll bars: vertical, horizontal, both, or
neither. This example modifies the earlier Java 1.0
TextArea1.java to show the Java 1.1 scrollbar constructors:

//: c13:TextAreaNew.java
// Controlling scrollbars with JtextArea.

7 It also solves the problem of “callbacks” without adding any awkward “method pointer”
feature to Java.

Chapter 13: Creating Windows & Applets 751

// <applet code=TextAreaNew width=300 height=725>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;
import com.bruceeckel.swing.*;

public class TextAreaNew extends JApplet {
JButton

b1 = new JButton("Text Area 1"),
b2 = new JButton("Text Area 2"),
b3 = new JButton("Replace Text"),
b4 = new JButton("Insert Text");

JTextArea
t1 = new JTextArea("t1", 1, 20),
t2 = new JTextArea("t2", 4, 20),
t3 = new JTextArea("t3", 1, 20),
t4 = new JTextArea("t4", 10, 10),
t5 = new JTextArea("t5", 4, 20),
t6 = new JTextArea("t6", 10, 10);

JScrollPane
sp3 = new JScrollPane(t3,
JScrollPane.VERTICAL_SCROLLBAR_NEVER,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER),

sp4 = new JScrollPane(t4,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER),

sp5 = new JScrollPane(t5,
JScrollPane.VERTICAL_SCROLLBAR_NEVER,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS),

sp6 = new JScrollPane(t6,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

class B1L implements ActionListener {
public void actionPerformed(ActionEvent e) {
t5.append(t1.getText() + "\n");

}
}
class B2L implements ActionListener {

public void actionPerformed(ActionEvent e) {
t2.setText("Inserted by Button 2");

752 Thinking in Java www.BruceEckel.com

t2.append(": " + t1.getText());
t5.append(t2.getText() + "\n");

}
}
class B3L implements ActionListener {

public void actionPerformed(ActionEvent e) {
String s = " Replacement ";
t2.replaceRange(s, 3, 3 + s.length());

}
}
class B4L implements ActionListener {

public void actionPerformed(ActionEvent e) {
t2.insert(" Inserted ", 10);

}
}
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
// Create Borders for components:
Border brd = BorderFactory.createMatteBorder(
1, 1, 1, 1, Color.black);

t1.setBorder(brd);
t2.setBorder(brd);
sp3.setBorder(brd);
sp4.setBorder(brd);
sp5.setBorder(brd);
sp6.setBorder(brd);
// Initialize listeners and add components:
b1.addActionListener(new B1L());
cp.add(b1);
cp.add(t1);
b2.addActionListener(new B2L());
cp.add(b2);
cp.add(t2);
b3.addActionListener(new B3L());
cp.add(b3);
b4.addActionListener(new B4L());
cp.add(b4);
cp.add(sp3);
cp.add(sp4);
cp.add(sp5);
cp.add(sp6);

Chapter 13: Creating Windows & Applets 753

}
public static void main(String[] args) {

JApplet applet = new TextAreaNew();
JFrame frame = new JFrame("TextAreaNew");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300,725);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

You’ll notice that you can control the scrollbars only at the time of
construction of the TextArea. Also, even if a TextArea doesn’t
have a scrollbar, you can move the cursor such that scrolling will be
forced. (You can see this behavior by playing with the example.)

Check boxes and radio buttons
As noted previously, check boxes and radio buttons are both created
with the same class, Checkbox, but radio buttons are Checkboxes
placed into a CheckboxGroup. In either case, the interesting
event is ItemEvent, for which you create an ItemListener.

When dealing with a group of check boxes or radio buttons, you
have a choice. You can either create a new inner class to handle the
event for each different Checkbox or you can create one inner
class that determines which Checkbox was clicked and register a
single object of that inner class with each Checkbox object. The
following example shows both approaches:

//: c13:RadioCheckNew.java
// Radio buttons and Check Boxes.
// <applet code=RadioCheckNew
// width=325 height=100></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

754 Thinking in Java www.BruceEckel.com

public class RadioCheckNew extends JApplet {
JTextField t = new JTextField(20);
JCheckBox[] cb = {

new JCheckBox("Check Box 1"),
new JCheckBox("Check Box 2"),
new JCheckBox("Check Box 3") };

ButtonGroup group = new ButtonGroup();
JRadioButton

cb4 = new JRadioButton("four"),
cb5 = new JRadioButton("five"),
cb6 = new JRadioButton("six");

// Checking the source:
class ILCheck implements ItemListener {

public void itemStateChanged(ItemEvent e) {
for(int i = 0; i < cb.length; i++) {
if(e.getSource().equals(cb[i])) {

t.setText("Check box " + (i + 1));
return;

}
}

}
}
// vs. an individual class for each item:
class IL4 implements ItemListener {

public void itemStateChanged(ItemEvent e) {
t.setText("Radio button four");

}
}
class IL5 implements ItemListener {

public void itemStateChanged(ItemEvent e) {
t.setText("Radio button five");

}
}
class IL6 implements ItemListener {

public void itemStateChanged(ItemEvent e) {
t.setText("Radio button six");

}
}
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());

Chapter 13: Creating Windows & Applets 755

t.setEditable(false);
cp.add(t);
ILCheck il = new ILCheck();
for(int i = 0; i < cb.length; i++) {
cb[i].addItemListener(il);
cp.add(cb[i]);

}
group.add(cb4);
group.add(cb5);
group.add(cb6);
cb4.addItemListener(new IL4());
cb5.addItemListener(new IL5());
cb6.addItemListener(new IL6());
cp.add(cb4); cp.add(cb5); cp.add(cb6);

}
public static void main(String[] args) {

JApplet applet = new RadioCheckNew();
Frame frame = new Frame("RadioCheckNew");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.add(applet);
frame.setSize(325, 150);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

ILCheck has the advantage that it automatically adapts when you
add or subtract Checkboxes. Of course, you can use this with radio
buttons as well. It should be used, however, only when your logic is
general enough to support this approach. Otherwise you’ll end up
with a cascaded if statement, a sure sign that you should revert to
using independent listener classes.

Drop-down lists
Drop-down lists (Choice) in Java 1.1 also use ItemListeners to
notify you when a choice has changed:

//: c13:ChoiceNew.java

756 Thinking in Java www.BruceEckel.com

// Drop-down lists (combo boxes).
// <applet code=ChoiceNew
// width=450 height=175></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class ChoiceNew extends JApplet {
String[] descriptions1 = { "Ebullient",

"Obtuse", "Recalcitrant", "Brilliant" };
String[] descriptions2 = { "Somnescent",

"Timorous", "Florid", "Putrescent" };
JTextArea t = new JTextArea(7, 40);
JComboBox c = new JComboBox(descriptions1);
JButton b = new JButton("Add items");
int count = 0;
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
t.setLineWrap(true);
t.setEditable(false);
cp.add(t);
cp.add(c);
cp.add(b);
c.addItemListener(new CL());
b.addActionListener(new BL());

}
class CL implements ItemListener {

public void itemStateChanged(ItemEvent e) {
t.setText("index: " + c.getSelectedIndex()
+ " " + e);

}
}
class BL implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(count < descriptions2.length)
c.addItem(descriptions2[count++]);

if(count >=descriptions2.length)
b.setEnabled(false);

}
}

Chapter 13: Creating Windows & Applets 757

public static void main(String[] args) {
JApplet applet = new ChoiceNew();
Frame frame = new Frame("ChoiceNew");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.add(applet);
frame.setSize(450,200);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

Nothing else here is particularly new (except that Java 1.1 has
significantly fewer bugs in the UI classes).

Lists
You’ll recall that one of the problems with the Java 1.0 List design
is that it took extra work to make it do what you’d expect: react to a
single click on one of the list elements. Java 1.1 has solved this
problem:

//: c13:ListNew.java
// <applet code=ListNew width=250
// height=325> </applet>
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;
import com.bruceeckel.swing.*;

public class ListNew extends JApplet {
String[] flavors = { "Chocolate", "Strawberry",

"Vanilla Fudge Swirl", "Mint Chip",
"Mocha Almond Fudge", "Rum Raisin",
"Praline Cream", "Mud Pie" };

DefaultListModel lItems=new DefaultListModel();
JList lst = new JList(lItems);
JTextArea t = new JTextArea(flavors.length,20);
JButton b = new JButton("Add Item");

758 Thinking in Java www.BruceEckel.com

ActionListener bl = new ActionListener() {
public void actionPerformed(ActionEvent e) {
if(count < flavors.length) {
lItems.add(0, flavors[count++]);

} else {
// Disable, since there are no more
// flavors left to be added to the List
b.setEnabled(false);

}
}

};
ListSelectionListener ll =

new ListSelectionListener() {
public void valueChanged(
ListSelectionEvent e) {

t.setText("");
Object[] items=lst.getSelectedValues();
for(int i = 0; i < items.length; i++)
t.append(items[i] + "\n");

}
};

int count = 0;
public void init() {

Container cp = getContentPane();
t.setEditable(false);
cp.setLayout(new FlowLayout());
// Create Borders for components:
Border brd = BorderFactory.createMatteBorder(
1, 1, 2, 2, Color.black);

lst.setBorder(brd);
t.setBorder(brd);
// Add the first four items to the List
for(int i = 0; i < 4; i++)
lItems.addElement(flavors[count++]);

// Add items to the Content Pane for Display
cp.add(t);
cp.add(lst);
cp.add(b);
// Register event listeners
lst.addListSelectionListener(ll);
b.addActionListener(bl);

}

Chapter 13: Creating Windows & Applets 759

public static void main(String[] args) {
JApplet applet = new ListNew();
JFrame frame = new JFrame("ListNew");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(250, 350);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

You can see that no extra logic is required to support a single click
on a list item. You just attach a listener like you do everywhere else.

Menus
The event handling for menus does seem to benefit from the Java
1.1 event model, but Java’s approach to menus is still messy and
requires a lot of hand coding. The right medium for a menu seems
to be a resource rather than a lot of code. Keep in mind that
program-building tools will generally handle the creation of menus
for you, so that will reduce the pain somewhat (as long as they will
also handle the maintenance!).

In addition, you’ll find the events for menus are inconsistent and
can lead to confusion: MenuItems use ActionListeners, but
CheckboxMenuItems use ItemListeners. The Menu objects
can also support ActionListeners, but that’s not usually helpful.
In general, you’ll attach listeners to each MenuItem or
CheckboxMenuItem, but the following example (revised from
the earlier version) also shows ways to combine the capture of
multiple menu components into a single listener class. As you’ll see,
it’s probably not worth the hassle to do this.

//: c13:MenuNew.java
// Menu shortcuts and action commands.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

760 Thinking in Java www.BruceEckel.com

import com.bruceeckel.swing.*;

public class MenuNew extends JFrame {
String[] flavors = { "Chocolate", "Strawberry",

"Vanilla Fudge Swirl", "Mint Chip",
"Mocha Almond Fudge", "Rum Raisin",
"Praline Cream", "Mud Pie" };

JTextField t = new JTextField("No flavor", 30);
JMenuBar mb1 = new JMenuBar();
JMenu

f = new JMenu("File"),
m = new JMenu("Flavors"),
s = new JMenu("Safety");

// Alternative approach:
JCheckBoxMenuItem[] safety = {

new JCheckBoxMenuItem("Guard"),
new JCheckBoxMenuItem("Hide")

};
JMenuItem[] file = {

// No menu shortcut:
new JMenuItem("Open"),
// Adding a menu shortcut is very simple:
new JMenuItem("Exit", KeyEvent.VK_E)

};
// A second menu bar to swap to:
JMenuBar mb2 = new JMenuBar();
JMenu fooBar = new JMenu("fooBar");
JMenuItem[] other = {

new JMenuItem("Foo"),
new JMenuItem("Bar"),
new JMenuItem("Baz"),

};
JButton b = new JButton("Swap Menus");
public MenuNew() {

super("MenuNew");
ML ml = new ML();
CMIL cmil = new CMIL();
safety[0].setActionCommand("Guard");
safety[0].addItemListener(cmil);
safety[1].setActionCommand("Hide");
safety[1].addItemListener(cmil);
file[0].setActionCommand("Open");

Chapter 13: Creating Windows & Applets 761

file[0].addActionListener(ml);
file[1].setActionCommand("Exit");
file[1].addActionListener(ml);
other[0].addActionListener(new FooL());
other[1].addActionListener(new BarL());
other[2].addActionListener(new BazL());
FL fl = new FL();
for(int i = 0; i < flavors.length; i++) {
JMenuItem mi = new JMenuItem(flavors[i]);
mi.addActionListener(fl);
m.add(mi);
// Add separators at intervals:
if((i+1) % 3 == 0)
m.addSeparator();

}
for(int i = 0; i < safety.length; i++)
s.add(safety[i]);

f.add(s);
for(int i = 0; i < file.length; i++)
f.add(file[i]);

mb1.add(f);
mb1.add(m);
setJMenuBar(mb1);
t.setEditable(false);
Container cp = getContentPane();
cp.add(t, BorderLayout.CENTER);
// Set up the system for swapping menus:
b.addActionListener(new BL());
cp.add(b, BorderLayout.NORTH);
for(int i = 0; i < other.length; i++)
fooBar.add(other[i]);

mb2.add(fooBar);
}
class BL implements ActionListener {

public void actionPerformed(ActionEvent e) {
JMenuBar m = getJMenuBar();
setJMenuBar(m == mb1 ? mb2 : mb1);
validate(); // Refresh the frame /////////

Necessary???
}

}
class ML implements ActionListener {

762 Thinking in Java www.BruceEckel.com

public void actionPerformed(ActionEvent e) {
JMenuItem target = (JMenuItem)e.getSource();
String actionCommand =
target.getActionCommand();

if(actionCommand.equals("Open")) {
String s = t.getText();
boolean chosen = false;
for(int i = 0; i < flavors.length; i++)

if(s.equals(flavors[i])) chosen = true;
if(!chosen)

t.setText("Choose a flavor first!");
else

t.setText("Opening "+ s +". Mmm, mm!");
} else if(actionCommand.equals("Exit")) {
// This trick won't work with applets
// because MenuNew.this doesn't produce
// a Window if this is a JApplet:
dispatchEvent(

new WindowEvent(MenuNew.this,
WindowEvent.WINDOW_CLOSING));

}
}

}
class FL implements ActionListener {

public void actionPerformed(ActionEvent e) {
JMenuItem target = (JMenuItem)e.getSource();
t.setText(target.getText());

}
}
// Alternatively, you can create a different
// class for each different MenuItem. Then you
// Don't have to figure out which one it is:
class FooL implements ActionListener {

public void actionPerformed(ActionEvent e) {
t.setText("Foo selected");

}
}
class BarL implements ActionListener {

public void actionPerformed(ActionEvent e) {
t.setText("Bar selected");

}
}

Chapter 13: Creating Windows & Applets 763

class BazL implements ActionListener {
public void actionPerformed(ActionEvent e) {
t.setText("Baz selected");

}
}
class CMIL implements ItemListener {

public void itemStateChanged(ItemEvent e) {
JCheckBoxMenuItem target =
(JCheckBoxMenuItem)e.getSource();

String actionCommand =
target.getActionCommand();

if(actionCommand.equals("Guard"))
t.setText("Guard the Ice Cream! " +

"Guarding is " + target.getState());
else if(actionCommand.equals("Hide"))
t.setText("Hide the Ice Cream! " +

"Is it cold? " + target.getState());
}

}
public static void main(String[] args) {

JFrame frame = new MenuNew();
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.setSize(300, 100);
frame.setVisible(true);

}
} ///:~

This code is similar to the previous (Java 1.0) version, until you get
to the init() method. Here you can see the ItemListeners and
ActionListeners attached to the various menu components.

Java 1.1 supports “menu shortcuts,” so you can select a menu item
using the keyboard instead of the mouse. These are quite simple;
you just use the overloaded MenuItem constructor that takes as a
second argument a MenuShortcut object. The constructor for
MenuShortcut takes the key of interest, which magically appears
on the menu item when it drops down. The example above adds
Control-E to the “Exit” menu item.

You can also see the use of setActionCommand(). This seems a
bit strange because in each case the “action command” is exactly the

764 Thinking in Java www.BruceEckel.com

same as the label on the menu component. Why not just use the
label instead of this alternative string? The problem is
internationalization. If you retarget this program to another
language, you want to change only the label in the menu, and not go
through the code changing all the logic that will no doubt introduce
new errors. So to make this easy for code that checks the text string
associated with a menu component, the “action command” can be
immutable while the menu label can change. All the code works
with the “action command,” so it’s unaffected by changes to the
menu labels. Note that in this program, not all the menu
components are examined for their action commands, so those that
aren’t don’t have their action command set.

Much of the constructor is the same as before, with the exception of
a couple of calls to add listeners. The bulk of the work happens in
the listeners. In BL, the MenuBar swapping happens as in the
previous example. In ML, the “figure out who rang” approach is
taken by getting the source of the ActionEvent and casting it to a
MenuItem, then getting the action command string to pass it
through a cascaded if statement. Much of this is the same as before,
but notice that if “Exit” is chosen, a new WindowEvent is created,
passing in the handle of the enclosing class object
(MenuNew.this) and creating a WINDOW_CLOSING event.
This is handed to the dispatchEvent() method of the enclosing
class object, which then ends up calling windowClosing() inside
the window listener for the Frame (this listener is created as an
anonymous inner class, inside main()), just as if the message had
been generated the “normal” way. Through this mechanism, you
can dispatch any message you want in any circumstances, so it’s
quite powerful.

The FL listener is simple even though it’s handling all the different
flavors in the flavor menu. This approach is useful if you have
enough simplicity in your logic, but in general, you’ll want to take
the approach used with FooL, BarL, and BazL, in which they are
each attached to only a single menu component so no extra
detection logic is necessary and you know exactly who called the
listener. Even with the profusion of classes generated this way, the
code inside tends to be smaller and the process is more foolproof.

Chapter 13: Creating Windows & Applets 765

Dialog boxes
This is a direct rewrite of the earlier TicTacToe.java. In this
version, however, everything is placed inside an inner class.
Although this completely eliminates the need to keep track of the
object that spawned any class, as was the case in TicTacToe.java,
it could be taking the concept of inner classes a bit too far. At one
point, the inner classes are nested four deep! This is the kind of
design in which you need to decide whether the benefit of inner
classes is worth the increased complexity. In addition, when you
create a non-static inner class you’re tying that class to its
surrounding class. Sometimes a standalone class can more easily be
reused.

//: c13:TicTacToeInner.java
// TicTacToe.java with heavy use of inner classes.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class TicTacToeInner extends JFrame {
JTextField

rows = new JTextField("3"),
cols = new JTextField("3");

public TicTacToeInner() {
setTitle("Toe Test");
JPanel p = new JPanel();
p.setLayout(new GridLayout(2,2));
p.add(new JLabel("Rows", JLabel.CENTER));
p.add(rows);
p.add(new JLabel("Columns", JLabel.CENTER));
p.add(cols);
Container cp = getContentPane();
cp.add(p, BorderLayout.NORTH);
JButton b = new JButton("go");
b.addActionListener(new BL());
cp.add(b, BorderLayout.SOUTH);

}
static final int BLANK = 0, XX = 1, OO = 2;
class ToeDialog extends JDialog {

766 Thinking in Java www.BruceEckel.com

int turn = XX; // Start with x's turn
// w = number of cells wide
// h = number of cells high
public ToeDialog(int w, int h) {
super(TicTacToeInner.this,
"The game itself", false);

Container cp = getContentPane();
cp.setLayout(new GridLayout(w, h));
for(int i = 0; i < w * h; i++)
cp.add(new ToeButton());

setSize(w * 50, h * 50);
// JDK 1.3 close dialog:

//#setDefaultCloseOperation(DISPOSE_ON_CLOSE);
// JDK 1.2 close dialog:
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e){

dispose();
}

});
}
class ToeButton extends JPanel {
int state = BLANK;
ToeButton() {
addMouseListener(new ML());

}
public void paintComponent(Graphics g) {
super.paintComponent(g);
int x1 = 0;
int y1 = 0;
int x2 = getSize().width - 1;
int y2 = getSize().height - 1;
g.drawRect(x1, y1, x2, y2);
x1 = x2/4;
y1 = y2/4;
int wide = x2/2;
int high = y2/2;
if(state == XX) {

g.drawLine(x1, y1,
x1 + wide, y1 + high);

g.drawLine(x1, y1 + high,
x1 + wide, y1);

}

Chapter 13: Creating Windows & Applets 767

if(state == OO) {
g.drawOval(x1, y1,
x1 + wide/2, y1 + high/2);

}
}
class ML extends MouseAdapter {
public void mousePressed(MouseEvent e) {

if(state == BLANK) {
state = turn;
turn = (turn == XX ? OO : XX);

}
else
state = (state == XX ? OO : XX);

repaint();
}

}
}

}
class BL implements ActionListener {

public void actionPerformed(ActionEvent e) {
JDialog d = new ToeDialog(
Integer.parseInt(rows.getText()),
Integer.parseInt(cols.getText()));

d.setVisible(true);
}

}
public static void main(String[] args) {

JFrame frame = new TicTacToeInner();
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.setSize(200,100);
frame.setVisible(true);

}
} ///:~

Because statics can be at only the outer level of the class, inner
classes cannot have static data or static inner classes.

768 Thinking in Java www.BruceEckel.com

Selecting Look & Feel
One of the very interesting aspects of Swing is the “Pluggable Look
& Feel.” This allows your program to emulate the look and feel of
various operating environments. You can even do all sorts of fancy
things like dynamically changing the look and feel while the
program is executing. However, you generally just want to do one of
two things, either select the “cross platform” look and feel (which is
Swing’s “metal”) or select the look and feel for the system you are
currently on, so your Java program looks like it was created
specifically for that system. The code to select either of these
behaviors is quite simple, but you must execute it before you create
any visual components because the components will be made based
on the current look and feel and will not be changed just because
you happen to change the look and feel midway during the program
(that process is more complicated and uncommon, and is relegated
to Swing-specific books).

Actually, if you want to use the cross-platform (“metal”) look and
feel that is characteristic of Swing programs, you don’t have to do
anything – it’s the default. But if you want instead to use the current
operating environment’s look and feel, you just insert the following
code, typically at the beginning of your main() but somehow
before any components are added:

try {
UIManager.setLookAndFeel(UIManager.

getSystemLookAndFeelClassName());
} catch (Exception ex) { }

You don’t need anything in the catch clause because the
UIManager will default to the cross-platform look and feel if your
attempts to set up any of the alternatives fail. However, during
debugging the exception can be quite useful.

Here is a program that takes a command-line argument to select a
look and feel, and shows how a selection of components look:

//: c13:LookAndFeel.java
// Selecting different looks & feels.

Chapter 13: Creating Windows & Applets 769

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

public class LookAndFeel extends JFrame {
String[] choices = {

"eeny", "meeny", "minie", "moe", "toe", "you"
};
Component[] samples = {

new JButton("JButton"),
new JTextField("JTextField"),
new JLabel("JLabel"),
new JCheckBox("JCheckBox"),
new JRadioButton("Radio"),
new JComboBox(choices),
new JList(choices),

};
public LookAndFeel() {

super("Look And Feel");
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
for(int i = 0; i < samples.length; i++)
cp.add(samples[i]);

}
private static void usageError() {

System.out.println(
"Usage:LookAndFeel [cross|system|motif]");

System.exit(1);
}
public static void main(String[] args) {

if(args.length == 0) usageError();
if(args[0].equals("cross")) {
try {
UIManager.setLookAndFeel(UIManager.

getCrossPlatformLookAndFeelClassName());
} catch (Exception ex) {

ex.printStackTrace();
}

} else if(args[0].equals("system")) {
try {

770 Thinking in Java www.BruceEckel.com

UIManager.setLookAndFeel(UIManager.
getSystemLookAndFeelClassName());

} catch (Exception ex) {
ex.printStackTrace();

}
} else if(args[0].equals("motif")) {
try {
UIManager.setLookAndFeel("com.sun.java."+

"swing.plaf.motif.MotifLookAndFeel");
} catch (Exception ex) {

ex.printStackTrace();
}

} else usageError();
// Note the look & feel must be set before
// any components are created.
JFrame frame = new LookAndFeel();

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.setSize(300, 200);
frame.setVisible(true);

}
} ///:~

You can see that one option is to explicitly specify a string for a look
and feel, as seen with MotifLookAndFeel. However, that one and
the default “metal” look and feel are the only ones that can legally
be used on any platform; even though there are strings for Windows
and Macintosh look and feels, those can only be used on their
respective platforms (these are produced when you call
getSystemLookAndFeelClassName() and you’re on that
particular platform).

It is also possible to create a custom look and feel package, for
example if you are building a framework for a company that wants a
distinctive appearance. This is a big job and is far beyond the scope
of this book (in fact, you’ll discover it is beyond the scope of many
dedicated Swing books!).

Chapter 13: Creating Windows & Applets 771

Binding events
dynamically

One of the benefits of the new AWT event model is flexibility. In the
old model you were forced to hard code the behavior of your
program, but with the new model you can add and remove event
behavior with single method calls. The following example
demonstrates this:

//: c13:DynamicEvents.java
// You can change event behavior dynamically.
// Also shows multiple actions for an event.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

public class DynamicEvents extends JFrame{
ArrayList v = new ArrayList();
int i = 0;
JButton

b1 = new JButton("Button1"),
b2 = new JButton("Button2");

public DynamicEvents() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
b1.addActionListener(new B());
b1.addActionListener(new B1());
b2.addActionListener(new B());
b2.addActionListener(new B2());
cp.add(b1);
cp.add(b2);

}
class B implements ActionListener {

public void actionPerformed(ActionEvent e) {
System.out.println("A button was pressed");

}
}

772 Thinking in Java www.BruceEckel.com

class CountListener implements ActionListener {
int index;
public CountListener(int i) { index = i; }
public void actionPerformed(ActionEvent e) {
System.out.println(
"Counted Listener " + index);

}
}
class B1 implements ActionListener {

public void actionPerformed(ActionEvent e) {
System.out.println("Button 1 pressed");
ActionListener a = new CountListener(i++);
v.add(a);
b2.addActionListener(a);

}
}
class B2 implements ActionListener {

public void actionPerformed(ActionEvent e) {
System.out.println("Button2 pressed");
int end = v.size() - 1;
if(end >= 0) {
b2.removeActionListener(

(ActionListener)v.get(end));
v.remove(end);

}
}

}
public static void main(String[] args) {

JFrame frame = new DynamicEvents();
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.setSize(300, 100);
frame.setVisible(true);

}
} ///:~

The new twists in this example are:

1. There is more than one listener attached to each Button.
Usually, components handle events as multicast, meaning
that you can register many listeners for a single event. In the

Chapter 13: Creating Windows & Applets 773

special components in which an event is handled as unicast,
you’ll get a TooManyListenersException.

2. During the execution of the program, listeners are
dynamically added and removed from the Button b2.
Adding is accomplished in the way you’ve seen before, but
each component also has a removeXXXListener()
method to remove each type of listener.

This kind of flexibility provides much greater power in your
programming.

You should notice that event listeners are not guaranteed to be
called in the order they are added (although most implementations
do in fact work that way).

Separating business logic
from UI logic

In general you’ll want to design your classes so that each one does
“only one thing.” This is particularly important when user-interface
code is concerned, since it’s easy to wrap up “what you’re doing”
with “how you’re displaying it.” This kind of coupling prevents code
reuse. It’s much more desirable to separate your “business logic”
from the GUI. This way, you can not only reuse the business logic
more easily, it’s also easier to reuse the GUI.

Another issue is multi-tiered systems, where the “business objects”
reside on a completely separate machine. This central location of
the business rules allows changes to be instantly effective for all
new transactions, and is thus a compelling way to set up a system.
However, these business objects can be used in many different
applications and so should not be tied to any particular mode of
display. They should just perform the business operations and
nothing more.

The following example shows how easy it is to separate the business
logic from the GUI code:

774 Thinking in Java www.BruceEckel.com

//: c13:Separation.java
// Separating GUI logic and business objects.
// <applet code=Separation
// width=250 height=100> </applet>
import javax.swing.*;
import java.awt.*;
import javax.swing.event.*;
import java.awt.event.*;
import java.applet.*;
import com.bruceeckel.swing.*;

class BusinessLogic {
private int modifier;
BusinessLogic(int mod) {

modifier = mod;
}
public void setModifier(int mod) {

modifier = mod;
}
public int getModifier() {

return modifier;
}
// Some business operations:
public int calculation1(int arg) {

return arg * modifier;
}
public int calculation2(int arg) {

return arg + modifier;
}

}

public class Separation extends JApplet {
JTextField

t = new JTextField(15),
mod = new JTextField(15);

BusinessLogic bl = new BusinessLogic(2);
JButton

calc1 = new JButton("Calculation 1"),
calc2 = new JButton("Calculation 2");

public void init() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());

Chapter 13: Creating Windows & Applets 775

cp.add(t);
calc1.addActionListener(new Calc1L());
calc2.addActionListener(new Calc2L());
JPanel p1 = new JPanel();
p1.add(calc1);
p1.add(calc2);
cp.add(p1);
mod.getDocument().
addDocumentListener(new ModL());

JPanel p2 = new JPanel();
p2.add(new JLabel("Modifier:"));
p2.add(mod);
cp.add(p2);

}
static int getValue(JTextField tf) {

try {
return Integer.parseInt(tf.getText());

} catch(NumberFormatException e) {
return 0;

}
}
class Calc1L implements ActionListener {

public void actionPerformed(ActionEvent e) {
t.setText(Integer.toString(
bl.calculation1(getValue(t))));

}
}
class Calc2L implements ActionListener {

public void actionPerformed(ActionEvent e) {
t.setText(Integer.toString(
bl.calculation2(getValue(t))));

}
}
// If you want something to happen whenever
// a JTextField changes, add this listener:
class ModL implements DocumentListener {

public void changedUpdate(DocumentEvent e) {}
public void insertUpdate(DocumentEvent e) {
bl.setModifier(getValue(mod));

}
public void removeUpdate(DocumentEvent e) {
bl.setModifier(getValue(mod));

776 Thinking in Java www.BruceEckel.com

}
}
public static void main(String[] args) {

JApplet applet = new Separation();
JFrame frame = new JFrame("Separation");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300, 150);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

You can see that BusinessLogic is a straightforward class that
performs its operations without even a hint that it might be used in
a GUI environment. It just does its job.

Separation keeps track of all the UI details, and it talks to
BusinessLogic only through its public interface. All the
operations are centered around getting information back and forth
through the UI and the BusinessLogic object. So Separation, in
turn, just does its job. Since Separation knows only that it’s
talking to a BusinessLogic object (that is, it isn’t highly coupled),
it could be massaged into talking to other types of objects without
much trouble.

Thinking in terms of separating UI from business logic also makes
life easier when you’re adapting legacy code to work with Java.

Recommended coding
approaches

Inner classes, the new event model, and the fact that the old event
model is still supported along with new library features that rely on
old-style programming has added a new element of confusion. Now
there are even more different ways for people to write unpleasant
code. Unfortunately, this kind of code is showing up in books and

Chapter 13: Creating Windows & Applets 777

article examples, and even in documentation and examples
distributed from Sun! In this section we’ll look at some
misunderstandings about what you should and shouldn’t do with
the new AWT, and end by showing that except in extenuating
circumstances you can always use listener classes (written as inner
classes) to solve your event-handling needs. Since this is also the
simplest and clearest approach, it should be a relief for you to learn
this.

Before looking at anything else, you should know that although
Java 1.1 is backward-compatible with Java 1.0 (that is, you can
compile and run 1.0 programs with 1.1), you cannot mix the event
models within the same program. That is, you cannot use the old-
style action() method in the same program in which you employ
listeners. This can be a problem in a larger program when you’re
trying to integrate old code with a new program, since you must
decide whether to use the old, hard-to-maintain approach with the
new program or to update the old code. This shouldn’t be too much
of a battle since the new approach is so superior to the old.

Baseline: the good way to do it
To give you something to compare with, here’s an example showing
the recommended approach. By now it should be reasonably
familiar and comfortable:

//: c13:GoodIdea.java
// The best way to design classes using the
// Java event model: use an inner class for
// each different event. This maximizes
// flexibility and modularity.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class GoodIdea extends JFrame {
JButton

b1 = new JButton("Button 1"),
b2 = new JButton("Button 2");

778 Thinking in Java www.BruceEckel.com

public GoodIdea() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
b1.addActionListener(new B1L());
b2.addActionListener(new B2L());
cp.add(b1);
cp.add(b2);

}
public class B1L implements ActionListener {

public void actionPerformed(ActionEvent e) {
System.out.println("Button 1 pressed");

}
}
public class B2L implements ActionListener {

public void actionPerformed(ActionEvent e) {
System.out.println("Button 2 pressed");

}
}
public static void main(String[] args) {

JFrame frame = new GoodIdea();
frame.addWindowListener(
new WindowAdapter() {
public void windowClosing(WindowEvent e){

System.out.println("Window Closing");
System.exit(0);

}
});

frame.setSize(300,200);
frame.setVisible(true);

}
} ///:~

This is fairly trivial: each button has its own listener that prints
something out to the console. But notice that there isn’t an if
statement in the entire program, or any statement that says, “I
wonder what caused this event.” Each piece of code is concerned
with doing, not type-checking. This is the best way to write your
code; not only is it easier to conceptualize, but much easier to read
and maintain. Cutting and pasting to create new programs is also
much easier.

Chapter 13: Creating Windows & Applets 779

Implementing the main class as a
listener
The first bad idea is a common and recommended approach. This
makes the main class (typically Applet or Frame, but it could be
any class) implement the various listeners. Here’s an example:

//: c13:BadIdea1.java
// Some literature recommends this approach, but
// it's missing the point of the Java event model.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class BadIdea1 extends JFrame
implements ActionListener, WindowListener {

JButton
b1 = new JButton("Button 1"),
b2 = new JButton("Button 2");

public BadIdea1() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
addWindowListener(this);
b1.addActionListener(this);
b2.addActionListener(this);
cp.add(b1);
cp.add(b2);

}
public void actionPerformed(ActionEvent e) {

Object source = e.getSource();
if(source == b1)
System.out.println("Button 1 pressed");

else if(source == b2)
System.out.println("Button 2 pressed");

else
System.out.println("Something else");

}
public void windowClosing(WindowEvent e) {

System.out.println("Window Closing");
System.exit(0);

780 Thinking in Java www.BruceEckel.com

}
public void windowClosed(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}
public void windowOpened(WindowEvent e) {}

public static void main(String[] args) {
JFrame frame = new BadIdea1();
frame.setSize(300,200);
frame.setVisible(true);

}
} ///:~

The use of this shows up in the three lines:

addWindowListener(this);
b1.addActionListener(this);
b2.addActionListener(this);

Since BadIdea1 implements ActionListener and
WindowListener, these lines are certainly acceptable, and if
you’re still stuck in the mode of trying to make fewer classes to
reduce server hits during applet loading, it seems to be a good idea.
However:

1. Java 1.1 supports JAR files so all your files can be placed in a
single compressed JAR archive that requires only one server
hit. You no longer need to reduce class count for Internet
efficiency.

2. The code above is much less modular so it’s harder to grab
and paste. Note that you must not only implement the
various interfaces for your main class, but in
actionPerformed() you’ve got to detect which action was
performed using a cascaded if statement. Not only is this
going backwards, away from the listener model, but you
can’t easily reuse the actionPerformed() method since it’s
specific to this particular application. Contrast this with
GoodIdea.java, in which you can just grab one listener
class and paste it in anywhere else with minimal fuss. Plus

Chapter 13: Creating Windows & Applets 781

you can register multiple listener classes with a single event,
allowing even more modularity in what each listener class
does.

Mixing the approaches
The second bad idea is to mix the two approaches: use inner listener
classes, but also implement one or more listener interfaces as part
of the main class. This approach has appeared without explanation
in books and documentation, and I can only assume that the
authors thought they must use the different approaches for
different purposes. But you don’t – in your programming you can
probably use inner listener classes exclusively.

//: c13:BadIdea2.java
// An improvement over BadIdea1.java, since it
// uses the WindowAdapter as an inner class
// instead of implementing all the methods of
// WindowListener, but still misses the
// valuable modularity of inner classes.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class BadIdea2 extends JFrame
implements ActionListener {

JButton
b1 = new JButton("Button 1"),
b2 = new JButton("Button 2");

public BadIdea2() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
addWindowListener(new WL());
b1.addActionListener(this);
b2.addActionListener(this);
cp.add(b1);
cp.add(b2);

}
public void actionPerformed(ActionEvent e) {

Object source = e.getSource();

782 Thinking in Java www.BruceEckel.com

if(source == b1)
System.out.println("Button 1 pressed");

else if(source == b2)
System.out.println("Button 2 pressed");

else
System.out.println("Something else");

}
class WL extends WindowAdapter {

public void windowClosing(WindowEvent e) {
System.out.println("Window Closing");
System.exit(0);

}
}
public static void main(String[] args) {

JFrame frame = new BadIdea2();
frame.setSize(300,200);
frame.setVisible(true);

}
} ///:~

Since actionPerformed() is still tightly coupled to the main
class, it’s hard to reuse that code. It’s also messier and less pleasant
to read than the inner class approach.

There’s no reason that you have to use any of the old thinking for
events in Java 1.1 – so why do it?

Inheriting a component
Another place where you’ll often see variations on the old way of
doing things is when creating a new type of component. Here’s an
example showing that here, too, the new way works:

//: c13:GoodTechnique.java
// Your first choice when overriding components
// should be to install listeners. The code is
// much safer, more modular and maintainable.
import java.awt.*;
import java.awt.event.*;

class Display {
public static final int

Chapter 13: Creating Windows & Applets 783

EVENT = 0, COMPONENT = 1,
MOUSE = 2, MOUSE_MOVE = 3,
FOCUS = 4, KEY = 5, ACTION = 6,
LAST = 7;

public String[] evnt;
Display() {

evnt = new String[LAST];
for(int i = 0; i < LAST; i++)
evnt[i] = new String();

}
public void show(Graphics g) {

for(int i = 0; i < LAST; i++)
g.drawString(evnt[i], 0, 10 * i + 10);

}
}

class EnabledPanel extends Panel {
Color c;
int id;
Display display = new Display();
public EnabledPanel(int i, Color mc) {

id = i;
c = mc;
setLayout(new BorderLayout());
add(new MyButton(), BorderLayout.SOUTH);
addComponentListener(new CL());
addFocusListener(new FL());
addKeyListener(new KL());
addMouseListener(new ML());
addMouseMotionListener(new MML());

}
// To eliminate flicker:
public void update(Graphics g) {

paint(g);
}
public void paint(Graphics g) {

g.setColor(c);
Dimension s = getSize();
g.fillRect(0, 0, s.width, s.height);
g.setColor(Color.black);
display.show(g);

}

784 Thinking in Java www.BruceEckel.com

// Don't need to enable anything for this:
public void processEvent(AWTEvent e) {

display.evnt[Display.EVENT]= e.toString();
repaint();
super.processEvent(e);

}
class CL implements ComponentListener {

public void componentMoved(ComponentEvent e){
display.evnt[Display.COMPONENT] =
"Component moved";

repaint();
}
public void
componentResized(ComponentEvent e) {
display.evnt[Display.COMPONENT] =
"Component resized";

repaint();
}
public void
componentHidden(ComponentEvent e) {
display.evnt[Display.COMPONENT] =
"Component hidden";

repaint();
}
public void componentShown(ComponentEvent e){
display.evnt[Display.COMPONENT] =
"Component shown";

repaint();
}

}
class FL implements FocusListener {

public void focusGained(FocusEvent e) {
display.evnt[Display.FOCUS] =
"FOCUS gained";

repaint();
}
public void focusLost(FocusEvent e) {
display.evnt[Display.FOCUS] =
"FOCUS lost";

repaint();
}

}

Chapter 13: Creating Windows & Applets 785

class KL implements KeyListener {
public void keyPressed(KeyEvent e) {
display.evnt[Display.KEY] =
"KEY pressed: ";

showCode(e);
}
public void keyReleased(KeyEvent e) {
display.evnt[Display.KEY] =
"KEY released: ";

showCode(e);
}
public void keyTyped(KeyEvent e) {
display.evnt[Display.KEY] =
"KEY typed: ";

showCode(e);
}
void showCode(KeyEvent e) {
int code = e.getKeyCode();
display.evnt[Display.KEY] +=
KeyEvent.getKeyText(code);

repaint();
}

}
class ML implements MouseListener {

public void mouseClicked(MouseEvent e) {
requestFocus(); // Get FOCUS on click
display.evnt[Display.MOUSE] =
"MOUSE clicked";

showMouse(e);
}
public void mousePressed(MouseEvent e) {
display.evnt[Display.MOUSE] =
"MOUSE pressed";

showMouse(e);
}
public void mouseReleased(MouseEvent e) {
display.evnt[Display.MOUSE] =
"MOUSE released";

showMouse(e);
}
public void mouseEntered(MouseEvent e) {
display.evnt[Display.MOUSE] =

786 Thinking in Java www.BruceEckel.com

"MOUSE entered";
showMouse(e);

}
public void mouseExited(MouseEvent e) {
display.evnt[Display.MOUSE] =
"MOUSE exited";

showMouse(e);
}
void showMouse(MouseEvent e) {
display.evnt[Display.MOUSE] +=
", x = " + e.getX() +
", y = " + e.getY();

repaint();
}

}
class MML implements MouseMotionListener {

public void mouseDragged(MouseEvent e) {
display.evnt[Display.MOUSE_MOVE] =
"MOUSE dragged";

showMouse(e);
}
public void mouseMoved(MouseEvent e) {
display.evnt[Display.MOUSE_MOVE] =
"MOUSE moved";

showMouse(e);
}
void showMouse(MouseEvent e) {
display.evnt[Display.MOUSE_MOVE] +=
", x = " + e.getX() +
", y = " + e.getY();

repaint();
}

}
}

class MyButton extends Button {
int clickCounter;
String label = "";
public MyButton() {

addActionListener(new AL());
}
public void paint(Graphics g) {

Chapter 13: Creating Windows & Applets 787

g.setColor(Color.green);
Dimension s = getSize();
g.fillRect(0, 0, s.width, s.height);
g.setColor(Color.black);
g.drawRect(0, 0, s.width - 1, s.height - 1);
drawLabel(g);

}
private void drawLabel(Graphics g) {

FontMetrics fm = g.getFontMetrics();
int width = fm.stringWidth(label);
int height = fm.getHeight();
int ascent = fm.getAscent();
int leading = fm.getLeading();
int horizMargin =
(getSize().width - width)/2;

int verMargin =
(getSize().height - height)/2;

g.setColor(Color.red);
g.drawString(label, horizMargin,
verMargin + ascent + leading);

}
class AL implements ActionListener {

public void actionPerformed(ActionEvent e) {
clickCounter++;
label = "click #" + clickCounter + " " + e;
repaint();

}
}

}

public class GoodTechnique extends Frame {
GoodTechnique() {

setLayout(new GridLayout(2,2));
add(new EnabledPanel(1, Color.cyan));
add(new EnabledPanel(2, Color.lightGray));
add(new EnabledPanel(3, Color.yellow));

}
public static void main(String[] args) {

Frame f = new GoodTechnique();
f.setTitle("Good Technique");
f.addWindowListener(
new WindowAdapter() {

788 Thinking in Java www.BruceEckel.com

public void windowClosing(WindowEvent e){
System.out.println(e);
System.out.println("Window Closing");
System.exit(0);

}
});

f.setSize(700,700);
f.setVisible(true);

}
} ///:~

This example also demonstrates the various events that occur and
displays the information about them. The class Display is a way to
centralize that information display. There’s an array of Strings to
hold information about each type of event, and the method show()
takes a handle to whatever Graphics object you have and writes
directly on that surface. The scheme is intended to be somewhat
reusable.

EnabledPanel represents the new type of component. It’s a
colored panel with a button at the bottom, and it captures all the
events that happen over it by using inner listener classes for every
single event except those in which EnabledPanel overrides
processEvent() in the old style (notice it must also call
super.processEvent()). The only reason for using this method is
that it captures every event that happens, so you can view
everything that goes on. processEvent() does nothing more than
show the string representation of each event, otherwise it would
have to use a cascade of if statements to figure out what event it
was. On the other hand, the inner listener classes already know
precisely what event occurred. (Assuming you register them to
components in which you don’t need any control logic, which
should be your goal.) Thus, they don’t have to check anything out;
they just do their stuff.

Each listener modifies the Display string associated with its
particular event and calls repaint() so the strings get displayed.
You can also see a trick that will usually eliminate flicker:

public void update(Graphics g) {
paint(g);

Chapter 13: Creating Windows & Applets 789

}

You don’t always need to override update(), but if you write
something that flickers, try it. The default version of update clears
the background and then calls paint() to redraw any graphics.
This clearing is usually what causes flicker but is not necessary since
paint() redraws the entire surface.

You can see that there are a lot of listeners – however, type checking
occurs for the listeners, and you can’t listen for something that the
component doesn’t support (unlike BadTechnique.java, which
you will see momentarily).

Experimenting with this program is quite educational since you
learn a lot about the way that events occur in Java. For one thing, it
shows a flaw in the design of most windowing systems: it’s pretty
hard to click and release the mouse without moving it, and the
windowing system will often think you’re dragging when you’re
actually just trying to click on something. A solution to this is to use
mousePressed() and mouseReleased() instead of
mouseClicked(), and then determine whether to call your own
“mouseReallyClicked()” method based on time and about 4 pixels
of mouse hysteresis.

Ugly component inheritance
The alternative, which you will see put forward in many published
works, is to call enableEvents() and pass it the masks
corresponding to the events you want to handle. This causes those
events to be sent to the old-style methods (although they’re new to
Java 1.1) with names like processFocusEvent(). You must also
remember to call the base-class version. Here’s what it looks like:

//: c13:BadTechnique.java
// It's possible to override components this way,
// but the listener approach is much better, so
// why would you?
import java.awt.*;
import java.awt.event.*;

class Display {

790 Thinking in Java www.BruceEckel.com

public static final int
EVENT = 0, COMPONENT = 1,
MOUSE = 2, MOUSE_MOVE = 3,
FOCUS = 4, KEY = 5, ACTION = 6,
LAST = 7;

public String[] evnt;
Display() {

evnt = new String[LAST];
for(int i = 0; i < LAST; i++)
evnt[i] = new String();

}
public void show(Graphics g) {

for(int i = 0; i < LAST; i++)
g.drawString(evnt[i], 0, 10 * i + 10);

}
}

class EnabledPanel extends Panel {
Color c;
int id;
Display display = new Display();
public EnabledPanel(int i, Color mc) {

id = i;
c = mc;
setLayout(new BorderLayout());
add(new MyButton(), BorderLayout.SOUTH);
// Type checking is lost. You can enable and
// process events that the component doesn't
// capture:
enableEvents(
// Panel doesn't handle these:
AWTEvent.ACTION_EVENT_MASK |
AWTEvent.ADJUSTMENT_EVENT_MASK |
AWTEvent.ITEM_EVENT_MASK |
AWTEvent.TEXT_EVENT_MASK |
AWTEvent.WINDOW_EVENT_MASK |
// Panel can handle these:
AWTEvent.COMPONENT_EVENT_MASK |
AWTEvent.FOCUS_EVENT_MASK |
AWTEvent.KEY_EVENT_MASK |
AWTEvent.MOUSE_EVENT_MASK |
AWTEvent.MOUSE_MOTION_EVENT_MASK |

Chapter 13: Creating Windows & Applets 791

AWTEvent.CONTAINER_EVENT_MASK);
// You can enable an event without
// overriding its process method.

}
// To eliminate flicker:
public void update(Graphics g) {

paint(g);
}
public void paint(Graphics g) {

g.setColor(c);
Dimension s = getSize();
g.fillRect(0, 0, s.width, s.height);
g.setColor(Color.black);
display.show(g);

}
public void processEvent(AWTEvent e) {

display.evnt[Display.EVENT]= e.toString();
repaint();
super.processEvent(e);

}
public void
processComponentEvent(ComponentEvent e) {

switch(e.getID()) {
case ComponentEvent.COMPONENT_MOVED:
display.evnt[Display.COMPONENT] =

"Component moved";
break;

case ComponentEvent.COMPONENT_RESIZED:
display.evnt[Display.COMPONENT] =

"Component resized";
break;

case ComponentEvent.COMPONENT_HIDDEN:
display.evnt[Display.COMPONENT] =

"Component hidden";
break;

case ComponentEvent.COMPONENT_SHOWN:
display.evnt[Display.COMPONENT] =

"Component shown";
break;

default:
}
repaint();

792 Thinking in Java www.BruceEckel.com

// Must always remember to call the "super"
// version of whatever you override:
super.processComponentEvent(e);

}
public void processFocusEvent(FocusEvent e) {

switch(e.getID()) {
case FocusEvent.FOCUS_GAINED:
display.evnt[Display.FOCUS] =

"FOCUS gained";
break;

case FocusEvent.FOCUS_LOST:
display.evnt[Display.FOCUS] =

"FOCUS lost";
break;

default:
}
repaint();
super.processFocusEvent(e);

}
public void processKeyEvent(KeyEvent e) {

switch(e.getID()) {
case KeyEvent.KEY_PRESSED:
display.evnt[Display.KEY] =

"KEY pressed: ";
break;

case KeyEvent.KEY_RELEASED:
display.evnt[Display.KEY] =

"KEY released: ";
break;

case KeyEvent.KEY_TYPED:
display.evnt[Display.KEY] =

"KEY typed: ";
break;

default:
}
int code = e.getKeyCode();
display.evnt[Display.KEY] +=
KeyEvent.getKeyText(code);

repaint();
super.processKeyEvent(e);

}
public void processMouseEvent(MouseEvent e) {

Chapter 13: Creating Windows & Applets 793

switch(e.getID()) {
case MouseEvent.MOUSE_CLICKED:
requestFocus(); // Get FOCUS on click
display.evnt[Display.MOUSE] =

"MOUSE clicked";
break;

case MouseEvent.MOUSE_PRESSED:
display.evnt[Display.MOUSE] =

"MOUSE pressed";
break;

case MouseEvent.MOUSE_RELEASED:
display.evnt[Display.MOUSE] =

"MOUSE released";
break;

case MouseEvent.MOUSE_ENTERED:
display.evnt[Display.MOUSE] =

"MOUSE entered";
break;

case MouseEvent.MOUSE_EXITED:
display.evnt[Display.MOUSE] =

"MOUSE exited";
break;

default:
}
display.evnt[Display.MOUSE] +=
", x = " + e.getX() +
", y = " + e.getY();

repaint();
super.processMouseEvent(e);

}
public void
processMouseMotionEvent(MouseEvent e) {

switch(e.getID()) {
case MouseEvent.MOUSE_DRAGGED:
display.evnt[Display.MOUSE_MOVE] =

"MOUSE dragged";
break;

case MouseEvent.MOUSE_MOVED:
display.evnt[Display.MOUSE_MOVE] =

"MOUSE moved";
break;

default:

794 Thinking in Java www.BruceEckel.com

}
display.evnt[Display.MOUSE_MOVE] +=
", x = " + e.getX() +
", y = " + e.getY();

repaint();
super.processMouseMotionEvent(e);

}
}

class MyButton extends Button {
int clickCounter;
String label = "";
public MyButton() {

enableEvents(AWTEvent.ACTION_EVENT_MASK);
}
public void paint(Graphics g) {

g.setColor(Color.green);
Dimension s = getSize();
g.fillRect(0, 0, s.width, s.height);
g.setColor(Color.black);
g.drawRect(0, 0, s.width - 1, s.height - 1);
drawLabel(g);

}
private void drawLabel(Graphics g) {

FontMetrics fm = g.getFontMetrics();
int width = fm.stringWidth(label);
int height = fm.getHeight();
int ascent = fm.getAscent();
int leading = fm.getLeading();
int horizMargin =
(getSize().width - width)/2;

int verMargin =
(getSize().height - height)/2;

g.setColor(Color.red);
g.drawString(label, horizMargin,

verMargin + ascent + leading);
}
public void processActionEvent(ActionEvent e) {

clickCounter++;
label = "click #" + clickCounter + " " + e;
repaint();
super.processActionEvent(e);

Chapter 13: Creating Windows & Applets 795

}
}

public class BadTechnique extends Frame {
BadTechnique() {

setLayout(new GridLayout(2,2));
add(new EnabledPanel(1, Color.cyan));
add(new EnabledPanel(2, Color.lightGray));
add(new EnabledPanel(3, Color.yellow));
// You can also do it for Windows:
enableEvents(AWTEvent.WINDOW_EVENT_MASK);

}
public void processWindowEvent(WindowEvent e) {

System.out.println(e);
if(e.getID() == WindowEvent.WINDOW_CLOSING) {
System.out.println("Window Closing");
System.exit(0);

}
}
public static void main(String[] args) {

Frame f = new BadTechnique();
f.setTitle("Bad Technique");
f.setSize(700,700);
f.setVisible(true);

}
} ///:~

Sure, it works. But it’s ugly and hard to write, read, debug,
maintain, and reuse. So why bother when you can use inner listener
classes?

JFC APIs
JFC includes important functionality, including focus traversal,
desktop color access, printing “inside the sandbox,” the beginnings
of clipboard support, and drag-and-drop.

Focus traversal is quite easy, since it’s transparently present in
Swing library components and you don’t have to do anything to
make it work. If you make your own components and want them to

796 Thinking in Java www.BruceEckel.com

handle focus traversal, you override isFocusTraversable() to
return true. If you want to capture the keyboard focus on a mouse
click, you catch the mouse down event and call requestFocus().

Desktop colors
The desktop colors provide a way for you to know what the various
color choices are on the current user’s desktop. This way, you can
use those colors in your program if you desire. The colors are
automatically initialized and placed in static members of class
SystemColor, so all you need to do is read the member you’re
interested in. The names are intentionally self-explanatory:
desktop, activeCaption, activeCaptionText,
activeCaptionBorder, inactiveCaption,
inactiveCaptionText, inactiveCaptionBorder, window,
windowBorder, windowText, menu, menuText, text,
textText, textHighlight, textHighlightText,
textInactiveText, control, controlText, controlHighlight,
controlLtHighlight, controlShadow, controlDkShadow,
scrollbar, info (for help), and infoText (for help text).

The clipboard
The JFC supports limited operations with the system clipboard (in
the java.awt.datatransfer package). You can copy String
objects to the clipboard as text, and you can paste text from the
clipboard into String objects. Of course, the clipboard is designed
to hold any type of data, but how this data is represented on the
clipboard is up to the program doing the cutting and pasting.
Although it currently supports only string data, the Java clipboard
API provides for extensibility through the concept of a “flavor.”
When data comes off the clipboard, it has an associated set of
flavors that it can be converted to (for example, a graph might be
represented as a string of numbers or as an image) and you can see
if that particular clipboard data supports the flavor you’re
interested in.

The following program is a simple demonstration of cut, copy, and
paste with String data in a TextArea. One thing you’ll notice is

Chapter 13: Creating Windows & Applets 797

that the keyboard sequences you normally use for cutting, copying,
and pasting also work. But if you look at any TextField or
TextArea in any other program you’ll find that they also
automatically support the clipboard key sequences. This example
simply adds programmatic control of the clipboard, and you could
use these techniques if you want to capture clipboard text into some
non-TextComponent.

//: c13:CutAndPaste.java
// Using the clipboard.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.datatransfer.*;
import com.bruceeckel.swing.*;

public class CutAndPaste extends JFrame {
JMenuBar mb = new JMenuBar();
JMenu edit = new JMenu("Edit");
JMenuItem

cut = new JMenuItem("Cut"),
copy = new JMenuItem("Copy"),
paste = new JMenuItem("Paste");

JTextArea text = new JTextArea(20, 20);
Clipboard clipbd =

getToolkit().getSystemClipboard();
public CutAndPaste() {

cut.addActionListener(new CutL());
copy.addActionListener(new CopyL());
paste.addActionListener(new PasteL());
edit.add(cut);
edit.add(copy);
edit.add(paste);
mb.add(edit);
setJMenuBar(mb);
getContentPane().add(text);

}
class CopyL implements ActionListener {

public void actionPerformed(ActionEvent e) {
String selection = text.getSelectedText();
if (selection == null)

798 Thinking in Java www.BruceEckel.com

return;
StringSelection clipString =
new StringSelection(selection);

clipbd.setContents(clipString,clipString);
}

}
class CutL implements ActionListener {

public void actionPerformed(ActionEvent e) {
String selection = text.getSelectedText();
if (selection == null)
return;

StringSelection clipString =
new StringSelection(selection);

clipbd.setContents(clipString, clipString);
text.replaceRange("",
text.getSelectionStart(),
text.getSelectionEnd());

}
}
class PasteL implements ActionListener {

public void actionPerformed(ActionEvent e) {
Transferable clipData =
clipbd.getContents(CutAndPaste.this);

try {
String clipString =

(String)clipData.
getTransferData(

DataFlavor.stringFlavor);
text.replaceRange(clipString,

text.getSelectionStart(),
text.getSelectionEnd());

} catch(Exception evt) {
System.out.println("not String flavor");

}
}

}
public static void main(String[] args) {

JFrame frame = new CutAndPaste();
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.setSize(300, 200);
frame.setVisible(true);

Chapter 13: Creating Windows & Applets 799

}
} ///:~

The creation and addition of the menu and TextArea should by
now seem a pedestrian activity. What’s different is the creation of
the Clipboard field clipbd, which is done through the Toolkit.

All the action takes place in the listeners. The CopyL and CutL
listeners are the same except for the last line of CutL, which erases
the line that’s been copied. The special two lines are the creation of
a StringSelection object from the String and the call to
setContents() with this StringSelection. That’s all there is to
putting a String on the clipboard.

In PasteL, data is pulled off the clipboard using getContents().
What comes back is a fairly anonymous Transferable object, and
you don’t really know what it contains. One way to find out is to call
getTransferDataFlavors(), which returns an array of
DataFlavor objects indicating which flavors are supported by this
particular object. You can also ask it directly with
isDataFlavorSupported(), passing in the flavor you’re
interested in. Here, however, the bold approach is taken:
getTransferData() is called assuming that the contents supports
the String flavor, and if it doesn’t the problem is sorted out in the
exception handler.

In the future you can expect more data flavors to be supported.

Visual programming
and Beans

So far in this book you’ve seen how valuable Java is for creating
reusable pieces of code. The “most reusable” unit of code has been
the class, since it comprises a cohesive unit of characteristics (fields)
and behaviors (methods) that can be reused either directly via
composition or through inheritance.

Inheritance and polymorphism are essential parts of object-
oriented programming, but in the majority of cases when you’re

800 Thinking in Java www.BruceEckel.com

putting together an application, what you really want is components
that do exactly what you need. You’d like to drop these parts into
your design like the electronic engineer puts together chips on a
circuit board (or even, in the case of Java, onto a Web page). It
seems, too, that there should be some way to accelerate this
“modular assembly” style of programming.

“Visual programming” first became successful – very successful –
with Microsoft’s Visual Basic (VB), followed by a second-generation
design in Borland’s Delphi (the primary inspiration for the Java
Beans design). With these programming tools the components are
represented visually, which makes sense since they usually display
some kind of visual component such as a button or a text field. The
visual representation, in fact, is often exactly the way the
component will look in the running program. So part of the process
of visual programming involves dragging a component from a
palette and dropping it onto your form. The application builder tool
writes code as you do this, and that code will cause the component
to be created in the running program.

Simply dropping the component onto a form is usually not enough
to complete the program. Often, you must change the
characteristics of a component, such as what color it is, what text is
on it, what database it’s connected to, etc. Characteristics that can
be modified at design time are referred to as properties. You can
manipulate the properties of your component inside the application
builder tool, and when you create the program this configuration
data is saved so that it can be rejuvenated when the program is
started.

By now you’re probably used to the idea that an object is more than
characteristics; it’s also a set of behaviors. At design-time, the
behaviors of a visual component are partially represented by events,
meaning “Here’s something that can happen to the component.”
Ordinarily, you decide what you want to happen when an event
occurs by tying code to that event.

Here’s the critical part: the application builder tool is able to
dynamically interrogate (using reflection) the component to find
out which properties and events the component supports. Once it

Chapter 13: Creating Windows & Applets 801

knows what they are, it can display the properties and allow you to
change those (saving the state when you build the program), and
also display the events. In general, you do something like double
clicking on an event and the application builder tool creates a code
body and ties it to that particular event. All you have to do at that
point is write the code that executes when the event occurs.

All this adds up to a lot of work that’s done for you by the
application builder tool. As a result you can focus on what the
program looks like and what it is supposed to do, and rely on the
application builder tool to manage the connection details for you.
The reason that visual programming tools have been so successful is
that they dramatically speed up the process of building an
application – certainly the user interface, but often other portions
of the application as well.

What is a Bean?
After the dust settles, then, a component is really just a block of
code, typically embodied in a class. The key issue is the ability for
the application builder tool to discover the properties and events for
that component. To create a VB component, the programmer had to
write a fairly complicated piece of code following certain
conventions to expose the properties and events. Delphi was a
second-generation visual programming tool and the language was
actively designed around visual programming so it is much easier to
create a visual component. However, Java has brought the creation
of visual components to its most advanced state with Java Beans,
because a Bean is just a class. You don’t have to write any extra code
or use special language extensions in order to make something a
Bean. The only thing you need to do, in fact, is slightly modify the
way that you name your methods. It is the method name that tells
the application builder tool whether this is a property, an event, or
just an ordinary method.

In the Java documentation, this naming convention is mistakenly
termed a “design pattern.” This is unfortunate since design patterns
(see Chapter 16) are challenging enough without this sort of
confusion. It’s not a design pattern, it’s just a naming convention
and it’s fairly simple:

802 Thinking in Java www.BruceEckel.com

1. For a property named xxx, you typically create two methods:
getXxx() and setXxx(). Note that the first letter after get
or set is automatically lowercased to produce the property
name. The type produced by the “get” method is the same as
the type of the argument to the “set” method. The name of
the property and the type for the “get” and “set” are not
related.

2. For a boolean property, you can use the “get” and “set”
approach above, but you can also use “is” instead of “get.”

3. Ordinary methods of the Bean don’t conform to the above
naming convention, but they’re public.

4. For events, you use the “listener” approach. It’s exactly the
same as you’ve been seeing:
addFooBarListener(FooBarListener) and
removeFooBarListener(FooBarListener) to handle a
FooBarEvent. Most of the time the built-in events and
listeners will satisfy your needs, but you can also create your
own events and listener interfaces.

Point 1 above answers a question about something you might have
noticed in the change from Java 1.0 to Java 1.1: a number of method
names have had small, apparently meaningless name changes. Now
you can see that most of those changes had to do with adapting to
the “get” and “set” naming conventions in order to make that
particular component into a Bean.

We can use these guidelines to create a simple Bean:

//: frogbean:Frog.java
// A trivial Java Bean.
package frogbean;
import java.awt.*;
import java.awt.event.*;

class Spots {}

public class Frog {
private int jumps;
private Color color;

Chapter 13: Creating Windows & Applets 803

private Spots spots;
private boolean jmpr;
public int getJumps() { return jumps; }
public void setJumps(int newJumps) {

jumps = newJumps;
}
public Color getColor() { return color; }
public void setColor(Color newColor) {

color = newColor;
}
public Spots getSpots() { return spots; }
public void setSpots(Spots newSpots) {

spots = newSpots;
}
public boolean isJumper() { return jmpr; }
public void setJumper(boolean j) { jmpr = j; }
public void addActionListener(

ActionListener l) {
//...

}
public void removeActionListener(

ActionListener l) {
// ...

}
public void addKeyListener(KeyListener l) {

// ...
}
public void removeKeyListener(KeyListener l) {

// ...
}
// An "ordinary" public method:
public void croak() {

System.out.println("Ribbet!");
}

} ///:~

First, you can see that it’s just a class. Usually, all your fields will be
private, and accessible only through methods. Following the
naming convention, the properties are jumps, color, spots, and
jumper (notice the change in case of the first letter in the property
name). Although the name of the internal identifier is the same as
the name of the property in the first three cases, in jumper you can

804 Thinking in Java www.BruceEckel.com

see that the property name does not force you to use any particular
name for internal variables (or, indeed, to even have any internal
variable for that property).

The events this Bean handles are ActionEvent and KeyEvent,
based on the naming of the “add” and “remove” methods for the
associated listener. Finally, you can see that the ordinary method
croak() is still part of the Bean simply because it’s a public
method, not because it conforms to any naming scheme.

Extracting BeanInfo
with the Introspector
One of the most critical parts of the Bean scheme occurs when you
drag a Bean off a palette and plop it down on a form. The
application builder tool must be able to create the Bean (which it
can do if there’s a default constructor) and then, without access to
the Bean’s source code, extract all the necessary information to
create the property sheet and event handlers.

Part of the solution is already evident from the end of Chapter 12:
Java 1.1 reflection allows all the methods of an anonymous class to
be discovered. This is perfect for solving the Bean problem without
requiring you to use any extra language keywords like those
required in other visual programming languages. In fact, one of the
prime reasons that reflection was added to Java 1.1 was to support
Beans (although reflection also supports object serialization and
remote method invocation). So you might expect that the creator of
the application builder tool would have to reflect each Bean and
hunt through its methods to find the properties and events for that
Bean.

This is certainly possible, but the Java designers wanted to provide
a standard interface for everyone to use, not only to make Beans
simpler to use but also to provide a standard gateway to the
creation of more complex Beans. This interface is the
Introspector class, and the most important method in this class is
the static getBeanInfo(). You pass a Class handle to this
method and it fully interrogates that class and returns a BeanInfo

Chapter 13: Creating Windows & Applets 805

object that you can then dissect to find properties, methods, and
events.

Usually you won’t care about any of this – you’ll probably get most
of your Beans off the shelf from vendors, and you don’t need to
know all the magic that’s going on underneath. You’ll simply drag
your Beans onto your form, then configure their properties and
write handlers for the events you’re interested in. However, it’s an
interesting and educational exercise to use the Introspector to
display information about a Bean, so here’s a tool that does it (you’ll
find it in the frogbean subdirectory):

//: c13:BeanDumper.java
// A method to introspect a Bean.
import java.beans.*;
import java.lang.reflect.*;

public class BeanDumper {
public static void dump(Class bean){

BeanInfo bi = null;
try {
bi = Introspector.getBeanInfo(
bean, java.lang.Object.class);

} catch(IntrospectionException ex) {
System.out.println("Couldn't introspect " +
bean.getName());

System.exit(1);
}
PropertyDescriptor[] properties =
bi.getPropertyDescriptors();

for(int i = 0; i < properties.length; i++) {
Class p = properties[i].getPropertyType();
System.out.println(
"Property type:\n " + p.getName());

System.out.println(
"Property name:\n " +
properties[i].getName());

Method readMethod =
properties[i].getReadMethod();

if(readMethod != null)
System.out.println(

806 Thinking in Java www.BruceEckel.com

"Read method:\n " + readMethod);
Method writeMethod =
properties[i].getWriteMethod();

if(writeMethod != null)
System.out.println(

"Write method:\n " + writeMethod);
System.out.println("====================");

}
System.out.println("Public methods:");
MethodDescriptor[] methods =
bi.getMethodDescriptors();

for(int i = 0; i < methods.length; i++)
System.out.println(methods[i].getMethod());

System.out.println("======================");
System.out.println("Event support:");
EventSetDescriptor[] events =
bi.getEventSetDescriptors();

for(int i = 0; i < events.length; i++) {
System.out.println("Listener type:\n " +
events[i].getListenerType().getName());

Method[] lm =
events[i].getListenerMethods();

for(int j = 0; j < lm.length; j++)
System.out.println(

"Listener method:\n " +
lm[j].getName());

MethodDescriptor[] lmd =
events[i].getListenerMethodDescriptors();

for(int j = 0; j < lmd.length; j++)
System.out.println(

"Method descriptor:\n " +
lmd[j].getMethod());

Method addListener =
events[i].getAddListenerMethod();

System.out.println(
"Add Listener Method:\n " +
addListener);

Method removeListener =
events[i].getRemoveListenerMethod();

System.out.println(
"Remove Listener Method:\n " +
removeListener);

Chapter 13: Creating Windows & Applets 807

System.out.println("====================");
}

}
// Dump the class of your choice:
public static void main(String[] args) {

if(args.length < 1) {
System.err.println("usage: \n" +
"BeanDumper fully.qualified.class");

System.exit(0);
}
Class c = null;
try {
c = Class.forName(args[0]);

} catch(ClassNotFoundException ex) {
System.err.println(
"Couldn't find " + args[0]);

System.exit(0);
}
dump(c);

}
} ///:~

BeanDumper.dump() is the method that does all the work. First
it tries to create a BeanInfo object, and if successful calls the
methods of BeanInfo that produce information about properties,
methods, and events. In Introspector.getBeanInfo(), you’ll see
there is a second argument. This tells the Introspector where to
stop in the inheritance hierarchy. Here, it stops before it parses all
the methods from Object, since we’re not interested in seeing
those.

For properties, getPropertyDescriptors() returns an array of
PropertyDescriptors. For each PropertyDescriptor you can
call getPropertyType() to find the class of object that is passed in
and out via the property methods. Then, for each property you can
get its pseudonym (extracted from the method names) with
getName(), the method for reading with getReadMethod(),
and the method for writing with getWriteMethod(). These last
two methods return a Method object that can actually be used to
invoke the corresponding method on the object (this is part of
reflection).

808 Thinking in Java www.BruceEckel.com

For the public methods (including the property methods),
getMethodDescriptors() returns an array of
MethodDescriptors. For each one you can get the associated
Method object and print out its name.

For the events, getEventSetDescriptors() returns an array of
(what else?) EventSetDescriptors. Each of these can be queried
to find out the class of the listener, the methods of that listener
class, and the add- and remove-listener methods. The
BeanDumper program prints out all of this information.

If you invoke BeanDumper on the Frog class like this:

java BeanDumper frogbean.Frog

the output, after removing extra details that are unnecessary here,
is:

class name: Frog
Property type:
Color

Property name:
color

Read method:
public Color getColor()

Write method:
public void setColor(Color)

====================
Property type:
Spots

Property name:
spots

Read method:
public Spots getSpots()

Write method:
public void setSpots(Spots)

====================
Property type:
boolean

Property name:
jumper

Read method:

Chapter 13: Creating Windows & Applets 809

public boolean isJumper()
Write method:
public void setJumper(boolean)

====================
Property type:
int

Property name:
jumps

Read method:
public int getJumps()

Write method:
public void setJumps(int)

====================
Public methods:
public void setJumps(int)
public void croak()
public void removeActionListener(ActionListener)
public void addActionListener(ActionListener)
public int getJumps()
public void setColor(Color)
public void setSpots(Spots)
public void setJumper(boolean)
public boolean isJumper()
public void addKeyListener(KeyListener)
public Color getColor()
public void removeKeyListener(KeyListener)
public Spots getSpots()
======================
Event support:
Listener type:
KeyListener

Listener method:
keyTyped

Listener method:
keyPressed

Listener method:
keyReleased

Method descriptor:
public void keyTyped(KeyEvent)

Method descriptor:
public void keyPressed(KeyEvent)

Method descriptor:

810 Thinking in Java www.BruceEckel.com

public void keyReleased(KeyEvent)
Add Listener Method:
public void addKeyListener(KeyListener)

Remove Listener Method:
public void removeKeyListener(KeyListener)

====================
Listener type:
ActionListener

Listener method:
actionPerformed

Method descriptor:
public void actionPerformed(ActionEvent)

Add Listener Method:
public void addActionListener(ActionListener)

Remove Listener Method:
public void removeActionListener(ActionListener)

====================

This reveals most of what the Introspector sees as it produces a
BeanInfo object from your Bean. You can see that the type of the
property and its name are independent. Notice the lowercasing of
the property name. (The only time this doesn’t occur is when the
property name begins with more than one capital letter in a row.)
And remember that the method names you’re seeing here (such as
the read and write methods) are actually produced from a Method
object that can be used to invoke the associated method on the
object.

The public method list includes the methods that are not
associated with a property or event, such as croak(), as well as
those that are. These are all the methods that you can call
programmatically for a Bean, and the application builder tool can
choose to list all of these while you’re making method calls, to ease
your task.

Finally, you can see that the events are fully parsed out into the
listener, its methods, and the add- and remove-listener methods.
Basically, once you have the BeanInfo, you can find out everything
of importance for the Bean. You can also call the methods for that
Bean, even though you don’t have any other information except the
object (again, a feature of reflection).

Chapter 13: Creating Windows & Applets 811

A more sophisticated Bean
This next example is slightly more sophisticated, albeit frivolous.
It’s a canvas that draws a little circle around the mouse whenever
the mouse is moved. When you press the mouse, the word “Bang!”
appears in the middle of the screen, and an action listener is fired.

The properties you can change are the size of the circle as well as the
color, size, and text of the word that is displayed when you press the
mouse. A BangBean also has its own addActionListener() and
removeActionListener() so you can attach your own listener
that will be fired when the user clicks on the BangBean. You
should be able to recognize the property and event support:

//: bangbean:BangBean.java
// A graphical Bean.
package bangbean;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import com.bruceeckel.swing.*;

public class BangBean extends JPanel
implements Serializable {

protected int xm, ym;
protected int cSize = 20; // Circle size
protected String text = "Bang!";
protected int fontSize = 48;
protected Color tColor = Color.red;
protected ActionListener actionListener;
public BangBean() {

addMouseListener(new ML());
addMouseMotionListener(new MML());

}
public int getCircleSize() { return cSize; }
public void setCircleSize(int newSize) {

cSize = newSize;
}
public String getBangText() { return text; }

812 Thinking in Java www.BruceEckel.com

public void setBangText(String newText) {
text = newText;

}
public int getFontSize() { return fontSize; }
public void setFontSize(int newSize) {

fontSize = newSize;
}
public Color getTextColor() { return tColor; }
public void setTextColor(Color newColor) {

tColor = newColor;
}
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.setColor(Color.black);
g.drawOval(xm - cSize/2, ym - cSize/2,
cSize, cSize);

}
// This is a unicast listener, which is
// the simplest form of listener management:
public void addActionListener (

ActionListener l)
throws TooManyListenersException {

if(actionListener != null)
throw new TooManyListenersException();

actionListener = l;
}
public void removeActionListener(

ActionListener l) {
actionListener = null;

}
class ML extends MouseAdapter {

public void mousePressed(MouseEvent e) {
Graphics g = getGraphics();
g.setColor(tColor);
g.setFont(
new Font(

"TimesRoman", Font.BOLD, fontSize));
int width =
g.getFontMetrics().stringWidth(text);

g.drawString(text,
(getSize().width - width) /2,
getSize().height/2);

Chapter 13: Creating Windows & Applets 813

g.dispose();
// Call the listener's method:
if(actionListener != null)
actionListener.actionPerformed(

new ActionEvent(BangBean.this,
ActionEvent.ACTION_PERFORMED, null));

}
}
class MML extends MouseMotionAdapter {

public void mouseMoved(MouseEvent e) {
xm = e.getX();
ym = e.getY();
repaint();

}
}
public Dimension getPreferredSize() {

return new Dimension(200, 200);
}
// Testing the BangBean:
public static void main(String[] args) {

BangBean bb = new BangBean();
try {
bb.addActionListener(new BBL());

} catch(TooManyListenersException e) {}
JFrame frame = new JFrame("BangBean Test");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(bb);
frame.setSize(300,300);
frame.setVisible(true);

}
// During testing, send action information
// to the console:
static class BBL implements ActionListener {

public void actionPerformed(ActionEvent e) {
System.out.println("BangBean action");

}
}

} ///:~

The first thing you’ll notice is that BangBean implements the
Serializable interface. This means that the application builder tool

814 Thinking in Java www.BruceEckel.com

can “pickle” all the information for the BangBean using
serialization after the program designer has adjusted the values of
the properties. When the Bean is created as part of the running
application, these “pickled” properties are restored so that you get
exactly what you designed.

You can see that all the fields are private, which is what you’ll
usually do with a Bean – allow access only through methods,
usually using the “property” scheme.

When you look at the signature for addActionListener(), you’ll
see that it can throw a TooManyListenersException. This
indicates that it is unicast, which means it notifies only one listener
when the event occurs. Ordinarily, you’ll use multicast events so
that many listeners can be notified of an event. However, that runs
into issues that you won’t be ready for until the next chapter, so it
will be revisited there (under the heading “Java Beans revisited”). A
unicast event sidesteps the problem.

When you press the mouse, the text is put in the middle of the
BangBean, and if the actionListener field is not null, its
actionPerformed() is called, creating a new ActionEvent
object in the process. Whenever the mouse is moved, its new
coordinates are captured and the canvas is repainted (erasing any
text that’s on the canvas, as you’ll see).

The main() is added to allow you to test the program from the
command line. When a Bean is in a development environment,
main() will not be used, but it’s helpful to have a main() in each
of your Beans because it provides for rapid testing. main() creates
a Frame and places a BangBean within it, attaching a simple
ActionListener to the BangBean to print to the console
whenever an ActionEvent occurs. Usually, of course, the
application builder tool would create most of the code that uses the
Bean.

When you run the BangBean through BeanDumper or put the
BangBean inside a Bean-enabled development environment,
you’ll notice that there are many more properties and actions than
are evident from the above code. That’s because BangBean is

Chapter 13: Creating Windows & Applets 815

inherited from Canvas, and Canvas is a Bean, so you’re seeing its
properties and events as well.

Packaging a Bean
Before you can bring a Bean into a Bean-enabled visual builder tool,
it must be put into the standard Bean container, which is a JAR
(Java ARchive) file that includes all the Bean classes as well as a
“manifest” file that says “This is a Bean.” A manifest file is simply a
text file that follows a particular form. For the BangBean, the
manifest file looks like this:

Manifest-Version: 1.0

Name: bangbean/BangBean.class
Java-Bean: True

The first line indicates the version of the manifest scheme, which
until further notice from Sun is 1.0. The second line (empty lines
are ignored) names the BangBean.class file, and the third says,
“It’s a Bean.” Without the third line, the program builder tool will
not recognize the class as a Bean.

The only tricky part is that you must make sure that you get the
proper path in the “Name:” field. If you look back at
BangBean.java, you’ll see it’s in package bangbean (and thus
in a subdirectory called “bangbean” that’s off of the classpath), and
the name in the manifest file must include this package
information. In addition, you must place the manifest file in the
directory above the root of your package path, which in this case
means placing the file in the directory above the “bangbean”
subdirectory. Then you must invoke jar from the same directory as
the manifest file, as follows:

jar cfm BangBean.jar BangBean.mf bangbean

This assumes that you want the resulting JAR file to be named
BangBean.jar and that you’ve put the manifest in a file called
BangBean.mf.

816 Thinking in Java www.BruceEckel.com

You might wonder “What about all the other classes that were
generated when I compiled BangBean.java?” Well, they all ended
up inside the bangbean subdirectory, and you’ll see that the last
argument for the above jar command line is the bangbean
subdirectory. When you give jar the name of a subdirectory, it
packages that entire subdirectory into the jar file (including, in this
case, the original BangBean.java source-code file – you might not
choose to include the source with your own Beans). In addition, if
you turn around and unpack the JAR file you’ve just created, you’ll
discover that your manifest file isn’t inside, but that jar has created
its own manifest file (based partly on yours) called
MANIFEST.MF and placed it inside the subdirectory META-INF
(for “meta-information”). If you open this manifest file you’ll also
notice that digital signature information has been added by jar for
each file, of the form:

Digest-Algorithms: SHA MD5
SHA-Digest: pDpEAG9NaeCx8aFtqPI4udSX/O0=
MD5-Digest: O4NcS1hE3Smnzlp2hj6qeg==

In general, you don’t need to worry about any of this, and if you
make changes you can just modify your original manifest file and
re-invoke jar to create a new JAR file for your Bean. You can also
add other Beans to the JAR file simply by adding their information
to your manifest.

One thing to notice is that you’ll probably want to put each Bean in
its own subdirectory, since when you create a JAR file you hand the
jar utility the name of a subdirectory and it puts everything in that
subdirectory into the JAR file. You can see that both Frog and
BangBean are in their own subdirectories.

Once you have your Bean properly inside a JAR file you can bring it
into a Beans-enabled program-builder environment. The way you
do this varies from one tool to the next, but Sun provides a freely-
available test bed for Java Beans in their “Beans Development Kit”
(BDK) called the “beanbox.” (Download the BDK from
www.javasoft.com.) To place your Bean in the beanbox, copy the
JAR file into the BDK’s “jars” subdirectory before you start up the
beanbox.

Chapter 13: Creating Windows & Applets 817

More complex Bean support
You can see how remarkably simple it is to make a Bean. But you
aren’t limited to what you’ve seen here. The Java Bean design
provides a simple point of entry but can also scale to more complex
situations. These situations are beyond the scope of this book but
they will be briefly introduced here. You can find more details at
http://java.sun.com/beans.

One place where you can add sophistication is with properties. The
examples above have shown only single properties, but it’s also
possible to represent multiple properties in an array. This is called
an indexed property. You simply provide the appropriate methods
(again following a naming convention for the method names) and
the Introspector recognizes an indexed property so your
application builder tool can respond appropriately.

Properties can be bound, which means that they will notify other
objects via a PropertyChangeEvent. The other objects can then
choose to change themselves based on the change to the Bean.

Properties can be constrained, which means that other objects can
veto a change to that property if it is unacceptable. The other
objects are notified using a PropertyChangeEvent, and they can
throw a PropertyVetoException to prevent the change from
happening and to restore the old values.

You can also change the way your Bean is represented at design
time:

1. You can provide a custom property sheet for your particular
Bean. The ordinary property sheet will be used for all other
Beans, but yours is automatically invoked when your Bean is
selected.

2. You can create a custom editor for a particular property, so
the ordinary property sheet is used, but when your special
property is being edited, your editor will automatically be
invoked.

818 Thinking in Java www.BruceEckel.com

3. You can provide a custom BeanInfo class for your Bean that
produces information that’s different from the default
created by the Introspector.

4. It’s also possible to turn “expert” mode on and off in all
FeatureDescriptors to distinguish between basic features
and more complicated ones.

More to Beans
There’s another issue that couldn’t be addressed here. Whenever
you create a Bean, you should expect that it will be run in a
multithreaded environment. This means that you must understand
the issues of threading, which will be introduced in the next
chapter. You’ll find a section there called “Java Beans revisited” that
will look at the problem and its solution.

Introduction to Swing8
After working your way through this chapter and seeing the huge
changes that have occurred within Swing (although, if you can
remember back that far, Sun claimed Java was a “stable” language
when it first appeared), you might still have the feeling that it’s not
quite done. Sure, there’s now a good event model, and JavaBeans is
an excellent component-reuse design. But the GUI components still
seem rather minimal, primitive, and awkward.

That’s where Swing comes in. The Swing library appeared after Java
1.1 so you might naturally assume that it’s part of Java 2. However,
it is designed to work with Java 1.1 as an add-on. This way, you
don’t have to wait for your platform to support Java 2 in order to
enjoy a good UI component library. Your users might actually need

8 At the time this section was written, the Swing library had been pronounced “frozen” by
Sun, so this code should compile and run without problems as long as you’ve downloaded
and installed the Swing library. (You should be able to compile one of Sun’s included
demonstration programs to test your installation.) If you do encounter difficulties, check
www.BruceEckel.com for updated code.

Chapter 13: Creating Windows & Applets 819

to download the Swing library if it isn’t part of their Java 1.1
support, and this could cause a few snags. But it works.

Swing contains all the components that you’ve been missing
throughout the rest of this chapter: those you expect to see in a
modern UI, everything from buttons that contain pictures to trees
and grids. It’s a big library, but it’s designed to have appropriate
complexity for the task at hand – if something is simple, you don’t
have to write much code but as you try to do more your code
becomes increasingly complex. This means an easy entry point, but
you’ve got the power if you need it.

Swing has great depth. This section does not attempt to be
comprehensive, but instead introduces the power and simplicity of
Swing to get you started using the library. Please be aware that what
you see here is intended to be simple. If you need to do more, then
Swing can probably give you what you want if you’re willing to do
the research by hunting through the online documentation from
Sun.

Benefits of Swing
When you begin to use the Swing library, you’ll see that it’s a huge
step forward. Swing components are Beans (and thus use the Java
1.1 event model), so they can be used in any development
environment that supports Beans. Swing provides a full set of UI
components. For speed, all the components are lightweight (no
“peer” components are used), and Swing is written entirely in Java
for portability.

Much of what you’ll like about Swing could be called “orthogonality
of use;” that is, once you pick up the general ideas about the library
you can apply them everywhere. Primarily because of the Beans
naming conventions, much of the time I was writing these examples
I could guess at the method names and get it right the first time,
without looking anything up. This is certainly the hallmark of a
good library design. In addition, you can generally plug components
into other components and things will work correctly.

820 Thinking in Java www.BruceEckel.com

Keyboard navigation is automatic – you can use a Swing application
without the mouse, but you don’t have to do any extra
programming (the old AWT required some ugly code to achieve
keyboard navigation). Scrolling support is effortless – you simply
wrap your component in a JScrollPane as you add it to your form.
Other features such as tool tips typically require a single line of code
to implement.

Swing also supports something called “pluggable look and feel,”
which means that the appearance of the UI can be dynamically
changed to suit the expectations of users working under different
platforms and operating systems. It’s even possible to invent your
own look and feel.

Easy conversion
If you’ve struggled long and hard to build your UI using Java 1.1,
you don’t want to throw it away to convert to Swing. Fortunately,
the library is designed to allow easy conversion – in many cases you
can simply put a ‘J’ in front of the class names of each of your old
AWT components. Here’s an example that should have a familiar
flavor to it:

//: c13:ButtonDemo.java
// Looks like Java 1.1 but with J's added.
// <applet code=ButtonDemo width=250 height=75>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import com.bruceeckel.swing.*;

public class ButtonDemo extends JApplet {
JButton

b1 = new JButton("JButton 1"),
b2 = new JButton("JButton 2");

JTextField t = new JTextField(20);
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());

Chapter 13: Creating Windows & Applets 821

ActionListener al = new ActionListener() {
public void actionPerformed(ActionEvent e){
String name =

((JButton)e.getSource()).getText();
t.setText(name + " Pressed");

}
};
b1.addActionListener(al);
cp.add(b1);
b2.addActionListener(al);
cp.add(b2);
cp.add(t);

}
public static void main(String args[]) {

JApplet applet = new ButtonDemo();
JFrame frame = new JFrame("TextAreaNew");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300,100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

There’s a new import statement, but everything else looks like the
Java 1.1 AWT with the addition of some J’s. Also, you don’t just
add() something to a Swing JFrame, but you must get the
“content pane” first, as seen above. But you can easily get many of
the benefits of Swing with a simple conversion.

Because of the package statement, you’ll have to invoke this
program by saying:

java c13.swing.JbuttonDemo

All of the programs in this section will require a similar form to run
them.

822 Thinking in Java www.BruceEckel.com

A display framework
Although the programs that are both applets and applications can
be valuable, if used everywhere they become distracting and waste
paper. Instead, a display framework will be used for the Swing
examples in the rest of this section:

//: c13:Show.java
// Tool for displaying Swing demos.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class Show {
public static void
inFrame(JPanel jp, int width, int height) {

String title = jp.getClass().toString();
// Remove the word "class":
if(title.indexOf("class") != -1)
title = title.substring(6);

JFrame frame = new JFrame(title);
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(
jp, BorderLayout.CENTER);

frame.setSize(width, height);
frame.setVisible(true);

}
} ///:~

Classes that want to display themselves should inherit from JPanel
and then add any visual components to themselves. Finally, they
create a main() containing the line:

Show.inFrame(new MyClass(), 500, 300);

in which the last two arguments are the display width and height.

Note that the title for the JFrame is produced using RTTI.

Chapter 13: Creating Windows & Applets 823

Tool tips
Almost all of the classes that you’ll be using to create your user
interfaces are derived from JComponent, which contains a
method called setToolTipText(String). So, for virtually anything
you place on your form, all you need to do is say (for an object jc of
any JComponent-derived class):

jc.setToolTipText("My tip");

and when the mouse stays over that JComponent for a
predetermined period of time, a tiny box containing your text will
pop up next to the mouse.

Borders
JComponent also contains a method called setBorder(), which
allows you to place various interesting borders on any visible
component. The following example demonstrates a number of the
different borders that are available, using a method called
showBorder() that creates a JPanel and puts on the border in
each case. Also, it uses RTTI to find the name of the border that
you’re using (stripping off all the path information), then puts that
name in a JLabel in the middle of the panel:

//: c13:Borders.java
// Different Swing borders.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;

public class Borders extends JPanel {
static JPanel showBorder(Border b) {

JPanel jp = new JPanel();
jp.setLayout(new BorderLayout());
String nm = b.getClass().toString();
nm = nm.substring(nm.lastIndexOf('.') + 1);
jp.add(new JLabel(nm, JLabel.CENTER),
BorderLayout.CENTER);

jp.setBorder(b);

824 Thinking in Java www.BruceEckel.com

return jp;
}
public Borders() {

setLayout(new GridLayout(2,4));
add(showBorder(new TitledBorder("Title")));
add(showBorder(new EtchedBorder()));
add(showBorder(new LineBorder(Color.blue)));
add(showBorder(
new MatteBorder(5,5,30,30,Color.green)));

add(showBorder(
new BevelBorder(BevelBorder.RAISED)));

add(showBorder(
new SoftBevelBorder(BevelBorder.LOWERED)));

add(showBorder(new CompoundBorder(
new EtchedBorder(),
new LineBorder(Color.red))));

}
public static void main(String args[]) {

Show.inFrame(new Borders(), 500, 300);
}

} ///:~

Most of the examples in this section use TitledBorder, but you
can see that the rest of the borders are as easy to use. You can also
create your own borders and put them inside buttons, labels, etc. –
anything derived from JComponent.

Buttons
Swing adds a number of different types of buttons, and it also
changes the organization of the selection components: all buttons,
checkboxes, radio buttons, and even menu items are inherited from
AbstractButton (which, since menu items are included, would
probably have been better named “AbstractChooser” or something
equally general). You’ll see the use of menu items shortly, but the
following example shows the various types of buttons available:

//: c13:Buttons.java
// Various Swing buttons.
import javax.swing.*;
import java.awt.*;

Chapter 13: Creating Windows & Applets 825

import java.awt.event.*;
import javax.swing.plaf.basic.*;
import javax.swing.border.*;

public class Buttons extends JPanel {
JButton jb = new JButton("JButton");
BasicArrowButton

up = new BasicArrowButton(
BasicArrowButton.NORTH),

down = new BasicArrowButton(
BasicArrowButton.SOUTH),

right = new BasicArrowButton(
BasicArrowButton.EAST),

left = new BasicArrowButton(
BasicArrowButton.WEST);

public Buttons() {
add(jb);
add(new JToggleButton("JToggleButton"));
add(new JCheckBox("JCheckBox"));
add(new JRadioButton("JRadioButton"));
JPanel jp = new JPanel();
jp.setBorder(new TitledBorder("Directions"));
jp.add(up);
jp.add(down);
jp.add(left);
jp.add(right);
add(jp);

}
public static void main(String args[]) {

Show.inFrame(new Buttons(), 300, 200);
}

} ///:~

The JButton looks like the AWT button, but there’s more you can
do to it (like add images, as you’ll see later). In
javax.swing.plaf.basic, there is also a BasicArrowButton that
is convenient.

When you run the example, you’ll see that the toggle button holds
its last position, in or out. But the check boxes and radio buttons
behave identically to each other, just clicking on or off (they are
inherited from JToggleButton).

826 Thinking in Java www.BruceEckel.com

Button groups
If you want radio buttons to behave in an “exclusive or” fashion, you
must add them to a button group, in a similar but less awkward way
as the old AWT. But as the example below demonstrates, any
AbstractButton can be added to a ButtonGroup.

To avoid repeating a lot of code, this example uses reflection to
generate the groups of different types of buttons. This is seen in
makeBPanel, which creates a button group and a JPanel, and for
each String in the array that’s the second argument to
makeBPanel(), it adds an object of the class represented by the
first argument:

//: c13:ButtonGroups.java
// Uses reflection to create groups of different
// types of AbstractButton.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.lang.reflect.*;

public class ButtonGroups extends JPanel {
static String[] ids = {

"June", "Ward", "Beaver",
"Wally", "Eddie", "Lumpy",

};
static JPanel
makeBPanel(Class bClass, String[] ids) {

ButtonGroup bg = new ButtonGroup();
JPanel jp = new JPanel();
String title = bClass.getName();
title = title.substring(
title.lastIndexOf('.') + 1);

jp.setBorder(new TitledBorder(title));
for(int i = 0; i < ids.length; i++) {
AbstractButton ab = new JButton("failed");
try {
// Get the dynamic constructor method
// that takes a String argument:

Chapter 13: Creating Windows & Applets 827

Constructor ctor = bClass.getConstructor(
new Class[] { String.class });

// Create a new object:
ab = (AbstractButton)ctor.newInstance(

new Object[]{ids[i]});
} catch(Exception ex) {
System.out.println("can't create " +

bClass);
}
bg.add(ab);
jp.add(ab);

}
return jp;

}
public ButtonGroups() {

add(makeBPanel(JButton.class, ids));
add(makeBPanel(JToggleButton.class, ids));
add(makeBPanel(JCheckBox.class, ids));
add(makeBPanel(JRadioButton.class, ids));

}
public static void main(String args[]) {

Show.inFrame(new ButtonGroups(), 500, 300);
}

} ///:~

The title for the border is taken from the name of the class,
stripping off all the path information. The AbstractButton is
initialized to a JButton that has the label “Failed” so if you ignore
the exception message, you’ll still see the problem on screen. The
getConstructor() method produces a Constructor object that
takes the array of arguments of the types in the Class array passed
to getConstructor(). Then all you do is call newInstance(),
passing it an array of Object containing your actual arguments – in
this case, just the String from the ids array.

This adds a little complexity to what is a simple process. To get
“exclusive or” behavior with buttons, you create a button group and
add each button for which you want that behavior to the group.
When you run the program, you’ll see that all the buttons except
JButton exhibit this “exclusive or” behavior.

828 Thinking in Java www.BruceEckel.com

Icons
You can use an Icon inside a JLabel or anything that inherits from
AbstractButton (including JButton, JCheckbox,
JradioButton, and the different kinds of JMenuItem). Using
Icons with JLabels is quite straightforward (you’ll see an example
later). The following example explores all the additional ways you
can use Icons with buttons and their descendants.

You can use any gif files you want, but the ones used in this
example are part of the book’s code distribution, available at
www.BruceEckel.com. To open a file and bring in the image, simply
create an ImageIcon and hand it the file name. From then on, you
can use the resulting Icon in your program.

//: c13:Faces.java
// Icon behavior in Jbuttons.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Faces extends JPanel {
// The following path information is necessary
// to run via an applet directly from the disk:
static String path = "/tijcode/c13/";
static Icon[] faces = {

new ImageIcon(path + "face0.gif"),
new ImageIcon(path + "face1.gif"),
new ImageIcon(path + "face2.gif"),
new ImageIcon(path + "face3.gif"),
new ImageIcon(path + "face4.gif"),

};
JButton

jb = new JButton("JButton", faces[3]),
jb2 = new JButton("Disable");

boolean mad = false;
public Faces() {

jb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
if(mad) {

jb.setIcon(faces[3]);

Chapter 13: Creating Windows & Applets 829

mad = false;
} else {

jb.setIcon(faces[0]);
mad = true;

}
jb.setVerticalAlignment(JButton.TOP);
jb.setHorizontalAlignment(JButton.LEFT);

}
});
jb.setRolloverEnabled(true);
jb.setRolloverIcon(faces[1]);
jb.setPressedIcon(faces[2]);
jb.setDisabledIcon(faces[4]);
jb.setToolTipText("Yow!");
add(jb);
jb2.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
if(jb.isEnabled()) {

jb.setEnabled(false);
jb2.setText("Enable");

} else {
jb.setEnabled(true);
jb2.setText("Disable");

}
}

});
add(jb2);

}
public static void main(String args[]) {

Show.inFrame(new Faces(), 300, 200);
}

} ///:~

An Icon can be used in many constructors, but you can also use
setIcon() to add or change an Icon. This example also shows how
a JButton (or any AbstractButton) can set the various different
sorts of icons that appear when things happen to that button: when
it’s pressed, disabled, or “rolled over” (the mouse moves over it
without clicking). You’ll see that this gives the button a rather
animated feel.

Note that a tool tip is also added to the button.

830 Thinking in Java www.BruceEckel.com

Menus
Menus are much improved and more flexible in Swing – for
example, you can use them just about anywhere, including panels
and applets. The syntax for using them is much the same as it was
in the old AWT, and this preserves the same problem present in the
old AWT: you must hard-code your menus and there isn’t any
support for menus as resources (which, among other things, would
make them easier to change for other languages). In addition, menu
code gets long-winded and sometimes messy. The following
approach takes a step in the direction of solving this problem by
putting all the information about each menu into a two-dimensional
array of Object (that way you can put anything you want into the
array). This array is organized so that the first row represents the
menu name, and the remaining rows represent the menu items and
their characteristics. You’ll notice the rows of the array do not have
to be uniform from one to the next – as long as your code knows
where everything should be, each row can be completely different.

//: c13:Menus.java
// A menu-building system; also demonstrates
// icons in labels and menu items.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Menus extends JPanel {
static final Boolean

bT = new Boolean(true),
bF = new Boolean(false);

// Dummy class to create type identifiers:
static class MType { MType(int i) {} };
static final MType

mi = new MType(1), // Normal menu item
cb = new MType(2), // Checkbox menu item
rb = new MType(3); // Radio button menu item

JTextField t = new JTextField(10);
JLabel l = new JLabel("Icon Selected",

Faces.faces[0], JLabel.CENTER);
ActionListener a1 = new ActionListener() {

public void actionPerformed(ActionEvent e) {

Chapter 13: Creating Windows & Applets 831

t.setText(
((JMenuItem)e.getSource()).getText());

}
};
ActionListener a2 = new ActionListener() {

public void actionPerformed(ActionEvent e) {
JMenuItem mi = (JMenuItem)e.getSource();
l.setText(mi.getText());
l.setIcon(mi.getIcon());

}
};
// Store menu data as "resources":
public Object[][] fileMenu = {

// Menu name and accelerator:
{ "File", new Character('F') },
// Name type accel listener enabled
{ "New", mi, new Character('N'), a1, bT },
{ "Open", mi, new Character('O'), a1, bT },
{ "Save", mi, new Character('S'), a1, bF },
{ "Save As", mi, new Character('A'), a1, bF},
{ null }, // Separator
{ "Exit", mi, new Character('x'), a1, bT },

};
public Object[][] editMenu = {

// Menu name:
{ "Edit", new Character('E') },
// Name type accel listener enabled
{ "Cut", mi, new Character('t'), a1, bT },
{ "Copy", mi, new Character('C'), a1, bT },
{ "Paste", mi, new Character('P'), a1, bT },
{ null }, // Separator
{ "Select All", mi,new Character('l'),a1,bT},

};
public Object[][] helpMenu = {

// Menu name:
{ "Help", new Character('H') },
// Name type accel listener enabled
{ "Index", mi, new Character('I'), a1, bT },
{ "Using help", mi,new Character('U'),a1,bT},
{ null }, // Separator
{ "About", mi, new Character('t'), a1, bT },

};

832 Thinking in Java www.BruceEckel.com

public Object[][] optionMenu = {
// Menu name:
{ "Options", new Character('O') },
// Name type accel listener enabled
{ "Option 1", cb, new Character('1'), a1,bT},
{ "Option 2", cb, new Character('2'), a1,bT},

};
public Object[][] faceMenu = {

// Menu name:
{ "Faces", new Character('a') },
// Optinal last element is icon
{ "Face 0", rb, new Character('0'), a2, bT,
Faces.faces[0] },

{ "Face 1", rb, new Character('1'), a2, bT,
Faces.faces[1] },

{ "Face 2", rb, new Character('2'), a2, bT,
Faces.faces[2] },

{ "Face 3", rb, new Character('3'), a2, bT,
Faces.faces[3] },

{ "Face 4", rb, new Character('4'), a2, bT,
Faces.faces[4] },

};
public Object[] menuBar = {

fileMenu, editMenu, faceMenu,
optionMenu, helpMenu,

};
static public JMenuBar
createMenuBar(Object[] menuBarData) {

JMenuBar menuBar = new JMenuBar();
for(int i = 0; i < menuBarData.length; i++)
menuBar.add(
createMenu((Object[][])menuBarData[i]));

return menuBar;
}
static ButtonGroup bgroup;
static public JMenu
createMenu(Object[][] menuData) {

JMenu menu = new JMenu();
menu.setText((String)menuData[0][0]);
menu.setMnemonic(
((Character)menuData[0][1]).charValue());

// Create redundantly, in case there are

Chapter 13: Creating Windows & Applets 833

// any radio buttons:
bgroup = new ButtonGroup();
for(int i = 1; i < menuData.length; i++) {
if(menuData[i][0] == null)
menu.add(new JSeparator());

else
menu.add(createMenuItem(menuData[i]));

}
return menu;

}
static public JMenuItem
createMenuItem(Object[] data) {

JMenuItem m = null;
MType type = (MType)data[1];
if(type == mi)
m = new JMenuItem();

else if(type == cb)
m = new JCheckBoxMenuItem();

else if(type == rb) {
m = new JRadioButtonMenuItem();
bgroup.add(m);

}
m.setText((String)data[0]);
m.setMnemonic(
((Character)data[2]).charValue());

m.addActionListener(
(ActionListener)data[3]);

m.setEnabled(
((Boolean)data[4]).booleanValue());

if(data.length == 6)
m.setIcon((Icon)data[5]);

return m;
}
Menus() {

setLayout(new BorderLayout());
add(createMenuBar(menuBar),
BorderLayout.NORTH);

JPanel p = new JPanel();
p.setLayout(new BorderLayout());
p.add(t, BorderLayout.NORTH);
p.add(l, BorderLayout.CENTER);
add(p, BorderLayout.CENTER);

834 Thinking in Java www.BruceEckel.com

}
public static void main(String args[]) {

Show.inFrame(new Menus(), 300, 200);
}

} ///:~

The goal is to allow the programmer to simply create tables to
represent each menu, rather than typing lines of code to build the
menus. Each table produces one menu, and the first row in the table
contains the menu name and its keyboard accelerator. The
remaining rows contain the data for each menu item: the string to
be placed on the menu item, what type of menu item it is, its
keyboard accelerator, the actionlistener that is fired when this menu
item is selected, and whether this menu item is enabled. If a row
starts with null it is treated as a separator.

To prevent wasteful and tedious multiple creations of Boolean
objects and type flags, these are created as static final values at the
beginning of the class: bT and bF to represent Booleans and
different objects of the dummy class MType to describe normal
menu items (mi), checkbox menu items (cb), and radio button
menu items (rb). Remember that an array of Object may hold only
Object handles and not primitive values.

This example also shows how JLabels and JMenuItems (and
their descendants) may hold Icons. An Icon is placed into the
JLabel via its constructor and changed when the corresponding
menu item is selected.

The menuBar array contains the handles to all the file menus in
the order that you want them to appear on the menu bar. You pass
this array to createMenuBar(), which breaks it up into
individual arrays of menu data, passing each to createMenu().
This method, in turn, takes the first line of the menu data and
creates a JMenu from it, then calls createMenuItem() for each
of the remaining lines of menu data. Finally, createMenuItem()
parses each line of menu data and determines the type of menu and
its attributes, and creates that menu item appropriately. In the end,
as you can see in the Menus() constructor, to create a menu from
these tables say createMenuBar(menuBar) and everything is
handled recursively.

Chapter 13: Creating Windows & Applets 835

This example does not take care of building cascading menus, but
you should have enough of the concept that you can add that
capability if you need it.

Popup menus
The most straightforward way to implement a JPopupMenu is to
create an inner class that extends MouseAdapter, then add an
object of that inner class to each component which should produce
popup behavior:

//: c13:Popup.java
// Creating popup menus with Swing.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Popup extends JPanel {
JPopupMenu popup = new JPopupMenu();
JTextField t = new JTextField(10);
public Popup() {

add(t);
ActionListener al = new ActionListener() {
public void actionPerformed(ActionEvent e){
t.setText(

((JMenuItem)e.getSource()).getText());
}

};
JMenuItem m = new JMenuItem("Hither");
m.addActionListener(al);
popup.add(m);
m = new JMenuItem("Yon");
m.addActionListener(al);
popup.add(m);
m = new JMenuItem("Afar");
m.addActionListener(al);
popup.add(m);
popup.addSeparator();
m = new JMenuItem("Stay Here");
m.addActionListener(al);
popup.add(m);

836 Thinking in Java www.BruceEckel.com

PopupListener pl = new PopupListener();
addMouseListener(pl);
t.addMouseListener(pl);

}
class PopupListener extends MouseAdapter {

public void mousePressed(MouseEvent e) {
maybeShowPopup(e);

}
public void mouseReleased(MouseEvent e) {
maybeShowPopup(e);

}
private void maybeShowPopup(MouseEvent e) {
if(e.isPopupTrigger()) {
popup.show(

e.getComponent(), e.getX(), e.getY());
}

}
}
public static void main(String args[]) {

Show.inFrame(new Popup(),200,150);
}

} ///:~

The same ActionListener is added to each JMenuItem, so that
it fetches the text from the menu label and inserts it into the
JTextField.

List boxes and combo boxes
List boxes and combo boxes in Swing work much as they do in the
old AWT, but they also have increased functionality if you need it.
In addition, some conveniences have been added. For example, the
JList has a constructor that takes an array of Strings to display
(oddly enough this same feature is not available in JComboBox).
Here’s a simple example that shows the basic use of each:

//: c13:ListCombo.java
// List boxes & Combo boxes.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

Chapter 13: Creating Windows & Applets 837

public class ListCombo extends JPanel {
public ListCombo() {

setLayout(new GridLayout(2,1));
JList list = new JList(ButtonGroups.ids);
add(new JScrollPane(list));
JComboBox combo = new JComboBox();
for(int i = 0; i < 100; i++)
combo.addItem(Integer.toString(i));

add(combo);
}
public static void main(String args[]) {

Show.inFrame(new ListCombo(),200,200);
}

} ///:~

Something else that seems a bit odd at first is that JLists do not
automatically provide scrolling, even though that’s something you
always expect. Adding support for scrolling turns out to be quite
easy, as shown above – you simply wrap the JList in a
JScrollPane and all the details are automatically managed for you.

Sliders and progress bars
A slider allows the user to input data by moving a point back and
forth, which is intuitive in some situations (volume controls, for
example). A progress bar displays data in a relative fashion from
“full” to “empty” so the user gets a perspective. My favorite example
for these is to simply hook the slider to the progress bar so when
you move the slider the progress bar changes accordingly:

//: c13:Progress.java
// Using progress bars and sliders.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.event.*;
import javax.swing.border.*;

public class Progress extends JPanel {
JProgressBar pb = new JProgressBar();

838 Thinking in Java www.BruceEckel.com

JSlider sb =
new JSlider(JSlider.HORIZONTAL, 0, 100, 60);

public Progress() {
setLayout(new GridLayout(2,1));
add(pb);
sb.setValue(0);
sb.setPaintTicks(true);
sb.setMajorTickSpacing(20);
sb.setMinorTickSpacing(5);
sb.setBorder(new TitledBorder("Slide Me"));
pb.setModel(sb.getModel()); // Share model
add(sb);

}
public static void main(String args[]) {

Show.inFrame(new Progress(),200,150);
}

} ///:~

The JProgressBar is fairly straightforward, but the JSlider has a
lot of options, such as the orientation and major and minor tick
marks. Notice how straightforward it is to add a titled border.

Trees
Using a JTree can be as simple as saying:

add(new JTree(
new Object[] {"this", "that", "other"}));

This displays a primitive tree. The API for trees is vast, however –
certainly one of the largest in Swing. It appears that you can do just
about anything with trees, but more sophisticated tasks might
require quite a bit of research and experimentation.

Fortunately, there is a middle ground provided in the library: the
“default” tree components, which generally do what you need. So
most of the time you can use these components, and only in special
cases will you need to delve in and understand trees more deeply.

The following example uses the “default” tree components to
display a tree in an applet. When you press the button, a new

Chapter 13: Creating Windows & Applets 839

subtree is added under the currently-selected node (if no node is
selected, the root node is used):

//: c13:Trees.java
// Simple Swing tree example. Trees can be made
// vastly more complex than this.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.tree.*;

// Takes an array of Strings and makes the first
// element a node and the rest leaves:
class Branch {
DefaultMutableTreeNode r;
public Branch(String[] data) {

r = new DefaultMutableTreeNode(data[0]);
for(int i = 1; i < data.length; i++)
r.add(new DefaultMutableTreeNode(data[i]));

}
public DefaultMutableTreeNode node() {

return r;
}

}

public class Trees extends JPanel {
String[][] data = {

{ "Colors", "Red", "Blue", "Green" },
{ "Flavors", "Tart", "Sweet", "Bland" },
{ "Length", "Short", "Medium", "Long" },
{ "Volume", "High", "Medium", "Low" },
{ "Temperature", "High", "Medium", "Low" },
{ "Intensity", "High", "Medium", "Low" },

};
static int i = 0;
DefaultMutableTreeNode root, child, chosen;
JTree tree;
DefaultTreeModel model;
public Trees() {

setLayout(new BorderLayout());
root = new DefaultMutableTreeNode("root");
tree = new JTree(root);

840 Thinking in Java www.BruceEckel.com

// Add it and make it take care of scrolling:
add(new JScrollPane(tree),
BorderLayout.CENTER);

// Capture the tree's model:
model =(DefaultTreeModel)tree.getModel();
JButton test = new JButton("Press me");
test.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
if(i < data.length) {

child = new Branch(data[i++]).node();
// What's the last one you clicked?
chosen = (DefaultMutableTreeNode)
tree.getLastSelectedPathComponent();

if(chosen == null) chosen = root;
// The model will create the
// appropriate event. In response, the
// tree will update itself:
model.insertNodeInto(child, chosen, 0);
// This puts the new node on the
// currently chosen node.

}
}

});
// Change the button's colors:
test.setBackground(Color.blue);
test.setForeground(Color.white);
JPanel p = new JPanel();
p.add(test);
add(p, BorderLayout.SOUTH);

}
public static void main(String args[]) {

Show.inFrame(new Trees(),200,500);
}

} ///:~

The first class, Branch, is a tool to take an array of String and
build a DefaultMutableTreeNode with the first String as the
root and the rest of the Strings in the array as leaves. Then
node() can be called to produce the root of this “branch.”

The Trees class contains a two-dimensional array of Strings from
which Branches can be made and a static int i to count through

Chapter 13: Creating Windows & Applets 841

this array. The DefaultMutableTreeNode objects hold the
nodes, but the physical representation on screen is controlled by the
JTree and its associated model, the DefaultTreeModel. Note
that when the JTree is added to the applet, it is wrapped in a
JScrollPane – this is all it takes to provide automatic scrolling.

The JTree is controlled through its model. When you make a
change to the model, the model generates an event that causes the
JTree to perform any necessary updates to the visible
representation of the tree. In init(), the model is captured by
calling getModel(). When the button is pressed, a new “branch” is
created. Then the currently selected component is found (or the
root if nothing is selected) and the model’s insertNodeInto()
method does all the work of changing the tree and causing it to be
updated.

Most of the time an example like the one above will give you what
you need in a tree. However, trees have the power to do just about
anything you can imagine – everywhere you see the word “default”
in the example above, you can substitute your own class to get
different behavior. But beware: almost all of these classes have a
large interface, so you could spend a lot of time struggling to
understand the intricacies of trees.

Tables
Like trees, tables in Swing are vast and powerful. They are primarily
intended to be the popular “grid” interface to databases via Java
Database Connectivity (JDBC, discussed in Chapter 15) and thus
they have a tremendous amount of flexibility, which you pay for in
complexity. There’s easily enough here to be the basis of a full-
blown spreadsheet and could probably justify an entire book.
However, it is also possible to create a relatively simple JTable if
you understand the basics.

The JTable controls how the data is displayed, but the
TableModel controls the data itself. So to create a JTable you’ll
typically create a TableModel first. You can fully implement the
TableModel interface, but it’s usually simpler to inherit from the
helper class AbstractTableModel:

842 Thinking in Java www.BruceEckel.com

//: c13:Table.java
// Simple demonstration of Jtable.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.table.*;
import javax.swing.event.*;

// The TableModel controls all the data:
class DataModel extends AbstractTableModel {
Object[][] data = {

{"one", "two", "three", "four"},
{"five", "six", "seven", "eight"},
{"nine", "ten", "eleven", "twelve"},

};
// Prints data when table changes:
class TML implements TableModelListener {

public void tableChanged(TableModelEvent e) {
for(int i = 0; i < data.length; i++) {
for(int j = 0; j < data[0].length; j++)

System.out.print(data[i][j] + " ");
System.out.println();

}
}

}
DataModel() {

addTableModelListener(new TML());
}
public int getColumnCount() {

return data[0].length;
}
public int getRowCount() {

return data.length;
}
public Object getValueAt(int row, int col) {

return data[row][col];
}
public void
setValueAt(Object val, int row, int col) {

data[row][col] = val;
// Indicate the change has happened:
fireTableDataChanged();

Chapter 13: Creating Windows & Applets 843

}
public boolean
isCellEditable(int row, int col) {

return true;
}

};

public class Table extends JPanel {
public Table() {

setLayout(new BorderLayout());
JTable table = new JTable(new DataModel());
JScrollPane scrollpane =
JTable.createScrollPaneForTable(table);

add(scrollpane, BorderLayout.CENTER);
}
public static void main(String args[]) {

Show.inFrame(new Table(),200,200);
}

} ///:~

DataModel contains an array of data, but you could also get the
data from some other source such as a database. The constructor
adds a TableModelListener which prints the array every time the
table is changed. The rest of the methods follow the Beans naming
convention, and are used by JTable when it wants to present the
information in DataModel. AbstractTableModel provides
default methods for setValueAt() and isCellEditable() that
prevent changes to the data, so if you want to be able to edit the
data, you must override these methods.

Once you have a TableModel, you only need to hand it to the
JTable constructor. All the details of displaying, editing and
updating will be taken care of for you. Notice that this example also
puts the JTable in a JScrollPane, which requires a special
JTable method.

Tabbed Panes
Earlier in this chapter you were introduced to the positively
medieval CardLayout, and saw how you had to manage all the
switching of the ugly cards yourself. Someone actually thought this

844 Thinking in Java www.BruceEckel.com

was a good design. Fortunately, Swing remedies this by providing
JTabbedPane, which handles all the tabs, the switching, and
everything. The contrast between CardLayout and
JTabbedPane is breathtaking.

The following example is quite fun because it takes advantage of the
design of the previous examples. They are all built as descendants of
JPanel, so this example will place each one of the previous
examples in its own pane on a JTabbedPane. You’ll notice that
the use of RTTI makes the example quite small and elegant:

//: c13:Tabbed.java
// Using tabbed panes.
// <applet code=Tabbed
// width=500 height=500></applet>
import javax.swing.*;
import java.awt.*;
import javax.swing.border.*;

public class Tabbed extends JApplet {
static Object[][] q = {

{ "Felix", Borders.class },
{ "The Professor", Buttons.class },
{ "Rock Bottom", ButtonGroups.class },
{ "Theodore", Faces.class },
{ "Simon", Menus.class },
{ "Alvin", Popup.class },
{ "Tom", ListCombo.class },
{ "Jerry", Progress.class },
{ "Bugs", Trees.class },
{ "Daffy", Table.class },

};
static JPanel makePanel(Class c) {

String title = c.getName();
title = title.substring(
title.lastIndexOf('.') + 1);

JPanel sp = null;
try {
sp = (JPanel)c.newInstance();

} catch(Exception e) {
System.out.println(e);

}

Chapter 13: Creating Windows & Applets 845

sp.setBorder(new TitledBorder(title));
return sp;

}
public void init() {

Container cp = getContentPane();
cp.setLayout(new BorderLayout());
JTabbedPane tabbed = new JTabbedPane();
for(int i = 0; i < q.length; i++)
tabbed.addTab((String)q[i][0],
makePanel((Class)q[i][1]));

cp.add(tabbed, BorderLayout.CENTER);
tabbed.setSelectedIndex(q.length/2);

}
} ///:~

Again, you can see the theme of an array used for configuration: the
first element is the String to be placed on the tab and the second is
the JPanel class that will be displayed inside of the corresponding
pane. In the Tabbed() constructor, you can see the two important
JTabbedPane methods that are used: addTab() to put a new
pane in, and setSelectedIndex() to choose the pane to start with.
(One in the middle is chosen just to show that you don’t have to
start with the first pane.)

When you call addTab() you supply it with the String for the tab
and any Component (that is, an AWT Component, not just a
JComponent, which is derived from the AWT Component). The
Component will be displayed in the pane. Once you do this, no
further management is necessary – the JTabbedPane takes care
of everything else for you (as it should).

The makePanel() method takes the Class object of the class you
want to create and uses newInstance() to create one, casting it to
a JPanel (of course, this assumes that any class you want to add
must inherit from JPanel, but that’s been the structure used for
the examples in this section). It adds a TitledBorder that contains
the name of the class and returns the result as a JPanel to be used
in addTab().

846 Thinking in Java www.BruceEckel.com

When you run the program you’ll see that the JTabbedPane
automatically stacks the tabs if there are too many of them to fit on
one row.

More to Swing
This section was meant only to give you an introduction to the
power of Swing and to get you started so you could see how
relatively simple it is to feel your way through the libraries. What
you’ve seen so far will probably suffice for a good portion of your UI
design needs. However, there’s a lot more to Swing – it’s intended
to be a fully-powered UI design tool kit. If you don’t see what you
need here, delve into the online documentation from Sun and
search the Web. There’s probably a way to accomplish just about
everything you can imagine.

Some of the topics that were not covered in this section include:

♦ More specific components such as JColorChooser,
JFileChooser, JPasswordField, JHTMLPane (which
performs simple HTML formatting and display), and
JTextPane (a text editor that supports formatting, word
wrap, and images). These are fairly straightforward to use.

♦ The new event types for Swing. In many ways, these are like
exceptions: the type is what’s important, and the name can
be used to infer just about everything else about them.

♦ A new layout manager called BoxLayout.

♦ Splitter control: a divider style splitter bar that allows you to
dynamically manipulate the position of other components.

♦ JLayeredPane and JInternalFrame, used together to
create child frame windows inside parent frame windows, to
produce multiple-document interface (MDI) applications.

♦ Pluggable look and feel, so you can write a single program
that can dynamically adapt to behave as expected under
different platforms and operating systems.

Chapter 13: Creating Windows & Applets 847

♦ Custom cursors.

♦ Dockable floating toolbars with the JToolbar API.

♦ Double-buffering and Automatic repaint batching for
smoother screen redraws.

♦ Built-in “undo” support.

♦ Drag and drop support.

Using URLs from within an
applet

It’s possible for an applet to cause the display of any URL through
the web browser the applet is running within. You can do this with
the following line:

getAppletContext().showDocument(u);

in which u is the URL object. Here’s a simple example that
redirects you to another Web page. The page happens to be the
output of a CGI program, but you can as easily go to an ordinary
HTML page, so you could build on this applet to produce a
password-protected gateway to a particular portion of your Web
site:

//: c13:ShowHTML.java
// <applet code=ShowHTML width=100 height=50>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;

public class ShowHTML extends JApplet {
static final String CGIProgram = "MyCGIProgram";
JButton send = new JButton("Go");
JLabel l = new JLabel();

848 Thinking in Java www.BruceEckel.com

public void init() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
send.addActionListener(new Al());
cp.add(send);
cp.add(l);

}
class Al implements ActionListener {

public void actionPerformed(ActionEvent ae) {
try {
// This could be an HTML page instead of
// a CGI program. Notice that this CGI
// program doesn't use arguments, but
// you can add them in the usual way.
URL u = new URL(

getDocumentBase(),
"cgi-bin/" + CGIProgram);

// Display the output of the URL using
// the Web browser, as an ordinary page:
getAppletContext().showDocument(u);

} catch(Exception e) {
l.setText(e.toString());

}
}

}
} ///:~

The beauty of the URL class is how much it shields you from. You
can connect to Web servers without knowing much at all about
what’s going on under the covers.

Reading a file from the server
A variation on the above program reads a file located on the server.
The file is specified by the client:

//: c13:Fetcher.java
// <applet code=Fetcher width=500 height=250>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

Chapter 13: Creating Windows & Applets 849

import java.net.*;
import java.io.*;

public class Fetcher extends JApplet {
JButton fetchIt= new JButton("Fetch the Data");
JTextField f =

new JTextField("Fetcher.java", 20);
JTextArea t = new JTextArea(10,40);
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
fetchIt.addActionListener(new FetchL());
cp.add(new JScrollPane(t));
cp.add(f); cp.add(fetchIt);

}
public class FetchL implements ActionListener {

public void actionPerformed(ActionEvent e) {
try {
URL url =

new URL(getDocumentBase(),f.getText());
t.setText(url + "\n");
InputStream is = url.openStream();
BufferedReader in = new BufferedReader(

new InputStreamReader(is));
String line;
while ((line = in.readLine()) != null)

t.append(line + "\n");
} catch(Exception ex) {
t.append(ex.toString());

}
}

}
} ///:~

A method lookup tool
To finish the chapter, we’ll develop a useful application that allows
you to quickly look up methods for classes, as a programming aid.

Chapter 12 introduced the Java 1.1 concept of reflection and used
that feature to look up methods for a particular class – either the

850 Thinking in Java www.BruceEckel.com

entire list of methods or a subset of those whose names match a
keyword you provide. The magic of this is that it can automatically
show you all the methods for a class without forcing you to walk up
the inheritance hierarchy examining the base classes at each level.
Thus, it provides a valuable timesaving tool for programming:
because the names of most Java method names are made nicely
verbose and descriptive, you can search for the method names that
contain a particular word of interest. When you find what you think
you’re looking for, check the online documentation.

However, by Chapter 12 you hadn’t seen Swing, so that tool was
developed as a command-line application. Here is the more useful
GUI version, which dynamically updates the output as you type and
also allows you to cut and paste from the output:

//: c13:DisplayMethods.java
// Display the methods of any class inside
// a window. Dynamically narrows your search.
// <applet code = DisplayMethods
// width=650 height=700></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.lang.reflect.*;
import java.io.*;
import com.bruceeckel.swing.*;

public class DisplayMethods extends JApplet {
Class cl;
Method[] m;
Constructor[] ctor;
String[] n = new String[0];
JTextField

name = new JTextField(40),
searchFor = new JTextField(30);

JCheckBox strip =
new JCheckBox("Strip Qualifiers", true);

JTextArea results = new JTextArea(40, 65);
class NameL implements ActionListener {

public void actionPerformed(ActionEvent e) {
String nm = name.getText().trim();

Chapter 13: Creating Windows & Applets 851

if(nm.length() == 0) {
results.setText("No match");
n = new String[0];
return;

}
try {
cl = Class.forName(nm);

} catch (ClassNotFoundException ex) {
results.setText("No match");
return;

}
m = cl.getMethods();
ctor = cl.getConstructors();
// Convert to an array of Strings:
n = new String[m.length + ctor.length];
for(int i = 0; i < m.length; i++)
n[i] = m[i].toString();

for(int i = 0; i < ctor.length; i++)
n[i + m.length] = ctor[i].toString();

reDisplay();
}

}
class StripL implements ItemListener {

public void itemStateChanged(ItemEvent e) {
reDisplay();

}
}
class SearchForL implements ActionListener {

public void actionPerformed(ActionEvent e) {
reDisplay();

}
}
void reDisplay() {

// Create the result set:
String[] rs = new String[n.length];
String find = searchFor.getText();
int j = 0;
// Select from the list if find exists:
for (int i = 0; i < n.length; i++) {
if(find == null)
rs[j++] = n[i];

else if(n[i].indexOf(find) != -1)

852 Thinking in Java www.BruceEckel.com

rs[j++] = n[i];
}
results.setText("");
if(strip.isSelected())
for (int i = 0; i < j; i++)
results.append(

StripQualifiers.strip(rs[i]) + "\n");
else // Leave qualifiers on
for (int i = 0; i < j; i++)
results.append(rs[i] + "\n");

}
public void init() {

name.addActionListener(new NameL());
searchFor.addActionListener(new SearchForL());
strip.addItemListener(new StripL());
JPanel
top = new JPanel(),
lower = new JPanel(),
p = new JPanel(new BorderLayout());

top.add(new JLabel("Qualified class name:"));
top.add(name);
lower.add(
new JLabel("String to search for:"));

lower.add(searchFor);
lower.add(strip);
p.add(top, BorderLayout.NORTH);
p.add(lower, BorderLayout.SOUTH);
Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(p, BorderLayout.NORTH);
cp.add(results, BorderLayout.CENTER);

}
public static void main(String[] args) {

JApplet applet = new DisplayMethods();
JFrame frame = new JFrame("Display Methods");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(650, 700);
applet.init();
applet.start();
frame.setVisible(true);

Chapter 13: Creating Windows & Applets 853

}
}

class StripQualifiers {
private StreamTokenizer st;
public StripQualifiers(String qualified) {

st = new StreamTokenizer(
new StringReader(qualified));

st.ordinaryChar(' ');
}
public String getNext() {

String s = null;
try {
if(st.nextToken() !=

StreamTokenizer.TT_EOF) {
switch(st.ttype) {

case StreamTokenizer.TT_EOL:
s = null;
break;

case StreamTokenizer.TT_NUMBER:
s = Double.toString(st.nval);
break;

case StreamTokenizer.TT_WORD:
s = new String(st.sval);
break;

default: // single character in ttype
s = String.valueOf((char)st.ttype);

}
}

} catch(IOException e) {
System.out.println(e);

}
return s;

}
public static String strip(String qualified) {

StripQualifiers sq =
new StripQualifiers(qualified);

String s = "", si;
while((si = sq.getNext()) != null) {
int lastDot = si.lastIndexOf('.');
if(lastDot != -1)
si = si.substring(lastDot + 1);

854 Thinking in Java www.BruceEckel.com

s += si;
}
return s;

}
} ///:~

Some things you’ve seen before. As with many of the GUI programs
in this book, this is created to perform both as an application and as
an applet. Also, the StripQualifiers class is exactly the same as it
was in Chapter 12.

The GUI contains a TextField name in which you can enter the
fully-qualified class name you want to look up, and another one,
searchFor, in which you can enter the optional text to search for
within the list of methods. The Checkbox allows you to say
whether you want to use the fully-qualified names in the output or
if you want the qualification stripped off. Finally, the results are
displayed in a TextArea.

You’ll notice that there are no buttons or other components by
which to indicate that you want the search to start. That’s because
both of the TextFields and the Checkbox are monitored by their
listener objects. Whenever you make a change, the list is
immediately updated. If you change the text within the name field,
the new text is captured in class NameL. If the text isn’t empty, it
is used inside Class.forName() to try to look up the class. As
you’re typing, of course, the name will be incomplete and
Class.forName() will fail, which means that it throws an
exception. This is trapped and the TextArea is set to “No match”.
But as soon as you type in a correct name (capitalization counts),
Class.forName() is successful and getMethods() and
getConstructors() will return arrays of Method and
Constructor objects, respectively. Each of the objects in these
arrays is turned into a String via toString() (this produces the
complete method or constructor signature) and both lists are
combined into n, a single String array. The array n is a member of
class DisplayMethods and is used in updating the display
whenever reDisplay() is called.

If you change the Checkbox or searchFor components, their
listeners simply call reDisplay(). reDisplay() creates a

Chapter 13: Creating Windows & Applets 855

temporary array of String called rs (for “result set”). The result set
is either copied directly from n if there is no find word, or
conditionally copied from the Strings in n that contain the find
word. Finally, the strip Checkbox is interrogated to see if the user
wants the names to be stripped (the default is “yes”). If so,
StripQualifiers.strip() does the job; if not, the list is simply
displayed.

In init(), you might think that there’s a lot of busy work involved
in setting up the layout. In fact, it is possible to lay out the
components with less work, but the advantage of using
BorderLayouts this way is that it allows the user to resize the
window and make – in particular – the TextArea larger, which
means you can resize to allow you to see longer names without
scrolling.

You might find that you’ll keep this tool running while you’re
programming, since it provides one of the best “first lines of attack”
when you’re trying to figure out what method to call.

Summary
Of all the libraries in Java, the GUI library has seen the most
dramatic changes from Java 1.0 to Java 2. The Java 1.0 AWT was
roundly criticized as being one of the worst designs seen, and while
it would allow you to create portable programs, the resulting GUI
was “equally mediocre on all platforms.” It was also limiting,
awkward, and unpleasant to use compared with native application
development tools on a particular platform.

When Java 1.1 introduced the new event model and Java Beans, the
stage was set – now it was possible to create GUI components that
could be easily dragged and dropped inside visual application
builder tools. In addition, the design of the event model and Beans
clearly shows strong consideration for ease of programming and
maintainable code (something that was not evident in the 1.0 AWT).
But it wasn’t until the GUI components – the JFC/Swing classes –
appeared that the job was finished. With the Swing components,
cross-platform GUI programming can be a civilized experience.

856 Thinking in Java www.BruceEckel.com

Actually, the only thing that’s missing is the application builder
tool, and this is where the real revolution lies. Microsoft’s Visual
Basic and Visual C++ require their application builder tools, as does
Borland’s Delphi and C++ Builder. If you want the application
builder tool to get better, you have to cross your fingers and hope
the vendor will give you what you want. But Java is an open
environment, and so not only does it allow for competing
application builder environments, it encourages them. And for
these tools to be taken seriously, they must support Java Beans.
This means a leveled playing field: if a better application builder
tool comes along, you’re not tied to the one you’ve been using – you
can pick up and move to the new one and increase your
productivity. This kind of competitive environment for GUI
application builder tools has not been seen before, and the resulting
competition can generate only positive results for the productivity
of the programmer.

Exercises
1. Create an applet with a text field and three buttons. When you

press each button, make some different text appear in the text
field.

2. Add a check box to the applet created in Exercise 1, capture
the event, and insert different text into the text field.

3. Create an applet and add all the components that cause
action() to be called, then capture their events and display
an appropriate message for each inside a text field.

4. Add to Exercise 3 the components that can be used only with
events detected by handleEvent(). Override
handleEvent() and display appropriate messages for each
inside a text field.

5. Create an applet with a Button and a TextField. Write a
handleEvent() so that if the button has the focus,
characters typed into it will appear in the TextField.

Chapter 13: Creating Windows & Applets 857

6. Create an application and add to the main frame all the
components described in this chapter, including menus and a
dialog box.

7. Modify TextNew.java so that the characters in t2 retain the
original case that they were typed in, instead of automatically
being forced to upper case.

8. Modify CardLayout1.java so that it uses the Java 1.1 event
model.

9. Add Frog.class to the manifest file shown in this chapter and
run jar to create a JAR file containing both Frog and
BangBean. Now either download and install the BDK from
Sun or use your own Beans-enabled program builder tool and
add the JAR file to your environment so you can test the two
Beans.

10. Create your own Java Bean called Valve that contains two
properties: a Boolean called “on” and an integer called “level.”
Create a manifest file, use jar to package your Bean, then load
it into the beanbox or into your own Beans-enabled program
builder tool so that you can test it.

11. (Somewhat challenging) Change Menus.java so that it
handles cascading menus.

 859

14: Multiple
Threads

Objects provide a way to divide a program up into
independent sections. Often, you also need to turn a
program into separate, independently-running subtasks.

Each of these independent subtasks is called a thread, and you
program as if each thread runs by itself and has the CPU to itself.
Some underlying mechanism is actually dividing up the CPU time
for you, but in general, you don’t have to think about it, which
makes programming with multiple threads a much easier task.

Some definitions are useful at this point. A process is a self-
contained running program with its own address space. A
multitasking operating system is capable of running more than one
process (program) at a time, while making it look like each one is
chugging along by periodically providing CPU cycles to each
process. A thread is a single sequential flow of control within a
process. A single process can thus have multiple concurrently
executing threads.

There are many possible uses for multithreading, but in general,
you’ll have some part of your program tied to a particular event or
resource, and you don’t want to hang up the rest of your program
because of that. So you create a thread associated with that event or
resource and let it run independently of the main program. A good
example is a “quit” button – you don’t want to be forced to poll the
quit button in every piece of code you write in your program and yet
you want the quit button to be responsive, as if you were checking it
regularly. In fact, one of the most immediately compelling reasons
for multithreading is to produce a responsive user interface.

860 Thinking in Java www.BruceEckel.com

Responsive user interfaces
As a starting point, consider a program that performs some CPU-
intensive operation and thus ends up ignoring user input and being
unresponsive. This one, a combined applet/application, will simply
display the result of a running counter:

//: c14:Counter1.java
// A non-responsive user interface.
// <applet code=Counter1 width=300 height=100>
// </applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class Counter1 extends JApplet {
private int count = 0;
private JButton

onOff = new JButton("Toggle"),
start = new JButton("Start");

private JTextField t = new JTextField(10);
private boolean runFlag = true;
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);
start.addActionListener(new StartL());
cp.add(start);
onOff.addActionListener(new OnOffL());
cp.add(onOff);

}
public void go() {

while (true) {
try {
Thread.sleep(100);

} catch (InterruptedException e) {}
if (runFlag)
t.setText(Integer.toString(count++));

}
}

Chapter 14: Multiple Threads 861

class StartL implements ActionListener {
public void actionPerformed(ActionEvent e) {
go();

}
}
class OnOffL implements ActionListener {

public void actionPerformed(ActionEvent e) {
runFlag = !runFlag;

}
}
public static void main(String[] args) {

JApplet applet = new Counter1();
JFrame frame = new JFrame("Counter1");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300, 100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

At this point, the Swing and applet code should be reasonably
familiar from Chapter 13. The go() method is where the program
stays busy: it puts the current value of count into the TextField t,
then increments count.

Part of the infinite loop inside go() is to call sleep(). sleep()
must be associated with a Thread object, and it turns out that
every application has some thread associated with it. (Indeed, Java
is based on threads and there are always some running along with
your application.) So regardless of whether you’re explicitly using
threads, you can produce the current thread used by your program
with Thread and the static sleep() method.

Note that sleep() can throw InterruptedException, although
throwing such an exception is considered a hostile way to break
from a thread and should be discouraged. (Once again, exceptions
are for exceptional conditions, not normal flow of control.)

862 Thinking in Java www.BruceEckel.com

Interrupting a sleeping thread is included to support a future
language feature.

When the start button is pressed, go() is invoked. And upon
examining go(), you might naively think (as I did) that it should
allow multithreading because it goes to sleep. That is, while the
method is asleep, it seems like the CPU could be busy monitoring
other button presses. But it turns out that the real problem is that
go() never returns, since it’s in an infinite loop, and this means
that actionPerformed() never returns. Since you’re stuck inside
actionPerformed() for the first keypress, the program can’t
handle any other events. (To get out, you must somehow kill the
process; the easiest way to do this is to press Control-C in the
console window.)

The basic problem here is that go() needs to continue performing
its operations, and at the same time it needs to return so
actionPerformed() can complete and the user interface can
continue responding to the user. But in a conventional method like
go() it cannot continue and at the same time return control to the
rest of the program. This sounds like an impossible thing to
accomplish, as if the CPU must be in two places at once, but this is
precisely the illusion that threading provides. The thread model
(and programming support in Java) is a programming convenience
to simplify juggling several operations at the same time within a
single program. With threads, the CPU will pop around and give
each thread some of its time. Each thread has the consciousness of
constantly having the CPU to itself, but the CPU’s time is actually
sliced between all the threads.

Threading reduces computing efficiency somewhat, but the net
improvement in program design, resource balancing, and user
convenience is often quite valuable. Of course, if you have more
than one CPU, then the operating system can dedicate each CPU to
a set of threads or even a single thread and the whole program can
run much faster. Multitasking and multithreading tend to be the
most reasonable ways to utilize multiprocessor systems.

Chapter 14: Multiple Threads 863

Inheriting from Thread
The simplest way to create a thread is to inherit from class Thread,
which has all the wiring necessary to create and run threads. The
most important method for Thread is run(), which you must
override to make the thread do your bidding. Thus, run() is the
code that will be executed “simultaneously” with the other threads
in a program.

The following example creates any number of threads that it keeps
track of by assigning each thread a unique number, generated with
a static variable. The Thread’s run() method is overridden to
count down each time it passes through its loop and to finish when
the count is zero (at the point when run() returns, the thread is
terminated).

//: c14:SimpleThread.java
// Very simple Threading example.

public class SimpleThread extends Thread {
private int countDown = 5;
private static int threadCount = 0;
private int threadNumber = ++threadCount;
public SimpleThread() {

System.out.println("Making " + threadNumber);
}
public void run() {

while(true) {
System.out.println("Thread " +
threadNumber + "(" + countDown + ")");

if(--countDown == 0) return;
}

}
public static void main(String[] args) {

for(int i = 0; i < 5; i++)
new SimpleThread().start();

System.out.println("All Threads Started");
}

} ///:~

864 Thinking in Java www.BruceEckel.com

A run() method virtually always has some kind of loop that
continues until the thread is no longer necessary, so you must
establish the condition on which to break out of this loop (or, in the
case above, simply return from run()). Often, run() is cast in
the form of an infinite loop, which means that, barring some
external call to stop() or destroy() for that thread, it will run
forever (until the program completes).

In main() you can see a number of threads being created and run.
The special method that comes with the Thread class is start(),
which performs special initialization for the thread and then calls
run(). So the steps are: the constructor is called to build the object,
then start() configures the thread and calls run(). If you don’t
call start() (which you can do in the constructor, if that’s
appropriate) the thread will never be started.

The output for one run of this program (it will be different every
time) is:

Making 1
Making 2
Making 3
Making 4
Making 5
Thread 1(5)
Thread 1(4)
Thread 1(3)
Thread 1(2)
Thread 2(5)
Thread 2(4)
Thread 2(3)
Thread 2(2)
Thread 2(1)
Thread 1(1)
All Threads Started
Thread 3(5)
Thread 4(5)
Thread 4(4)
Thread 4(3)
Thread 4(2)
Thread 4(1)

Chapter 14: Multiple Threads 865

Thread 5(5)
Thread 5(4)
Thread 5(3)
Thread 5(2)
Thread 5(1)
Thread 3(4)
Thread 3(3)
Thread 3(2)
Thread 3(1)

You’ll notice that nowhere in this example is sleep() called, and
yet the output indicates that each thread gets a portion of the CPU’s
time in which to execute. This shows that sleep(), while it relies on
the existence of a thread in order to execute, is not involved with
either enabling or disabling threading. It’s simply another method.

You can also see that the threads are not run in the order that
they’re created. In fact, the order that the CPU attends to an existing
set of threads is indeterminate, unless you go in and adjust the
priorities using Thread’s setPriority() method.

When main() creates the Thread objects it isn’t capturing the
handles for any of them. An ordinary object would be fair game for
garbage collection, but not a Thread. Each Thread “registers”
itself so there is actually a reference to it someplace and the garbage
collector can’t clean it up.

Threading for a responsive
interface
Now it’s possible to solve the problem in Counter1.java with a
thread. The trick is to place the subtask – that is, the loop that’s
inside go() – inside the run() method of a thread. When the user
presses the start button, the thread is started, but then the creation
of the thread completes, so even though the thread is running, the
main job of the program (watching for and responding to user-
interface events) can continue. Here’s the solution:

//: c14:Counter2.java
// A responsive user interface with threads.

866 Thinking in Java www.BruceEckel.com

// <applet code=Counter2 width=300 height=100>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

class SeparateSubTask extends Thread {
private int count = 0;
private Counter2 c2;
private boolean runFlag = true;
public SeparateSubTask(Counter2 c2) {

this.c2 = c2;
start();

}
public void invertFlag() { runFlag = !runFlag;}
public void run() {

while (true) {
try {
sleep(100);
} catch (InterruptedException e){}
if(runFlag)
c2.t.setText(Integer.toString(count++));

}
}

}

public class Counter2 extends JApplet {
JTextField t = new JTextField(10);
private SeparateSubTask sp = null;
private JButton

onOff = new JButton("Toggle"),
start = new JButton("Start");

public void init() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);
start.addActionListener(new StartL());
cp.add(start);
onOff.addActionListener(new OnOffL());
cp.add(onOff);

}

Chapter 14: Multiple Threads 867

class StartL implements ActionListener {
public void actionPerformed(ActionEvent e) {
if(sp == null)
sp = new SeparateSubTask(Counter2.this);

}
}
class OnOffL implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(sp != null)
sp.invertFlag();

}
}
public static void main(String[] args) {

JApplet applet = new Counter2();
JFrame frame = new JFrame("Counter2");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300, 100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

Counter2 is now a straightforward program, whose job is only to
set up and maintain the user interface. But now, when the user
presses the start button, a method is not called. Instead a thread of
class SeparateSubTask is created (the constructor starts it, in this
case), and then the Counter2 event loop continues. Note that the
handle to the SeparateSubTask is stored so that when you press
the onOff button it can toggle the runFlag inside the
SeparateSubTask object. That thread (when it looks at the flag)
can then start and stop itself. (This could also have been
accomplished by making SeparateSubTask an inner class.)

The class SeparateSubTask is a simple extension of Thread with
a constructor (that stores the Counter2 handle and then runs the
thread by calling start()) and a run() that essentially contains the
code from inside go() in Counter1.java. Because

868 Thinking in Java www.BruceEckel.com

SeparateSubTask knows that it holds a handle to a Counter2, it
can reach in and access Counter2’s TextField when it needs to.

When you press the onOff button, you’ll see a virtually instant
response. Of course, the response isn’t really instant, not like that of
a system that’s driven by interrupts. The counter stops only when
the thread has the CPU and notices that the flag has changed.

Improving the code with an inner class
As an aside, look at the coupling that occurs between the
SeparateSubTask and Counter2 classes. The
SeparateSubTask is intimately tied to Counter2 – it must keep
a handle to its “parent” Counter2 object so it can call back and
manipulate it. And yet the two classes shouldn’t really merge
together into a single class (although in the next section you’ll see
that Java provides a way to combine them) because they’re doing
separate things and are created at different times. They are tightly
connected (what I call a “couplet”) and this makes the coding
awkward. This is a situation in which an inner class can improve the
code significantly:

//: c14:Counter2i.java
// Counter2 using an inner class for the thread.
// <applet code=Counter2i width=300 height=100>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class Counter2i extends JApplet {
private class SeparateSubTask extends Thread {

int count = 0;
boolean runFlag = true;
SeparateSubTask() { start(); }
public void run() {
while (true) {
try {
sleep(100);
} catch (InterruptedException e){}

Chapter 14: Multiple Threads 869

if(runFlag)
t.setText(Integer.toString(count++));

}
}

}
private SeparateSubTask sp = null;
private JTextField t = new JTextField(10);
private JButton

onOff = new JButton("Toggle"),
start = new JButton("Start");

public void init() {
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);
start.addActionListener(new StartL());
cp.add(start);
onOff.addActionListener(new OnOffL());
cp.add(onOff);

}
class StartL implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(sp == null)
sp = new SeparateSubTask();

}
}
class OnOffL implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(sp != null)
sp.runFlag = !sp.runFlag; // invertFlag();

}
}
public static void main(String[] args) {

JApplet applet = new Counter2i();
JFrame frame = new JFrame("Counter2i");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300, 100);
applet.init();
applet.start();
frame.setVisible(true);

}

870 Thinking in Java www.BruceEckel.com

} ///:~

This SeparateSubTask name will not collide with the
SeparateSubTask in the previous example even though they’re in
the same directory, since it’s hidden as an inner class. You can also
see that the inner class is private, which means that its fields and
methods can be given default access (except for run(), which must
be public since it is public in the base class). The private inner
class is not accessible to anyone but Counter2i, and since the two
classes are tightly coupled it’s convenient to loosen the access
restrictions between them. In SeparateSubTask you can see that
the invertFlag() method has been removed since Counter2i can
now directly access runFlag.

Also, notice that SeparateSubTask’s constructor has been
simplified – now it only starts the thread. The handle to the
Counter2i object is still being captured as in the previous version,
but instead of doing it by hand and referencing the outer object by
hand, the inner class mechanism takes care of it automatically. In
run(), you can see that t is simply accessed, as if it were a field of
SeparateSubTask. The t field in the parent class can now be
made private since SeparateSubTask can access it without
getting any special permission – and it’s always good to make fields
“as private as possible” so they cannot be accidentally changed by
forces outside your class.

Anytime you notice classes that appear to have high coupling with
each other, consider the coding and maintenance improvements
you might get by using inner classes.

Combining the thread
with the main class
In the example above you can see that the thread class is separate
from the program’s main class. This makes a lot of sense and is
relatively easy to understand. There is, however, an alternate form
that you will often see used that is not so clear but is usually more
concise (which probably accounts for its popularity). This form
combines the main program class with the thread class by making

Chapter 14: Multiple Threads 871

the main program class a thread. Since for a GUI program the main
program class must be inherited from either Frame or Applet, an
interface must be used to paste on the additional functionality. This
interface is called Runnable, and it contains the same basic
method that Thread does. In fact, Thread also implements
Runnable, which specifies only that there be a run() method.

The use of the combined program/thread is not quite so obvious.
When you start the program, you create an object that’s Runnable,
but you don’t start the thread. This must be done explicitly. You can
see this in the following program, which reproduces the
functionality of Counter2:

//: c14:Counter3.java
// Using the Runnable interface to turn the
// main class into a thread.
// <applet code=Counter3 width=300 height=100>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class Counter3
extends JApplet implements Runnable {

private int count = 0;
private boolean runFlag = true;
private Thread selfThread = null;
private JButton

onOff = new JButton("Toggle"),
start = new JButton("Start");

private JTextField t = new JTextField(10);
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);
start.addActionListener(new StartL());
cp.add(start);
onOff.addActionListener(new OnOffL());
cp.add(onOff);

}

872 Thinking in Java www.BruceEckel.com

public void run() {
while (true) {
try {
selfThread.sleep(100);

} catch (InterruptedException e){}
if(runFlag)
t.setText(Integer.toString(count++));

}
}
class StartL implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(selfThread == null) {
selfThread = new Thread(Counter3.this);
selfThread.start();

}
}

}
class OnOffL implements ActionListener {

public void actionPerformed(ActionEvent e) {
runFlag = !runFlag;

}
}
public static void main(String[] args) {

JApplet applet = new Counter3();
JFrame frame = new JFrame("Counter3");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300, 100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

Now the run() is inside the class, but it’s still dormant after init()
completes. When you press the start button, the thread is created
(if it doesn’t already exist) in the somewhat obscure expression:

new Thread(Counter3.this);

Chapter 14: Multiple Threads 873

When something has a Runnable interface, it simply means that it
has a run() method, but there’s nothing special about that – it
doesn’t produce any innate threading abilities, like those of a class
inherited from Thread. So to produce a thread from a Runnable
object, you must create a thread separately and hand it the
Runnable object; there’s a special constructor for this that takes a
Runnable as its argument. You can then call start() for that
thread:

selfThread.start();

This performs the usual initialization and then calls run().

The convenient aspect about the Runnable interface is that
everything belongs to the same class. If you need to access
something, you simply do it without going through a separate
object. The penalty for this convenience is strict, though – you can
have only a single thread running for that particular object
(although you can create more objects of that type, or create other
threads in different classes).

Note that the Runnable interface is not what imposes this
restriction. It’s the combination of Runnable and your main class
that does it, since you can have only one object of your main class
per application.

Making many threads
Consider the creation of many different threads. You can’t do this
with the previous example, so you must go back to having separate
classes inherited from Thread to encapsulate the run(). But this
is a more general solution and easier to understand, so while the
previous example shows a coding style you’ll often see, I can’t
recommend it for most cases because it’s just a little bit more
confusing and less flexible.

The following example repeats the form of the examples above with
counters and toggle buttons. But now all the information for a
particular counter, including the button and text field, is inside its
own object that is inherited from Thread. All the fields in Ticker
are private, which means that the Ticker implementation can be

874 Thinking in Java www.BruceEckel.com

changed at will, including the quantity and type of data components
to acquire and display information. When a Ticker object is
created, the constructor requires a handle to an AWT Container,
which Ticker fills with its visual components. This way, if you
change the visual components, the code that uses Ticker doesn’t
need to be modified.

//: c14:Counter4.java
// By separating your thread from the main class,
// you can have as many threads as you want.
// <applet code=Counter4 width=600 height=600>
// <param name=size value="20"></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

class Ticker extends Thread {
private JButton b = new JButton("Toggle");
private JTextField t = new JTextField(10);
private int count = 0;
private boolean runFlag = true;
public Ticker(Container c) {

b.addActionListener(new ToggleL());
JPanel p = new JPanel();
p.add(t);
p.add(b);
c.add(p);

}
class ToggleL implements ActionListener {

public void actionPerformed(ActionEvent e) {
runFlag = !runFlag;

}
}
public void run() {

while (true) {
if (runFlag)
t.setText(Integer.toString(count++));

try {
sleep(100);

} catch (InterruptedException e) {}

Chapter 14: Multiple Threads 875

}
}

}

public class Counter4 extends JApplet {
private JButton start = new JButton("Start");
private boolean started = false;
private Ticker[] s;
private boolean isApplet = true;
private int size;
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
// Get parameter "size" from Web page:
if (isApplet)
size =
Integer.parseInt(getParameter("size"));

s = new Ticker[size];
for (int i = 0; i < s.length; i++)
s[i] = new Ticker(cp);

start.addActionListener(new StartL());
cp.add(start);

}
class StartL implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(!started) {
started = true;
for (int i = 0; i < s.length; i++)

s[i].start();
}

}
}
public static void main(String[] args) {

Counter4 applet = new Counter4();
// This isn't an applet, so set the flag and
// produce the parameter values from args:
applet.isApplet = false;
applet.size =
(args.length == 0 ? 5 :
Integer.parseInt(args[0]));

JFrame frame = new JFrame("Counter4");
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

876 Thinking in Java www.BruceEckel.com

frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(200, applet.size * 50);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

Ticker contains not only its threading equipment but also the way
to control and display the thread. You can create as many threads as
you want without explicitly creating the windowing components.

In Counter4 there’s an array of Ticker objects called s. For
maximum flexibility, the size of this array is initialized by reaching
out into the Web page using applet parameters. Here’s what the size
parameter looks like on the page, embedded inside the applet
description:

<applet code=Counter4 width=600 height=600>
<param name=size value="20">
</applet>

The param, name, and value are all Web-page keywords. name
is what you’ll be referring to in your program, and value can be any
string, not just something that resolves to a number.

You’ll notice that the determination of the size of the array s is done
inside init(), and not as part of an inline definition of s. That is,
you cannot say as part of the class definition (outside of any
methods):

int size = Integer.parseInt(getParameter("size"));
Ticker[] s = new Ticker[size];

You can compile this, but you’ll get a strange “null-pointer
exception” at run time. It works fine if you move the
getParameter() initialization inside of init(). The applet
framework performs the necessary startup to grab the parameters
before entering init().

Chapter 14: Multiple Threads 877

In addition, this code is set up to be either an applet or an
application. When it’s an application the size argument is extracted
from the command line (or a default value is provided).

Once the size of the array is established, new Ticker objects are
created; as part of the Ticker constructor the button and text field
for each Ticker is added to the applet.

Pressing the start button means looping through the entire array of
Tickers and calling start() for each one. Remember, start()
performs necessary thread initialization and then calls run() for
that thread.

The ToggleL listener simply inverts the flag in Ticker and when
the associated thread next takes note it can react accordingly.

One value of this example is that it allows you to easily create large
sets of independent subtasks and to monitor their behavior. In this
case, you’ll see that as the number of subtasks gets larger, your
machine will probably show more divergence in the displayed
numbers because of the way that the threads are served.

You can also experiment to discover how important the sleep(100)
is inside Ticker.run(). If you remove the sleep(), things will
work fine until you press a toggle button. Then that particular
thread has a false runFlag and the run() is just tied up in a tight
infinite loop, which appears difficult to break during
multithreading, so the responsiveness and speed of the program
really bogs down.

Daemon threads
A “daemon” thread is one that is supposed to provide a general
service in the background as long as the program is running, but is
not part of the essence of the program. Thus, when all of the non-
daemon threads complete the program is terminated. Conversely, if
there are any non-daemon threads still running the program
doesn’t terminate. (There is, for instance, a thread that runs
main().)

878 Thinking in Java www.BruceEckel.com

You can find out if a thread is a daemon by calling isDaemon(),
and you can turn the daemonhood of a thread on and off with
setDaemon(). If a thread is a daemon, then any threads it creates
will automatically be daemons.

The following example demonstrates daemon threads:

//: c14:Daemons.java
// Daemonic behavior.
import java.io.*;

class Daemon extends Thread {
private static final int SIZE = 10;
private Thread[] t = new Thread[SIZE];
public Daemon() {

setDaemon(true);
start();

}
public void run() {

for(int i = 0; i < SIZE; i++)
t[i] = new DaemonSpawn(i);

for(int i = 0; i < SIZE; i++)
System.out.println(
"t[" + i + "].isDaemon() = "
+ t[i].isDaemon());

while(true)
yield();

}
}

class DaemonSpawn extends Thread {
public DaemonSpawn(int i) {

System.out.println(
"DaemonSpawn " + i + " started");

start();
}
public void run() {

while(true)
yield();

}
}

Chapter 14: Multiple Threads 879

public class Daemons {
public static void main(String[] args) {

Thread d = new Daemon();
System.out.println(
"d.isDaemon() = " + d.isDaemon());

// Allow the daemon threads to finish
// their startup processes:
BufferedReader stdin =
new BufferedReader(
new InputStreamReader(System.in));

System.out.println("Waiting for CR");
try {
stdin.readLine();

} catch(IOException e) {}
}

} ///:~

The Daemon thread sets its daemon flag to “true” and then spawns
a bunch of other threads to show that they are also daemons. Then
it goes into an infinite loop that calls yield() to give up control to
the other processes. In an earlier version of this program, the
infinite loops would increment int counters, but this seemed to
bring the whole program to a stop. Using yield() makes the
program quite peppy.

There’s nothing to keep the program from terminating once
main() finishes its job since there are nothing but daemon threads
running. So that you can see the results of starting all the daemon
threads, System.in is set up to read so the program waits for a
carriage return before terminating. Without this you see only some
of the results from the creation of the daemon threads. (Try
replacing the readLine() code with sleep() calls of various
lengths to see this behavior.)

Sharing limited resources
You can think of a single-threaded program as one lonely entity
moving around through your problem space and doing one thing at
a time. Because there’s only one entity, you never have to think
about the problem of two entities trying to use the same resource at

880 Thinking in Java www.BruceEckel.com

the same time, like two people trying to park in the same space,
walk through a door at the same time, or even talk at the same time.

With multithreading, things aren’t lonely anymore, but you now
have the possibility of two or more threads trying to use the same
limited resource at once. Colliding over a resource must be
prevented or else you’ll have two threads trying to access the same
bank account at the same time, print to the same printer, or adjust
the same valve, etc.

Improperly accessing resources
Consider a variation on the counters that have been used so far in
this chapter. In the following example, each thread contains two
counters that are incremented and displayed inside run(). In
addition, there’s another thread of class Watcher that is watching
the counters to see if they’re always equivalent. This seems like a
needless activity, since looking at the code it appears obvious that
the counters will always be the same. But that’s where the surprise
comes in. Here’s the first version of the program:

//: c14:Sharing1.java
// Problems with resource sharing while threading.
// <applet code=Sharing1 width=650 height=500>
// <param name=size value="20">
// <param name=observers value="1">
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

class TwoCounter extends Thread {
private boolean started = false;
private JTextField

t1 = new JTextField(5),
t2 = new JTextField(5);

private JLabel l =
new JLabel("count1 == count2");

private int count1 = 0, count2 = 0;
// Add the display components as a panel

Chapter 14: Multiple Threads 881

// to the given container:
public TwoCounter(Container c) {

JPanel p = new JPanel();
p.add(t1);
p.add(t2);
p.add(l);
c.add(p);

}
public void start() {

if(!started) {
started = true;
super.start();

}
}
public void run() {

while (true) {
t1.setText(Integer.toString(count1++));
t2.setText(Integer.toString(count2++));
try {
sleep(500);

} catch (InterruptedException e){}
}

}
public void synchTest() {

Sharing1.incrementAccess();
if(count1 != count2)
l.setText("Unsynched");

}
}

class Watcher extends Thread {
private Sharing1 p;
public Watcher(Sharing1 p) {

this.p = p;
start();

}
public void run() {

while(true) {
for(int i = 0; i < p.s.length; i++)
p.s[i].synchTest();

try {
sleep(500);

882 Thinking in Java www.BruceEckel.com

} catch (InterruptedException e){}
}

}
}

public class Sharing1 extends JApplet {
TwoCounter[] s;
private static int accessCount = 0;
private static JTextField aCount =

new JTextField("0", 7);
public static void incrementAccess() {

accessCount++;
aCount.setText(Integer.toString(accessCount));

}
private JButton

start = new JButton("Start"),
observer = new JButton("Observe");

private boolean isApplet = true;
private int numCounters = 0;
private int numObservers = 0;
public void init() {

if(isApplet) {
numCounters =
Integer.parseInt(getParameter("size"));

numObservers =
Integer.parseInt(

getParameter("observers"));
}
s = new TwoCounter[numCounters];
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
for(int i = 0; i < s.length; i++)
s[i] = new TwoCounter(cp);

JPanel p = new JPanel();
start.addActionListener(new StartL());
p.add(start);
observer.addActionListener(new ObserverL());
p.add(observer);
p.add(new JLabel("Access Count"));
p.add(aCount);
cp.add(p);

}

Chapter 14: Multiple Threads 883

class StartL implements ActionListener {
public void actionPerformed(ActionEvent e) {
for(int i = 0; i < s.length; i++)
s[i].start();

}
}
class ObserverL implements ActionListener {

public void actionPerformed(ActionEvent e) {
for(int i = 0; i < numObservers; i++)
new Watcher(Sharing1.this);

}
}
public static void main(String[] args) {

Sharing1 applet = new Sharing1();
// This isn't an applet, so set the flag and
// produce the parameter values from args:
applet.isApplet = false;
applet.numCounters =
(args.length == 0 ? 5 :
Integer.parseInt(args[0]));

applet.numObservers =
(args.length < 2 ? 5 :
Integer.parseInt(args[1]));

JFrame frame = new JFrame("Sharing1");
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(350, applet.numCounters * 50);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

As before, each counter contains its own display components: two
text fields and a label that initially indicates that the counts are
equivalent. These components are added to the Container in the
TwoCounter constructor. Because this thread is started via a
button press by the user, it’s possible that start() could be called
more than once. It’s illegal for Thread.start() to be called more
than once for a thread (an exception is thrown). You can see that

884 Thinking in Java www.BruceEckel.com

the machinery to prevent this in the started flag and the
overridden start() method.

In run(), count1 and count2 are incremented and displayed in a
manner that would seem to keep them identical. Then sleep() is
called; without this call the program balks because it becomes hard
for the CPU to swap tasks.

The synchTest() method performs the apparently useless activity
of checking to see if count1 is equivalent to count2; if they are not
equivalent it sets the label to “Unsynched” to indicate this. But first,
it calls a static member of the class Sharing1 that increments and
displays an access counter to show how many times this check has
occurred successfully. (The reason for this will become apparent in
future variations of this example.)

The Watcher class is a thread whose job is to call synchTest()
for all of the TwoCounter objects that are active. It does this by
stepping through the array that’s kept in the Sharing1 object. You
can think of the Watcher as constantly peeking over the shoulders
of the TwoCounter objects.

Sharing1 contains an array of TwoCounter objects that it
initializes in init() and starts as threads when you press the “start”
button. Later, when you press the “Observe” button, one or more
observers are created and freed upon the unsuspecting
TwoCounter threads.

Note that to run this as an applet in a browser, your Web page will
need to contain the lines:

<applet code=Sharing1 width=650 height=500>
<param name=size value="20">
<param name=observers value="1">
</applet>

You can change the width, height, and parameters to suit your
experimental tastes. By changing the size and observers you’ll
change the behavior of the program. You can also see that this
program is set up to run as a stand-alone application by pulling the
arguments from the command line (or providing defaults).

Chapter 14: Multiple Threads 885

Here’s the surprising part. In TwoCounter.run(), the infinite
loop is just repeatedly passing over the adjacent lines:

t1.setText(Integer.toString(count1++));
t2.setText(Integer.toString(count2++));

(as well as sleeping, but that’s not important here). When you run
the program, however, you’ll discover that count1 and count2 will
be observed (by the Watcher) to be unequal at times! This is
because of the nature of threads – they can be suspended at any
time. So at times, the suspension occurs between the execution of
the above two lines, and the Watcher thread happens to come
along and perform the comparison at just this moment, thus finding
the two counters to be different.

This example shows a fundamental problem with using threads.
You never know when a thread might be run. Imagine sitting at a
table with a fork, about to spear the last piece of food on your plate
and as your fork reaches for it, the food suddenly vanishes (because
your thread was suspended and another thread came in and stole
the food). That’s the problem that you’re dealing with.

Sometimes you don’t care if a resource is being accessed at the same
time you’re trying to use it (the food is on some other plate). But for
multithreading to work, you need some way to prevent two threads
from accessing the same resource, at least during critical periods.

Preventing this kind of collision is simply a matter of putting a lock
on a resource when one thread is using it. The first thread that
accesses a resource locks it, and then the other threads cannot
access that resource until it is unlocked, at which time another
thread locks and uses it, etc. If the front seat of the car is the limited
resource, the child who shouts “Dibs!” asserts the lock.

How Java shares resources
Java has built-in support to prevent collisions over one kind of
resource: the memory in an object. Since you typically make the
data elements of a class private and access that memory only
through methods, you can prevent collisions by making a particular
method synchronized. Only one thread at a time can call a

886 Thinking in Java www.BruceEckel.com

synchronized method for a particular object (although that
thread can call more than one of the object’s synchronized
methods). Here are simple synchronized methods:

synchronized void f() { /* ... */ }
synchronized void g(){ /* ... */ }

Each object contains a single lock (also called a monitor) that is
automatically part of the object (you don’t have to write any special
code). When you call any synchronized method, that object is
locked and no other synchronized method of that object can be
called until the first one finishes and releases the lock. In the
example above, if f() is called for an object, g() cannot be called
for the same object until f() is completed and releases the lock.
Thus, there’s a single lock that’s shared by all the synchronized
methods of a particular object, and this lock prevents common
memory from being written by more than one method at a time (i.e.
more than one thread at a time).

There’s also a single lock per class (as part of the Class object for
the class), so that synchronized static methods can lock each
other out from static data on a class-wide basis.

Note that if you want to guard some other resource from
simultaneous access by multiple threads, you can do so by forcing
access to that resource through synchronized methods.

Synchronizing the counters
Armed with this new keyword it appears that the solution is at
hand: we’ll simply use the synchronized keyword for the methods
in TwoCounter. The following example is the same as the
previous one, with the addition of the new keyword:

//: c14:Sharing2.java
// Using the synchronized keyword to prevent
// multiple access to a particular resource.
// <applet code=Sharing2 width=650 height=500>
// <param name=size value="20">
// <param name=observers value="1">
// </applet>
import javax.swing.*;

Chapter 14: Multiple Threads 887

import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

class TwoCounter2 extends Thread {
private boolean started = false;
private JTextField

t1 = new JTextField(5),
t2 = new JTextField(5);

private JLabel l =
new JLabel("count1 == count2");

private int count1 = 0, count2 = 0;
public TwoCounter2(Container c) {

JPanel p = new JPanel();
p.add(t1);
p.add(t2);
p.add(l);
c.add(p);

}
public void start() {

if(!started) {
started = true;
super.start();

}
}
public synchronized void run() {

while (true) {
t1.setText(Integer.toString(count1++));
t2.setText(Integer.toString(count2++));
try {
sleep(500);

} catch (InterruptedException e){}
}

}
public synchronized void synchTest() {

Sharing2.incrementAccess();
if(count1 != count2)
l.setText("Unsynched");

}
}

class Watcher2 extends Thread {

888 Thinking in Java www.BruceEckel.com

private Sharing2 p;
public Watcher2(Sharing2 p) {

this.p = p;
start();

}
public void run() {

while(true) {
for(int i = 0; i < p.s.length; i++)
p.s[i].synchTest();

try {
sleep(500);

} catch (InterruptedException e){}
}

}
}

public class Sharing2 extends JApplet {
TwoCounter2[] s;
private static int accessCount = 0;
private static JTextField aCount =

new JTextField("0", 7);
public static void incrementAccess() {

accessCount++;
aCount.setText(Integer.toString(accessCount));

}
private JButton

start = new JButton("Start"),
observer = new JButton("Observe");

private boolean isApplet = true;
private int numCounters = 0;
private int numObservers = 0;
public void init() {

if(isApplet) {
numCounters =
Integer.parseInt(getParameter("size"));

numObservers =
Integer.parseInt(

getParameter("observers"));
}
s = new TwoCounter2[numCounters];
Container cp = getContentPane();
cp.setLayout(new FlowLayout());

Chapter 14: Multiple Threads 889

for(int i = 0; i < s.length; i++)
s[i] = new TwoCounter2(cp);

JPanel p = new JPanel();
start.addActionListener(new StartL());
p.add(start);
observer.addActionListener(new ObserverL());
p.add(observer);
p.add(new Label("Access Count"));
p.add(aCount);
cp.add(p);

}
class StartL implements ActionListener {

public void actionPerformed(ActionEvent e) {
for(int i = 0; i < s.length; i++)
s[i].start();

}
}
class ObserverL implements ActionListener {

public void actionPerformed(ActionEvent e) {
for(int i = 0; i < numObservers; i++)
new Watcher2(Sharing2.this);

}
}
public static void main(String[] args) {

Sharing2 applet = new Sharing2();
// This isn't an applet, so set the flag and
// produce the parameter values from args:
applet.isApplet = false;
applet.numCounters =
(args.length == 0 ? 5 :
Integer.parseInt(args[0]));

applet.numObservers =
(args.length < 2 ? 5 :
Integer.parseInt(args[1]));

JFrame frame = new JFrame("Sharing2");
//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);

frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(350, applet.numCounters * 50);
applet.init();
applet.start();
frame.setVisible(true);

890 Thinking in Java www.BruceEckel.com

}
} ///:~

You’ll notice that both run() and synchTest() are
synchronized. If you synchronize only one of the methods, then
the other is free to ignore the object lock and can be called with
impunity. This is an important point: Every method that accesses a
critical shared resource must be synchronized or it won’t work
right.

Now a new issue arises. The Watcher2 can never get a peek at
what’s going on because the entire run() method has been
synchronized, and since run() is always running for each object
the lock is always tied up and synchTest() can never be called.
You can see this because the accessCount never changes.

What we’d like for this example is a way to isolate only part of the
code inside run(). The section of code you want to isolate this way
is called a critical section and you use the synchronized keyword
in a different way to set up a critical section. Java supports critical
sections with the synchronized block; this time synchronized is
used to specify the object whose lock is being used to synchronize
the enclosed code:

synchronized(syncObject) {
// This code can be accessed
// by only one thread at a time

}

Before the synchronized block can be entered, the lock must be
acquired on syncObject. If some other thread already has this
lock, then the block cannot be entered until the lock is given up.

The Sharing2 example can be modified by removing the
synchronized keyword from the entire run() method and
instead putting a synchronized block around the two critical
lines. But what object should be used as the lock? The one that is
already respected by synchTest(), which is the current object
(this)! So the modified run() looks like this:

public void run() {
while (true) {

Chapter 14: Multiple Threads 891

synchronized(this) {
t1.setText(Integer.toString(count1++));
t2.setText(Integer.toString(count2++));

}
try {
sleep(500);

} catch (InterruptedException e){}
}

}

This is the only change that must be made to Sharing2.java, and
you’ll see that while the two counters are never out of synch
(according to when the Watcher is allowed to look at them), there
is still adequate access provided to the Watcher during the
execution of run().

Of course, all synchronization depends on programmer diligence:
every piece of code that can access a shared resource must be
wrapped in an appropriate synchronized block.

Synchronized efficiency
Since having two methods write to the same piece of data never
sounds like a particularly good idea, it might seem to make sense
for all methods to be automatically synchronized and eliminate
the synchronized keyword altogether. (Of course, the example
with a synchronized run() shows that this wouldn’t work
either.) But it turns out that acquiring a lock is not a cheap
operation – it multiplies the cost of a method call (that is, entering
and exiting from the method, not executing the body of the method)
by a minimum of four times, and could be more depending on your
implementation. So if you know that a particular method will not
cause contention problems it is expedient to leave off the
synchronized keyword.

Java Beans revisited
Now that you understand synchronization you can take another
look at Java Beans. Whenever you create a Bean, you must assume
that it will run in a multithreaded environment. This means that:

892 Thinking in Java www.BruceEckel.com

1. Whenever possible, all the public methods of a Bean should
be synchronized. Of course, this incurs the synchronized
runtime overhead. If that’s a problem, methods that will not
cause problems in critical sections can be left un-
synchronized, but keep in mind that this is not always
obvious. Methods that qualify tend to be small (such as
getCircleSize() in the following example) and/or “atomic,”
that is, the method call executes in such a short amount of
code that the object cannot be changed during execution.
Making such methods un-synchronized might not have a
significant effect on the execution speed of your program.
You might as well make all public methods of a Bean
synchronized and remove the synchronized keyword
only when you know for sure that it’s necessary and that it
makes a difference.

2. When firing a multicast event to a bunch of listeners
interested in that event, you must assume that listeners
might be added or removed while moving through the list.

The first point is fairly easy to deal with, but the second point
requires a little more thought. Consider the BangBean.java
example presented in the last chapter. That ducked out of the
multithreading question by ignoring the synchronized keyword
(which hadn’t been introduced yet) and making the event unicast.
Here’s that example modified to work in a multithreaded
environment and to use multicasting for events:

//: c14:BangBean2.java
// You should write your Beans this way so they
// can run in a multithreaded environment.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import com.bruceeckel.swing.*;

public class BangBean2 extends JPanel
implements Serializable {

private int xm, ym;

Chapter 14: Multiple Threads 893

private int cSize = 20; // Circle size
private String text = "Bang!";
private int fontSize = 48;
private Color tColor = Color.red;
private ArrayList actionListeners =

new ArrayList();
public BangBean2() {

addMouseListener(new ML());
addMouseMotionListener(new MM());

}
public synchronized int getCircleSize() {

return cSize;
}
public synchronized void
setCircleSize(int newSize) {

cSize = newSize;
}
public synchronized String getBangText() {

return text;
}
public synchronized void
setBangText(String newText) {

text = newText;
}
public synchronized int getFontSize() {

return fontSize;
}
public synchronized void
setFontSize(int newSize) {

fontSize = newSize;
}
public synchronized Color getTextColor() {

return tColor;
}
public synchronized void
setTextColor(Color newColor) {

tColor = newColor;
}
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.setColor(Color.black);
g.drawOval(xm - cSize/2, ym - cSize/2,

894 Thinking in Java www.BruceEckel.com

cSize, cSize);
}
// This is a multicast listener, which is
// more typically used than the unicast
// approach taken in BangBean.java:
public synchronized void

addActionListener(ActionListener l) {
actionListeners.add(l);

}
public synchronized void

removeActionListener(ActionListener l) {
actionListeners.remove(l);

}
// Notice this isn't synchronized:
public void notifyListeners() {

ActionEvent a =
new ActionEvent(BangBean2.this,
ActionEvent.ACTION_PERFORMED, null);

ArrayList lv = null;
// Make a shallow copy of the vector in case
// someone adds a listener while we're
// calling listeners:
synchronized(this) {
lv = (ArrayList)actionListeners.clone();

}
// Call all the listener methods:
for(int i = 0; i < lv.size(); i++) {
ActionListener al =
(ActionListener)lv.get(i);

al.actionPerformed(a);
}

}
class ML extends MouseAdapter {

public void mousePressed(MouseEvent e) {
Graphics g = getGraphics();
g.setColor(tColor);
g.setFont(
new Font(

"TimesRoman", Font.BOLD, fontSize));
int width =
g.getFontMetrics().stringWidth(text);

g.drawString(text,

Chapter 14: Multiple Threads 895

(getSize().width - width) /2,
getSize().height/2);

g.dispose();
notifyListeners();

}
}
class MM extends MouseMotionAdapter {

public void mouseMoved(MouseEvent e) {
xm = e.getX();
ym = e.getY();
repaint();

}
}
public static void main(String[] args) {

BangBean2 bb = new BangBean2();
bb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
System.out.println("ActionEvent" + e);

}
});
bb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
System.out.println("BangBean2 action");

}
});
bb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
System.out.println("More action");

}
});
JFrame frame = new JFrame("BangBean2 Test");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(bb);
frame.setSize(300,300);
frame.setVisible(true);

}
} ///:~

Adding synchronized to the methods is an easy change. However,
notice in addActionListener() and removeActionListener()

896 Thinking in Java www.BruceEckel.com

that the ActionListeners are now added to and removed from an
ArrayList, so you can have as many as you want.

You can see that the method notifyListeners() is not
synchronized. It can be called from more than one thread at a
time. It’s also possible for addActionListener() or
removeActionListener() to be called in the middle of a call to
notifyListeners(), which is a problem since it traverses the
ArrayList actionListeners. To alleviate the problem, the
ArrayList is cloned inside a synchronized clause and the clone is
traversed. This way the original ArrayList can be manipulated
without impact on notifyListeners().

The paint() method is also not synchronized. Deciding whether
to synchronize overridden methods is not as clear as when you’re
just adding your own methods. In this example it turns out that
paint() seems to work OK whether it’s synchronized or not. But
the issues you must consider are:

1. Does the method modify the state of “critical” variables
within the object? To discover whether the variables are
“critical” you must determine whether they will be read or set
by other threads in the program. (In this case, the reading or
setting is virtually always accomplished via synchronized
methods, so you can just examine those.) In the case of
paint(), no modification takes place.

2. Does the method depend on the state of these “critical”
variables? If a synchronized method modifies a variable
that your method uses, then you might very well want to
make your method synchronized as well. Based on this,
you might observe that cSize is changed by synchronized
methods and therefore paint() should be synchronized.
Here, however, you can ask “What’s the worst thing that will
happen if cSize is changed during a paint()?” When you
see that it’s nothing too bad, and a transient effect at that, it’s
best to leave paint() un-synchronized to prevent the
extra overhead from the synchronized method call.

3. A third clue is to notice whether the base-class version of
paint() is synchronized, which it isn’t. This isn’t an

Chapter 14: Multiple Threads 897

airtight argument, just a clue. In this case, for example, a
field that is changed via synchronized methods (that is
cSize) has been mixed into the paint() formula and might
have changed the situation. Notice, however, that
synchronized doesn’t inherit – that is, if a method is
synchronized in the base class then it is not automatically
synchronized in the derived class overridden version.

The test code in TestBangBean2 has been modified from that in
the previous chapter to demonstrate the multicast ability of
BangBean2 by adding extra listeners.

Blocking
A thread can be in any one of four states:

1. New: the thread object has been created but it hasn’t been
started yet so it cannot run.

2. Runnable: This means that a thread can be run when the
time-slicing mechanism has CPU cycles available for the
thread. Thus, the thread might or might not be running, but
there’s nothing to prevent it from being run if the scheduler
can arrange it; it’s not dead or blocked.

3. Dead: the normal way for a thread to die is by returning from
its run() method. You can also call stop(), but this throws
an exception that’s a subclass of Error (which means you
usually don’t catch it). Remember that throwing an exception
should be a special event and not part of normal program
execution; thus the use of stop() is discouraged (and it’s
deprecated in Java 2). There’s also a destroy() method
(which has never been implemented) that you should never
call if you can avoid it since it’s drastic and doesn’t release
object locks.

4. Blocked: the thread could be run but there’s something that
prevents it. While a thread is in the blocked state the
scheduler will simply skip over it and not give it any CPU

898 Thinking in Java www.BruceEckel.com

time. Until a thread re-enters the runnable state it won’t
perform any operations.

Becoming blocked
The blocked state is the most interesting and is worth further
examination. A thread can become blocked for five reasons:

1. You’ve put the thread to sleep by calling
sleep(milliseconds), in which case it will not be run for
the specified time.

2. You’ve suspended the execution of the thread with
suspend(). It will not become runnable again until the
thread gets the resume() message.

3. You’ve suspended the execution of the thread with wait(). It
will not become runnable again until the thread gets the
notify() or notifyAll() message. (Yes, this looks just like
number 2, but there’s a distinct difference that will be
revealed.)

4. The thread is waiting for some IO to complete.

5. The thread is trying to call a synchronized method on
another object and that object’s lock is not available.

You can also call yield() (a method of the Thread class) to
voluntarily give up the CPU so that other threads can run. However,
the same thing happens if the scheduler decides that your thread
has had enough time and jumps to another thread. That is, nothing
prevents the scheduler from re-starting your thread. When a thread
is blocked, there’s some reason that it cannot continue running.

The following example shows all five ways of becoming blocked. It
all exists in a single file called Blocking.java, but it will be
examined here in discrete pieces. (You’ll notice the “Continued” and
“Continuing” tags that allow the code extraction tool to piece
everything together.) First, the basic framework:

//: c14:Blocking.java
// Demonstrates the various ways a thread

Chapter 14: Multiple Threads 899

// can be blocked.
// <applet code=Blocking width=350 height=550>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import com.bruceeckel.swing.*;

//////////// The basic framework ///////////
class Blockable extends Thread {
private Peeker peeker;
protected JTextField state = new JTextField(30);
protected int i;
public Blockable(Container c) {

c.add(state);
peeker = new Peeker(this, c);

}
public synchronized int read() { return i; }
protected synchronized void update() {

state.setText(getClass().getName()
+ " state: i = " + i);

}
public void stopPeeker() {

// peeker.stop(); Deprecated in Java 1.2
peeker.terminate(); // The preferred approach

}
}

class Peeker extends Thread {
private Blockable b;
private int session;
private JTextField status = new JTextField(30);
private boolean stop = false;
public Peeker(Blockable b, Container c) {

c.add(status);
this.b = b;
start();

}
public void terminate() { stop = true; }
public void run() {

while (!stop) {

900 Thinking in Java www.BruceEckel.com

status.setText(b.getClass().getName()
+ " Peeker " + (++session)
+ "; value = " + b.read());
try {
sleep(100);

} catch (InterruptedException e){}
}

}
} ///:Continued

The Blockable class is meant to be a base class for all the classes in
this example that demonstrate blocking. A Blockable object
contains a TextField called state that is used to display
information about the object. The method that displays this
information is update(). You can see it uses
getClass().getName() to produce the name of the class instead
of just printing it out; this is because update() cannot know the
exact name of the class it is called for, since it will be a class derived
from Blockable.

The indicator of change in Blockable is an int i, which will be
incremented by the run() method of the derived class.

There’s a thread of class Peeker that is started for each Blockable
object, and the Peeker’s job is to watch its associated Blockable
object to see changes in i by calling read() and reporting them in
its status TextField. This is important: Note that read() and
update() are both synchronized, which means they require that
the object lock be free.

Sleeping
The first test in this program is with sleep():

///:Continuing
///////////// Blocking via sleep() ///////////
class Sleeper1 extends Blockable {
public Sleeper1(Container c) { super(c); }
public synchronized void run() {

while(true) {
i++;
update();

Chapter 14: Multiple Threads 901

try {
sleep(1000);

} catch (InterruptedException e){}
}

}
}

class Sleeper2 extends Blockable {
public Sleeper2(Container c) { super(c); }
public void run() {

while(true) {
change();
try {
sleep(1000);

} catch (InterruptedException e){}
}

}
public synchronized void change() {

i++;
update();

}
} ///:Continued

In Sleeper1 the entire run() method is synchronized. You’ll see
that the Peeker associated with this object will run along merrily
until you start the thread, and then the Peeker stops cold. This is
one form of blocking: since Sleeper1.run() is synchronized,
and once the thread starts it’s always inside run(), the method
never gives up the object lock and the Peeker is blocked.

Sleeper2 provides a solution by making run un-synchronized.
Only the change() method is synchronized, which means that
while run() is in sleep(), the Peeker can access the
synchronized method it needs, namely read(). Here you’ll see
that the Peeker continues running when you start the Sleeper2
thread.

Suspending and resuming
The next part of the example introduces the concept of suspension.
The Thread class has a method suspend() to temporarily halt the
thread and resume() that re-starts it at the point it was halted.

902 Thinking in Java www.BruceEckel.com

Presumably, resume() is called by some thread outside the
suspended one, and in this case there’s a separate class called
Resumer that does just that. Each of the classes demonstrating
suspend/resume has an associated resumer:

///:Continuing
/////////// Blocking via suspend() ///////////
class SuspendResume extends Blockable {
public SuspendResume(Container c) {

super(c);
new Resumer(this);

}
}

class SuspendResume1 extends SuspendResume {
public SuspendResume1(Container c) { super(c);}
public synchronized void run() {

while(true) {
i++;
update();
suspend(); // Deprecated in Java 1.2

}
}

}

class SuspendResume2 extends SuspendResume {
public SuspendResume2(Container c) { super(c);}
public void run() {

while(true) {
change();
suspend(); // Deprecated in Java 1.2

}
}
public synchronized void change() {

i++;
update();

}
}

class Resumer extends Thread {
private SuspendResume sr;
public Resumer(SuspendResume sr) {

Chapter 14: Multiple Threads 903

this.sr = sr;
start();

}
public void run() {

while(true) {
try {
sleep(1000);

} catch (InterruptedException e){}
sr.resume(); // Deprecated in Java 1.2

}
}

} ///:Continued

SuspendResume1 also has a synchronized run() method.
Again, when you start this thread you’ll see that its associated
Peeker gets blocked waiting for the lock to become available,
which never happens. This is fixed as before in
SuspendResume2, which does not synchronize the entire
run() method but instead uses a separate synchronized
change() method.

You should be aware that Java 2 deprecates the use of suspend()
and resume(), because suspend() holds the object’s lock and is
thus deadlock-prone. That is, you can easily get a number of locked
objects waiting on each other, and this will cause your program to
freeze. Although you might see them used in older programs you
should not use suspend() and resume(). The proper solution is
described later in this chapter.

Wait and notify
The point with the first two examples is that both sleep() and
suspend() do not release the lock as they are called. You must be
aware of this when working with locks. On the other hand, the
method wait() does release the lock when it is called, which means
that other synchronized methods in the thread object could be
called during a wait(). In the following two classes, you’ll see that
the run() method is fully synchronized in both cases, however,
the Peeker still has full access to the synchronized methods
during a wait(). This is because wait() releases the lock on the
object as it suspends the method it’s called within.

904 Thinking in Java www.BruceEckel.com

You’ll also see that there are two forms of wait(). The first takes an
argument in milliseconds that has the same meaning as in sleep():
pause for this period of time. The difference is that in wait(), the
object lock is released and you can come out of the wait() because
of a notify() as well as having the clock run out.

The second form takes no arguments, and means that the wait()
will continue until a notify() comes along and will not
automatically terminate after a time.

One fairly unique aspect of wait() and notify() is that both
methods are part of the base class Object and not part of Thread
as are sleep(), suspend(), and resume(). Although this seems
a bit strange at first – to have something that’s exclusively for
threading as part of the universal base class – it’s essential because
they manipulate the lock that’s also part of every object. As a result,
you can put a wait() inside any synchronized method,
regardless of whether there’s any threading going on inside that
particular class. In fact, the only place you can call wait() is within
a synchronized method or block. If you call wait() or notify()
within a method that’s not synchronized, the program will
compile, but when you run it you’ll get an
IllegalMonitorStateException with the somewhat non-intuitive
message “current thread not owner.” Note that sleep(),
suspend(), and resume() can all be called within non-
synchronized methods since they don’t manipulate the lock.

You can call wait() or notify() only for your own lock. Again, you
can compile code that tries to use the wrong lock, but it will produce
the same IllegalMonitorStateException message as before. You
can’t fool with someone else’s lock, but you can ask another object
to perform an operation that manipulates its own lock. So one
approach is to create a synchronized method that calls notify()
for its own object. However, in Notifier you’ll see the notify() call
inside a synchronized block:

synchronized(wn2) {
wn2.notify();

}

Chapter 14: Multiple Threads 905

where wn2 is the object of type WaitNotify2. This method, which
is not part of WaitNotify2, acquires the lock on the wn2 object, at
which point it’s legal for it to call notify() for wn2 and you won’t
get the IllegalMonitorStateException.

///:Continuing
/////////// Blocking via wait() ///////////
class WaitNotify1 extends Blockable {
public WaitNotify1(Container c) { super(c); }
public synchronized void run() {

while(true) {
i++;
update();
try {
wait(1000);

} catch (InterruptedException e){}
}

}
}

class WaitNotify2 extends Blockable {
public WaitNotify2(Container c) {

super(c);
new Notifier(this);

}
public synchronized void run() {

while(true) {
i++;
update();
try {
wait();

} catch (InterruptedException e){}
}

}
}

class Notifier extends Thread {
private WaitNotify2 wn2;
public Notifier(WaitNotify2 wn2) {

this.wn2 = wn2;
start();

}

906 Thinking in Java www.BruceEckel.com

public void run() {
while(true) {

try {
sleep(2000);

} catch (InterruptedException e){}
synchronized(wn2) {
wn2.notify();

}
}

}
} ///:Continued

wait() is typically used when you’ve gotten to the point where
you’re waiting for some other condition, under the control of forces
outside your thread, to change and you don’t want to idly wait by
inside the thread. So wait() allows you to put the thread to sleep
while waiting for the world to change, and only when a notify() or
notifyAll() occurs does the thread wake up and check for changes.
Thus, it provides a way to synchronize between threads.

Blocking on IO
If a stream is waiting for some IO activity, it will automatically
block. In the following portion of the example, the two classes work
with generic Reader and Writer objects (using the Java 1.1
Streams), but in the test framework a piped stream will be set up to
allow the two threads to safely pass data to each other (which is the
purpose of piped streams).

The Sender puts data into the Writer and sleeps for a random
amount of time. However, Receiver has no sleep(), suspend(),
or wait(). But when it does a read() it automatically blocks when
there is no more data.

///:Continuing
class Sender extends Blockable { // send
private Writer out;
public Sender(Container c, Writer out) {

super(c);
this.out = out;

}
public void run() {

Chapter 14: Multiple Threads 907

while(true) {
for(char c = 'A'; c <= 'z'; c++) {

try {
i++;
out.write(c);
state.setText("Sender sent: "
+ (char)c);

sleep((int)(3000 * Math.random()));
} catch (InterruptedException e){}

catch (IOException e) {}
}

}
}

}

class Receiver extends Blockable {
private Reader in;
public Receiver(Container c, Reader in) {

super(c);
this.in = in;

}
public void run() {

try {
while(true) {
i++; // Show peeker it's alive
// Blocks until characters are there:
state.setText("Receiver read: "

+ (char)in.read());
}

} catch(IOException e) { e.printStackTrace();}
}

} ///:Continued

Both classes also put information into their state fields and change
i so the Peeker can see that the thread is running.

Testing
The main applet class is surprisingly simple because most of the
work has been put into the Blockable framework. Basically, an
array of Blockable objects is created, and since each one is a
thread, they perform their own activities when you press the “start”

908 Thinking in Java www.BruceEckel.com

button. There’s also a button and actionPerformed() clause to
stop all of the Peeker objects, which provides a demonstration of
the alternative to the deprecated (in Java 2) stop() method of
Thread.

To set up a connection between the Sender and Receiver objects,
a PipedWriter and PipedReader are created. Note that the
PipedReader in must be connected to the PipedWriter out via
a constructor argument. After that, anything that’s placed in out
can later be extracted from in, as if it passed through a pipe (hence
the name). The in and out objects are then passed to the Receiver
and Sender constructors, respectively, which treat them as
Reader and Writer objects of any type (that is, they are upcast).

The array of Blockable handles b is not initialized at its point of
definition because the piped streams cannot be set up before that
definition takes place (the need for the try block prevents this).

///:Continuing
/////////// Testing Everything ///////////
public class Blocking extends JApplet {
private JButton

start = new JButton("Start"),
stopPeekers = new JButton("Stop Peekers");

private boolean started = false;
private Blockable[] b;
private PipedWriter out;
private PipedReader in;
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
out = new PipedWriter();
try {
in = new PipedReader(out);

} catch(IOException e) {}
b = new Blockable[] {
new Sleeper1(cp),
new Sleeper2(cp),
new SuspendResume1(cp),
new SuspendResume2(cp),
new WaitNotify1(cp),

Chapter 14: Multiple Threads 909

new WaitNotify2(cp),
new Sender(cp, out),
new Receiver(cp, in)

};
start.addActionListener(new StartL());
cp.add(start);
stopPeekers.addActionListener(
new StopPeekersL());

cp.add(stopPeekers);
}
class StartL implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(!started) {
started = true;
for(int i = 0; i < b.length; i++)

b[i].start();
}

}
}
class StopPeekersL implements ActionListener {

public void actionPerformed(ActionEvent e) {
// Demonstration of the preferred
// alternative to Thread.stop():
for(int i = 0; i < b.length; i++)
b[i].stopPeeker();

}
}
public static void main(String[] args) {

JApplet applet = new Blocking();
JFrame frame = new JFrame("Blocking");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(350,550);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

In init(), notice the loop that moves through the entire array and
adds the state and peeker.status text fields to the page.

910 Thinking in Java www.BruceEckel.com

When the Blockable threads are initially created, each one
automatically creates and starts its own Peeker. So you’ll see the
Peekers running before the Blockable threads are started. This is
essential, as some of the Peekers will get blocked and stop when
the Blockable threads start, and it’s essential to see this to
understand that particular aspect of blocking.

Deadlock
Because threads can become blocked and because objects can have
synchronized methods that prevent threads from accessing that
object until the synchronization lock is released, it’s possible for one
thread to get stuck waiting for another thread, which in turn waits
for another thread, etc., until the chain leads back to a thread
waiting on the first one. Thus, there’s a continuous loop of threads
waiting on each other and no one can move. This is called deadlock.
The claim is that it doesn’t happen that often, but when it happens
to you it’s frustrating to debug.

There is no language support to help prevent deadlock; it’s up to
you to avoid it by careful design. These are not comforting words to
the person who’s trying to debug a deadlocking program.

The deprecation of stop(), suspend(),
resume(), and destroy() in Java 2

One change that has been made in Java 2 to reduce the possibility of
deadlock is the deprecation of Thread’s stop(), suspend(),
resume(), and destroy() methods.

The reason that the stop() method is deprecated is because it is
unsafe. It releases all the locks that the thread had acquired, and if
the objects are in an inconsistent state (“damaged”) other threads
can view and modify them in that state. The resulting problems can
be subtle and difficult to detect. Instead of using stop(), you
should follow the example in Blocking.java and use a flag to tell
the thread when to terminate itself by exiting its run() method.

There are times when a thread blocks, such as when it is waiting for
input, and it cannot poll a flag as it does in Blocking.java. In these

Chapter 14: Multiple Threads 911

cases, you still shouldn’t use stop(), but instead you can use the
interrupt() method in Thread to break out of the blocked code:

//: c14:Interrupt.java
// The alternative approach to using stop()
// when a thread is blocked.
// <applet code=Interrupt width=200 height=100>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

class Blocked extends Thread {
public synchronized void run() {

try {
wait(); // Blocks

} catch(InterruptedException e) {
System.out.println("InterruptedException");

}
System.out.println("Exiting run()");

}
}

public class Interrupt extends JApplet {
private JButton

interrupt = new JButton("Interrupt");
private Blocked blocked = new Blocked();
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(interrupt);
interrupt.addActionListener(
new ActionListener() {
public
void actionPerformed(ActionEvent e) {

System.out.println("Button pressed");
if(blocked == null) return;
Thread remove = blocked;
blocked = null; // to release it
remove.interrupt();

}

912 Thinking in Java www.BruceEckel.com

});
blocked.start();

}
public static void main(String[] args) {

JApplet applet = new Interrupt();
JFrame frame = new JFrame("Interrupt");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(200,100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

The wait() inside Blocked.run() produces the blocked thread.
When you press the button, the blocked handle is set to null so
the garbage collector will clean it up, and then the object’s
interrupt() method is called. The first time you press the button
you’ll see that the thread quits, but after that there’s no thread to
kill so you just see that the button has been pressed.

The suspend() and resume() methods turn out to be inherently
deadlock-prone. When you call suspend(), the target thread stops
but it still holds any locks that it has acquired up to that point. So
no other thread can access the locked resources until the thread is
resumed. Any thread that wants to resume the target thread and
also tries to use any of the locked resources produces deadlock. You
should not use suspend() and resume(), but instead put a flag
in your Thread class to indicate whether the thread should be
active or suspended. If the flag indicates that the thread is
suspended, the thread goes into a wait using wait(). When the flag
indicates that the thread should be resumed the thread is restarted
with notify(). An example can be produced by modifying
Counter2.java. Although the effect is similar, you’ll notice that
the code organization is quite different – anonymous inner classes
are used for all of the listeners and the Thread is an inner class,
which makes programming slightly more convenient since it
eliminates some of the extra bookkeeping necessary in
Counter2.java:

Chapter 14: Multiple Threads 913

//: c14:Suspend.java
// The alternative approach to using suspend()
// and resume(), which have been deprecated.
// in Java 2
// <applet code=Suspend width=300 height=100>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class Suspend extends JApplet {
private JTextField t = new JTextField(10);
private JButton

suspend = new JButton("Suspend"),
resume = new JButton("Resume");

class Suspendable extends Thread {
private int count = 0;
private boolean suspended = false;
public Suspendable() { start(); }
public void fauxSuspend() {
suspended = true;

}
public synchronized void fauxResume() {
suspended = false;
notify();

}
public void run() {
while (true) {
try {

sleep(100);
synchronized(this) {
while(suspended)

wait();
}

} catch (InterruptedException e){}
t.setText(Integer.toString(count++));

}
}

}
private Suspendable ss = new Suspendable();
public void init() {

914 Thinking in Java www.BruceEckel.com

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(t);
suspend.addActionListener(
new ActionListener() {
public
void actionPerformed(ActionEvent e) {

ss.fauxSuspend();
}

});
cp.add(suspend);
resume.addActionListener(
new ActionListener() {
public
void actionPerformed(ActionEvent e) {

ss.fauxResume();
}

});
cp.add(resume);

}
public static void main(String[] args) {

JApplet applet = new Suspend();
JFrame frame = new JFrame("Suspend");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(300,100);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

The flag suspended inside Suspendable is used to turn
suspension on and off. To suspend, the flag is set to true by calling
fauxSuspend() and this is detected inside run(). The wait(), as
described earlier in this chapter, must be synchronized so that it
has the object lock. In fauxResume(), the suspended flag is set
to false and notify() is called – since this wakes up wait() inside
a synchronized clause the fauxResume() method must also be
synchronized so that it acquires the lock before calling notify()

Chapter 14: Multiple Threads 915

(thus the lock is available for the wait() to wake up with). If you
follow the style shown in this program you can avoid using
suspend() and resume().

The destroy() method of Thread has never been implemented;
it’s like a suspend() that cannot resume, so it has the same
deadlock issues as suspend(). However, this is not a deprecated
method and it might be implemented in a future version of Java
(after 2) for special situations in which the risk of a deadlock is
acceptable.

You might wonder why these methods, now deprecated, were
included in Java in the first place. It seems a clear admission of a
rather significant mistake to simply remove them outright (and
pokes yet another hole in the arguments for Java’s exceptional
design and infallibility touted by Sun marketing people). The
heartening part about the change is that it clearly indicates that the
technical people and not the marketing people are running the show
– they discovered a problem and they are fixing it. I find this much
more promising and hopeful than leaving the problem in because
fixing it would admit an error. It means that Java will continue to
improve, even if it means a little discomfort on the part of Java
programmers. I’d rather deal with the discomfort than watch the
language stagnate.

Priorities
The priority of a thread tells the scheduler how important this
thread is. If there are a number of threads blocked and waiting to be
run, the scheduler will run the one with the highest priority first.
However, this doesn’t mean that threads with lower priority don’t
get run (that is, you can’t get deadlocked because of priorities).
Lower priority threads just tend to run less often.

You can read the priority of a thread with getPriority() and
change it with setPriority(). The form of the prior “counter”
examples can be used to show the effect of changing the priorities.
In this applet you’ll see that the counters slow down as the
associated threads have their priorities lowered:

916 Thinking in Java www.BruceEckel.com

//: c14:Counter5.java
// Adjusting the priorities of threads.
// <applet code=Counter5 width=450 height=600>
// </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

class Ticker2 extends Thread {
private JButton

b = new JButton("Toggle"),
incPriority = new JButton("up"),
decPriority = new JButton("down");

private JTextField
t = new JTextField(10),
pr = new JTextField(3); // Display priority

private int count = 0;
private boolean runFlag = true;
public Ticker2(Container c) {

b.addActionListener(new ToggleL());
incPriority.addActionListener(new UpL());
decPriority.addActionListener(new DownL());
JPanel p = new JPanel();
p.add(t);
p.add(pr);
p.add(b);
p.add(incPriority);
p.add(decPriority);
c.add(p);

}
class ToggleL implements ActionListener {

public void actionPerformed(ActionEvent e) {
runFlag = !runFlag;

}
}
class UpL implements ActionListener {

public void actionPerformed(ActionEvent e) {
int newPriority = getPriority() + 1;
if(newPriority > Thread.MAX_PRIORITY)
newPriority = Thread.MAX_PRIORITY;

setPriority(newPriority);

Chapter 14: Multiple Threads 917

}
}
class DownL implements ActionListener {

public void actionPerformed(ActionEvent e) {
int newPriority = getPriority() - 1;
if(newPriority < Thread.MIN_PRIORITY)
newPriority = Thread.MIN_PRIORITY;

setPriority(newPriority);
}

}
public void run() {

while (true) {
if(runFlag) {
t.setText(Integer.toString(count++));
pr.setText(

Integer.toString(getPriority()));
}
yield();

}
}

}

public class Counter5 extends JApplet {
private JButton

start = new JButton("Start"),
upMax = new JButton("Inc Max Priority"),
downMax = new JButton("Dec Max Priority");

private boolean started = false;
private static final int SIZE = 10;
private Ticker2[] s = new Ticker2[SIZE];
private TextField mp = new TextField(3);
public void init() {

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
for(int i = 0; i < s.length; i++)
s[i] = new Ticker2(cp);

cp.add(new JLabel(
"MAX_PRIORITY = " + Thread.MAX_PRIORITY));

cp.add(new JLabel("MIN_PRIORITY = "
+ Thread.MIN_PRIORITY));

cp.add(new JLabel("Group Max Priority = "));
cp.add(mp);

918 Thinking in Java www.BruceEckel.com

cp.add(start);
cp.add(upMax);
cp.add(downMax);
start.addActionListener(new StartL());
upMax.addActionListener(new UpMaxL());
downMax.addActionListener(new DownMaxL());
showMaxPriority();
// Recursively display parent thread groups:
ThreadGroup parent =
s[0].getThreadGroup().getParent();

while(parent != null) {
cp.add(new Label(
"Parent threadgroup max priority = "
+ parent.getMaxPriority()));

parent = parent.getParent();
}

}
public void showMaxPriority() {

mp.setText(Integer.toString(
s[0].getThreadGroup().getMaxPriority()));

}
class StartL implements ActionListener {

public void actionPerformed(ActionEvent e) {
if(!started) {
started = true;
for(int i = 0; i < s.length; i++)

s[i].start();
}

}
}
class UpMaxL implements ActionListener {

public void actionPerformed(ActionEvent e) {
int maxp =
s[0].getThreadGroup().getMaxPriority();

if(++maxp > Thread.MAX_PRIORITY)
maxp = Thread.MAX_PRIORITY;

s[0].getThreadGroup().setMaxPriority(maxp);
showMaxPriority();

}
}
class DownMaxL implements ActionListener {

public void actionPerformed(ActionEvent e) {

Chapter 14: Multiple Threads 919

int maxp =
s[0].getThreadGroup().getMaxPriority();

if(--maxp < Thread.MIN_PRIORITY)
maxp = Thread.MIN_PRIORITY;

s[0].getThreadGroup().setMaxPriority(maxp);
showMaxPriority();

}
}
public static void main(String[] args) {

JApplet applet = new Counter5();
JFrame frame = new JFrame("Counter5");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.getContentPane().add(applet);
frame.setSize(450, 600);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

Ticker2 follows the form established earlier in this chapter, but
there’s an extra TextField for displaying the priority of the thread
and two more buttons for incrementing and decrementing the
priority.

Also notice the use of yield(), which voluntarily hands control
back to the scheduler. Without this the multithreading mechanism
still works, but you’ll notice it runs slowly (try removing the call to
yield()!). You could also call sleep(), but then the rate of
counting would be controlled by the sleep() duration instead of
the priority.

The init() in Counter5 creates an array of 10 Ticker2s; their
buttons and fields are placed on the form by the Ticker2
constructor. Counter5 adds buttons to start everything up as well
as increment and decrement the maximum priority of the
threadgroup. In addition, there are labels that display the maximum
and minimum priorities possible for a thread and a TextField to
show the thread group’s maximum priority. (The next section will

920 Thinking in Java www.BruceEckel.com

fully describe thread groups.) Finally, the priorities of the parent
thread groups are also displayed as labels.

When you press an “up” or “down” button, that Ticker2’s priority
is fetched and incremented or decremented accordingly.

When you run this program, you’ll notice several things. First of all,
the thread group’s default priority is 5. Even if you decrement the
maximum priority below 5 before starting the threads (or before
creating the threads, which requires a code change), each thread
will have a default priority of 5.

The simple test is to take one counter and decrement its priority to
one, and observe that it counts much slower. But now try to
increment it again. You can get it back up to the thread group’s
priority, but no higher. Now decrement the thread group’s priority a
couple of times. The thread priorities are unchanged, but if you try
to modify them either up or down you’ll see that they’ll
automatically pop to the priority of the thread group. Also, new
threads will still be given a default priority, even if that’s higher
than the group priority. (Thus the group priority is not a way to
prevent new threads from having higher priorities than existing
ones.)

Finally, try to increment the group maximum priority. It can’t be
done. You can only reduce thread group maximum priorities, not
increase them.

Thread groups
All threads belong to a thread group. This can be either the default
thread group or a group you explicitly specify when you create the
thread. At creation, the thread is bound to a group and cannot
change to a different group. Each application has at least one thread
that belongs to the system thread group. If you create more threads
without specifying a group, they will also belong to the system
thread group.

Thread groups must also belong to other thread groups. The thread
group that a new one belongs to must be specified in the
constructor. If you create a thread group without specifying a

Chapter 14: Multiple Threads 921

thread group for it to belong to, it will be placed under the system
thread group. Thus, all thread groups in your application will
ultimately have the system thread group as the parent.

The reason for the existence of thread groups is hard to determine
from the literature, which tends to be confusing on this subject. It’s
often cited as “security reasons.” According to Arnold & Gosling,1
“Threads within a thread group can modify the other threads in the
group, including any farther down the hierarchy. A thread cannot
modify threads outside of its own group or contained groups.” It’s
hard to know what “modify” is supposed to mean here. The
following example shows a thread in a “leaf” subgroup modifying
the priorities of all the threads in its tree of thread groups as well as
calling a method for all the threads in its tree.

//: c14:TestAccess.java
// How threads can access other threads
// in a parent thread group.

public class TestAccess {
public static void main(String[] args) {

ThreadGroup
x = new ThreadGroup("x"),
y = new ThreadGroup(x, "y"),
z = new ThreadGroup(y, "z");

Thread
one = new TestThread1(x, "one"),
two = new TestThread2(z, "two");

}
}

class TestThread1 extends Thread {
private int i;
TestThread1(ThreadGroup g, String name) {

super(g, name);
}
void f() {

1 The Java Programming Language, by Ken Arnold and James Gosling, Addison-Wesley
1996 pp 179.

922 Thinking in Java www.BruceEckel.com

i++; // modify this thread
System.out.println(getName() + " f()");

}
}

class TestThread2 extends TestThread1 {
TestThread2(ThreadGroup g, String name) {

super(g, name);
start();

}
public void run() {

ThreadGroup g =
getThreadGroup().getParent().getParent();

g.list();
Thread[] gAll = new Thread[g.activeCount()];
g.enumerate(gAll);
for(int i = 0; i < gAll.length; i++) {
gAll[i].setPriority(Thread.MIN_PRIORITY);
((TestThread1)gAll[i]).f();

}
g.list();

}
} ///:~

In main(), several ThreadGroups are created, leafing off from
each other: x has no argument but its name (a String), so it is
automatically placed in the “system” thread group, while y is under
x and z is under y. Note that initialization happens in textual order
so this code is legal.

Two threads are created and placed in different thread groups.
TestThread1 doesn’t have a run() method but it does have an
f() that modifies the thread and prints something so you can see it
was called. TestThread2 is a subclass of TestThread1 and its
run() is fairly elaborate. It first gets the thread group of the
current thread, then moves up the heritage tree by two levels using
getParent(). (This is contrived since I purposely place the
TestThread2 object two levels down in the hierarchy.) At this
point, an array of handles to Threads is created using the method
activeCount() to ask how many threads are in this thread group
and all the child thread groups. The enumerate() method places

Chapter 14: Multiple Threads 923

handles to all of these threads in the array gAll, then I simply move
through the entire array calling the f() method for each thread, as
well as modifying the priority. Thus, a thread in a “leaf” thread
group modifies threads in parent thread groups.

The debugging method list() prints all the information about a
thread group to standard output and is helpful when investigating
thread group behavior. Here’s the output of the program:

java.lang.ThreadGroup[name=x,maxpri=10]
Thread[one,5,x]
java.lang.ThreadGroup[name=y,maxpri=10]

java.lang.ThreadGroup[name=z,maxpri=10]
Thread[two,5,z]

one f()
two f()
java.lang.ThreadGroup[name=x,maxpri=10]

Thread[one,1,x]
java.lang.ThreadGroup[name=y,maxpri=10]

java.lang.ThreadGroup[name=z,maxpri=10]
Thread[two,1,z]

Not only does list() print the class name of ThreadGroup or
Thread, but it also prints the thread group name and its maximum
priority. For threads, the thread name is printed, followed by the
thread priority and the group that it belongs to. Note that list()
indents the threads and thread groups to indicate that they are
children of the un-indented thread group.

You can see that f() is called by the TestThread2 run() method,
so it’s obvious that all threads in a group are vulnerable. However,
you can access only the threads that branch off from your own
system thread group tree, and perhaps this is what is meant by
“safety.” You cannot access anyone else’s system thread group tree.

Controlling thread groups
Putting aside the safety issue, one thing thread groups do seem to
be useful for is control: you can perform certain operations on an
entire thread group with a single command. The following example
demonstrates this and the restrictions on priorities within thread

924 Thinking in Java www.BruceEckel.com

groups. The commented numbers in parentheses provide a
reference to compare to the output.

//: c14:ThreadGroup1.java
// How thread groups control priorities
// of the threads inside them.

public class ThreadGroup1 {
public static void main(String[] args) {

// Get the system thread & print its Info:
ThreadGroup sys =
Thread.currentThread().getThreadGroup();

sys.list(); // (1)
// Reduce the system thread group priority:
sys.setMaxPriority(Thread.MAX_PRIORITY - 1);
// Increase the main thread priority:
Thread curr = Thread.currentThread();
curr.setPriority(curr.getPriority() + 1);
sys.list(); // (2)
// Attempt to set a new group to the max:
ThreadGroup g1 = new ThreadGroup("g1");
g1.setMaxPriority(Thread.MAX_PRIORITY);
// Attempt to set a new thread to the max:
Thread t = new Thread(g1, "A");
t.setPriority(Thread.MAX_PRIORITY);
g1.list(); // (3)
// Reduce g1's max priority, then attempt
// to increase it:
g1.setMaxPriority(Thread.MAX_PRIORITY - 2);
g1.setMaxPriority(Thread.MAX_PRIORITY);
g1.list(); // (4)
// Attempt to set a new thread to the max:
t = new Thread(g1, "B");
t.setPriority(Thread.MAX_PRIORITY);
g1.list(); // (5)
// Lower the max priority below the default
// thread priority:
g1.setMaxPriority(Thread.MIN_PRIORITY + 2);
// Look at a new thread's priority before
// and after changing it:
t = new Thread(g1, "C");
g1.list(); // (6)

Chapter 14: Multiple Threads 925

t.setPriority(t.getPriority() -1);
g1.list(); // (7)
// Make g2 a child Threadgroup of g1 and
// try to increase its priority:
ThreadGroup g2 = new ThreadGroup(g1, "g2");
g2.list(); // (8)
g2.setMaxPriority(Thread.MAX_PRIORITY);
g2.list(); // (9)
// Add a bunch of new threads to g2:
for (int i = 0; i < 5; i++)
new Thread(g2, Integer.toString(i));

// Show information about all threadgroups
// and threads:
sys.list(); // (10)
System.out.println("Starting all threads:");
Thread[] all = new Thread[sys.activeCount()];
sys.enumerate(all);
for(int i = 0; i < all.length; i++)
if(!all[i].isAlive())
all[i].start();

// Suspends & Stops all threads in
// this group and its subgroups:
System.out.println("All threads started");
sys.suspend(); // Deprecated in Java 2
// Never gets here...
System.out.println("All threads suspended");
sys.stop(); // Deprecated in Java 2
System.out.println("All threads stopped");

}
} ///:~

The output that follows has been edited to allow it to fit on the page
(the java.lang. has been removed) and to add numbers to
correspond to the commented numbers in the listing above.

(1) ThreadGroup[name=system,maxpri=10]
Thread[main,5,system]

(2) ThreadGroup[name=system,maxpri=9]
Thread[main,6,system]

(3) ThreadGroup[name=g1,maxpri=9]
Thread[A,9,g1]

(4) ThreadGroup[name=g1,maxpri=8]

926 Thinking in Java www.BruceEckel.com

Thread[A,9,g1]
(5) ThreadGroup[name=g1,maxpri=8]

Thread[A,9,g1]
Thread[B,8,g1]

(6) ThreadGroup[name=g1,maxpri=3]
Thread[A,9,g1]
Thread[B,8,g1]
Thread[C,6,g1]

(7) ThreadGroup[name=g1,maxpri=3]
Thread[A,9,g1]
Thread[B,8,g1]
Thread[C,3,g1]

(8) ThreadGroup[name=g2,maxpri=3]
(9) ThreadGroup[name=g2,maxpri=3]
(10)ThreadGroup[name=system,maxpri=9]

Thread[main,6,system]
ThreadGroup[name=g1,maxpri=3]
Thread[A,9,g1]
Thread[B,8,g1]
Thread[C,3,g1]
ThreadGroup[name=g2,maxpri=3]

Thread[0,6,g2]
Thread[1,6,g2]
Thread[2,6,g2]
Thread[3,6,g2]
Thread[4,6,g2]

Starting all threads:
All threads started

All programs have at least one thread running, and the first action
in main() is to call the static method of Thread called
currentThread(). From this thread, the thread group is produced
and list() is called for the result. The output is:

(1) ThreadGroup[name=system,maxpri=10]
Thread[main,5,system]

You can see that the name of the main thread group is system, and
the name of the main thread is main, and it belongs to the system
thread group.

Chapter 14: Multiple Threads 927

The second exercise shows that the system group’s maximum
priority can be reduced and the main thread can have its priority
increased:

(2) ThreadGroup[name=system,maxpri=9]
Thread[main,6,system]

The third exercise creates a new thread group, g1, which
automatically belongs to the system thread group since it isn’t
otherwise specified. A new thread A is placed in g1. After
attempting to set this group’s maximum priority to the highest level
and A’s priority to the highest level, the result is:

(3) ThreadGroup[name=g1,maxpri=9]
Thread[A,9,g1]

Thus, it’s not possible to change the thread group’s maximum
priority to be higher than its parent thread group.

The fourth exercise reduces g1’s maximum priority by two and then
tries to increase it up to Thread.MAX_PRIORITY. The result is:

(4) ThreadGroup[name=g1,maxpri=8]
Thread[A,9,g1]

You can see that the increase in maximum priority didn’t work. You
can only decrease a thread group’s maximum priority, not increase
it. Also, notice that thread A’s priority didn’t change, and now it is
higher than the thread group’s maximum priority. Changing a
thread group’s maximum priority doesn’t affect existing threads.

The fifth exercise attempts to set a new thread to maximum
priority:

(5) ThreadGroup[name=g1,maxpri=8]
Thread[A,9,g1]
Thread[B,8,g1]

The new thread cannot be changed to anything higher than the
maximum thread group priority.

The default thread priority for this program is 6; that’s the priority a
new thread will be created at and where it will stay if you don’t
manipulate the priority. Exercise six lowers the maximum thread

928 Thinking in Java www.BruceEckel.com

group priority below the default thread priority to see what happens
when you create a new thread under this condition:

(6) ThreadGroup[name=g1,maxpri=3]
Thread[A,9,g1]
Thread[B,8,g1]
Thread[C,6,g1]

Even though the maximum priority of the thread group is 3, the
new thread is still created using the default priority of 6. Thus,
maximum thread group priority does not affect default priority. (In
fact, there appears to be no way to set the default priority for new
threads.)

After changing the priority, attempting to decrement it by one, the
result is:

(7) ThreadGroup[name=g1,maxpri=3]
Thread[A,9,g1]
Thread[B,8,g1]
Thread[C,3,g1]

Only when you attempt to change the priority is the thread group’s
maximum priority enforced.

A similar experiment is performed in (8) and (9), in which a new
thread group g2 is created as a child of g1 and its maximum priority
is changed. You can see that it’s impossible for g2’s maximum to go
higher than g1’s:

(8) ThreadGroup[name=g2,maxpri=3]
(9) ThreadGroup[name=g2,maxpri=3]

Also notice that g2 is automatically set to the thread group
maximum priority of g1 as g2 is created.

After all of these experiments, the entire system of thread groups
and threads is printed out:

(10)ThreadGroup[name=system,maxpri=9]
Thread[main,6,system]
ThreadGroup[name=g1,maxpri=3]
Thread[A,9,g1]
Thread[B,8,g1]

Chapter 14: Multiple Threads 929

Thread[C,3,g1]
ThreadGroup[name=g2,maxpri=3]

Thread[0,6,g2]
Thread[1,6,g2]
Thread[2,6,g2]
Thread[3,6,g2]
Thread[4,6,g2]

So because of the rules of thread groups, a child group must always
have a maximum priority that’s less than or equal to its parent’s
maximum priority.

The last part of this program demonstrates methods for an entire
group of threads. First the program moves through the entire tree of
threads and starts each one that hasn’t been started. For drama, the
system group is then suspended and finally stopped. (Although it’s
interesting to see that suspend() and stop() work on entire
thread groups, you should keep in mind that these methods are
deprecated in Java 2.) But when you suspend the system group
you also suspend the main thread and the whole program shuts
down, so it never gets to the point where the threads are stopped.
Actually, if you do stop the main thread it throws a ThreadDeath
exception, so this is not a typical thing to do. Since ThreadGroup
is inherited from Object, which contains the wait() method, you
can also choose to suspend the program for any number of seconds
by calling wait(seconds * 1000). This must acquire the lock
inside a synchronized block, of course.

The ThreadGroup class also has suspend() and resume()
methods so you can stop and start an entire thread group and all of
its threads and subgroups with a single command. (Again,
suspend() and resume() are deprecated in Java 2.)

Thread groups can seem a bit mysterious at first, but keep in mind
that you probably won’t be using them directly very often.

Runnable revisited
Earlier in this chapter, I suggested that you think carefully before
making an applet or main Frame as an implementation of

930 Thinking in Java www.BruceEckel.com

Runnable. If you take that approach, you can make only one of
those threads in your program. This limits your flexibility if you
decide that you want to have more than one thread of that type.

Of course, if you must inherit from a class and you want to add
threading behavior to the class, Runnable is the correct solution.
The final example in this chapter exploits this by making a
Runnable Canvas class that paints different colors on itself. This
application is set up to take values from the command line to
determine how big the grid of colors is and how long to sleep()
between color changes. By playing with these values you’ll discover
some interesting and possibly inexplicable features of threads:

//: c14:ColorBoxes.java
// Using the Runnable interface.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

class CBox extends JPanel implements Runnable {
private Thread t;
private int pause;
private static final Color[] colors = {

Color.black, Color.blue, Color.cyan,
Color.darkGray, Color.gray, Color.green,
Color.lightGray, Color.magenta,
Color.orange, Color.pink, Color.red,
Color.white, Color.yellow

};
private Color cColor = newColor();
private static final Color newColor() {

return colors[
(int)(Math.random() * colors.length)

];
}
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.setColor(cColor);
Dimension s = getSize();
g.fillRect(0, 0, s.width, s.height);

Chapter 14: Multiple Threads 931

}
public CBox(int pause) {

this.pause = pause;
t = new Thread(this);
t.start();

}
public void run() {

while(true) {
cColor = newColor();
repaint();
try {
t.sleep(pause);

} catch(InterruptedException e) {}
}

}
}

public class ColorBoxes extends JFrame {
public ColorBoxes(int pause, int grid) {

setTitle("ColorBoxes");
Container cp = getContentPane();
cp.setLayout(new GridLayout(grid, grid));
for (int i = 0; i < grid * grid; i++)
cp.add(new CBox(pause));

//#setDefaultCloseOperation(EXIT_ON_CLOSE);
addWindowListener(new WClose()); // 1.2

}
public static void main(String[] args) {

int pause = 50;
int grid = 8;
if(args.length > 0)
pause = Integer.parseInt(args[0]);

if(args.length > 1)
grid = Integer.parseInt(args[1]);

JFrame frame = new ColorBoxes(pause, grid);
frame.setSize(500, 400);
frame.setVisible(true);

}
} ///:~

ColorBoxes is a typical application with a constructor that sets up
the GUI. This constructor takes an argument of int grid to set up

932 Thinking in Java www.BruceEckel.com

the GridLayout so that it has grid cells in each dimension. Then it
adds the appropriate number of CBox objects to fill the grid,
passing the pause value to each one. In main() you can see how
pause and grid have default values that can be changed if you pass
in command-line arguments.

CBox is where all the work takes place. This is inherited from
Canvas and it implements the Runnable interface so each
Canvas can also be a Thread. Remember that when you
implement Runnable, you don’t make a Thread object, just a
class that has a run() method. Thus, you must explicitly create a
Thread object and hand the Runnable object to the constructor,
then call start() (this happens in the constructor). In CBox this
thread is called t.

Notice the array colors, which is an enumeration of all the colors in
class Color. This is used in newColor() to produce a randomly-
selected color. The current cell color is cColor.

paint() is quite simple – it just sets the color to cColor and fills
the entire canvas with that color.

In run(), you see the infinite loop that sets the cColor to a new
random color and then calls repaint() to show it. Then the thread
goes to sleep() for the amount of time specified on the command
line.

Precisely because this design is flexible and threading is tied to each
Canvas element, you can experiment by making as many threads
as you want. (In reality, there is a restriction imposed by the
number of threads your JVM can comfortably handle.)

This program also makes an interesting benchmark, since it can
show dramatic speed differences between one JVM implementation
and another.

Too many threads
At some point, you’ll find that ColorBoxes bogs down. On my
machine, this occurred somewhere after a 10 x 10 grid. Why does
this happen? You’re naturally suspicious that Swing might have

Chapter 14: Multiple Threads 933

something to do with it, so here’s an example that tests that premise
by making fewer threads. The code is reorganized so that an
ArrayList implements Runnable and that ArrayList holds a
number of color blocks and randomly chooses ones to update. Then
a number of these ArrayList objects are created, depending
roughly on the grid dimension you choose. As a result, you have far
fewer threads than color blocks, so if there’s a speedup we’ll know it
was because there were too many threads in the previous example:

//: c14:ColorBoxes2.java
// Balancing thread use.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

class CBox2 extends JPanel {
private static final Color[] colors = {

Color.black, Color.blue, Color.cyan,
Color.darkGray, Color.gray, Color.green,
Color.lightGray, Color.magenta,
Color.orange, Color.pink, Color.red,
Color.white, Color.yellow

};
private Color cColor = newColor();
private static final Color newColor() {

return colors[
(int)(Math.random() * colors.length)

];
}
void nextColor() {

cColor = newColor();
repaint();

}
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.setColor(cColor);
Dimension s = getSize();
g.fillRect(0, 0, s.width, s.height);

}

934 Thinking in Java www.BruceEckel.com

}

class CBoxVector
extends ArrayList implements Runnable {
private Thread t;
private int pause;
public CBoxVector(int pause) {

this.pause = pause;
t = new Thread(this);

}
public void go() { t.start(); }
public void run() {

while(true) {
int i = (int)(Math.random() * size());
((CBox2)get(i)).nextColor();
try {
t.sleep(pause);

} catch(InterruptedException e) {}
}

}
public Object last() { return get(size() - 1);}

}

public class ColorBoxes2 extends JFrame {
private CBoxVector[] v;
public ColorBoxes2(int pause, int grid) {

setTitle("ColorBoxes2");
Container cp = getContentPane();
cp.setLayout(new GridLayout(grid, grid));
v = new CBoxVector[grid];
for(int i = 0; i < grid; i++)
v[i] = new CBoxVector(pause);

for (int i = 0; i < grid * grid; i++) {
v[i % grid].add(new CBox2());
cp.add((CBox2)v[i % grid].last());

}
for(int i = 0; i < grid; i++)
v[i].go();

//#setDefaultCloseOperation(EXIT_ON_CLOSE);
addWindowListener(new WClose()); // 1.2

}
public static void main(String[] args) {

Chapter 14: Multiple Threads 935

// Shorter default pause than ColorBoxes:
int pause = 5;
int grid = 8;
if(args.length > 0)
pause = Integer.parseInt(args[0]);

if(args.length > 1)
grid = Integer.parseInt(args[1]);

JFrame frame = new ColorBoxes2(pause, grid);
frame.setSize(500, 400);
frame.setVisible(true);

}
} ///:~

In ColorBoxes2 an array of CBoxVector is created and
initialized to hold grid CBoxVectors, each of which knows how
long to sleep. An equal number of CBox2 objects is then added to
each CBoxVector, and each vector is told to go(), which starts its
thread.

CBox2 is similar to CBox: it paints itself with a randomly-chosen
color. But that’s all a CBox2 does. All of the threading has been
moved into CBoxVector.

The CBoxVector could also have inherited Thread and had a
member object of type ArrayList. That design has the advantage
that the add() and get() methods could then be given specific
argument and return value types instead of generic Objects. (Their
names could also be changed to something shorter.) However, the
design used here seemed at first glance to require less code. In
addition, it automatically retains all the other behaviors of an
ArrayList. With all the casting and parentheses necessary for
get(), this might not be the case as your body of code grows.

As before, when you implement Runnable you don’t get all of the
equipment that comes with Thread, so you have to create a new
Thread and hand yourself to its constructor in order to have
something to start(), as you can see in the CBoxVector
constructor and in go(). The run() method simply chooses a
random element number within the vector and calls nextColor()
for that element to cause it to choose a new randomly-selected
color.

936 Thinking in Java www.BruceEckel.com

Upon running this program, you see that it does indeed run faster
and respond more quickly (for instance, when you interrupt it, it
stops more quickly), and it doesn’t seem to bog down as much at
higher grid sizes. Thus, a new factor is added into the threading
equation: you must watch to see that you don’t have “too many
threads” (whatever that turns out to mean for your particular
program and platform). If you do, you must try to use techniques
like the one above to “balance” the number of threads in your
program. If you see performance problems in a multithreaded
program you now have a number of issues to examine:

1. Do you have enough calls to sleep(), yield(), and/or
wait()?

2. Are calls to sleep() long enough?

3. Are you running too many threads?

4. Have you tried different platforms and JVMs?

Issues like this are one reason that multithreaded programming is
often considered an art.

Summary
It is vital to learn when to use multithreading and when to avoid it.
The main reason to use it is to manage a number of tasks whose
intermingling will make more efficient use of the computer or be
more convenient for the user. The classic example of resource
balancing is using the CPU during I/O waits. The classic example of
user convenience is monitoring a “stop” button during long
downloads.

The main drawbacks to multithreading are:

1. Slowdown while waiting for shared resources

2. Additional CPU overhead required to manage threads

3. Unrewarded complexity, such as the silly idea of having a
separate thread to update each element of an array

Chapter 14: Multiple Threads 937

4. Pathologies including starving, racing, and deadlock

An additional advantage to threads is that they substitute “light”
execution context switches (of the order of 100 instructions) for
“heavy” process context switches (of the order of 1000s of
instructions). Since all threads in a given process share the same
memory space, a light context switch changes only program
execution and local variables. On the other hand, a process change,
the heavy context switch, must exchange the full memory space.

Threading is like stepping into an entirely new world and learning a
whole new programming language, or at least a new set of language
concepts. With the appearance of thread support in most
microcomputer operating systems, extensions for threads have also
been appearing in programming languages or libraries. In all cases,
thread programming (1) seems mysterious and requires a shift in
the way you think about programming and (2) looks similar to
thread support in other languages, so when you understand
threads, you understand a common tongue. And although support
for threads can make Java seem like a more complicated language,
don’t blame Java. Threads are tricky.

One of the biggest difficulties with threads occurs because more
than one thread might be sharing a resource, such as the memory in
an object, and you must make sure that multiple threads don’t try to
read and change that resource at the same time. This requires
judicious use of the synchronized keyword, which is a helpful tool
but must be understood thoroughly because it can quietly introduce
deadlock situations.

In addition, there’s a certain art to the application of threads. Java
is designed to allow you to create as many objects as you need to
solve your problem – at least in theory. (Creating millions of objects
for an engineering finite-element analysis, for example, might not
be practical in Java.) However, it seems that there is an upper
bound to the number of threads you’ll want to create because at
some point a large number of threads seems to become unwieldy.
This critical point is not in the many thousands as it might be with
objects, but rather in the neighborhood of less than 100. As you
often create only a handful of threads to solve a problem, this is

938 Thinking in Java www.BruceEckel.com

typically not much of a limit, yet in a more general design it
becomes a constraint.

A significant non-intuitive issue in threading is that, because of
thread scheduling, you can typically make your applications run
faster by inserting calls to sleep() inside run()’s main loop. This
definitely makes it feel like an art, in particular when the longer
delays seem to speed up performance. Of course, the reason this
happens is that shorter delays can cause the end-of-sleep()
scheduler interrupt to happen before the running thread is ready to
go to sleep, forcing the scheduler to stop it and restart it later so it
can finish what it was doing and then go to sleep. It takes extra
thought to realize how messy things can get.

One thing you might notice missing in this chapter is an animation
example, which is one of the most popular things to do with applets.
However, a complete solution (with sound) to this problem comes
with the Java JDK (available at java.sun.com) in the demo section.
In addition, we can expect better animation support to become part
of future versions of Java, while completely different non-Java,
non-programming solutions to animation for the Web are
appearing that will probably be superior to traditional approaches.
For explanations about how Java animation works, see Core Java
by Cornell & Horstmann, Prentice-Hall 1997. For more advanced
discussions of threading, see Concurrent Programming in Java by
Doug Lea, Addison-Wesley 1997, or Java Threads by Oaks & Wong,
O’Reilly 1997.

Exercises
1. Inherit a class from Thread and override the run() method.

Inside run(), print a message, then call sleep(). Repeat this
three times, then return from run(). Put a start-up message
in the constructor and override finalize() to print a shut-
down message. Make a separate thread class that calls
System.gc() and System.runFinalization() inside
run(), printing a message as it does so. Make several thread
objects of both types and run them to see what happens.

Chapter 14: Multiple Threads 939

2. Modify Counter2.java so that the thread is an inner class
and doesn’t need to explicitly store a handle to a Counter2.

3. Modify Sharing2.java to add a synchronized block inside
the run() method of TwoCounter instead of synchronizing
the entire run() method.

4. Create two Thread subclasses, one with a run() that starts
up, captures the handle of the second Thread object and then
calls wait(). The other class’ run() should call notifyAll()
for the first thread after some number of seconds have passed,
so the first thread can print out a message.

5. In Counter5.java inside Ticker2, remove the yield() and
explain the results. Replace the yield() with a sleep() and
explain the results.

6. In ThreadGroup1.java, replace the call to sys.suspend()
with a call to wait() for the thread group, causing it to wait
for two seconds. For this to work correctly you must acquire
the lock for sys inside a synchronized block.

7. Change Daemons.java so that main() has a sleep()
instead of a readLine(). Experiment with different sleep
times to see what happens.

8. (Intermediate) In Chapter 8, locate the
GreenhouseControls.java example, which consists of
three files. In Event.java, the class Event is based on
watching the time. Change Event so that it is a Thread, and
change the rest of the design so that it works with this new
Thread-based Event.

 941

15: Distributed
Computing

Historically, network programming has been error-prone,
difficult, and complex.

The programmer had to know many details about the network and
sometimes even the hardware. You usually needed to understand
the various “layers” of the networking protocol, and there were a lot
of different functions in each different networking library
concerned with connecting, packing, and unpacking blocks of
information; shipping those blocks back and forth; and
handshaking. It was a daunting task.

However, the concept of networking is not so difficult. You want to
get some information from that machine over there and move it to
this machine here, or vice versa. It’s quite similar to reading and
writing files, except that the file exists on a remote machine and the
remote machine can decide exactly what it wants to do about the
information you’re requesting or sending.

One of Java’s great strengths is painless networking. As much as
possible, the underlying details of networking have been abstracted
away and taken care of within the JVM and local machine
installation of Java. The programming model you use is that of a
file; in fact, you actually wrap the network connection (a “socket”)
with stream objects, so you end up using the same method calls as
you do with all other streams. In addition, Java’s built-in
multithreading is exceptionally handy when dealing with another
networking issue: handling multiple connections at once.

This chapter introduces Java’s networking support using easy-to-
understand examples.

942 Thinking in Java www.BruceEckel.com

Identifying a machine
Of course, in order to tell one machine from another and to make
sure that you are connected with the machine you want, there must
be some way of uniquely identifying machines on a network. Early
networks were satisfied to provide unique names for machines
within the local network. However, Java works within the Internet,
which requires a way to uniquely identify a machine from all the
others in the world. This is accomplished with the IP (Internet
Protocol) address that can exist in two forms:

1. The familiar DNS (Domain Name Service) form. My domain
name is bruceeckel.com, so suppose I have a computer
called Opus in my domain. Its domain name would be
Opus.bruceeckel.com. This is exactly the kind of name
that you use when you send email to people, and is often
incorporated into a World-Wide-Web address.

2. Alternatively, you can use the “dotted quad” form, which is
four numbers separated by dots, such as 123.255.28.120.

In both cases, the IP address is represented internally as a 32-bit
number1 (so each of the quad numbers cannot exceed 255), and you
can get a special Java object to represent this number from either of
the forms above by using the static InetAddress.getByName()
method that’s in java.net. The result is an object of type
InetAddress that you can use to build a “socket” as you will see
later.

As a simple example of using InetAddress.getByName(),
consider what happens if you have a dial-up Internet service
provider (ISP). Each time you dial up, you are assigned a temporary
IP address. But while you’re connected, your IP address has the
same validity as any other IP address on the Internet. If someone
connects to your machine using your IP address then they can

1 This means a maximum of just over four billion numbers, which is rapidly running out.
The new standard for IP addresses will use a 128-bit number, which should produce
enough unique IP addresses for the foreseeable future.

Chapter 15: Distributed Computing 943

connect to a Web server or FTP server that you have running on
your machine. Of course, they need to know your IP address, and
since it’s assigned each time you dial up, how can you find out what
it is?

The following program uses InetAddress.getByName() to
produce your IP address. To use it, you must know the name of your
computer. It has been tested only on Windows 95, but there you can
go to “Settings,” “Control Panel,” “Network,” and then select the
“Identification” tab. “Computer name” is the name to put on the
command line.

//: c15:WhoAmI.java
// Finds out your network address when you're
// connected to the Internet.
import java.net.*;

public class WhoAmI {
public static void main(String[] args)

throws Exception {
if(args.length != 1) {
System.err.println(
"Usage: WhoAmI MachineName");

System.exit(1);
}
InetAddress a =
InetAddress.getByName(args[0]);

System.out.println(a);
}

} ///:~

In my case, the machine is called “Colossus” (from the movie of the
same name, because I keep putting bigger disks on it). So, once I’ve
connected to my ISP I run the program:

java WhoAmI Colossus

I get back a message like this (of course, the address is different
each time):

Colossus/199.190.87.75

944 Thinking in Java www.BruceEckel.com

If I tell my friend this address, he can log onto my personal Web
server by going to the URL http://199.190.87.75 (only as long as I
continue to stay connected during that session). This can sometimes
be a handy way to distribute information to someone else or to test
out a Web site configuration before posting it to a “real” server.

Servers and clients
The whole point of a network is to allow two machines to connect
and talk to each other. Once the two machines have found each
other they can have a nice, two-way conversation. But how do they
find each other? It’s like getting lost in an amusement park: one
machine has to stay in one place and listen while the other machine
says, “Hey, where are you?”

The machine that “stays in one place” is called the server, and the
one that seeks is called the client. This distinction is important only
while the client is trying to connect to the server. Once they’ve
connected, it becomes a two-way communication process and it
doesn’t matter anymore that one happened to take the role of server
and the other happened to take the role of the client.

So the job of the server is to listen for a connection, and that’s
performed by the special server object that you create. The job of
the client is to try to make a connection to a server, and this is
performed by the special client object you create. Once the
connection is made, you’ll see that at both server and client ends,
the connection is just magically turned into an IO stream object,
and from then on you can treat the connection as if you were
reading from and writing to a file. Thus, after the connection is
made you will just use the familiar IO commands from Chapter 11.
This is one of the nice features of Java networking.

Testing programs without a network
For many reasons, you might not have a client machine, a server
machine, and a network available to test your programs. You might
be performing exercises in a classroom situation, or you could be
writing programs that aren’t yet stable enough to put onto the
network. The creators of the Internet Protocol were aware of this

Chapter 15: Distributed Computing 945

issue, and they created a special address called localhost to be the
“local loopback” IP address for testing without a network. The
generic way to produce this address in Java is:

InetAddress addr = InetAddress.getByName(null);

If you hand getByName() a null, it defaults to using the
localhost. The InetAddress is what you use to refer to the
particular machine, and you must produce this before you can go
any further. You can’t manipulate the contents of an InetAddress
(but you can print them out, as you’ll see in the next example). The
only way you can create an InetAddress is through one of that
class’s static member methods getByName() (which is what
you’ll usually use), getAllByName(), or getLocalHost().

You can also produce the local loopback address by handing it the
string localhost:

InetAddress.getByName("localhost");

or by using its dotted quad form to name the reserved IP number
for the loopback:

InetAddress.getByName("127.0.0.1");

All three forms produce the same result.

Port: a unique place
within the machine
An IP address isn’t enough to identify a unique server, since many
servers can exist on one machine. Each IP machine also contains
ports, and when you’re setting up a client or a server you must
choose a port where both client and server agree to connect; if
you’re meeting someone, the IP address is the neighborhood and
the port is the bar.

The port is not a physical location in a machine, but a software
abstraction (mainly for bookkeeping purposes). The client program
knows how to connect to the machine via its IP address, but how
does it connect to a desired service (potentially one of many on that

946 Thinking in Java www.BruceEckel.com

machine)? That’s where the port numbers come in as second level
of addressing. The idea is that if you ask for a particular port, you’re
requesting the service that’s associated with the port number. The
time of day is a simple example of a service. Typically, each service
is associated with a unique port number on a given server machine.
It’s up to the client to know ahead of time which port number the
desired service is running on.

The system services reserve the use of ports 1 through 1024, so you
shouldn’t use those or any other port that you know to be in use.
The first choice for examples in this book will be port 8080 (in
memory of the venerable old 8-bit Intel 8080 chip in my first
computer, a CP/M machine).

Sockets
The socket is the software abstraction used to represent the
“terminals” of a connection between two machines. For a given
connection, there’s a socket on each machine, and you can imagine
a hypothetical “cable” running between the two machines with each
end of the “cable” plugged into a socket. Of course, the physical
hardware and cabling between machines is completely unknown.
The whole point of the abstraction is that we don’t have to know
more than is necessary.

In Java, you create a socket to make the connection to the other
machine, then you get an InputStream and OutputStream (or,
with the appropriate converters, Reader and Writer) from the
socket in order to be able to treat the connection as an IO stream
object. There are two stream-based socket classes: a ServerSocket
that a server uses to “listen” for incoming connections and a Socket
that a client uses in order to initiate a connection. Once a client
makes a socket connection, the ServerSocket returns (via the
accept() method) a corresponding server side Socket through
which direct communications will take place. From then on, you
have a true Socket to Socket connection and you treat both ends
the same way because they are the same. At this point, you use the
methods getInputStream() and getOutputStream() to
produce the corresponding InputStream and OutputStream

Chapter 15: Distributed Computing 947

objects from each Socket. These must be wrapped inside buffers
and formatting classes just like any other stream object described in
Chapter 11.

The use of the term ServerSocket would seem to be another
example of a confusing name scheme in the Java libraries. You
might think ServerSocket would be better named
“ServerConnector” or something without the word “Socket” in it.
You might also think that ServerSocket and Socket should both
be inherited from some common base class. Indeed, the two classes
do have several methods in common but not enough to give them a
common base class. Instead, ServerSocket’s job is to wait until
some other machine connects to it, then to return an actual Socket.
This is why ServerSocket seems to be a bit misnamed, since its
job isn’t really to be a socket but instead to make a Socket object
when someone else connects to it.

However, the ServerSocket does create a physical “server” or
listening socket on the host machine. This socket listens for
incoming connections and then returns an “established” socket
(with the local and remote endpoints defined) via the accept()
method. The confusing part is that both of these sockets (listening
and established) are associated with the same server socket. The
listening socket can accept only new connection requests and not
data packets. So while ServerSocket doesn’t make much sense
programmatically, it does “physically.”

When you create a ServerSocket, you give it only a port number.
You don’t have to give it an IP address because it’s already on the
machine it represents. When you create a Socket, however, you
must give both the IP address and the port number where you’re
trying to connect. (On the other hand, the Socket that comes back
from ServerSocket.accept() already contains all this
information.)

A simple server and client
This example makes the simplest use of servers and clients using
sockets. All the server does is wait for a connection, then uses the
Socket produced by that connection to create an InputStream

948 Thinking in Java www.BruceEckel.com

and OutputStream. After that, everything it reads from the
InputStream it echoes to the OutputStream until it receives the
line END, at which time it closes the connection.

The client makes the connection to the server, then creates an
OutputStream. Lines of text are sent through the
OutputStream. The client also creates an InputStream to hear
what the server is saying (which, in this case, is just the words
echoed back).

Both the server and client use the same port number and the client
uses the local loopback address to connect to the server on the same
machine so you don’t have to test it over a network. (For some
configurations, you might need to be connected to a network for the
programs to work, even if you aren’t communicating over that
network.)

Here is the server:

//: c15:JabberServer.java
// Very simple server that just
// echoes whatever the client sends.
import java.io.*;
import java.net.*;

public class JabberServer {
// Choose a port outside of the range 1-1024:
public static final int PORT = 8080;
public static void main(String[] args)

throws IOException {
ServerSocket s = new ServerSocket(PORT);
System.out.println("Started: " + s);
try {
// Blocks until a connection occurs:
Socket socket = s.accept();
try {
System.out.println(

"Connection accepted: "+ socket);
BufferedReader in =

new BufferedReader(
new InputStreamReader(

socket.getInputStream()));

Chapter 15: Distributed Computing 949

// Output is automatically flushed
// by PrintWriter:
PrintWriter out =

new PrintWriter(
new BufferedWriter(

new OutputStreamWriter(
socket.getOutputStream())),true);

while (true) {
String str = in.readLine();
if (str.equals("END")) break;
System.out.println("Echoing: " + str);
out.println(str);

}
// Always close the two sockets...
} finally {
System.out.println("closing...");
socket.close();

}
} finally {
s.close();

}
}

} ///:~

You can see that the ServerSocket just needs a port number, not
an IP address (since it’s running on this machine!). When you call
accept(), the method blocks until some client tries to connect to it.
That is, it’s there waiting for a connection but other processes can
run (see Chapter 14). When a connection is made, accept()
returns with a Socket object representing that connection.

The responsibility for cleaning up the sockets is crafted carefully
here. If the ServerSocket constructor fails, the program just quits
(notice we must assume that the constructor for ServerSocket
doesn’t leave any open network sockets lying around if it fails). For
this case, main() throws IOException so a try block is not
necessary. If the ServerSocket constructor is successful then all
other method calls must be guarded in a try-finally block to
ensure that, no matter how the block is left, the ServerSocket is
properly closed.

950 Thinking in Java www.BruceEckel.com

The same logic is used for the Socket returned by accept(). If
accept() fails, then we must assume that the Socket doesn’t exist
or hold any resources, so it doesn’t need to be cleaned up. If it’s
successful, however, the following statements must be in a try-
finally block so that if they fail the Socket will still be cleaned up.
Care is required here because sockets use important non-memory
resources, so you must be diligent in order to clean them up (since
there is no destructor in Java to do it for you).

Both the ServerSocket and the Socket produced by accept()
are printed to System.out. This means that their toString()
methods are automatically called. These produce:

ServerSocket[addr=0.0.0.0,PORT=0,localport=8080]
Socket[addr=127.0.0.1,PORT=1077,localport=8080]

Shortly, you’ll see how these fit together with what the client is
doing.

The next part of the program looks just like opening files for
reading and writing except that the InputStream and
OutputStream are created from the Socket object. Both the
InputStream and OutputStream objects are converted to Java
1.1 Reader and Writer objects using the “converter” classes
InputStreamReader and OutputStreamWriter, respectively.
You could also have used the Java 1.0 InputStream and
OutputStream classes directly, but with output there’s a distinct
advantage to using the Writer approach. This appears with
PrintWriter, which has an overloaded constructor that takes a
second argument, a boolean flag that indicates whether to
automatically flush the output at the end of each println() (but
not print()) statement. Every time you write to out, its buffer
must be flushed so the information goes out over the network.
Flushing is important for this particular example because the client
and server each wait for a line from the other party before
proceeding. If flushing doesn’t occur, the information will not be
put onto the network until the buffer is full, which causes lots of
problems in this example.

When writing network programs you need to be careful about using
automatic flushing. Every time you flush the buffer a packet must

Chapter 15: Distributed Computing 951

be created and sent. In this case, that’s exactly what we want, since
if the packet containing the line isn’t sent then the handshaking
back and forth between server and client will stop. Put another way,
the end of a line is the end of a message. But in many cases
messages aren’t delimited by lines so it’s much more efficient to not
use auto flushing and instead let the built-in buffering decide when
to build and send a packet. This way, larger packets can be sent and
the process will be faster.

Note that, like virtually all streams you open, these are buffered.
There’s an exercise at the end of the chapter to show you what
happens if you don’t buffer the streams (things get slow).

The infinite while loop reads lines from the BufferedReader in
and writes information to System.out and to the PrintWriter
out. Note that these could be any streams, they just happen to be
connected to the network.

When the client sends the line consisting of “END” the program
breaks out of the loop and closes the Socket.

Here’s the client:

//: c15:JabberClient.java
// Very simple client that just sends
// lines to the server and reads lines
// that the server sends.
import java.net.*;
import java.io.*;

public class JabberClient {
public static void main(String[] args)

throws IOException {
// Passing null to getByName() produces the
// special "Local Loopback" IP address, for
// testing on one machine w/o a network:
InetAddress addr =
InetAddress.getByName(null);

// Alternatively, you can use
// the address or name:
// InetAddress addr =
// InetAddress.getByName("127.0.0.1");

952 Thinking in Java www.BruceEckel.com

// InetAddress addr =
// InetAddress.getByName("localhost");
System.out.println("addr = " + addr);
Socket socket =
new Socket(addr, JabberServer.PORT);

// Guard everything in a try-finally to make
// sure that the socket is closed:
try {
System.out.println("socket = " + socket);
BufferedReader in =
new BufferedReader(

new InputStreamReader(
socket.getInputStream()));

// Output is automatically flushed
// by PrintWriter:
PrintWriter out =
new PrintWriter(

new BufferedWriter(
new OutputStreamWriter(

socket.getOutputStream())),true);
for(int i = 0; i < 10; i ++) {
out.println("howdy " + i);
String str = in.readLine();
System.out.println(str);

}
out.println("END");

} finally {
System.out.println("closing...");
socket.close();

}
}

} ///:~

In main() you can see all three ways to produce the InetAddress
of the local loopback IP address: using null, localhost, or the
explicit reserved address 127.0.0.1. Of course, if you want to
connect to a machine across a network you substitute that
machine’s IP address. When the InetAddress addr is printed (via
the automatic call to its toString() method) the result is:

localhost/127.0.0.1

Chapter 15: Distributed Computing 953

By handing getByName() a null, it defaulted to finding the
localhost, and that produced the special address 127.0.0.1.

Note that the Socket called socket is created with both the
InetAddress and the port number. To understand what it means
when you print out one of these Socket objects, remember that an
Internet connection is determined uniquely by these four pieces of
data: clientHost, clientPortNumber, serverHost, and
serverPortNumber. When the server comes up, it takes up its
assigned port (8080) on the localhost (127.0.0.1). When the client
comes up, it is allocated to the next available port on its machine,
1077 in this case, which also happens to be on the same machine
(127.0.0.1) as the server. Now, in order for data to move between
the client and server, each side has to know where to send it.
Therefore, during the process of connecting to the “known” server,
the client sends a “return address” so the server knows where to
send its data. This is what you see in the example output for the
server side:

Socket[addr=127.0.0.1,port=1077,localport=8080]

This means that the server just accepted a connection from
127.0.0.1 on port 1077 while listening on its local port (8080). On
the client side:

Socket[addr=localhost/127.0.0.1,PORT=8080,localpor
t=1077]

which means that the client made a connection to 127.0.0.1 on port
8080 using the local port 1077.

You’ll notice that every time you start up the client anew, the local
port number is incremented. It starts at 1025 (one past the reserved
block of ports) and keeps going up until you reboot the machine, at
which point it starts at 1025 again. (On UNIX machines, once the
upper limit of the socket range is reached, the numbers will wrap
around to the lowest available number again.)

Once the Socket object has been created, the process of turning it
into a BufferedReader and PrintWriter is the same as in the
server (again, in both cases you start with a Socket). Here, the
client initiates the conversation by sending the string “howdy”

954 Thinking in Java www.BruceEckel.com

followed by a number. Note that the buffer must again be flushed
(which happens automatically via the second argument to the
PrintWriter constructor). If the buffer isn’t flushed, the whole
conversation will hang because the initial “howdy” will never get
sent (the buffer isn’t full enough to cause the send to happen
automatically). Each line that is sent back from the server is written
to System.out to verify that everything is working correctly. To
terminate the conversation, the agreed-upon “END” is sent. If the
client simply hangs up, then the server throws an exception.

You can see that the same care is taken here to ensure that the
network resources represented by the Socket are properly cleaned
up, using a try-finally block.

Sockets produce a “dedicated” connection that persists until it is
explicitly disconnected. (The dedicated connection can still be
disconnected un-explicitly if one side, or an intermediary link, of
the connection crashes.) This means the two parties are locked in
communication and the connection is constantly open. This seems
like a logical approach to networking, but it puts an extra load on
the network. Later in the chapter you’ll see a different approach to
networking, in which the connections are only temporary.

Serving multiple clients
The JabberServer works, but it can handle only one client at a
time. In a typical server, you’ll want to be able to deal with many
clients at once. The answer is multithreading, and in languages that
don’t directly support multithreading this means all sorts of
complications. In Chapter 14 you saw that multithreading in Java is
about as simple as possible, considering that multithreading is a
rather complex topic. Because threading in Java is reasonably
straightforward, making a server that handles multiple clients is
relatively easy.

The basic scheme is to make a single ServerSocket in the server
and call accept() to wait for a new connection. When accept()
returns, you take the resulting Socket and use it to create a new

Chapter 15: Distributed Computing 955

thread whose job is to serve that particular client. Then you call
accept() again to wait for a new client.

In the following server code, you can see that it looks similar to the
JabberServer.java example except that all of the operations to
serve a particular client have been moved inside a separate thread
class:

//: c15:MultiJabberServer.java
// A server that uses multithreading to handle
// any number of clients.
import java.io.*;
import java.net.*;

class ServeOneJabber extends Thread {
private Socket socket;
private BufferedReader in;
private PrintWriter out;
public ServeOneJabber(Socket s)

throws IOException {
socket = s;
in =
new BufferedReader(
new InputStreamReader(

socket.getInputStream()));
// Enable auto-flush:
out =
new PrintWriter(
new BufferedWriter(

new OutputStreamWriter(
socket.getOutputStream())), true);

// If any of the above calls throw an
// exception, the caller is responsible for
// closing the socket. Otherwise the thread
// will close it.
start(); // Calls run()

}
public void run() {

try {
while (true) {
String str = in.readLine();
if (str.equals("END")) break;

956 Thinking in Java www.BruceEckel.com

System.out.println("Echoing: " + str);
out.println(str);

}
System.out.println("closing...");

} catch (IOException e) {
} finally {
try {
socket.close();

} catch(IOException e) {}
}

}
}

public class MultiJabberServer {
static final int PORT = 8080;
public static void main(String[] args)

throws IOException {
ServerSocket s = new ServerSocket(PORT);
System.out.println("Server Started");
try {
while(true) {
// Blocks until a connection occurs:
Socket socket = s.accept();
try {

new ServeOneJabber(socket);
} catch(IOException e) {

// If it fails, close the socket,
// otherwise the thread will close it:
socket.close();

}
}

} finally {
s.close();

}
}

} ///:~

The ServeOneJabber thread takes the Socket object that’s
produced by accept() in main() every time a new client makes a
connection. Then, as before, it creates a BufferedReader and
auto-flushed PrintWriter object using the Socket. Finally, it calls
the special Thread method start(), which performs thread

Chapter 15: Distributed Computing 957

initialization and then calls run(). This performs the same kind of
action as in the previous example: reading something from the
socket and then echoing it back until it reads the special “END”
signal.

The responsibility for cleaning up the socket must again be carefully
designed. In this case, the socket is created outside of the
ServeOneJabber so the responsibility can be shared. If the
ServeOneJabber constructor fails, it will just throw the exception
to the caller, who will then clean up the thread. But if the
constructor succeeds, then the ServeOneJabber object takes over
responsibility for cleaning up the thread, in its run().

Notice the simplicity of the MultiJabberServer. As before, a
ServerSocket is created and accept() is called to allow a new
connection. But this time, the return value of accept() (a Socket)
is passed to the constructor for ServeOneJabber, which creates a
new thread to handle that connection. When the connection is
terminated, the thread simply goes away.

If the creation of the ServerSocket fails, the exception is again
thrown through main(). But if it succeeds, the outer try-finally
guarantees its cleanup. The inner try-catch guards only against the
failure of the ServeOneJabber constructor; if the constructor
succeeds, then the ServeOneJabber thread will close the
associated socket.

To test that the server really does handle multiple clients, the
following program creates many clients (using threads) that
connect to the same server. Each thread has a limited lifetime, and
when it goes away, that leaves space for the creation of a new
thread. The maximum number of threads allowed is determined by
the final int maxthreads. You’ll notice that this value is rather
critical, since if you make it too high the threads seem to run out of
resources and the program mysteriously fails.

//: c15:MultiJabberClient.java
// Client that tests the MultiJabberServer
// by starting up multiple clients.
import java.net.*;
import java.io.*;

958 Thinking in Java www.BruceEckel.com

class JabberClientThread extends Thread {
private Socket socket;
private BufferedReader in;
private PrintWriter out;
private static int counter = 0;
private int id = counter++;
private static int threadcount = 0;
public static int threadCount() {

return threadcount;
}
public JabberClientThread(InetAddress addr) {

System.out.println("Making client " + id);
threadcount++;
try {
socket =
new Socket(addr, MultiJabberServer.PORT);

} catch(IOException e) {
// If the creation of the socket fails,
// nothing needs to be cleaned up.

}
try {
in =
new BufferedReader(

new InputStreamReader(
socket.getInputStream()));

// Enable auto-flush:
out =
new PrintWriter(

new BufferedWriter(
new OutputStreamWriter(

socket.getOutputStream())), true);
start();

} catch(IOException e) {
// The socket should be closed on any
// failures other than the socket
// constructor:
try {
socket.close();

} catch(IOException e2) {}
}
// Otherwise the socket will be closed by

Chapter 15: Distributed Computing 959

// the run() method of the thread.
}
public void run() {

try {
for(int i = 0; i < 25; i++) {
out.println("Client " + id + ": " + i);
String str = in.readLine();
System.out.println(str);

}
out.println("END");

} catch(IOException e) {
} finally {
// Always close it:
try {
socket.close();

} catch(IOException e) {}
threadcount--; // Ending this thread

}
}

}

public class MultiJabberClient {
static final int MAX_THREADS = 40;
public static void main(String[] args)

throws IOException, InterruptedException {
InetAddress addr =
InetAddress.getByName(null);

while(true) {
if(JabberClientThread.threadCount()

< MAX_THREADS)
new JabberClientThread(addr);

Thread.currentThread().sleep(100);
}

}
} ///:~

The JabberClientThread constructor takes an InetAddress and
uses it to open a Socket. You’re probably starting to see the
pattern: the Socket is always used to create some kind of Reader
and/or Writer (or InputStream and/or OutputStream) object,
which is the only way that the Socket can be used. (You can, of
course, write a class or two to automate this process instead of

960 Thinking in Java www.BruceEckel.com

doing all the typing if it becomes painful.) Again, start() performs
thread initialization and calls run(). Here, messages are sent to the
server and information from the server is echoed to the screen.
However, the thread has a limited lifetime and eventually
completes. Note that the socket is cleaned up if the constructor fails
after the socket is created but before the constructor completes.
Otherwise the responsibility for calling close() for the socket is
relegated to the run() method.

The threadcount keeps track of how many
JabberClientThread objects currently exist. It is incremented as
part of the constructor and decremented as run() exits (which
means the thread is terminating). In
MultiJabberClient.main(), you can see that the number of
threads is tested, and if there are too many, no more are created.
Then the method sleeps. This way, some threads will eventually
terminate and more can be created. You can experiment with
MAX_THREADS to see where your particular system begins to
have trouble with too many connections.

Datagrams
The examples you’ve seen so far use the Transmission Control
Protocol (TCP, also known as stream-based sockets), which is
designed for ultimate reliability and guarantees that the data will
get there. It allows retransmission of lost data, it provides multiple
paths through different routers in case one goes down, and bytes
are delivered in the order they are sent. All this control and
reliability comes at a cost: TCP has a high overhead.

There’s a second protocol, called User Datagram Protocol (UDP),
which doesn’t guarantee that the packets will be delivered and
doesn’t guarantee that they will arrive in the order they were sent.
It’s called an “unreliable protocol” (TCP is a “reliable protocol”),
which sounds bad, but because it’s much faster it can be useful.
There are some applications, such as an audio signal, in which it
isn’t so critical if a few packets are dropped here or there but speed
is vital. Or consider a time-of-day server, where it really doesn’t
matter if one of the messages is lost. Also, some applications might

Chapter 15: Distributed Computing 961

be able to fire off a UDP message to a server and can then assume, if
there is no response in a reasonable period of time, that the
message was lost.

Typically, you’ll do most of your direct network programming with
TCP, and only occasionally will you use UDP. There’s a more
complete treatment of UDP in the first edition of this book
(available on the CD ROM bound into this book, or as a free
download from www.BruceEckel.com).

Enterprise programming
concepts

Enterprise computing is about collecting and distributing
information.

You do this by creating common repositories (single points of
access) to that information, and allowing people to get at that
information in multiple ways. So enterprise computing is creating
and manipulating those common repositories, and providing ways
for users to view and manipulate the information in those
repositories.

In this chapter you’ll see that there are a number of different ways
to achieve this goal. The varied mechanics needed for the collection
and distribution of information has to do with the variety of clients
we must deal with (different application protocols) and the variety
of repositories holding our enterprise data (relational databases,
hierarchical databases, files, newsgroups and Email).

Since we can loosely define the any enterprise as a community of
individuals working together let's leverage this definition and create
a "Community Information System" (CIS) that will allow members
of the community to collect and distribute information about what
is going on within their group. This group could be 20 people or
20,000 but some of the services that may be needed would include
the following:

http://www.bruceeckel.com/

962 Thinking in Java www.BruceEckel.com

• Community Calendar/Schedule of events

• Community directory (phone/email listings)

• Community interest lists

• General Announcements/Notices/News items

• Lost & Found

• Ticket sales to community events (this would justify the
security issues)

• Classified ads

• An anti-spamming system to prevent spam harvesters –
either you have a password, or it actually emails the
information back to you, after verifying your email address
shows that you’re a community member.

So lets start by looking at an API set that provides a common
interface to all those relational databases.

Java Database
Connectivity (JDBC)

It has been estimated that half of all software development involves
client/server operations. A great promise of Java has been the
ability to build platform-independent client/server database
applications. In Java 1.1 this has come to fruition with Java
DataBase Connectivity (JDBC).

One of the major problems with databases has been the feature
wars between the database companies. There is a “standard”
database language, Structured Query Language (SQL-92), but
usually you must know which database vendor you’re working with
despite the standard. JDBC is designed to be platform-independent,
so you don’t need to worry about the database you’re using while
you’re programming. However, it’s still possible to make vendor-

Chapter 15: Distributed Computing 963

specific calls from JDBC so you aren’t restricted from doing what
you must.

One place where programmers may need to use SQL type names is
in the SQL TABLE CREATE statement when they are creating a new
database table and defining the SQL type for each column.
Unfortunately there are significant variations between SQL types
supported by different database products. Different databases that
support SQL types with the same semantics and structure may give
those types different names. Most major databases support an SQL
data type for large binary values, in Oracle this type is called a LONG
RAW, Sybase calls it IMAGE, Informix calls it BYTE, and DB2 LONG
VARCHAR FOR BIT DATA. Therefore, if database portability is a
goal you should try to use only generic SQL type identifiers.

Portability is an issue when writing for a book where readers may be
testing the examples with all kinds of unknown data stores. We
have tried to write these examples to be as portable as possible. You
should also notice that all the database specific code has been pulled
out to a single class file to centralize any changes that may need to
be made to get the examples operational in your environment.

JDBC, like many of the APIs in Java, is designed for simplicity. The
method calls you make correspond to the logical operations you’d
think of doing when gathering data from a database: connect to the
database, create a statement and execute the query, and look at the
result set.

To allow this platform independence, JDBC provides a driver
manager that dynamically maintains all the driver objects that your
database queries will need. So if you have three different kinds of
vendor databases to connect to, you’ll need three different driver
objects. The driver objects register themselves with the driver
manager at the time of loading, and you can force the loading using
Class.forName().

To open a database, you must create a “database URL” that
specifies:

1. That you’re using JDBC with “jdbc”

964 Thinking in Java www.BruceEckel.com

2. The “subprotocol”: the name of the driver or the name of a
database connectivity mechanism. Since the design of JDBC
was inspired by ODBC, the first subprotocol available is the
“jdbc-odbc bridge,” specified by “odbc”

3. The database identifier. This varies with the database driver
used, but it generally provides a logical name that is mapped
by the database administration software to a physical
directory where the database tables are located. For your
database identifier to have any meaning, you must register
the name using your database administration software. (The
process of registration varies from platform to platform.)

All this information is combined into one string, the “database
URL.” For example, to connect through the ODBC subprotocol to a
database identified as “people,” the database URL could be:

String dbUrl = "jdbc:odbc:people";

If you’re connecting across a network, the database URL will also
contain the information identifying the remote machine.

When you’re ready to connect to the database, you call the static
method DriverManager.getConnection(), passing it the
database URL, the user name, and a password to get into the
database. You get back a Connection object that you can then use
to query and manipulate the database.

The following example opens a database of contact information and
looks for a person’s last name as given on the command line. It
selects only the names of people that have email addresses, then
prints out all the ones that match the given last name:

//: c15:Lookup.java
// Looks up email addresses in a
// local database using JDBC.
import java.sql.*;

public class Lookup {
public static void main(String[] args) {

String dbUrl = "jdbc:odbc:people";
String user = "";

Chapter 15: Distributed Computing 965

String password = "";
try {
// Load the driver (registers itself)
Class.forName(
"sun.jdbc.odbc.JdbcOdbcDriver");

Connection c = DriverManager.getConnection(
dbUrl, user, password);

Statement s = c.createStatement();
// SQL code:
ResultSet r =
s.executeQuery(

"SELECT FIRST, LAST, EMAIL " +
"FROM people.csv people " +
"WHERE " +
"(LAST='" + args[0] + "') " +
" AND (EMAIL Is Not Null) " +
"ORDER BY FIRST");

while(r.next()) {
// Capitalization doesn't matter:
System.out.println(

r.getString("Last") + ", "
+ r.getString("fIRST")
+ ": " + r.getString("EMAIL"));

}
s.close(); // Also closes ResultSet

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

You can see the creation of the database URL as previously
described. In this example, there is no password protection on the
database so the user name and password are empty strings.

Once the connection is made with
DriverManager.getConnection(), you can use the resulting
Connection object to create a Statement object using the
createStatement() method. With the resulting Statement, you
can call executeQuery(), passing in a string containing an SQL-
92 standard SQL statement. (You’ll see shortly how you can

966 Thinking in Java www.BruceEckel.com

generate this statement automatically, so you don’t have to know
much about SQL.)

The executeQuery() method returns a ResultSet object, which
is quite a bit like an iterator: the next() method moves the iterator
to the next record in the statement, or returns false if the end of the
result set has been reached. You’ll always get a ResultSet object
back from executeQuery() even if a query results in an empty set
(that is, an exception is not thrown). Note that you must call
next() once before trying to read any record data. If the result set
is empty, this first call to next() will return false. For each record
in the result set, you can select the fields using (among other
approaches) the field name as a string. Also note that the
capitalization of the field name is ignored – it doesn’t matter with
an SQL database. You determine the type you’ll get back by calling
getInt(), getString(), getFloat(), etc. At this point, you’ve got
your database data in Java native format and can do whatever you
want with it using ordinary Java code.

Getting the example to work
With JDBC, understanding the code is relatively simple. The
confusing part is making it work on your particular system. The
reason this is confusing is that it requires you to figure out how to
get your JDBC driver to load properly, and how to set up a database
using your database administration software.

Of course, this process can vary radically from machine to machine,
but the process I used to make it work under 32-bit Windows might
give you clues to help you attack your own situation.

Step 1: Find the JDBC Driver
The program above contains the statement:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

This implies a directory structure, which is deceiving. With this
particular installation of JDK 1.1, there was no file called
JdbcOdbcDriver.class, so if you looked at this example and went
searching for it you’d be frustrated. Other published examples use a

Chapter 15: Distributed Computing 967

pseudo name, such as “myDriver.ClassName,” which is less than
helpful. In fact, the load statement above for the jdbc-odbc driver
(the only one that actually comes with JDK 1.1) appears in only a
few places in the online documentation (in particular, a page
labeled “JDBC-ODBC Bridge Driver”). If the load statement above
doesn’t work, then the name might have been changed as part of a
Java version change, so you should hunt through the
documentation again.

If the load statement is wrong, you’ll get an exception at this point.
To test whether your driver load statement is working correctly,
comment out the code after the statement and up to the catch
clause; if the program throws no exceptions it means that the driver
is loading properly.

Step 2: Configure the database
Again, this is specific to 32-bit Windows; you might need to do
some research to figure it out for your own platform.

First, open the control panel. You might find two icons that say
“ODBC.” You must use the one that says “32bit ODBC,” since the
other one is for backwards compatibility with 16-bit ODBC software
and will produce no results for JDBC. When you open the “32bit
ODBC” icon, you’ll see a tabbed dialog with a number of tabs,
including “User DSN,” “System DSN,” “File DSN,” etc., in which
“DSN” means “Data Source Name.” It turns out that for the JDBC-
ODBC bridge, the only place where it’s important to set up your
database is “System DSN,” but you’ll also want to test your
configuration and create queries, and for that you’ll also need to set
up your database in “File DSN.” This will allow the Microsoft Query
tool (that comes with Microsoft Office) to find the database. Note
that other query tools are also available from other vendors.

The most interesting database is one that you’re already using.
Standard ODBC supports a number of different file formats
including such venerable workhorses as DBase. However, it also
includes the simple “comma-separated ASCII” format, which
virtually every data tool has the ability to write. In my case, I just
took my “people” database that I’ve been maintaining for years
using various contact-management tools and exported it as a

968 Thinking in Java www.BruceEckel.com

comma-separated ASCII file (these typically have an extension of
.csv). In the “File DSN” section I chose “Add,” chose the text driver
to handle my comma-separated ASCII file, and then un-checked
“use current directory” to allow me to specify the directory where I
exported the data file.

You’ll notice when you do this that you don’t actually specify a file,
only a directory. That’s because a database is typically represented
as a collection of files under a single directory (although it could be
represented in other forms as well). Each file usually contains a
single table, and the SQL statements can produce results that are
culled from multiple tables in the database (this is called a join). A
database that contains only a single table (like this one) is usually
called a flat-file database. Most problems that go beyond the simple
storage and retrieval of data generally require multiple tables that
must be related by joins to produce the desired results, and these
are called relational databases.

Step 3: Test the configuration
To test the configuration you’ll need a way to discover whether the
database is visible from a program that queries it. Of course, you
can simply run the JDBC program example above up to and
including the statement:

Connection c = DriverManager.getConnection(
dbUrl, user, password);

If an exception is thrown, your configuration was incorrect.

However, it’s useful to get a query-generation tool involved at this
point. I used Microsoft Query that came with Microsoft Office, but
you might prefer something else. The query tool must know where
the database is, and Microsoft Query required that I go to the ODBC
Administrator’s “File DSN” tab and add a new entry there, again
specifying the text driver and the directory where my database lives.
You can name the entry anything you want, but it’s helpful to use
the same name you used in “System DSN.”

Once you’ve done this, you will see that your database is available
when you create a new query using your query tool.

Chapter 15: Distributed Computing 969

Step 4: Generate your SQL query
The query that I created using Microsoft Query not only showed me
that my database was there and in good order, but it also
automatically created the SQL code that I needed to insert into my
Java program. I wanted a query that would search for records that
had the last name that was typed on the command line when
starting the Java program. So as a starting point, I searched for a
specific last name, ‘Eckel’. I also wanted to display only those names
that had email addresses associated with them. The steps I took to
create this query were:

1. Start a new query and use the Query Wizard. Select the
“people” database. (This is the equivalent of opening the
database connection using the appropriate database URL.)

2. Select the “people” table within the database. From within
the table, choose the columns FIRST, LAST, and EMAIL.

3. Under “Filter Data,” choose LAST and select “equals” with an
argument of Eckel. Click the “And” radio button.

4. Choose EMAIL and select “Is not Null.”

5. Under “Sort By,” choose FIRST.

The result of this query will show you whether you’re getting what
you want.

Now you can press the SQL button and without any research on
your part, up will pop the correct SQL code, ready for you to cut and
paste. For this query, it looked like this:

SELECT people.FIRST, people.LAST, people.EMAIL
FROM people.csv people
WHERE (people.LAST='Eckel') AND
(people.EMAIL Is Not Null)
ORDER BY people.FIRST

With more complicated queries it’s easy to get things wrong, but
with a query tool you can interactively test your queries and
automatically generate the correct code. It’s hard to argue the case
for doing this by hand.

970 Thinking in Java www.BruceEckel.com

Step 5: Modify and paste in your query
You’ll notice that the code above looks different from what’s used in
the program. That’s because the query tool uses full qualification for
all of the names, even when there’s only one table involved. (When
more than one table is involved, the qualification prevents collisions
between columns from different tables that have the same names.)
Since this query involves only one table, you can optionally remove
the “people” qualifier from most of the names, like this:

SELECT FIRST, LAST, EMAIL
FROM people.csv people
WHERE (LAST='Eckel') AND
(EMAIL Is Not Null)
ORDER BY FIRST

In addition, you don’t want this program to be hard coded to look
for only one name. Instead, it should hunt for the name given as the
command-line argument. Making these changes and turning the
SQL statement into a dynamically-created String produces:

"SELECT FIRST, LAST, EMAIL " +
"FROM people.csv people " +
"WHERE " +
"(LAST='" + args[0] + "') " +
" AND (EMAIL Is Not Null) " +
"ORDER BY FIRST");

SQL has another way to insert names into a query called stored
procedures, which is used for speed. But for much of your database
experimentation and for your first cut, building your own query
strings in Java is fine.

You can see from this example that by using the tools currently
available – in particular the query-building tool – database
programming with SQL and JDBC can be quite straightforward.

Chapter 15: Distributed Computing 971

A GUI version of the lookup
program
It’s more useful to leave the lookup program running all the time
and simply switch to it and type in a name whenever you want to
look someone up. The following program creates the lookup
program as an application/applet, and it also adds name completion
so the data will show up without forcing you to type the entire last
name:

//: c15:VLookup.java
// GUI version of Lookup.java.
// <applet code=VLookup
// width=500 height=200> </applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.event.*;
import java.sql.*;
import com.bruceeckel.swing.*;

public class VLookup extends JApplet {
String dbUrl = "jdbc:odbc:people";
String user = "";
String password = "";
Statement s;
JTextField searchFor = new JTextField(20);
JLabel completion =

new JLabel(" ");
JTextArea results = new JTextArea(40, 20);
public void init() {

searchFor.getDocument().addDocumentListener(
new SearchL());

JPanel p = new JPanel();
p.add(new Label("Last name to search for:"));
p.add(searchFor);
p.add(completion);
Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(p, BorderLayout.NORTH);

972 Thinking in Java www.BruceEckel.com

cp.add(results, BorderLayout.CENTER);
try {
// Load the driver (registers itself)
Class.forName(
"sun.jdbc.odbc.JdbcOdbcDriver");

Connection c = DriverManager.getConnection(
dbUrl, user, password);

s = c.createStatement();
} catch(Exception e) {
results.setText(e.getMessage());

}
}
class SearchL implements DocumentListener {

public void changedUpdate(DocumentEvent e){}
public void insertUpdate(DocumentEvent e){
textValueChanged();

}
public void removeUpdate(DocumentEvent e){
textValueChanged();

}
}
public void textValueChanged() {

ResultSet r;
if(searchFor.getText().length() == 0) {
completion.setText("");
results.setText("");
return;

}
try {
// Name completion:
r = s.executeQuery(
"SELECT LAST FROM people.csv people " +
"WHERE (LAST Like '" +
searchFor.getText() +
"%') ORDER BY LAST");

if(r.next())
completion.setText(

r.getString("last"));
r = s.executeQuery(
"SELECT FIRST, LAST, EMAIL " +
"FROM people.csv people " +
"WHERE (LAST='" +

Chapter 15: Distributed Computing 973

completion.getText() +
"') AND (EMAIL Is Not Null) " +
"ORDER BY FIRST");

} catch(Exception e) {
results.setText(
searchFor.getText() + "\n");

results.append(e.getMessage());
return;

}
results.setText("");
try {
while(r.next()) {
results.append(

r.getString("Last") + ", "
+ r.getString("fIRST") +
": " + r.getString("EMAIL") + "\n");

}
} catch(Exception e) {
results.setText(e.getMessage());

}
}
public static void main(String[] args) {

JApplet applet = new VLookup();
JFrame frame = new JFrame("Email lookup");

//#frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
frame.addWindowListener(new WClose()); // 1.2
frame.add(applet);
frame.setSize(500, 200);
applet.init();
applet.start();
frame.setVisible(true);

}
} ///:~

Much of the database logic is the same, but you can see that a
TextListener is added to listen to the TextField, so that
whenever you type a new character it first tries to do a name
completion by looking up the last name in the database and using
the first one that shows up. (It places it in the completion Label,
and uses that as the lookup text.) This way, as soon as you’ve typed

974 Thinking in Java www.BruceEckel.com

enough characters for the program to uniquely find the name you’re
looking for, you can stop.

Why the JDBC API
seems so complex
When you browse the online documentation for JDBC it can seem
daunting. In particular, in the DatabaseMetaData interface –
which is just huge, contrary to most of the interfaces you see in Java
– there are methods such as
dataDefinitionCausesTransactionCommit(),
getMaxColumnNameLength(),
getMaxStatementLength(),
storesMixedCaseQuotedIdentifiers(),
supportsANSI92IntermediateSQL(),
supportsLimitedOuterJoins(), and so on. What’s this all
about?

As mentioned earlier, databases have seemed from their inception
to be in a constant state of turmoil, primarily because the demand
for database applications, and thus database tools, is so great. Only
recently has there been any convergence on the common language
of SQL (and there are plenty of other database languages in
common use). But even with an SQL “standard” there are so many
variations on that theme that JDBC must provide the large
DatabaseMetaData interface so that your code can discover the
capabilities of the particular “standard” SQL database that it’s
currently connected to. In short, you can write simple,
transportable SQL, but if you want to optimize speed your coding
will multiply tremendously as you investigate the capabilities of a
particular vendor’s database.

This, of course, is not Java’s fault. The discrepancies between
database products are just something that JDBC tries to help
compensate for. But bear in mind that your life will be easier if you
can either write generic queries and not worry too much about
performance, or, if you must tune for performance, know the
platform you’re writing for so you don’t need to write all that
investigation code.

Chapter 15: Distributed Computing 975

There is more JDBC information available in the electronic
documents that come as part of the Java 1.1 distribution from Sun.
In addition, you can find more in the book JDBC Database Access
with Java (Hamilton, Cattel, and Fisher, Addison-Wesley 1997).
Other JDBC books are appearing regularly.

A more sophisticated JDBC
Example
If you’re connecting across a network, the database URL will
contain the connection information and the dbUrl can become a bit
intimidating. Here is an example from a CloudScape database
being called from a remote client utilizing RMI:

jdbc:rmi://192.168.170.27:1099/jdbc:cloudscape:db

This database URL is really two jdbc calls in one. The first part
"jdbc:rmi://192.168.170.27:1099/" uses RMI to make the
connection to the remote database engine listening on port 1099 at
IP Address 192.168.170.27. The second part of the URL, "
jdbc:cloudscape:db" conveys the more typical settings using
the subprotocol and database name but this will only happen after
the first section has made the connection via RMI to the remote
machine.

When you’re ready to connect to the database, you call the static
method DriverManager.getConnection(), passing it the
database URL, the user name, and a password to get into the
database. You get back a Connection object that you can then use
to query and manipulate the database.

At this point we should dive into some example code. Our database
specific code will reside in the class DBStuff. Our database URL,
JDBC driver, username and password will have access methods, all
other SQL statements will be public strings.

package c16;
//: c16:DBStuff.java
// A class to hold all our
// database specific code

976 Thinking in Java www.BruceEckel.com

// for the community
// interests database
import java.sql.*;

public class DBStuff {
// All the database stuff
// Specific for CloudScape.
String dbDriver =

"COM.cloudscape.core.JDBCDriver";
String dbURL =

"jdbc:cloudscape:d:/docs/_work/JSapienDB";
String user = "";
String password = "";
public String dropMemTbl = "drop table MEMBERS";
public String createMemTbl =

"create table MEMBERS " +
"(MEM_ID INTEGER primary key, " +
"MEM_UNAME VARCHAR(12) not null unique, " +
"MEM_LNAME VARCHAR(40), " +
"MEM_FNAME VARCHAR(20), " +
"ADDRESS VARCHAR(40), " +
"CITY VARCHAR(20), " +
"STATE CHAR(4), " +
"ZIP CHAR(5), " +
"PHONE CHAR(12), " +
"EMAIL VARCHAR(30))";

public String createMemIdx =
"create unique index " +
"LNAME_IDX on MEMBERS(MEM_LNAME)";

public String dropEvtTbl = "drop table EVENTS";
public String createEvtTbl =

"create table EVENTS " +
"(EVT_ID INTEGER primary key, " +
"EVT_TITLE VARCHAR(30) not null, " +
"EVT_TYPE VARCHAR(20), " +
"LOC_ID INTEGER, " +
"PRICE DECIMAL, " +
"DATETIME TIMESTAMP)";

public String createEvtIdx =
"create unique index " +
"TITLE_IDX on EVENTS(EVT_TITLE)";

Chapter 15: Distributed Computing 977

public String dropEMTbl = "drop table EVTMEMS";
public String createEMTbl =

"create table EVTMEMS " +
"(MEM_ID INTEGER not null, " +
"EVT_ID INTEGER not null, " +
"MEM_ORD INTEGER)";

public String createEMIdx =
"create unique index " +
"EVTMEM_IDX on EVTMEMS(MEM_ID, EVT_ID)";

public String dropLocTbl = "drop table
LOCATIONS";
public String createLocTbl =

"create table LOCATIONS " +
"(LOC_ID INTEGER primary key, " +
"LOC_NAME VARCHAR(30) not null, " +
"CONTACT VARCHAR(50), " +
"ADDRESS VARCHAR(40), " +
"CITY VARCHAR(20), " +
"STATE VARCHAR(4), " +
"ZIP VARCHAR(5), " +
"PHONE CHAR(12), " +
"DIRECTIONS VARCHAR(4096))";

public String createLocIdx =
"create unique index " +
"NAME_IDX on LOCATIONS(LOC_NAME)";

public String getDriver() {
return dbDriver;

}
public String getDbURL() {

return dbURL;
}
public String getUser() {

return user;
}
public String getPassword() {

return password;
}

} ///:~

978 Thinking in Java www.BruceEckel.com

Our DBStuff class will generate a set of tables that will have a
structure as shown below. Certainly not elaborate but just right for
the level of detail we would like to show. There are numerous
books, seminars and software packages that will help you in the
design and development of a database. We do not want to elaborate
on those areas, we will focus primarily on Java. Our goal is to
provide a simple example to test most of our Enterprise APIs and a
structure that could be easily transferred to the database you use.

MEM_ORD

MEM_ID
EVT_ID

EVTMEMS

MEM_UNAME (AK)
MEM_LNAME (IE)
MEM_FNAME (IE)
ADDRESS
CITY
STATE
ZIP
PHONE
EMAIL

MEM_ID

MEMBERS

TITLE (IE)
TYPE
LOC_ID
PRICE
DATETIME

EVT_ID

EVENTS

NAME (IE)
CONTACT
ADDRESS
CITY
STATE
ZIP
PHONE
DIRECTIONS

LOC_ID

LOCATIONS

The following class, CreateTables uses the DBStuff class to load the
JDBC driver, make a connection to the database, then create the
table structure outlined above. Once the connection is made and
SQL statements have been written there is not much to do except
push the SQL to the database and or handle errors responsibily.

package c16;
//: c16:CreateTables.java

Chapter 15: Distributed Computing 979

// Creates database tables for
// community interests database
import java.sql.*;

public class CreateTables {

public static void main(String[] args) {
DBStuff db = new DBStuff();
try {
// Load the driver (registers itself)
Class.forName(db.getDriver());

} catch(java.lang.ClassNotFoundException e) {
System.err.print("ClassNotFoundException:

");
e.printStackTrace();

}
try {
Connection c = DriverManager.getConnection(
db.getDbURL(),
db.getUser(),
db.getPassword());

Statement s = c.createStatement();
// SQL code:
// Create the MEMBERS table
try {
s.executeUpdate(db.dropMemTbl);

} catch(SQLException sqlEx) {
String msg;
msg = "Table MEMBERS not present. " +

"Drop failed.";
System.out.println(msg);

}
s.executeUpdate(db.createMemTbl);
s.executeUpdate(db.createMemIdx);

// Create the EVENTS table
try {
s.executeUpdate(db.dropEvtTbl);

} catch(SQLException sqlEx) {
String msg;
msg = "Table EVENTS not present. " +

"Drop failed.";

980 Thinking in Java www.BruceEckel.com

System.out.println(msg);
}
s.executeUpdate(db.createEvtTbl);
s.executeUpdate(db.createEvtIdx);

// Create the EVTMEMS table
try {
s.executeUpdate(db.dropEMTbl);

} catch(SQLException sqlEx) {
String msg;
msg = "Table EVTMEMS not present. " +

"Drop failed.";
System.out.println(msg);

}
s.executeUpdate(db.createEMTbl);

// Create the LOCATIONS table
try {
s.executeUpdate(db.dropLocTbl);

} catch(SQLException sqlEx) {
String msg;
msg = "Table LOCATIONS not present. " +

"Drop failed.";
System.out.println(msg);

}
s.executeUpdate(db.createLocTbl);
s.executeUpdate(db.createLocIdx);

s.close();
} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

You can see the creation of the database URL as previously
described. In this example, there is no password protection on the
database so the user name and password are empty strings.

Once the connection is made with
DriverManager.getConnection(), you can use the resulting
Connection object to create a Statement object using the

Chapter 15: Distributed Computing 981

createStatement() method. With the resulting Statement, you
can call executeUpdate(), passing in a string containing an SQL-
92 standard SQL statement. (You’ll see shortly how you can
generate this statement automatically, so you don’t have to know
much about SQL.) executeUpdate() usually will return the
number of rows that were affected by the SQL statement.
executeUpdate() is more commonly used to execute INSERT,
UPDATE, or DELETE statements that modify one or more rows. For
statements such as CREATE TABLE, DROP TABLE and CREATE
INDEX, executeUpdate() always returns zero.

The Statement interface provides two other methods for executing
SQL statements: executeQuery() and execute(). The correct
method to use is determined by what the SQL statement produces.

The executeQuery() method returns a ResultSet object, which
is quite a bit like an iterator: the next() method moves the iterator
to the next record in the statement, or returns false if the end of the
result set has been reached. You’ll always get a ResultSet object
back from executeQuery() even if a query results in an empty set
(that is, an exception is not thrown). Note that you must call
next() once before trying to read any record data. If the result set
is empty, this first call to next() will return false. For each record
in the result set, you can select the fields using (among other
approaches) the field name as a string. Also note that the
capitalization of the field name is ignored – it doesn’t matter with
an SQL database. You determine the type you’ll get back by calling
getInt(), getString(), getFloat(), etc. At this point, you’ve got
your database data in Java native format and can do whatever you
want with it using ordinary Java code.

The method execute() is used to execute statements that return
more than one result set, more than one update count, or a
combination of the two.

Let's now load the table we created above with data. This will
require us to perform a series of INSERTS followed by a SELECT to
see all the data in our table and to let use exercise a result set.

982 Thinking in Java www.BruceEckel.com

Servlets
Now that we understand JDBC and how it abstracts all those
different database backends into a common API set, let’s turn our
attention to another common task handling HTTP requests and
responses. It is taken for granted in today’s technical environment
that client access from the Internet or corporate intranets is a sure
way to allow many users to access data and resources easily. This
type of access is predicated on the clients utilizing the World Wide
Web standards of Hypertext Markup Language (HTML) and
Hypertext Transfer Protocol (HTTP). Wouldn’t it be nice to have an
API set that abstracted out this commonly used area of client
access? Welcome Java Servlets!

Traditionally, the way to handle a problem such as allowing an
Internet client to update their personal data is to create an HTML
page with a text field and a “submit” button. The user can type
whatever he or she wants into the text field, and it will be submitted
to the server without question. As it submits the data, the Web page
also tells the server what to do with the data by mentioning the
Common Gateway Interface (CGI) program that the server should
run after receiving this data. This CGI program is typically written
in either Perl or C (and sometimes C++, if the server supports it),
and it must handle everything. First it looks at the data and decides
whether it’s in the correct format. If not, the CGI program must
create an HTML page to describe the problem; this page is handed
to the server, which sends it back to the user. The user must then
back up a page and try again. If the data is correct, the CGI program
opens the data file and either adds the email address to the file or
discovers that the address is already in the file. In both cases it must
format an appropriate HTML page for the server to return to the
user.

As Java programmers, this seems like an awkward way for us to
solve the problem, and naturally, we’d like to do the whole thing in
Java. First, we’ll use a Java applet to take care of data validation at
the client site, without all that tedious Web traffic and page
formatting. Then let’s skip the Perl CGI script in favor of a Java
application running on the server. In fact, let’s skip the Web server

Chapter 15: Distributed Computing 983

altogether and simply make our own network connection from the
applet to the Java application on the server!

As you’ll see, there are a number of issues that make this a more
complicated problem than it seems. It would be ideal to write the
applet but applet’s, while a proven technology with plenty of
support, have been problematic in the Wild World Web where
different browsers handle applet’s differently. In a corporate
intranet where there is some level of standardization this seems
possible in the short term but what happens with the next
acquisition or merger? What happens when employees want to
start working from home? That’s easy things start to look a lot
like the Internet you can’t depend on anything especially how
applets are implemented in your client’s browsers. So to be on the
safe side, what we really want to do is deal with straight HTML and
HTTP within our java server. The client knows nothing of the
implementation, they are only aware that they can get at their data
and perform their work without installing, upgrading or calling tech
support.

Sun has delivered on this need. The Servlet API wraps up the HTTP
protocol so we can put Java on the server side of our HTTP
connection and deal with our client in HTML and HTTP. Servlets
are completely server side java for the web. The client sees nothing
except HTTP and HTML.

The basic servlet
The architecture of the Servlet API is that of a classic service
provider with a service() method through which all client
requests will drive and life cycle methods init() and destroy().

public interface Servlet {
public void init(ServletConfig config)

throws ServletException;
public ServletConfig getServletConfig();
public void service(ServletRequest req,

ServletResponse res)
throws ServletException,

984 Thinking in Java www.BruceEckel.com

IOException;
public String getServletInfo();
public void destroy();

}

getServletConfig() sole purpose is to return a ServletConfig
object which contains initialization and startup parameters for this
servlet and getServletInfo() returns a string containing
information about the servlet, such as author, version, and
copyright.

The GenericServlet class is a shell implementation of this interface,
nothing more. The HttpServlet class is an extension of
GenericServlet and is designed specifically to handle the the HTTP
protocol.

Although you can derive your servlets from GenericServlet, Sun
recommends that all servlets derive from HttpServlet. This makes
sense since your servlet is designed to work with a servlet engine
that is satisfying clients requests from within a web server. Why not
utilize the built-in parsing capabilities for POST and GET that come
with HttpServlet? We will be getting into this shortly.

The most wonderful attribute of the Servlet API is the auxiliary
objects that come along with the HttpServlet class to support it.
Look at the service() method in the Servlet interface. It has two
parameters ServletRequest and ServletResponse. With the
HttpServlet class these two object are extended for HTTP as well –
HttpServletRequest and HttpServletResponse. Let’s take a closer
look.

//: c16:ServletsRule.java
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class ServletsRule extends HttpServlet {
int i = 0; // Servlet "persistence"
public void service(HttpServletRequest req,

Chapter 15: Distributed Computing 985

HttpServletResponse res) throws IOException {
PrintWriter out = res.getWriter();
out.print("<HEAD><TITLE>");
out.print("A server-side strategy");
out.print("</TITLE></HEAD><BODY>");
out.print("<h1>Servlets Rule! " + i++);
out.print("</h1></BODY>");
out.close();

}
} ///:~

ServletsRule is about as simple as a servlet can get. But that is the
beauty of it all - just think how much stuff is being handled for us!
Once the servlet is initialized its init() method has run to
completion can clients enter the service() method. In the
service method our main responsibility is to interact with the HTTP
request the client sent us and build a HTTP response based upon
the attributes contained within the request. In ServletsRule we only
manipulate the response object without looking at what the client
may has sent us. We call the getWriter() method of the response
object to get a PrintWriter object. The PrintWriter is used for
writing character-based response data.

As we dive more deeply into the HttpRequest and HttpResponse
objects you should notice that a greater understanding of HTTP and
HTML would be helpful. Servlets are designed for web server-side
development and it shows. Now let’s scratch a little deeper by
getting some HTML form data that was passed to the servlet in the
request object.

//: c16:EchoForm.java
// Dumps the name-value pairs of any HTML form
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
public class EchoForm extends HttpServlet {
public void doGet(HttpServletRequest req,

HttpServletResponse res) throws IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();

986 Thinking in Java www.BruceEckel.com

out.print("<h1>Your form contained:</h1>");
Enumeration flds = req.getParameterNames();
while(flds.hasMoreElements()) {
String field = (String)flds.nextElement();
String value = req.getParameter(field);
out.print(field + " = " + value + "
");

}
out.close();

}
public void doPut(HttpServletRequest req,

HttpServletResponse res) throws IOException {
doGet(req, res);

}
} ///:~

The EchoForm servlet parrots back to our client the request fields
that have been sent to the servlet as part of the request object.
Since the request fields will be placed into a response we must set
up the response object with calls to setContentType() and
getWriter(). In an HttpResponse object the
setContentType() methods sets the Content-Type HTTP header.
This is most commonly "text/html".

Notice that in EchoForm the service() method has been replaced
by doGet(). This automatic HTTP method name parsing is a
feature of HttpServlet. HTTP was designed for the Web and has
been made more general than necessary. The first word on the full
request line is simply the name of the method (command) to be
executed on the Web page. The built-in methods are GET, POST,
HEAD, PUT, DELETE, LINK and UNLINK. The HttpServlet class
is written to parse these methods and let the programmer react
differently for a GET than a POST or even a HEAD request method.
If you don't care you can just override service(). Since most
HTTP methods are POST or GET many times you just implement
one and direct the other to it.

In The HTTP request object has the potential to come with request
parameters and generally does. The parameters are typically name-
value pairs sent as part of its query string (for GET requests) or as
encoded post data (for POST requests). EchoForm uses the request

Chapter 15: Distributed Computing 987

object's getParameterNames() method to loop through the
parameter list. The getParameter() method is used to pull the
value. The pair is then written to the PrintWriter of the response
object with the appropriate HTML tags. The response object is sent
to the client when the servlet is finished.

Servlets and Multithreading
Now that you understand the basics you should be realizing that
servlets are excellent for server-side web development. Elegant and
straight forward, they do just about everything for you - right?
Well, almost. Remember early we said all client requests drive
through the service method? This is the well-used, high traffic
corridor of the servlet and more than one client request may come
through at the same time. The servlet engine has a pool of threads
that it will dispatch to handle client requests. It is quite likely that
two clients arriving at the same time could beprocessing through
your service() or doGet() or doPost() methods at the same time.
Therefore the service() methods and other methods called by
HttpServlet.service() (e.g. doGet(), doPost(), doHead(),etc.) need to
be written in a thread-safe manner. Any common resources (files,
databases) that will be used by your client requests will need to be
synchronized.

ThreadServlet is a simple example that simply synchronizes around
the threads sleep() method. This will hold up all threads until the
allotted time (5000 ms) is all used up. When testing this you
should start several browsers instances and hit this servlet as
quickly as possible.

//: c16:ThreadServlet.java
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
public class ThreadServlet extends HttpServlet {
int i;
public void service(HttpServletRequest req,

HttpServletResponse res) throws IOException {

988 Thinking in Java www.BruceEckel.com

res.setContentType("text/html");
PrintWriter out = res.getWriter();
synchronized(this) {
try {
Thread.currentThread().sleep(5000);

} catch(InterruptedException e) {}
}
out.print("<h1>Finished " + i++ + "</h1>");
out.close();

}
} ///:~

Handling Sessions with Servlets
The servlet API comes with more than just the classes that
implement the servlet interface, GenericServlet and HttpServlet and
the Request and Response objects. The design of HTTP is such that
it is a 'sessionless' protocol. A great deal of effort has gone into
mechanisms that will allow web developers to track sessions. How
could companies do e-commerce if you couldn't keep track of client
and the items they have put into their shopping cart? You couldn't!
This may be great for privacy advocates but it does little to help
create robust, commerce driven web sites.

There are several methods of session tracking but the most common
method is with persistant 'cookies'. The term cookie sounds cute
and could be perceived as a session tracking solution that was baked
up in someone's garage. The fact is that cookies are an integral part
of the Internet standards. The HTTP Working Group of the
Internet Engineering Task Force has written cookies in the official
standard in RFC 2109 (http://ds.internic.net/rfc/rfc2109.txt or
check http://www.cookiecentral.com).

A cookie is nothing more than a small piece of information sent by a
web server to a browser. The browser stores the cookie locally and
all calls to the server from that browser will contain the cookie as an
identifier. The cookie therefore acts to uniquely identify the client
with each hit of this web server. It should be noted that clients can
turn off the browsers ability to accept cookies. If your site still need

http://ds.internic.net/rfc/rfc2109.txt
http://www.cookiecentral.com/

Chapter 15: Distributed Computing 989

to be able to session track this type of client then another method of
session tracking (URL rewriting or hidden form fields) will have to
be incorporated. The session tracking capabilities built into the
Servlet API are designed around cookies.

The Cookie Class
The Servlet API (version 2.0 and up) provides the
javax.servlet.http.Cookie class. This class incorporates all the HTTP
header details and allows the setting of various cookie attributes.
Using the cookie is simply a matter of creating it using the
constructor and adding it to the response object. The constructor
takes a cookie name as the first argument and a value as the second.
Cookies are added to the response object before you send any
content.

Cookie oreo = new Cookie("TIJava", "2000");
res.addCookie(cookie);

Cookies are then received by calling the getCookies() method of the
HttpServletRequest object which returns an array of cookie objects.

Cookie[] cookies = req.getCookies()

The Session Class
A session in the world of HTTP and the Internet is one or more page
requests by a client to a web site during a defined period of time. If
I am buying my groceries on-line, I want a session to be confined to
the period from when I first add an item to my shopping cart to the
point where I checkout. Each item I add to the shopping cart will be
a new connection in the HTTP world, they have no knowledge of
previous connections or items in the shopping cart. The mechanics
supplied by the Cookie specification allows us to perform 'session
tracking'.

You should understand that a cookie is an object that encapsulates
that small bit of information that will be stored on the client side. A
Servlet Session object lives on the server side of the communication
channel and its goal is to capture data about this client that would

990 Thinking in Java www.BruceEckel.com

be useful as the client moves through and interacts with your web
site. This data may be pertinent for the present session, such as
items in the shopping cart or it may be information you asked the
client to enter such as authentication information entered when the
client first entered your web site and which should not have to be
re-enter before a set time of inactivity.

The Session class of the Servlet API uses the Cookie class but really
all the session object needs is a unique identifier stored on the client
and passed to the server. Usually this is a cookie and that is the
mechanism we will cover here. Web sites may also use the other
types of session tracking but these mechanisms will be more
difficult to implement as they are not encapsulated into the Servlet
API.

Let's take a look at implementing session tracking with the Servlet
API:

import java.io.*;
import java.util.Enumeration;
import java.util.Date;
import javax.servlet.*;
import javax.servlet.http.*;

// Example of using the HttpSession class
public class SessionPeek extends HttpServlet {

public void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException,
IOException

{

// Retrieve Seesion Object before any
// output is sent to the client.

HttpSession session =
req.getSession();

// Get the output stream
ServletOutputStream out =

res.getOutputStream();

Chapter 15: Distributed Computing 991

res.setContentType("text/html");

out.println("<HEAD><TITLE> SessionPeek ");
out.println(" </TITLE></HEAD><BODY>");

out.println("<h1> SessionPeek </h1>");

// A simple hit counter for this session.
Integer ival = (Integer)

session.getAttribute("sesspeek.cntr");
if (ival==null) ival = new Integer(1);
else ival = new Integer(ival.intValue()

+ 1);
session.setAttribute("sesspeek.cntr",

ival);
out.println("You have hit this page "

+ ival + " times.<p>");

// Session Data
out.println("<h2>");
out.println(" Saved Session Data </h2>");
// loop through all data in the session
// and spit is out.
Enumeration sesNames =

session.getAttributeNames();
while (sesNames.hasMoreElements()) {

String name =
(String) sesNames.nextElement();

String value =
session.getAttribute(name).toString();

out.println(name + " = "
+ value + "
");

}

// Session Statistics
out.println("<h3> Session Statistics

</h3>");
out.println("Session ID: "

+ session.getId()
+ "
");

out.println("New Session: "
+ session.isNew()

992 Thinking in Java www.BruceEckel.com

+ "
");
out.println("Creation Time: "

+ session.getCreationTime());
out.println("<I>(" +

new Date(session.getCreationTime())
+ ")</I>
");

out.println("Last Accessed Time: " +
session.getLastAccessedTime());

out.println("<I>(" +
new Date(

session.getLastAccessedTime())
+ ")</I>
");

out.println("Session Inactive Interval: "
+ session.getMaxInactiveInterval());

out.println("Session ID in Request: "
+ req.getRequestedSessionId()
+ "
");

out.println("Is session id from Cookie: "
+ req.isRequestedSessionIdFromCookie()
+ "
");

out.println("Is session id from URL: "
+ req.isRequestedSessionIdFromURL()
+ "
");

out.println("Is session id valid: "
+ req.isRequestedSessionIdValid()
+ "
");

out.println("</BODY>");
out.close();
}

public String getServletInfo() {
return "A session tracking servlet";

}
}

The very first thing we do when we enter the doGet() method is to
call getSession() on the request object. getSession will return the
session object associated with this request. Do not be misled into
thinking that the session object is returned with the request. The

Chapter 15: Distributed Computing 993

session object does not travel across the network it lives on the
server and is associated with a client and its requests.

getSession() now comes in two versions – no parameter as used
here and getSession(boolean). getSession(true) is equivalent to
getSession(). The only reason for the boolean is to state whether
you want to the session object created if it is not found.
getSession(true) is the most likely call hence getSession().

The session object, if it is not new, will give us details about our
client on their previous visits. If the session object is new then we
will start with this visit to gather information about this client’s
activities. Capturing this client information is done through the
setAttribute() and getAttribute() methods of the session object.

java.lang.Object getAttribute(java.lang.String)
void setAttribute(java.lang.String name,

java.lang.Object value)

The session object uses a simple name-value pairing for loading
information. The values must be derived from java.lang.Object and
the name is a string. In ServletPeek we are keeping track of how
many times the client has been back here during this session. This
is done with an Integer object that is named sesspeek.cntr. You
should notice in the if-else statement that if the name is not found
we create a new Integer with value of 1, otherwise we create a new
Integer with a value equal to the incremented value of the
previously held Integer. We stick the new Integer into the session
object and let the garbage collector handle the old Integer. You
should realize that if you are using the same key the new object
would overwrite the old one. Lastly, we use our incremented
counter to display how many times the client has visited during this
session.

Related to getAttribute() and setAttribute() is getAttributeNames().
getAttributeNames() returns an enumeration of all the names of
objects that are bound to the session object. This is quite handy and
a small while loop has been added to SessionPeek to show this
method in action.

994 Thinking in Java www.BruceEckel.com

This brings us to the question “Just how long does a session object
hang around for?” The answer depends upon the servlet engine you
are using although I think they usually default to 30 minutes (1800
seconds), which is what you should see from the ServletPeek call to
getMaxInactiveInterval(). We have tested this and found mixed
results between servlet engines. Sometimes the session object can
hang around overnight. I have never seen a case where the session
object disappears before the Inactive Interval. You can try this by
setting the Inactive Interval with setMaxInactiveInterval() to 5
seconds and see if your session object hangs around or if it is
cleaned up at the appropriate time. This may be an attribute you
will want to investigate while choosing a servlet engine.

Getting the Servlet examples to
work
If you are not already working with an application server that
handles Sun's Servlet and JSP technologies for you, then you may
want to re-evaluate your choice of application server or you may
want to download the Tomcat implementation of Java Servlets and
JSP’s. This can be found at http://jakarta.apache.org.

First, you should follow the instructions for decompressing the
version specific to your environment. This will install the Tomcat
implementation into a directory structure under where you
unzipped it. Second, edit the server.xml so that you have a new web
application. Lastly, you will then want to load the servlet examples
into that new web application directory where the Tomcat server
can find them.

Java Server Pages
Servlets are found by the servlet engine looking for the .class file
along a web application path defined by the configuration of the
web server. That makes sense, no problem there. But what if we
would like the web server to compile the servlet at the time it is
invoked, thereby insuring that the lastest and greatest code is

http://jakarta.apache.org/

Chapter 15: Distributed Computing 995

delivered to the client. This is the nature of JavaServer Pages or
JSPs.

You can think of JSPs as special Java tags inside the HTML page
that will result in a servlet being generated, then compiled by the
web server at the time the client invokes that page. This allows the
separation of the dynamic content and the static content in the
HTML page. You get support for scriping and tags plus the reuse
associated with those tags and the JSP components that provide the
functionality. Essentially, your previously static HTML pages have
become dynamic in some of it parts.

The structure of a JSP page is a cross between a servlet and an
HTML page. The JSP page is a test-based document that describes
how to process a request and create a response. The text based
description of the page intermixes template data with some
dynamic actions and leverages the Java platform. JavaServer Pages
is a standard extension that is defined on top of the Servlet
Standard Extension. JSP 1.1 uses class from Servlet 2.2 which relies
on JRE 1.1.

Here’s an extremely simple JSP example that uses a standard Java
library call to get the current time in milliseconds, which is then
divided by 1000 to produce the time in seconds. Since a JSP
expression (the <%=) is used, the result of the calculation is
coerced into a String so it can be printed to the out object (which
puts it in the web page):

//:! c16:jsp:ShowSeconds.jsp
<html><body>
<H1>The time in seconds is:
<%= System.currentTimeMillis()/1000 %></H1>
</body></html>
///:~

There is a great deal more going on here than meets the eye. If we
follow the route of the request and response we can get an idea how
much many layers the request and response are moving through.
The client creates the request for the JSP page and sends it off to
the Web Server. The Web Server must be able to find the JSP page
and forward the request to the page. The JSP page has associated

996 Thinking in Java www.BruceEckel.com

with it a compiled component that is created from the Java code
embedded within. This JSP component is the ultimate destination
of the request and the creator of the response. The response then
bubbles up the same path that the request followed picking up
pieces to pass back to the client along the way.

This is important as Sun describes a JSP page as “a text-based
document that describes how to process a request and create a
response.” That about a broad as you can get so let’s dig deeper.

Basic operations
We know that the server automatically creates, compiles, loads and
runs a special servlet to generate the page’s content. The static
portions of the HTML page are generated by the servlet using the
equivalent of out.println() calls within the servlet. The
dynamic portions are included directly into the servlet.

There is good and bad in everything and JSPs are no different. The
downside to all this dynamism is poor performance for first time
access. Try it – it is obvious. The first access is slow and
subsequent accesses are excellent.

Implicit Objects
When we looked at servlets there were several objects already built
into the API – response, request, session, etc. These objects are
very conveniently built into the JSP specification and they provide
the same robust foundation for manipulating HTTP and HTML in a
web application.

JSP writers have access to these implicit objects within the JSP page
just as you would within a servlet. The implicit objects in a JSP are
detailed in the table below. Each of the variables has a class or
interface that is defined in the core Java technology or the Java
Servlet API. Scope of each object can vary significantly. For
example, a Session object would have a scope exceeding that of a
page as it many span several client requests and pages and an
application object would provide service to a group of jsp pages that
together would represent a web application.

Chapter 15: Distributed Computing 997

Implicit
variable

Of Type
(javax.servlet)

Description Sc
op
e

request protocol
dependent
subtype of :
HttpServletRe
quest.

The request that triggers
the service invocation.

req
ues
t

response protocol
dependent
subtype of :
HttpServletRe
sponse.

The response to the
request.

pa
ge

pageCont
ext

jsp.PageConte
xt

The page context
encapsulates
implementation-
dependent features and
provides convenience
methods and namespace
access for this JSP.

pa
ge

session protocol
dependent
subtype of:
http.HttpSessi
on

The session object
created for the
requesting client. See
Servlet Session object.

ses
sio
n

applicati
on

ServletContext The servlet context
obtained from the
servlet configuration
object (e.g.
getServletConfig().getCo
ntext()

ap
p

out jsp.JspWriter The object that writes
into the output stream.

pa
ge

998 Thinking in Java www.BruceEckel.com

config ServletConfig The ServletConfig for
this JSP.

pa
ge

page java.lang.Obje
ct

The instance of this
page’s implementation
class processing the
current request.

pa
ge

JSP Scripting Elements
The implicit objects and the power of Java are all brought together with
JSP actions. Actions affect the current out stream and use, modify or
create objects. The actions to be performed will be determined by the
details of the request object received by the JSP page. The JSP
specification includes actions types that are standard and must be
implemented by conforming engines. The syntax for action elements is
based on XML.

The actions all start with Directives. Directives are messages to the
JSP engine and the syntax is:

<%@ directive {attr=”value”}*%>

Directive do not produce any output into the current out stream but
they are important in setting up your JSP pages attributes and
dependencies with the JSP engine. As an example the line:

<%@ page language=”java” %>

says that the scripting language being used within the JSP page is java.
In fact the specification only describes the semantics of scripts for the
language attribute equal to Java. This should give you an idea of the
flexibility that is being built into the JSP technology. In the future, if
you were to choose another language, say Python (a good scripting
choice), then that language would have to support the Java Runtime
Environment by exposing the Java technology object model to the

Chapter 15: Distributed Computing 999

script environment, especially the implicit variables defined above,
JavaBeans properties, and public methods.

The most important directive is the page directive. It defines a number
of page dependent attributes and communications these attributes to
the JSP engine. These attributes include: language, extends, import,
session, buffer, autoFlush, isThreadSafe, info and errorPage. For
example:

<%@ page session=”true” import=”java.util.*” %>

This line indicates that the page requires participation in an (HTTP)
session. Since we have not set the language directive the JSP engine
defaults to java and the implicit script language variable named
“session” is of type javax.servlet.http.HttpSession. If the directive had
been false then the implicit variable “session” would be unavailable, the
default is true.

The import attribute describes the types that are available to the
scripting environment. This attribute is used just as it would be in the
Java programming language i.e. a (comma separated) list of either a
fully qualified Java type name denoting that type, or of a package
named followed by the “.*” string denoting all the public types declared
in that package. The import list is imported by the translated JSP page
implementation and is available to the scripting environment. Again,
this is currently only defined for when the value of the language
directive is “java”.

Once the directives have been used to set the scripting environment we
can utilize the scripting language elements. JSP 1.1 has three scripting
language elements – declarations, scriptlets, and expressions. A
declaration will declare elements, a scriptlet is a statement
fragment, and an expression is a complete language expression. In
JSP each scripting element begins with a “<%”. The exact syntax for
each is:

<%! declaration %>
<% scriptlet %>
<%= expression %>

1000 Thinking in Java www.BruceEckel.com

White space is optional after “<%!”, “<%”, “<%=”, and before “%>”.

As mentioned early, all these tags are based upon XML. More
accurately you could state that a JSP page could be mapped to a XML
document and although this is a little touted section of the
specification, I suspect you will be hearing more and more about this
aspect of JSP as Java, XML, and server-side Java become more
intertwined. I will not go into these mapping details here but you
should be aware of them and if you need more details you should refer
to the JSP specification. Therefore, you should realize that the XML
equivalent syntax for the scripting elements above would be:

<jsp:declaration> declaration </jsp:declaration>
<jsp:scriptlet> scriptlet </jsp:scriptlet>
<jsp:expression> expression </jsp:expression>

Declarations are used to declare variables and methods in the
scripting language used in a JSP page – Java at this time. The
declaration should be a complete Java statement and should not
produce any output in the current out stream. In the Hello.jsp
example below the variables loadTime, loadDate and hitCount are
all complete Java statements declares new variables and initializes
them.

<%-- //:! c16:jsp:Hello.jsp --%>

<%-- This JSP comment will not appear in the

generated html --%>

<%-- This is a JSP directive: --%>

<%@ page import="java.util.*" %>

<%-- These are declarations: --%>

<%!

long loadTime= System.currentTimeMillis();

Date loadDate = new Date();

int hitCount = 0;

%>

<html><body>

<%-- The next several lines are the result of a

Chapter 15: Distributed Computing 1001

JSP expression inserted in the generated html;

the '=' indicates a JSP expression --%>

<H1>This page was loaded at <%= loadDate %> </H1>

<H1>Hello, world! It's <%= new Date() %></H1>

<H2>Here's an object: <%= new Object() %></H2>

<H2>This page has been up

<%= (System.currentTimeMillis()-loadTime)/1000 %>

seconds</H2>

<H3>Page has been accessed <%= ++hitCount %>

times since <%= loadDate %></H3>

<%-- A "scriptlet" which writes to the server

console. Note that a ';' is required: --%>

<%

System.out.println("Goodbye");

out.println(“Cheerio”);

%>

</body></html>

<%-- ///:~ --%>

At the tail end of Hello.jsp is a scriptlet that writes “Goodbye” to the
web server console and “Cheerio” to the implicit out JspWriter
object. Scriptlets can contain any code fragments that are valid
Java statements. Scriptlets are executed at request-processing time.
When all the scriptlets fragments in a given JSP are combined in
the order they appear in the JSP page, they should yield a valid
statement as defined by the Java programming language. Whether
or not they produce any output into the out stream depends upon
the actual code in the scriptlet. You should be careful as scriptlets
can have side effects through their modification of the objects
visible within them.

JSP expressions can found intermingled with the HTML in the
middle section of Hello.jsp. Expressions are interesting because
they must be complete Java statements, which are then evaluated.
The result of the JSP expression is coerced to a java.lang.String
which is emitted into the current implicit out JspWriter object. If

1002 Thinking in Java www.BruceEckel.com

the result of the expression cannot be coerced to a java.lang.String
then a ClassCastException is thrown.

JSP Page Attributes and Scope
I have spent some time trying to get my code editor to view a .jsp
page with syntax highlighting. This is bit more difficult than it
would seem. Is a .jsp page Java or is it HTML? That's easy - it's
both. So setting up my color coding was like melding the HTML
section with the Java section. The real pint is that a .jsp page
provides a new set of tags that allows you to separate the passive
display code (HTML) from the dynamic programming code (Java).

There is no reason you can't have a whole block of code that
performs some action that will provide content for you HTML. This
action could be a database call or a call to some other resource.
PageContext.jsp below calls getAttributeNamesInScope()
method of pageContext to get all the attributes in the scope passed
in (1 refers to page).

<%-- //:! c16:jsp:PageContext.jsp --%>
<%--Viewing the attributes in the pageContext--%>
<%-- Note that you can include any amount of code
inside the scriptlet tags --%>
<%@ page import="java.util.*" %>
<html><body>
<%
session.setAttribute("My dog",

new String("Ralph"));
for(int scope = 1; scope <= 4; scope++) {

out.println("<H3>Scope: " +
scope + "</H3>
");

Enumeration e =
pageContext.getAttributeNamesInScope(scope);

while(e.hasMoreElements()) {
out.println("\t" +
e.nextElement() + "");

}
}

%>
<H4>End of list</H4>

Chapter 15: Distributed Computing 1003

</body></html>
<%-- ///:~ --%>

The output looks like this:

Scope: 1
• javax.servlet.jsp.jspOut

• javax.servlet.jsp.jspPage

• javax.servlet.jsp.jspSession

• javax.servlet.jsp.jspApplication

• javax.servlet.jsp.jspPageContext

• javax.servlet.jsp.jspConfig

• javax.servlet.jsp.jspResponse

• javax.servlet.jsp.jspRequest

Scope: 2
• org.apache.tomcat.servlet.resolved

Scope: 3
• My dog

Scope: 4
• sun.servlet.workdir

• javax.servlet.context.tempdir

End of list
Scope 1 is the page scope and all objects reference available in this
scope will be discarded upon completion of the current request by
the page body. Scope 2 refers to the request scope and will be
discarded upon completion of the current client request. As you can

1004 Thinking in Java www.BruceEckel.com

see I am using the Apache Tomcat implementation of the Servlets
and JSP. (I am not sure what org.apache.tomcat.servlet.resolved is
I will try to find out.) Scope 3 will be our session scope and the only
object we have with session scope is the one that we added right
before the for loop - "My dog". Scope 4 is the scope of our
application and is based upon the ServletContext object. There
is one ServletContext per "web application" per Java Virtual
Machine. (A "web application" is a collection of servlets and content
installed under a specific subset of the server's URL namespace
such as /catalog. In the Tomcat release this information is set via
server.xml file.) At the application scope level we have to objects
that represent paths for working directory and temporary directory.

Manipulating sessions in JSP
Let's take a closer look at sessions within the JSP model. The next
example will exercise the session object a little bit and allow you to
manipulate the amount of time before your session becomes
invalid. First we must capture some information about this session
object. I make a call to getID(), getCreationTime() and
getMaxInactiveInterval() and display these attributes about
our session. When I first bring this session up in the Tomcat
implementation the MaxInactiveInterval is 1800 seconds or 30
minutes. Now I know a bit about my session, so lets change its
behavior by shortening the MaxInactiveInterval to 5 seconds. Now
we should see some action. Next, I check to see if the object "My
dog" is attached to the session object giving it session scope. The
first time through this should be null but right afterwards we do
create a String object "Ralph" and attach it to the session object by
call setAttribute(). Now Ralph should hang around for at least
5 seconds. The invalidate button at the bottom calls a second .jsp
page SessionObject2.jsp that simply asks the session if it has the
object tagged "My dog" then kills the session by calling
invalidate() on the session object. "Ralph" is gone. The other
button on the bottom of SessionObject.jsp is "Keep Around". This
calls a third page, SessionObject3.jsp, that does NOT invalidate the
session and you can see that "Ralph" in fact does hang around as
long as your 5 second time interval does not expire. Try the refresh

Chapter 15: Distributed Computing 1005

button on SessionObject.jsp or move back and forth between
SessionObject and SessionObject3.jsp (Keep Around button) a
couple of times using different intervals to get a feel for how long
"My dog" stays around. (For those of you who have kids this is like
the Tomagotchi pets - as long as you play with "Ralph" he will stick
around otherwise he packs it up :-)

<%-- //:! c16:jsp:SessionObject.jsp --%>
<%--Setting and getting session object values--%>
<html><body>
<H1>Session id: <%= session.getId() %></H1>
<H3>This session was created at
<%= session.getCreationTime() %></H1>
<H3>MaxInactiveInterval=
<%= session.getMaxInactiveInterval()

%></H3>
<% session.setMaxInactiveInterval(5); %>
<H3>Reset MaxInactiveInterval=
<%= session.getMaxInactiveInterval()

%></H3>
<H2>If this session object "My dog" is still
around <H2>
<H3>Session value for "My dog" =
<%=

session.getAttribute("My dog")
%></H3>
<%-- Now add the session object "My dog" --%>
<%

session.setAttribute("My dog",
new String("Ralph"));

%>
<H1>My dog's name is
<%= session.getAttribute("My dog") %></H1>
<%-- See if "My dog" wanders to another form --%>
<FORM TYPE=POST ACTION=SessionObject2.jsp>
<INPUT TYPE=submit name=submit Value="Invalidate">
</FORM>
<FORM TYPE=POST ACTION=SessionObject3.jsp>
<INPUT TYPE=submit name=submit Value="Keep
Around">
</FORM>

1006 Thinking in Java www.BruceEckel.com

</body></html>
<%-- ///:~ --%>

<%-- //:! c16:jsp:SessionObject2.jsp --%>

<%--The session object carries through--%>

<html><body>

<H1>Session id: <%= session.getId() %></H1>

<H1>Session value for "My dog"

<%= session.getValue("My dog") %></H1>

<% session.invalidate(); %>

</body></html>

<%-- ///:~ --%>

<%-- //:! c16:jsp:SessionObject3.jsp --%>
<%--The session object carries through--%>
<html><body>
<H1>Session id: <%= session.getId() %></H1>
<H1>Session value for "My dog"
<%= session.getValue("My dog") %></H1>
<FORM TYPE=POST ACTION=SessionObject.jsp>
<INPUT TYPE=submit name=submit Value="Return">
</FORM>
</body></html>
<%-- ///:~ --%>

Creating and modifying Cookies
<%--This program has different behaviors under
different browsers! --%>
<html><body>
<H1>Session id: <%= session.getId() %></H1>
<%
Cookie[] cookies = request.getCookies();
for(int i = 0; i < cookies.length; i++) { %>

Cookie name: <%= cookies[i].getName() %>

value: <%= cookies[i].getValue() %>

Chapter 15: Distributed Computing 1007

Max age in seconds:
<%= cookies[i].getMaxAge() %>

<% cookies[i].setMaxAge(3); %>
Max age in seconds:
<%= cookies[i].getMaxAge() %>

<% response.addCookie(cookies[i]); %>
<% } %>
<%-- <% response.addCookie(

new Cookie("Bob", "Car salesman")); %> --%>
</body></html>

RMI (Remote Method
Invocation)

Traditional approaches to executing code on other machines across
a network have been confusing as well as tedious and error-prone to
implement. The nicest way to think about this problem is that some
object happens to live on another machine, and you can send a
message to that object and get a result as if the object lived on your
local machine. This simplification is exactly what Java 1.1 Remote
Method Invocation (RMI) allows you to do. This section walks you
through the steps necessary to create your own RMI objects.

Remote interfaces
RMI makes heavy use of interfaces. When you want to create a
remote object, you mask the underlying implementation by passing
around an interface. Thus, when the client gets a handle to a remote
object, what they really get is an interface handle, which happens to
connect to some local stub code that talks across the network. But
you don’t think about this, you just send messages via your interface
handle.

When you create a remote interface, you must follow these
guidelines:

1. The remote interface must be public (it cannot have
“package access,” that is, it cannot be “friendly”). Otherwise,

1008 Thinking in Java www.BruceEckel.com

a client will get an error when attempting to load a remote
object that implements the remote interface.

2. The remote interface must extend the interface
java.rmi.Remote.

3. Each method in the remote interface must declare
java.rmi.RemoteException in its throws clause in
addition to any application-specific exceptions.

4. A remote object passed as an argument or return value
(either directly or embedded within a local object) must be
declared as the remote interface, not the implementation
class.

Here’s a simple remote interface that represents an accurate time
service:

//: c15:ptime:PerfectTimeI.java
// The PerfectTime remote interface.
package c15.ptime;
import java.rmi.*;

interface PerfectTimeI extends Remote {
long getPerfectTime() throws RemoteException;

} ///:~

It looks like any other interface except that it extends Remote and
all of its methods throw RemoteException. Remember that an
interface and all of its methods are automatically public.

Implementing the remote interface
The server must contain a class that extends
UnicastRemoteObject and implements the remote interface.
This class can also have additional methods, but only the methods
in the remote interface will be available to the client, of course,
since the client will get only a handle to the interface, not the class
that implements it.

You must explicitly define the constructor for the remote object
even if you’re only defining a default constructor that calls the base-

Chapter 15: Distributed Computing 1009

class constructor. You must write it out since it must throw
RemoteException.

Here’s the implementation of the remote interface PerfectTimeI:

//: c15:ptime:PerfectTime.java
// The implementation of
// the PerfectTime remote object.
package c15.ptime;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;

public class PerfectTime
extends UnicastRemoteObject
implements PerfectTimeI {

// Implementation of the interface:
public long getPerfectTime()

throws RemoteException {
return System.currentTimeMillis();

}
// Must implement constructor to throw
// RemoteException:
public PerfectTime() throws RemoteException {

// super(); // Called automatically
}
// Registration for RMI serving:
public static void main(String[] args) {

System.setSecurityManager(
new RMISecurityManager());

try {
PerfectTime pt = new PerfectTime();
Naming.bind(
"//colossus:2005/PerfectTime", pt);

System.out.println("Ready to do time");
} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

1010 Thinking in Java www.BruceEckel.com

Here, main() handles all the details of setting up the server. When
you’re serving RMI objects, at some point in your program you
must:

1. Create and install a security manager that supports RMI. The
only one available for RMI as part of the Java distribution is
RMISecurityManager.

2. Create one or more instances of a remote object. Here, you
can see the creation of the PerfectTime object.

3. Register at least one of the remote objects with the RMI
remote object registry for bootstrapping purposes. One
remote object can have methods that produce handles to
other remote objects. This allows you to set it up so the client
must go to the registry only once, to get the first remote
object.

Setting up the registry
Here, you see a call to the static method Naming.bind().
However, this call requires that the registry be running as a separate
process on the computer. The name of the registry server is
rmiregistry, and under 32-bit Windows you say:

start rmiregistry

to start it in the background. On Unix, it is:

rmiregistry &

Like many network programs, the rmiregistry is located at the IP
address of whatever machine started it up, but it must also be
listening at a port. If you invoke the rmiregistry as above, with no
argument, the registry’s port will default to 1099. If you want it to
be at some other port, you add an argument on the command line to
specify the port. For this example, the port will be located at 2005,
so the rmiregistry should be started like this under 32-bit
Windows:

start rmiregistry 2005

or for Unix:

Chapter 15: Distributed Computing 1011

rmiregistry 2005 &

The information about the port must also be given to the bind()
command, as well as the IP address of the machine where the
registry is located. But this brings up what can be a frustrating
problem if you’re expecting to test RMI programs locally the way
the network programs have been tested so far in this chapter. In the
JDK 1.1.1 release, there are a couple of problems:2

1. localhost does not work with RMI. Thus, to experiment
with RMI on a single machine, you must provide the name of
the machine. To find out the name of your machine under
32-bit Windows, go to the control panel and select
“Network.” Select the “Identification” tab, and you’ll see your
computer name. In my case, I called my computer “Colossus”
(for all the hard disks I’ve had to put on to hold all the
different development systems). It appears that
capitalization is ignored.

2. RMI will not work unless your computer has an active
TCP/IP connection, even if all your components are just
talking to each other on the local machine. This means that
you must connect to your Internet service provider before
trying to run the program or you’ll get some obscure
exception messages.

Will all this in mind, the bind() command becomes:

Naming.bind("//colossus:2005/PerfectTime", pt);

If you are using the default port 1099, you don’t need to specify a
port, so you could say:

Naming.bind("//colossus/PerfectTime", pt);

In a future release of the JDK (after 1.1) when the localhost bug is
fixed, you will be able to perform local testing by leaving off the IP
address and using only the identifier:

2 Many brain cells died in agony to discover this information.

1012 Thinking in Java www.BruceEckel.com

Naming.bind("PerfectTime", pt);

The name for the service is arbitrary; it happens to be PerfectTime
here, just like the name of the class, but you could call it anything
you want. The important thing is that it’s a unique name in the
registry that the client knows to look for to procure the remote
object. If the name is already in the registry, you’ll get an
AlreadyBoundException. To prevent this, you can always use
rebind() instead of bind(), since rebind() either adds a new
entry or replaces the one that’s already there.

Even though main() exits, your object has been created and
registered so it’s kept alive by the registry, waiting for a client to
come along and request it. As long as the rmiregistry is running
and you don’t call Naming.unbind() on your name, the object
will be there. For this reason, when you’re developing your code you
need to shut down the rmiregistry and restart it when you
compile a new version of your remote object.

You aren’t forced to start up rmiregistry as an external process. If
you know that your application is the only one that’s going to use
the registry, you can start it up inside your program with the line:

LocateRegistry.createRegistry(2005);

Like before, 2005 is the port number we happen to be using in this
example. This is the equivalent of running rmiregistry 2005 from
a command line, but it can often be more convenient when you’re
developing RMI code since it eliminates the extra steps of starting
and stopping the registry. Once you’ve executed this code, you can
bind() using Naming as before.

Creating stubs and skeletons
If you compile and run PerfectTime.java, it won’t work even if
you have the rmiregistry running correctly. That’s because the
framework for RMI isn’t all there yet. You must first create the
stubs and skeletons that provide the network connection operations
and allow you to pretend that the remote object is just another local
object on your machine.

Chapter 15: Distributed Computing 1013

What’s going on behind the scenes is complex. Any objects that you
pass into or return from a remote object must implement
Serializable (if you want to pass remote references instead of the
entire objects, the object arguments can implement Remote), so
you can imagine that the stubs and skeletons are automatically
performing serialization and deserialization as they “marshal” all of
the arguments across the network and return the result.
Fortunately, you don’t have to know any of this, but you do have to
create the stubs and skeletons. This is a simple process: you invoke
the rmic tool on your compiled code, and it creates the necessary
files. So the only requirement is that another step be added to your
compilation process.

The rmic tool is particular about packages and classpaths,
however. PerfectTime.java is in the package c15.Ptime, and
even if you invoke rmic in the same directory in which
PerfectTime.class is located, rmic won’t find the file, since it
searches the classpath. So you must specify the location off the class
path, like so:

rmic c15.PTime.PerfectTime

You don’t have to be in the directory containing
PerfectTime.class when you execute this command, but the
results will be placed in the current directory.

When rmic runs successfully, you’ll have two new classes in the
directory:

PerfectTime_Stub.class
PerfectTime_Skel.class

corresponding to the stub and skeleton. Now you’re ready to get the
server and client to talk to each other.

Using the remote object
The whole point of RMI is to make the use of remote objects simple.
The only extra thing that you must do in your client program is to
look up and fetch the remote interface from the server. From then

1014 Thinking in Java www.BruceEckel.com

on, it’s just regular Java programming: sending messages to objects.
Here’s the program that uses PerfectTime:

//: c15:ptime:DisplayPerfectTime.java
// Uses remote object PerfectTime.
package c15.ptime;
import java.rmi.*;
import java.rmi.registry.*;

public class DisplayPerfectTime {
public static void main(String[] args) {

System.setSecurityManager(
new RMISecurityManager());

try {
PerfectTimeI t =
(PerfectTimeI)Naming.lookup(

"//colossus:2005/PerfectTime");
for(int i = 0; i < 10; i++)
System.out.println("Perfect time = " +

t.getPerfectTime());
} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

The ID string is the same as the one used to register the object with
Naming, and the first part represents the URL and port number.
Since you’re using a URL, you can also specify a machine on the
Internet.

What comes back from Naming.lookup() must be cast to the
remote interface, not to the class. If you use the class instead, you’ll
get an exception.

You can see in the method call

t.getPerfectTime()

that once you have a handle to the remote object, programming
with it is indistinguishable from programming with a local object
(with one difference: remote methods throw RemoteException).

Chapter 15: Distributed Computing 1015

Introduction to CORBA
In large, distributed applications, your needs might not be satisfied
by the preceding approaches. For example, you might want to
interface with legacy datastores, or you might need services from a
server object regardless of its physical location. These situations
require some form of Remote Procedure Call (RPC), and possibly
language independence. This is where CORBA can help.

CORBA is not a language feature; it’s an integration technology. It’s
a specification that vendors can follow to implement CORBA-
compliant integration products. CORBA is part of the OMG’s effort
to define a standard framework for distributed, language-
independent object interoperability.

CORBA supplies the ability to make remote procedure calls into
Java objects and non-Java objects, and to interface with legacy
systems in a location-transparent way. Java adds networking
support and a nice object-oriented language for building graphical
and non-graphical applications. The Java and OMG object model
map nicely to each other; for example, both Java and CORBA
implement the interface concept and a reference object model.

CORBA Fundamentals
The object interoperability specification developed by the OMG is
commonly referred to as the Object Management Architecture
(OMA). The OMA defines two components: the Core Object Model
and the OMA Reference Architecture. The Core Object Model states
the basic concepts of object, interface, operation, and so on.
(CORBA is a refinement of the Core Object Model.) The OMA
Reference Architecture defines an underlying infrastructure of
services and mechanisms that allow objects to interoperate. The
OMA Reference Architecture includes the Object Request Broker
(ORB), Object Services (also known as CORBAservices), and
common facilities.

The ORB is the communication bus by which objects can request
services from other objects, regardless of their physical location.

1016 Thinking in Java www.BruceEckel.com

This means that what looks like a method call in the client code is
actually a complex operation. First, a connection with the server
object must exist, and to create a connection the ORB must know
where the server implementation code resides. Once the connection
is established, the method arguments must be marshaled, i.e.
converted in a binary stream to be sent across a network. Other
information that must be sent are the server machine name, the
server process, and the identity of the server object inside that
process. Finally, this information is sent through a low-level wire
protocol, the information is decoded on the server side, and the call
is executed. The ORB hides all of this complexity from the
programmer and makes the operation almost as simple as calling a
method on local object.

There is no specification for how an ORB Core should be
implemented, but to provide a basic compatibility among different
vendors’ ORBs, the OMG defines a set of services that are accessible
through standard interfaces.

CORBA Interface Definition Language (IDL)
CORBA is designed for language transparency: a client object can
call methods on a server object of different class, regardless of the
language they are implemented with. Of course, the client object
must know the names and signatures of methods that the server
object exposes. This is where IDL comes in. The CORBA IDL is a
language-neutral way to specify data types, attributes, operations,
interfaces, and more. The IDL syntax is similar to the C++ or Java
syntax. The following table shows the correspondence between
some of the concepts common to three languages that can be
specified through CORBA IDL:

CORBA
IDL

Java C++

Module Package Namespace
Interface Interface Pure abstract

class
Method Method Member

function

Chapter 15: Distributed Computing 1017

The inheritance concept is supported as well, using the colon
operator as in C++. The programmer writes an IDL description of
the attributes, methods, and interfaces that will be implemented
and used by the server and clients. The IDL is then compiled by a
vendor-provided IDL/Java compiler, which reads the IDL source
and generates Java code.

The IDL compiler is an extremely useful tool: it doesn’t just
generate a Java source equivalent of the IDL, it also generates the
code that will be used to marshal method arguments and to make
remote calls. This code, called the stub and skeleton code, is
organized in multiple Java source files and is usually part of the
same Java package.

The naming service
The naming service is one of the fundamental CORBA services. A
CORBA object is accessed through a reference, a piece of
information that’s not meaningful for the human reader. But
references can be assigned programmer-defined, string names. This
operation is known as stringifying the reference, and one of the
OMA components, the Naming Service, is devoted to performing
string-to-object and object-to-string conversion and mapping. Since
the Naming Service acts as a telephone directory that both servers
and clients can consult and manipulate, it runs as a separate
process. Creating an object-to-string mapping is called binding an
object, and removing the mapping is called unbinding. Getting an
object reference passing a string is called resolving the name.

For example, on startup, a server application could create a server
object, bind the object into the name service, and then wait for
clients to make requests. A client first obtains a server object
reference, resolving the string name, and then can make calls into
the server using the reference.

Again, the Naming Service specification is part of CORBA, but the
application that implements it is provided by the ORB vendor. The
way you get access to the Naming Service functionality can vary
from vendor to vendor.

1018 Thinking in Java www.BruceEckel.com

An example
The code shown here will not be elaborate because different ORBs
have different ways to access CORBA services, so examples are
vendor specific. (The example below uses JavaIDL, a free product
from Sun that comes with a light-weight ORB, a naming service,
and an IDL-to-Java compiler.) In addition, since Java is young and
still evolving, not all CORBA features are present in the various
Java/CORBA products.

We want to implement a server, running on some machine, that can
be queried for the exact time. We also want to implement a client
that asks for the exact time. In this case we’ll be implementing both
programs in Java, but we could also use two different languages
(which often happens in real situations).

Writing the IDL source
The first step is to write an IDL description of the services provided.
This is usually done by the server programmer, who is then free to
implement the server in any language in which a CORBA IDL
compiler exists. The IDL file is distributed to the client side
programmer and becomes the bridge between languages.

The example below shows the IDL description of our ExactTime
server:

//: c15:corba:ExactTime.idl
//# You must install idltojava.exe from
//# java.sun.com and adjust the settings to use
//# your local C preprocessor in order to compile
//# This file. See docs at java.sun.com.
module remotetime {

interface ExactTime {
string getTime();

};
}; ///:~

This is a declaration of the ExactTime interface inside the
remotetime namespace. The interface is made up of one single
method that gives back the current time in string format.

Chapter 15: Distributed Computing 1019

Creating stubs and skeletons
The second step is to compile the IDL to create the Java stub and
skeleton code that we’ll use for implementing the client and the
server. The tool that comes with the JavaIDL product is idltojava:

idltojava remotetime.idl

This will automatically generate code for both the stub and the
skeleton. Idltojava generates a Java package named after the IDL
module, remotetime, and the generated Java files are put in the
remotetime subdirectory. _ExactTimeImplBase.java is the
skeleton that we’ll use to implement the server object, and
_ExactTimeStub.java will be used for the client. There are Java
representations of the IDL interface in ExactTime.java and a
couple of other support files used, for example, to facilitate access to
the naming service operations.

Implementing the server and the client
Below you can see the code for the server side. The server object
implementation is in the ExactTimeServer class. The
RemoteTimeServer is the application that creates a server
object, registers it with the ORB, gives a name to the object
reference, and then sits quietly waiting for client requests.

//: c15:corba:RemoteTimeServer.java
import remotetime.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import java.util.*;
import java.text.*;

// Server object implementation
class ExactTimeServer extends _ExactTimeImplBase{
public String getTime(){

return DateFormat.
getTimeInstance(DateFormat.FULL).

format(new Date(
System.currentTimeMillis()));

}

1020 Thinking in Java www.BruceEckel.com

}

// Remote application implementation
public class RemoteTimeServer {
public static void main(String args[]) {

try {
// ORB creation and initialization:
ORB orb = ORB.init(args, null);
// Create the server object and register it:
ExactTimeServer timeServerObjRef =
new ExactTimeServer();

orb.connect(timeServerObjRef);
// Get the root naming context:
org.omg.CORBA.Object objRef =
orb.resolve_initial_references(

"NameService");
NamingContext ncRef =
NamingContextHelper.narrow(objRef);

// Assign a string name to the
// object reference (binding):
NameComponent nc =
new NameComponent("ExactTime", "");

NameComponent path[] = {nc};
ncRef.rebind(path, timeServerObjRef);
// Wait for client requests:
java.lang.Object sync =
new java.lang.Object();

synchronized(sync){
sync.wait();

}
}
catch (Exception e) {
System.out.println(

"Remote Time server error: " + e);
e.printStackTrace(System.out);

}
}

} ///:~

As you can see, implementing the server object is simple; it’s a
regular Java class that inherits from the skeleton code generated by

Chapter 15: Distributed Computing 1021

the IDL compiler. Things get a bit more complicated when it comes
to interacting with the ORB and other CORBA services.

Some CORBA services
This is a short description of what the JavaIDL-related code is doing
(primarily ignoring the part of the CORBA code that is vendor
dependent). The first line in main() starts up the ORB, and of
course, this is because our server object will need to interact with it.
Right after the ORB initialization, a server object is created.
Actually, the right term would be a transient servant object: an
object that receives requests from clients, and whose lifetime is the
same as the process that creates it. Once the transient servant object
is created, it is registered with the ORB, which means that the ORB
knows of its existence and can now forward requests to it.

Up to this point, all we have is timeServerObjRef, an object
reference that is known only inside the current server process. The
next step will be to assign a stringified name to this servant object;
clients will use that name to locate the servant object. We
accomplish this operation using the Naming Service. First, we need
an object reference to the Naming Service; the call to
resolve_initial_references() takes the stringified object
reference of the Naming Service that is “NameService,” in JavaIDL,
and returns an object reference. This is cast to a specific
NamingContext reference using the narrow() method. We can
use now the naming services.

To bind the servant object with a stringified object reference, we
first create a NameComponent object, initialized with
“ExactTime,” the name string we want to bind to the servant object.
Then, using the rebind() method, the stringified reference is
bound to the object reference. We use rebind() to assign a
reference, even if it already exists, whereas bind() raises an
exception if the reference already exists. A name is made up in
CORBA by a sequence of NameContexts – that’s why we use an
array to bind the name to the object reference.

The servant object is finally ready for use by clients. At this point,
the server process enters a wait state. Again, this is because it is a
transient servant, so its lifetime is confined to the server process.

1022 Thinking in Java www.BruceEckel.com

JavaIDL does not currently support persistent objects – objects that
survive the execution of the process that creates them.

Now that we have an idea of what the server code is doing, let’s look
at the client code:

//: c15:corba:RemoteTimeClient.java
import remotetime.*;
import org.omg.CosNaming.*;
import org.omg.CORBA.*;

public class RemoteTimeClient {
public static void main(String args[]) {

try {
// ORB creation and initialization:
ORB orb = ORB.init(args, null);
// Get the root naming context:
org.omg.CORBA.Object objRef =
orb.resolve_initial_references(

"NameService");
NamingContext ncRef =
NamingContextHelper.narrow(objRef);

// Get (resolve) the stringified object
// reference for the time server:
NameComponent nc =
new NameComponent("ExactTime", "");

NameComponent path[] = {nc};
ExactTime timeObjRef =
ExactTimeHelper.narrow(

ncRef.resolve(path));
// Make requests to the server object:
String exactTime = timeObjRef.getTime();
System.out.println(exactTime);

} catch (Exception e) {
System.out.println(

"Remote Time server error: " + e);
e.printStackTrace(System.out);

}
}

} ///:~

Chapter 15: Distributed Computing 1023

The first few lines do the same as they do in the server process: the
ORB is initialized and a reference to the naming service server is
resolved. Next, we need an object reference for the servant object,
so we pass the stringified object reference to the resolve()
method, and we cast the result into an ExactTime interface
reference using the narrow() method. Finally, we call
getTime().

Activating the name service process
Finally we have a server and a client application ready to
interoperate. You’ve seen that both need the naming service to bind
and resolve stringified object references. You must start the naming
service process before running either the server or the client. In
JavaIDL, the naming service is a Java application that comes with
the product package, but it can be different with other products.
The JavaIDL naming service runs inside an instance of the JVM and
listens by default to network port 900.

Activating the server and the client
Now you are ready to start your server and client application (in this
order, since our server is transient). If everything is set up correctly,
what you’ll get is a single output line on the client console window,
giving you the current time. Of course, this might be not very
exciting by itself, but you should take one thing into account: even if
they are on the same physical machine, the client and the server
application are running inside different virtual machines and they
can communicate via an underlying integration layer, the ORB and
the Naming Service.

This is a simple example, designed to work without a network, but
an ORB is usually configured for location transparency. When the
server and the client are on different machines, the ORB can resolve
remote stringified references using a component known as the
Implementation Repository. Although the Implementation
Repository is part of CORBA, there is almost no specification, so it
differs from vendor to vendor.

As you can see, there is much more to CORBA than what has been
covered here, but you should get the basic idea. If you want more

1024 Thinking in Java www.BruceEckel.com

information about CORBA, the place to start is the OMG Web site,
at http://www.omg.org. There you’ll find documentation, white
papers, proceedings, and references to other CORBA sources and
products.

Java Applets and CORBA
Java applets can act as CORBA clients. This way, an applet can
access remote information and services exposed as CORBA objects.
But an applet can connect only with the server from which it was
downloaded, so all the CORBA objects the applet interacts with
must be on that server. This is the opposite of what CORBA tries to
do: give you complete location transparency.

This is an issue of network security. If you’re on an Intranet, one
solution is to loosen the security restrictions on the browser. Or, set
up a firewall policy for connecting with external servers.

Some Java ORB products offer proprietary solutions to this
problem. For example, some implement what is called HTTP
Tunneling, while others have their special firewall features.

This is too complex a topic to be covered in an appendix, but it is
definitely something you should be aware of.

CORBA vs. RMI
You saw that one of the main CORBA features is RPC support,
which allows your local objects to call methods in remote objects. Of
course, there already is a native Java feature that does exactly the
same thing: RMI (see Chapter 15). While RMI makes RPC possible
between Java objects, CORBA makes RPC possible between objects
implemented in any language. It’s a big difference.

However, RMI can be used to call services on remote, non-Java
code. All you need is some kind of wrapper Java object around the
non-Java code on the server side. The wrapper object connects
externally to Java clients via RMI, and internally connects to the
non-Java code using one of the techniques shown above, such as
JNI or J/Direct.

http://www.omg.org/

Chapter 15: Distributed Computing 1025

This approach requires you to write a kind of integration layer,
which is exactly what CORBA does for you, but then you don’t need
a third-party ORB.

Enterprise Java Beans
By now, you’ve been introduced to CORBA and RMI. But could you
imagine trying to develop a large-scale application using CORBA
and/or RMI? Your manager has asked you to develop a multi-tiered
application to view and update records in a database through a web
interface. You sit back and think of what that really means. Sure you
can write a database application using JDBC, a web interface using
JSP/Servlets, and a distributed system using CORBA/RMI. But
what extra considerations must you make when developing a
distributed object based system rather than just knowing API’s?
Following is a start:

Performance: The new distributed objects that you are creating
are going to have to perform, as they potentially could service many
clients at a time. So you’ll want to think of optimization techniques
such as caching, pooling of resources (e.g. JDBC database
connections). You’ll also have to manage the lifecycle of your
distributed object.

Scalability: The distributed objects must also be scalable.
Scalable in a distributed application sense means that the number
of instances of your distributed object can be increased and moved
over to a different machine without the modification of any code.
Take for example a system that you develop internally as a small
lookup of clients inside your organization from a database. The
application works well when you use it, but your manager has seen
it and has said “Robert, that is an excellent system, get it on our
public web-site now!!!” – Will my distributed object be able to
handle the load of a potentially limitless demand?

Security: Does my distributed object manage the authorization of
the clients that accesses it? Can I add new users and roles to it
without recompilation?

1026 Thinking in Java www.BruceEckel.com

Distributed Transactions: Can my distributed object handle
distributed-transactions transparently? Can I update my Oracle and
Sybase databases simultaneously within the same transaction and
roll them both back if a certain criteria is not met?

Reusability: Have I created my distributed object so that I can
move it into another vendors’ application server? Can I resell my
distributed object (component) to somebody else? Can I buy
somebody else’s component and use it without having to recompile
and ‘hack it into shape’?

Availability: If one of the machines in my system was to go down,
are my clients able to automatically fail-over to back up copies of
my objects running on other machines?

As you can see from the above, the considerations that a
developer must make when developing a distributed system and we
haven’t even mentioned solving the problem that we were originally
trying to solve!

So you now have your list of extra problems that you must
solve. So how do you go about doing it? Surely somebody must have
done this before? Could I use some well-known Design Patterns to
help me solve these problems? Then an idea flashes in your head…
“I could create a framework that handles all of these issues and
write my components on top of the framework!”…. This is where
Enterprise JavaBeans comes into the picture.

Sun, along with other leading distributed object vendors
(listed at URL HERE!) realized that sooner or later every
development team would be re-inventing the wheel. So they created
the Enterprise JavaBeans specification (EJB). EJB is a specification
for a server-side component model that tackles all of the
considerations mentioned above using a defined, standard
approach that allows developers to create components – which are
actually called Enterprise JavaBeans (EJB’s) – that are isolated
from low-level ‘plumbing’ code and focus solely on providing
business logic. Because EJB’s are defined as a standard they can be
used without being vendor dependent.

Chapter 15: Distributed Computing 1027

What’s defined in the EJB
specification?

The Enterprise JavaBeans specification, currently at version 1.1 -
public release 2 - defines a server side component model. It defines
6 roles that are used to perform the tasks in development and
deployment as well as defining the components of the system.

Roles
The EJB specification defines roles that are used during in the
development, deployment and running of a distributed system.
Vendors, administrators and developers play the various roles. They
allow the partitioning of technical and domain knowledge. This
allows the vendor to provide a technically sound framework and the
developers to create domain specific components e.g. an Accounting
component. The same party can perform one or many roles. The
roles defined in the EJB specification have been summarized in the
following table:

Role Responsibility

Enterprise Bean
Provider

The developer who is responsible for creating re-
usable EJB components. These components are
packaged into a special jar file (ejb-jar file).

Application
Assembler

Create and assemble applications from a collection
of ejb-jar files. This includes writing applications
that utilize the collection of EJB’s (e.g. Servlets, JSP,
Swing etc. etc.)

Deployer The Deployer’s role of the to take the collection of
ejb-jar files from the Assembler and/or Bean
Provider and deploy them into a runtime
environment - one or many EJB Container(s).

EJB
Container/Server

Provide a runtime environment and tools that are
used to deploy, administer and “run” EJB

1028 Thinking in Java www.BruceEckel.com

Provider components.

System
Administrator

Over see the most important goal of the entire
system - That it is up and running. Management of a
distributed application can consist of many different
components and services all configured and
interacting together correctly.

Components of EJB
EJB components are reusable business logic. EJB components
adhere to strict standards and design patterns as defined in the EJB
specification. This allows the components to be portable and also
allow other services – such as security, caching and distributed
transactions - to be performed on the components’ behalf. An
Enterprise Bean Provider is responsible for developing EJB
components. The internals of an EJB component are covered in -
“What makes up an EJB component?”

EJB Container

The EJB Container is a runtime environment that contains -or runs
– EJB components and provides a set of standard services to the
components. The EJB Containers responsibilities are tightly defined
by the specification to allow for vendor neutrality. The EJB
container provides the low-level “plumbing” of EJB, including
distributed transactions, security, life cycle management of beans,
caching, threading and session management. The EJB Container
Provider is responsible for providing an EJB Container.

EJB Server

An EJB Server is defined as an Application Server that contains and
runs 1 or more EJB Containers. that both the Container and Server
are the same vendor. The EJB Server Provider is responsible for
providing an EJB Server. The specification suggests and you can
assume for this introduction, that the EJB Container and EJB
Server are the same.

Chapter 15: Distributed Computing

Java Naming and Directory Interface (JNDI)

Java Naming and Directory Interface (JNDI) is used in Enterprise
JavaBeans as the naming service for EJB Components on the
network and other container services such as transactions. JNDI
maps very closely to other naming and directory standards such as
CORBA CosNaming and can actually be implemeted as a wrapper
on top of it.

Java Transaction API / Java Transaction Service (JTA/JTS)

JTA/JTS is used in Enterprise JavaBeans as the transactional API.
An Enterprise Bean Provider can use the JTS to create transactional
code although the EJB Container commonly implements
transactions in EJB on the EJB components’ behalf. The Deployer
can define the transactional attributes of an EJB component at
deployment time. The EJB Container is responsible for handling the
transaction whether it is local or distributed. The JTS specification
is the Java mapping to the CORBA OTS (Object Transaction
Service)

CORBA and RMI/IIOP

The EJB specification defines interoperablility with CORBA. The 1.1
specification quotes “The Enterprise JavaBeans architecture will
be compatible with the CORBA protocols.” CORBA interoperability
is achieved through the mapping of EJB services such as JTS and
JNDI to corresponding CORBA services and the implementation of
RMI on top of the CORBA protocol IIOP.

Use of CORBA and RMI/IIOP in Enterprise JavaBeans is
implemented in the EJB Container and is the responsibility of the
EJB Container provider. Use of CORBA and RMI/IIOP in the EJB
Container is hidden from the EJB Component itself. This means
that the Enterprise Bean Provider can write their EJB Component
and deploy it into any EJB Container without any regard of which
communication protocol is being used.

The components and available services of EJB.

 r JTA/JTS
CORBA OTS
EJB Serve
1029

1030 Thinking in Java www.BruceEckel.com

What makes up an EJB
component?

Enterprise Bean
The Enterprise Bean is a Java class that the Enterprise Bean
Provider develops. It implements an EnterpriseBean interface
(more detail in a later section) and provides the implementation of
the business methods that the component is to perform. The class
does not implement any authorization/authentication code,
multithreading, transactional code.

Home Interface
Every Enterprise Bean that is created must have an associated
Home interface. The Home interface is used as a factory for your
EJB. Clients use the Home interface to find an instance of your EJB
or create a new instance of your EJB.

Remote Interface
The Remote interface is a Java Interface that reflects the methods of
your Enterprise Bean that you wish to expose to the outside world.
The Remote interface plays a similar role to a CORBA IDL interface.

EJB Container

EJB
Compone

nt

JTA/JTS
CORBA
N i

JDBC

Chapter 15: Distributed Computing 1031

Deployment Descriptor
The Deployment Descriptor is an XML file that contains
information about your EJB. Using XML allows the Deployer to
easily change attributes about your EJB. The configurable attributes
defined in the Deployment Descriptor include:

• The Home and Remote interface names that are required by
your EJB

• The name to publish into JNDI for your EJB’s Home
interface

• Transactional attributes for each method of your EJB

• Access Control Lists for authentication

EJB-Jar File
The EJB-Jar file is a normal java jar file that contains your EJB,
Home and Remote interfaces, as well as the Deployment Descriptor.

XML Deployment
Descriptor

EJB-Jar

R
e

E
n

H
o

1032 Thinking in Java www.BruceEckel.com

How does EJB work?
Now that we have our EJB-Jar file containing our Bean, Home and
Remote interfaces and Deployment Descriptor, Let’s take a look at
how all of these pieces fit together and why Home and Remote
interfaces are needed and how the EJB Container uses them.

Who implements the Home and Remote
Interfaces?

The EJB Container implements the Home and Remote interfaces
that are in our EJB-Jar file. Because the EJB Container implements
the Home interface that - as mentioned earlier - provides methods
to create and find your EJB. This means that the EJB Container is
responsible for the lifecycle management of your EJB. This level of
indirection allows for optimizations to occur. For example 5 clients
simultaneously request to create an EJB through a Home Interface,
the EJB Container could create only one and share that EJB
between all 5 clients. This is achieved through the Remote Interface,
which is again implemented by the EJB Container. The
implemented Remote object plays the role of a proxy object to the
EJB.

The following diagram show the level of indirection achieved by this
approach and that all calls to the EJB are ‘proxied’ through the EJB
Container via the Home and Remote interfaces. This level of
indirection is also the reason why the EJB Container can control
security and transactional behavior.

EJB

EJB C
li

Re
t

Ho
me

Chapter 15: Distributed Computing 1033

Types of EJB’s
There should be one question in your head from the previous
section, “Surely sharing the same EJB between clients can improve
performance, but what If I want to maintain state on my server?”

The Enterprise JavaBeans specification defines different types of
EJB’s that have different characteristics and exhibit different
behavior. Two categories of EJB’s have been defined in the
specification. Session Beans and Entity Beans, and each of these
categories has variations. A hierarchy of the various types of EJB
components is shown in the following figure.

Session Beans
Session Beans are used to represent Use-Cases or Workflow on
behalf of a client. They represent operations on persistent data, not
persistent data itself. There are two types of Session Beans,
Stateless and Stateful. All Session Beans must implement the
javax.ejb.SessionBean interface. The EJB Container governs the life
of a Session Bean. If the EJB Container crashes, data for all Stateful
Session Beans could be lost. Some high-end EJB Containers provide
recovery for Stateful Session Beans.

E
n

C
o

B
e

S
t

S
t

E
n

S
e

1034 Thinking in Java www.BruceEckel.com

Stateless Session Beans

Stateless Session Beans are the simplest type of EJB component to
implement. They do not maintain any conversational state with
clients between method invocations so they are easily reusable on
the server side and because they can be cached, they scale well on
demand. When using Stateless Session Beans, all state must be
stored outside of the EJB.

Stateful Session Beans

Stateful Session Beans - as you could probably guess - maintain
state between invocations. They have a 1 to 1 logical mapping to a
client and can maintain state within themselves. The EJB Container
is responsible for pooling and caching of Stateful Session Beans,
which is achieved through Passivation and Activation.

Entity Beans
Entity Beans are components that represent persistent data and
behavior of this data. Entity Beans can be shared amongst multiple
clients, the same as data in a database. The EJB Container is
responsible for caching Entity Beans and for maintaining the
integrity of the Entity Beans. The life of an Entity Bean outlives the
EJB Container, so if an EJB Container crashes, the Entity Bean is
expected to still be available when the EJB Container becomes
available.

There are two types of Entity Beans, those that have Bean-Managed
persistence and Container Managed persistence.

Container Managed Persistence (CMP)

A CMP Entity Bean has its’ persistence implemented on its behalf
by the EJB Container. Through attributes specified in the
Deployment Descriptor, the EJB Container will map the Entity
Bean’s attributes to some persistent store (usually -but not always –
a database). CMP reduces the time to develop and dramatically
reduces the amount of code required for the EJB.

Chapter 15: Distributed Computing 1035

Bean Managed Persistence (BMP)

A BMP Entity Bean has its’ persistence implemented by the
Enterprise Bean Provider. The Enterprise Bean Provider is
responsible for implementing the logic required to create a new
EJB, update some attributes of the EJBS, delete an EJB and find an
EJB from persistent store. This usually involves writing JDBC code
to interact with a database or other persistent store. With BMP, the
developer is in full control of how the Entity Bean persistence is
managed.

 BMP also gives flexibility where a CMP implementation may not be
available e.g., if you wanted to create an EJB that wrapped some
code on an existing mainframe system, you could write your
persistence using CORBA.

How do I put the ‘E’ in my existing
JavaBeans?
There is much confusion about the relationship between the
JavaBeans component model and the Enterprise JavaBeans
specification. Whilst both the JavaBeans and Enterprise JavaBeans
specifications share the same objectives in promoting reuse and
portability of Java code between development and deployment tools
with the use of standard design patterns, the motives behind each
specification are geared to solve different problems.

The standards defined in the JavaBeans component model are
designed for creating reusable components that are typically used in
IDE development tools and are commonly, although not exclusively
visual components.

The Enterprise JavaBeans specification defines a component model
for developing server side java code. Because EJB’s can potentially
run on many different server-side platforms -including mainframes
that do not have visual displays - An EJB cannot make use of the
java.awt package.

1036 Thinking in Java www.BruceEckel.com

Jini: distributed services
This section3 gives an overview of Sun Microsystems's Jini
technology. It describes some Jini nuts and bolts and shows how
Jini's architecture helps to raise the level of abstraction in
distributed systems programming, effectively turning network
programming into object-oriented programming.

Jini in context
Traditionally, operating systems have been designed with the
assumption that a computer will have a processor, some memory,
and a disk. When you boot a computer, the first thing it does is look
for a disk. If it doesn't find a disk, it can't function as a computer.
Increasingly, however, computers are appearing in a different guise:
as embedded devices that have a processor, some memory, and a
network connection – but no disk. The first thing a cellphone does
when you boot it up, for example, is look for the telephone network.
If it doesn't find the network, it can't function as a cellphone. This
trend in the hardware environment, from disk-centric to network-
centric, will affect how we organize our software – and that's where
Jini comes in.

Jini is an attempt to rethink computer architecture, given the rising
importance of the network and the proliferation of processors in
devices that have no disk drive. These devices, which will come from
many different vendors, will need to interact over a network. The
network itself will be very dynamic – devices and services will be
added and removed regularly. Jini provides mechanisms to enable
smooth adding, removal, and finding of devices and services on the
network. In addition, Jini provides a programming model that
makes it easier for programmers to get their devices talking to each
other.

Building on top of Java, object serialization, and RMI (which
enable objects to move around the network from virtual machine to

3 This section was contributed by Bill Venners (www.artima.com)

Chapter 15: Distributed Computing 1037

virtual machine) Jini attempts to extend the benefits of object-
oriented programming to the network. Instead of requiring device
vendors to agree on the network protocols through which their
devices can interact, Jini enables the devices to talk to each other
through interfaces to objects.

What is Jini?
Jini is a set of APIs and network protocols that can help you build
and deploy distributed systems that are organized as federations of
services. A service can be anything that sits on the network and is
ready to perform a useful function. Hardware devices, software,
communications channels – even human users themselves – can be
services. A Jini-enabled disk drive, for example, could offer a
“storage” service. A Jini-enabled printer could offer a “printing”
service. A federation of services, then, is a set of services, currently
available on the network, that a client (meaning a program, service,
or user) can bring together to help it accomplish some goal.

To perform a task, a client enlists the help of services. For example,
a client program might upload pictures from the image storage
service in a digital camera, download the pictures to a persistent
storage service offered by a disk drive, and send a page of
thumbnail-sized versions of the images to the printing service of a
color printer. In this example, the client program builds a
distributed system consisting of itself, the image storage service, the
persistent storage service, and the color-printing service. The client
and services of this distributed system work together to perform the
task: to offload and store images from a digital camera and print out
a page of thumbnails.

The idea behind the word federation is that the Jini view of the
network doesn't involve a central controlling authority. Because no
one service is in charge, the set of all services available on the
network form a federation – a group composed of equal peers.
Instead of a central authority, Jini's runtime infrastructure merely
provides a way for clients and services to find each other (via a
lookup service, which stores a directory of currently available
services). After services locate each other, they are on their own.
The client and its enlisted services perform their task independently

1038 Thinking in Java www.BruceEckel.com

of the Jini runtime infrastructure. If the Jini lookup service crashes,
any distributed systems brought together via the lookup service
before it crashed can continue their work. Jini even includes a
network protocol that clients can use to find services in the absence
of a lookup service.

How Jini works
Jini defines a runtime infrastructure that resides on the network
and provides mechanisms that enable you to add, remove, locate,
and access services. The runtime infrastructure resides in three
places: in lookup services that sit on the network, in the service
providers (such as Jini-enabled devices), and in clients. Lookup
services are the central organizing mechanism for Jini-based
systems. When new services become available on the network, they
register themselves with a lookup service. When clients wish to
locate a service to assist with some task, they consult a lookup
service.

The runtime infrastructure uses one network-level protocol, called
discovery, and two object-level protocols, called join and lookup.
Discovery enables clients and services to locate lookup services.
Join enables a service to register itself in a lookup service. Lookup
enables a client to query for services that can help accomplish its
goals.

The discovery process
Discovery works like this: Imagine you have a Jini-enabled disk
drive that offers a persistent storage service. As soon as you connect
the drive to the network, it broadcasts a presence announcement by
dropping a multicast packet onto a well-known port. Included in the
presence announcement is an IP address and port number where
the disk drive can be contacted by a lookup service.

Lookup services monitor the well-known port for presence
announcement packets. When a lookup service receives a presence
announcement, it opens and inspects the packet. The packet
contains information that enables the lookup service to determine

Chapter 15: Distributed Computing 1039

whether or not it should contact the sender of the packet. If so, it
contacts the sender directly by making a TCP connection to the IP
address and port number extracted from the packet. Using RMI, the
lookup service sends an object, called a service registrar, across the
network to the originator of the packet. The purpose of the service
registrar object is to facilitate further communication with the
lookup service. By invoking methods on this object, the sender of
the announcement packet can perform join and lookup on the
lookup service. In the case of the disk drive, the lookup service
would make a TCP connection to the disk drive and would send it a
service registrar object, through which the disk drive would then
register its persistent storage service via the join process.

The join process
Once a service provider has a service registrar object, the end
product of discovery, it is ready to do a join – to become part of the
federation of services that are registered in the lookup service. To
do a join, the service provider invokes the register() method on
the service registrar object, passing as a parameter an object called a
service item, a bundle of objects that describe the service. The
register() method sends a copy of the service item up to the
lookup service, where the service item is stored. Once this has
completed, the service provider has finished the join process: its
service has become registered in the lookup service.

The service item is a container for several objects, including an
object called a service object, which clients can use to interact with
the service. The service item can also include any number of
attributes, which can be any object. Some potential attributes are
icons, classes that provide GUIs for the service, and objects that give
more information about the service.

Service objects usually implement one or more interfaces through
which clients interact with the service. For example, a lookup
service is a Jini service, and its service object is the service registrar.
The register() method invoked by service providers during join is
declared in the ServiceRegistrar interface (a member of the
net.jini.core.lookup package), which all service registrar objects
implement. Clients and service providers talk to the lookup service

1040 Thinking in Java www.BruceEckel.com

through the service registrar object by invoking methods declared in
the ServiceRegistrar interface. Likewise, a disk drive would
provide a service object that implemented some well-known storage
service interface. Clients would look up and interact with the disk
drive by this storage service interface.

The lookup process
Once a service has registered with a lookup service via the join
process, that service is available for use by clients who query that
lookup service. To build a distributed system of services that will
work together to perform some task, a client must locate and enlist
the help of the individual services. To find a service, clients query
lookup services via a process called lookup.

To perform a lookup, a client invokes the lookup() method on a
service registrar object. (A client, like a service provider, gets a
service registrar through the previously-described process of
discovery.) The client passes as an argument to lookup() a service
template, an object that serves as search criteria for the query. The
service template can include a reference to an array of Class
objects. These Class objects indicate to the lookup service the Java
type (or types) of the service object desired by the client. The service
template can also include a service ID, which uniquely identifies a
service, and attributes, which must exactly match the attributes
uploaded by the service provider in the service item. The service
template can also contain wildcards for any of these fields. A
wildcard in the service ID field, for example, will match any service
ID. The lookup() method sends the service template to the lookup
service, which performs the query and sends back zero to any
matching service objects. The client gets a reference to the matching
service objects as the return value of the lookup() method.

In the general case, a client looks up a service by Java type, usually
an interface. For example, if a client needed to use a printer, it
would compose a service template that included a Class object for a
well-known interface to printer services. All printer services would
implement this well-known interface. The lookup service would
return a service object (or objects) that implemented this interface.
Attributes can be included in the service template to narrow the

Chapter 15: Distributed Computing 1041

number of matches for such a type-based search. The client would
use the printer service by invoking methods from the well-known
printer service interface on the service object.

Separation of interface and
implementation
Jini's architecture brings object-oriented programming to the
network by enabling network services to take advantage of one of
the fundamentals of objects: the separation of interface and
implementation. For example, a service object can grant clients
access to the service in many ways. The object can actually
represent the entire service, which is downloaded to the client
during lookup and then executed locally. Alternatively, the service
object can serve merely as a proxy to a remote server. Then when
the client invokes methods on the service object, it sends the
requests across the network to the server, which does the real work.
A third option is for the local service object and a remote server to
each do part of the work.

One important consequence of Jini's architecture is that the
network protocol used to communicate between a proxy service
object and a remote server does not need to be known to the client.
As illustrated in the figure below, the network protocol is part of the
service's implementation. This protocol is a private matter decided
upon by the developer of the service. The client can communicate
with the service via this private protocol because the service injects
some of its own code (the service object) into the client's address
space. The injected service object could communicate with the
service via RMI, CORBA, DCOM, some home-brewed protocol built
on top of sockets and streams, or anything else. The client simply
doesn't need to care about network protocols, because it can talk to
the well-known interface that the service object implements. The
service object takes care of any necessary communication on the
network.

1042 Thinking in Java www.BruceEckel.com

Client Service

Private
network
protocol

Service object
"Well-known" interface

The client talks to the service through a well-known
interface

Different implementations of the same service interface can use
completely different approaches and network protocols. A service
can use specialized hardware to fulfill client requests, or it can do all
its work in software. In fact, the implementation approach taken by
a single service can evolve over time. The client can be sure it has a
service object that understands the current implementation of the
service, because the client receives the service object (by way of the
lookup service) from the service provider itself. To the client, a
service looks like the well-known interface, regardless of how the
service is implemented.

Abstracting distributed systems
Jini attempts to raise the level of abstraction for distributed systems
programming, from the network protocol level to the object
interface level. In the emerging proliferation of embedded devices
connected to networks, many pieces of a distributed system may
come from different vendors. Jini makes it unnecessary for vendors
of devices to agree on network level protocols that allow their
devices to interact. Instead, vendors must agree on Java interfaces
through which their devices can interact. The processes of
discovery, join, and lookup, provided by the Jini runtime
infrastructure, will enable devices to locate each other on the
network. Once they locate each other, devices will be able to
communicate with each other through Java interfaces.

Chapter 15: Distributed Computing 1043

JavaSpaces

Summary
There’s actually a lot more to networking than can be covered in
this introductory treatment. Java networking also provides fairly
extensive support for URLs, including protocol handlers for
different types of content that can be discovered at an Internet site.
You can find other Java networking features fully and carefully
described in Java Network Programming by Elliotte Rusty Harold
(O’Reilly, 1997).

Exercises
1. Compile and run the JabberServer and

JabberClient programs in this chapter. Now edit the
files to remove all of the buffering for the input and
output, then compile and run them again to observe the
results.

2. Create a server that asks for a password, then opens a
file and sends the file over the network connection.
Create a client that connects to this server, gives the
appropriate password, then captures and saves the file.
Test the pair of programs on your machine using the
localhost (the local loopback IP address 127.0.0.1
produced by calling
InetAddress.getByName(null)).

3. Modify the server in Exercise 2 so that it uses
multithreading to handle multiple clients.

4. Modify JabberClient so that output flushing doesn’t
occur and observe the effect.

5. Modify MultiJabberServer so that it uses thread
pooling. Instead of throwing away a thread each time a

1044 Thinking in Java www.BruceEckel.com

client disconnects, the thread should put itself into an
“available pool” of threads. When a new client wants to
connect, the server will look in the available pool for a
thread to handle the request, and if one isn’t available,
make a new one. This way the number of threads
necessary will naturally grow to the required quantity.
The value of thread pooling is that it doesn’t require the
overhead of creating and destroying a new thread for
each new client.

6. Build on ShowHTML.java to produce an applet that is a
password-protected gateway to a particular portion of
your Web site.

7. (More challenging) Create a client/server pair of
programs that use datagrams to transmit a file from
one machine to the other. (See the description at the
end of the datagram section of this chapter.)

8. (More challenging) Take the VLookup.java program
and modify it so that when you click on the resulting
name it automatically takes that name and copies it to
the clipboard (so you can simply paste it into your
email). You’ll need to look back at the IO stream
chapter to remember how to use the Java 1.1 clipboard.

 1045

16: Design Patterns
This chapter introduces the important and yet non-
traditional “patterns” approach to program design.

Probably the most important step forward in object-oriented design
is the “design patterns” movement, chronicled in Design Patterns,
by Gamma, Helm, Johnson & Vlissides (Addison-Wesley 1995).1
That book shows 23 different solutions to particular classes of
problems. In this chapter, the basic concepts of design patterns will
be introduced along with several examples. This should whet your
appetite to read Design Patterns (a source of what has now become
an essential, almost mandatory, vocabulary for OOP programmers).

The latter part of this chapter contains an example of the design
evolution process, starting with an initial solution and moving
through the logic and process of evolving the solution to more
appropriate designs. The program shown (a trash sorting
simulation) has evolved over time, and you can look at that
evolution as a prototype for the way your own design can start as an
adequate solution to a particular problem and evolve into a flexible
approach to a class of problems.

The pattern concept
Initially, you can think of a pattern as an especially clever and
insightful way of solving a particular class of problems. That is, it
looks like a lot of people have worked out all the angles of a problem
and have come up with the most general, flexible solution for it. The
problem could be one you have seen and solved before, but your
solution probably didn’t have the kind of completeness you’ll see
embodied in a pattern.

1 But be warned: the examples are in C++.

1046 Thinking in Java www.BruceEckel.com

Although they’re called “design patterns,” they really aren’t tied to
the realm of design. A pattern seems to stand apart from the
traditional way of thinking about analysis, design, and
implementation. Instead, a pattern embodies a complete idea
within a program, and thus it can sometimes appear at the analysis
phase or high-level design phase. This is interesting because a
pattern has a direct implementation in code and so you might not
expect it to show up before low-level design or implementation (and
in fact you might not realize that you need a particular pattern until
you get to those phases).

The basic concept of a pattern can also be seen as the basic concept
of program design: adding a layer of abstraction. Whenever you
abstract something you’re isolating particular details, and one of the
most compelling motivations behind this is to separate things that
change from things that stay the same. Another way to put this is
that once you find some part of your program that’s likely to change
for one reason or another, you’ll want to keep those changes from
propagating other changes throughout your code. Not only does this
make the code much cheaper to maintain, but it also turns out that
it is usually simpler to understand (which results in lowered costs).

Often, the most difficult part of developing an elegant and cheap-to-
maintain design is in discovering what I call “the vector of change.”
(Here, “vector” refers to the maximum gradient and not a collection
class.) This means finding the most important thing that changes in
your system, or put another way, discovering where your greatest
cost is. Once you discover the vector of change, you have the focal
point around which to structure your design.

So the goal of design patterns is to isolate changes in your code. If
you look at it this way, you’ve been seeing some design patterns
already in this book. For example, inheritance can be thought of as a
design pattern (albeit one implemented by the compiler). It allows
you to express differences in behavior (that’s the thing that
changes) in objects that all have the same interface (that’s what
stays the same). Composition can also be considered a pattern,
since it allows you to change – dynamically or statically – the
objects that implement your class, and thus the way that class
works.

Chapter 16: Design Patterns 1047

You’ve also already seen another pattern that appears in Design
Patterns: the iterator (Java 1.0 and 1.1 capriciously calls it the
Enumeration; Java 2 collections use “iterator”). This hides the
particular implementation of the collection as you’re stepping
through and selecting the elements one by one. The iterator allows
you to write generic code that performs an operation on all of the
elements in a sequence without regard to the way that sequence is
built. Thus your generic code can be used with any collection that
can produce an iterator.

The singleton
Possibly the simplest design pattern is the singleton, which is a way
to provide one and only one instance of an object. This is used in the
Java libraries, but here’s a more direct example:

//: c16:SingletonPattern.java
// The Singleton design pattern: you can
// never instantiate more than one.

// Since this isn't inherited from a Cloneable
// base class and cloneability isn't added,
// making it final prevents cloneability from
// being added through inheritance:
final class Singleton {
private static Singleton s = new Singleton(47);
private int i;
private Singleton(int x) { i = x; }
public static Singleton getHandle() {

return s;
}
public int getValue() { return i; }
public void setValue(int x) { i = x; }

}

public class SingletonPattern {
public static void main(String[] args) {

Singleton s = Singleton.getHandle();
System.out.println(s.getValue());
Singleton s2 = Singleton.getHandle();
s2.setValue(9);

1048 Thinking in Java www.BruceEckel.com

System.out.println(s.getValue());
try {
// Can't do this: compile-time error.
// Singleton s3 = (Singleton)s2.clone();

} catch(Exception e) {}
}

} ///:~

The key to creating a singleton is to prevent the client programmer
from having any way to create an object except the ways you
provide. You must make all constructors private, and you must
create at least one constructor to prevent the compiler from
synthesizing a default constructor for you (which it will create as
“friendly”).

At this point, you decide how you’re going to create your object.
Here, it’s created statically, but you can also wait until the client
programmer asks for one and create it on demand. In any case, the
object should be stored privately. You provide access through
public methods. Here, getHandle() produces the handle to the
Singleton object. The rest of the interface (getValue() and
setValue()) is the regular class interface.

Java also allows the creation of objects through cloning. In this
example, making the class final prevents cloning. Since Singleton
is inherited directly from Object, the clone() method remains
protected so it cannot be used (doing so produces a compile-time
error). However, if you’re inheriting from a class hierarchy that has
already overridden clone() as public and implemented
Cloneable, the way to prevent cloning is to override clone() and
throw a CloneNotSupportedException as described in
Appendix A. (You could also override clone() and simply return
this, but that would be deceiving since the client programmer
would think they were cloning the object, but would instead still be
dealing with the original.)

Note that you aren’t restricted to creating only one object. This is
also a technique to create a limited pool of objects. In that situation,
however, you can be confronted with the problem of sharing objects
in the pool. If this is an issue, you can create a solution involving a
check-out and check-in of the shared objects.

Chapter 16: Design Patterns 1049

Classifying patterns
The Design Patterns book discusses 23 different patterns, classified
under three purposes (all of which revolve around the particular
aspect that can vary). The three purposes are:

1. Creational: how an object can be created. This often
involves isolating the details of object creation so your code
isn’t dependent on what types of objects there are and thus
doesn’t have to be changed when you add a new type of
object. The aforementioned Singleton is classified as a
creational pattern, and later in this chapter you’ll see
examples of Factory Method and Prototype.

2. Structural: designing objects to satisfy particular project
constraints. These work with the way objects are connected
with other objects to ensure that changes in the system don’t
require changes to those connections.

3. Behavioral: objects that handle particular types of actions
within a program. These encapsulate processes that you want
to perform, such as interpreting a language, fulfilling a
request, moving through a sequence (as in an iterator), or
implementing an algorithm. This chapter contains examples
of the Observer and the Visitor patterns.

The Design Patterns book has a section on each of its 23 patterns
along with one or more examples for each, typically in C++ but
sometimes in Smalltalk. (You’ll find that this doesn’t matter too
much since you can easily translate the concepts from either
language into Java.) This book will not repeat all the patterns
shown in Design Patterns since that book stands on its own and
should be studied separately. Instead, this chapter will give some
examples that should provide you with a decent feel for what
patterns are about and why they are so important.

After years of looking at these things, it began to occur to me that
the patterns themselves use basic principles of organization, other
than (and more fundamental than) those described in Design
Patterns. These principles are based on the structure of the
implementations, which is where I have seen great similarities

1050 Thinking in Java www.BruceEckel.com

between patterns (more than those expressed in Design Patterns).
Although we generally try to avoid implementation in favor of
interface, I have found that it’s often easier to think about, and
especially to learn about, the patterns in terms of these structural
principles. This chapter will attempt to present the patterns based
on their structure instead of the categories presented in Design
Patterns.

Building application
frameworks

An application framework allows you to inherit from a class or set
of classes and create a new application, reusing most of the code in
the existing classes and overriding one or more methods in order to
customize the application to your needs. A fundamental concept in
the application framework is the Template Method which is
typically hidden beneath the covers and drives the application by
calling the various methods in the base class (some of which you
have overridden in order to create the application).

For example, whenever you create an applet you’re using an
application framework: you inherit from JApplet and then
override init(). The applet mechanism (which is a Template
Method) does the rest by drawing the screen, handling the event
loop, resizing, etc.

Template method
An important characteristic of the Template Method is that it is
defined in the base class and cannot be changed. It’s sometimes a
private method but it’s virtually always final. It calls other base-
class methods (the ones you override) in order to do its job, but it is
usually called only as part of an initialization process (and thus the
client programmer isn’t necessarily able to call it directly).

//: c16:TemplateMethod.java
// Simple demonstration of Template Method.

Chapter 16: Design Patterns 1051

abstract class ApplicationFramework {
public ApplicationFramework() {

templateMethod();
}
abstract void customize1();
abstract void customize2();
// "private" means automatically "final":
private void templateMethod() {

for(int i = 0; i < 5; i++) {
customize1();
customize2();

}
}

}

// Create a new "application":
class MyApp extends ApplicationFramework {
void customize1() {

System.out.print("Hello ");
}
void customize2() {

System.out.println("World!");
}

}

public class TemplateMethod {
public static void main(String args[]) {

new MyApp();
}

} ///:~

The base-class constructor is responsible for performing the
necessary initialization and then starting the “engine” (the template
method) that runs the application (in a GUI application, this
“engine” would be the main event loop). The client programmer
simply provides definitions for customize1() and customize2()
and the “application” is ready to run.

1052 Thinking in Java www.BruceEckel.com

Fronting for an
implementation

Both Proxy and Bridge provide a surrogate class that you use in
your code; the real class that does the work is hidden behind this
surrogate class. When you call a method in the surrogate, it simply
turns around and calls the method in the implementing class. These
two patterns are so similar that the Proxy is simply a special case of
Bridge. One is tempted to just lump the two together into a pattern
called Surrogate, but the term “proxy” has a long-standing and
specialized meaning, which probably explains the reason for the two
different patterns.

The basic idea is simple: from a base class, the surrogate is derived
along with the class or classes that provide the actual
implementation:

Interface

Surrogate Implementation

Surrogate Implementation1 Implementation2 Etc.

When a surrogate object is created, it is given an implementation to
which to send all of the method calls.

Structurally, the difference between Proxy and Bridge is simple: a
Proxy has only one implementation, while Bridge has more than
one. The application of the patterns is considered (in Design
Patterns) to be distinct: Proxy is used to control access to its
implementation, while Bridge allows you to change the
implementation dynamically. However, if you expand your notion

Chapter 16: Design Patterns 1053

of “controlling access to implementation” then the two fit neatly
together.

Proxy
If we implement Proxy by following the above diagram, it looks like
this:

//: c16:ProxyDemo.java
// Simple demonstration of the Proxy pattern.

interface ProxyBase {
void f();
void g();
void h();

}

class Proxy implements ProxyBase {
private ProxyBase implementation;
public Proxy() {

implementation = new Implementation();
}
// Pass method calls to the implementation:
public void f() { implementation.f(); }
public void g() { implementation.g(); }
public void h() { implementation.h(); }

}

class Implementation implements ProxyBase {
public void f() {

System.out.println("Implementation.f()");
}
public void g() {

System.out.println("Implementation.g()");
}
public void h() {

System.out.println("Implementation.h()");
}

}

public class ProxyDemo {

1054 Thinking in Java www.BruceEckel.com

public static void main(String args[]) {
Proxy p = new Proxy();
p.f();
p.g();
p.h();

}
} ///:~

Of course, it isn’t necessary that Implementation have the same
interface as Proxy; as long as Proxy is somehow “speaking for” the
class that it is referring method calls to then the basic idea is
satisfied. However, it is convenient to have a common interface so
that Implementation is forced to fulfill all the methods that
Proxy needs to call.

State
The State pattern adds more implementations to Proxy, along with
a way to switch from one implementation to another during the
lifetime of the surrogate:

//: c16:StateDemo.java
// Simple demonstration of the State pattern.

interface StateBase {
void f();
void g();
void h();
void changeImp(StateBase newImp);

}

class State implements StateBase {
private StateBase implementation;
public State(StateBase imp) {

implementation = imp;
}
public void changeImp(StateBase newImp) {

implementation = newImp;
}
// Pass method calls to the implementation:
public void f() { implementation.f(); }

Chapter 16: Design Patterns 1055

public void g() { implementation.g(); }
public void h() { implementation.h(); }

}

class Implementation1 implements StateBase {
public void f() {

System.out.println("Implementation1.f()");
}
public void g() {

System.out.println("Implementation1.g()");
}
public void h() {

System.out.println("Implementation1.h()");
}
public void changeImp(StateBase newImp) {}

}

class Implementation2 implements StateBase {
public void f() {

System.out.println("Implementation2.f()");
}
public void g() {

System.out.println("Implementation2.g()");
}
public void h() {

System.out.println("Implementation2.h()");
}
public void changeImp(StateBase newImp) {}

}

public class StateDemo {
static void test(StateBase b) {

b.f();
b.g();
b.h();

}
public static void main(String args[]) {

StateBase b =
new State(new Implementation1());

test(b);
b.changeImp(new Implementation2());
test(b);

1056 Thinking in Java www.BruceEckel.com

}
} ///:~

In main(), you can see that the first implementation is used for a
bit, then the second implementation is swapped in and that is used.

The difference between Proxy and State is in the problems that are
solved. The common uses for Proxy as described in Design Patterns
are:

1. Remote proxy. This proxies for an object in a
different address space. A remote proxy is created for
you automatically by the RMI compiler rmic as it
creates stubs and skeletons.

11. Virtual proxy. This provides “lazy initialization” to create
expensive objects on demand.

12. Protection proxy. Used when you don’t want the client
programmer to have full access to the proxied object.

13. Smart reference. To add additional actions when the
proxied object is accessed. For example, or to keep track of
the number of references that are held for a particular object,
in order to implement the copy-on-write idiom and prevent
object aliasing. A simpler example is keeping track of the
number of calls to a particular method.

You could look at a Java handle as a kind of protection proxy, since
it controls access to the actual object on the heap (and ensures, for
example, that you don’t use a null handle).

[[Rewrite this: In Design Patterns, Proxy and Bridge are not seen
as related to each other because the two are given (what I consider
arbitrarily) different structures. Bridge, in particular, uses a
separate implementation hierarchy but this seems to me to be
unnecessary unless you have decided that the implementation is not
under your control (certainly a possibility, but if you own all the
code there seems to be no reason not to benefit from the elegance
and helpfulness of the single base class). In addition, Proxy need
not use the same base class for its implementation, as long as the
proxy object is controlling access to the object it “fronting” for.

Chapter 16: Design Patterns 1057

Regardless of the specifics, in both Proxy and Bridge a surrogate is
passing method calls through to an implementation object.]]]

Exercises

1. Create an example of the “virtual proxy.”

14. Create an example of the “Smart reference” proxy where you
keep count of the number of method calls to a particular
object.

15. Using the State, make a class called
UnpredicatablePerson which changes the kind of
response to its hello() method depending on what kind of
mood it’s in. Add an additional kind of mood called Prozac.

StateMachine
While Bridge has a way to allow the client programmer to change
the implementation, StateMachine imposes a structure to
automatically change the implementation from one object to the
next. The current implementation represents the state that a system
is in, and the system behaves differently from one state to the next
(because it uses Bridge). Basically, this is a “state machine” using
objects.

The code that moves the system from one state to the next is often a
Template Method, as seen in this example:

//: c16:StateMachineDemo.java
// Demonstrates StateMachine pattern
// and Template method.
import java.util.*;

interface State {
void run();

}

abstract class StateMachine {
protected State currentState;
abstract protected boolean changeState();
// Template method:

1058 Thinking in Java www.BruceEckel.com

protected final void runAll() {
while(changeState()) // Customizable
currentState.run();

}
}

// A different subclass for each state:

class Wash implements State {
public void run() {

System.out.println("Washing");
try {
Thread.sleep(500);

} catch(InterruptedException e) {}
}

}

class Spin implements State {
public void run() {

System.out.println("Spinning");
try {
Thread.sleep(500);

} catch(InterruptedException e) {}
}

}

class Rinse implements State {
public void run() {

System.out.println("Rinsing");
try {
Thread.sleep(500);

} catch(InterruptedException e) {}
}

}

class Washer extends StateMachine {
private int i = 0;
// The state table:
private State states[] = {

new Wash(), new Spin(),
new Rinse(), new Spin(),

};

Chapter 16: Design Patterns 1059

public Washer() { runAll(); }
public boolean changeState() {

if(i < states.length) {
// Change the state by setting the
// surrogate handle to a new object:
currentState = states[i++];
return true;

} else
return false;

}
}

public class StateMachineDemo {
public static void main(String args[]) {

new Washer();
}

} ///:~

Here, the class that controls the states (StateMachine in this case)
is responsible for deciding the next state to move to. However, the
state objects themselves may also decide what state to move to next,
typically based on some kind of input to the system. This is the
more flexible solution.

Exercises

1. Create a StateMachine system whereby the current
state along with input information determines the next
state that the system will be in. To do this, each state
must store a handle back to the proxy object (the state
controller) so that it can request the state change. Use a
HashMap to create a table of states, where the key is a
String naming the new state and the value is the new
state object. Inside each state subclass override a
method nextState() that has its own state-transition
table. The input to nextState() should be a single
word that comes from a text file containing one word
per line.

1060 Thinking in Java www.BruceEckel.com

Factories: encapsulating
object creation

When you discover that you need to add new types to a system, the
most sensible first step is to use polymorphism to create a common
interface to those new types. This separates the rest of the code in
your system from the knowledge of the specific types that you are
adding. New types may be added without disturbing exising code …
or so it seems. At first it would appear that the only place you need
to change the code in such a design is the place where you inherit a
new type, but this is not quite true. You must still create an object of
your new type, and at the point of creation you must specify the
exact constructor to use. Thus, if the code that creates objects is
distributed throughout your application, you have the same
problem when adding new types – you must still chase down all the
points of your code where type matters. It happens to be the
creation of the type that matters in this case rather than the use of
the type (which is taken care of by polymorphism), but the effect is
the same: adding a new type can cause problems.

The solution is to force the creation of objects to occur through a
common factory rather than to allow the creational code to be
spread throughout your system. If all the code in your program
must go through this factory whenever it needs to create one of your
objects, then all you must do when you add a new object is to
modify the factory.

Since every object-oriented program creates objects, and since it’s
very likely you will extend your program by adding new types, I
suspect that factories may be the most universally useful kinds of
design patterns.

As an example, let’s revisit the Shape system. One approach is to
make the factory a static method of the base class:

//: c16:ShapeFactory1.java
// A simple static factory method.
import java.util.*;

Chapter 16: Design Patterns 1061

class BadShapeCreation extends Exception {
BadShapeCreation(String msg) {

super(msg);
}

}

abstract class Shape {
public abstract void draw();
public abstract void erase();
static Shape factory(String type)

throws BadShapeCreation {
if(type == "Circle") return new Circle();
if(type == "Square") return new Square();
throw new BadShapeCreation(type);

}
}

class Circle extends Shape {
Circle() {} // Friendly constructor
public void draw() {

System.out.println("Circle.draw");
}
public void erase() {

System.out.println("Circle.erase");
}

}

class Square extends Shape {
Square() {} // Friendly constructor
public void draw() {

System.out.println("Square.draw");
}
public void erase() {

System.out.println("Square.erase");
}

}

public class ShapeFactory1 {
public static void main(String args[]) {

String shlist[] = { "Circle", "Square",
"Square", "Circle", "Circle", "Square" };

1062 Thinking in Java www.BruceEckel.com

ArrayList shapes = new ArrayList();
try {
for(int i = 0; i < shlist.length; i++)
shapes.add(Shape.factory(shlist[i]));

} catch(BadShapeCreation e) {
e.printStackTrace();
return;

}
Iterator i = shapes.iterator();
while(i.hasNext()) {
Shape s = (Shape)i.next();
s.draw();
s.erase();

}
}

} ///:~

The factory() takes an argument that allows it to determine what
type of Shape to create; it happens to be a String in this case but
it could be any set of data. The factory() is now the only other
code in the system that needs to be changed when a new type of
Shape is added (the initialization data for the objects will
presumably come from somewhere outside the system, and not be a
hard-coded array as in the above example).

To encourage creation to only happen in the factory(), the
constructors for the specific types of Shape are made “friendly,” so
factory() has access to the constructors but they are not available
outside the package.

Polymorphic factories
The static factory() method in the previous example forces all the
creation operations to be focused in one spot, so that’s the only
place you need to change the code. This is certainly a reasonable
solution, as it throws a box around the process of creating objects.
However, the Design Patterns book emphasizes that the reason for
the Factory Method pattern is so that different types of factories
can be subclassed from the basic factory (the above design is
mentioned as a special case). However, the book does not provide
an example, but instead just repeats the example used for the

Chapter 16: Design Patterns 1063

Abstract Factory (you’ll see an example of this in the next section).
Here is ShapeFactory1.java modified so the factory methods are
in a separate class as virtual functions. Notice also that the specific
Shape classes are dynamically loaded on demand:

//: c16:ShapeFactory2.java
// Polymorphic factory methods.
import java.util.*;

class BadShapeCreation extends Exception {
BadShapeCreation(String msg) {

super(msg);
}

}

interface Shape {
void draw();
void erase();

}

abstract class ShapeFactory {
protected abstract Shape create();
static Map factories = new HashMap();
static Shape createShape(String id)
throws BadShapeCreation {

if(!factories.containsKey(id)) {
try {
Class.forName(id); // Load dynamically

} catch(ClassNotFoundException e) {
throw new BadShapeCreation(id);

}
// See if it was put in:
if(!factories.containsKey(id))
throw new BadShapeCreation(id);

}
return
((ShapeFactory)factories.get(id)).create();

}
}

class Circle implements Shape {
private Circle() {}

1064 Thinking in Java www.BruceEckel.com

public void draw() {
System.out.println("Circle.draw");

}
public void erase() {

System.out.println("Circle.erase");
}
static class Factory extends ShapeFactory {

protected Shape create() {
return new Circle();

}
}
static {

ShapeFactory.factories.put(
"Circle", new Circle.Factory());

}
}

class Square implements Shape {
private Square() {}
public void draw() {

System.out.println("Square.draw");
}
public void erase() {

System.out.println("Square.erase");
}
static class Factory extends ShapeFactory {

protected Shape create() {
return new Square();

}
}
static {

ShapeFactory.factories.put(
"Square", new Square.Factory());

}
}

public class ShapeFactory2 {
public static void main(String args[]) {

String shlist[] = { "Circle", "Square",
"Square", "Circle", "Circle", "Square" };

ArrayList shapes = new ArrayList();
try {

Chapter 16: Design Patterns 1065

for(int i = 0; i < shlist.length; i++)
shapes.add(

ShapeFactory.createShape(shlist[i]));
} catch(BadShapeCreation e) {
e.printStackTrace();
return;

}
Iterator i = shapes.iterator();
while(i.hasNext()) {
Shape s = (Shape)i.next();
s.draw();
s.erase();

}
}

} ///:~

Now the factory method appears in its own class, ShapeFactory,
as the create() method. This is a protected method which means
it cannot be called directly, but it can be overridden. The subclasses
of Shape must each create their own subclasses of ShapeFactory
and override the create() method to create an object of their own
type. The actual creation of shapes is performed by calling
ShapeFactory.createShape(), which is a static method that
uses the Map in ShapeFactory to find the appropriate factory
object based on an identifier that you pass it. The factory is
immediately used to create the shape object, but you could imagine
a more complex problem where the appropriate factory object is
returned and then used by the caller to create an object in a more
sophisticated way. However, it seems that much of the time you
don’t need the intricacies of the polymorphic factory method, and a
single static method in the base class (as shown in
ShapeFactory1.java) will work fine.

Notice that the ShapeFactory must be initialized by loading its
Map with factory objects, which takes place in the static
initialization clause of each of the Shape implementations. So to
add a new type to this design you must inherit the type, create a
factory, and add the static initialization clause to load the Map.
This extra complexity again suggests the use of a static factory
method if you don’t need to create individual factory objects.

1066 Thinking in Java www.BruceEckel.com

Abstract factories
The Abstract Factory pattern looks like the factory objects we’ve
seen previously, with not one but several factory methods. Each of
the factory methods creates a different kind of object. The idea is
that at the point of creation of the factory object, you decide how all
the objects created by that factory will be used. The example given
in Design Patterns implements portability across various graphical
user interfaces (GUIs): you create a factory object appropriate to the
GUI that you’re working with, and from then on when you ask it for
a menu, button, slider, etc. it will automatically create the
appropriate version of that item for the GUI. Thus you’re able to
isolate, in one place, the effect of changing from one GUI to
another.

As another example suppose you are creating a general-purpose
gaming environment and you want to be able to support different
types of games. Here’s how it might look using an abstract factory:

//: c16:GameEnvironment.java
// An example of the Abstract Factory pattern.

interface Obstacle {
void action();

}

interface Player {
void interactWith(Obstacle o);

}

class Kitty implements Player {
public void interactWith(Obstacle ob) {

System.out.print("Kitty has encountered a ");
ob.action();

}
}

class KungFuGuy implements Player {
public void interactWith(Obstacle ob) {

System.out.print("KungFuGuy now battles a ");
ob.action();

Chapter 16: Design Patterns 1067

}
}

class Puzzle implements Obstacle {
public void action() {

System.out.println("Puzzle");
}

}

class NastyWeapon implements Obstacle {
public void action() {

System.out.println("NastyWeapon");
}

}

// The Abstract Factory:
interface GameElementFactory {
Player makePlayer();
Obstacle makeObstacle();

}

// Concrete factories:
class KittiesAndPuzzles
implements GameElementFactory {
public Player makePlayer() {

return new Kitty();
}
public Obstacle makeObstacle() {

return new Puzzle();
}

}

class KillAndDismember
implements GameElementFactory {
public Player makePlayer() {

return new KungFuGuy();
}
public Obstacle makeObstacle() {

return new NastyWeapon();
}

}

1068 Thinking in Java www.BruceEckel.com

public class GameEnvironment {
private GameElementFactory gef;
private Player p;
private Obstacle ob;
public GameEnvironment(

GameElementFactory factory) {
gef = factory;
p = factory.makePlayer();
ob = factory.makeObstacle();

}
public void play() {

p.interactWith(ob);
}
public static void main(String args[]) {

GameElementFactory
kp = new KittiesAndPuzzles(),
kd = new KillAndDismember();

GameEnvironment
g1 = new GameEnvironment(kp),
g2 = new GameEnvironment(kd);

g1.play();
g2.play();

}
} ///:~

In this environment, Player objects interact with Obstacle
objects, but there are different types of players and obstacles
depending on what kind of game you’re playing. You determine the
kind of game by choosing a particular GameElementFactory,
and then the GameEnvironment controls the setup and play of
the game. In this example, the setup and play is very simple, but
those activities (the initial conditions and the state change) can
determine much of the game’s outcome. Here,
GameEnvironment is not designed to be inherited, although it
could very possibly make sense to do that.

This also contains examples of Double Dispatching and the Factory
Method, both of which will be explained later.

Chapter 16: Design Patterns 1069

Functors
In Advanced C++ (get full citation), Jim Coplien coins the term
“functor” which is an object whose sole purpose is to encapsulate a
function. The point is to decouple the choice of function to be called
from the site where that function is called.

This term is mentioned but not used in Design Patterns. However,
the theme of the functor is repeated in a number of patterns in that
book.

Command
This is the functor in its purest sense: a method that’s an object2. By
wrapping a method in an object, you can pass it to other methods or
objects as a parameter, to tell them to perform this particular
operation in the process of fulfilling your request.

//: c16:CommandPattern.java
import java.util.*;

interface Command {
void execute();

}

class Hello implements Command {
public void execute() {

System.out.print("Hello ");
}

}

class World implements Command {
public void execute() {

System.out.print("World! ");
}

}

2 In the Python language, all functions are already objects and so the Command pattern is
often redundant.

1070 Thinking in Java www.BruceEckel.com

class IAm implements Command {
public void execute() {

System.out.print("I'm the command pattern!");
}

}

// A Command object that holds commands:
class Macro implements Command {
private ArrayList commands = new ArrayList();
public void add(Command c) { commands.add(c); }
public void execute() {

Iterator it = commands.iterator();
while(it.hasNext())
((Command)it.next()).execute();

}
}

public class CommandPattern {
public static void main(String args[]) {

Macro macro = new Macro();
macro.add(new Hello());
macro.add(new World());
macro.add(new IAm());
macro.execute();

}
} ///:~

The primary point of Command is to allow you to hand a desired
action to a method or object. In the above example, this provides a
way to queue a set of actions to be performed collectively. In this
case, it allows you to dynamically create new behavior, something
you can normally only do by writing new code but in the above
example could be done by interpreting a script (see the Interpreter
pattern if what you need to do gets very complex).

Another example of Command is c12:DirList.java. The DirFilter
class is the command object which contans its action in the method
accept() that is passed to the list() method. The list() method
determines what to include in its resut by calling accept().

Chapter 16: Design Patterns 1071

Design Patterns says that “Commands are an object-oriented
replacement for callbacks3.” However, I think that the word “back”
is an essental part of the concept of callbacks. That is, I think a
callback actually reaches back to the creator of the callback. On the
other hand, with a Command object you typically just create it and
hand it to some method or object, and are not otherwise connected
over time to the Command object. That’s my take on it, anyway.
Later in this chapter, I combine a group of design patterns under
the heading of “callbacks.”

Strategy
Strategy appears to be a family of Command classes, all inherited
from the same base. But if you look at Command, you’ll see that it
has the same structure: a hierarchy of functors. The difference is in
the way this hierarchy is used. As seen in c12:DirList.java, you
use Command to solve a particular problem – in that case, selecting
files from a list. The “thing that stays the same” is the body of the
method that’s being called, and the part that varies is isolated in the
functor. I would hazard to say that Command provides flexibility
while you’re writing the program, whereas Strategy’s flexibility is at
run-time. Nonetheless, it seems a rather fragile distinction.

Strategy also adds a “Context” which can be a surrogate class that
controls the selection and use of the particular strategy object – just
like Bridge! Here’s what it looks like:

//: c16:StrategyPattern.java

// The strategy interface:
interface FindMinima {
// Line is a sequence of points:
double[] algorithm(double[] line);

}

// The various strategies:
class LeastSquares implements FindMinima {

3 Page 235

1072 Thinking in Java www.BruceEckel.com

public double[] algorithm(double[] line) {
return new double[] { 1.1, 2.2 }; // Dummy

}
}

class Perturbation implements FindMinima {
public double[] algorithm(double[] line) {

return new double[] { 3.3, 4.4 }; // Dummy
}

}

class Bisection implements FindMinima {
public double[] algorithm(double[] line) {

return new double[] { 5.5, 6.6 }; // Dummy
}

}

// The "Context" controls the strategy:
class MinimaSolver {
private FindMinima strategy;
public MinimaSolver(FindMinima strat) {

strategy = strat;
}
double[] minima(double[] line) {

return strategy.algorithm(line);
}
void changeAlgorithm(FindMinima newAlgorithm) {

strategy = newAlgorithm;
}

}

public class StrategyPattern {
public static void printArray(double[] array) {

for(int i = 0; i < array.length; i++) {
System.out.print(array[i]);
if(i != array.length -1)
System.out.print(", ");

}
System.out.println();

}
public static void main(String args[]) {

MinimaSolver solver =

Chapter 16: Design Patterns 1073

new MinimaSolver(new LeastSquares());
double[] line = {
1.0, 2.0, 1.0, 2.0, -1.0,
3.0, 4.0, 5.0, 4.0 };

printArray(solver.minima(line));
solver.changeAlgorithm(new Bisection());
printArray(solver.minima(line));

}
} ///:~

Chain of responsibility
Chain of Responsibility might be thought of as a dynamic
generalization of recursion using Strategy objects. You make a call,
and each Strategy in a linked sequence tries to satisfy the call. The
process ends when one of the strategies is successful or the chain
ends. In recursion, one method calls itself over and over until a
termination condition is reached; with Chain of Responsibility, a
method calls the same base-class method (with different
implementations) which calls another implementation of the base-
class method, etc., until a termination condition is reached.

Instead of calling a single method to satisfy a request, multiple
methods in the chain have a chance to satisfy the request, so it has
the flavor of an expert system. Since the chain is effectively a linked
list, it can be dynamically created, so you could also think of it as a
more general, dynamically-built switch statement.

In StrategyPattern.java, above, what you probably want is to
automatically find a solution. Chain of Responsibility provides a
way to do this:

//: c16:ChainOfResponsibility.java

class FindMinima {
private FindMinima successor = null;
public void add(FindMinima succ) {

FindMinima end = this;
while(end.successor != null)

1074 Thinking in Java www.BruceEckel.com

end = end.successor; // Traverse list
end.successor = succ;

}
public double[] algorithm(double[] line) {

if(successor != null)
return successor.algorithm(line);

else // Try the next one in the chain:
return new double[] {};

}
}

class LeastSquares extends FindMinima {
public double[] algorithm(double[] line) {

System.out.println("LeastSquares.algorithm");
boolean weSucceed = false;
if(weSucceed) // Actual test/calculation here
return new double[] { 1.1, 2.2 }; // Dummy

else // Try the next one in the chain:
return super.algorithm(line);

}
}

class Perturbation extends FindMinima {
public double[] algorithm(double[] line) {

System.out.println("Perturbation.algorithm");
boolean weSucceed = false;
if(weSucceed) // Actual test/calculation here
return new double[] { 3.3, 4.4 }; // Dummy

else // Try the next one in the chain:
return super.algorithm(line);

}
}

class Bisection extends FindMinima {
public double[] algorithm(double[] line) {

System.out.println("Bisection.algorithm");
boolean weSucceed = true;
if(weSucceed) // Actual test/calculation here
return new double[] { 5.5, 6.6 }; // Dummy

else
return super.algorithm(line);

}

Chapter 16: Design Patterns 1075

}

// The "Handler" proxies to the first functor:
class MinimaSolver {
private FindMinima chain = new FindMinima();
void add(FindMinima newAlgorithm) {

chain.add(newAlgorithm);
}
// Make the call to the top of the chain:
double[] minima(double[] line) {

return chain.algorithm(line);
}

}

public class ChainOfResponsibility {
public static void printArray(double[] array) {

for(int i = 0; i < array.length; i++) {
System.out.print(array[i]);
if(i != array.length -1)
System.out.print(", ");

}
System.out.println();

}
public static void main(String args[]) {

MinimaSolver solver = new MinimaSolver();
solver.add(new LeastSquares());
solver.add(new Perturbation());
solver.add(new Bisection());
double[] line = {
1.0, 2.0, 1.0, 2.0, -1.0,
3.0, 4.0, 5.0, 4.0 };

printArray(solver.minima(line));
}

} ///:~

Changing the interface
Sometimes the problem that you’re solving is as simple as “I don’t
have the interface that I want.” Two of the patterns in Design

1076 Thinking in Java www.BruceEckel.com

Patterns solve this problem: Adapter takes one type and produces
an interface to some other type. Façade creates an interface to a set
of classes, simply to provide a more comfortable way to deal with a
library or bundle of resources.

Adapter
When you’ve got this, and you need that, Adapter solves the
problem. The only requirement is to produce a that, and there are a
number of ways you can accomplish this adaptation.

//: c16:Adapter.java
// Variations on the Adapter pattern.

class WhatIHave {
public void g() {}
public void h() {}

}

interface WhatIWant {
void f();

}

class ProxyAdapter implements WhatIWant {
WhatIHave whatIHave;
public ProxyAdapter(WhatIHave wih) {

whatIHave = wih;
}
public void f() {

// Implement behavior using
// methods in WhatIHave:
whatIHave.g();
whatIHave.h();

}
}

class WhatIUse {
public void op(WhatIWant wiw) {

wiw.f();
}

}

Chapter 16: Design Patterns 1077

// Approach 2: build adapter use into op():
class WhatIUse2 extends WhatIUse {
public void op(WhatIHave wih) {

new ProxyAdapter(wih).f();
}

}

// Approach 3: build adapter into WhatIHave:
class WhatIHave2 extends WhatIHave
implements WhatIWant {
public void f() {

g();
h();

}
}

// Approach 4: use an inner class:
class WhatIHave3 extends WhatIHave {
private class InnerAdapter implements WhatIWant{

public void f() {
g();
h();

}
}
public WhatIWant whatIWant() {

return new InnerAdapter();
}

}

public class Adapter {
public static void main(String args[]) {

WhatIUse whatIUse = new WhatIUse();
WhatIHave whatIHave = new WhatIHave();
WhatIWant adapt= new ProxyAdapter(whatIHave);
whatIUse.op(adapt);
// Approach 2:
WhatIUse2 whatIUse2 = new WhatIUse2();
whatIUse2.op(whatIHave);
// Approach 3:
WhatIHave2 whatIHave2 = new WhatIHave2();
whatIUse.op(whatIHave2);

1078 Thinking in Java www.BruceEckel.com

// Approach 4:
WhatIHave3 whatIHave3 = new WhatIHave3();
whatIUse.op(whatIHave3.whatIWant());

}
} ///:~

I’m taking liberties with the term “proxy” here, because in Design
Patterns they assert that a proxy must have an identical interface
with the object that it is a surrogate for. However, if you have the
two words together: “proxy adapter,” it is perhaps more reasonable.

Façade
A general principle that I apply when I’m casting about trying to
mold requirements into a first-cut object is “If something is ugly,
hide it inside an object.” This is basically what Façade
accomplishes. If you have a rather confusing collection of classes
and interactions that the client programmer doesn’t really need to
see, then you can create an interface that is useful for the client
programmer and that only presents what’s necessary.

Façade is often a implemented as singleton abstract factory. Of
course, you can easily get this effect by creating a class containing
static factory methods:

//: c16:Facade.java

class A { public A(int x) {} }
class B { public B(long x) {} }
class C { public C(double x) {} }

// Other classes that aren't exposed by the
// facade go here ...

public class Facade {
static A makeA(int x) { return new A(x); }
static B makeB(long x) { return new B(x); }
static C makeC(double x) { return new C(x); }
public static void main(String args[]) {

// The client programmer gets the objects
// by calling the static methods:

Chapter 16: Design Patterns 1079

A a = Facade.makeA(1);
B b = Facade.makeB(1);
C c = Facade.makeC(1.0);

}
} ///:~

The example given in Design Patterns isn’t really a Façade but just
a class that uses the other classes.

Package as a variation of Façade
To me, the Façade has a rather “procedural” (non-object-oriented)
feel to it: you are just calling some functions to give you objects.
And how different is it, really, from Abstract Factory? The point of
Façade is to hide part of a library of classes (and their interactions)
from the client programmer, to make the interface to that group of
classes more digestible and easier to understand.

However, this is precisely what the packaging features in Java
accomplish: outside of the library, you can only create and use
public classes; all the non-public classes are only accessible within
the package. It’s as if Façade is a built-in feature of Java.

To be fair, Design Patterns is written primarily for a C++ audience.
Although C++ has namespaces to prevent clashes of globals and
class names, this does not provide the class hiding mechanism that
you get with non-public classes in Java. The majority of the time I
think that Java packages will solve the Façade problem.

Interpreter: run-time
flexibility

If the application user needs greater run-time flexibility, for
example to create scripts describing the desired behavior of the
system, you can use the Interpreter design pattern. Here, you create
and embed a language interpreter into your program.

Developing your own language and building an interpreter for it is a
time-consuming distraction from the process of building your

1080 Thinking in Java www.BruceEckel.com

application. The best solution is to reuse code: that is, to embed an
interpreter that’s already been built and debugged for you. The
Python language can be freely embedded in your for-profit
application without any license agreement, royalties, or strings of
any kind. In addition, there is a version of Python called JPython
which is entirely Java byte codes, so incorporating it into your
application is quite simple. Python is a scripting language that is
very easy to learn, very logical to read and write, supports functions
and objects, has a large set of available libraries, and runs on
virtually every platform. You can download Python and learn more
about it by going to http://www.Python.org.

[[Example of JPython embedding ?]]

Callbacks
Decoupling code behavior

Observer, and a category of callbacks called “multiple dispatching
(not in Design Patterns)” including the Visitor from Design
Patterns.

Observer
Like the other forms of callback, this contains a hook point where
you can change code. The difference is in the observer’s completely
dynamic nature. It is often used for the specific case of changes
based on other object’s change of state, but is also the basis of event
management. Anytime you want to decouple the source of the call
from the called code in a completely dynamic way.

The observer pattern solves a fairly common problem: What if a
group of objects needs to update themselves when some object
changes state? This can be seen in the “model-view” aspect of
Smalltalk’s MVC (model-view-controller), or the almost-equivalent
“Document-View Architecture.” Suppose that you have some data
(the “document”) and more than one view, say a plot and a textual
view. When you change the data, the two views must know to
update themselves, and that’s what the observer facilitates. It’s a

Chapter 16: Design Patterns 1081

common enough problem that its solution has been made a part of
the standard java.util library.

There are two types of objects used to implement the observer
pattern in Java. The Observable class keeps track of everybody
who wants to be informed when a change happens, whether the
“state” has changed or not. When someone says “OK, everybody
should check and potentially update themselves,” the Observable
class performs this task by calling the notifyObservers() method
for each one on the list. The notifyObservers() method is part of
the base class Observable.

There are actually two “things that change” in the observer pattern:
the quantity of observing objects and the way an update occurs.
That is, the observer pattern allows you to modify both of these
without affecting the surrounding code.

Observer is an “interface” class that only has one member
function, update(). This function is called by the object that’s
being observed, when that object decides its time to update all its
observers. The arguments are optional; you could have an
update() with no arguments and that would still fit the observer
pattern; however this is more general – it allows the observed object
to pass the object that caused the update (since an Observer may
be registered with more than one observed object) and any extra
information if that’s helpful, rather than forcing the Observer
object to hunt around to see who is updating and to fetch any other
information it needs.

The “observed object” that decides when and how to do the
updating will be called the Observable.

Observable has a flag to indicate whether it’s been changed. In a
simpler design, there would be no flag; if something happened,
everyone would be notified. The flag allows you to wait, and only
notify the Observers when you decide the time is right. Notice,
however, that the control of the flag’s state is protected, so that
only an inheritor can decide what constitutes a change, and not the
end user of the resulting derived Observer class.

1082 Thinking in Java www.BruceEckel.com

Most of the work is done in notifyObservers(). If the changed
flag has not been set, this does nothing. Otherwise, it first clears the
changed flag so repeated calls to notifyObservers() won’t waste
time. This is done before notifying the observers in case the calls to
update() do anything that causes a change back to this
Observable object. Then it moves through the set and calls back
to the update() member function of each Observer.

At first it may appear that you can use an ordinary Observable
object to manage the updates. But this doesn’t work; to get an
effect, you must inherit from Observable and somewhere in your
derived-class code call setChanged(). This is the member
function that sets the “changed” flag, which means that when you
call notifyObservers() all of the observers will, in fact, get
notified. Where you call setChanged() depends on the logic of
your program.

Observing flowers
Here is an example of the observer pattern:

//: c16:ObservedFlower.java
// Demonstration of "observer" pattern.
import java.util.*;

class Flower {
private boolean isOpen;
private OpenNotifier oNotify =

new OpenNotifier();
private CloseNotifier cNotify =

new CloseNotifier();
public Flower() { isOpen = false; }
public void open() { // Opens its petals

isOpen = true;
oNotify.notifyObservers();
cNotify.open();

}
public void close() { // Closes its petals

isOpen = false;
cNotify.notifyObservers();
oNotify.close();

Chapter 16: Design Patterns 1083

}
public Observable opening() {

return oNotify;
}
public Observable closing() {

return cNotify;
}
private class OpenNotifier extends Observable {

private boolean alreadyOpen = false;
public void notifyObservers() {
if(isOpen && !alreadyOpen) {
setChanged();
super.notifyObservers();
alreadyOpen = true;

}
}
public void close() { alreadyOpen = false; }

}
private class CloseNotifier extends Observable{

private boolean alreadyClosed = false;
public void notifyObservers() {
if(!isOpen && !alreadyClosed) {
setChanged();
super.notifyObservers();
alreadyClosed = true;

}
}
public void open() { alreadyClosed = false; }

}
}

class Bee {
private String name;
private OpenObserver openObsrv =

new OpenObserver();
private CloseObserver closeObsrv =

new CloseObserver();
public Bee(String nm) { name = nm; }
// An inner class for observing openings:
private class OpenObserver implements Observer{

public void update(Observable ob, Object a) {
System.out.println("Bee " + name

1084 Thinking in Java www.BruceEckel.com

+ "'s breakfast time!");
}

}
// Another inner class for closings:
private class CloseObserver implements Observer{

public void update(Observable ob, Object a) {
System.out.println("Bee " + name
+ "'s bed time!");

}
}
public Observer openObserver() {

return openObsrv;
}
public Observer closeObserver() {

return closeObsrv;
}

}

class Hummingbird {
private String name;
private OpenObserver openObsrv =

new OpenObserver();
private CloseObserver closeObsrv =

new CloseObserver();
public Hummingbird(String nm) { name = nm; }
private class OpenObserver implements Observer{

public void update(Observable ob, Object a) {
System.out.println("Hummingbird " + name
+ "'s breakfast time!");

}
}
private class CloseObserver implements Observer{

public void update(Observable ob, Object a) {
System.out.println("Hummingbird " + name
+ "'s bed time!");

}
}
public Observer openObserver() {

return openObsrv;
}
public Observer closeObserver() {

return closeObsrv;

Chapter 16: Design Patterns 1085

}
}

public class ObservedFlower {
public static void main(String args[]) {

Flower f = new Flower();
Bee
ba = new Bee("A"),
bb = new Bee("B");

Hummingbird
ha = new Hummingbird("A"),
hb = new Hummingbird("B");

f.opening().addObserver(ha.openObserver());
f.opening().addObserver(hb.openObserver());
f.opening().addObserver(ba.openObserver());
f.opening().addObserver(bb.openObserver());
f.closing().addObserver(ha.closeObserver());
f.closing().addObserver(hb.closeObserver());
f.closing().addObserver(ba.closeObserver());
f.closing().addObserver(bb.closeObserver());
// Hummingbird B decides to sleep in:
f.opening().deleteObserver(hb.openObserver());
// A change that interests observers:
f.open();
f.open(); // It's already open, no change.
// Bee A doesn't want to go to bed:

f.closing().deleteObserver(ba.closeObserver());
f.close();
f.close(); // It's already closed; no change
f.opening().deleteObservers();
f.open();
f.close();

}
} ///:~

The events of interest are that a Flower can open or close. Because
of the use of the inner class idiom, both these events can be
separately-observable phenomena. OpenNotifier and
CloseNotifier both inherit Observable, so they have access to
setChanged() and can be handed to anything that needs an
Observable.

1086 Thinking in Java www.BruceEckel.com

The inner class idiom also comes in handy to define more than one
kind of Observer, in Bee and Hummingbird, since both those
classes may want to independently observe Flower openings and
closings. Notice how the inner class idiom provides something that
has most of the benefits of inheritance (the ability to access the
private data in the outer class, for example) without the same
restrictions.

In main(), you can see one of the prime benefits of the observer
pattern: the ability to change behavior at runtime by dynamically
registering and un-registering Observers with Observables.

If you study the code above you’ll see that OpenNotifier and
CloseNotifier use the basic Observable interface. This means
that you could inherit other completely different Observer classes;
the only connection the Observers have with Flowers is the
Observer interface.

A visual example of observers
The following example is similar to the ColorBoxes example from
Chapter 14. Boxes are placed in a grid on the screen and each one is
initialized to a random color. In addition, each box implements
the Observer interface and is registered with an Observable
object. When you click on a box, all of the other boxes are notified
that a change has been made because the Observable object
automatically calls each Observer object’s update() method.
Inside this method, the box checks to see if it’s adjacent to the one
that was clicked, and if so it changes its color to match the clicked
box.

//: c16:BoxObserver.java
// Demonstration of Observer pattern using
// Java's built-in observer classes.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

Chapter 16: Design Patterns 1087

// You must inherit a new type of Observable:
class BoxObservable extends Observable {
public void notifyObservers(Object b) {

// Otherwise it won't propagate changes:
setChanged();
super.notifyObservers(b);

}
}

public class BoxObserver extends JFrame {
Observable notifier = new BoxObservable();
public BoxObserver(int grid) {

setTitle("Demonstrates Observer pattern");
Container cp = getContentPane();
cp.setLayout(new GridLayout(grid, grid));
for(int x = 0; x < grid; x++)
for(int y = 0; y < grid; y++)
cp.add(new OCBox(x, y, notifier));

}
public static void main(String[] args) {

int grid = 8;
if(args.length > 0)
grid = Integer.parseInt(args[0]);

JFrame f = new BoxObserver(grid);
f.setSize(500, 400);
f.setVisible(true);

//#f.setDefaultCloseOperation(EXIT_ON_CLOSE);
f.addWindowListener(new WClose()); // 1.2

}
}

class OCBox extends JPanel implements Observer {
Observable notifier;
int x, y; // Locations in grid
Color cColor = newColor();
static final Color[] colors = {

Color.black, Color.blue, Color.cyan,
Color.darkGray, Color.gray, Color.green,
Color.lightGray, Color.magenta,
Color.orange, Color.pink, Color.red,
Color.white, Color.yellow

};

1088 Thinking in Java www.BruceEckel.com

static final Color newColor() {
return colors[
(int)(Math.random() * colors.length)

];
}
OCBox(int x, int y, Observable notifier) {

this.x = x;
this.y = y;
notifier.addObserver(this);
this.notifier = notifier;
addMouseListener(new ML());

}
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.setColor(cColor);
Dimension s = getSize();
g.fillRect(0, 0, s.width, s.height);

}
class ML extends MouseAdapter {

public void mousePressed(MouseEvent e) {
notifier.notifyObservers(OCBox.this);

}
}
public void update(Observable o, Object arg) {

OCBox clicked = (OCBox)arg;
if(nextTo(clicked)) {
cColor = clicked.cColor;
repaint();

}
}
private final boolean nextTo(OCBox b) {

return Math.abs(x - b.x) <= 1 &&
Math.abs(y - b.y) <= 1;

}
} ///:~

When you first look at the online documentation for Observable,
it’s a bit confusing because it appears that you can use an ordinary
Observable object to manage the updates. But this doesn’t work;
try it – inside BoxObserver, create an Observable object instead
of a BoxObservable object and see what happens: nothing. To get
an effect, you must inherit from Observable and somewhere in

Chapter 16: Design Patterns 1089

your derived-class code call setChanged(). This is the method
that sets the “changed” flag, which means that when you call
notifyObservers() all of the observers will, in fact, get notified.
In the example above setChanged() is simply called within
notifyObservers(), but you could use any criterion you want to
decide when to call setChanged().

BoxObserver contains a single Observable object called
notifier, and every time an OCBox object is created, it is tied to
notifier. In OCBox, whenever you click the mouse the
notifyObservers() method is called, passing the clicked object in
as an argument so that all the boxes receiving the message (in their
update() method) know who was clicked and can decide whether
to change themselves or not. Using a combination of code in
notifyObservers() and update() you can work out some fairly
complex schemes.

It might appear that the way the observers are notified must be
frozen at compile time in the notifyObservers() method.
However, if you look more closely at the code above you’ll see that
the only place in BoxObserver or OCBox where you're aware that
you’re working with a BoxObservable is at the point of creation of
the Observable object – from then on everything uses the basic
Observable interface. This means that you could inherit other
Observable classes and swap them at run-time if you want to
change notification behavior then.

Multiple dispatching
When dealing with multiple types which are interacting, a program
can get particularly messy. For example, consider a system that
parses and executes mathematical expressions. You want to be able
to say Number + Number, Number * Number, etc., where
Number is the base class for a family of numerical objects. But
when you say a + b, and you don’t know the exact type of either a
or b, so how can you get them to interact properly?

The answer starts with something you probably don’t think about:
Java performs only single dispatching. That is, if you are

1090 Thinking in Java www.BruceEckel.com

performing an operation on more than one object whose type is
unknown, Java can invoke the dynamic binding mechanism on only
one of those types. This doesn’t solve the problem, so you end up
detecting some types manually and effectively producing your own
dynamic binding behavior.

The solution is called multiple dispatching. Remember that
polymorphism can occur only via member function calls, so if you
want double dispatching to occur, there must be two member
function calls: the first to determine the first unknown type, and the
second to determine the second unknown type. With multiple
dispatching, you must have a polymorphic method call to determine
each of the types. Generally, you’ll set up a configuration such that a
single member function call produces more than one dynamic
member function call and thus determines more than one type in
the process. To get this effect, you need to work with more than one
polymorphic method call: you’ll need one call for each dispatch. The
methods in the following example are called compete() and
eval(), and are both members of the same type. (In this case there
will be only two dispatches, which is referred to as double
dispatching). If you are working with two different type hierarchies
that are interacting, then you’ll have to have a polymorphic method
call in each hierarchy.

Here’s an example of multiple dispatching:

//: c16:PaperScissorsRock.java
// Demonstration of multiple dispatching.
import java.util.*;

// An enumeration type:
class Outcome {
private int value;
private Outcome(int val) { value = val; }
public final static Outcome

WIN = new Outcome(0),
LOSE = new Outcome(1),
DRAW = new Outcome(2);

public String toString() {
switch(value) {
default:

Chapter 16: Design Patterns 1091

case 0: return "win";
case 1: return "lose";
case 2: return "draw";

}
}
public boolean equals(Object o) {

return (o instanceof Outcome)
&& (value == ((Outcome)o).value);

}
}

interface Item {
Outcome compete(Item it);
Outcome eval(Paper p);
Outcome eval(Scissors s);
Outcome eval(Rock r);

}

class Paper implements Item {
public Outcome compete(Item it) {

return it.eval(this);
}
public Outcome eval(Paper p) {

return Outcome.DRAW;
}
public Outcome eval(Scissors s) {

return Outcome.WIN;
}
public Outcome eval(Rock r) {

return Outcome.LOSE;
}
public String toString() { return "Paper"; }

}

class Scissors implements Item {
public Outcome compete(Item it) {

return it.eval(this);
}
public Outcome eval(Paper p) {

return Outcome.LOSE;
}
public Outcome eval(Scissors s) {

1092 Thinking in Java www.BruceEckel.com

return Outcome.DRAW;
}
public Outcome eval(Rock r) {

return Outcome.WIN;
}
public String toString() { return "Scissors"; }

}

class Rock implements Item {
public Outcome compete(Item it) {

return it.eval(this);
}
public Outcome eval(Paper p) {

return Outcome.WIN;
}
public Outcome eval(Scissors s) {

return Outcome.LOSE;
}
public Outcome eval(Rock r) {

return Outcome.DRAW;
}
public String toString() { return "Rock"; }

}

class ItemFactory {
public static Item newItem() {

switch((int)(Math.random() * 3)) {
default:
case 0:
return new Scissors();

case 1:
return new Paper();

case 2:
return new Rock();

}
}

}

class Compete {
public static Outcome match(Item a, Item b) {

System.out.print(a + " <--> " + b + " : ");
return a.compete(b);

Chapter 16: Design Patterns 1093

}
}

public class PaperScissorsRock {
public static void main(String args[]) {

ArrayList items = new ArrayList();
for(int i = 0; i < 40; i++)
items.add(ItemFactory.newItem());

for(int i = 0; i < items.size()/2; i++)
System.out.println(
Compete.match(

(Item)items.get(i),
(Item)items.get(i*2)));

}
} ///:~

Visitor, a type of multiple
dispatching
The assumption is that you have a primary class hierarchy that is
fixed; perhaps it’s from another vendor and you can’t make changes
to that hierarchy. However, you’d like to add new polymorphic
methods to that hierarchy, which means that normally you’d have
to add something to the base class interface. So the dilemma is that
you need to add methods to the base class, but you can’t touch the
base class. How do you get around this?

The design pattern that solves this kind of problem is called a
“visitor” (the final one in the Design Patterns book), and it builds
on the double dispatching scheme shown in the last section.

The visitor pattern allows you to extend the interface of the primary
type by creating a separate class hierarchy of type Visitor to
virtualize the operations performed upon the primary type. The
objects of the primary type simply “accept” the visitor, then call the
visitor’s dynamically-bound member function.

//: c16:BeeAndFlowers.java
// Demonstration of "visitor" pattern.

1094 Thinking in Java www.BruceEckel.com

import java.util.*;

interface Visitor {
void visit(Gladiolus g);
void visit(Renuculus r);
void visit(Chrysanthemum c);

}

// The Flower hierarchy cannot be changed:
interface Flower {
void accept(Visitor v);

}

class Gladiolus implements Flower {
public void accept(Visitor v) { v.visit(this);}

}

class Renuculus implements Flower {
public void accept(Visitor v) { v.visit(this);}

}

class Chrysanthemum implements Flower {
public void accept(Visitor v) { v.visit(this);}

}

// Add the ability to produce a string:
class StringVal implements Visitor {
String s;
public String toString() { return s; }
public void visit(Gladiolus g) {

s = "Gladiolus";
}
public void visit(Renuculus r) {

s = "Renuculus";
}
public void visit(Chrysanthemum c) {

s = "Chrysanthemum";
}

}

// Add the ability to do "Bee" activities:
class Bee implements Visitor {

Chapter 16: Design Patterns 1095

public void visit(Gladiolus g) {
System.out.println("Bee and Gladiolus");

}
public void visit(Renuculus r) {

System.out.println("Bee and Renuculus");
}
public void visit(Chrysanthemum c) {

System.out.println("Bee and Chrysanthemum");
}

}

class FlowerFactory {
public static Flower newFlower() {

switch((int)(Math.random() * 3)) {
default:
case 0: return new Gladiolus();
case 1: return new Renuculus();
case 2: return new Chrysanthemum();

}
}

}

public class BeeAndFlowers {
public static void main(String args[]) {

ArrayList flowers = new ArrayList();
for(int i = 0; i < 10; i++)
flowers.add(FlowerFactory.newFlower());

// It's almost as if I had added a function
// to produce a Flower string representation:
StringVal sval = new StringVal();
Iterator it = flowers.iterator();
while(it.hasNext()) {
((Flower)it.next()).accept(sval);
System.out.println(sval);

}
// Perform "Bee" operation on all Flowers:
Bee bee = new Bee();
it = flowers.iterator();
while(it.hasNext())
((Flower)it.next()).accept(bee);

}
} ///:~

1096 Thinking in Java www.BruceEckel.com

Pattern refactoring
The remainder of the chapter will look at the process of solving a
problem by applying design patterns in an evolutionary fashion.
That is, a first cut design will be used for the initial solution, and
then this solution will be examined and various design patterns will
be applied to the problem (some of which will work, and some of
which won’t). The key question that will always be asked in seeking
improved solutions is “what will change?”

This process is similar to what Martin Fowler talks about in his
book Refactoring: Improving the Design of Exsting Code4
(although he tends to talk about pieces of code more than pattern-
level designs). You start with a solution, and then when you
discover that it doesn’t continue to meet your needs, you fix it. Of
course, this is a natural tendency but in computer programming it’s
been extremely difficult to accomplish with procedural programs,
and the acceptance of the idea that we can refactor code and designs
adds to the body of proof that object-oriented programming is “a
good thing.”

Simulating the trash recycler
The nature of this problem is that the trash is thrown unclassified
into a single bin, so the specific type information is lost. But later,
the specific type information must be recovered to properly sort the
trash. In the initial solution, RTTI (described in Chapter 12) is used.

This is not a trivial design because it has an added constraint. That’s
what makes it interesting – it’s more like the messy problems you’re
likely to encounter in your work. The extra constraint is that the
trash arrives at the trash recycling plant all mixed together. The
program must model the sorting of that trash. This is where RTTI

4 Addison-Wesley, 1999.

Chapter 16: Design Patterns 1097

comes in: you have a bunch of anonymous pieces of trash, and the
program figures out exactly what type they are.

//: c16:recyclea:RecycleA.java
// Recycling with RTTI.
package c16.recyclea;
import java.util.*;
import java.io.*;

abstract class Trash {
private double weight;
Trash(double wt) { weight = wt; }
abstract double value();
double weight() { return weight; }
// Sums the value of Trash in a bin:
static void sumValue(ArrayList bin) {

Iterator e = bin.iterator();
double val = 0.0f;
while(e.hasNext()) {
// One kind of RTTI:
// A dynamically-checked cast
Trash t = (Trash)e.next();
// Polymorphism in action:
val += t.weight() * t.value();
System.out.println(
"weight of " +
// Using RTTI to get type
// information about the class:
t.getClass().getName() +
" = " + t.weight());

}
System.out.println("Total value = " + val);

}
}

class Aluminum extends Trash {
static double val = 1.67f;
Aluminum(double wt) { super(wt); }
double value() { return val; }
static void value(double newval) {

val = newval;
}

1098 Thinking in Java www.BruceEckel.com

}

class Paper extends Trash {
static double val = 0.10f;
Paper(double wt) { super(wt); }
double value() { return val; }
static void value(double newval) {

val = newval;
}

}

class Glass extends Trash {
static double val = 0.23f;
Glass(double wt) { super(wt); }
double value() { return val; }
static void value(double newval) {

val = newval;
}

}

public class RecycleA {
public static void main(String[] args) {

ArrayList bin = new ArrayList();
// Fill up the Trash bin:
for(int i = 0; i < 30; i++)
switch((int)(Math.random() * 3)) {
case 0 :

bin.add(new
Aluminum(Math.random() * 100));

break;
case 1 :

bin.add(new
Paper(Math.random() * 100));

break;
case 2 :

bin.add(new
Glass(Math.random() * 100));

}
ArrayList
glassBin = new ArrayList(),
paperBin = new ArrayList(),
alBin = new ArrayList();

Chapter 16: Design Patterns 1099

Iterator sorter = bin.iterator();
// Sort the Trash:
while(sorter.hasNext()) {
Object t = sorter.next();
// RTTI to show class membership:
if(t instanceof Aluminum)
alBin.add(t);

if(t instanceof Paper)
paperBin.add(t);

if(t instanceof Glass)
glassBin.add(t);

}
Trash.sumValue(alBin);
Trash.sumValue(paperBin);
Trash.sumValue(glassBin);
Trash.sumValue(bin);

}
} ///:~

The first thing you’ll notice is the package statement:

package c16.recyclea;

This means that in the source code listings available for the book,
this file will be placed in the subdirectory recyclea that branches
off from the subdirectory c16 (for Chapter 16). The unpacking tool
takes care of placing it into the correct subdirectory. The reason for
doing this is that this chapter rewrites this particular example a
number of times and by putting each version in its own package
the class names will not clash.

Several ArrayList objects are created to hold Trash handles. Of
course, ArrayLists actually hold Objects so they’ll hold anything
at all. The reason they hold Trash (or something derived from
Trash) is only because you’ve been careful to not put in anything
except Trash. If you do put something “wrong” into the
ArrayList, you won’t get any compile-time warnings or errors –
you’ll find out only via an exception at run-time.

When the Trash handles are added, they lose their specific
identities and become simply Object handles (they are upcast).
However, because of polymorphism the proper behavior still occurs

1100 Thinking in Java www.BruceEckel.com

when the dynamically-bound methods are called through the
Iterator sorter, once the resulting Object has been cast back to
Trash. sumValue() also uses an Iterator to perform operations
on every object in the ArrayList.

It looks silly to upcast the types of Trash into a collection holding
base type handles, and then turn around and downcast. Why not
just put the trash into the appropriate receptacle in the first place?
(Indeed, this is the whole enigma of recycling). In this program it
would be easy to repair, but sometimes a system’s structure and
flexibility can benefit greatly from downcasting.

The program satisfies the design requirements: it works. This might
be fine as long as it’s a one-shot solution. However, a useful
program tends to evolve over time, so you must ask, “What if the
situation changes?” For example, cardboard is now a valuable
recyclable commodity, so how will that be integrated into the
system (especially if the program is large and complicated). Since
the above type-check coding in the switch statement could be
scattered throughout the program, you must go find all that code
every time a new type is added, and if you miss one the compiler
won’t give you any help by pointing out an error.

The key to the misuse of RTTI here is that every type is tested. If
you’re looking for only a subset of types because that subset needs
special treatment, that’s probably fine. But if you’re hunting for
every type inside a switch statement, then you’re probably missing
an important point, and definitely making your code less
maintainable. In the next section we’ll look at how this program
evolved over several stages to become much more flexible. This
should prove a valuable example in program design.

Improving the design
The solutions in Design Patterns are organized around the question
“What will change as this program evolves?” This is usually the
most important question that you can ask about any design. If you
can build your system around the answer, the results will be two-
pronged: not only will your system allow easy (and inexpensive)

Chapter 16: Design Patterns 1101

maintenance, but you might also produce components that are
reusable, so that other systems can be built more cheaply. This is
the promise of object-oriented programming, but it doesn’t happen
automatically; it requires thought and insight on your part. In this
section we’ll see how this process can happen during the refinement
of a system.

The answer to the question “What will change?” for the recycling
system is a common one: more types will be added to the system.
The goal of the design, then, is to make this addition of types as
painless as possible. In the recycling program, we’d like to
encapsulate all places where specific type information is mentioned,
so (if for no other reason) any changes can be localized to those
encapsulations. It turns out that this process also cleans up the rest
of the code considerably.

“Make more objects”
This brings up a general object-oriented design principle that I first
heard spoken by Grady Booch: “If the design is too complicated,
make more objects.” This is simultaneously counterintuitive and
ludicrously simple, and yet it’s the most useful guideline I’ve found.
(You might observe that “making more objects” is often equivalent
to “add another level of indirection.”) In general, if you find a place
with messy code, consider what sort of class would clean that up.
Often the side effect of cleaning up the code will be a system that
has better structure and is more flexible.

Consider first the place where Trash objects are created, which is a
switch statement inside main():

for(int i = 0; i < 30; i++)
switch((int)(Math.random() * 3)) {
case 0 :

bin.add(new
Aluminum(Math.random() * 100));

break;
case 1 :

bin.add(new
Paper(Math.random() * 100));

1102 Thinking in Java www.BruceEckel.com

break;
case 2 :

bin.add(new
Glass(Math.random() * 100));

}

This is definitely messy, and also a place where you must change
code whenever a new type is added. If new types are commonly
added, a better solution is a single method that takes all of the
necessary information and produces a handle to an object of the
correct type, already upcast to a trash object. In Design Patterns
this is broadly referred to as a creational pattern (of which there
are several). The specific pattern that will be applied here is a
variant of the Factory Method. Here, the factory method is a static
member of Trash, but more commonly it is a method that is
overridden in the derived class.

The idea of the factory method is that you pass it the essential
information it needs to know to create your object, then stand back
and wait for the handle (already upcast to the base type) to pop out
as the return value. From then on, you treat the object
polymorphically. Thus, you never even need to know the exact type
of object that’s created. In fact, the factory method hides it from you
to prevent accidental misuse. If you want to use the object without
polymorphism, you must explicitly use RTTI and casting.

But there’s a little problem, especially when you use the more
complicated approach (not shown here) of making the factory
method in the base class and overriding it in the derived classes.
What if the information required in the derived class requires more
or different arguments? “Creating more objects” solves this
problem. To implement the factory method, the Trash class gets a
new method called factory. To hide the creational data, there’s a
new class called Info that contains all of the necessary information
for the factory method to create the appropriate Trash object.
Here’s a simple implementation of Info:

class Info {
int type;
// Must change this to add another type:
static final int MAX_NUM = 4;

Chapter 16: Design Patterns 1103

double data;
Info(int typeNum, double dat) {

type = typeNum % MAX_NUM;
data = dat;

}
}

An Info object’s only job is to hold information for the factory()
method. Now, if there’s a situation in which factory() needs more
or different information to create a new type of Trash object, the
factory() interface doesn’t need to be changed. The Info class can
be changed by adding new data and new constructors, or in the
more typical object-oriented fashion of subclassing.

The factory() method for this simple example looks like this:

static Trash factory(Info i) {
switch(i.type) {
default: // To quiet the compiler
case 0:
return new Aluminum(i.data);

case 1:
return new Paper(i.data);

case 2:
return new Glass(i.data);

// Two lines here:
case 3:
return new Cardboard(i.data);

}
}

Here, the determination of the exact type of object is simple, but
you can imagine a more complicated system in which factory()
uses an elaborate algorithm. The point is that it’s now hidden away
in one place, and you know to come to this place when you add new
types.

The creation of new objects is now much simpler in main():

for(int i = 0; i < 30; i++)
bin.add(
Trash.factory(

new Info(

1104 Thinking in Java www.BruceEckel.com

(int)(Math.random() * Info.MAX_NUM),
Math.random() * 100)));

An Info object is created to pass the data into factory(), which in
turn produces some kind of Trash object on the heap and returns
the handle that’s added to the ArrayList bin. Of course, if you
change the quantity and type of argument, this statement will still
need to be modified, but that can be eliminated if the creation of the
Info object is automated. For example, an ArrayList of arguments
can be passed into the constructor of an Info object (or directly into
a factory() call, for that matter). This requires that the arguments
be parsed and checked at runtime, but it does provide the greatest
flexibility.

You can see from this code what “vector of change” problem the
factory is responsible for solving: if you add new types to the system
(the change), the only code that must be modified is within the
factory, so the factory isolates the effect of that change.

A pattern for prototyping creation
A problem with the design above is that it still requires a central
location where all the types of the objects must be known: inside the
factory() method. If new types are regularly being added to the
system, the factory() method must be changed for each new type.
When you discover something like this, it is useful to try to go one
step further and move all of the information about the type –
including its creation – into the class representing that type. This
way, the only thing you need to do to add a new type to the system
is to inherit a single class.

To move the information concerning type creation into each specific
type of Trash, the “prototype” pattern (from the Design Patterns
book) will be used. The general idea is that you have a master
sequence of objects, one of each type you’re interested in making.
The objects in this sequence are used only for making new objects,
using an operation that’s not unlike the clone() scheme built into
Java’s root class Object. In this case, we’ll name the cloning
method tClone(). When you’re ready to make a new object,
presumably you have some sort of information that establishes the

Chapter 16: Design Patterns 1105

type of object you want to create, then you move through the master
sequence comparing your information with whatever appropriate
information is in the prototype objects in the master sequence.
When you find one that matches your needs, you clone it.

In this scheme there is no hard-coded information for creation.
Each object knows how to expose appropriate information and how
to clone itself. Thus, the factory() method doesn’t need to be
changed when a new type is added to the system.

One approach to the problem of prototyping is to add a number of
methods to support the creation of new objects. However, in Java
1.1 there’s already support for creating new objects if you have a
handle to the Class object. With Java 1.1 reflection (introduced in
Chapter 12) you can call a constructor even if you have only a
handle to the Class object. This is the perfect solution for the
prototyping problem.

The list of prototypes will be represented indirectly by a list of
handles to all the Class objects you want to create. In addition, if
the prototyping fails, the factory() method will assume that it’s
because a particular Class object wasn’t in the list, and it will
attempt to load it. By loading the prototypes dynamically like this,
the Trash class doesn’t need to know what types it is working with,
so it doesn’t need any modifications when you add new types. This
allows it to be easily reused throughout the rest of the chapter.

//: c16:trash:Trash.java
// Base class for Trash recycling examples.
package c16.trash;
import java.util.*;
import java.lang.reflect.*;

public abstract class Trash {
private double weight;
Trash(double wt) { weight = wt; }
Trash() {}
public abstract double value();
public double weight() { return weight; }
// Sums the value of Trash in a bin:
public static void sumValue(ArrayList bin) {

1106 Thinking in Java www.BruceEckel.com

Iterator e = bin.iterator();
double val = 0.0f;
while(e.hasNext()) {
// One kind of RTTI:
// A dynamically-checked cast
Trash t = (Trash)e.next();
val += t.weight() * t.value();
System.out.println(
"weight of " +
// Using RTTI to get type
// information about the class:
t.getClass().getName() +
" = " + t.weight());

}
System.out.println("Total value = " + val);

}
// Remainder of class provides support for
// prototyping:
public static class PrototypeNotFoundException

extends Exception {}
public static class CannotCreateTrashException

extends Exception {}
private static ArrayList trashTypes =

new ArrayList();
public static Trash factory(Info info)

throws PrototypeNotFoundException,
CannotCreateTrashException {

for(int i = 0; i < trashTypes.size(); i++) {
// Somehow determine the new type
// to create, and create one:
Class tc =
(Class)trashTypes.get(i);

if (tc.getName().indexOf(info.id) != -1) {
try {

// Get the dynamic constructor method
// that takes a double argument:
Constructor ctor =
tc.getConstructor(

new Class[] {double.class});
// Call the constructor to create a
// new object:
return (Trash)ctor.newInstance(

Chapter 16: Design Patterns 1107

new Object[]{new Double(info.data)});
} catch(Exception ex) {

ex.printStackTrace();
throw new CannotCreateTrashException();

}
}

}
// Class was not in the list. Try to load it,
// but it must be in your class path!
try {
System.out.println("Loading " + info.id);
trashTypes.add(
Class.forName(info.id));

} catch(Exception e) {
e.printStackTrace();
throw new PrototypeNotFoundException();

}
// Loaded successfully. Recursive call
// should work this time:
return factory(info);

}
public static class Info {

public String id;
public double data;
public Info(String name, double data) {
id = name;
this.data = data;

}
}

} ///:~

The basic Trash class and sumValue() remain as before. The rest
of the class supports the prototyping pattern. You first see two inner
classes (which are made static, so they are inner classes only for
code organization purposes) describing exceptions that can occur.
This is followed by an ArrayList called trashTypes, which is used
to hold the Class handles.

In Trash.factory(), the String inside the Info object id (a
different version of the Info class than that of the prior discussion)
contains the type name of the Trash to be created; this String is
compared to the Class names in the list. If there’s a match, then

1108 Thinking in Java www.BruceEckel.com

that’s the object to create. Of course, there are many ways to
determine what object you want to make. This one is used so that
information read in from a file can be turned into objects.

Once you’ve discovered which kind of Trash to create, then the
reflection methods come into play. The getConstructor() method
takes an argument that’s an array of Class handles. This array
represents the arguments, in their proper order, for the constructor
that you’re looking for. Here, the array is dynamically created using
the Java 1.1 array-creation syntax:

new Class[] {double.class}

This code assumes that every Trash type has a constructor that
takes a double (and notice that double.class is distinct from
Double.class). It’s also possible, for a more flexible solution, to
call getConstructors(), which returns an array of the possible
constructors.

What comes back from getConstructor() is a handle to a
Constructor object (part of java.lang.reflect). You call the
constructor dynamically with the method newInstance(), which
takes an array of Object containing the actual arguments. This
array is again created using the Java 1.1 syntax:

new Object[]{new Double(info.data)}

In this case, however, the double must be placed inside a wrapper
class so that it can be part of this array of objects. The process of
calling newInstance() extracts the double, but you can see it is a
bit confusing – an argument might be a double or a Double, but
when you make the call you must always pass in a Double.
Fortunately, this issue exists only for the primitive types.

Once you understand how to do it, the process of creating a new
object given only a Class handle is remarkably simple. Reflection
also allows you to call methods in this same dynamic fashion.

Of course, the appropriate Class handle might not be in the
trashTypes list. In this case, the return in the inner loop is never
executed and you’ll drop out at the end. Here, the program tries to
rectify the situation by loading the Class object dynamically and

Chapter 16: Design Patterns 1109

adding it to the trashTypes list. If it still can’t be found something
is really wrong, but if the load is successful then the factory
method is called recursively to try again.

As you’ll see, the beauty of this design is that this code doesn’t need
to be changed, regardless of the different situations it will be used in
(assuming that all Trash subclasses contain a constructor that
takes a single double argument).

Trash subclasses
To fit into the prototyping scheme, the only thing that’s required of
each new subclass of Trash is that it contain a constructor that
takes a double argument. Java 1.1 reflection handles everything
else.

Here are the different types of Trash, each in their own file but part
of the Trash package (again, to facilitate reuse within the chapter):

//: c16:trash:Aluminum.java
// The Aluminum class with prototyping.
package c16.trash;

public class Aluminum extends Trash {
private static double val = 1.67f;
public Aluminum(double wt) { super(wt); }
public double value() { return val; }
public static void value(double newVal) {

val = newVal;
}

} ///:~

//: c16:trash:Paper.java
// The Paper class with prototyping.
package c16.trash;

public class Paper extends Trash {
private static double val = 0.10f;
public Paper(double wt) { super(wt); }
public double value() { return val; }
public static void value(double newVal) {

val = newVal;

1110 Thinking in Java www.BruceEckel.com

}
} ///:~

//: c16:trash:Glass.java
// The Glass class with prototyping.
package c16.trash;

public class Glass extends Trash {
private static double val = 0.23f;
public Glass(double wt) { super(wt); }
public double value() { return val; }
public static void value(double newVal) {

val = newVal;
}

} ///:~

And here’s a new type of Trash:

//: c16:trash:Cardboard.java
// The Cardboard class with prototyping.
package c16.trash;

public class Cardboard extends Trash {
private static double val = 0.23f;
public Cardboard(double wt) { super(wt); }
public double value() { return val; }
public static void value(double newVal) {

val = newVal;
}

} ///:~

You can see that, other than the constructor, there’s nothing special
about any of these classes.

Parsing Trash from an external file
The information about Trash objects will be read from an outside
file. The file has all of the necessary information about each piece of
trash on a single line in the form Trash:weight, such as:

//:! c16:trash:Trash.dat
c16.trash.Glass:54
c16.trash.Paper:22

Chapter 16: Design Patterns 1111

c16.trash.Paper:11
c16.trash.Glass:17
c16.trash.Aluminum:89
c16.trash.Paper:88
c16.trash.Aluminum:76
c16.trash.Cardboard:96
c16.trash.Aluminum:25
c16.trash.Aluminum:34
c16.trash.Glass:11
c16.trash.Glass:68
c16.trash.Glass:43
c16.trash.Aluminum:27
c16.trash.Cardboard:44
c16.trash.Aluminum:18
c16.trash.Paper:91
c16.trash.Glass:63
c16.trash.Glass:50
c16.trash.Glass:80
c16.trash.Aluminum:81
c16.trash.Cardboard:12
c16.trash.Glass:12
c16.trash.Glass:54
c16.trash.Aluminum:36
c16.trash.Aluminum:93
c16.trash.Glass:93
c16.trash.Paper:80
c16.trash.Glass:36
c16.trash.Glass:12
c16.trash.Glass:60
c16.trash.Paper:66
c16.trash.Aluminum:36
c16.trash.Cardboard:22
///:~

Note that the class path must be included when giving the class
names, otherwise the class will not be found.

To parse this, the line is read and the String method indexOf()
produces the index of the ‘:’. This is first used with the String
method substring() to extract the name of the trash type, and
next to get the weight that is turned into a double with the static

1112 Thinking in Java www.BruceEckel.com

Double.valueOf() method. The trim() method removes white
space at both ends of a string.

The Trash parser is placed in a separate file since it will be reused
throughout this chapter:

//: c16:trash:ParseTrash.java
// Open a file and parse its contents into
// Trash objects, placing each into an ArrayList.
package c16.trash;
import java.util.*;
import java.io.*;

public class ParseTrash {
public static void
fillBin(String filename, Fillable bin) {

try {
BufferedReader data =
new BufferedReader(

new FileReader(filename));
String buf;
while((buf = data.readLine())!= null) {
String type = buf.substring(0,

buf.indexOf(':')).trim();
double weight = Double.valueOf(

buf.substring(buf.indexOf(':') + 1)
.trim()).doubleValue();

bin.addTrash(
Trash.factory(
new Trash.Info(type, weight)));

}
data.close();

} catch(IOException e) {
e.printStackTrace();

} catch(Exception e) {
e.printStackTrace();

}
}
// Special case to handle ArrayList:
public static void
fillBin(String filename, ArrayList bin) {

fillBin(filename, new FillableArrayList(bin));

Chapter 16: Design Patterns 1113

}
} ///:~

In RecycleA.java, an ArrayList was used to hold the Trash
objects. However, other types of collections can be used as well. To
allow for this, the first version of fillBin() takes a handle to a
Fillable, which is simply an interface that supports a method
called addTrash():

//: c16:trash:Fillable.java
// Any object that can be filled with Trash.
package c16.trash;

public interface Fillable {
void addTrash(Trash t);

} ///:~

Anything that supports this interface can be used with fillBin. Of
course, ArrayList doesn’t implement Fillable, so it won’t work.
Since ArrayList is used in most of the examples, it makes sense to
add a second overloaded fillBin() method that takes an
ArrayList. The ArrayList can be used as a Fillable object using
an adapter class:

//: c16:trash:FillableArrayList.java
// Adapter that makes an ArrayList Fillable.
package c16.trash;
import java.util.*;

public class FillableArrayList
implements Fillable {
private ArrayList v;
public FillableArrayList(ArrayList vv) { v = vv;

}
public void addTrash(Trash t) {

v.add(t);
}

} ///:~

You can see that the only job of this class is to connect Fillable’s
addTrash() method to ArrayList’s add(). With this class in

1114 Thinking in Java www.BruceEckel.com

hand, the overloaded fillBin() method can be used with an
ArrayList in ParseTrash.java:

public static void
fillBin(String filename, ArrayList bin) {

fillBin(filename, new FillableArrayList(bin));
}

This approach works for any collection class that’s used frequently.
Alternatively, the collection class can provide its own adapter that
implements Fillable. (You’ll see this later, in DynaTrash.java.)

Recycling with prototyping
Now you can see the revised version of RecycleA.java using the
prototyping technique:

//: c16:recycleap:RecycleAP.java
// Recycling with RTTI and Prototypes.
package c16.recycleap;
import c16.trash.*;
import java.util.*;

public class RecycleAP {
public static void main(String[] args) {

ArrayList bin = new ArrayList();
// Fill up the Trash bin:
ParseTrash.fillBin("Trash.dat", bin);
ArrayList
glassBin = new ArrayList(),
paperBin = new ArrayList(),
alBin = new ArrayList();

Iterator sorter = bin.iterator();
// Sort the Trash:
while(sorter.hasNext()) {
Object t = sorter.next();
// RTTI to show class membership:
if(t instanceof Aluminum)
alBin.add(t);

if(t instanceof Paper)
paperBin.add(t);

if(t instanceof Glass)

Chapter 16: Design Patterns 1115

glassBin.add(t);
}
Trash.sumValue(alBin);
Trash.sumValue(paperBin);
Trash.sumValue(glassBin);
Trash.sumValue(bin);

}
} ///:~

All of the Trash objects, as well as the ParseTrash and support
classes, are now part of the package c16.trash so they are simply
imported.

The process of opening the data file containing Trash descriptions
and the parsing of that file have been wrapped into the static
method ParseTrash.fillBin(), so now it’s no longer a part of our
design focus. You will see that throughout the rest of the chapter, no
matter what new classes are added, ParseTrash.fillBin() will
continue to work without change, which indicates a good design.

In terms of object creation, this design does indeed severely localize
the changes you need to make to add a new type to the system.
However, there’s a significant problem in the use of RTTI that
shows up clearly here. The program seems to run fine, and yet it
never detects any cardboard, even though there is cardboard in the
list! This happens because of the use of RTTI, which looks for only
the types that you tell it to look for. The clue that RTTI is being
misused is that every type in the system is being tested, rather than
a single type or subset of types. As you will see later, there are ways
to use polymorphism instead when you’re testing for every type. But
if you use RTTI a lot in this fashion, and you add a new type to your
system, you can easily forget to make the necessary changes in your
program and produce a difficult-to-find bug. So it’s worth trying to
eliminate RTTI in this case, not just for aesthetic reasons – it
produces more maintainable code.

Abstracting usage
With creation out of the way, it’s time to tackle the remainder of the
design: where the classes are used. Since it’s the act of sorting into

1116 Thinking in Java www.BruceEckel.com

bins that’s particularly ugly and exposed, why not take that process
and hide it inside a class? This is the principle of “If you must do
something ugly, at least localize the ugliness inside a class.” It looks
like this:

TrashSorter
Aluminum ArrayList

Paper ArrayList

Glass ArrayList

ArrayList of
Trash Bins

The TrashSorter object initialization must now be changed
whenever a new type of Trash is added to the model. You could
imagine that the TrashSorter class might look something like
this:

class TrashSorter extends ArrayList {
void sort(Trash t) { /* ... */ }

}

That is, TrashSorter is an ArrayList of handles to ArrayLists of
Trash handles, and with add() you can install another one, like
so:

TrashSorter ts = new TrashSorter();
ts.add(new ArrayList());

Now, however, sort() becomes a problem. How does the statically-
coded method deal with the fact that a new type has been added? To
solve this, the type information must be removed from sort() so
that all it needs to do is call a generic method that takes care of the
details of type. This, of course, is another way to describe a
dynamically-bound method. So sort() will simply move through
the sequence and call a dynamically-bound method for each
ArrayList. Since the job of this method is to grab the pieces of
trash it is interested in, it’s called grab(Trash). The structure now
looks like:

Chapter 16: Design Patterns 1117

boolean grab(Trash)

Aluminum ArrayList

boolean grab(Trash)

Paper ArrayList

boolean grab(Trash)

Glass ArrayList

TrashSorter

ArrayList of
Trash Bins

TrashSorter needs to call each grab() method and get a different
result depending on what type of Trash the current ArrayList is
holding. That is, each ArrayList must be aware of the type it holds.
The classic approach to this problem is to create a base “Trash bin”
class and inherit a new derived class for each different type you
want to hold. If Java had a parameterized type mechanism that
would probably be the most straightforward approach. But rather
than hand-coding all the classes that such a mechanism should be
building for us, further observation can produce a better approach.

A basic OOP design principle is “Use data members for variation in
state, use polymorphism for variation in behavior.” Your first
thought might be that the grab() method certainly behaves
differently for an ArrayList that holds Paper than for one that
holds Glass. But what it does is strictly dependent on the type, and
nothing else. This could be interpreted as a different state, and since
Java has a class to represent type (Class) this can be used to
determine the type of Trash a particular Tbin will hold.

The constructor for this Tbin requires that you hand it the Class of
your choice. This tells the ArrayList what type it is supposed to
hold. Then the grab() method uses Class BinType and RTTI to
see if the Trash object you’ve handed it matches the type it’s
supposed to grab.

Here is the whole program. The commented numbers (e.g. (*1*))
mark sections that will be described following the code.

1118 Thinking in Java www.BruceEckel.com

//: c16:recycleb:RecycleB.java
// Adding more objects to the recycling problem.
package c16.recycleb;
import c16.trash.*;
import java.util.*;

// A vector that admits only the right type:
class Tbin extends ArrayList {
Class binType;
Tbin(Class binType) {

this.binType = binType;
}
boolean grab(Trash t) {

// Comparing class types:
if(t.getClass().equals(binType)) {
add(t);
return true; // Object grabbed

}
return false; // Object not grabbed

}
}

class TbinList extends ArrayList { //(*1*)
boolean sort(Trash t) {

Iterator e = iterator();
while(e.hasNext()) {
Tbin bin = (Tbin)e.next();
if(bin.grab(t)) return true;

}
return false; // bin not found for t

}
void sortBin(Tbin bin) { // (*2*)

Iterator e = bin.iterator();
while(e.hasNext())
if(!sort((Trash)e.next()))
System.out.println("Bin not found");

}
}

public class RecycleB {
static Tbin bin = new Tbin(Trash.class);
public static void main(String[] args) {

Chapter 16: Design Patterns 1119

// Fill up the Trash bin:
ParseTrash.fillBin("Trash.dat", bin);

TbinList trashBins = new TbinList();
trashBins.add(
new Tbin(Aluminum.class));

trashBins.add(
new Tbin(Paper.class));

trashBins.add(
new Tbin(Glass.class));

// add one line here: (*3*)
trashBins.add(
new Tbin(Cardboard.class));

trashBins.sortBin(bin); // (*4*)

Iterator e = trashBins.iterator();
while(e.hasNext()) {
Tbin b = (Tbin)e.next();
Trash.sumValue(b);

}
Trash.sumValue(bin);

}
} ///:~

1. TbinList holds a set of Tbin handles, so that sort() can
iterate through the Tbins when it’s looking for a match for
the Trash object you’ve handed it.

2. sortBin() allows you to pass an entire Tbin in, and it
moves through the Tbin, picks out each piece of Trash, and
sorts it into the appropriate specific Tbin. Notice the
genericity of this code: it doesn’t change at all if new types
are added. If the bulk of your code doesn’t need changing
when a new type is added (or some other change occurs)
then you have an easily-extensible system.

3. Now you can see how easy it is to add a new type. Few lines
must be changed to support the addition. If it’s really
important, you can squeeze out even more by further
manipulating the design.

1120 Thinking in Java www.BruceEckel.com

4. One method call causes the contents of bin to be sorted into
the respective specifically-typed bins.

Multiple dispatching
The above design is certainly satisfactory. Adding new types to the
system consists of adding or modifying distinct classes without
causing code changes to be propagated throughout the system. In
addition, RTTI is not “misused” as it was in RecycleA.java.
However, it’s possible to go one step further and take a purist
viewpoint about RTTI and say that it should be eliminated
altogether from the operation of sorting the trash into bins.

To accomplish this, you must first take the perspective that all type-
dependent activities – such as detecting the type of a piece of trash
and putting it into the appropriate bin – should be controlled
through polymorphism and dynamic binding.

The previous examples first sorted by type, then acted on sequences
of elements that were all of a particular type. But whenever you find
yourself picking out particular types, stop and think. The whole idea
of polymorphism (dynamically-bound method calls) is to handle
type-specific information for you. So why are you hunting for types?

The answer is something you probably don’t think about: Java
performs only single dispatching. That is, if you are performing an
operation on more than one object whose type is unknown, Java
will invoke the dynamic binding mechanism on only one of those
types. This doesn’t solve the problem, so you end up detecting some
types manually and effectively producing your own dynamic
binding behavior.

The solution is called multiple dispatching, which means setting up
a configuration such that a single method call produces more than
one dynamic method call and thus determines more than one type
in the process. To get this effect, you need to work with more than
one type hierarchy: you’ll need a type hierarchy for each dispatch.
The following example works with two hierarchies: the existing
Trash family and a hierarchy of the types of trash bins that the

Chapter 16: Design Patterns 1121

trash will be placed into. This second hierarchy isn’t always obvious
and in this case it needed to be created in order to produce multiple
dispatching (in this case there will be only two dispatches, which is
referred to as double dispatching).

Implementing the double dispatch
Remember that polymorphism can occur only via method calls, so if
you want double dispatching to occur, there must be two method
calls: one used to determine the type within each hierarchy. In the
Trash hierarchy there will be a new method called addToBin(),
which takes an argument of an array of TypedBin. It uses this
array to step through and try to add itself to the appropriate bin,
and this is where you’ll see the double dispatch.

Trash

addToBin(TypedBin[])

Aluminum

addToBin(TypedBin[])

Paper

addToBin(TypedBin[])

Glass

addToBin(TypedBin[])

Cardboard

addToBin(TypedBin[])

TypedBin

add(Aluminum)
add(Paper)
add(Glass)
add(Cardboard)

AluminumBin

add(Aluminum)

PaperBin

add(Paper)

GlassBin

add(Glass)

CardboardBin

add(Cardboard)

The new hierarchy is TypedBin, and it contains its own method
called add() that is also used polymorphically. But here’s an
additional twist: add() is overloaded to take arguments of the
different types of trash. So an essential part of the double
dispatching scheme also involves overloading.

1122 Thinking in Java www.BruceEckel.com

Redesigning the program produces a dilemma: it’s now necessary
for the base class Trash to contain an addToBin() method. One
approach is to copy all of the code and change the base class.
Another approach, which you can take when you don’t have control
of the source code, is to put the addToBin() method into an
interface, leave Trash alone, and inherit new specific types of
Aluminum, Paper, Glass, and Cardboard. This is the approach
that will be taken here.

Most of the classes in this design must be public, so they are placed
in their own files. Here’s the interface:

//: c16:doubledispatch:TypedBinMember.java
// An interface for adding the double dispatching
// method to the trash hierarchy without
// modifying the original hierarchy.
package c16.doubledispatch;

interface TypedBinMember {
// The new method:
boolean addToBin(TypedBin[] tb);

} ///:~

In each particular subtype of Aluminum, Paper, Glass, and
Cardboard, the addToBin() method in the interface
TypedBinMember is implemented,, but it looks like the code is
exactly the same in each case:

//: c16:doubledispatch:DDAluminum.java
// Aluminum for double dispatching.
package c16.doubledispatch;
import c16.trash.*;

public class DDAluminum extends Aluminum
implements TypedBinMember {

public DDAluminum(double wt) { super(wt); }
public boolean addToBin(TypedBin[] tb) {

for(int i = 0; i < tb.length; i++)
if(tb[i].add(this))
return true;

return false;
}

Chapter 16: Design Patterns 1123

} ///:~

//: c16:doubledispatch:DDPaper.java
// Paper for double dispatching.
package c16.doubledispatch;
import c16.trash.*;

public class DDPaper extends Paper
implements TypedBinMember {

public DDPaper(double wt) { super(wt); }
public boolean addToBin(TypedBin[] tb) {

for(int i = 0; i < tb.length; i++)
if(tb[i].add(this))
return true;

return false;
}

} ///:~

//: c16:doubledispatch:DDGlass.java
// Glass for double dispatching.
package c16.doubledispatch;
import c16.trash.*;

public class DDGlass extends Glass
implements TypedBinMember {

public DDGlass(double wt) { super(wt); }
public boolean addToBin(TypedBin[] tb) {

for(int i = 0; i < tb.length; i++)
if(tb[i].add(this))
return true;

return false;
}

} ///:~

//: c16:doubledispatch:DDCardboard.java
// Cardboard for double dispatching.
package c16.doubledispatch;
import c16.trash.*;

public class DDCardboard extends Cardboard
implements TypedBinMember {

public DDCardboard(double wt) { super(wt); }
public boolean addToBin(TypedBin[] tb) {

1124 Thinking in Java www.BruceEckel.com

for(int i = 0; i < tb.length; i++)
if(tb[i].add(this))
return true;

return false;
}

} ///:~

The code in each addToBin() calls add() for each TypedBin
object in the array. But notice the argument: this. The type of this
is different for each subclass of Trash, so the code is different.
(Although this code will benefit if a parameterized type mechanism
is ever added to Java.) So this is the first part of the double
dispatch, because once you’re inside this method you know you’re
Aluminum, or Paper, etc. During the call to add(), this
information is passed via the type of this. The compiler resolves the
call to the proper overloaded version of add(). But since tb[i]
produces a handle to the base type TypedBin, this call will end up
calling a different method depending on the type of TypedBin
that’s currently selected. That is the second dispatch.

Here’s the base class for TypedBin:

//: c16:doubledispatch:TypedBin.java
// An ArrayList that can grab the right type.
package c16.doubledispatch;
import c16.trash.*;
import java.util.*;

public abstract class TypedBin {
ArrayList v = new ArrayList();
protected boolean addIt(Trash t) {

v.add(t);
return true;

}
public Iterator elements() {

return v.iterator();
}
public boolean add(DDAluminum a) {

return false;
}
public boolean add(DDPaper a) {

return false;

Chapter 16: Design Patterns 1125

}
public boolean add(DDGlass a) {

return false;
}
public boolean add(DDCardboard a) {

return false;
}

} ///:~

You can see that the overloaded add() methods all return false. If
the method is not overloaded in a derived class, it will continue to
return false, and the caller (addToBin(), in this case) will assume
that the current Trash object has not been added successfully to a
collection, and continue searching for the right collection.

In each of the subclasses of TypedBin, only one overloaded
method is overridden, according to the type of bin that’s being
created. For example, CardboardBin overrides
add(DDCardboard). The overridden method adds the trash
object to its collection and returns true, while all the rest of the
add() methods in CardboardBin continue to return false, since
they haven’t been overridden. This is another case in which a
parameterized type mechanism in Java would allow automatic
generation of code. (With C++ templates, you wouldn’t have to
explicitly write the subclasses or place the addToBin() method in
Trash.)

Since for this example the trash types have been customized and
placed in a different directory, you’ll need a different trash data file
to make it work. Here’s a possible DDTrash.dat:

//:! c16:DDTrash.dat
c16.DoubleDispatch.DDGlass:54
c16.DoubleDispatch.DDPaper:22
c16.DoubleDispatch.DDPaper:11
c16.DoubleDispatch.DDGlass:17
c16.DoubleDispatch.DDAluminum:89
c16.DoubleDispatch.DDPaper:88
c16.DoubleDispatch.DDAluminum:76
c16.DoubleDispatch.DDCardboard:96
c16.DoubleDispatch.DDAluminum:25
c16.DoubleDispatch.DDAluminum:34

1126 Thinking in Java www.BruceEckel.com

c16.DoubleDispatch.DDGlass:11
c16.DoubleDispatch.DDGlass:68
c16.DoubleDispatch.DDGlass:43
c16.DoubleDispatch.DDAluminum:27
c16.DoubleDispatch.DDCardboard:44
c16.DoubleDispatch.DDAluminum:18
c16.DoubleDispatch.DDPaper:91
c16.DoubleDispatch.DDGlass:63
c16.DoubleDispatch.DDGlass:50
c16.DoubleDispatch.DDGlass:80
c16.DoubleDispatch.DDAluminum:81
c16.DoubleDispatch.DDCardboard:12
c16.DoubleDispatch.DDGlass:12
c16.DoubleDispatch.DDGlass:54
c16.DoubleDispatch.DDAluminum:36
c16.DoubleDispatch.DDAluminum:93
c16.DoubleDispatch.DDGlass:93
c16.DoubleDispatch.DDPaper:80
c16.DoubleDispatch.DDGlass:36
c16.DoubleDispatch.DDGlass:12
c16.DoubleDispatch.DDGlass:60
c16.DoubleDispatch.DDPaper:66
c16.DoubleDispatch.DDAluminum:36
c16.DoubleDispatch.DDCardboard:22
///:~

Here’s the rest of the program:

//: c16:doubledispatch:DoubleDispatch.java
// Using multiple dispatching to handle more
// than one unknown type during a method call.
package c16.doubledispatch;
import c16.trash.*;
import java.util.*;

class AluminumBin extends TypedBin {
public boolean add(DDAluminum a) {

return addIt(a);
}

}

class PaperBin extends TypedBin {

Chapter 16: Design Patterns 1127

public boolean add(DDPaper a) {
return addIt(a);

}
}

class GlassBin extends TypedBin {
public boolean add(DDGlass a) {

return addIt(a);
}

}

class CardboardBin extends TypedBin {
public boolean add(DDCardboard a) {

return addIt(a);
}

}

class TrashBinSet {
private TypedBin[] binSet = {

new AluminumBin(),
new PaperBin(),
new GlassBin(),
new CardboardBin()

};
public void sortIntoBins(ArrayList bin) {

Iterator e = bin.iterator();
while(e.hasNext()) {
TypedBinMember t =
(TypedBinMember)e.next();

if(!t.addToBin(binSet))
System.err.println("Couldn't add " + t);

}
}
public TypedBin[] binSet() { return binSet; }

}

public class DoubleDispatch {
public static void main(String[] args) {

ArrayList bin = new ArrayList();
TrashBinSet bins = new TrashBinSet();
// ParseTrash still works, without changes:
ParseTrash.fillBin("DDTrash.dat", bin);

1128 Thinking in Java www.BruceEckel.com

// Sort from the master bin into the
// individually-typed bins:
bins.sortIntoBins(bin);
TypedBin[] tb = bins.binSet();
// Perform sumValue for each bin...
for(int i = 0; i < tb.length; i++)
Trash.sumValue(tb[i].v);

// ... and for the master bin
Trash.sumValue(bin);

}
} ///:~

TrashBinSet encapsulates all of the different types of TypedBins,
along with the sortIntoBins() method, which is where all the
double dispatching takes place. You can see that once the structure
is set up, sorting into the various TypedBins is remarkably easy. In
addition, the efficiency of two dynamic method calls is probably
better than any other way you could sort.

Notice the ease of use of this system in main(), as well as the
complete independence of any specific type information within
main(). All other methods that talk only to the Trash base-class
interface will be equally invulnerable to changes in Trash types.

The changes necessary to add a new type are relatively isolated: you
inherit the new type of Trash with its addToBin() method, then
you inherit a new TypedBin (this is really just a copy and simple
edit), and finally you add a new type into the aggregate initialization
for TrashBinSet.

The Visitor pattern
Now consider applying a design pattern with an entirely different
goal to the trash-sorting problem.

For this pattern, we are no longer concerned with optimizing the
addition of new types of Trash to the system. Indeed, this pattern
makes adding a new type of Trash more complicated. The
assumption is that you have a primary class hierarchy that is fixed;
perhaps it’s from another vendor and you can’t make changes to

Chapter 16: Design Patterns 1129

that hierarchy. However, you’d like to add new polymorphic
methods to that hierarchy, which means that normally you’d have
to add something to the base class interface. So the dilemma is that
you need to add methods to the base class, but you can’t touch the
base class. How do you get around this?

The design pattern that solves this kind of problem is called a
“visitor” (the final one in the Design Patterns book), and it builds
on the double dispatching scheme shown in the last section.

The visitor pattern allows you to extend the interface of the primary
type by creating a separate class hierarchy of type Visitor to
virtualize the operations performed upon the primary type. The
objects of the primary type simply “accept” the visitor, then call the
visitor’s dynamically-bound method. It looks like this:

1130 Thinking in Java www.BruceEckel.com

Trash

accept(Visitor)

Aluminum

accept(Visitor v) {
 v.visit(this);
}

Visitor

visit(Aluminum)
visit(Paper)
visit(Glass)

PriceVisitor

visit(Aluminum) {
 // Perform Aluminum-
 // specific work
}
visit(Paper) {
 // Perform Paper-
 // specific work
}
visit(Glass) {
 // Perform Glass-
 // specific work
}

Paper

accept(Visitor v) {
 v.visit(this);
}

Glass

accept(Visitor v) {
 v.visit(this);
}

Etc.WeightVisitor

visit(Aluminum) {
 // Perform Aluminum-
 // specific work
}
visit(Paper) {
 // Perform Paper-
 // specific work
}
visit(Glass) {
 // Perform Glass-
 // specific work
}

Now, if v is a Visitable handle to an Aluminum object, the code:

PriceVisitor pv = new PriceVisitor();
v.accept(pv);

causes two polymorphic method calls: the first one to select
Aluminum’s version of accept(), and the second one within

Chapter 16: Design Patterns 1131

accept() when the specific version of visit() is called dynamically
using the base-class Visitor handle v.

This configuration means that new functionality can be added to the
system in the form of new subclasses of Visitor. The Trash
hierarchy doesn’t need to be touched. This is the prime benefit of
the visitor pattern: you can add new polymorphic functionality to a
class hierarchy without touching that hierarchy (once the accept()
methods have been installed). Note that the benefit is helpful here
but not exactly what we started out to accomplish, so at first blush
you might decide that this isn’t the desired solution.

But look at one thing that’s been accomplished: the visitor solution
avoids sorting from the master Trash sequence into individual
typed sequences. Thus, you can leave everything in the single
master sequence and simply pass through that sequence using the
appropriate visitor to accomplish the goal. Although this behavior
seems to be a side effect of visitor, it does give us what we want
(avoiding RTTI).

The double dispatching in the visitor pattern takes care of
determining both the type of Trash and the type of Visitor. In the
following example, there are two implementations of Visitor:
PriceVisitor to both determine and sum the price, and
WeightVisitor to keep track of the weights.

You can see all of this implemented in the new, improved version of
the recycling program. As with DoubleDispatch.java, the Trash
class is left alone and a new interface is created to add the accept()
method:

//: c16:trashvisitor:Visitable.java
// An interface to add visitor functionality to
// the Trash hierarchy without modifying the
// base class.
package c16.trashvisitor;
import c16.trash.*;

interface Visitable {
// The new method:
void accept(Visitor v);

1132 Thinking in Java www.BruceEckel.com

} ///:~

The subtypes of Aluminum, Paper, Glass, and Cardboard
implement the accept() method:

//: c16:trashvisitor:VAluminum.java
// Aluminum for the visitor pattern.
package c16.trashvisitor;
import c16.trash.*;

public class VAluminum extends Aluminum
implements Visitable {

public VAluminum(double wt) { super(wt); }
public void accept(Visitor v) {

v.visit(this);
}

} ///:~

//: c16:trashvisitor:VPaper.java
// Paper for the visitor pattern.
package c16.trashvisitor;
import c16.trash.*;

public class VPaper extends Paper
implements Visitable {

public VPaper(double wt) { super(wt); }
public void accept(Visitor v) {

v.visit(this);
}

} ///:~

//: c16:trashvisitor:VGlass.java
// Glass for the visitor pattern.
package c16.trashvisitor;
import c16.trash.*;

public class VGlass extends Glass
implements Visitable {

public VGlass(double wt) { super(wt); }
public void accept(Visitor v) {

v.visit(this);
}

} ///:~

Chapter 16: Design Patterns 1133

//: c16:trashvisitor:VCardboard.java
// Cardboard for the visitor pattern.
package c16.trashvisitor;
import c16.trash.*;

public class VCardboard extends Cardboard
implements Visitable {

public VCardboard(double wt) { super(wt); }
public void accept(Visitor v) {

v.visit(this);
}

} ///:~

Since there’s nothing concrete in the Visitor base class, it can be
created as an interface:

//: c16:trashvisitor:Visitor.java
// The base interface for visitors.
package c16.trashvisitor;
import c16.trash.*;

interface Visitor {
void visit(VAluminum a);
void visit(VPaper p);
void visit(VGlass g);
void visit(VCardboard c);

} ///:~

Once again custom Trash types have been created in a different
subdirectory. The new Trash data file is VTrash.dat and looks
like this:

//:! c16:trashvisitor:VTrash.dat
c16.TrashVisitor.VGlass:54
c16.TrashVisitor.VPaper:22
c16.TrashVisitor.VPaper:11
c16.TrashVisitor.VGlass:17
c16.TrashVisitor.VAluminum:89
c16.TrashVisitor.VPaper:88
c16.TrashVisitor.VAluminum:76
c16.TrashVisitor.VCardboard:96
c16.TrashVisitor.VAluminum:25

1134 Thinking in Java www.BruceEckel.com

c16.TrashVisitor.VAluminum:34
c16.TrashVisitor.VGlass:11
c16.TrashVisitor.VGlass:68
c16.TrashVisitor.VGlass:43
c16.TrashVisitor.VAluminum:27
c16.TrashVisitor.VCardboard:44
c16.TrashVisitor.VAluminum:18
c16.TrashVisitor.VPaper:91
c16.TrashVisitor.VGlass:63
c16.TrashVisitor.VGlass:50
c16.TrashVisitor.VGlass:80
c16.TrashVisitor.VAluminum:81
c16.TrashVisitor.VCardboard:12
c16.TrashVisitor.VGlass:12
c16.TrashVisitor.VGlass:54
c16.TrashVisitor.VAluminum:36
c16.TrashVisitor.VAluminum:93
c16.TrashVisitor.VGlass:93
c16.TrashVisitor.VPaper:80
c16.TrashVisitor.VGlass:36
c16.TrashVisitor.VGlass:12
c16.TrashVisitor.VGlass:60
c16.TrashVisitor.VPaper:66
c16.TrashVisitor.VAluminum:36
c16.TrashVisitor.VCardboard:22
///:~

The rest of the program creates specific Visitor types and sends
them through a single list of Trash objects:

//: c16:trashvisitor:TrashVisitor.java
// The "visitor" pattern.
package c16.trashvisitor;
import c16.trash.*;
import java.util.*;

// Specific group of algorithms packaged
// in each implementation of Visitor:
class PriceVisitor implements Visitor {
private double alSum; // Aluminum
private double pSum; // Paper
private double gSum; // Glass

Chapter 16: Design Patterns 1135

private double cSum; // Cardboard
public void visit(VAluminum al) {

double v = al.weight() * al.value();
System.out.println(
"value of Aluminum= " + v);

alSum += v;
}
public void visit(VPaper p) {

double v = p.weight() * p.value();
System.out.println(
"value of Paper= " + v);

pSum += v;
}
public void visit(VGlass g) {

double v = g.weight() * g.value();
System.out.println(
"value of Glass= " + v);

gSum += v;
}
public void visit(VCardboard c) {

double v = c.weight() * c.value();
System.out.println(
"value of Cardboard = " + v);

cSum += v;
}
void total() {

System.out.println(
"Total Aluminum: $" + alSum + "\n" +
"Total Paper: $" + pSum + "\n" +
"Total Glass: $" + gSum + "\n" +
"Total Cardboard: $" + cSum);

}
}

class WeightVisitor implements Visitor {
private double alSum; // Aluminum
private double pSum; // Paper
private double gSum; // Glass
private double cSum; // Cardboard
public void visit(VAluminum al) {

alSum += al.weight();
System.out.println("weight of Aluminum = "

1136 Thinking in Java www.BruceEckel.com

+ al.weight());
}
public void visit(VPaper p) {

pSum += p.weight();
System.out.println("weight of Paper = "

+ p.weight());
}
public void visit(VGlass g) {

gSum += g.weight();
System.out.println("weight of Glass = "

+ g.weight());
}
public void visit(VCardboard c) {

cSum += c.weight();
System.out.println("weight of Cardboard = "

+ c.weight());
}
void total() {

System.out.println("Total weight Aluminum:"
+ alSum);

System.out.println("Total weight Paper:"
+ pSum);

System.out.println("Total weight Glass:"
+ gSum);

System.out.println("Total weight Cardboard:"
+ cSum);

}
}

public class TrashVisitor {
public static void main(String[] args) {

ArrayList bin = new ArrayList();
// ParseTrash still works, without changes:
ParseTrash.fillBin("VTrash.dat", bin);
// You could even iterate through
// a list of visitors!
PriceVisitor pv = new PriceVisitor();
WeightVisitor wv = new WeightVisitor();
Iterator it = bin.iterator();
while(it.hasNext()) {
Visitable v = (Visitable)it.next();
v.accept(pv);

Chapter 16: Design Patterns 1137

v.accept(wv);
}
pv.total();
wv.total();

}
} ///:~

Note that the shape of main() has changed again. Now there’s only
a single Trash bin. The two Visitor objects are accepted into every
element in the sequence, and they perform their operations. The
visitors keep their own internal data to tally the total weights and
prices.

Finally, there’s no run-time type identification other than the
inevitable cast to Trash when pulling things out of the sequence.
This, too, could be eliminated with the implementation of
parameterized types in Java.

One way you can distinguish this solution from the double
dispatching solution described previously is to note that, in the
double dispatching solution, only one of the overloaded methods,
add(), was overridden when each subclass was created, while here
each one of the overloaded visit() methods is overridden in every
subclass of Visitor.

More coupling?
There’s a lot more code here, and there’s definite coupling between
the Trash hierarchy and the Visitor hierarchy. However, there’s
also high cohesion within the respective sets of classes: they each do
only one thing (Trash describes Trash, while Visitor describes
actions performed on Trash), which is an indicator of a good
design. Of course, in this case it works well only if you’re adding
new Visitors, but it gets in the way when you add new types of
Trash.

Low coupling between classes and high cohesion within a class is
definitely an important design goal. Applied mindlessly, though, it
can prevent you from achieving a more elegant design. It seems that
some classes inevitably have a certain intimacy with each other.
These often occur in pairs that could perhaps be called couplets, for

1138 Thinking in Java www.BruceEckel.com

example, collections and iterators. The Trash-Visitor pair above
appears to be another such couplet.

RTTI considered harmful?
Various designs in this chapter attempt to remove RTTI, which
might give you the impression that it’s “considered harmful” (the
condemnation used for poor, ill-fated goto, which was thus never
put into Java). This isn’t true; it is the misuse of RTTI that is the
problem. The reason our designs removed RTTI is because the
misapplication of that feature prevented extensibility, while the
stated goal was to be able to add a new type to the system with as
little impact on surrounding code as possible. Since RTTI is often
misused by having it look for every single type in your system, it
causes code to be non-extensible: when you add a new type, you
have to go hunting for all the code in which RTTI is used, and if you
miss any you won’t get help from the compiler.

However, RTTI doesn’t automatically create non-extensible code.
Let’s revisit the trash recycler once more. This time, a new tool will
be introduced, which I call a TypeMap. It contains a HashMap
that holds ArrayLists, but the interface is simple: you can add() a
new object, and you can get() an ArrayList containing all the
objects of a particular type. The keys for the contained HashMap
are the types in the associated ArrayList. The beauty of this design
(suggested by Larry O’Brien) is that the TypeMap dynamically
adds a new pair whenever it encounters a new type, so whenever
you add a new type to the system (even if you add the new type at
run-time), it adapts.

Our example will again build on the structure of the Trash types in
package c16.Trash (and the Trash.dat file used there can be
used here without change):

//: c16:dynatrash:DynaTrash.java
// Using a HashMap of ArrayLists and RTTI
// to automatically sort trash into
// vectors. This solution, despite the
// use of RTTI, is extensible.

Chapter 16: Design Patterns 1139

package c16.dynatrash;
import c16.trash.*;
import java.util.*;

// Generic TypeMap works in any situation:
class TypeMap {
private HashMap t = new HashMap();
public void add(Object o) {

Class type = o.getClass();
if(t.containsKey(type))
((ArrayList)t.get(type)).add(o);

else {
ArrayList v = new ArrayList();
v.add(o);
t.put(type,v);

}
}
public ArrayList get(Class type) {

return (ArrayList)t.get(type);
}
public Iterator keys() {

return t.keySet().iterator();
}

}

// Adapter class to allow
// callbacks from ParseTrash.fillBin():
class TypeMapAdapter implements Fillable {
TypeMap map;
public TypeMapAdapter(TypeMap tm) { map = tm; }
public void addTrash(Trash t) { map.add(t); }

}

public class DynaTrash {
public static void main(String[] args) {

TypeMap bin = new TypeMap();
ParseTrash.fillBin("Trash.dat",
new TypeMapAdapter(bin));

Iterator keys = bin.keys();
while(keys.hasNext())
Trash.sumValue(
bin.get((Class)keys.next()));

1140 Thinking in Java www.BruceEckel.com

}
} ///:~

Although powerful, the definition for TypeMap is simple. It
contains a HashMap, and the add() method does most of the
work. When you add() a new object, the handle for the Class
object for that type is extracted. This is used as a key to determine
whether an ArrayList holding objects of that type is already
present in the HashMap. If so, that ArrayList is extracted and
the object is added to the ArrayList. If not, the Class object and a
new ArrayList are added as a key-value pair.

You can get an Iterator of all the Class objects from keys(), and
use each Class object to fetch the corresponding ArrayList with
get(). And that’s all there is to it.

The filler() method is interesting because it takes advantage of the
design of ParseTrash.fillBin(), which doesn’t just try to fill an
ArrayList but instead anything that implements the Fillable
interface with its addTrash() method. All filler() needs to do is
to return a handle to an interface that implements Fillable, and
then this handle can be used as an argument to fillBin() like this:

ParseTrash.fillBin("Trash.dat", bin.filler());

To produce this handle, an anonymous inner class (described in
Chapter 8) is used. You never need a named class to implement
Fillable, you just need a handle to an object of that class, thus this
is an appropriate use of anonymous inner classes.

An interesting thing about this design is that even though it wasn’t
created to handle the sorting, fillBin() is performing a sort every
time it inserts a Trash object into bin.

Much of class DynaTrash should be familiar from the previous
examples. This time, instead of placing the new Trash objects into
a bin of type ArrayList, the bin is of type TypeMap, so when the
trash is thrown into bin it’s immediately sorted by TypeMap’s
internal sorting mechanism. Stepping through the TypeMap and
operating on each individual ArrayList becomes a simple matter:

Iterator keys = bin.keys();

Chapter 16: Design Patterns 1141

while(keys.hasNext())
Trash.sumValue(
bin.get((Class)keys.next()));

As you can see, adding a new type to the system won’t affect this
code at all, nor the code in TypeMap. This is certainly the smallest
solution to the problem, and arguably the most elegant as well. It
does rely heavily on RTTI, but notice that each key-value pair in the
HashMap is looking for only one type. In addition, there’s no way
you can “forget” to add the proper code to this system when you add
a new type, since there isn’t any code you need to add.

Summary
Coming up with a design such as TrashVisitor.java that contains
a larger amount of code than the earlier designs can seem at first to
be counterproductive. It pays to notice what you’re trying to
accomplish with various designs. Design patterns in general strive
to separate the things that change from the things that stay the
same. The “things that change” can refer to many different kinds of
changes. Perhaps the change occurs because the program is placed
into a new environment or because something in the current
environment changes (this could be: “The user wants to add a new
shape to the diagram currently on the screen”). Or, as in this case,
the change could be the evolution of the code body. While previous
versions of the trash-sorting example emphasized the addition of
new types of Trash to the system, TrashVisitor.java allows you
to easily add new functionality without disturbing the Trash
hierarchy. There’s more code in TrashVisitor.java, but adding
new functionality to Visitor is cheap. If this is something that
happens a lot, then it’s worth the extra effort and code to make it
happen more easily.

The discovery of the vector of change is no trivial matter; it’s not
something that an analyst can usually detect before the program
sees its initial design. The necessary information will probably not
appear until later phases in the project: sometimes only at the
design or implementation phases do you discover a deeper or more
subtle need in your system. In the case of adding new types (which

1142 Thinking in Java www.BruceEckel.com

was the focus of most of the “recycle” examples) you might realize
that you need a particular inheritance hierarchy only when you are
in the maintenance phase and you begin extending the system!

One of the most important things that you’ll learn by studying
design patterns seems to be an about-face from what has been
promoted so far in this book. That is: “OOP is all about
polymorphism.” This statement can produce the “two-year-old with
a hammer” syndrome (everything looks like a nail). Put another
way, it’s hard enough to “get” polymorphism, and once you do, you
try to cast all your designs into that one particular mold.

What design patterns say is that OOP isn’t just about
polymorphism. It’s about “separating the things that change from
the things that stay the same.” Polymorphism is an especially
important way to do this, and it turns out to be helpful if the
programming language directly supports polymorphism (so you
don’t have to wire it in yourself, which would tend to make it
prohibitively expensive). But design patterns in general show other
ways to accomplish the basic goal, and once your eyes have been
opened to this you will begin to search for more creative designs.

Since the Design Patterns book came out and made such an impact,
people have been searching for other patterns. You can expect to see
more of these appear as time goes on. Here are some sites
recommended by Jim Coplien, of C++ fame (http://www.bell-
labs.com/~cope), who is one of the main proponents of the patterns
movement:

http://st-www.cs.uiuc.edu/users/patterns
http://c2.com/cgi/wiki
http://c2.com/ppr
http://www.bell-
labs.com/people/cope/Patterns/Process/index.html
http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns
http://st-www.cs.uiuc.edu/cgi-bin/wikic/wikic
http://www.cs.wustl.edu/~schmidt/patterns.html
http://www.espinc.com/patterns/overview.html

Chapter 16: Design Patterns 1143

Also note there has been a yearly conference on design patterns,
called PLOP, that produces a published proceedings, the third of
which came out in late 1997 (all published by Addison-Wesley).

Exercises
1. SingletonPattern.java always creates an object, even if it’s

never used. Modify this program to use lazy evaluation, so the
singleton object is only created the first time that it is needed.

2. Using SingletonPattern.java as a starting point, create a
class that manages a fixed number of its own objects. Assume
the objects are database connections and you only have a
license to use a fixed quantity of these at any one time.

3. Create a simple copy-on write implementation.

4. Create a minimal Observer-Observable design in two classes.
Just create the bare minimum in the two classes, then
demonstrate your design by creating one Observable and
many Observers, and cause the Observable to update the
Observers.

5. Add a class Triangle to ShapeFactory1.java

6. Add a class Triangle to ShapeFactory2.java

7. Add a new type of GameEnvironment called
GnomesAndFairies to GameEnvironment.java

8. Modify ShapeFactory2.java so that it uses an Abstract
Factory to create different sets of shapes (for example, one
particular type of factory object creates “thick shapes,”
another creates “thin shapes,” but each factory object can
create all the shapes: circles, squares, triangles etc.).

9. Add a class Plastic to TrashVisitor.java.

10. Add a class Plastic to DynaTrash.java.

1144 Thinking in Java www.BruceEckel.com

11. Modify BoxObserver.java to turn it into a simple game. If
any of the squares surrounding the one you clicked is part of a
contiguous patch of the same color, then all the squares in that
patch are changed to your new color. You can configure the
game for competition between players or to keep track of the
number of clicks that a single player uses to turn the field into
a single color. You may also want to restrict a player’s color to
the first one that was chosen.

12. Create a business-modeling environment with three types of
Inhabitant: Dwarf (for engineers), Elf (for marketers) and
Troll (for managers). Now create a class called Project that
creates the different inhabitants and causes them to
interact() with each other using multiple dispatching.

13. Modify the above example to make the interactions more
detailed. Each Inhabitant can randomly produce a Weapon
using getWeapon(): a Dwarf uses Jargon or Play, an Elf
uses InventFeature or SellImaginaryProduct, and a
Troll uses Edict and Schedule. You must decide which
weapons “win” and “lose” in each interaction (as in
PaperScissorsRock.java). Add a battle() member
function to Project that takes two Inhabitants and matches
them against each other. Now create a meeting() member
function for Project that creates groups of Dwarf, Elf and
Manager and battles the groups against each other until only
members of one group are left standing. These are the
“winners.”

14. Implement Chain of Responsibility to create an “expert
system” that solves problems by successively trying one
solution after another until one matches. You should be able
to dynamically add solutions to the expert system. The test for
solution should just be a string match, but when a solution
fits, the expert system should return the appropriate type of
problemSolver object. What other pattern/patterns show up
here?

 1145

A: Passing &
Returning
Objects

By now you should be reasonably comfortable with the
idea that when you’re “passing” an object, you’re actually
passing a handle.

In many programming languages you can use that language’s
“regular” way to pass objects around and most of the time
everything works fine. But it always seems that there comes a point
at which you must do something irregular and suddenly things get a
bit more complicated (or in the case of C++, quite complicated).
Java is no exception, and it’s important that you understand exactly
what’s happening as you pass objects around and manipulate them.
This appendix will provide that insight.

Another way to pose the question of this appendix, if you’re coming
from a programming language so equipped, is “Does Java have
pointers?” Some have claimed that pointers are hard and dangerous
and therefore bad, and since Java is all goodness and light and will
lift your earthly programming burdens, it cannot possibly contain
such things. However, it’s more accurate to say that Java has
pointers; indeed, every object identifier in Java (except for
primitives) is one of these pointers, but their use is restricted and
guarded not only by the compiler but by the run-time system. Or to
put in another way, Java has pointers, but no pointer arithmetic.
These are what I’ve been calling “handles,” and you can think of
them as “safety pointers,” not unlike the safety scissors of
elementary school – they aren’t sharp so you cannot hurt yourself
without great effort, but they can sometimes be slow and tedious.

1146 Thinking in Java www.BruceEckel.com

Passing handles around
When you pass a handle into a method, you’re still pointing to the
same object. A simple experiment demonstrates this:

//: appendixa:PassHandles.java
// Passing handles around.

public class PassHandles {
static void f(PassHandles h) {

System.out.println("h inside f(): " + h);
}
public static void main(String[] args) {

PassHandles p = new PassHandles();
System.out.println("p inside main(): " + p);
f(p);

}
} ///:~

The method toString() is automatically invoked in the print
statements, and PassHandles inherits directly from Object with
no redefinition of toString(). Thus, Object’s version of
toString() is used, which prints out the class of the object
followed by the address where that object is located (not the handle,
but the actual object storage). The output looks like this:

p inside main(): PassHandles@1653748
h inside f(): PassHandles@1653748

You can see that both p and h refer to the same object. This is far
more efficient than duplicating a new PassHandles object just so
that you can send an argument to a method. But it brings up an
important issue.

Aliasing
Aliasing means that more than one handle is tied to the same object,
as in the above example. The problem with aliasing occurs when
someone writes to that object. If the owners of the other handles
aren’t expecting that object to change, they’ll be surprised. This can
be demonstrated with a simple example:

Appendix A: Passing & Returning Objects 1147

//: appendixa:Alias1.java
// Aliasing two handles to one object.

public class Alias1 {
int i;
Alias1(int ii) { i = ii; }
public static void main(String[] args) {

Alias1 x = new Alias1(7);
Alias1 y = x; // Assign the handle
System.out.println("x: " + x.i);
System.out.println("y: " + y.i);
System.out.println("Incrementing x");
x.i++;
System.out.println("x: " + x.i);
System.out.println("y: " + y.i);

}
} ///:~

In the line:

Alias1 y = x; // Assign the handle

a new Alias1 handle is created, but instead of being assigned to a
fresh object created with new, it’s assigned to an existing handle.
So the contents of handle x, which is the address of the object x is
pointing to, is assigned to y, and thus both x and y are attached to
the same object. So when x’s i is incremented in the statement:

x.i++;

y’s i will be affected as well. This can be seen in the output:

x: 7
y: 7
Incrementing x
x: 8
y: 8

One good solution in this case is to simply not do it: don’t
consciously alias more than one handle to an object at the same
scope. Your code will be much easier to understand and debug.
However, when you’re passing a handle in as an argument – which
is the way Java is supposed to work – you automatically alias

1148 Thinking in Java www.BruceEckel.com

because the local handle that’s created can modify the “outside
object” (the object that was created outside the scope of the
method). Here’s an example:

//: appendixa:Alias2.java
// Method calls implicitly alias their
// arguments.

public class Alias2 {
int i;
Alias2(int ii) { i = ii; }
static void f(Alias2 handle) {

handle.i++;
}
public static void main(String[] args) {

Alias2 x = new Alias2(7);
System.out.println("x: " + x.i);
System.out.println("Calling f(x)");
f(x);
System.out.println("x: " + x.i);

}
} ///:~

The output is:

x: 7
Calling f(x)
x: 8

The method is changing its argument, the outside object. When this
kind of situation arises, you must decide whether it makes sense,
whether the user expects it, and whether it’s going to cause
problems.

In general, you call a method in order to produce a return value
and/or a change of state in the object that the method is called for.
(A method is how you “send a message” to that object.) It’s much
less common to call a method in order to manipulate its arguments;
this is referred to as “calling a method for its side effects.” Thus,
when you create a method that modifies its arguments the user
must be clearly instructed and warned about the use of that method

Appendix A: Passing & Returning Objects 1149

and its potential surprises. Because of the confusion and pitfalls, it’s
much better to avoid changing the argument.

If you need to modify an argument during a method call and you
don’t intend to modify the outside argument, then you should
protect that argument by making a copy inside your method. That’s
the subject of much of this appendix.

Making local copies
To review: all argument passing in Java is performed by passing
handles. That is, when you pass “an object,” you’re really passing
only a handle to an object that lives outside the method, so if you
perform any modifications with that handle, you modify the outside
object. In addition:

♦ Aliasing happens automatically during argument passing.

♦ There are no local objects, only local handles.

♦ Handles have scopes, objects do not.

♦ Object lifetime is never an issue in Java.

♦ There is no language support (e.g. ‘const’) to prevent objects
from being modified (that is, to prevent the negative effects
of aliasing).

If you’re only reading information from an object and not modifying
it, passing a handle is the most efficient form of argument passing.
This is nice; the default way of doing things is also the most
efficient. However, sometimes it’s necessary to be able to treat the
object as if it were “local” so that changes you make affect only a
local copy and do not modify the outside object. Many
programming languages support the ability to automatically make a

1150 Thinking in Java www.BruceEckel.com

local copy of the outside object, inside the method1. Java does not,
but it allows you to produce this effect.

Pass by value
This brings up the terminology issue, which always seems good for
an argument. The term is “pass by value,” and the meaning depends
on how you perceive the operation of the program. The general
meaning is that you get a local copy of whatever you’re passing, but
the real question is how you think about what you’re passing. When
it comes to the meaning of “pass by value,” there are two fairly
distinct camps:

1. Java passes everything by value. When you’re passing
primitives into a method, you get a distinct copy of the
primitive. When you’re passing a handle into a method, you
get a copy of the handle. Ergo, everything is pass by value. Of
course, the assumption is that you’re always thinking (and
caring) that handles are being passed, but it seems like the
Java design has gone a long way toward allowing you to
ignore (most of the time) that you’re working with a handle.
That is, it seems to allow you to think of the handle as “the
object,” since it implicitly dereferences it whenever you make
a method call.

2. Java passes primitives by value (no argument there), but
objects are passed by reference. This is the world view that
the handle is an alias for the object, so you don’t think about
passing handles, but instead say “I’m passing the object.”
Since you don’t get a local copy of the object when you pass it
into a method, objects are clearly not passed by value. There
appears to be some support for this view within Sun, since
one of the “reserved but not implemented” keywords was
byvalue. (There’s no knowing, however, whether that
keyword will ever see the light of day.)

1 In C, which generally handles small bits of data, the default is pass-by-value. C++ had to
follow this form, but with objects pass-by-value isn’t usually the most efficient way. In
addition, coding classes to support pass-by-value in C++ is a big headache.

Appendix A: Passing & Returning Objects 1151

Having given both camps a good airing and after saying “It depends
on how you think of a handle,” I will attempt to sidestep the issue
for the rest of the book. In the end, it isn’t that important – what is
important is that you understand that passing a handle allows the
caller’s object to be changed unexpectedly.

Cloning objects
The most likely reason for making a local copy of an object is if
you’re going to modify that object and you don’t want to modify the
caller’s object. If you decide that you want to make a local copy, you
simply use the clone() method to perform the operation. This is a
method that’s defined as protected in the base class Object and
which you must override as public in any derived classes that you
want to clone. For example, the standard library class ArrayList
overrides clone(), so we can call clone() for ArrayList:

//: appendixa:Cloning.java
// The clone() operation works for only a few
// items in the standard Java library.
import java.util.*;

class Int {
private int i;
public Int(int ii) { i = ii; }
public void increment() { i++; }
public String toString() {

return Integer.toString(i);
}

}

public class Cloning {
public static void main(String[] args) {

ArrayList v = new ArrayList();
for(int i = 0; i < 10; i++)
v.add(new Int(i));

System.out.println("v: " + v);
ArrayList v2 = (ArrayList)v.clone();
// Increment all v2's elements:
for(Iterator e = v2.iterator();

e.hasNext();)

1152 Thinking in Java www.BruceEckel.com

((Int)e.next()).increment();
// See if it changed v's elements:
System.out.println("v: " + v);

}
} ///:~

The clone() method produces an Object, which must then be
recast to the proper type. This example shows how ArrayList’s
clone() method does not automatically try to clone each of the
objects that the ArrayList contains – the old ArrayList and the
cloned ArrayList are aliased to the same objects. This is often
called a shallow copy, since it’s copying only the “surface” portion
of an object. The actual object consists of this “surface” plus all the
objects that the handles are pointing to, plus all the objects those
objects are pointing to, etc. This is often referred to as the “web of
objects.” Copying the entire mess is called a deep copy.

You can see the effect of the shallow copy in the output, where the
actions performed on v2 affect v:

v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
v: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Not trying to clone() the objects contained in the ArrayList is
probably a fair assumption because there’s no guarantee that those
objects are cloneable2.

Adding cloneability to a class
Even though the clone method is defined in the base-of-all-classes
Object, cloning is not automatically available in every class3. This

2 This is not the dictionary spelling of the word, but it’s what is used in the Java library, so
I’ve used it here, too, in some hopes of reducing confusion.

3 You can apparently create a simple counter-example to this statement, like this:

public class Cloneit implements Cloneable {

public static void main (String[] args)

throws CloneNotSupportedException {

Cloneit a = new Cloneit();

Cloneit b = (Cloneit)a.clone();

Appendix A: Passing & Returning Objects 1153

would seem to be counterintuitive to the idea that base-class
methods are always available in derived classes. Cloning in Java
goes against this idea; if you want it to exist for a class, you must
specifically add code to make cloning work.

Using a trick with protected
To prevent default clonability in every class you create, the clone()
method is protected in the base class Object. Not only does this
mean that it’s not available by default to the client programmer who
is simply using the class (not subclassing it), but it also means that
you cannot call clone() via a handle to the base class. (Although
that might seem to be useful in some situations, such as to
polymorphically clone a bunch of Objects.) It is in effect a way to
give you, at compile time, the information that your object is not
cloneable – and oddly enough most classes in the standard Java
library are not cloneable. Thus, if you say:

Integer x = new Integer(1);
x = x.clone();

You will get, at compile time, an error message that says clone() is
not accessible (since Integer doesn’t override it and it defaults to
the protected version).

If, however, you’re in a class derived from Object (as all classes
are), then you have permission to call Object.clone() because it’s
protected and you’re an inheritor. The base class clone() has
useful functionality – it performs the actual bitwise duplication of
the derived-class object, thus acting as the common cloning
operation. However, you then need to make your clone operation
public for it to be accessible. So two key issues when you clone are:

• Virtually always call super.clone()

}

}

However, this only works because main() is a method of Cloneit and thus has
permission to call the protected base-class method clone(). If you call it from a
different class, it won’t compile.

1154 Thinking in Java www.BruceEckel.com

• Make your clone public

You’ll probably want to override clone() in any further derived
classes, otherwise your (now public) clone() will be used, and
that might not do the right thing (although, since Object.clone()
makes a copy of the actual object, it might). The protected trick
works only once, the first time you inherit from a class that has no
clonability and you want to make a class that’s cloneable. In any
classes inherited from your class the clone() method is available
since it’s not possible in Java to reduce the access of a method
during derivation. That is, once a class is cloneable, everything
derived from it is cloneable unless you use provided mechanisms
(described later) to “turn off” cloning.

Implementing the Cloneable interface
There’s one more thing you need to do to complete the clonability of
an object: implement the Cloneable interface. This interface is
a bit strange because it’s empty!

interface Cloneable {}

The reason for implementing this empty interface is obviously not
because you are going to upcast to Cloneable and call one of its
methods. The use of interface here is considered by some to be a
“hack” because it’s using a feature for something other than its
original intent. Implementing the Cloneable interface acts as a
kind of a flag, wired into the type of the class.

There are two reasons for the existence of the Cloneable
interface. First, you might have an upcast handle to a base type
and not know whether it’s possible to clone that object. In this case,
you can use the instanceof keyword (described in Chapter 12) to
find out whether the handle is connected to an object that can be
cloned:

if(myHandle instanceof Cloneable) // ...

The second reason is that mixed into this design for clonability was
the thought that maybe you didn’t want all types of objects to be
clonable. So Object.clone() verifies that a class implements the
Cloneable interface. If not, it throws a

Appendix A: Passing & Returning Objects 1155

CloneNotSupportedException exception. So in general, you’re
forced to implement Cloneable as part of support for cloning.

Successful cloning
Once you understand the details of implementing the clone()
method, you’re able to create classes that can be easily duplicated to
provide a local copy:

//: appendixa:LocalCopy.java
// Creating local copies with clone().
import java.util.*;

class MyObject implements Cloneable {
int i;
MyObject(int ii) { i = ii; }
public Object clone() {

Object o = null;
try {
o = super.clone();

} catch (CloneNotSupportedException e) {
System.out.println("MyObject can't clone");

}
return o;

}
public String toString() {

return Integer.toString(i);
}

}

public class LocalCopy {
static MyObject g(MyObject v) {

// Passing a handle, modifies outside object:
v.i++;
return v;

}
static MyObject f(MyObject v) {

v = (MyObject)v.clone(); // Local copy
v.i++;
return v;

}

1156 Thinking in Java www.BruceEckel.com

public static void main(String[] args) {
MyObject a = new MyObject(11);
MyObject b = g(a);
// Testing handle equivalence,
// not object equivalence:
if(a == b)
System.out.println("a == b");

else
System.out.println("a != b");

System.out.println("a = " + a);
System.out.println("b = " + b);
MyObject c = new MyObject(47);
MyObject d = f(c);
if(c == d)
System.out.println("c == d");

else
System.out.println("c != d");

System.out.println("c = " + c);
System.out.println("d = " + d);

}
} ///:~

First of all, clone() must be accessible so you must make it
public. Second, for the initial part of your clone() operation you
should call the base-class version of clone(). The clone() that’s
being called here is the one that’s predefined inside Object, and
you can call it because it’s protected and thereby accessible in
derived classes.

Object.clone() figures out how big the object is, creates enough
memory for a new one, and copies all the bits from the old to the
new. This is called a bitwise copy, and is typically what you’d expect
a clone() method to do. But before Object.clone() performs its
operations, it first checks to see if a class is Cloneable, that is,
whether it implements the Cloneable interface. If it doesn’t,
Object.clone() throws a CloneNotSupportedException to
indicate that you can’t clone it. Thus, you’ve got to surround your
call to super.clone() with a try-catch block, to catch an exception
that should never happen (because you’ve implemented the
Cloneable interface).

Appendix A: Passing & Returning Objects 1157

In LocalCopy, the two methods g() and f() demonstrate the
difference between the two approaches for argument passing. g()
shows passing by reference in which it modifies the outside object
and returns a reference to that outside object, while f() clones the
argument, thereby decoupling it and leaving the original object
alone. It can then proceed to do whatever it wants, and even to
return a handle to this new object without any ill effects to the
original. Notice the somewhat curious-looking statement:

v = (MyObject)v.clone();

This is where the local copy is created. To prevent confusion by such
a statement, remember that this rather strange coding idiom is
perfectly feasible in Java because every object identifier is actually a
handle. So the handle v is used to clone() a copy of what it refers
to, and this returns a handle to the base type Object (because it’s
defined that way in Object.clone()) that must then be cast to the
proper type.

In main(), the difference between the effects of the two different
argument-passing approaches in the two different methods is
tested. The output is:

a == b
a = 12
b = 12
c != d
c = 47
d = 48

It’s important to notice that the equivalence tests in Java do not
look inside the objects being compared to see if their values are the
same. The == and != operators are simply comparing the handles.
If the addresses inside the handles are the same, the handles are
pointing to the same object and are therefore “equal.” So what the
operators are really testing is whether the handles are aliased to the
same object!

1158 Thinking in Java www.BruceEckel.com

The effect of Object.clone()
What actually happens when Object.clone() is called that makes
it so essential to call super.clone() when you override clone() in
your class? The clone() method in the root class is responsible for
creating the correct amount of storage and making the bitwise copy
of the bits from the original object into the new object’s storage.
That is, it doesn’t just make storage and copy an Object – it
actually figures out the size of the precise object that’s being copied
and duplicates that. Since all this is happening from the code in the
clone() method defined in the root class (that has no idea what’s
being inherited from it), you can guess that the process involves
RTTI to determine the actual object that’s being cloned. This way,
the clone() method can create the proper amount of storage and
do the correct bitcopy for that type.

Whatever you do, the first part of the cloning process should
normally be a call to super.clone(). This establishes the
groundwork for the cloning operation by making an exact duplicate.
At this point you can perform other operations necessary to
complete the cloning.

To know for sure what those other operations are, you need to
understand exactly what Object.clone() buys you. In particular,
does it automatically clone the destination of all the handles? The
following example tests this:

//: appendixa:Snake.java
// Tests cloning to see if destination of
// handles are also cloned.

public class Snake implements Cloneable {
private Snake next;
private char c;
// Value of i == number of segments
Snake(int i, char x) {

c = x;
if(--i > 0)
next = new Snake(i, (char)(x + 1));

}
void increment() {

Appendix A: Passing & Returning Objects 1159

c++;
if(next != null)
next.increment();

}
public String toString() {

String s = ":" + c;
if(next != null)
s += next.toString();

return s;
}
public Object clone() {

Object o = null;
try {
o = super.clone();

} catch (CloneNotSupportedException e) {}
return o;

}
public static void main(String[] args) {

Snake s = new Snake(5, 'a');
System.out.println("s = " + s);
Snake s2 = (Snake)s.clone();
System.out.println("s2 = " + s2);
s.increment();
System.out.println(
"after s.increment, s2 = " + s2);

}
} ///:~

A Snake is made up of a bunch of segments, each of type Snake.
Thus, it’s a singly-linked list. The segments are created recursively,
decrementing the first constructor argument for each segment until
zero is reached. To give each segment a unique tag, the second
argument, a char, is incremented for each recursive constructor
call.

The increment() method recursively increments each tag so you
can see the change, and the toString() recursively prints each tag.
The output is:

s = :a:b:c:d:e
s2 = :a:b:c:d:e
after s.increment, s2 = :a:c:d:e:f

1160 Thinking in Java www.BruceEckel.com

This means that only the first segment is duplicated by
Object.clone(), therefore it does a shallow copy. If you want the
whole snake to be duplicated – a deep copy – you must perform the
additional operations inside your overridden clone().

You’ll typically call super.clone() in any class derived from a
cloneable class to make sure that all of the base-class operations
(including Object.clone()) take place. This is followed by an
explicit call to clone() for every handle in your object; otherwise
those handles will be aliased to those of the original object. It’s
analogous to the way constructors are called – base-class
constructor first, then the next-derived constructor, and so on to
the most-derived constructor. The difference is that clone() is not
a constructor so there’s nothing to make it happen automatically.
You must make sure to do it yourself.

Cloning a composed object
There’s a problem you’ll encounter when trying to deep copy a
composed object. You must assume that the clone() method in the
member objects will in turn perform a deep copy on their handles,
and so on. This is quite a commitment. It effectively means that for
a deep copy to work you must either control all of the code in all of
the classes, or at least have enough knowledge about all of the
classes involved in the deep copy to know that they are performing
their own deep copy correctly.

This example shows what you must do to accomplish a deep copy
when dealing with a composed object:

//: appendixa:DeepCopy.java
// Cloning a composed object.

class DepthReading implements Cloneable {
private double depth;
public DepthReading(double depth) {

this.depth = depth;
}
public Object clone() {

Object o = null;

Appendix A: Passing & Returning Objects 1161

try {
o = super.clone();

} catch (CloneNotSupportedException e) {
e.printStackTrace();

}
return o;

}
}

class TemperatureReading implements Cloneable {
private long time;
private double temperature;
public TemperatureReading(double temperature) {

time = System.currentTimeMillis();
this.temperature = temperature;

}
public Object clone() {

Object o = null;
try {
o = super.clone();

} catch (CloneNotSupportedException e) {
e.printStackTrace();

}
return o;

}
}

class OceanReading implements Cloneable {
private DepthReading depth;
private TemperatureReading temperature;
public OceanReading(double tdata, double ddata){

temperature = new TemperatureReading(tdata);
depth = new DepthReading(ddata);

}
public Object clone() {

OceanReading o = null;
try {
o = (OceanReading)super.clone();

} catch (CloneNotSupportedException e) {
e.printStackTrace();

}
// Must clone handles:

1162 Thinking in Java www.BruceEckel.com

o.depth = (DepthReading)o.depth.clone();
o.temperature =
(TemperatureReading)o.temperature.clone();

return o; // Upcasts back to Object
}

}

public class DeepCopy {
public static void main(String[] args) {

OceanReading reading =
new OceanReading(33.9, 100.5);

// Now clone it:
OceanReading r =
(OceanReading)reading.clone();

}
} ///:~

DepthReading and TemperatureReading are quite similar;
they both contain only primitives. Therefore, the clone() method
can be quite simple: it calls super.clone() and returns the result.
Note that the clone() code for both classes is identical.

OceanReading is composed of DepthReading and
TemperatureReading objects and so, to produce a deep copy, its
clone() must clone the handles inside OceanReading. To
accomplish this, the result of super.clone() must be cast to an
OceanReading object (so you can access the depth and
temperature handles).

A deep copy with ArrayList
Let’s revisit the ArrayList example from earlier in this appendix.
This time the Int2 class is cloneable so the ArrayList can be deep
copied:

//: appendixa:AddingClone.java
// You must go through a few gyrations to
// add cloning to your own class.
import java.util.*;

class Int2 implements Cloneable {

Appendix A: Passing & Returning Objects 1163

private int i;
public Int2(int ii) { i = ii; }
public void increment() { i++; }
public String toString() {

return Integer.toString(i);
}
public Object clone() {

Object o = null;
try {
o = super.clone();

} catch (CloneNotSupportedException e) {
System.out.println("Int2 can't clone");

}
return o;

}
}

// Once it's cloneable, inheritance
// doesn't remove cloneability:
class Int3 extends Int2 {
private int j; // Automatically duplicated
public Int3(int i) { super(i); }

}

public class AddingClone {
public static void main(String[] args) {

Int2 x = new Int2(10);
Int2 x2 = (Int2)x.clone();
x2.increment();
System.out.println(
"x = " + x + ", x2 = " + x2);

// Anything inherited is also cloneable:
Int3 x3 = new Int3(7);
x3 = (Int3)x3.clone();

ArrayList v = new ArrayList();
for(int i = 0; i < 10; i++)
v.add(new Int2(i));

System.out.println("v: " + v);
ArrayList v2 = (ArrayList)v.clone();
// Now clone each element:
for(int i = 0; i < v.size(); i++)

1164 Thinking in Java www.BruceEckel.com

v2.set(i, ((Int2)v2.get(i)).clone());
// Increment all v2's elements:
for(Iterator e = v2.iterator();

e.hasNext();)
((Int2)e.next()).increment();

// See if it changed v's elements:
System.out.println("v: " + v);
System.out.println("v2: " + v2);

}
} ///:~

Int3 is inherited from Int2 and a new primitive member int j is
added. You might think that you’d need to override clone() again
to make sure j is copied, but that’s not the case. When Int2’s
clone() is called as Int3’s clone(), it calls Object.clone(),
which determines that it’s working with an Int3 and duplicates all
the bits in the Int3. As long as you don’t add handles that need to
be cloned, the one call to Object.clone() performs all of the
necessary duplication, regardless of how far down in the hierarchy
clone() is defined.

You can see what’s necessary in order to do a deep copy of an
ArrayList: after the ArrayList is cloned, you have to step through
and clone each one of the objects pointed to by the ArrayList.
You’d have to do something similar to this to do a deep copy of a
HashMap.

The remainder of the example shows that the cloning did happen by
showing that, once an object is cloned, you can change it and the
original object is left untouched.

Deep copy via serialization
When you consider Java’s object serialization (introduced in
Chapter 11), you might observe that an object that’s serialized and
then deserialized is, in effect, cloned.

So why not use serialization to perform deep copying? Here’s an
example that compares the two approaches by timing them:

//: appendixa:Compete.java

Appendix A: Passing & Returning Objects 1165

import java.io.*;

class Thing1 implements Serializable {}
class Thing2 implements Serializable {
Thing1 o1 = new Thing1();

}

class Thing3 implements Cloneable {
public Object clone() {

Object o = null;
try {
o = super.clone();

} catch (CloneNotSupportedException e) {
System.out.println("Thing3 can't clone");

}
return o;

}
}

class Thing4 implements Cloneable {
Thing3 o3 = new Thing3();
public Object clone() {

Thing4 o = null;
try {
o = (Thing4)super.clone();

} catch (CloneNotSupportedException e) {
System.out.println("Thing4 can't clone");

}
// Clone the field, too:
o.o3 = (Thing3)o3.clone();
return o;

}
}

public class Compete {
static final int SIZE = 5000;
public static void main(String[] args) {

Thing2[] a = new Thing2[SIZE];
for(int i = 0; i < a.length; i++)
a[i] = new Thing2();

Thing4[] b = new Thing4[SIZE];
for(int i = 0; i < b.length; i++)

1166 Thinking in Java www.BruceEckel.com

b[i] = new Thing4();
try {
long t1 = System.currentTimeMillis();
ByteArrayOutputStream buf =
new ByteArrayOutputStream();

ObjectOutputStream o =
new ObjectOutputStream(buf);

for(int i = 0; i < a.length; i++)
o.writeObject(a[i]);

// Now get copies:
ObjectInputStream in =
new ObjectInputStream(

new ByteArrayInputStream(
buf.toByteArray()));

Thing2[] c = new Thing2[SIZE];
for(int i = 0; i < c.length; i++)
c[i] = (Thing2)in.readObject();

long t2 = System.currentTimeMillis();
System.out.println(
"Duplication via serialization: " +
(t2 - t1) + " Milliseconds");

// Now try cloning:
t1 = System.currentTimeMillis();
Thing4[] d = new Thing4[SIZE];
for(int i = 0; i < d.length; i++)
d[i] = (Thing4)b[i].clone();

t2 = System.currentTimeMillis();
System.out.println(
"Duplication via cloning: " +
(t2 - t1) + " Milliseconds");

} catch(Exception e) {
e.printStackTrace();

}
}

} ///:~

Thing2 and Thing4 contain member objects so that there’s some
deep copying going on. It’s interesting to notice that while
Serializable classes are easy to set up, there’s much more work
going on to duplicate them. Cloning involves a lot of work to set up
the class, but the actual duplication of objects is relatively simple.

Appendix A: Passing & Returning Objects 1167

The results really tell the tale. Here is the output from three
different runs:

Duplication via serialization: 940 Milliseconds
Duplication via cloning: 50 Milliseconds

Duplication via serialization: 710 Milliseconds
Duplication via cloning: 60 Milliseconds

Duplication via serialization: 770 Milliseconds
Duplication via cloning: 50 Milliseconds

Despite the significant time difference between serialization and
cloning, you’ll also notice that the serialization technique seems to
vary more in its duration, while cloning tends to be more stable.

Adding cloneability
further down a hierarchy
If you create a new class, its base class defaults to Object, which
defaults to non-clonability (as you’ll see in the next section). As long
as you don’t explicitly add clonability, you won’t get it. But you can
add it in at any layer and it will then be cloneable from that layer
downward, like this:

//: appendixa:HorrorFlick.java
// You can insert Cloneability at any
// level of inheritance.
import java.util.*;

class Person {}
class Hero extends Person {}
class Scientist extends Person

implements Cloneable {
public Object clone() {

try {
return super.clone();

} catch (CloneNotSupportedException e) {
// this should never happen:
// It's Cloneable already!
throw new InternalError();

1168 Thinking in Java www.BruceEckel.com

}
}

}
class MadScientist extends Scientist {}

public class HorrorFlick {
public static void main(String[] args) {

Person p = new Person();
Hero h = new Hero();
Scientist s = new Scientist();
MadScientist m = new MadScientist();

// p = (Person)p.clone(); // Compile error
// h = (Hero)h.clone(); // Compile error
s = (Scientist)s.clone();
m = (MadScientist)m.clone();

}
} ///:~

Before clonability was added, the compiler stopped you from trying
to clone things. When clonability is added in Scientist, then
Scientist and all its descendants are cloneable.

Why this strange design?
If all this seems to be a strange scheme, that’s because it is. You
might wonder why it worked out this way. What is the meaning
behind this design?

Originally, Java was designed as a language to control hardware
boxes, and definitely not with the Internet in mind. In a general-
purpose language like this, it makes sense that the programmer be
able to clone any object. Thus, clone() was placed in the root class
Object, but it was a public method so you could always clone any
object. This seemed to be the most flexible approach, and after all,
what could it hurt?

Well, when Java was seen as the ultimate Internet programming
language, things changed. Suddenly, there are security issues, and
of course, these issues are dealt with using objects, and you don’t
necessarily want anyone to be able to clone your security objects. So

Appendix A: Passing & Returning Objects 1169

what you’re seeing is a lot of patches applied on the original simple
and straightforward scheme: clone() is now protected in
Object. You must override it and implement Cloneable and
deal with the exceptions.

It’s worth noting that you must use the Cloneable interface only if
you’re going to call Object’s clone(), method, since that method
checks at run-time to make sure that your class implements
Cloneable. But for consistency (and since Cloneable is empty
anyway) you should implement it.

Controlling cloneability
You might suggest that, to remove clonability, the clone() method
simply be made private, but this won’t work since you cannot take
a base-class method and make it less accessible in a derived class.
So it’s not that simple. And yet, it’s necessary to be able to control
whether an object can be cloned. There are actually a number of
attitudes you can take to this in a class that you design:

1. Indifference. You don’t do anything about cloning, which
means that your class can’t be cloned but a class that inherits
from you can add cloning if it wants. This works only if the
default Object.clone() will do something reasonable with
all the fields in your class.

2. Support clone(). Follow the standard practice of
implementing Cloneable and overriding clone(). In the
overridden clone(), you call super.clone() and catch all
exceptions (so your overridden clone() doesn’t throw any
exceptions).

3. Support cloning conditionally. If your class holds handles to
other objects that might or might not be cloneable (a
collection class, for example), your clone() can try to clone
all of the objects for which you have handles, and if they
throw exceptions just pass those exceptions out to the
programmer. For example, consider a special sort of
ArrayList that tries to clone all the objects it holds. When

1170 Thinking in Java www.BruceEckel.com

you write such an ArrayList, you don’t know what sort of
objects the client programmer might put into your
ArrayList, so you don’t know whether they can be cloned.

4. Don’t implement Cloneable but override clone() as
protected, producing the correct copying behavior for any
fields. This way, anyone inheriting from this class can
override clone() and call super.clone() to produce the
correct copying behavior. Note that your implementation can
and should invoke super.clone() even though that method
expects a Cloneable object (it will throw an exception
otherwise), because no one will directly invoke it on an object
of your type. It will get invoked only through a derived class,
which, if it is to work successfully, implements Cloneable.

5. Try to prevent cloning by not implementing Cloneable and
overriding clone() to throw an exception. This is successful
only if any class derived from this calls super.clone() in its
redefinition of clone(). Otherwise, a programmer may be
able to get around it.

6. Prevent cloning by making your class final. If clone() has
not been overridden by any of your ancestor classes, then it
can’t be. If it has, then override it again and throw
CloneNotSupportedException. Making the class final is
the only way to guarantee that cloning is prevented. In
addition, when dealing with security objects or other
situations in which you want to control the number of objects
created you should make all constructors private and
provide one or more special methods for creating objects.
That way, these methods can restrict the number of objects
created and the conditions in which they’re created. (A
particular case of this is the singleton pattern shown in
Chapter 16.)

Here’s an example that shows the various ways cloning can be
implemented and then, later in the hierarchy, “turned off:”

//: appendixa:CheckCloneable.java
// Checking to see if a handle can be cloned.

Appendix A: Passing & Returning Objects 1171

// Can't clone this because it doesn't
// override clone():
class Ordinary {}

// Overrides clone, but doesn't implement
// Cloneable:
class WrongClone extends Ordinary {
public Object clone()

throws CloneNotSupportedException {
return super.clone(); // Throws exception

}
}

// Does all the right things for cloning:
class IsCloneable extends Ordinary

implements Cloneable {
public Object clone()

throws CloneNotSupportedException {
return super.clone();

}
}

// Turn off cloning by throwing the exception:
class NoMore extends IsCloneable {
public Object clone()

throws CloneNotSupportedException {
throw new CloneNotSupportedException();

}
}

class TryMore extends NoMore {
public Object clone()

throws CloneNotSupportedException {
// Calls NoMore.clone(), throws exception:
return super.clone();

}
}

class BackOn extends NoMore {
private BackOn duplicate(BackOn b) {

// Somehow make a copy of b
// and return that copy. This is a dummy

1172 Thinking in Java www.BruceEckel.com

// copy, just to make the point:
return new BackOn();

}
public Object clone() {

// Doesn't call NoMore.clone():
return duplicate(this);

}
}

// Can't inherit from this, so can't override
// the clone method like in BackOn:
final class ReallyNoMore extends NoMore {}

public class CheckCloneable {
static Ordinary tryToClone(Ordinary ord) {

String id = ord.getClass().getName();
Ordinary x = null;
if(ord instanceof Cloneable) {
try {
System.out.println("Attempting " + id);
x = (Ordinary)((IsCloneable)ord).clone();
System.out.println("Cloned " + id);

} catch(CloneNotSupportedException e) {
System.out.println(

"Could not clone " + id);
}

}
return x;

}
public static void main(String[] args) {

// Upcasting:
Ordinary[] ord = {
new IsCloneable(),
new WrongClone(),
new NoMore(),
new TryMore(),
new BackOn(),
new ReallyNoMore(),

};
Ordinary x = new Ordinary();
// This won't compile, since clone() is
// protected in Object:

Appendix A: Passing & Returning Objects 1173

//! x = (Ordinary)x.clone();
// tryToClone() checks first to see if
// a class implements Cloneable:
for(int i = 0; i < ord.length; i++)
tryToClone(ord[i]);

}
} ///:~

The first class, Ordinary, represents the kinds of classes we’ve seen
throughout the book: no support for cloning, but as it turns out, no
prevention of cloning either. But if you have a handle to an
Ordinary object that might have been upcast from a more derived
class, you can’t tell if it can be cloned or not.

The class WrongClone shows an incorrect way to implement
cloning. It does override Object.clone() and makes that method
public, but it doesn’t implement Cloneable, so when
super.clone() is called (which results in a call to
Object.clone()), CloneNotSupportedException is thrown so
the cloning doesn’t work.

In IsCloneable you can see all the right actions performed for
cloning: clone() is overridden and Cloneable is implemented.
However, this clone() method and several others that follow in
this example do not catch CloneNotSupportedException, but
instead pass it through to the caller, who must then put a try-catch
block around it. In your own clone() methods you will typically
catch CloneNotSupportedException inside clone() rather
than passing it through. As you’ll see, in this example it’s more
informative to pass the exceptions through.

Class NoMore attempts to “turn off” cloning in the way that the
Java designers intended: in the derived class clone(), you throw
CloneNotSupportedException. The clone() method in class
TryMore properly calls super.clone(), and this resolves to
NoMore.clone(), which throws an exception and prevents
cloning.

But what if the programmer doesn’t follow the “proper” path of
calling super.clone() inside the overridden clone() method? In
BackOn, you can see how this can happen. This class uses a

1174 Thinking in Java www.BruceEckel.com

separate method duplicate() to make a copy of the current object
and calls this method inside clone() instead of calling
super.clone(). The exception is never thrown and the new class is
cloneable. You can’t rely on throwing an exception to prevent
making a cloneable class. The only sure-fire solution is shown in
ReallyNoMore, which is final and thus cannot be inherited. That
means if clone() throws an exception in the final class, it cannot
be modified with inheritance and the prevention of cloning is
assured. (You cannot explicitly call Object.clone() from a class
that has an arbitrary level of inheritance; you are limited to calling
super.clone(), which has access to only the direct base class.)
Thus, if you make any objects that involve security issues, you’ll
want to make those classes final.

The first method you see in class CheckCloneable is
tryToClone(), which takes any Ordinary object and checks to
see whether it’s cloneable with instanceof. If so, it casts the object
to an IsCloneable, calls clone() and casts the result back to
Ordinary, catching any exceptions that are thrown. Notice the use
of run-time type identification (see Chapter 12) to print out the
class name so you can see what’s happening.

In main(), different types of Ordinary objects are created and
upcast to Ordinary in the array definition. The first two lines of
code after that create a plain Ordinary object and try to clone it.
However, this code will not compile because clone() is a
protected method in Object. The remainder of the code steps
through the array and tries to clone each object, reporting the
success or failure of each. The output is:

Attempting IsCloneable
Cloned IsCloneable
Attempting NoMore
Could not clone NoMore
Attempting TryMore
Could not clone TryMore
Attempting BackOn
Cloned BackOn
Attempting ReallyNoMore
Could not clone ReallyNoMore

Appendix A: Passing & Returning Objects 1175

So to summarize, if you want a class to be cloneable:

1. Implement the Cloneable interface.

2. Override clone().

3. Call super.clone() inside your clone().

4. Capture exceptions inside your clone().

This will produce the most convenient effects.

The copy-constructor
Cloning can seem to be a complicated process to set up. It might
seem like there should be an alternative. One approach that might
occur to you (especially if you’re a C++ programmer) is to make a
special constructor whose job it is to duplicate an object. In C++,
this is called the copy constructor. At first, this seems like the
obvious solution. Here’s an example:

//: appendixa:CopyConstructor.java
// A constructor for copying an object
// of the same type, as an attempt to create
// a local copy.

class FruitQualities {
private int weight;
private int color;
private int firmness;
private int ripeness;
private int smell;
// etc.
FruitQualities() { // Default constructor

// do something meaningful...
}
// Other constructors:
// ...
// Copy constructor:
FruitQualities(FruitQualities f) {

weight = f.weight;
color = f.color;

1176 Thinking in Java www.BruceEckel.com

firmness = f.firmness;
ripeness = f.ripeness;
smell = f.smell;
// etc.

}
}

class Seed {
// Members...
Seed() { /* Default constructor */ }
Seed(Seed s) { /* Copy constructor */ }

}

class Fruit {
private FruitQualities fq;
private int seeds;
private Seed[] s;
Fruit(FruitQualities q, int seedCount) {

fq = q;
seeds = seedCount;
s = new Seed[seeds];
for(int i = 0; i < seeds; i++)
s[i] = new Seed();

}
// Other constructors:
// ...
// Copy constructor:
Fruit(Fruit f) {

fq = new FruitQualities(f.fq);
seeds = f.seeds;
// Call all Seed copy-constructors:
for(int i = 0; i < seeds; i++)
s[i] = new Seed(f.s[i]);

// Other copy-construction activities...
}
// To allow derived constructors (or other
// methods) to put in different qualities:
protected void addQualities(FruitQualities q) {

fq = q;
}
protected FruitQualities getQualities() {

return fq;

Appendix A: Passing & Returning Objects 1177

}
}

class Tomato extends Fruit {
Tomato() {

super(new FruitQualities(), 100);
}
Tomato(Tomato t) { // Copy-constructor

super(t); // Upcast for base copy-constructor
// Other copy-construction activities...

}
}

class ZebraQualities extends FruitQualities {
private int stripedness;
ZebraQualities() { // Default constructor

// do something meaningful...
}
ZebraQualities(ZebraQualities z) {

super(z);
stripedness = z.stripedness;

}
}

class GreenZebra extends Tomato {
GreenZebra() {

addQualities(new ZebraQualities());
}
GreenZebra(GreenZebra g) {

super(g); // Calls Tomato(Tomato)
// Restore the right qualities:
addQualities(new ZebraQualities());

}
void evaluate() {

ZebraQualities zq =
(ZebraQualities)getQualities();

// Do something with the qualities
// ...

}
}

public class CopyConstructor {

1178 Thinking in Java www.BruceEckel.com

public static void ripen(Tomato t) {
// Use the "copy constructor":
t = new Tomato(t);
System.out.println("In ripen, t is a " +
t.getClass().getName());

}
public static void slice(Fruit f) {

f = new Fruit(f); // Hmmm... will this work?
System.out.println("In slice, f is a " +
f.getClass().getName());

}
public static void main(String[] args) {

Tomato tomato = new Tomato();
ripen(tomato); // OK
slice(tomato); // OOPS!
GreenZebra g = new GreenZebra();
ripen(g); // OOPS!
slice(g); // OOPS!
g.evaluate();

}
} ///:~

This seems a bit strange at first. Sure, fruit has qualities, but why
not just put data members representing those qualities directly into
the Fruit class? There are two potential reasons. The first is that
you might want to easily insert or change the qualities. Note that
Fruit has a protected addQualities() method to allow derived
classes to do this. (You might think the logical thing to do is to have
a protected constructor in Fruit that takes a FruitQualities
argument, but constructors don’t inherit so it wouldn’t be available
in second or greater level classes.) By making the fruit qualities into
a separate class, you have greater flexibility, including the ability to
change the qualities midway through the lifetime of a particular
Fruit object.

The second reason for making FruitQualities a separate object is
in case you want to add new qualities or to change the behavior via
inheritance and polymorphism. Note that for GreenZebra (which
really is a type of tomato – I’ve grown them and they’re fabulous),
the constructor calls addQualities() and passes it a
ZebraQualities object, which is derived from FruitQualities so

Appendix A: Passing & Returning Objects 1179

it can be attached to the FruitQualities handle in the base class.
Of course, when GreenZebra uses the FruitQualities it must
downcast it to the correct type (as seen in evaluate()), but it
always knows that type is ZebraQualities.

You’ll also see that there’s a Seed class, and that Fruit (which by
definition carries its own seeds4) contains an array of Seeds.

Finally, notice that each class has a copy constructor, and that each
copy constructor must take care to call the copy constructors for the
base class and member objects to produce a deep copy. The copy
constructor is tested inside the class CopyConstructor. The
method ripen() takes a Tomato argument and performs copy-
construction on it in order to duplicate the object:

t = new Tomato(t);

while slice() takes a more generic Fruit object and also duplicates
it:

f = new Fruit(f);

These are tested with different kinds of Fruit in main(). Here’s
the output:

In ripen, t is a Tomato
In slice, f is a Fruit
In ripen, t is a Tomato
In slice, f is a Fruit

This is where the problem shows up. After the copy-construction
that happens to the Tomato inside slice(), the result is no longer
a Tomato object, but just a Fruit. It has lost all of its tomato-ness.
Further, when you take a GreenZebra, both ripen() and slice()
turn it into a Tomato and a Fruit, respectively. Thus,
unfortunately, the copy constructor scheme is no good to us in Java
when attempting to make a local copy of an object.

4 Except for the poor avocado, which has been reclassified to simply “fat.”

1180 Thinking in Java www.BruceEckel.com

Why does it work in C++ and not Java?
The copy constructor is a fundamental part of C++, since it
automatically makes a local copy of an object. Yet the example
above proves that it does not work for Java. Why? In Java
everything that we manipulate is a handle, while in C++ you can
have handle-like entities and you can also pass around the objects
directly. That’s what the C++ copy constructor is for: when you
want to take an object and pass it in by value, thus duplicating the
object. So it works fine in C++, but you should keep in mind that
this scheme fails in Java, so don’t use it.

Read-only classes
While the local copy produced by clone() gives the desired results
in the appropriate cases, it is an example of forcing the programmer
(the author of the method) to be responsible for preventing the ill
effects of aliasing. What if you’re making a library that’s so general
purpose and commonly used that you cannot make the assumption
that it will always be cloned in the proper places? Or more likely,
what if you want to allow aliasing for efficiency – to prevent the
needless duplication of objects – but you don’t want the negative
side effects of aliasing?

One solution is to create immutable objects which belong to read-
only classes. You can define a class such that no methods in the
class cause changes to the internal state of the object. In such a
class, aliasing has no impact since you can read only the internal
state, so if many pieces of code are reading the same object there’s
no problem.

As a simple example of immutable objects, Java’s standard library
contains “wrapper” classes for all the primitive types. You might
have already discovered that, if you want to store an int inside a
collection such as an ArrayList (which takes only Object
handles), you can wrap your int inside the standard library
Integer class:

//: appendixa:ImmutableInteger.java

Appendix A: Passing & Returning Objects 1181

// The Integer class cannot be changed.
import java.util.*;

public class ImmutableInteger {
public static void main(String[] args) {

ArrayList v = new ArrayList();
for(int i = 0; i < 10; i++)
v.add(new Integer(i));

// But how do you change the int
// inside the Integer?

}
} ///:~

The Integer class (as well as all the primitive “wrapper” classes)
implements immutability in a simple fashion: they have no methods
that allow you to change the object.

If you do need an object that holds a primitive type that can be
modified, you must create it yourself. Fortunately, this is trivial:

//: appendixa:MutableInteger.java
// A changeable wrapper class.
import java.util.*;

class IntValue {
int n;
IntValue(int x) { n = x; }
public String toString() {

return Integer.toString(n);
}

}

public class MutableInteger {
public static void main(String[] args) {

ArrayList v = new ArrayList();
for(int i = 0; i < 10; i++)
v.add(new IntValue(i));

System.out.println(v);
for(int i = 0; i < v.size(); i++)
((IntValue)v.get(i)).n++;

System.out.println(v);
}

1182 Thinking in Java www.BruceEckel.com

} ///:~

Note that n is friendly to simplify coding.

IntValue can be even simpler if the default initialization to zero is
adequate (then you don’t need the constructor) and you don’t care
about printing it out (then you don’t need the toString()):

class IntValue { int n; }

Fetching the element out and casting it is a bit awkward, but that’s a
feature of ArrayList, not of IntValue.

Creating read-only classes
It’s possible to create your own read-only class. Here’s an example:

//: appendixa:Immutable1.java
// Objects that cannot be modified
// are immune to aliasing.

public class Immutable1 {
private int data;
public Immutable1(int initVal) {

data = initVal;
}
public int read() { return data; }
public boolean nonzero() { return data != 0; }
public Immutable1 quadruple() {

return new Immutable1(data * 4);
}
static void f(Immutable1 i1) {

Immutable1 quad = i1.quadruple();
System.out.println("i1 = " + i1.read());
System.out.println("quad = " + quad.read());

}
public static void main(String[] args) {

Immutable1 x = new Immutable1(47);
System.out.println("x = " + x.read());
f(x);
System.out.println("x = " + x.read());

}

Appendix A: Passing & Returning Objects 1183

} ///:~

All data is private, and you’ll see that none of the public methods
modify that data. Indeed, the method that does appear to modify an
object is quadruple(), but this creates a new Immutable1 object
and leaves the original one untouched.

The method f() takes an Immutable1 object and performs
various operations on it, and the output of main() demonstrates
that there is no change to x. Thus, x’s object could be aliased many
times without harm because the Immutable1 class is designed to
guarantee that objects cannot be changed.

The drawback to immutability
Creating an immutable class seems at first to provide an elegant
solution. However, whenever you do need a modified object of that
new type you must suffer the overhead of a new object creation, as
well as potentially causing more frequent garbage collections. For
some classes this is not a problem, but for others (such as the
String class) it is prohibitively expensive.

The solution is to create a companion class that can be modified.
Then when you’re doing a lot of modifications, you can switch to
using the modifiable companion class and switch back to the
immutable class when you’re done.

The example above can be modified to show this:

//: appendixa:Immutable2.java
// A companion class for making changes
// to immutable objects.

class Mutable {
private int data;
public Mutable(int initVal) {

data = initVal;
}
public Mutable add(int x) {

data += x;
return this;

}

1184 Thinking in Java www.BruceEckel.com

public Mutable multiply(int x) {
data *= x;
return this;

}
public Immutable2 makeImmutable2() {

return new Immutable2(data);
}

}

public class Immutable2 {
private int data;
public Immutable2(int initVal) {

data = initVal;
}
public int read() { return data; }
public boolean nonzero() { return data != 0; }
public Immutable2 add(int x) {

return new Immutable2(data + x);
}
public Immutable2 multiply(int x) {

return new Immutable2(data * x);
}
public Mutable makeMutable() {

return new Mutable(data);
}
public static Immutable2 modify1(Immutable2 y){

Immutable2 val = y.add(12);
val = val.multiply(3);
val = val.add(11);
val = val.multiply(2);
return val;

}
// This produces the same result:
public static Immutable2 modify2(Immutable2 y){

Mutable m = y.makeMutable();
m.add(12).multiply(3).add(11).multiply(2);
return m.makeImmutable2();

}
public static void main(String[] args) {

Immutable2 i2 = new Immutable2(47);
Immutable2 r1 = modify1(i2);
Immutable2 r2 = modify2(i2);

Appendix A: Passing & Returning Objects 1185

System.out.println("i2 = " + i2.read());
System.out.println("r1 = " + r1.read());
System.out.println("r2 = " + r2.read());

}
} ///:~

Immutable2 contains methods that, as before, preserve the
immutability of the objects by producing new objects whenever a
modification is desired. These are the add() and multiply()
methods. The companion class is called Mutable, and it also has
add() and multiply() methods, but these modify the Mutable
object rather than making a new one. In addition, Mutable has a
method to use its data to produce an Immutable2 object and vice
versa.

The two static methods modify1() and modify2() show two
different approaches to producing the same result. In modify1(),
everything is done within the Immutable2 class and you can see
that four new Immutable2 objects are created in the process.
(And each time val is reassigned, the previous object becomes
garbage.)

In the method modify2(), you can see that the first action is to
take the Immutable2 y and produce a Mutable from it. (This is
just like calling clone() as you saw earlier, but this time a different
type of object is created.) Then the Mutable object is used to
perform a lot of change operations without requiring the creation of
many new objects. Finally, it’s turned back into an Immutable2.
Here, two new objects are created (the Mutable and the result
Immutable2) instead of four.

This approach makes sense, then, when:

1. You need immutable objects and

2. You often need to make a lot of modifications or

3. It’s expensive to create new immutable objects

Immutable Strings
Consider the following code:

1186 Thinking in Java www.BruceEckel.com

//: appendixa:Stringer.java

public class Stringer {
static String upcase(String s) {

return s.toUpperCase();
}
public static void main(String[] args) {

String q = new String("howdy");
System.out.println(q); // howdy
String qq = upcase(q);
System.out.println(qq); // HOWDY
System.out.println(q); // howdy

}
} ///:~

When q is passed in to upcase() it’s actually a copy of the handle
to q. The object this handle is connected to stays put in a single
physical location. The handles are copied as they are passed around.

Looking at the definition for upcase(), you can see that the handle
that’s passed in has the name s, and it exists for only as long as the
body of upcase() is being executed. When upcase() completes,
the local handle s vanishes. upcase() returns the result, which is
the original string with all the characters set to uppercase. Of
course, it actually returns a handle to the result. But it turns out
that the handle that it returns is for a new object, and the original q
is left alone. How does this happen?

Implicit constants
If you say:

String s = "asdf";
String x = Stringer.upcase(s);

do you really want the upcase() method to change the argument?
In general, you don’t, because an argument usually looks to the
reader of the code as a piece of information provided to the method,
not something to be modified. This is an important guarantee, since
it makes code easier to write and understand.

Appendix A: Passing & Returning Objects 1187

In C++, the availability of this guarantee was important enough to
put in a special keyword, const, to allow the programmer to ensure
that a handle (pointer or reference in C++) could not be used to
modify the original object. But then the C++ programmer was
required to be diligent and remember to use const everywhere. It
can be confusing and easy to forget.

Overloading ‘+’ and the StringBuffer
Objects of the String class are designed to be immutable, using the
technique shown previously. If you examine the online
documentation for the String class (which is summarized a little
later in this appendix), you’ll see that every method in the class that
appears to modify a String really creates and returns a brand new
String object containing the modification. The original String is
left untouched. Thus, there’s no feature in Java like C++’s const to
make the compiler support the immutability of your objects. If you
want it, you have to wire it in yourself, like String does.

Since String objects are immutable, you can alias to a particular
String as many times as you want. Because it’s read-only there’s no
possibility that one handle will change something that will affect the
other handles. So a read-only object solves the aliasing problem
nicely.

It also seems possible to handle all the cases in which you need a
modified object by creating a brand new version of the object with
the modifications, as String does. However, for some operations
this isn’t efficient. A case in point is the operator ‘+’ that has been
overloaded for String objects. Overloading means that it has been
given an extra meaning when used with a particular class. (The ‘+’
and ‘+=‘ for String are the only operators that are overloaded in
Java and Java does not allow the programmer to overload any
others5).

5 C++ allows the programmer to overload operators at will. Because this can often be a
complicated process (see Chapter 10 of Thinking in C++, 2nd edition, Prentice-Hall, 2000),
the Java designers deemed it a “bad” feature that shouldn’t be included in Java. It wasn’t
so bad that they didn’t end up doing it themselves, and ironically enough, operator

1188 Thinking in Java www.BruceEckel.com

When used with String objects, the ‘+’ allows you to concatenate
Strings together:

String s = "abc" + foo + "def" +
Integer.toString(47);

You could imagine how this might work: the String “abc” could
have a method append() that creates a new String object
containing “abc” concatenated with the contents of foo. The new
String object would then create another new String that added
“def” and so on.

This would certainly work, but it requires the creation of a lot of
String objects just to put together this new String, and then you
have a bunch of the intermediate String objects that need to be
garbage-collected. I suspect that the Java designers tried this
approach first (which is a lesson in software design – you don’t
really know anything about a system until you try it out in code and
get something working). I also suspect they discovered that it
delivered unacceptable performance.

The solution is a mutable companion class similar to the one shown
previously. For String, this companion class is called
StringBuffer, and the compiler automatically creates a
StringBuffer to evaluate certain expressions, in particular when
the overloaded operators + and += are used with String objects.
This example shows what happens:

//: appendixa:ImmutableStrings.java
// Demonstrating StringBuffer.

public class ImmutableStrings {
public static void main(String[] args) {

String foo = "foo";
String s = "abc" + foo +
"def" + Integer.toString(47);

overloading would be much easier to use in Java than in C++. This can be seen in Python
(see www.Python.org) which has garbage collection and straightforward operator
overloading.

Appendix A: Passing & Returning Objects 1189

System.out.println(s);
// The "equivalent" using StringBuffer:
StringBuffer sb =
new StringBuffer("abc"); // Creates String!

sb.append(foo);
sb.append("def"); // Creates String!
sb.append(Integer.toString(47));
System.out.println(sb);

}
} ///:~

In the creation of String s, the compiler is doing the rough
equivalent of the subsequent code that uses sb: a StringBuffer is
created and append() is used to add new characters directly into
the StringBuffer object (rather than making new copies each
time). While this is more efficient, it’s worth noting that each time
you create a quoted character string such as “abc” and “def”, the
compiler turns those into String objects. So there can be more
objects created than you expect, despite the efficiency afforded
through StringBuffer.

The String and
StringBuffer classes
Here is an overview of the methods available for both String and
StringBuffer so you can get a feel for the way they interact. These
tables don’t contain every single method, but rather the ones that
are important to this discussion. Methods that are overloaded are
summarized in a single row.

First, the String class:

Method Arguments,
Overloading

Use

Constructor Overloaded: Default,
String,
StringBuffer, char
arrays, byte arrays.

Creating String
objects.

length() Number of characters

1190 Thinking in Java www.BruceEckel.com

Method Arguments,
Overloading

Use

in String.
charAt() int Index The char at a location

in the String.
getChars(),
getBytes()

The beginning and
end from which to
copy, the array to
copy into, an index
into the destination
array.

Copy chars or bytes
into an external array.

toCharArray() Produces a char[]
containing the
characters in the
String.

equals(), equals-
IgnoreCase()

A String to compare
with.

An equality check on
the contents of the two
Strings.

compareTo() A String to compare
with.

Result is negative,
zero, or positive
depending on the
lexicographical
ordering of the String
and the argument.
Uppercase and
lowercase are not
equal!

regionMatches() Offset into this
String, the other
String and its offset
and length to
compare. Overload
adds “ignore case.”

Boolean result
indicates whether the
region matches.

startsWith() String that it might
start with. Overload
adds offset into
argument.

Boolean result
indicates whether the
String starts with the
argument.

endsWith() String that might be Boolean result

Appendix A: Passing & Returning Objects 1191

Method Arguments,
Overloading

Use

a suffix of this
String.

indicates whether the
argument is a suffix.

indexOf(),
lastIndexOf()

Overloaded: char,
char and starting
index, String,
String, and starting
index

Returns -1 if the
argument is not found
within this String,
otherwise returns the
index where the
argument starts.
lastIndexOf()
searches backward
from end.

substring() Overloaded: Starting
index, starting index,
and ending index.

Returns a new String
object containing the
specified character set.

concat() The String to
concatenate

Returns a new String
object containing the
original String’s
characters followed by
the characters in the
argument.

replace() The old character to
search for, the new
character to replace it
with.

Returns a new String
object with the
replacements made.
Uses the old String if
no match is found.

toLowerCase()
toUpperCase()

 Returns a new String
object with the case of
all letters changed.
Uses the old String if
no changes need to be
made.

trim() Returns a new String
object with the white
space removed from
each end. Uses the old
String if no changes

1192 Thinking in Java www.BruceEckel.com

Method Arguments,
Overloading

Use

need to be made.
valueOf() Overloaded: Object,

char[], char[] and
offset and count,
boolean, char, int,
long, float, double.

Returns a String
containing a character
representation of the
argument.

intern() Produces one and only
one String handle for
each unique character
sequence.

You can see that every String method carefully returns a new
String object when it’s necessary to change the contents. Also
notice that if the contents don’t need changing the method will just
return a handle to the original String. This saves storage and
overhead.

Here’s the StringBuffer class:

Method Arguments, overloading Use
Constructor Overloaded: default, length

of buffer to create, String
to create from.

Create a new
StringBuffer
object.

toString() Creates a String
from this
StringBuffer.

length() Number of
characters in the
StringBuffer.

capacity() Returns current
number of spaces
allocated.

ensure-
Capacity()

Integer indicating desired
capacity.

Makes the
StringBuffer hold
at least the desired
number of spaces.

setLength() Integer indicating new Truncates or

Appendix A: Passing & Returning Objects 1193

Method Arguments, overloading Use
length of character string
in buffer.

expands the
previous character
string. If expanding,
pads with nulls.

charAt() Integer indicating the
location of the desired
element.

Returns the char at
that location in the
buffer.

setCharAt() Integer indicating the
location of the desired
element and the new char
value for the element.

Modifies the value at
that location.

getChars() The beginning and end
from which to copy, the
array to copy into, an index
into the destination array.

Copy chars into an
external array.
There’s no
getBytes() as in
String.

append() Overloaded: Object,
String, char[], char[]
with offset and length,
boolean, char, int, long,
float, double.

The argument is
converted to a string
and appended to the
end of the current
buffer, increasing
the buffer if
necessary.

insert() Overloaded, each with a
first argument of the offset
at which to start inserting:
Object, String, char[],
boolean, char, int, long,
float, double.

The second
argument is
converted to a string
and inserted into the
current buffer
beginning at the
offset. The buffer is
increased if
necessary.

reverse() The order of the
characters in the
buffer is reversed.

The most commonly-used method is append(), which is used by
the compiler when evaluating String expressions that contain the

1194 Thinking in Java www.BruceEckel.com

‘+’ and ‘+=‘ operators. The insert() method has a similar form,
and both methods perform significant manipulations to the buffer
instead of creating new objects.

Strings are special
By now you’ve seen that the String class is not just another class in
Java. There are a lot of special cases in String, not the least of
which is that it’s a built-in class and fundamental to Java. Then
there’s the fact that a quoted character string is converted to a
String by the compiler and the special overloaded operators + and
+=. In this appendix you’ve seen the remaining special case: the
carefully-built immutability using the companion StringBuffer
and some extra magic in the compiler.

Summary
Because everything is a handle in Java, and because every object is
created on the heap and garbage collected only when it is no longer
used, the flavor of object manipulation changes, especially when
passing and returning objects. For example, in C or C++, if you
wanted to initialize some piece of storage in a method, you’d
probably request that the user pass the address of that piece of
storage into the method. Otherwise you’d have to worry about who
was responsible for destroying that storage. Thus, the interface and
understanding of such methods is more complicated. But in Java,
you never have to worry about responsibility or whether an object
will still exist when it is needed, since that is always taken care of for
you. Your can create an object at the point that it is needed, and no
sooner, and never worry about the mechanics of passing around
responsibility for that object: you simply pass the handle.
Sometimes the simplification that this provides is unnoticed, other
times it is staggering.

The downside to all this underlying magic is twofold:

1. You always take the efficiency hit for the extra memory
management (although this can be quite small), and there’s
always a slight amount of uncertainty about the time

Appendix A: Passing & Returning Objects 1195

something can take to run (since the garbage collector can be
forced into action whenever you get low on memory). For
most applications, the benefits outweigh the drawbacks, and
particularly time-critical sections can be written using
native methods (see Appendix B).

2. Aliasing: sometimes you can accidentally end up with two
handles to the same object, which is a problem only if both
handles are assumed to point to a distinct object. This is
where you need to pay a little closer attention and, when
necessary, clone() an object to prevent the other handle
from being surprised by an unexpected change. Alternatively,
you can support aliasing for efficiency by creating immutable
objects whose operations can return a new object of the same
type or some different type, but never change the original
object so that anyone aliased to that object sees no change.

Some people say that cloning in Java is a botched design, and to
heck with it, so they implement their own version of cloning6 and
never call the Object.clone() method, thus eliminating the need
to implement Cloneable and catch the
CloneNotSupportedException. This is certainly a reasonable
approach and since clone() is supported so rarely within the
standard Java library, it is apparently a safe one as well. But as long
as you don’t call Object.clone() you don’t need to implement
Cloneable or catch the exception, so that would seem acceptable
as well.

Exercises
1. Demonstrate a second level of aliasing. Create a method that

takes a handle to an object but doesn’t modify that handle’s
object. However, the method calls a second method, passing it
the handle, and this second method does modify the object.

6 Doug Lea, who was helpful in resolving this issue, suggested this to me, saying that he
simply creates a function called duplicate() for each class.

1196 Thinking in Java www.BruceEckel.com

2. Create a class myString containing a String object that you
initialize in the constructor using the constructor’s argument.
Add a toString() method and a method concatenate()
that appends a String object to your internal string.
Implement clone() in myString. Create two static methods
that each take a myString x handle as an argument and call
x.concatenate(“test”), but in the second method call
clone() first. Test the two methods and show the different
effects.

3. Create a class called Battery containing an int that is a
battery number (as a unique identifier). Make it cloneable and
give it a toString() method. Now create a class called Toy
that contains an array of Battery and a toString() that
prints out all the batteries. Write a clone() for Toy that
automatically clones all of its Battery objects. Test this by
cloning Toy and printing the result.

4. Change CheckCloneable.java so that all of the clone()
methods catch the CloneNotSupportedException rather
than passing it to the caller.

5. Using the mutable-companion-class technique, make an
immutable class containing an int, a double and an array of
char.

6. Modify Compete.java to add more member objects to
classes Thing2 and Thing4 and see if you can determine how
the timings vary with complexity – whether it’s a simple linear
relationship or if it seems more complicated.

7. Starting with Snake.java, create a deep-copy version of the
snake.

8. Inherit an ArrayList and make its clone() perform a deep
copy.

 1197

B: The Java Native
Interface (JNI)

1The Java language and its standard API are rich enough
to write full-fledged applications. But in some cases you
must call non-Java code; for example, if you want to
access operating-system-specific features, interface with
special hardware devices, reuse a pre-existing, non-Java
code base, or implement time-critical sections of code.

Interfacing with non-Java code requires dedicated support in the
compiler and in the Virtual Machine, and additional tools to map
the Java code to the non-Java code. The standard solution for
calling non-Java code that is provided by Javasoft is called the Java
Native Interface, which will be introduced in this appendix. This is
not an in-depth treatment, and in some cases you’re assumed to
have partial knowledge of the related concepts and techniques.

The Java Native Interface
JNI is a fairly rich programming interface that allows you to call
native methods from a Java application. It was added in Java 1.1,
maintaining a certain degree of compatibility with its Java 1.0
equivalent, the native method interface (NMI). NMI has design
characteristics that make it unsuitable for adoption across all virtual
machines. For this reason, future versions of the language might no
longer support NMI, and it will not be covered here.

1 This appendix was contributed by and used with the permission of Andrea Provaglio
(www.AndreaProvaglio.com).

1198 Thinking in Java www.BruceEckel.com

Currently, JNI is designed to interface with native methods written
only in C or C++. Using JNI, your native methods can:

♦ Create, inspect, and update Java objects (including arrays
and Strings)

♦ Call Java methods

♦ Catch and throw exceptions

♦ Load classes and obtain class information

♦ Perform runtime type checking

Thus, virtually everything you can do with classes and objects in
ordinary Java you can also do in native methods.

Calling a native method
We’ll start with a simple example: a Java program that calls a native
method, which in turn calls the standard C library function
printf().

The first step is to write the Java code declaring a native method
and its arguments:

//: appendixb:ShowMessage.java
public class ShowMessage {
private native void ShowMessage(String msg);
static {

System.loadLibrary("MsgImpl");
// Linux hack, if you can't get your library
// path set in your environment:
// Runtime.getRuntime().load(
// "/home/bruce/tij2/appendixb/MsgImpl.so");

}
public static void main(String[] args) {

ShowMessage app = new ShowMessage();
app.ShowMessage("Generated with JNI");

}
} ///:~

Appendix B: The Java Native Interface (JNI) 1199

The native method declaration is followed by a static block that
calls System.loadLibrary() (which you could call at any time,
but this style is more appropriate). System.loadLibrary() loads
a DLL in memory and links to it. The DLL must be in your system
library path. The file name extension is automatically added by the
JVM depending on the platform.

In the above code you can also see a call to the Runtime load()
method which is commented out. The path specified here is an
absolute path, rather than relying on an environment variable.
Using an environment variable is naturally the better and more
portable solution, but if you can’t figure that out you can comment
out the loadLibrary() call and uncomment this one, adjusting the
path to your own directory.

The header file generator: javah
Now compile your Java source file and run javah on the resulting
.class file, specifying the –jni switch (this is done automatically for
you by the makefile in the source code distribution for the book):

javah –jni ShowMessage

javah reads the Java class file and for each native method
declaration it generates a function prototype in a C or C++ header
file. Here’s the output: the ShowMessage.h source file (edited
slightly to fit into the book):

/* DO NOT EDIT THIS FILE
- it is machine generated */

#include <jni.h>
/* Header for class ShowMessage */

#ifndef _Included_ShowMessage
#define _Included_ShowMessage
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: ShowMessage
* Method: ShowMessage
* Signature: (Ljava/lang/String;)V

1200 Thinking in Java www.BruceEckel.com

*/
JNIEXPORT void JNICALL
Java_ShowMessage_ShowMessage
(JNIEnv *, jobject, jstring);

#ifdef __cplusplus
}
#endif
#endif

As you can see by the #ifdef __cplusplus preprocessor directive,
this file can be compiled either by a C or a C++ compiler. The first
#include directive includes jni.h, a header file that, among other
things, defines the types that you can see used in the rest of the file.
JNIEXPORT and JNICALL are macros that expand to match
platform-specific directives. JNIEnv, jobject and jstring are JNI
data type definitions which will be explained shortly.

Name mangling and function signatures
JNI imposes a naming convention (called name mangling) on
native methods. This is important, since it’s part of the mechanism
by which the virtual machine links Java calls to native methods.
Basically, all native methods start with the word “Java,” followed by
the name of the class in which the Java native declaration appears,
followed by the name of the Java method. The underscore character
is used as a separator. If the Java native method is overloaded, then
the function signature is appended to the name as well; you can see
the native signature in the comments preceding the prototype. For
more information about name mangling and native method
signatures, please refer to the JNI documentation.

Implementing your DLL
At this point, all you have to do is write a C or C++ source code file
that includes the javah-generated header file and implements the
native method, then compile it and generate a dynamic link library.
This part is platform-dependent. The code below is compiled and
linked into a file called MsgImpl.dll for Windows or MsgImpl.so
for Unix/Linux (the makefile packaged with the code listings
contains the commands to do this – it is available on the CD ROM

Appendix B: The Java Native Interface (JNI) 1201

bound into the book, or as a free download from
www.BruceEckel.com):

//: appendixb:MsgImpl.cpp
//# Tested with VC++. Include path must be
//# adjusted to find the JNI headers. See the
//# makefile for this chapter (in the
//# downloadable source code) for an example.
#include <jni.h>
#include <stdio.h>
#include "ShowMessage.h"

extern "C" JNIEXPORT void JNICALL
Java_ShowMessage_ShowMessage(JNIEnv* env,
jobject, jstring jMsg) {
const char* msg=env->GetStringUTFChars(jMsg,0);
printf("Thinking in Java, JNI: %s\n", msg);
env->ReleaseStringUTFChars(jMsg, msg);

} ///:~

The arguments that are passed into the native method are the
gateway back into Java. The first, of type JNIEnv, contains all the
hooks that allow you to call back into the JVM. (We’ll look at this in
the next section.) The second argument has a different meaning
depending on the type of method. For non-static methods like the
example above, the second argument is the equivalent of the “this”
pointer in C++ and similar to this in Java: it’s a reference to the
object that called the native method. For static methods, it’s a
reference to the Class object where the method is implemented.

The remaining arguments represent the Java objects passed into the
native method call. Primitives are also passed in this way, but they
come in by value.

In the following sections we’ll explain this code by looking at the
ways that you access and control the JVM from inside a native
method.

1202 Thinking in Java www.BruceEckel.com

Accessing JNI functions:
The JNIEnv argument
JNI functions are those that the programmer uses to interact with
the JVM from inside a native method. As you can see in the example
above, every JNI native method receives a special argument as its
first parameter: the JNIEnv argument, which is a pointer to a
special JNI data structure of type JNIEnv_. One element of the
JNI data structure is a pointer to an array generated by the JVM.
Each element of this array is a pointer to a JNI function. The JNI
functions can be called from the native method by dereferencing
these pointers (it’s simpler than it sounds). Every JVM provides its
own implementation of the JNI functions, but their addresses will
always be at predefined offsets.

Through the JNIEnv argument, the programmer has access to a
large set of functions. These functions can be grouped into the
following categories:

♦ Obtaining version information

♦ Performing class and object operations

♦ Handling global and local references to Java objects

♦ Accessing instance fields and static fields

♦ Calling instance methods and static methods

♦ Performing string and array operations

♦ Generating and handling Java exceptions

The number of JNI functions is quite large and won’t be covered
here. Instead, I’ll show the rationale behind the use of these
functions. For more detailed information, consult your compiler’s
JNI documentation.

If you take a look at the jni.h header file, you’ll see that inside the
#ifdef __cplusplus preprocessor conditional, the JNIEnv_
structure is defined as a class when compiled by a C++ compiler.

Appendix B: The Java Native Interface (JNI) 1203

This class contains a number of inline functions that let you access
the JNI functions with an easy and familiar syntax. For example,
the line of C++ code in the preceding example:

env->ReleaseStringUTFChars(jMsg, msg);

could also be called from C like this:

(*env)->ReleaseStringUTFChars(env, jMsg, msg);

You’ll notice that the C style is (naturally) more complicated – you
need a double dereferencing of the env pointer, and you must also
pass the same pointer as the first parameter to the JNI function call.
The examples in this appendix use the C++ style.

Accessing Java Strings
As an example of accessing a JNI function, consider the code in
MsgImpl.cpp. Here, the JNIEnv argument env is used to access
a Java String. Java Strings are in Unicode format, so if you
receive one and want to pass it to a non-Unicode function
(printf(), for example), you must first convert it into ASCII
characters with the JNI function GetStringUTFChars(). This
function takes a Java String and converts it to UTF-8 characters.
(These are 8 bits wide to hold ASCII values or 16 bits wide to hold
Unicode. If the content of the original string was composed only of
ASCII, the resulting string will be ASCII as well.)

GetStringUTFChars() is one of the member functions in
JNIEnv. To access the JNI function, we use the typical C++ syntax
for calling a member function though a pointer. You use the form
above to access all of the JNI functions.

Passing and using Java objects
In the previous example we passed a String to the native method.
You can also pass Java objects of your own creation to a native
method. Inside your native method, you can access the fields and
methods of the object that was received.

To pass objects, use the ordinary Java syntax when declaring the
native method. In the example below, MyJavaClass has one

1204 Thinking in Java www.BruceEckel.com

public field and one public method. The class UseObjects
declares a native method that takes an object of class
MyJavaClass. To see if the native method manipulates its
argument, the public field of the argument is set, the native
method is called, and then the value of the public field is printed.

//: appendixb:UseObjects.java
class MyJavaClass {
public int aValue;
public void divByTwo() { aValue /= 2; }

}

public class UseObjects {
private native void

changeObject(MyJavaClass obj);
static {

System.loadLibrary("UseObjImpl");
// Linux hack, if you can't get your library
// path set in your environment:
// Runtime.getRuntime().load(
//"/home/bruce/tij2/appendixb/UseObjImpl.so");

}
public static void main(String[] args) {

UseObjects app = new UseObjects();
MyJavaClass anObj = new MyJavaClass();
anObj.aValue = 2;
app.changeObject(anObj);
System.out.println("Java: " + anObj.aValue);

}
} ///:~

After compiling the code and running javah, you can implement
the native method. In the example below, once the field and method
ID are obtained, they are accessed through JNI functions.

//: appendixb:UseObjImpl.cpp
//# Tested with VC++. Include path must be
//# adjusted to find the JNI headers. See the
//# makefile for this chapter (in the
//# downloadable source code) for an example.
#include <jni.h>
extern "C" JNIEXPORT void JNICALL

Appendix B: The Java Native Interface (JNI) 1205

Java_UseObjects_changeObject(
JNIEnv* env, jobject, jobject obj) {
jclass cls = env->GetObjectClass(obj);
jfieldID fid = env->GetFieldID(

cls, "aValue", "I");
jmethodID mid = env->GetMethodID(

cls, "divByTwo", "()V");
int value = env->GetIntField(obj, fid);
printf("Native: %d\n", value);
env->SetIntField(obj, fid, 6);
env->CallVoidMethod(obj, mid);
value = env->GetIntField(obj, fid);
printf("Native: %d\n", value);

} ///:~

Ignoring the “this” equivalent, the C++ function receives a jobject,
which is the native side of the Java object reference we pass from
the Java code. We simply read aValue, print it out, change the
value, call the object’s divByTwo() method, and print the value
out again.

To access a Java field or method, you must first obtain its identifier
using GetFieldID() for fields and GetMethodID() for methods.
These functions take the class object, a string containing the
element name, and a string that gives type information: the data
type of the field, or signature information for a method (details can
be found in the JNI documentation). These functions return an
identifier that you use to access the element. This approach might
seem convoluted, but your native method has no knowledge of the
internal layout of the Java object. Instead, it must access fields and
methods through indexes returned by the JVM. This allows
different JVMs to implement different internal object layouts with
no impact on your native methods.

If you run the Java program, you’ll see that the object that’s passed
from the Java side is manipulated by your native method. But what
exactly is passed? A pointer or a Java reference? And what is the
garbage collector doing during native method calls?

The garbage collector continues to operate during native method
execution, but it’s guaranteed that your objects will not be garbage

1206 Thinking in Java www.BruceEckel.com

collected during a native method call. To ensure this, local
references are created before, and destroyed right after, the native
method call. Since their lifetime wraps the call, you know that the
objects will be valid throughout the native method call.

Since these references are created and subsequently destroyed every
time the function is called, you cannot make local copies in your
native methods, in static variables. If you want a reference that
lasts across function invocations, you need a global reference.
Global references are not created by the JVM, but the programmer
can make a global reference out of a local one by calling specific JNI
functions. When you create a global reference, you become
responsible for the lifetime of the referenced object. The global
reference (and the object it refers to) will be in memory until the
programmer explicitly frees the reference with the appropriate JNI
function. It’s similar to malloc() and free() in C.

JNI and Java exceptions
With JNI, Java exceptions can be thrown, caught, printed, and
rethrown just as they are inside a Java program. But it’s up to the
programmer to call dedicated JNI functions to deal with exceptions.
Here are the JNI functions for exception handling:

♦ Throw()
Throws an existing exception object. Used in native methods
to rethrow an exception.

♦ ThrowNew()
Generates a new exception object and throws it.

♦ ExceptionOccurred()
Determines if an exception was thrown and not yet cleared.

♦ ExceptionDescribe()
Prints an exception and the stack trace.

♦ ExceptionClear()
Clears a pending exception.

Appendix B: The Java Native Interface (JNI) 1207

♦ FatalError()
Raises a fatal error. Does not return.

Among these, you can’t ignore ExceptionOccurred() and
ExceptionClear(). Most JNI functions can generate exceptions,
and there is no language feature that you can use in place of a Java
try block, so you must call ExceptionOccurred() after each JNI
function call to see if an exception was thrown. If you detect an
exception, you may choose to handle it (and possibly rethrow it).
You must make certain, however, that the exception is eventually
cleared. This can be done in your function using
ExceptionClear() or in some other function if the exception is
rethrown, but it must be done.

You must ensure that the exception is cleared, because otherwise
the results will be unpredictable if you call a JNI function while an
exception is pending. There are few JNI functions that are safe to
call during an exception; among these, of course, are all the
exception handling functions.

JNI and threading
Since Java is a multithreaded language, several threads can call a
native method concurrently. (The native method might be
suspended in the middle of its operation when a second thread calls
it.) It’s entirely up to the programmer to guarantee that the native
call is thread-safe, i.e. it does not modify shared data in an
unmonitored way. Basically, you have two options: declare the
native method as synchronized or implement some other strategy
within the native method to ensure correct, concurrent data
manipulation.

Also, you should never pass the JNIEnv pointer across threads,
since the internal structure it points to is allocated on a per-thread
basis and contains information that makes sense only in that
particular thread.

1208 Thinking in Java www.BruceEckel.com

Using a pre-existing code base
The easiest way to implement JNI native methods is to start writing
native method prototypes in a Java class, compile that class, and
run the .class file through javah. But what if you have a large, pre-
existing code base that you want to call from Java? Renaming all
the functions in your DLLs to match the JNI name mangling
convention is not a viable solution. The best approach is to write a
wrapper DLL “outside” your original code base. The Java code calls
functions in this new DLL, which in turn calls your original DLL
functions. This solution is not just a work-around; in most cases
you must do this anyway because you must call JNI functions on
the object references before you can use them.

Additional information
You can find further introductory material, including a C (rather
than C++) example and discussion of Microsoft issues, in Appendix
A of the first edition of this book, which can be found on the CD
ROM bound in with this book, or freely downloaded from
www.BruceEckel.com. More extensive information is available at
java.sun.com (in the search engine, select “training & tutorials” for
keywords “native methods”). Chapter 11 of Core Java 2, Volume II,
by Horstmann & Cornell (Prentice Hall, 2000) gives excellent
coverage of native methods.

 1209

C: Java
Programming
Guidelines

This appendix contains suggestions to help guide you
while performing low-level program design, and also
while writing code.

1. Capitalize the first letter of class names. The first letter of
fields, methods, and objects (handles) should be lowercase.
All identifiers should run their words together, and capitalize
the first letter of all intermediate words. For example:
ThisIsAClassName
thisIsAMethodOrFieldName
Capitalize all the letters of static final primitive identifiers
that have constant initializers in their definitions. This
indicates they are compile-time constants.
Packages are a special case: they are all lowercase letters,
even for intermediate words. The domain extension (com,
org, net, edu, etc.) should also be lowercase. (This was a
change between Java 1.1 and Java 2.)

2. When creating a class for general-purpose use, follow a
“canonical form” and include definitions for equals(),
hashCode(), toString(), clone() (implement
Cloneable), and implement Serializable.

3. For each class you create, consider including a main() that
contains code to test that class. You don’t need to remove the
test code to use the class in a project, and if you make any
changes you can easily re-run the tests. This code also
provides examples of how to use your class.

1210 Thinking in Java www.BruceEckel.com

4. Methods should be kept to brief, functional units that
describe and implement a discrete part of a class interface.
Ideally, methods should be concise; if they are long you
might want to search for a way to break them up into several
shorter methods. This will also foster reuse within your class.
(Sometimes methods must be large, but they should still do
just one thing.)

5. When you design a class, think about the client
programmer’s perspective (the class should be fairly obvious
to use) and the perspective of the person maintaining the
code (anticipate the kind of changes that will be made, to
make them easy).

6. Try to keep classes small and focused. Clues to suggest
redesign of a class are:
1) A complicated switch statement: consider using
polymorphism
2) A large number of methods that cover broadly different
types of operations: consider using several classes
3) A large number of member variables that concern broadly
different characteristics: consider using several classes

7. Keep things as “private as possible.” Once you publicize an
aspect of your library (a method, a class, a field), you can
never take it out. If you do, you’ll wreck somebody’s existing
code, forcing them to rewrite and redesign. If you publicize
only what you must, you can change everything else with
impunity, and since designs tend to evolve this is an
important freedom. Privacy is especially important when
dealing with multithreading – only private fields can be
protected against un-synchronized use.

8. Watch out for “giant object syndrome.” This is often an
affliction of procedural programmers who are new to OOP
and who end up writing a procedural program and sticking it
inside one or two giant objects. With the exception of
application frameworks, objects represent concepts in your
application, not the application.

Appendix C: Java Programming Guidelines 1211

9. If you must do something ugly, at least localize the ugliness
inside a class.

10. Anytime you notice classes that appear to have high coupling
with each other, consider the coding and maintenance
improvements you might get by using inner classes (see
“Improving the code with an inner class” on page 868).

11. Use comments liberally, and use the javadoc comment-
documentation syntax to produce your program
documentation.

12. Avoid using “magic numbers,” which are numbers hard-
wired into code. These are a nightmare if you need to change
them, since you never know if “100” means “the array size”
or “something else entirely.” Instead, create a constant with a
descriptive name and use the constant identifier throughout
your program. This makes the program easier to understand
and much easier to maintain.

13. In terms of constructors and exceptions, you’ll generally
want to re-throw any exceptions that you catch while in a
constructor if it causes failure of the creation of that object,
so the caller doesn’t continue blindly, thinking that the object
was created correctly.

14. If your class requires any cleanup when the client
programmer is finished with the object, place the cleanup
code in a single, well- defined method with a name like
cleanup() that clearly suggests its purpose. In addition,
place a boolean flag in the class to indicate whether the
object has been cleaned up. In the finalize() method for the
class, check to make sure that the object has been cleaned up
and throw a class derived from RuntimeException if it
hasn’t, to indicate a programming error. Before relying on
such a scheme, ensure that finalize() works on your
system. (You might need to call
System.runFinalizersOnExit(true) to ensure this
behavior.)

1212 Thinking in Java www.BruceEckel.com

15. If an object must be cleaned up (other than by garbage
collection) within a particular scope, use the following
approach: Initialize the object and, if successful, immediately
enter a try block with a finally clause that performs the
cleanup.

16. When overriding finalize() during inheritance, remember
to call super.finalize() (this is not necessary if Object is
your immediate superclass). You should call
super.finalize() as the final act of your overridden
finalize() rather than the first, to ensure that base-class
components are still valid if you need them.

17. When you are creating a fixed-size collection of objects,
transfer them to an array (especially if you’re returning this
collection from a method). This way you get the benefit of the
array’s compile-time type checking, and the recipient of the
array might not need to cast the objects in the array in order
to use them.

18. Choose interfaces over abstract classes. If you know
something is going to be a base class, your first choice should
be to make it an interface, and only if you’re forced to have
method definitions or member variables should you change
it to an abstract class. An interface talks about what the
client wants to do, while a class tends to focus on (or allow)
implementation details.

19. Inside constructors, do only what is necessary to set the
object into the proper state. Actively avoid calling other
methods (except for final methods) since those methods can
be overridden by someone else to produce unexpected results
during construction. (See Chapter 7 for details.)

20. Objects should not simply hold some data; they should also
have well-defined behaviors.

21. Choose composition first when creating new classes from
existing classes. You should only used inheritance if it is
required by your design. If you use inheritance where

Appendix C: Java Programming Guidelines 1213

composition will work, your designs will become needlessly
complicated.

22. Use inheritance and method overriding to express
differences in behavior, and fields to express variations in
state. An extreme example of what not to do is inheriting
different classes to represent colors instead of using a “color”
field.

23. To avoid a highly frustrating experience, make sure that
there’s only one class of each name anywhere in your
classpath. Otherwise, the compiler can find the identically-
named other class first, and report error messages that make
no sense. If you suspect that you are having a classpath
problem, try looking for .class files with the same names at
each of the starting points in your classpath.

24. When using the event “adapters” in the Java 1.1 AWT, there’s
a particularly easy pitfall you can encounter. If you override
one of the adapter methods and you don’t quite get the
spelling right, you’ll end up adding a new method rather than
overriding an existing method. However, this is perfectly
legal, so you won’t get any error message from the compiler
or run-time system – your code simply won’t work correctly.

25. Use design patterns to eliminate “naked functionality.” That
is, if only one object of your class should be created, don’t
bolt ahead to the application and write a comment “Make
only one of these.” Wrap it in a singleton. If you have a lot of
messy code in your main program that creates your objects,
look for a creational pattern like a factory method in which
you can encapsulate that creation. Eliminating “naked
functionality” will not only make your code much easier to
understand and maintain, it will also make it more
bulletproof against the well-intentioned maintainers that
come after you.

26. Watch out for “analysis paralysis.” Remember that you must
usually move forward in a project before you know
everything, and that often the best and fastest way to learn

1214 Thinking in Java www.BruceEckel.com

about some of your unknown factors is to go to the next step
rather than trying to figure it out in your head.

27. Watch out for premature optimization. First make it work,
then make it fast – but only if you must, and only if it’s
proven that there is a performance bottleneck in a particular
section of your code. Unless you have used a profiler to
discover a bottleneck, you will probably be wasting your
time. The hidden cost of performance tweaks is that your
code becomes less understandable and maintainable.

28. Remember that code is read much more than it is written.
Clean designs make for easy-to-understand programs, but
comments, detailed explanations, and examples are
invaluable. They will help both you and everyone who comes
after you. If nothing else, the frustration of trying to ferret
out useful information from the online Java documentation
should convince you.

29. When you think you’ve got a good analysis, design, or
implementation, do a walkthrough. Bring someone in from
outside your group – this doesn’t have to be a consultant, but
can be someone from another group within your company.
Reviewing your work with a pair of fresh eyes can reveal
problems at a stage where it’s much easier to fix them and
more than pays for the time and money “lost” to the
walkthrough process.

30. Elegance always pays off. In the short term it might seem like
it takes much longer to come up with a truly graceful
solution to a problem, but when it works the first time and
easily adapts to new situations instead of requiring hours,
days, or months of struggle, you’ll see the rewards (even if no
one can measure them). And there’s nothing that matches
the feeling that comes from knowing you’ve got an amazing
design. Resist the urge to hurry; it will only slow you down.

31. You can find other programming guidelines on the Web. A
good set of links can be found at
http://www.ulb.ac.be/esp/ip-Links/Java/joodcs/mm-
WebBiblio.html

 1215

D: Recommended
Reading

Java in a Nutshell: A Desktop Quick Reference, 2nd Edition, by
David Flanagan, O’Reilly & Assoc. 1997. A compact summary of the
online documentation of Java 1.1. Personally, I prefer to browse the
docs from java.sun.com online, especially since they change so
often. However, many folks still like printed documentation and
this fits the bill; it also provides more discussion than the online
documents.

The Java Class Libraries: An Annotated Reference, by Patrick
Chan and Rosanna Lee, Addison-Wesley 1997. What the online
reference should have been: enough description to make it usable.
One of the technical reviewers for Thinking in Java said, “If I had
only one Java book, this would be it (well, in addition to yours, of
course).” I’m not as thrilled with it as he is. It’s big, it’s expensive,
and the quality of the examples doesn’t satisfy me. But it’s a place to
look when you’re stuck and it seems to have more depth (and sheer
size) than Java in a Nutshell.

Java Network Programming, by Elliote Rusty Harold, O’Reilly
1997. I didn’t begin to understand Java networking until I found
this book. I also find his Web site, Café au Lait, to be a stimulating,
opinionated, and up-to-date perspective on Java developments,
unencumbered by allegiances to any vendors. His almost daily
updating keeps up with fast-changing news about Java. See
http://sunsite.unc.edu/javafaq/.

Core Java, 3rd Edition, by Cornell & Horstmann, Prentice-Hall
1997. A good place to go for questions you can’t find the answers to
in Thinking in Java. Note: the Java 1.1 revision is Core Java 1.1
Volume 1 – Fundamentals & Core Java 1.1 Volume 2 – Advanced
Features.

1216 Thinking in Java www.BruceEckel.com

JDBC Database Access with Java, by Hamilton, Cattell & Fisher
(Addison-Wesley, 1997). If you know nothing about SQL and
databases, this is a nice, gentle introduction. It also contains some
of the details as well as an “annotated reference” to the API (again,
what the online reference should have been). The drawback, as with
all books in The Java Series (“The ONLY Books Authorized by
JavaSoft”) is that it’s been whitewashed so that it says only
wonderful things about Java – you won’t find out about any dark
corners in this series.

Java Programming with CORBA Andreas Vogel & Keith Duddy
(John Wiley & Sons, 1997). A serious treatment of the subject with
code examples for the three main Java ORBs (Visibroker, Orbix,
Joe).

Design Patterns, by Gamma, Helm, Johnson & Vlissides (Addison-
Wesley 1995). The seminal book that started the patterns
movement in programming.

UML Tookit, by Hans-Erik Eriksson & Magnus Penker, (John Wiley
& Sons, 1997). Explains UML and how to use it, and has a case
study in Java. An
accompanying CD-ROM contains the Java code and a cut-down
version of Rational Rose. An excellent introduction to UML and
how to use it to build a real system.

Practical Algorithms for Programmers, by Binstock & Rex
(Addison-Wesley 1995). The algorithms are in C, so they’re fairly
easy to translate into Java. Each algorithm is thoroughly explained

 1217

Index
Please note that some names will be duplicated in
capitalized form. Following Java style, the capitalized
names refer to Java classes, while lowercase names refer
to a general concept.

- · 143
!= · 146; operator · 1170
& · 151
&& · 148
&= · 151
@deprecated · 133
 []: indexing operator [] · 239
^ · 151
^= · 151
| · 151
|| · 148
|= · 151
 ‘+’: operator + for String · 1200
+ · 143
< · 146
<< · 152
<<= · 153
<= · 146
== · 146; operator · 1170; vs. equals() · 576
> · 146
>= · 146
>> · 152
>>= · 153

A

abstract: class · 336; inheriting from an
abstract class · 337; vs. interface · 368

abstract keyword · 337
Abstract Window Toolkit (AWT) · 667
AbstractButton · 827
abstraction · 30; in program design · 1054
AbstractSequentialList · 470
AbstractSet · 452
accept() · 952
access: class · 272; control · 252, 276; inner

classes & access rights · 385; package

access and friendly · 264; specifiers · 37,
252, 263; within a directory, via the
default package · 266

action() · 677, 707; cannot combine with
listeners · 778

ActionEvent · 734, 736, 764, 817
ActionListener · 734
actionPerformed() · 739
actor, in use cases · 80
adapters: listener adapters · 740
add() · 699
addActionListener() · 734, 813, 901
addAdjustmentListener() · 734
addComponentListener() · 734
addContainerListener() · 734
addElement(), Vector · 418
addFocusListener() · 734
addItemListener() · 734
addition · 141
addKeyListener() · 734
addListener · 732
addMouseListener() · 734
addMouseMotionListener() · 734
addTab() · 849
addTextListener() · 734
addWindowListener() · 734
AdjustmentEvent · 734, 736
AdjustmentListener · 734
adjustmentValueChanged() · 739
Adler32 · 593
aggregate array initialization · 238
aggregation · 37
aliasing · 140; and String · 1200; during a

method call · 1159
align · 673
AlreadyBoundException · 1019
analysis: and design, object-oriented · 74;

paralysis · 75; requirements analysis · 78

1218 Thinking in Java www.BruceEckel.com

AND: bitwise · 159; logical (&&) · 148
anonymous inner class · 379, 471, 552, 918,

1151; and constructors · 383
appendText() · 688
applet · 670; advantages for client/server

systems · 716; align · 673; and packages ·
675; archive tag, for HTML and JAR
files · 744; classpath · 675; codebase ·
673; combined applets and applications
· 741; destroy() · 670; displaying a Web
page from within an applet · 851; init() ·
670, 745; name · 673; packaging applets
in a JAR file to optimize loading · 744;
parameter · 673; placing inside a Web
page · 671; restrictions · 714; start() ·
670, 745; stop() · 670, 745

Applet · 699; combined with application ·
881; initialization parameters · 881

appletviewer · 673
application: application builder · 802;

application framework · 395; combined
applets and applications · 741; combined
with Applet · 881; standalone windowed
application · 724; windowed
applications · 716

application framework · 669
archive tag, for HTML and JAR files · 744
argument: constructor · 199; final · 309,

553; passing a handle into a method ·
1158; variable argument lists (unknown
quantity and type of arguments) · 243

array · 407, 493; associative array · 432;
bounds checking · 240; dynamic
creation · 1118; first-class objects · 409;
initialization · 238; length · 240, 409;
multidimensional · 244; of Object · 833;
of objects · 409; of primitives · 409;
sorting · 483

ArrayList · 426, 453, 459
Arrays · 483
Arrays.asList() · 482
assigning objects · 139
assignment · 138
associative array · 416, 432
auto-decrement operator · 144
auto-increment operator · 144
automatic type conversion · 283
available() · 563
AWT: Abstract Window Toolkit · 667;

action() · 677, 707; action(), cannot
combine with listeners · 778;
ActionEvent · 734, 736, 764, 817;

ActionListener · 734; actionPerformed()
· 739; add() · 699; addActionListener()
· 734, 813; addAdjustmentListener() ·
734; addComponentListener() · 734;
addContainerListener() · 734;
addFocusListener() · 734;
addItemListener() · 734;
addKeyListener() · 734; addListener ·
732; addMouseListener() · 734;
addMouseMotionListener() · 734;
addTextListener() · 734;
addWindowListener() · 734;
AdjustmentEvent · 734, 736;
AdjustmentListener · 734;
adjustmentValueChanged() · 739;
appendText() · 688; Applet · 699;
applet advantages for client/server
systems · 716; applet restrictions · 714;
archive tag, for HTML and JAR files ·
744; BorderLayout · 700, 744; Button ·
675, 700; Button, creating your own ·
709; Canvas · 709; CardLayout · 693,
847; Checkbox · 686, 688; Checkbox,
Java 1.1 · 753; CheckboxGroup · 688;
CheckboxMenuItem · 720;
CheckboxMenuItem, Java 1.1 · 759;
Choice · 690; Choice, Java 1.1 · 755;
Component · 699, 707;
ComponentAdapter · 739;
componentAdded() · 739;
ComponentEvent · 734, 736;
componentHidden() · 739;
ComponentListener · 734;
componentMoved() · 739;
componentRemoved() · 739;
componentResized() · 739;
componentShown() · 739; consume() ·
749; Container · 699; ContainerAdapter
· 739; ContainerEvent · 734, 736;
ContainerListener · 734; controlling
layout · 699; DataFlavor · 801; desktop
colors · 798; Dialog · 724; dialog box ·
724; Dialog, Java 1.1 · 765;
dispatchEvent() · 765; dispatching
messages · 765; dispose() · 724; drop-
down list · 690; East · 700; eliminating
flicker · 790; enableEvents() · 791; event
listener · 732; Event object · 677; event
target · 677; event-driven programming
· 676; FileDialog · 729; flavor, clipboard
· 798; FlowLayout · 699; Focus traversal
· 797; FocusAdapter · 739; FocusEvent ·

Appendix E: A Bit about Garbage Collection 1219

734, 736; focusGained() · 739;
FocusListener · 734; focusLost() · 739;
Frame · 699, 719; getAppletContext() ·
679; getContents() · 801; getDirectory()
· 731; getFile() · 731; getSelectedItems()
· 692; getState() · 724; getText() · 684;
getTransferData() · 801;
getTransferDataFlavors() · 801;
gotFocus() · 707; graphics · 728;
GridBagLayout · 702; GridLayout · 702;
handleEvent() · 678, 707; inner classes ·
732; isDataFlavorSupported() · 801;
isFocusTraversable() · 797; ItemEvent ·
734, 736, 753; ItemListener · 734, 753;
itemStateChanged() · 739; JAR,
packaging applets to optimize loading ·
744; KeyAdapter · 739; keyDown() ·
707; KeyEvent · 734, 736; KeyListener ·
734; keyPressed() · 739; keyReleased()
· 739; keyTyped() · 739; keyUp() · 707;
Label · 684; List · 692; list boxes · 692;
List, Java 1.1 · 757; listener adapters ·
740; lostFocus() · 707; Menu · 719;
menu shortcuts · 764; Menu, Java 1.1 ·
759; MenuBar · 719, 764;
MenuComponent · 719; MenuItem · 719,
764; MenuItem, Java 1.1 · 759;
MouseAdapter · 739; mouseClicked() ·
739; mouseDown() · 707, 728;
mouseDrag() · 707; mouseDragged() ·
739; mouseEnter() · 707;
mouseEntered() · 739; MouseEvent ·
734, 736; mouseExit() · 707;
mouseExited() · 739; MouseListener ·
734; MouseMotionAdapter · 739;
MouseMotionListener · 734;
mouseMove() · 707; mouseMoved() ·
739; mousePressed() · 739;
mouseReleased() · 739; mouseUp() ·
707; multicast · 816; multicast events ·
773; North · 700; paint() · 709, 728;
processEvent() · 789; radio button ·
688; removeActionListener() · 734, 813;
removeAdjustmentListener() · 734;
removeComponentListener() · 734;
removeContainerListener() · 734;
removeFocusListener() · 734;
removeItemListener() · 734;
removeKeyListener() · 734;
removeMouseListener() · 734;
removeMouseMotionListener() · 734;
removeTextListener() · 734;

removeWindowListener() · 734;
repaint() · 790; requestFocus() · 797;
setActionCommand() · 764;
setAlignment() · 684;
setCheckboxGroup() · 688;
setContents() · 801; setDirectory() ·
731; setEditable() · 682; setFile() · 731;
setLayout() · 699; setText() · 684;
show() · 731; showStatus() · 679; South
· 700; standalone windowed application
· 724; StringSelection · 801;
super.action() · 679; system clipboard ·
798; target of an event · 679; TextArea ·
682, 798; TextArea, Java 1.1 · 750;
TextComponent · 680; TextComponent,
Java 1.1 · 749; TextEvent · 734, 736;
TextField · 680; TextField, Java 1.1 ·
749; TextListener · 734;
textValueChanged() · 739;
TooManyListenersException · 773, 816;
Transferable · 801; unicast · 816; unicast
events · 773; update() · 790; Web
browser window status line · 679; West ·
700; WINDOW_CLOSING · 764;
WINDOW_DESTROY · 724;
windowActivated() · 739;
WindowAdapter · 739; windowClosed()
· 739; windowClosing() · 739;
windowDeactivated() · 739;
windowDeiconified() · 739; windowed
applications · 716; WindowEvent · 734,
736, 764; windowIconified() · 739;
WindowListener · 734;
windowOpened() · 739

B

bag · 450
base: types · 39
base 16 · 161
base 8 · 161
base class · 269, 286, 325; abstract base

class · 336; base-class interface · 330;
constructor · 343; constructors and
exceptions · 291; initialization · 289

Basic: Microsoft Visual Basic · 802
basic concepts of object-oriented

programming (OOP) · 29
BASIC language · 96
BasicArrowButton · 828

1220 Thinking in Java www.BruceEckel.com

beanbox Bean testing tool · 819
BeanInfo: custom BeanInfo · 820
Beans: and Borland’s Delphi · 802; and

Microsoft’s Visual Basic · 802; and
multithreading · 896; application
builder · 802; beanbox Bean testing tool
· 819; bound properties · 820;
component · 803; constrained
properties · 820; custom BeanInfo ·
820; custom property editor · 820;
custom property sheet · 820; events ·
802; EventSetDescriptors · 810;
FeatureDescriptor · 820; getBeanInfo()
· 807; getEventSetDescriptors() · 810;
getMethodDescriptors() · 810;
getName() · 810;
getPropertyDescriptors() · 809;
getPropertyType() · 810;
getReadMethod() · 810;
getWriteMethod() · 810; indexed
property · 819; Introspector · 807; JAR
files for packaging · 817; manifest file ·
818; Method · 810; MethodDescriptors ·
810; naming convention · 803;
properties · 802; PropertyChangeEvent ·
820; PropertyDescriptors · 809;
ProptertyVetoException · 820;
reflection · 802, 806; Serializable · 816;
visual programming · 802

behavioral design patterns · 1057
Bill Joy · 145
binary: numbers · 161; operators · 151
binary numbers, printing · 155
binarySearch() · 483
bind() · 1017
binding: dynamic binding · 326; dynamic,

late, or run-time binding · 321; early ·
46; late · 47; late binding · 326; method
call binding · 326; run-time binding ·
326

BitSet · 428
bitwise: AND · 159; AND operator (&) ·

151; EXCLUSIVE OR XOR (^) · 151;
NOT ~ · 151; operators · 151; OR · 159;
OR operator (|) · 151

bitwise copy · 1169
blank final · 308
blocking: and available() · 563; and

threads · 902; on IO · 912
Booch, Grady · 1111
book: errors, reporting · 24; updates of the

book · 23

boolean: operators that won’t work with
boolean · 146

Boolean · 175; algebra · 151; and casting ·
160; vs. C and C++ · 149

BorderLayout · 700, 744
Borland · 860; Delphi · 802
bound properties · 820
bounds checking, array · 240
BoxLayout · 849
break keyword · 181
browser: class browser · 272
BufferedInputStream · 545, 562
BufferedOutputStream · 547, 564
BufferedReader · 529, 579
BufferedWriter · 579
business objects/logic · 774
button · 675, 700; creating your own · 709;

radio button · 688
ButtonGroup · 828
ByteArrayInputStream · 539
ByteArrayOutputStream · 542

C

C/C++, interfacing with · 1212
C++ · 145; copy constructor · 1188; GNU

Compiler · 99; STL · 449; strategies for
transition to · 96; template · 1136;
templates · 422; vector class, vs. array
and Java Vector · 408; why it succeeds ·
95

callback · 443, 551
Canvas · 709, 938
capitalization: Java capitalization style

source-code checking tool · 625; of
package names · 120

CardLayout · 693, 847
case statement · 189
cast · 48, 208, 642; and collections · 416;

and primitive types · 176; from float or
double to integral, truncation · 192;
operators · 159

catch: catching an exception · 501;
catching any exception · 505; keyword ·
502

CD ROM for book · 20
CGI: Common-Gateway Interface · 989
change: vector of change · 399, 1054, 1114
CharArrayReader · 578
CharArrayWriter · 578

Appendix E: A Bit about Garbage Collection 1221

Checkbox · 686, 688; Java 1.1 · 753
CheckboxGroup · 688
CheckboxMenuItem · 720; Java 1.1 · 759
CheckedInputStream · 590
CheckedOutputStream · 590
Checksum · 593
Choice · 690; Java 1.1 · 755
class · 33, 271; abstract class · 336; access ·

272; anonymous inner class · 379, 552,
918, 1151; anonymous inner class and
constructors · 383; base class · 269, 286,
325; browser · 272; class hierarchies and
exception handling · 533; class literal ·
645, 649; creators · 35; defining the
interface · 92; derived class · 325; final
classes · 311; inheritance diagrams · 304;
inheriting from an abstract class · 337;
inheriting from inner classes · 391;
initialization & class loading · 314;
initialization of data members · 227;
initializing members at point of
definition · 229; initializing the base
class · 289; inner class · 373, 749, 872,
1118; inner class nesting within any
arbitrary scope · 380; inner classes ·
777; inner classes & access rights · 385;
inner classes and overriding · 392; inner
classes and super · 392; inner classes
and the AWT · 732; inner classes and
upcasting · 375; inner classes in
methods & scopes · 378; inner classes,
identifiers and .class files · 394; instance
of · 31; intializing the derived class · 289;
keyword · 39; loading · 315; member
initialization · 283; order of
initialization · 231; private inner classes
· 399; public class, and compilation
units · 253; read-only classes · 1193;
referring to the outer class object in an
inner class · 390; static inner classes ·
388; style of creating classes · 271;
subobject · 289

Class · 830; Class object · 620, 643, 891;
forName() · 644, 858; getClass() · 506;
getConstructors() · 660; getInterfaces()
· 656; getMethods() · 660; getName() ·
656; getSuperclass() · 656; isInstance ·
652; isInterface() · 656; newInstance()
· 656; printInfo() · 656; reflection · 1118;
RTTI using the Class object · 654

Class object · 235
ClassCastException · 357, 647

classpath · 256, 675; and rmic · 1020
class-responsibility-collaboration (CRC)

cards · 82
cleanup: and garbage collector · 294;

performing · 216; with finally · 524
cleanup, guaranteeing with finalize() · 221
client programmer · 35; vs. library creator ·

251
client, network · 950
clipboard: system clipboard · 798
clone() · 1115, 1165; and composition ·

1172; and inheritance · 1180;
Object.clone() · 1170; removing/turning
off clonability · 1182; super.clone() ·
1170, 1186; supporting cloning in
derived classes · 1182

Cloneable interface · 1166
CloneNotSupportedException · 1169
close() · 562
code: calling non-Java code · 1211; coding

standards · 22, 1225; organization · 264;
re-use · 281

codebase · 673
coding: improving code with inner classes ·

872
collection: class · 407, 416; of primitives ·

413
Collection · 450
Collections · 483, 488
collections library, new · 449
collision: name · 259
colors: desktop colors · 798
combo box · 839
comma operator · 157, 180
comments: and embedded documentation

· 127
common interface · 336
common pitfalls when using operators ·

158
Common-Gateway Interface (CGI) · 989
Comparable · 466, 487
Comparator · 466, 486
compare() · 486
compareTo() · 487
comparison: natural comparison method ·

487
compilation unit · 253
compile-time constant · 305
compiling a Java program · 126
Component · 699, 707, 849
component, and Java Beans · 803
ComponentAdapter · 739

1222 Thinking in Java www.BruceEckel.com

componentAdded() · 739
ComponentEvent · 734, 736
componentHidden() · 739
ComponentListener · 734
componentMoved() · 739
componentRemoved() · 739
componentResized() · 739
componentShown() · 739
composition · 37, 281, 446; and cloning ·

1172; and design · 351; and design
patterns · 1055; and dynamic behavior
change · 352; choosing composition vs.
inheritance · 299; combining
composition & inheritance · 291; vs.
inheritance · 305, 573

compression: Java 1.1 compression library
· 589

concept, high · 78
ConcurrentModificationException · 493
conditional operator · 156
conference, Software Development

Conference · 10
console input · 584
const, in C++ · 1200
constant: compile-time constant · 305;

folding · 306; groups of constant values ·
370; implicit constants, and String ·
1199

constrained properties · 820
constructor · 198; and anonymous inner

classes · 379; and exception handling ·
528; and exceptions · 520; and finally ·
529; and overloading · 201; and
polymorphism · 340; arguments · 199;
base-class constructor · 343; base-class
constructors and exceptions · 291;
behavior of polymorphic methods inside
constructors · 348; C++ copy
constructor · 1188; calling base-class
constructors with arguments · 290;
calling from other constructors · 212;
default · 209; default constructor
synthesized by the compiler · 1056;
default constructors · 202; initialization
during inheritance and composition ·
291; name · 198; no-arg constructors ·
202; order of constructor calls with
inheritance · 341; private constructor ·
1056; return value · 200; static
construction clause · 236

Constructor · 830; for reflection · 658, 1118

consulting & mentoring provided by Bruce
Eckel · 23

consume() · 749
Container · 699
container class · 407
ContainerAdapter · 739
ContainerEvent · 734, 736
ContainerListener · 734
continue keyword · 181
control: access · 37
control framework, and inner classes · 395
controlling access · 276
conversion: automatic · 283; narrowing

conversion · 160, 208; widening
conversion · 160

copy: deep copy · 1164; shallow copy · 1164
CORBA · 1022
costs, startup · 99
couplet · 872, 1149
coupling · 503
CRC, class-responsibility-collaboration

cards · 82
CRC32 · 593
createStatement() · 972, 987
creational design patterns · 1057, 1112
critical section, and synchronized block ·

895

D

daemon threads · 882
data: final · 305; primitive data types and

use with operators · 164; static
initialization · 232

data type: equivalence to class · 33
database: flat-file database · 974; Java

DataBase Connectivity (JDBC) · 969;
relational database · 974; URL · 970

DatabaseMetaData · 980
DataFlavor · 801
Datagram · 967; User Datagram Protocol

(UDP) · 967
DataInput · 548
DataInputStream · 545, 562, 563, 564,

565, 579
DataOutput · 548
DataOutputStream · 547, 565, 580
dead, Thread · 902
deadlock, multithreading · 909, 915
death condition, and finalize() · 221

Appendix E: A Bit about Garbage Collection 1223

decorator design pattern · 543
decoupling: via polymorphism · 47
decoupling through polymorphism · 321
decrement operator · 144
deep copy · 1164, 1172; and Vector · 1175;

using serialization to perform deep
copying · 1177

default constructor · 202, 209; synthesized
by the compiler · 1056; synthesizing a
default constructor · 290

default keyword, in a switch statement ·
189

default package · 266
DefaultMutableTreeNode · 844
defaultReadObject() · 615
DefaultTreeModel · 844
defaultWriteObject() · 615
DeflaterOutputStream · 590
Delphi, from Borland · 802
dequeue · 449
derived: derived class · 325; derived class,

initializing · 289; types · 39
design · 354; abstraction in program

design · 1054; adding more methods to a
design · 277; analysis and design, object-
oriented · 74; and composition · 351;
and inheritance · 351; and mistakes ·
277; five stages of object design · 85;
library design · 252; of object
hierarchies · 317; patterns · 90, 98

design patterns · 275, 1053; behavioral ·
1057; creational · 1057, 1112; decorator ·
543; factory method · 1112; observer ·
1090; prototype · 1115, 1124; singleton ·
275; structural · 1057; vector of change ·
1054, 1114; visitor · 1103, 1140

desktop colors · 798
destroy() · 670, 920
destructor · 214, 216, 524; Java doesn’t

have one · 293
development, incremental · 302
diagram: inheritance · 48; use case · 79
diagram, class inheritance diagrams · 304
Dialog · 724; Java 1.1 · 765
dialog box · 724
Dictionary · 432
directory: and packages · 263; creating

directories and paths · 556; lister · 549
dispatchEvent() · 765
dispatching: double dispatching · 1100,

1131, 1142; multiple dispatching · 1099,
1131

dispatching messages, AWT · 765
dispose() · 724
division · 141
documentation: comments & embedded

documentation · 127
Domain Name Service (DNS) · 948
dotted quad · 948
double dispatching · 1100, 1131, 1142
double, literal value marker (D) · 161
Double.valueOf() · 1122
do-while · 179
downcast · 304, 355, 647; type-safe

downcast in run-time type identification
· 646

drop-down list · 690
dynamic: array creation · 1118; behavior

change with composition · 352; binding ·
321, 326

dynamic aggregate initialization syntax ·
412

E

early binding · 46, 326
East · 700
efficiency: and arrays · 408; and final · 312;

and threads · 866; when using the
synchronized keyword · 896

elegance, in programming · 91
elementAt(), Vector · 418, 422
else keyword · 177
enableEvents() · 791
encapsulation · 270
enum, groups of constant values in C &

C++ · 370
Enumeration · 454
equals() · 146, 466, 679; overriding for

HashMap · 439; vs. == · 576
equivalence: == · 146; object equivalence ·

146
error: handling with exceptions · 497;

recovery · 535; reporting errors in book ·
24

event: Event object, AWT · 677; event-
driven programming · 676; event-driven
system · 396; Java Beans · 802; listener ·
732; multicast · 773; multicast event and
Java Beans · 897; target · 677; unicast ·
773

event listener: order of execution · 773

1224 Thinking in Java www.BruceEckel.com

EventSetDescriptors · 810
evolution, in program development · 88
exception: and base-class constructors ·

291; and constructors · 520; and
inheritance · 518, 533; catching an
exception · 501; catching any exception ·
505; changing the point of origin of the
exception · 509; class hierarchies · 533;
constructors · 528; creating your own ·
514; design issues · 532; Error class ·
511; Exception class · 511; exception
handler · 502; exception handling · 497;
exception matching · 533;
FileNotFoundException · 531;
fillInStackTrace() · 507; finally · 522;
guarded region · 501; handler · 498;
handling · 294; losing an exception,
pitfall · 527; NullPointerException · 512;
printStackTrace() · 507; restrictions ·
518; re-throwing an exception · 507;
RuntimeException · 512; specification ·
503; termination vs. resumption · 503;
Throwable · 505; throwing an exception
· 499, 500; try · 524; try block · 501;
typical uses of exceptions · 534

exceptional condition · 499
exceptions: and JNI · 1220
executeQuery() · 972, 987
Exponential notation · 162
extending a class during inheritance · 41
extends · 269, 288, 354; and interface ·

370; keyword · 286
extensible · 1149; program · 330
extension: pure inheritance vs. extension ·

353
extension, sign · 152
extension, zero · 152
Externalizable · 605; alternative approach

to using · 613
Extreme Programming (XP) · 91

F

factory method · 1112
fail fast collections · 493
false · 148
FeatureDescriptor · 820
Field, for reflection · 658
fields, initializing fields in interfaces · 372

file: characteristics of files · 556; data file
output shorthand · 567; formatted file
output shorthand · 567; input shorthand
· 566; JAR file · 254

File · 539, 580, 636; class · 549; File.list() ·
549

File Transfer Protocol (FTP) · 675
FileDescriptor · 539
FileDialog · 729
FileInputStream · 539, 562
FilenameFilter · 549, 633
FileNotFoundException · 531
FileOutputStream · 542, 564
FileReader · 529, 578
FileWriter · 578
fillInStackTrace() · 507
FilterInputStream · 539
FilterOutputStream · 542
FilterReader · 579
FilterWriter · 579
final · 362, 404; and efficiency · 312; and

static · 306; argument · 309, 553; blank
finals · 308; classes · 311; data · 305;
keyword · 305; method · 326; methods ·
310; static primitives · 307; with object
handles · 306

finalize() · 214, 532; and inheritance · 344;
and super · 346; calling directly · 217;
order of finalization of objects · 348

finally · 294, 296; and constructors · 529;
keyword · 522; pitfall · 527

finding .class files during loading · 256
flat-file database · 974
flavor, clipboard · 798
flicker, eliminating · 790
float, literal value marker(F) · 161
floating point: true and false · 149
FlowLayout · 699
Focus traversal · 797
FocusAdapter · 739
FocusEvent · 734, 736
focusGained() · 739
FocusListener · 734
focusLost() · 739
folding, constant · 306
for keyword · 179
forName() · 644, 858
FORTRAN · 162
forward referencing · 230
Fowler, Martin · 75, 89
Frame · 699, 719

Appendix E: A Bit about Garbage Collection 1225

framework: application framework · 669;
control framework and inner classes ·
395

friendly · 252, 376; and interface · 362; and
protected · 301

FTP: File Transfer Protocol (FTP) · 675
function: member function · 35; overriding

· 42
functor · 551

G

garbage collection · 214, 217, 344; and
cleanup · 294; and native method
execution · 1220; forcing finalization ·
297; how the collector works · 223;
order of object reclamation · 297; setting
handles to null to allow cleanup · 398

generic · 422
get(), HashMap · 436
getAppletContext() · 679
getBeanInfo() · 807
getClass() · 506, 654
getConstructor() · 830
getConstructor(), reflection · 1118
getConstructors() · 660; reflection · 1118
getContents() · 801
getDirectory() · 731
getEventSetDescriptors() · 810
getFile() · 731
getFloat() · 972, 988
getInputStream() · 952
getInt() · 972, 988
getInterfaces() · 656
getMethodDescriptors() · 810
getMethods() · 660
getModel() · 844
getName() · 656, 810
getOutputStream() · 952
getPriority() · 921
getProperties() · 440
getPropertyDescriptors() · 809
getPropertyType() · 810
getReadMethod() · 810
getSelectedItems() · 692
getState() · 724
getString() · 972, 988
getSuperclass() · 656
getText() · 684
getTransferData() · 801

getTransferDataFlavors() · 801
getWriteMethod() · 810
GNU C++ · 99
gotFocus() · 707
goto: lack of goto in Java · 183
graphical user interface (GUI) · 396, 667
graphics · 728
greater than (>) · 146
greater than or equal to (>=) · 146
GridBagLayout · 702
GridLayout · 702, 938
guarded region, in exception handling ·

501
GUI: builders · 669; graphical user

interface · 396, 667
guidelines: object development · 86
guidelines, coding standards · 1225
GZIPInputStream · 590
GZIPOutputStream · 590

H

handle: assigning objects by copying
handles · 139; equivalence vs object
equivalence · 146; final · 306; finding
exact type of a base handle · 642; handle
equivalence vs. object equivalence ·
1170; null · 111

handleEvent() · 678, 707
handler, exception · 502
hardware devices, interfacing with · 1211
has-a · 37
has-a relationship, composition · 300
hashCode() · 435, 463; overriding for

HashMap · 439
HashMap · 441, 466
HashSet · 463
Hashtable · 450, 493, 573, 713; used with

Vector · 632
hasNext() · 454
hasNext(), Iterator · 425
Hexadecimal · 161
hiding: implementation · 36
hiding, implementation · 270
high concept · 78
HTML · 989; name · 881; param · 881;

value · 881

1226 Thinking in Java www.BruceEckel.com

I

Icon · 830
idltojava · 1026
if-else statement · 156, 177
IllegalMonitorStateException · 910
ImageIcon · 831
immutable objects · 1193
implementation · 34; and interface · 299,

362; and interface, separating · 36; and
interface, separation · 271; hiding · 36,
270, 376

implements keyword · 362
import keyword · 252
increment operator · 144
incremental development · 302
indexed property · 819
indexing operator [] · 239
indexOf() · 1122; String · 551, 661
InflaterInputStream · 590
inheritance · 39, 269, 281, 286, 321; and

cloning · 1180; and design patterns ·
1054; and final · 312; and finalize() ·
344; and synchronized · 902; choosing
composition vs. inheritance · 299; class
inheritance diagrams · 304; combining
composition & inheritance · 291;
designing with inheritance · 351;
diagram · 48; extending a class during ·
41; extending interfaces with
inheritance · 369; from an abstract class
· 337; from inner classes · 391;
inheritance and method overloading vs.
overriding · 297; initialization with
inheritance · 314; multiple inheritance
in C++ and Java · 366; pure inheritance
vs. extension · 353; specialization · 300;
vs composition · 573; vs. composition ·
305

init() · 670, 745
initialization: and class loading · 314; array

initialization · 238; base class · 289;
class member · 283; constructor
initialization during inheritance and
composition · 291; initializing class
members at point of definition · 229;
initializing with the constructor · 198;
instance initialization · 237, 384;
member initializers · 343; non-static
instance initialization · 237; of class data
members · 227; of method variables ·

227; order of initialization · 231, 350;
static · 316; with inheritance · 314

inizialization: lazy · 284
inline method calls · 310
inner class · 373, 749, 777, 872, 1118;

access rights · 385; and super · 392; and
overriding · 392; and control
frameworks · 395; and the AWT · 732;
and upcasting · 375; anonymous · 471,
1151; anonymous inner class · 552, 918;
anonymous inner class and constructors
· 383; hidden reference to the object of
the enclosing class · 387; identifiers and
.class files · 394; in methods & scopes ·
378; inheriting from inner classes · 391;
nesting within any arbitrary scope · 380;
private · 874; private inner classes · 399;
referring to the outer class object · 390;
static · 387; static inner classes · 388

input: console input · 584; file input
shorthand · 566

InputStream · 538, 956
InputStreamReader · 577, 578, 956
insertNodeInto() · 844
instance: instance initialization · 384; non-

static instance initialization · 237
instance of a class · 31
instanceof: dynamic instanceof · 652;

keyword · 647
Integer: parseInt() · 728
Integer wrapper class · 241
interface: and implementation, separation

· 271; and inheritance · 369; base-class
interface · 330; Cloneable interface used
as a flag · 1166; common interface · 336;
defining the class · 92; for an object · 32;
graphical user interface (GUI) · 396,
667; implementation, separation of · 36;
initializing fields in interfaces · 372;
keyword · 361; Runnable · 877;
upcasting to an interface · 365; user · 81;
vs. abstract · 368; vs. implemenation ·
299

interfacing with hardware devices · 1211
internationalization, in IO library · 577
Internet: Internet Protocol · 948; Internet

Service Provider (ISP) · 674
interrupt() · 916
InterruptedException · 865
Intranet · 716
Introspector · 807

Appendix E: A Bit about Garbage Collection 1227

IO: and threads, blocking · 903;
available() · 563; blocking on IO · 912;
blocking, and available() · 563;
BufferedInputStream · 545, 562;
BufferedOutputStream · 547, 564;
BufferedReader · 529, 579;
BufferedWriter · 579;
ByteArrayInputStream · 539;
ByteArrayOutputStream · 542;
characteristics of files · 556;
CharArrayReader · 578;
CharArrayWriter · 578;
CheckedInputStream · 590;
CheckedOutputStream · 590; close() ·
562; console input · 584; controlling the
process of serialization · 605; data file
output shorthand · 567; DataInput ·
548; DataInputStream · 545, 562, 563,
564, 565, 579; DataOutput · 548;
DataOutputStream · 547, 565, 580;
DeflaterOutputStream · 590; deprecated
· 537; directory lister · 549; directory,
creating directories and paths · 556;
Externalizable · 605; File · 539, 580,
636; File class · 549; file input
shorthand · 566; File.list() · 549;
FileDescriptor · 539; FileInputStream ·
539, 562; FilenameFilter · 549, 633;
FileOutputStream · 542, 564;
FileReader · 529, 578; FileWriter · 578;
FilterInputStream · 539;
FilterOutputStream · 542; FilterReader ·
579; FilterWriter · 579; formatted file
output shorthand · 567; from standard
input · 568; GZIPInputStream · 590;
GZIPOutputStream · 590;
InflaterInputStream · 590; input · 538;
InputStream · 538, 956;
InputStreamReader · 577, 578, 956;
internationalization · 577; Java 1.1
compression library · 589; library · 537;
lightweight persistence · 599;
LineNumberInputStream · 545, 564;
LineNumberReader · 579; mark() · 549;
mkdirs() · 558; nextToken() · 635;
ObjectOutputStream · 599; output · 538;
OutputStream · 538, 540, 956;
OutputStreamWriter · 577, 578, 956;
pipe · 538; piped stream · 912;
PipedInputStream · 539, 569;
PipedOutputStream · 539, 542, 569;
PipedReader · 578; PipedWriter · 578;

PrintStream · 547, 564, 565; PrintWriter
· 579, 956; pushBack() · 635;
PushbackInputStream · 545;
PushBackReader · 579;
RandomAccessFile · 548, 565, 580;
read() · 538; readChar() · 565;
readDouble() · 565; Reader · 577, 578,
956; readExternal() · 605; readLine() ·
532, 562, 564, 565, 569, 579;
readObject() · 600; redirecting
standard IO · 588; renameTo() · 558;
reset() · 549; seek() · 548, 566;
SequenceInputStream · 539, 580;
Serializable · 605; setErr(PrintStream) ·
588; setIn(InputStream) · 588;
setOut(PrintStream) · 588;
StreamTokenizer · 570, 579, 633, 661;
StringBuffer · 539;
StringBufferInputStream · 539, 563;
StringReader · 578; StringWriter · 578;
System.err · 568; System.in · 568, 584;
System.out · 568; transient · 610; typical
IO configurations · 558; Unicode · 578;
write() · 538; writeBytes() · 565;
writeChars() · 565; writeDouble() · 565;
writeExternal() · 605; writeObject() ·
599; Writer · 577, 578, 956; ZipEntry ·
595; ZipInputStream · 590;
ZipOutputStream · 590

IP (Internet Protocol) · 948
is-a · 353; relationship, inheritance · 300;

relationship, inheritance & upcasting ·
303; vs. is-like-a relationships · 43

isDaemon() · 882
isDataFlavorSupported() · 801
isFocusTraversable() · 797
isInstance · 652
isInterface() · 656
is-like-a · 354
ISP (Internet Service Provider) · 674
ItemEvent · 734, 736, 753
ItemListener · 734, 753
itemStateChanged() · 739
iteration, in program development · 87
iterator · 423, 1055
Iterator · 423, 441, 448, 454, 1110;

hasNext() · 425; next() · 425
iterator() · 454

1228 Thinking in Java www.BruceEckel.com

J

JAR · 817; archive tag, for HTML and JAR
files · 744; file · 254, 715; files · 781; jar
files and classpath · 258; Java 1.1 JAR
utility · 596; packaging applets to
optimize loading · 744

Java · 103; and pointers · 1157; and set-top
boxes · 151; capitalization style source-
code checking tool · 625; compiling and
running a program · 126; crashing Java ·
427; public Java seminars · 11; versions ·
23

Java 1.0 · 23, 120, 426, 430, 442, 537, 538,
558, 562, 568, 572, 578, 579, 580, 633,
649, 652, 667, 677, 682, 750, 757, 764,
778, 804, 859, 956, 1055

Java 1.1 · 23, 120, 427, 428, 430, 528, 554,
558, 562, 568, 572, 577, 578, 579, 580,
585, 588, 589, 590, 593, 598, 599, 603,
637, 639, 645, 649, 652, 654, 656, 658,
668, 677, 682, 701, 707, 710, 715, 743,
744, 750, 755, 757, 759, 764, 778, 781,
783, 791, 797, 804, 806, 859, 912, 956,
969, 981, 990, 1014, 1118, 1119, 1177,
1225, 1229, 1233; and Swing · 821; IO
streams · 577; JAR utility · 596;
reflection · 658, 853, 1115

Java 2 · 23, 120, 256, 426, 446, 554, 555,
668, 859, 903, 908, 913, 916, 935, 936,
1055, 1225; collections library, new ·
449; new collections library · 449; Swing
library · 821

Java Beans: see Beans · 801
Java Foundation Classes (JFC/Swing) ·

668
Java operators · 137
Java Virtual Machine · 643
javac · 126
javah · 1213
JButton · 828
JCheckbox · 830
JColorChooser · 849
JComboBox · 840
JComponent · 825
JDBC: createStatement() · 972, 987;

database URL · 970; DatabaseMetaData
· 980; executeQuery() · 972, 987; flat-
file database · 974; getFloat() · 972,
988; getInt() · 972, 988; getString() ·
972, 988; Java DataBase Connectivity ·

969; join · 974; relational database ·
974; ResultSet · 972, 988; SQL stored
procedures · 977; Statement · 972, 987;
Structured Query Language (SQL) · 969

JDK: downloading and installing · 126
JFC: Java Foundation Classes

(JFC/Swing) · 668
JFileChooser · 849
JFrame · 825
JHTMLPane · 849
JInternalFrame · 849
JIT: Just-In Time compilers · 102
JLabel · 826
JLabels · 837
JLayeredPane · 849
JList · 840
JMenu · 838
JMenuItem · 830, 839
JMenuItems · 837
JNI functions · 1216
JNICALL · 1214
JNIEnv · 1216
JNIEXPORT · 1214
join · 974
JOptionPane · 694
JPasswordField · 849
JPopupMenu · 838
JProgressBar · 841
JRadioButton · 830
JScrollPane · 822, 840, 844
JSlider · 841
JTabbedPane · 847
JTextField · 839
JTextPane · 849
JToggleButton · 828
JToolbar · 849
JTree · 841, 844
JVM (Java Virtual Machine) · 643

K

KeyAdapter · 739
keyboard navigation, and Swing · 822
keyDown() · 707
KeyEvent · 734, 736
KeyListener · 734
keyPressed() · 739
keyReleased() · 739
keySet() · 478
keyTyped() · 739

Appendix E: A Bit about Garbage Collection 1229

keyUp() · 707
keywords: class · 33, 39

L

label · 183
Label · 684
labeled break · 184
labeled continue · 184
late binding · 47, 321, 326
layout: controlling layout · 699; layout

manager · 699
lazy evaluation · 449
lazy inizialization · 284
left-shift operator (<<) · 152
length, array member · 240
length, for arrays · 409
less than (<) · 146
less than or equal to (<=) · 146
library: creator, vs. client programmer ·

251; design · 252; use · 252
lightweight: Swing components · 822
lightweight persistence · 599
LineNumberInputStream · 545, 564
LineNumberReader · 579
linked list · 449
LinkedList · 459
list: boxes · 692; drop-down list · 690
List · 408, 416, 450, 459, 692; Java 1.1 ·

757; sorting · 488
list box · 839
listener adapters · 740
listener classes · 777
ListIterator · 459
literal: class literal · 645, 649; double · 161;

float · 161; long · 161; values · 160
loading: .class files · 256; initialization &

class loading · 314; loding a class · 315
local loopback IP address · 951
localhost · 951; and RMI · 1018
lock, for multithreading · 890
logarithms: natural logarithms · 162
logical: AND · 159; operator and short-

circuiting · 149; operators · 148; OR ·
159

long, literal value marker (L) · 161
lostFocus() · 707
lvalue · 138

M

main() · 287
maintenance, program · 88
management obstacles · 99
manifest file, for JAR files · 596, 818
map · 432
Map · 408, 416, 432, 450, 466
mark() · 549
Math.random() · 435; values produced by

· 192
mathematical operators · 141
max() · 489
MDI · 849
member: member function · 35; object · 37
member initializers · 343
mentoring: and training · 99, 101
menu: popup menu · 838
Menu · 719; Java 1.1 · 759; Swing · 832
menu shortcuts · 764
MenuBar · 719, 764
MenuComponent · 719
MenuItem · 719, 764; Java 1.1 · 759
message box, in Swing · 694
message, sending · 33
meta-class · 643
method: adding more methods to a design

· 277; aliasing during a method call ·
1159; aliasing during method calls · 140;
behavior of polymorphic methods inside
constructors · 348; distinguishing
overloaded methods · 203; final · 326;
final methods · 310; initialization of
method variables · 227; inline method
calls · 310; inner classes in methods &
scopes · 378; lookup tool · 853; method
call binding · 326; overloading · 200;
passing a handle into a method · 1158;
polymorphic method call · 321;
polymorphic method calls · 1110;
protected methods · 301; recursive ·
428; recursive method calls · 1119; static
· 213; synchronized method and
blocking · 903

Method · 810; for reflection · 658
MethodDescriptors · 810
methodology, analysis and design · 74
Meyers, Scott · 35
Microsoft · 860; Visual Basic · 802
min() · 489
mission statement · 77

1230 Thinking in Java www.BruceEckel.com

mistakes, and design · 277
mkdirs() · 558
modulus · 141
monitor, for multithreading · 890
MouseAdapter · 739
mouseClicked() · 739
mouseDown() · 707, 728
mouseDrag() · 707
mouseDragged() · 739
mouseEnter() · 707
mouseEntered() · 739
MouseEvent · 734, 736
mouseExit() · 707
mouseExited() · 739
MouseListener · 734
MouseMotionAdapter · 739
MouseMotionListener · 734
mouseMove() · 707
mouseMoved() · 739
mousePressed() · 739
mouseReleased() · 739
mouseUp() · 707
multicast · 816; event, and Java Beans ·

897; multicast events · 773
multidimensional arrays · 244
Multimedia CD ROM for book · 20
multiparadigm programming · 31
multiple dispatching · 1099, 1131
multiple inheritance, in C++ and Java ·

366
multiple-document interface · 849
multiplication · 141
multitasking · 863
multithreading · 863, 960; and collections

· 492; and Java Beans · 896; blocking ·
902; deciding what methods to
synchronize · 901; drawbacks · 943;
Runnable · 936; when to use it · 943

multi-tiered systems · 774

N

name · 673; clash · 253; collisions · 259;
creating unique package names · 255;
spaces · 253

name, HTML keyword · 881
Naming: bind() · 1017; rebind() · 1019;

unbind() · 1019
narrowing conversion · 160, 176, 208

native method interface (NMI) in Java 1.0 ·
1212

natural comparison method · 487
natural logarithms · 162
network programming · 947; accept() ·

952; client · 950; Common-Gateway
Interface (CGI) · 989; datagrams · 967;
dedicated connection · 960; displaying a
Web page from within an applet · 851;
DNS (Domain Name Service) · 948;
dotted quad · 948; getInputStream() ·
952; getOutputStream() · 952; HTML ·
989; identifying machines · 948;
Internet Protocol (IP) · 948; Java
DataBase Connectivity (JDBC) · 969;
local loopback IP address · 951;
localhost · 951; multithreading · 960;
port · 951; reliable protocol · 967; server
· 950; serving multiple clients · 960;
showDocument() · 851; Socket · 959;
stream-based sockets · 967; testing
programs without a network · 950;
Transmission Control Protocol (TCP) ·
967; unreliable protocol · 967; URL ·
852; User Datagram Protocol (UDP) ·
967

new collections library · 449
new operator · 214; and primitives, array ·

240
newInstance() · 830, 849; reflection · 656
newInstance(), reflection · 1118
next() · 454
next(), Iterator · 425
nextToken() · 635
NMI: Java 1.0 native method interface ·

1212
no-arg: constructors · 202
non-Java code, calling · 1211
North · 700
not equivalent (!=) · 146
notify() · 903
notifyAll() · 903
notifyListeners() · 901
notifyObservers() · 1090, 1091, 1098
null · 111, 411
NullPointerException · 512
numbers, binary · 161

Appendix E: A Bit about Garbage Collection 1231

O

object · 31; aliasing · 140; arrays are first-
class objects · 409; assigning objects by
copying handles · 139; assignment and
handle copying · 139; business
object/logic · 774; Class object · 620,
643, 891; creation · 198; equals()
method · 146; equivalence · 146;
equivalence vs handle equivalence · 146;
final · 306; five stages of object design ·
85; guidelines for object development ·
86; handle equivalence vs. object
equivalence · 1170; immutable objects ·
1193; interface to · 32; lock, for
multithreading · 890; member · 37;
object-oriented programming · 640;
order of finalization of objects · 348;
process of creation · 235; serialization ·
598; web of objects · 600, 1164

Object · 408, 435, 1110; array of Object ·
833; clone() · 1165, 1170; getClass() ·
654; standard root class, default
inheritance from · 286

object-oriented: analysis and design · 74;
basic concepts of object-oriented
programming (OOP) · 29

ObjectOutputStream · 599
Observable · 1090
Observer · 1096
observer design pattern · 1090
obstacles, management · 99
Octal · 161
ODBC · 970
OMG · 1022
ones complement operator · 151
OOP · 271; analysis and design · 74; basic

characteristics · 31; basic concepts of
object-oriented programming · 29;
protocol · 362; Simula programming
language · 33; substitutability · 31

operator · 137; + and += overloading for
String · 287; +, for String · 1200; == and
!= · 1170; binary · 151; bitwise · 151;
casting · 159; comma · 157; comma
operator · 180; common pitfalls · 158;
indexing operator [] · 239; logical · 148;
logical operators and short-circuiting ·
149; ones-complement · 151; operator
overloading for String · 1200;
overloading · 158; precedence · 138;

precedence mnemonic · 163; relational ·
146; shift · 152; ternary · 156; unary ·
143, 151

optional methods, in the Java 2 collections
· 481

OR · 159; (||) · 148
order: of constructor calls with inheritance

· 341; of finalization of objects · 348; of
initialization · 231, 314, 350

organization, code · 264
output: data file output shorthand · 567;

formatted file output shorthand · 567
OutputStream · 538, 540, 956
OutputStreamWriter · 577, 578, 956
overflow: and primitive types · 175; stack

overflow · 428
overloading: and constructors · 201;

distinguishing overloaded methods ·
203; lack of name hiding during
inheritance · 297; method overloading ·
200; on return values · 208; operator +
and += overloading for String · 287;
operator overloading · 158; operator
overloading for String · 1200;
overloading vs. overriding · 297; vs.
overriding · 334

overriding: and inner classes · 392;
function · 42; overloading vs. overriding
· 297; vs. overloading · 334

P

package · 252, 1109; access, and friendly ·
264; and applets · 675; and directory
structure · 263; creating unique package
names · 255; default package · 266;
names, capitalization · 120; visibility,
friendly · 376

paint() · 709, 728
pair programming · 93
paralysis, analysis · 75
param, HTML keyword · 881
parameter, applet · 673
parameterized type · 422, 448, 1135
parseInt() · 728
pass: pass by value · 1162; passing a handle

into a method · 1158
patterns, design · 90, 98
patterns, design patterns · 275, 1053
performance: and final · 312

1232 Thinking in Java www.BruceEckel.com

performance issues · 100
persistence · 616; lightweight persistence ·

599
pipe · 538
piped stream · 912
PipedInputStream · 539, 569
PipedOutputStream · 539, 542, 569
PipedReader · 578
PipedWriter · 578
planning, software development · 77
pointers, and Java · 1157
polymorphism · 45, 321, 357, 640, 665,

1110, 1128, 1153; and constructors · 340;
behavior of polymorphic methods inside
constructors · 348

popup menu · 838
port · 951
portability in C, C++ and Java · 163
precedence: operator precedence

mnemonic · 163
prerequisites, for this book · 29
primitive: collections of primitives · 413;

comparison · 146; data types, and use
with operators · 164; dealing with the
immutability of primitive wrapper
classes · 1193; final · 306; final static
primitives · 307; initialization of class
data members · 227; wrappers · 437

printInfo() · 656
println() · 426
printStackTrace() · 505, 507
PrintStream · 547, 564, 565
PrintWriter · 579, 956
priority: default priority for a Thread

group · 926; thread · 921
private · 37, 252, 263, 267, 301, 890; and

the final specifier · 311; constructor ·
1056; inner class · 874; inner classes ·
399

problem space · 30, 302
process, and threading · 863
processEvent() · 789
program: maintenance · 88
programmer, client · 35
programming: basic concepts of object-

oriented programming (OOP) · 29;
coding standards · 1225; event-driven
programming · 676; Extreme
Programming (XP) · 91; in the large · 96;
multiparadigm · 31; object-oriented ·
640; pair · 93

progress bar · 840

promotion: of primitive types · 175; type
promotion · 163

Properties · 441, 633
property · 802; bound properties · 820;

constrained properties · 820; custom
property editor · 820; custom property
sheet · 820; indexed property · 819

PropertyChangeEvent · 820
PropertyDescriptors · 809
ProptertyVetoException · 820
protected · 37, 252, 263, 269, 301; and

friendly · 301; use in clone() · 1166
protocol · 362; unreliable protocol · 967
prototype · 1115; design pattern · 1124
prototyping: rapid · 90
public · 37, 252, 263, 265; and interface ·

362; class, and compilation units · 253
pure: substitution · 43
pure inheritance, vs. extension · 353
pure substitution · 353
pushBack() · 635
PushbackInputStream · 545
PushBackReader · 579
put(), HashMap · 436
Python · 84, 103

Q

queue · 449
Quicksort · 442

R

RAD (Rapid Application Development) ·
657

radio button · 688
random number generator, values

produced by · 192
random() · 435
Random.nextBytes() · 485
RandomAccessFile · 548, 565, 580
rapid prototyping · 90
read() · 538
readChar() · 565
readDouble() · 565
Reader · 577, 578, 912, 956
readExternal() · 605
reading from standard input · 568
readLine() · 532, 562, 564, 565, 569, 579

Appendix E: A Bit about Garbage Collection 1233

readObject() · 600; with Serializable · 613
rebind() · 1019
recursive · 428; method calls · 1119
redirecting standard IO · 588
refactoring · 89
referencing, forward referencing · 230
reflection · 657, 806, 853, 1118; and Beans

· 802; difference between RTTI and
reflection · 659; Java 1.1 reflection · 1115

registry: remote object registry · 1017
relational: database · 974; operators · 146
reliable protocol · 967
Remote Method Invocation (RMI) · 1014
RemoteException · 1022
remove() · 454
removeActionListener() · 734, 813, 901
removeAdjustmentListener() · 734
removeComponentListener() · 734
removeContainerListener() · 734
removeFocusListener() · 734
removeItemListener() · 734
removeKeyListener() · 734
removeMouseListener() · 734
removeMouseMotionListener() · 734
removeTextListener() · 734
removeWindowListener() · 734
renameTo() · 558
repaint() · 790
reporting errors in book · 24
request, in OOP · 33
requestFocus() · 797
requirements analysis · 78
reset() · 549
ResultSet · 972, 988
resume() · 903, 907; and deadlocks · 916;

deprecation in Java 2 · 918
resumption, termination vs. resumption,

exception handling · 503
re-throwing an exception · 507
return: constructor return value · 200;

overloading on return value · 208
reusability · 37
reuse · 86; code reuse · 281; existing class

libraries · 98; reusable code · 801
right-shift operator (>>) · 152
RMI: AlreadyBoundException · 1019; and

CORBA · 1032; bind() · 1017; localhost ·
1018; rebind() · 1019; Remote · 1015;
remote interface · 1015; Remote Method
Invocation · 1014; remote object registry
· 1017; RemoteException · 1015, 1022;
rmic · 1020; rmic and classpath · 1020;

rmiregistry · 1017; RMISecurityManager
· 1017; Serializable arguments · 1020;
skeleton · 1020; stub · 1020; TCP/IP ·
1019; unbind() · 1019;
UnicastRemoteObject · 1016

rmic · 1020
rmiregistry · 1017
RMISecurityManager · 1017
rollover · 832
RTI: Class · 830
RTTI: and cloning · 1170; cast · 642; Class

object · 643; ClassCastException · 647;
Constructor · 658, 830; difference
between RTTI and reflection · 659;
downcast · 647; eliminating from your
design · 1131; Field · 658;
getConstructor() · 830; instanceof
keyword · 647; isInstance · 652; meta-
class · 643; Method · 658; misuse of
RTTI · 1110, 1126, 1149; newInstance() ·
830; reflection · 657; run-time type
identification (RTTI) · 356; type-safe
downcast · 646; using the Class object ·
654

runFinalizersOnExit() · 347, 562
Runnable · 936; interface · 877; Thread ·

902
running a Java program · 126
run-time binding · 326; polymorphism ·

321
run-time type identification: (RTTI) · 356;

misuse · 664; shape example · 639;
when to use it · 664

RuntimeException · 408, 512
rvalue · 138

S

safety, and applet restrictions · 714
scenario · 79
scheduling · 81
scope: inner class nesting within any

arbitrary scope · 380; inner classes in
methods & scopes · 378; use case · 88

section, critical section and synchronized
block · 895

seek() · 548, 566
seminars: public Java seminars · 11;

training, provided by Bruce Eckel · 23
sending a message · 33

1234 Thinking in Java www.BruceEckel.com

separation of interface and
implementation · 36, 271

SequenceInputStream · 539, 580
Serializable · 598, 605, 610, 623, 816;

readObject() · 613; writeObject() · 613
serialization: and object storage · 616; and

transient · 610; controlling the process
of serialization · 605;
defaultReadObject() · 615;
defaultWriteObject() · 615; RMI
arguments · 1020; to perform deep
copying · 1177; Versioning · 616

server · 950
Set · 408, 416, 450, 463
setActionCommand() · 764
setAlignment() · 684
setBorder() · 825
setChanged() · 1091, 1098
setCheckboxGroup() · 688
setContents() · 801
setDaemon() · 882
setDirectory() · 731
setEditable() · 682
setErr(PrintStream) · 588
setFile() · 731
setIcon() · 832
setIn(InputStream) · 588
setLayout() · 699
setOut(PrintStream) · 588
setPriority() · 921
setSelectedIndex() · 849
setText() · 684
setToolTipText() · 825
shallow copy · 1164, 1172
shape: example · 40, 327; example, and

run-time type identification · 639
shift operators · 152
short-circuit, and logical operators · 149
shortcut, menu shortcuts · 764
show() · 731
showConfirmDialog() · 849
showDocument() · 851
showMessageDialog() · 849
showStatus() · 679
side effect · 137, 145, 208, 1161
sign extension · 152
signed two’s complement · 156
Simula programming language · 33
Simula-67 · 271
singleton · 1055; design pattern · 275
size(), Vector · 418
sizeof(): lack of in Java · 163

skeleton, RMI · 1020
sleep() · 865, 888, 903, 906
slider · 840
Smalltalk · 31, 214
Socket · 959
sockets, stream-based · 967
software: development methodology · 75
Software Development Conference · 10
solution space · 30
sort() · 483
sorting · 442
source code copyright notice · 21
South · 700
space: problem · 30; solution · 30
specialization · 300
specification: system specification · 78
specification, exception · 503
specifier: access specifiers · 37, 252, 263
splitter control · 849
SQL: stored procedures · 977; Structured

Query Language · 969
stack: overflow · 428
Stack · 430, 493
standard input: Reading from standard

input · 568
standards: coding standards · 22, 1225
start() · 670, 745
startup costs · 99
statement: mission · 77
Statement · 972, 987
static · 362, 404; and final · 306; and inner

classes · 387; block · 236; clause · 644;
construction clause · 236; data
initialization · 232; final static
primitives · 307; initialization · 316;
inner classes · 388; keyword · 213;
method · 213; synchronized static · 891

status line, Web browser · 679
STL: C++ · 449
stop() · 670, 745; and deadlocks · 916;

deprecation in Java 2 · 916
stored procedures in SQL · 977
stream-based sockets · 967
StreamTokenizer · 570, 579, 633, 661
String: automatic type conversion · 420;

class methods · 1199; concatenation with
operator + · 158; immutability · 1199;
indexOf() · 551, 661, 1122; lexicographic
vs. alphabetic sorting · 485; methods ·
1202; operator + · 420; Operator + ·
158; operator + and += overloading ·

Appendix E: A Bit about Garbage Collection 1235

287; substring() · 1122; toString() ·
283, 418; trim() · 1122

StringBuffer · 539, 563; methods · 1205
StringBufferInputStream · 539, 563
StringReader · 578
StringSelection · 801
StringTokenizer · 574
StringWriter · 578
structural design patterns · 1057
stub, RMI · 1020
style of creating classes · 271
subList() · 489
subobject · 289, 299
substitutability, in OOP · 31
substitution: principle · 43
substring() · 1122
subtraction · 141
super · 290; and finalize() · 346; and inner

classes · 392
super keyword · 288
super.action() · 679
super.clone() · 1166, 1170, 1186
superclass · 288
suspend() · 903, 907; and deadlocks · 916;

deprecation in Java 2 · 918
Swing: AbstractButton · 827; addTab() ·

849; BasicArrowButton · 828;
BoxLayout · 849; ButtonGroup · 828;
combo box · 839; Component · 849;
DefaultMutableTreeNode · 844;
DefaultTreeModel · 844; getModel() ·
844; Icon · 830; ImageIcon · 831;
insertNodeInto() · 844; Java
Foundation Classes (JFC) · 668;
JButton · 828; JCheckbox · 830;
JColorChooser · 849; JComboBox · 840;
JComponent · 825; JFileChooser · 849;
JFrame · 825; JHTMLPane · 849;
JInternalFrame · 849; JLabel · 826;
JLabels · 837; JLayeredPane · 849; JList
· 840; JMenu · 838; JMenuItem · 830,
839; JMenuItems · 837; JOptionPane ·
694; JPasswordField · 849;
JPopupMenu · 838; JProgressBar · 841;
JRadioButton · 830; JScrollPane · 822,
840, 844; JSlider · 841; JTabbedPane ·
847; JTextField · 839; JTextPane · 849;
JToggleButton · 828; JToolbar · 849;
JTree · 841, 844; keyboard navigation ·
822; list box · 839; MDI · 849; Menus ·
832; message box · 694; multiple-
document interface · 849;

newInstance() · 849; popup menu ·
838; progress bar · 840; rollover · 832;
setBorder() · 825; setIcon() · 832;
setSelectedIndex() · 849;
setToolTipText() · 825;
showConfirmDialog() · 849;
showMessageDialog() · 849; slider ·
840; splitter control · 849; table · 845;
TitledBorder · 827, 849; tool tip · 832;
toolbar · 849; tree · 842; UI Component
library · 821; undo · 849

switch keyword · 189
synchronized · 61, 890; and inheritance ·

902; and wait() & notify() · 909;
collections · 492; deciding what
methods to synchronize · 901; efficiency
· 896; method, and blocking · 903; static
· 891; synchronized block · 895

system clipboard · 798
system specification · 78
System.err · 568
System.gc() · 220
System.in · 568, 584
System.out · 568
System.out.println() · 426
System.runFinalization() · 220

T

table · 845
target, of an event · 679
TCP, Transmission Control Protocol · 967
TCP/IP, and RMI · 1019
template: in C++ · 422, 1136
termination vs. resumption, exception

handling · 503
ternary operator · 156
testing: automated · 92; Extreme

Programming (XP) · 92; unit testing ·
287

testing techniques · 389
TextArea · 682, 798; Java 1.1 · 750
TextComponent · 680; Java 1.1 · 749
TextEvent · 734, 736
TextField · 680; Java 1.1 · 749
TextListener · 734
textValueChanged() · 739
this keyword · 210
Thread · 863, 865; and Java Beans · 896;

and Runnable · 936; blocked · 902;

1236 Thinking in Java www.BruceEckel.com

combined with main class · 875;
daemon threads · 882; dead · 902;
deadlock · 915; deciding what methods
to synchronize · 901; destroy() · 920;
drawbacks · 943; getPriority() · 921;
interrupt() · 916; IO and threads,
blocking · 903; isDaemon() · 882; new
Thread · 902; notify() · 903; notifyAll()
· 903; order of execution of threads ·
869; priority · 921; properly suspending
& resuming · 918; resume() · 903, 907;
resume() , deprecation in Java 2 · 918;
resume(), and deadlocks · 916; run() ·
867; Runnable · 902; Runnable
interface · 877; setDaemon() · 882;
setPriority() · 921; sharing limited
resources · 884; sleep() · 888, 903, 906;
start() · 868; states · 902; stop() ,
deprecation in Java 2 · 916; stop(), and
deadlocks · 916; stopping · 916;
suspend() · 903, 907; suspend() ,
deprecation in Java 2 · 918; suspend(),
and deadlocks · 916; synchronized
method and blocking · 903; thread
group · 926; thread group, default
priority · 926; threads and efficiency ·
866; wait() · 903, 909; when they can
be suspended · 889; when to use threads
· 943; yield() · 903

throw keyword · 500
Throwable · 509; base class for Exception ·

505
throwing an exception · 500
time-critical code sections · 1211
TitledBorder · 827, 849
toArray() · 478
token · 570
tool tip · 832
toolbar · 849
TooManyListenersException · 773, 816
toString() · 283, 418, 426, 441
training · 97; and mentoring · 99, 101
training seminars provided by Bruce Eckel

· 23
Transferable · 801
transient · 610
translation unit · 253
Transmission Control Protocol (TCP) · 967
tree · 842
TreeMap · 466
TreeSet · 463
trim() · 1122

true · 148
try · 296, 524; try block in exceptions · 501
two’s complement, signed · 156
type: base · 39; data type equivalence to

class · 33; derived · 39; finding exact
type of a base handle · 642;
parameterized type · 422, 1135;
primitive data types and use with
operators · 164; type checking and
arrays · 408; type safety in Java · 159;
type-safe downcast in run-time type
identification · 646; weak typing · 47

TYPE field, for primitive class literals · 646
type safe sets of constants · 372
type-check coding · 1110
type-conscious Vector · 420

U

UDP, User Datagram Protocol · 967
UML · 84; indicating composition · 38;

Unified Modeling Language · 35
unary: minus (-) · 143; operator · 151;

operators · 143; plus (+) · 143
unbind() · 1019
undo · 849
unicast · 816; unicast events · 773
UnicastRemoteObject · 1016
Unicode · 578
Unified Modeling Language (UML) · 35
unit testing · 287
unmodifiable collections · 491
unsupported methods, in the Java 2

collections · 481
UnsupportedOperationException · 481
upcasting · 48, 303, 322, 640, 1110; and

interface · 365; inner classes and
upcasting · 375

update() · 790
updates of the book · 23
URL · 852
use case · 79; iteration · 87; scope · 88
User Datagram Protocol (UDP) · 967
user interface · 81; and threads, for

responsiveness · 869; responsive, with
threading · 864

Appendix E: A Bit about Garbage Collection 1237

V

value: preventing change at run-time · 305
value, HTML keyword · 881
variable: defining a variable · 180;

initialization of method variables · 227;
variable argument lists (unknown
quantity and type of arguments) · 243

vector: of change · 89
Vector · 422, 430, 441, 493, 1109;

addElement() · 418; and deep copying ·
1175; elementAt() · 418, 422; size() ·
418; type-conscious Vector · 420; used
with Hashtable · 632

vector of change · 399, 1054, 1114, 1153
versioning, serialization · 616
versions of Java · 23
visibility, package visibility, (friendly) · 376
visitor pattern · 1103, 1140
visual: programming · 802; programming

environments · 669
Visual Basic, Microsoft · 802

W

wait() · 903, 909
weak: weakly typed language · 47
Web: displaying a Web page from within

an applet · 851; placing an applet inside
a Web page · 671; safety, and applet
restrictions · 714

Web browser: status line · 679
web of objects · 600, 1164
West · 700
while · 178
widening conversion · 160
wild-card · 75
window: Abstract Window Toolkit (see

AWT) · 667; standalone windowed
application · 724; Web browser status
line · 679

WINDOW_CLOSING · 764
WINDOW_DESTROY · 724
windowActivated() · 739
WindowAdapter · 739
windowClosed() · 739
windowClosing() · 739
windowDeactivated() · 739
windowDeiconified() · 739
windowed applications · 716
WindowEvent · 734, 736, 764
windowIconified() · 739
WindowListener · 734
windowOpened() · 739
wrapper, dealing with the immutability of

primitive wrapper classes · 1193
write() · 538
writeBytes() · 565
writeChars() · 565
writeDouble() · 565
writeExternal() · 605
writeObject() · 599; with Serializable · 613
Writer · 577, 578, 912, 956

X

XOR · 151
XP, Extreme Programming · 91

Y

yield() · 903

Z

zero extension · 152
ZipEntry · 595
ZipInputStream · 590
ZipOutputStream · 590

Bruc r

!
Ava l.com

Overhead s . Just play
it to see an

Entire set o the
discussion

Special scr Java with
hyperlinke

Based on

Taught by

Personal
and his se

Includes

Intermed

H d d
e Eckel’s Hands-On Java Semina
Multimedia CD

It’s like coming to the seminar
ilable at http://www.BruceEcke
lides and synchronized audio for all the lectures
d hear the lectures!

f lectures are indexed so you can rapidly locate
of the subject you’re interested in.

een-formatted electronic version of Thinking in
d index and table of contents.

Check www.BruceEckel.com for
in-depth details and

the date and location of the next
Hands-On Java Seminar

 this book

 Bruce Eckel

attention from Bruce Eckel
minar assistants

in-class programming exercises

iate/Advanced seminars also offered

h l d j d thi i

	Thinking in Java (2nd Edition)
	Preface
	Preface to the 2nd edition
	Java 2

	The CD ROM

	Introduction
	Prerequisites
	Learning Java
	Goals
	Online documentation
	Chapters
	Exercises
	Multimedia CD ROM
	Source code
	Coding standards

	Java versions
	Seminars and mentoring
	Errors
	Note on the cover design
	Acknowledgements
	Internet contributors

	1: Introduction �to Objects
	The progress of abstraction
	An object has an interface
	The hidden implementation
	Reusing the implementation
	Inheritance:�reusing the interface
	Is-a vs. is-like-a relationships

	Interchangeable objects �with polymorphism
	Abstract base classes and interfaces

	Object landscapes and lifetimes
	Collections and iterators
	The singly-rooted hierarchy
	Collection libraries and support for easy collection use
	Downcasting vs. templates/generics

	The housekeeping dilemma: who should clean up?
	Garbage collectors vs. efficiency and flexibility

	Exception handling: dealing with errors
	Multithreading
	Persistence
	Java and the Internet
	What is the Web?
	Client/Server computing
	The Web as a giant server

	Client-side programming
	Plug-ins
	Scripting languages
	Java
	ActiveX
	Security
	Internet vs. Intranet

	Server-side programming
	A separate arena: applications

	Analysis and design
	Phase 0: Make a plan
	The mission statement

	Phase 1: What are we making?
	Phase 2: How will we build it?
	Five stages of object design
	Guidelines for object development

	Phase 3: Build the core
	Phase 4: Iterate the use cases
	Phase 5: Evolution
	Plans pay off

	Extreme programming
	Write tests first
	Pair programming

	Why Java succeeds
	Systems are easier �to express and understand
	Maximal leverage with libraries
	Error handling
	Programming in the large

	Strategies for transition
	Guidelines
	1. Training
	2. Low-risk project
	3. Model from success
	4. Use existing class libraries
	5. Don’t rewrite existing code in Java

	Management obstacles
	Startup costs
	Performance issues
	Common design errors

	Java vs. C++?
	Summary

	2: Everything�is an Object
	You manipulate objects �with handles
	You must create �all the objects
	Where storage lives
	Special case: primitive types
	High-precision numbers

	Arrays in Java

	You never need to �destroy an object
	Scoping
	Scope of objects

	Creating new �data types: class
	Fields and methods
	Default values for primitive members

	Methods, arguments �and return values
	The argument list

	Building a Java program
	Name visibility
	Using other components
	The static keyword

	Your first Java program
	Compiling and running

	Comments and embedded documentation
	Comment documentation
	Syntax
	Embedded HTML
	@see: referring to other classes
	Class documentation tags
	@version
	@author

	Variable documentation tags
	Method documentation tags
	@param
	@return
	@exception
	@deprecated

	Documentation example

	Coding style
	Summary
	Exercises

	3: Controlling Program Flow
	Using Java operators
	Precedence
	Assignment
	Aliasing during method calls

	Mathematical operators
	Unary minus and plus operators

	Auto increment and decrement
	Relational operators
	Testing object equivalence

	Logical operators
	Short-circuiting

	Bitwise operators
	Shift operators
	Ternary if-else operator
	The comma operator
	String operator +
	Common pitfalls when using operators
	Casting operators
	Literals
	Promotion

	Java has no “sizeof”
	Precedence revisited
	A compendium of operators

	Execution control
	true and false
	if-else
	return

	Iteration
	do-while
	for
	The comma operator

	break and continue
	The infamous “goto”

	switch
	Calculation details

	Summary
	Exercises

	4: Initialization �& Cleanup
	Guaranteed initialization �with the constructor
	Method overloading
	Distinguishing overloaded methods
	Overloading with primitives
	Overloading on return values
	Default constructors
	The this keyword
	Calling constructors from constructors
	The meaning of static

	Cleanup: finalization and �garbage collection
	What is finalize(€) for?
	You must perform cleanup
	The death condition
	How a garbage collector works

	Member initialization
	Specifying initialization
	Constructor initialization
	Order of initialization
	Static data initialization
	Explicit static initialization
	Non-static instance initialization

	Array initialization
	Multidimensional arrays

	Summary
	Exercises

	5: Hiding the Implementation
	package: the library unit
	Creating unique package names
	Collisions

	A custom tool library
	Using imports to change behavior
	Package caveat

	Java access specifiers
	“Friendly”
	public: interface access
	The default package

	private: you can’t touch that!
	protected: “sort of friendly”

	Interface and implementation
	Class access
	Summary
	Exercises

	6: Reusing Classes
	Composition syntax
	Inheritance syntax
	Initializing the base class
	Constructors with arguments
	Catching base constructor exceptions

	Combining composition �and inheritance
	Guaranteeing proper cleanup
	Order of garbage collection

	Name hiding

	Choosing composition �vs. inheritance
	protected
	Incremental development
	Upcasting
	Why “upcasting”?
	Composition vs. inheritance revisited

	The final keyword
	Final data
	Blank finals
	Final arguments

	Final methods
	Final classes
	Final caution

	Initialization and �class loading
	Initialization with inheritance

	Summary
	Exercises

	7: Polymorphism
	Upcasting
	Why upcast?

	The twist
	Method call binding
	Producing the right behavior
	Extensibility

	Overriding vs. overloading
	Abstract classes �and methods
	Constructors and polymorphism
	Order of constructor calls
	Inheritance and finalize(€)
	Behavior of polymorphic methods �inside constructors

	Designing with inheritance
	Pure inheritance vs. extension
	Downcasting and run-time �type identification

	Summary
	Exercises

	8: Interfaces & Inner Classes
	Interfaces
	“Multiple inheritance” in Java
	Extending an interface �with inheritance
	Grouping constants
	Initializing fields in interfaces

	Inner classes
	Inner classes and upcasting
	Inner classes �in methods and scopes
	Anonymous inner classes
	The link to the outer class
	static inner classes
	Referring to the outer class object
	Inheriting from inner classes
	Can inner classes be overridden?
	Inner class identifiers
	Why inner classes?
	Closures & Callbacks

	Inner classes & control frameworks

	Summary
	Exercises

	9: Holding �Your Objects
	Arrays
	Arrays are first-class objects
	Collections of primitives

	Returning an array

	Collections
	Disadvantage: unknown type
	Sometimes it works right anyway
	Making a type-conscious Vector
	Parameterized types

	Iterators
	Types of collections
	ArrayList
	Crashing Java

	BitSet
	Stack
	Map
	Creating “key” classes
	Properties: a type of HashMap

	Enumerators revisited

	Sorting
	Java 2 Collections
	Using Collections
	Using Lists
	Using Sets
	Using Maps
	Choosing an implementation
	Choosing between Lists
	Choosing between Sets
	Choosing between Maps

	Unsupported operations
	Sorting and searching
	Arrays
	Comparable and Comparator
	Lists

	Utilities
	Making a Collection or Map unmodifiable
	Synchronizing a Collection or Map

	Summary
	Exercises

	10: Error Handling �with Exceptions
	Basic exceptions
	Exception arguments

	Catching an exception
	The try block
	Exception handlers
	Termination vs. resumption

	The exception specification
	Catching any exception
	Rethrowing an exception

	Standard Java exceptions
	The special case of RuntimeException

	Creating your own exceptions
	Exception restrictions
	Performing cleanup �with finally
	What’s finally for?
	Pitfall: the lost exception

	Constructors
	Exception matching
	Exception guidelines

	Summary
	Exercises

	11: The Java �IO System
	Input and output
	Types of InputStream
	Types of OutputStream

	Adding attributes �and useful interfaces
	Reading from an InputStream �with FilterInputStream
	Writing to an OutputStream �with FilterOutputStream

	Off by itself: �RandomAccessFile
	The File class
	A directory lister
	Anonymous inner classes
	A sorted directory listing

	Checking for and creating directories

	Typical uses of IO streams
	Input streams
	1. Buffered input file
	2. Input from memory
	3. Formatted memory input
	4. Line numbering and file output

	Output streams
	5. Storing and recovering data
	6. Reading and writing random access files

	Shorthand for file manipulation
	7. File input shorthand
	8. Formatted file output shorthand
	9. Data file output shorthand

	Reading from standard input
	Piped streams

	StreamTokenizer
	StringTokenizer

	Java 1.1 IO streams
	Sources and sinks of data
	Modifying stream behavior
	Unchanged Classes
	An example
	A cross-reference generator
	Redirecting standard IO

	Compression
	Simple compression with GZIP
	Multi-file storage with Zip
	The Java archive (jar) utility

	Object serialization
	Finding the class
	Controlling serialization
	The transient keyword
	An alternative to Externalizable
	Versioning

	Using persistence

	Checking capitalization style
	Summary
	Exercises

	12: Run-Time Type Identification
	The need for RTTI
	The Class object
	Class literals

	Checking before a cast
	Using class literals
	A dynamic instanceof

	RTTI syntax
	Reflection: run-time �class information
	A class method extractor

	Summary
	Exercises

	13: Creating Windows �& Applets
	The basic applet
	Running applets inside a Web browser
	Automatically generating HTML files

	Using Appletviewer
	Testing applets

	Making a button
	Capturing an event
	Text fields
	Text areas
	Labels
	HTML text on Swing components

	Check boxes
	Radio buttons
	Drop-down lists
	List boxes
	Tabbed panes
	Message boxes
	Menus
	Dialog Boxes
	Controlling layout
	FlowLayout
	BorderLayout
	GridLayout
	GridBagLayout
	BoxLayout
	Absolute positioning

	Alternatives to action
	Closing the window

	Applet restrictions
	Applet advantages

	Windowed applications
	Combined application/applet
	Menus
	Dialog boxes
	File dialogs

	The event model
	Event and listener types
	Using listener adapters for simplicity

	Making windows and applets
	Packaging the applet into a JAR file

	Revisiting the earlier examples
	Demonstrating �the framework methods
	Text fields
	Text areas
	Check boxes and radio buttons
	Drop-down lists
	Lists
	Menus
	Dialog boxes

	Selecting Look & Feel
	Binding events dynamically
	Separating business logic �from UI logic
	Recommended coding approaches
	Baseline: the good way to do it
	Implementing the main class as a listener
	Mixing the approaches
	Inheriting a component
	Ugly component inheritance

	JFC APIs
	Desktop colors
	The clipboard

	Visual programming �and Beans
	What is a Bean?
	Extracting BeanInfo �with the Introspector
	A more sophisticated Bean
	Packaging a Bean
	More complex Bean support
	More to Beans

	Introduction to Swing
	Benefits of Swing
	Easy conversion
	A display framework
	Tool tips
	Borders
	Buttons
	Button groups
	Icons
	Menus
	Popup menus
	List boxes and combo boxes
	Sliders and progress bars
	Trees
	Tables
	Tabbed Panes
	More to Swing

	Using URLs from within an applet
	Reading a file from the server

	A method lookup tool
	Summary
	Exercises

	14: Multiple Threads
	Responsive user interfaces
	Inheriting from Thread
	Threading for a responsive interface
	Improving the code with an inner class

	Combining the thread �with the main class
	Making many threads
	Daemon threads

	Sharing limited resources
	Improperly accessing resources
	How Java shares resources
	Synchronizing the counters
	Synchronized efficiency

	Java Beans revisited

	Blocking
	Becoming blocked
	Sleeping
	Suspending and resuming
	Wait and notify
	Blocking on IO
	Testing

	Deadlock
	The deprecation of stop(€), suspend(€), �resume(€), and destroy(€) in Java 2

	Priorities
	Thread groups
	Controlling thread groups

	Runnable revisited
	Too many threads

	Summary
	Exercises

	15: Distributed Computing
	Identifying a machine
	Servers and clients
	Testing programs without a network

	Port: a unique place �within the machine

	Sockets
	A simple server and client

	Serving multiple clients
	Datagrams
	Enterprise programming concepts
	Java Database Connectivity (JDBC)
	Getting the example to work
	Step 1: Find the JDBC Driver
	Step 2: Configure the database
	Step 3: Test the configuration
	Step 4: Generate your SQL query
	Step 5: Modify and paste in your query

	A GUI version of the lookup program
	Why the JDBC API �seems so complex
	A more sophisticated JDBC Example

	Servlets
	The basic servlet
	Servlets and Multithreading
	Handling Sessions with Servlets
	The Cookie Class
	The Session Class

	Getting the Servlet examples to work

	Java Server Pages
	Basic operations
	Implicit Objects
	JSP Scripting Elements

	JSP Page Attributes and Scope
	Scope: 1
	Scope: 2
	Scope: 3
	Scope: 4
	End of list

	Manipulating sessions in JSP
	Creating and modifying Cookies

	RMI (Remote Method Invocation)
	Remote interfaces
	Implementing the remote interface
	Setting up the registry

	Creating stubs and skeletons
	Using the remote object

	Introduction to CORBA
	CORBA Fundamentals
	CORBA Interface Definition Language (IDL)
	The naming service

	An example
	Writing the IDL source
	Creating stubs and skeletons
	Implementing the server and the client
	Some CORBA services
	Activating the name service process
	Activating the server and the client

	Java Applets and CORBA
	CORBA vs. RMI

	Enterprise Java Beans
	What’s defined in the EJB specification?
	Roles
	Components of EJB
	EJB Container
	EJB Server
	Java Naming and Directory Interface (JNDI)
	Java Transaction API / Java Transaction Service (JTA/JTS)
	CORBA and RMI/IIOP

	What makes up an EJB component?
	Enterprise Bean
	Home Interface
	Remote Interface
	Deployment Descriptor
	EJB-Jar File

	How does EJB work?
	Who implements the Home and Remote Interfaces?

	Types of EJB’s
	Session Beans
	Stateless Session Beans
	Stateful Session Beans

	Entity Beans
	Container Managed Persistence (CMP)
	Bean Managed Persistence (BMP)

	How do I put the ‘E’ in my existing JavaBeans?

	Jini: distributed services
	Jini in context
	What is Jini?
	How Jini works
	The discovery process
	The join process
	The lookup process
	Separation of interface and implementation
	Abstracting distributed systems

	JavaSpaces
	Summary
	Exercises

	16: Design Patterns
	The pattern concept
	The singleton
	Classifying patterns

	Building application frameworks
	Template method

	Fronting for an implementation
	Proxy
	State
	StateMachine

	Factories: encapsulating object creation
	Polymorphic factories
	Abstract factories

	Functors
	Command
	Strategy
	Chain of responsibility

	Changing the interface
	Adapter
	Façade
	Package as a variation of Façade

	Interpreter: run-time flexibility
	Callbacks
	Observer
	Observing flowers

	A visual example of observers

	Multiple dispatching
	Visitor, a type of multiple dispatching

	Pattern refactoring
	Simulating the trash recycler

	Improving the design
	“Make more objects”
	A pattern for prototyping creation
	Trash subclasses
	Parsing Trash from an external file
	Recycling with prototyping

	Abstracting usage
	Multiple dispatching
	Implementing the double dispatch

	The Visitor pattern
	
	More coupling?

	RTTI considered harmful?
	Summary
	Exercises

	A: Passing & Returning Objects
	Passing handles around
	Aliasing

	Making local copies
	Pass by value
	Cloning objects
	Adding cloneability to a class
	Using a trick with protected
	Implementing the Cloneable interface

	Successful cloning
	The effect of Object.clone(€)
	Cloning a composed object
	A deep copy with ArrayList
	Deep copy via serialization
	Adding cloneability �further down a hierarchy
	Why this strange design?

	Controlling cloneability
	The copy-constructor
	Why does it work in C++ and not Java?

	Read-only classes
	Creating read-only classes
	The drawback to immutability
	Immutable Strings
	Implicit constants
	Overloading ‘+’ and the StringBuffer

	The String and �StringBuffer classes
	Strings are special

	Summary
	Exercises

	B: The Java Native Interface (JNI)
	The Java Native Interface
	Calling a native method
	The header file generator: javah
	Name mangling and function signatures
	Implementing your DLL

	Accessing JNI functions: �The JNIEnv argument
	Accessing Java Strings

	Passing and using Java objects
	JNI and Java exceptions
	JNI and threading
	Using a pre-existing code base

	Additional information

	C: Java Programming Guidelines
	D: Recommended Reading
	Index

