

JDBC 4.0 and Oracle
JDeveloper for J2EE
Development

A J2EE developer’s guide for using Oracle
JDeveloper’s integrated database features to build
data-driven applications

Deepak Vohra

 BIRMINGHAM - MUMBAI

JDBC 4.0 and Oracle JDeveloper for J2EE
Development

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2008

Production Reference: 1230408

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-30-5

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

Deepak Vohra

Reviewer

Frank Nimphius

Acquisition Editor

Shayantani Chaudhuri

Development Editor

Ved Prakash Jha

Technical Editors

Akshara Aware

Rashmi Balachandran

Code Testing

Rashmi Balachandran

Copy Editing

Sumathi Sridhar

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Lata Basantani

Indexer

Monica Ajmera

Proofreaders

Chris Smith

Camille Guy

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Author

Deepak Vohra is a consultant and a principal member of the NuBean software
company. Deepak is a Sun Certified Java Programmer and Web Component
Developer, and has worked in the fields of XML and Java programming and J2EE for
over five years. Deepak is the co-author of the APress book, Pro XML Development
with Java Technology and was the technical reviewer for the OReilly book, WebLogic:
The Definitive Guide. Deepak was also the technical reviewer for the Course PTR
book, Ruby Programming for the Absolute Beginner, and the technical editor for the
Manning Publications book, Prototype and Scriptaculous in Action.

 About the Reviewer

Frank Nimphius is a Principal Product Manager for application development
tools at Oracle Corporation since 1999. Working from Germany, Frank actively
contributes to the development of Oracle JDeveloper and the Oracle Application
Development Framework (ADF). As a conference speaker, Frank represents the
Oracle J2EE development team at J2EE conferences world wide, including various
Oracle user groups and the Oracle Open World conference

Table of Contents
Preface 1
Chapter 1: JDBC 4.0 7

DriverManager Class 7
Connection Interface 8
Transactions 9
Savepoint Interface 10
Statement Interface 11
ResultSet Interface 14
PreparedStatement Interface 17
Database Metadata 18
JDBC Exceptions 21
New Features in JDBC 4.0 23

Automatic SQL Driver Loading 23
Enhanced Data Type Support 23
SQL: 2003 XML Data Type Support 25

Generating an XML Document 26
Storing an XML Document 28
Retrieving an XML Document 29
Accessing an XML Document Data 29

Support for Wrapper Pattern 31
Enhancements in SQLException 32
Connection Management 34
Scalar Functions 35

JDBC 4.0 support in Oracle Database 36
JDBC 4.0 support in MySQL Database 38
JDBC 4.0 support in IBM's DB2 UDB 39

Example Connection using a JDBC 4.0 Driver 40
Summary 43

Table of Contents

[ii]

Chapter 2: Configuring JDBC in Oracle JDeveloper 45
Connection Pooling and DataSource 46
Setting the Environment 50
JDBC Configuration Errors 60
Creating a Managed Data Source 61
Connecting to a Database from a Web Application 67

Setting J2SE Version to JDK 6.0 71
Developing and Running JSP 72

JDBC 4.0 Version 75
Summary 78

Chapter 3: Connecting to a Database with JSTL
SQL Tag Library 79

Overview of JSTL SQL and Core Tags 79
Setting the Environment 85
Creating a Database Table 87
Updating a Database Table 94
Querying a Database Table 98
Summary 103

Chapter 4: Configuring JDBC in JBoss Application Server 105
Deploying a Web Application to JBoss from JDeveloper 106
JDBC 4.0 Version 113
JBoss Deployment Descriptors for EJBs 116
Configuring JBoss Server with Oracle Database 117
Configuring JBoss Server with MySQL Database 118
Configuring JBoss Server with PostgreSQL Database 120
Configuring JBoss Server with DB2 Database 121
Configuring JBoss Server with SQL Server 122
Summary 124

Chapter 5: Configuring JDBC in WebLogic Server 125
Setting the Environment 126
Creating a Data Source 126
Configuring a Data Source 133
Creating a Multi Data Source 136
Performance Tuning JDBC 140
Deploying a Web Application to WebLogic Server from JDeveloper 142
JDBC 4.0 Version 152
Summary 156

Chapter 6: Configuring JDBC in WebSphere Application Server 157
Setting the Environment 158

Table of Contents

[iii]

Configuring a JDBC Provider 158
Configuring a Data Source 163
Deploying a Web Application to the WebSphere from JDeveloper 172
JDBC 4.0 Version 182
Summary 186

Chapter 7: XML SQL Utility 187
Setting the Environment 189
XML Document to SQL Database Mapping 192
Updating Database from XML Document 196
Deleting a Row in a Database 197
SQL Database to XML Document Mapping 198
Summary 204

Chapter 8: XSQL 205
Overview of XSQL Tags 206
Setting the Environment 210
Configuring a Connection 211
Creating XSQL Queries 215
Applying XSQL Query Attributes 224
Transforming XSQL Output 227
JDBC 4.0 Version 230
Summary 230

Chapter 9: Oracle Web RowSet 231
Setting the Environment 232
Creating a Web RowSet 235
Modifying a Database Table with Web RowSet 245
Creating a New Row 247
Reading a Row 251
Updating a Row 255
Deleting a Row 258
Updating Database Table 260
JDBC 4.0 Version 266
Summary 273

Chapter 10: Creating a JSF Data Table 275
Setting the Environment 275
Creating a Data Table by Binding a MBean 276
Creating a Data Table with the JSF API 291
JDBC 4.0 Version 303
Summary 306

Table of Contents

[iv]

Chapter 11: Creating a JSF Panel Grid 307
Setting the Environment 308
Creating a Panel Grid by Binding Rows 308
Creating a Panel Grid by Binding a Managed Bean 320
JDBC 4.0 Version 332
Summary 334

Chapter 12: Creating a Report with JasperReports 335
Setting the Environment 335
Installing JasperReports 338
Configuring the JasperReports Configuration File 339
Generating a PDF Report 345
Creating an Excel Spreadsheet 349
JDBC 4.0 Version 351
Summary 353

Chapter 13: Creating a Spreadsheet with Apache POI 355
Setting the Environment 355
Creating an Excel Spreadsheet 359
JDBC 4.0 Version 364
Summary 368

Chapter 14: Creating Oracle ADF Business Components 369
Setting the Environment 370
Configuring a BC4J Project 371
Creating Business Components 372
Developing a BC4J Web Application 390
JDBC 4.0 Version 395
Summary 395

Chapter 15: Hibernate 397
Hibernate and JDBC 398
Setting the Environment 400
Developing Hibernate Mapping and Properties Files 403
Creating a Database Table 405
Modifying Table Data with Hibernate 412
Adding Data to the Database Table 413
Retrieving Data from the Database Table 415
Updating the Database Table 415
Deleting Data 416
Summary 421

Index 423

Preface
Data retrieval and storage are one of the most common components of J2EE
applications. JDBC (Java DataBase Connectivity) is the Java API for accessing a
Structured Query Language (SQL) relational database and adding, retrieving, and
updating data in the database. JDBC 3.0 specification is the current specification
implemented by most application servers. JDBC 4.0 specification became available
in December 2006, but is not yet implemented by most application servers such
as Oracle Application Server, WebLogic Server, JBoss Application Server, and
WebSphere Application Server.

To connect with a SQL relational database, a JDBC driver is required; and most
databases provide a JDBC 4.0 driver. We will use the Oracle JDeveloper 10.1.3 IDE
to develop most of the J2EE applications in the book. We have chosen JDeveloper,
because it includes an embedded J2EE server, the Oracle Containers for J2EE (OC4J)
server, to run J2EE applications. JDeveloper also provides built-in support to
connect to any of the commonly used application servers such as Oracle Application
Server, WebLogic Server, JBoss Application Server, Tomcat server, and WebSphere
Application Server and deploy applications to these servers. Another advantage of
using JDeveloper is that JDeveloper provides built-in support for JDBC. JDeveloper
also provides support for JSF; JSF user-interface components may be selected from a
component palette and added to a J2EE application.

What This Book Covers
In Chapter 1 we discuss the JDBC 4.0 specification. We discuss the commonly used
interfaces and classes in the JDBC API. We also discuss the new features in
JDBC 4.0 specification.

Preface

[2]

In Chapter 2 we configure JDBC in JDeveloper IDE. JDeveloper provides a built-in
library for the Oracle database and may be configured with third-party databases
also. We connect to MySQL database using the JDBC 4.0 driver for MySQL. We also
discuss connection pooling and data sources and the new connection pooling and
statement pooling features in JDBC 4.0. We run a web application in the embedded
OC4J server to connect with the MySQL database and retrieve and display data from
the database.

In Chapter 3 we discuss the JavaServer Pages Standard Tag Library (JSTL) SQL tags.
JDeveloper 10.1.3 provides a Component Palette for JSTL SQL tags. We create a
database table, add data to the database table, update the database table, and query
the database table, all with the JSTL SQL tag library.

In Chapter 4, we discuss configuring JDBC in JBoss Application Server, one of the
most commonly used open-source J2EE application server. We develop a web
application to connect to MySQL database, and retrieve and display data from the
database, in JDeveloper and deploy the web application to JBoss server. We also
discuss the JDBC 4.0 version of the web application. We configure data sources in
JBoss with Oracle database, MySQL database, DB2 database, PostgreSQL database,
and SQL Server.

In Chapter 5 we configure JDBC in BEA's WebLogic Server 9.x. WebLogic Server 9
provides some new JDBC features such as additional connection pool properties,
which improve data source performance, and support for multi-data sources. We
configure a data source with Oracle database. We also develop a web application to
retrieve and display data from Oracle database in JDeveloper and deploy the web
application to WebLogic server. We also discuss the JDBC 4.0 version of the
web application.

In Chapter 6 we configure JDBC in IBM's WebSphere application server. WebSphere
has a built-in support to configure a JDBC Provider and data source with commonly
used databases. We configure a JDBC Provider and data source with IBM's DB2 UDB
database. We also develop a web application in JDeveloper to connect with IBM's
DB2 UDB database and retrieve and display data from the database. We run the web
application in WebSphere Application Server. We also discuss the JDBC 4.0 version
of the web application.

In Chapter 7, we discuss Oracle's XML SQL Utility (XSU) to map an XML document
to a database table and map a database table to an XML document. We also update
and delete data in the database using the XML SQL Utility. We develop the XSU
application in JDeveloper using the JDBC 4.0 driver for Oracle database.

Preface

[3]

In Chapter 8, we discuss the XSQL Pages Publishing Framework support in
JDeveloper 10.1.3. We generate an XML document using an SQL query with XSQL.
We also transform the output from an XSQL query using Extensible Stylesheet
Language Transformations (XSLT). We also discuss the JDBC 4.0 features that may
be availed of in a XSQL application.

In Chapter 9, we discuss Oracle JDBC's implementation of a new feature in JDBC
3.0 specification, Web RowSet. A Web RowSet object is an XML representation of
a RowSet, which is a container for ResultSet data that may operate without being
connected to the data source. Oracle Web RowSet is Oracle database 10g driver's
implementation of Web RowSet. We develop an Oracle Web RowSet web application
in JDeveloper to create, read, update, and delete a row in Oracle database. We also
discuss the JDBC 4.0 version of the Oracle Web RowSet web application.

In Chapter 10 we create a JSF Data Table from Oracle database in JDeveloper. We
display database data in a JSF data table using a static SQL query and a dynamically
specified SQL query. We also discuss the JDBC 4.0 version of the JSF application to
create a data table.

In Chapter 11, we discuss another JSF UI Component, Panel Grid, to display and
update database data. We also use JSF validators and converters to convert and
validate input data being stored in a database. We develop the JSF Panel Grid
application in JDeveloper and also discuss the JDBC 4.0 version of the Panel
Grid application.

In Chapter 12, we develop a PDF report and an Excel spreadsheet report with
JasperReports reporting tool using JDBC to retrieve data for the report from a
database. We develop the JasperReports web application in JDeveloper and also
discuss the JDBC 4.0 version of the web application.

In Chapter 13, we create an Excel spreadsheet from database data using the Apache
POI HSSF library. We create the report in JDeveloper using JDeveloper's built-in
support to connect with a database. We also discuss the JDBC 4.0 version of the
Apache POI application.

In Chapter 14, we discuss Business Component for Java (BC4J) layer of Oracle's
Application Developer Framework (ADF). Business Components are based on JDBC
and consist of view objects, entity objects, and application modules. We develop a
web application using the Oracle ADF Model and Business Components API
in JDeveloper.

In Chapter 15, we discuss Hibernate, an object/relational persistence and query
service for Java. We create a database table, add data to the table, retrieve data from
the table, update data in the table and delete table data, all using Hibernate. We will
develop the Hibernate application in JDeveloper.

Preface

[4]

Who is This Book for
This book is for J2EE developers. Most J2EE applications have a database component
and the book is specially suited for database-based J2EE development.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "A
managed-data-source element is added to the data-sources.xml file."

A block of code will be set as follows:

<resource-ref>
 <res-ref-name>jdbc/OracleDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Any command-line input and output is written as follows:

CREATE TABLE OE.Catalog(Journal VARCHAR(25), Publisher Varchar(25),

 Edition VARCHAR(25), Title Varchar(45), Author Varchar(25));

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this: "
In the Create Project window specify a Project Name and click on Next".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

Preface

[5]

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/4305_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

JDBC 4.0
The Java Database Connectivity API is used to access a SQL database from a Java
application. JDBC also supports tabular data sources, such as a spreadsheet. We
will constrain our discussion to SQL relational databases. Using JDBC API, SQL
statements can be run in a database. JDBC started as JDBC 1.0 API; JDBC 1.0 covered
the basics of establishing a connection with a database, running SQL statements,
retrieving values from result sets, and using transactions. JDBC 2.0 introduced
scrollable result sets, JDBC methods to update a result set or a database table, batch
updates, and SQL3 data types such as, BLOB, CLOB, Array, Ref, and Struct. JDBC 3.0
introduced savepoints, connection pooling of prepared statements, multiple open
ResultSet objects, BOOLEAN data type, and an interface for parameter metadata and
for retrieving database metadata. JDBC 4.0 specifications added some new features,
which we will discuss in this chapter.

The JDBC API provides various interfaces and classes for accessing a database;
creating tables in the database; and adding, updating, deleting data, in the database
tables. In the following sections, we will discuss some of the JDBC classes and
interfaces. We will also discuss the new methods added to these classes or interfaces, in
JDBC 4.0 specifications. To run a JDBC 4.0 application, install a RDBMS database such
as the open-source MySQL database or the commercial Oracle database. A JDBC
driver class is required to establish a connection with the database. JDBC drivers are
vendor-specific. A JDBC driver class implements the java.sql.Driver interface.

DriverManager Class
The DriverManager class is used to obtain a connection with a database. A JDBC
driver is required to be loaded before obtaining a connection with the database. In
JDBC 3.0, a JDBC driver can be loaded either by specifying it in the jdbc.drivers
system property, or by using the Class.forName() method. We require invoking
the Class.forName() method by loading the Oracle JDBC driver, oracle.jdbc.
OracleDriver, using JDBC 3.0.

Class.forName("oracle.jdbc.OracleDriver");

JDBC 4.0

[8]

In JDBC 4.0 specifications, the DriverManager class has added support to
getConnection() and getDrivers() methods, for the Java SE (Service Provider)
mechanism. By using these methods, JDBC drivers may be loaded automatically.
The Class.forName() method is not required to be invoked. Loading drivers using
the Java SE Service Provider mechanism will be discussed in the Automatic SQL
Driver Loading section.

A JDBC connection is represented by a java.sql.Connection object, and may be
obtained from a DriverManager by calling the overloaded static getConnection()
methods. The getConnection() method is listed in following table:

getConnection() Method Description
getConnection(String url) Obtains a connection with the specified

database URL.
getConnection(String url,
Properties properties)

Username and password may be specified
in the Properties Hashtable.

getConnection(String url, String user,
String password)

Obtains a connection with a URL
username, and password.

For example, a connection with the Oracle database may be obtained as
shown below:

String url="jdbc:oracle:thin:@localhost:1521:ORCL";
Connection connection = DriverManager.getConnection(url, "oe", "pw");

Connection Interface
The Connection interface represents a connection with the database. SQL statements
may be run in a connection session by using a Statement object. A Connection
object is in auto-commit mode, by default. In the auto-commit mode, changes are
committed to the database after an SQL statement is executed. The auto-commit
mode can be modified by calling the setAutoCommit(boolean autoCommit)
method. For example, auto-commit may be set to false:

connection.setAutoCommit(false);

If auto-commit is set to false, it would be required to commit changes by calling
the commit() method:

connection.commit();

A Connection object can be set to read-only by calling the setReadOnly() method:

connection.setReadOnly(true);

Chapter 1

[9]

If a Connection object is not required, close the connection by calling the
close() method:

connection.close();

The following table discusses the methods in JDBC 4.0 that have been added to the
Connection interface.

Method Description
createArrayOf() Creates a java.sql.Array object. java.sql.Array is the Java

mapping for the SQL data type, ARRAY. The SQL3 data type
ARRAY stores an array in a column.

createBlob() Creates a Blob object.
createClob() Creates a Clob object.
createNClob() Creates an NClob object.
createSQLXML() Creates a SQLXML object.
createStruct() Creates a Struct object.
isValid() Tests the validity of a connection.
getClientInfo() Overloaded method returns a client info property, or a list of

client info properties. Client info represents information, such
as user name and application name about the client.

setClientInfo() Overloaded method sets client info.

Transactions
A transaction is a group of one or more statements run as a unit. If the default value
of auto-commit is set to true, then each Statement that would be run represents
a transaction. After each statement is run, changes to the database are made with
the auto-commit set to true. Set the auto-commit to false, if a developer requires
a group of statements to be run together. Changes to the database are not made till
each of the statement has run. If auto-commit is set to false, the changes to the
database are committed with the commit() method. The commit() method commits
the SQL statements run after the previous commit to the database was made.
The group of statements run between two consecutive commits to the database
represents a transaction. The rollback() method rolls back the changes made in the
current transaction. A transaction may be required to be rolled back, if an error or a
SQLException is generated.

connection.rollback();

JDBC 4.0

[10]

While one transaction is modifying a database table, another transaction could be
reading from the same table. The type of read can be dirty-read, a non-repeatable
read, or a phantom read. A dirty-read occurs when a row has been modified
by a transaction, but has not been committed, and is being read by a different
transaction. If the transaction that modifies the row rolls back the transaction, then
the value retrieved by the second transaction would be erroneous. A non-repeatable
transaction occurs when one transaction reads a row while the other transaction
modifies it. The first transaction re-reads the row obtaining a different value. A
phantom read occurs when one transaction retrieves a result set with a WHERE
condition, while the other transaction adds a row that meets the WHERE condition.
The first transaction re-runs to generate a result set that has an additional row. The
default transaction level can be obtained with the getTransactionLevel() method:

int transactionLevel=connection. getTransactionIsolation();

The different transaction isolation levels are listed in following table:

Transaction Isolation Level Description
TRANSACTION_NONE Transactions are not supported.
TRANSACTION_READ_COMMITTED Dirty-reads cannot be done. Non-

repeatable reads and phantom reads can
be done.

TRANSACTION_REPEATABLE_READ Dirty reads and non-repeatable reads
cannot be done. Phantom reads can be
done.

TRANSACTION_SERIALIZABLE Dirty-reads, non-repeatable reads and
phantom reads cannot be done.

The transaction isolation level can be set with the setTransactionIsolation(int
level) method:

connection.setTransactionIsolation(level);

Savepoint Interface
Savepoint is a new interface in JDBC 3.0 specification. A Savepoint is a point within
a transaction up to which the changes made in the transaction are rolled back, if
the transaction is rolled back with the rollback() method. All changes before the
savepoint are implemented when a transaction is rolled back. A savepoint is set with
the overloaded setSavepoint() method:

Savepoint savepoint=connection.setSavepoint();
Savepoint savepoint=connection.setSavepoint("savepointName");

Chapter 1

[11]

The getSavepointId() method returns the savepoint id, and the
getSavepointName() method returns the savepoint name.

Statement Interface
The Statement interface runs SQL statements in a database and returns the result
sets. A Statement object is obtained from a Connection object with the overloaded
createStatement() method. Before enumerating the different createStatement()
methods, we will discuss about the result set type, result set concurrency, and result
set holdability. There are three result set types:

1. TYPE_FORWARD_ONLY
2. TYPE_SCROLL_INSENSITIVE
3. TYPE_SCROLL_SENSITIVE

The TYPE_FORWARD_ONLY result set is not scrollable. Its cursor moves only in the
forward direction. The rows in the result set satisfies the query, either at the time
when the query is executed, or when the rows are retrieved.

The TYPE_SCROLL_INSENSITIVE result set is scrollable. The rows in the result set do
not reflect the changes made in the database. The rows in the result set satisfy the
query, either at the time when the query is executed, or when the rows are retrieved.

The TYPE_SCROLL_SENSITIVE result set is scrollable, and reflects the changes made
to the database while the result set is open.

Result set concurrency specifies the level of updatability. There are two
concurrency levels:

1. CONCUR_READ_ONLY
2. CONCUR_UPDATABLE

CONCUR_READ_ONLY is the default concurrency level. The CONCUR_READ_ONLY
concurrency specifies a result set that is not updatable, and CONCUR_UPDATABLE
concurrency specifies a result set that is updatable.

Holdability specifies that the result set objects are to be kept open when the
commit() method is invoked. There are two holdability values:

1. HOLD_CURSORS_OVER_COMMIT
2. CLOSE_CURSORS_AT_COMMIT

If HOLD_CURSORS_OVER_COMMIT is specified, the result set objects (that is cursors)
are kept open after the commit() method is called. If CLOSE_CURSORS_AT_COMMIT is
specified, the result set objects are closed at the commit() method.

JDBC 4.0

[12]

The different createStatement() methods, which are used to create a Statement
object from a Connection object are discussed in following table:

Create Statement Method Description
createStatement() A Statement object is created with result

set of type TYPE_FORWARD_ONLY, and of
concurrency CONCUR_READ_ONLY.

createStatement(int resultSetType, int
resultSetConcurrency)

A Statement object is created with the
specified result set type and result set
concurrency. Implementation dependent,
resultSetHoldability is used.

createStatement(int resultSetType,
int resultSetConcurrency, int
resultSetHoldability)

A Statement object is created with the
specified result set type, concurrency,
and holdability.

Different execute() methods are available to run an SQL statement that may
return multiple results. The execute(String sqlStatement) method runs an
SQL statement and returns a boolean, which indicates whether the first result
is a ResultSet object, or an update count. If true is returned, the first result is a
ResultSet object. If false is returned, the first result is an update count. If the first
result is a ResultSet object, then the ResultSet object can be obtained with the
getResultSet() method. If the first result is an update count, then the update count
can be obtained with the getUpdateCount() method:

Statement stmt=connection.createStatement();
boolean resultType=stmt.execute("SQL Statement");
if(resultType==true)
ResultSet resultSet=stmt.getResultSet();
else
int updateCount=stmt.getUpdateCount();

Multiple results can be returned by the execute() method. To obtain additional
results, invoke the getMoreResults() method. The return value of the
getMoreResults() method is similar to that of the execute() method. JDBC 3.0
introduced the getMoreResults(int) method to specify whether the current result
set should be closed before opening a new result set. The getMoreResults(int)
method parameter value can be CLOSE_ALL_RESULTS, CLOSE_CURRENT_RESULT,
or KEEP_CURRENT_RESULT. If the parameter value is CLOSE_ALL_RESULTS, then
all the previously opened ResultSet objects would be closed. If the value is
CLOSE_CURRENT_RESULT, only the current ResultSet object is closed. If the value is
KEEP_CURRENT_RESULT, the current ResultSet object is not closed.

Chapter 1

[13]

The setQueryTimeout(int) method specifies the timeout, in seconds, for a
Statement object to execute. The executeQuery(String sql) executes an SQL
query and returns a single ResultSet object. The executeUpdate(String sql)
method executes an SQL statement, which is either a DML (INSERT, UPDATE, or
DELETE) statement or a DDL statement. If the SQL string is a DML statement, the
executeUpate(String) method returns the number of rows modified. If the SQL
string is a DDL statement, the method returns the value, "0". SQL statements can also
be run in a batch with the executeBatch() method. Add SQL commands to run a
batch with the addBatch(String sql) method:

stmt.addBatch("SQL command");
stmt.executeBatch();

The executeBatch() method returns an int[] value of update counts. The batch
SQL commands can be cleared with the clearBatch() method. If a Statement
object is not being used, it is closed automatically. It is recommended to close the
Statement object with the close() method:

stmt.close();

When a Statement object is closed, the database and the JDBC resources associated
with that object are also closed. Further, the ResultSet object associated with the
Statement object is also closed.

In JDBC 4.0, the new methods discussed in following table have been added to the
Statement interface:

Method Description
isClosed() Tests, if the Statement object has been closed.
isPoolable() Tests, if the Statement object is poolable.
setPoolable() Sets the Statement object as poolable. By default, a

Statement object is not set to poolable. The method
is only a hint to the statement pooling implementation.
Statement pooling provides a better management for
statement pooling resources.

JDBC 4.0

[14]

ResultSet Interface
A ResultSet is a table of data, which is a database result set. The result set types,
concurrency and holdability were discussed in the previous section. A ResultSet
object can be created to scroll, update, and keep the cursors open, when a commit
is done:

Statement stmt=connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATABLE,
 ResultSet.HOLD_CURSORS_OVER_COMMIT);
ResultSet rs=stmt.execute("sql");

A ResultSet has a cursor, which points to the current row. Initially, the cursor
points before the first row. The next() method moves the cursor to the next row.
The previous() method shifts the cursor to the previous row. The ResultSet
interface provides different methods to position the cursor. If the ResultSet is
scrollable, then the result set type is TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_
SENSITIVE and the cursor can be shifted to a specified position. Some of the methods
to position a ResultSet cursor are listed in following table:

ResultSet Method Description
absolute(int row) Positions the cursor to the specified row. Index for the

First row is 1. If the index is a –ve number, then the cursor
is positioned with respect to the end of the result set. –1
index, positions the cursor to the last row. If the index is
more than the number of rows in the ResultSet, then the
cursor is positioned at the end of the ResultSet. If the –ve
index is less than the number of rows, then the cursor is
positioned before the first row. The method returns the
value as true, if the cursor is in the ResultSet.

afterLast() Positions the cursor after the last row.
beforeFirst() Positions the cursor before the first row. SQLException is

generated, if the ResultSet is TYPE_FORWARD_ONLY
first() Positions the cursor on the first row in the ResultSet.

Returns the value as true, if cursor is on a valid row.
last() Positions the cursor on the last row in the ResultSet.
relative(int rows) Positions the cursor to a relative number of rows from the

current row. If the relative position is before or after the
current row, the cursor is positioned before or after the
current row.

Chapter 1

[15]

For an updatable result set, the method moveToInsertRow() moves the cursor to the
insert row, which is a buffer, to insert a new row. The cursor can be shifted back to
the current row with the method, moveToCurrentRow(). The ResultSet interface
has methods, which are used to obtain the position of the cursor, and are listed in
following table:

Method Name Description
isAfterLast() Returns true, if the cursor's position is after the last row.
isFirst() Returns true, if the cursor's position is in the first row.
isLast() Returns true, if the cursor's position is in the last row.
isBeforeFirst() Returns true, if the cursor's position is before the first row.

The ResultSet column values are obtained with the help of getter methods. The
ResultSet interface has a 'getter' method for each of the Java data types that map to
the database data type. If the database data type is mappable to the Java data type,
the Java data type is returned. A getter method with a column index position and
column name are included for each of the data types. The getter method with the
column index position is more efficient. An int column value is retrieved with the
index position, and a String column value is retrieved with the column name
as follows:

ResultSet rs;
Int intColumnValue=rs.getInt(1);
String stringColumnValue=rs.getString("column name");

The ResultSet interface has updater methods to update column values in a row. An
'updater' method is included for each of the Java data types that map to the database
data type. If the ResultSet is updatable, then the column values in a row can be
updated, or a new row can be added. To update a row, move the cursor to the row
to be updated. For example, shift the cursor to the tenth row. Update a column value
with an updater method. For example, update a String column, column1 to the
value col1val. Also update the row in the database:

rs.absolue(10);
rs.updateString("column1", "col1val");
rs.updateRow();

The method updateRow() updates the database. To add a new row, shift the cursor
to the insert row with the moveToInsertRow() method. Add column values with the
updater methods, and insert a row in the database with the insertRow() method.
Shift the cursor to the current row with the moveToCurrentRow() method:

rs.moveToInsertRow();
rs.updateString(1, "JDBC4.0");
rs.updateInt(2,16);

JDBC 4.0

[16]

rs.updateBoolean(3, true);
rs.insertRow();
rs.moveToCurrentRow();

The current row in a ResultSet can be deleted with the deleteRow() method. A
ResultSet object is automatically closed and the associated resources are released
when the Statement object that had created the ResultSet object is being
closed. However, it is recommended to close the ResultSet object using the
close() method.

rs.close();

In JDBC 4.0, the methods discussed in following table have been added to the
ResultSet interface:

Method Description
getHoldability() Returns the holdability of the ResultSet object.
getRowId() Overloaded method returns the row id of the specified

column.
updateRowId() Overloaded method updates the row id for the specified

RowId of an object.
getNClob() Overloaded method returns the specified column as an

NClob object.
isClosed() Returns a Boolean value to indicate if the ResultSet

object is closed.
getNString() Overloaded method returns the specified column as a

String object, which is used with NCHAR, NVARCHAR
and LONGNVARCHAR columns.

getNCharacterStream() Overloaded method returns the specified column value
as a java.io.Reader object, which is used with NCHAR,
NVARCHAR and LONGNVARCHAR columns.

updateNString() Overloaded method updates the specified column with
the specified String value, which is used with NCHAR,
NVARCHAR and LONGNVARCHAR columns.

updateNCharacterStream() Overloaded method updates the specified column
with the specified character stream, and the specified
String value. It is used with NCHAR, NVARCHAR and
LONGNVARCHAR columns.

getSQLXML() Overloaded method returns the specified column as an
SQLXML object. SQLXML Java data type is discussed in
a later section, in this chapter.

updateSQLXML() Overloaded method updates the specified column with
the specified SQLXML value.

updateNClob() Overloaded method updates the specified column with
the specified Reader object.

Chapter 1

[17]

The updateObject() method in the ResultSet interface has been modified to
support the new data types, NClob and SQLXML in JDBC 4.0. The updater methods
in the table do not update the underlying database. To update the database, the
insertRow() or updateRow() method is required to be invoked.

PreparedStatement Interface
A PreparedStatement object represents a precompiled SQL statement. The
PreparedStatement interface extends the Statement interface. The precompiled
SQL statement has IN parameters for which values are being set with the setter
methods of the PreparedStatement interface. A 'setter' method is included for each
of the Java data types that map to a SQL data type. The JDBC driver converts the
Java data type to an SQL data type. The IN parameter values are set with parameter
index. For example, update a Catalog table with the following definition using
PreparedStatement:

CatalogId NUMBER

Journal VARCHAR(255)

Publisher VARCHAR(255)

Title VARCHAR(255)

Author VARCHAR(255)

Set Publisher column value to Oracle Publishing, and Journal column values to
Oracle Magazine, where CatalogId is 1, referred to the code below:

PreparedStatement pstmt = connection.prepareStatement("UPDATE CATALOG
SET Journal=? AND Publisher=? WHERE CatalogId=?");
pstmt.setString(1, "Oracle Magazine");
pstmt.setString(2, "Oracle Publishing");
pstmt.setInt(3, 1);
pstmt.executeUpdate();

If the database supports statement pooling, PreparedStatement objects are pooled
by default. In JDBC 4.0, the methods discussed in the following table have been
added to the PreparedStatement interface:

Method Description
setRowId() Sets the specified parameter to the specified RowId value.

The driver converts the value to the SQL type ROWID.
setNString() Sets the specified parameter to the specified String value.

The driver converts the value to NCHAR, NVARCHAR, or
LONGNVARCHAR SQL date type.

JDBC 4.0

[18]

Method Description
setNClob() Overloaded method sets the specified parameter to the

specified NClob object or Reader object. The driver converts
the value to SQL type NCLOB.

setNCharacterStream() Overloaded method sets the specified parameter to the
specified Reader object.

setSQLXML() Sets the specified parameter to the specified SQLXML
value. The driver converts the value to the SQL type XML.

Database Metadata
Different RDBMS databases in combination with the database-specific JDBC drivers
usually support, and implement features differently. It also supports different SQL
data types. An application that is used with different databases would be required to
obtain database-specific information. For example, an application could be required
to retrieve information about all the SQL data types, which are being supported
with a database. An application that implements batch updates would be required
to find out if a database supports batch updates. The DatabaseMetaData interface
represents the database metadata. The database metadata is obtained from the
Connection object:

DatabaseMetaData metadata = currentConnection.getMetaData();

The SQL data type supported by a database can be obtained using the
getTypeInfo() method:

ResultSet resultSet=metadata.getTypeInfo();

To find out if a database supports batch update, invoke the
supportsBatchUpdates() method:

metadata.supportsBatchUpdates();

To find out if a database supports transactions, invoke the supportsTransactions()
method, and to find out if a database supports savepoints, invoke the
supportsSavepoints() method:

metadata.supportsTransactions();
metadata.supportsSavepoints();

Support for a ResultSet type can be checked using the supportsResultSetType()
method, while support for a concurrency type, in combination with a result set type,
can be checked with the supportsResultSetConcurrency() method. Support for a
result set holdability can be checked with the supportsResultSetHoldability()
method:

Chapter 1

[19]

metadata.supportsResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE);
metadata.supportsResultSetConcurrency(ResultSet.
 TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATABLE);
metadata.supportsResultSetHoldability(ResultSet.
 CLOSE_CURSORS_AT_COMMIT);

The database metadata also includes information about the different SQL clauses
supported by the database. Support for the GROUP BY clause is checked with the
supportsGroupBy() method; support for SELECT FOR UPDATE is checked with the
supportsSelectForUpdate() method; support for UNION clause is checked with the
supportsUnion() method; support for ALTER TABLE with add column is checked
with the supportsAlterTableWithAddColumn() method; and support for mixed
case SQL identifiers is checked with the storesMixedCaseIdentifiers() method.
Also, the maximum number of columns that can be specified in a SELECT statement
is obtained with the getMaxColumnsInSelect() method.

The database metadata also provides information about the JDBC driver and the
database. The database product name, the database major version, the driver major
version, the driver name, the driver version, and the JDBC major version supported
by the driver are obtained as follows:

String database=metadata.getDatabaseProductName();
int databaseMajorVersion=metadata.getDatabaseMajorVersion();
int driverMajorVersion=metadata.getDriverMajorVersion();
String driverName=metadata.getDriverName();
int driverVersion=metadata.getDriverVersion();
int jdbcMajorVersion=metadata.getJDBCMajorVersion();

Metadata about a database table is obtained with the getTables(String
catalog,String schemaPattern,String tableNamePattern,String[] types)
method. The parameter, catalog, is a catalog name in the database. SchemaPattern
is the Schema pattern. TableNamePattern is the table name pattern and the types
represents the table type. Table types include TABLE, VIEW, SYSTEM TABLE, GLOBAL
TEMPERORY, LOCAL TEMPERORY, ALIAS, and SYNONYM. Obtain all the tables of
type, TABLE:

String[] names = {"TABLE"};
ResultSet tables = metadata.getTables(null,"%", "%", names);

Obtain the table name and table schema from the table's metadata:

while (tables.next()) {
 String tableName = tables.getString("TABLE_NAME");
 String tableSchema = tables.getString("TABLE_SCHEM");
}

JDBC 4.0

[20]

Metadata about the columns can be obtained with the getColumns(String
catalog,String schemaPattern,String tableNamePattern,String
columnNamePattern) method. Obtain the column's metadata for the table name
obtained from the table's metadata:

ResultSet columns = metadata.getColumns(null, "%", tableName, "%");

Obtain the column name, column type, column size, and column nullable:
while (columns.next()) {
 String columnName = columns.getString("COLUMN_NAME");
 String datatype = columns.getString("TYPE_NAME");
 int datasize = columns.getInt("COLUMN_SIZE");
 int nullable = columns.getInt("NULLABLE");
}

The procedures in the database can be obtained from the getProcedures(String
catalog,String schemaPattern, String procedureNamePattern) method:

ResultSet procedures=metadata.getProcedures(null,"%", "%");

Obtain the procedure name, procedure type, and procedure schema:
while (procedures.next())
{
 String procedureName = procedures.getString("PROCEDURE_NAME");
 String procedureSchema = procedures.getString("PROCEDURE_SCHEM");
 String procedureType = procedures.getString("PROCEDURE_TYPE");
}

In JDBC 4.0, the methods discussed in the following table have been added to the
DatabaseMetaData interface:

Method Description
getRowIdLifetime() Indicates if the database supports

SQL data type ROWID, and the
duration for which a RowId
object is valid. The value
returned is one of the following:
RowIdLifetime.ROWID_
UNSUPPORTED.
RowIdLifetime.ROWID_VALID_
OTHER.
RowIdLifetime.ROWID_VALID_
SESSION.
RowIdLifetime.ROWID_VALID_
TRANSACTION.
RowIdLifetime.ROWID_VALID_
FOREVER.

Chapter 1

[21]

Method Description
autoCommitFailureClosesAllResultSets() Indicates if all the ResultSets are

closed, and if an SQLException is
generated for an autocommit that
was set as true.

getFunctions() Retrieves a ResultSet of system
and user functions in the
specified catalog.
Functions and Procedures are
outside the scope of this book.

getFunctionColumns() Retrieves a ResultSet of the
system and the user parameters
for a specified catalog.

getClientInfoProperties() Retrieves a ResultSet of the client
info properties supported by the
JDBC driver.

supportsStoredFunctionsUsingCallSyntax() Indicates if the database supports
the invoking functions using the
CALL syntax.

The getSchemas() method in the DatabaseMetaData interface has been overloaded
to support a catalog name and a schema pattern.

JDBC Exceptions
SQLException is the main Exception that is generated in a JDBC application. The
detail of an SQL exception can be obtained from an SQLException object using the
SQLException methods, some of which are discussed in following table:

Method Description
getMessage() Returns a textual description of the error.
getSQLState() Returns a SQLState for the SQLException.
getErrorCode() Returns the implementation-specific error code for the

SQLException object.
getCause() Returns the cause of the SQLException or null, if the

cause is not specified or not known.
getNextException() Returns an exception chained to the SQLException.

All the chained exceptions can be retrieved by
invoking the getNextException() method recursively.
Returns null, if no chained exception occurs.

getMessage() Returns a textual description of the error.

JDBC 4.0

[22]

When an SQLException occurs, it is likely that one or more SQLExceptions chained
to it, have also occurred. The chained exceptions can be retrieved by invoking the
getNextException() method recursively, until the method returns null. The cause
of an SQLException can be retrieved using the getCause() method. The chained
causes can be also be retrieved by invoking the getCause() method recursively,
until the value, null, is returned.

If SQLException is generated output the exception message using the getMessage()
method, output the exception causes using the getCause() method recursively,
and retrieve exceptions chained to the exception using the getNextException()
method recursively:

catch(SQLException e)
{
 while(e != null)
 {
 System.out.println("SQLException Message:" + e.getMessage());
 Throwable t = e.getCause();
 while(t != null)
 {
 System.out.println("SQLException Cause:" + t);
 t = t.getCause();
 }
 e = e.getNextException();
 }
}

Some of the subclasses in the SQLException class are listed in following table:

SQLException Description
javax.sql.rowset.RowSetWarning Database warning on a RowSet object.
javax.sql.rowset.serial.SerialException Indicates an error in the serialization and

de-serialization of SQL types such as: BLOB,
CLOB, STRUCT, ARRAY.

Java.sql.SQLWarning Database access warning.
Java.sql.DataTruncation Indicates data truncation.
Java.sql.BatchUpdateException Represents an error in a batch update

operation.

JDBC 4.0 has added support for categorization of SQLExceptions and enhanced
support for chained SQLExceptions, which we will discuss in a later section.

Chapter 1

[23]

New Features in JDBC 4.0
JDBC 4.0 specification was made available in December 2006. Most databases
provide at least a partial support for the JDBC 4.0 specification, in their JDBC drivers.
JDBC 4.0 specification is implemented in JDK 6.0. Some of the new features of JDBC
4.0 specification, and the database support for JDBC 4.0 specification are discussed in
the following sections.

Automatic SQL Driver Loading
JDBC 4.0 has facilitated the loading of a JDBC driver. In JDBC 3.0, a JDBC driver is
loaded with the Class.forName(String) method. The Oracle JDBC driver is loaded
in the following manner:

Class.forName("oracle.jdbc.OracleDriver");

In JDBC 4.0, a JDBC driver is loaded automatically with the Java Standard Edition
Service Provider mechanism. The JDBC driver is loaded when the java.sql.
DriverManager.getConnection() method is invoked. To load a JDBC driver with
the Service Provider mechanism, JDBC 4.0 drivers should include the META-INF/
services/java.sql.Driver file. In the java.sql.Driver file, specify the JDBC
driver class to load. If the oracle.jdbc.OracleDriver is to be loaded then specify
the following line in the java.sql.Driver file:

oracle.jdbc.OracleDriver

Multiple driver classes can be specified in a java.sql.Driver file, each on a
separate line. A list of JDBC drivers available to a DriverManager can be obtained
with the getDrivers() method:

Enumeration<Driver> drivers=DriverManager.getDrivers();

A JDBC connection can be obtained using the getConnection() method of the
DriverManager class:

String url="jdbc:oracle:thin:@localhost:1521:ORCL";
Connection connection = DriverManager.getConnection(url,"oe", "pw");

Enhanced Data Type Support
JDBC 4.0 has added support for some new SQL data types. The ROWID SQL data type,
which identifies a row in a table, is mapped to the java.sql.RowId Java data type.
The Reader method, readRowId() has been added to the SQLInput interface, and the
writer method, writeRowId(), has been added to the SQLOutput interface to read,
and write ROWID values.

JDBC 4.0

[24]

In JDBC 3.0, JDBC drivers supported only Unicode character set. SQL: 2003 standard
has added support for SQL types, NCAHR, NVARCHAR, LONGVARCHAR, and NCLOB in
which values are encoded using the National Character Set (NCS). The National
Character Set SQL data type values were converted to the Unicode Character Set
values with a JDBC 3.0 driver. The NCS data types can be more suitable if extensive
character processing operations are required. Support for National Character Set
database data types, NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB have been added
in JDBC 4.0.

Setter methods, setNString(), setNCharacterStream(), and setNClob() have
been added to the PreparedStatement and CallableStatement interfaces. Getter
method, getNString(), getNCharacterStream(), and getNClob() have been
added to the CallableStatement and ResultSet interfaces. Updater methods,
updateNString(), updateNCharacterStream(), and updateNClob() have been
added to the ResultSet interface. To create a NClob object, createNClob() method
has been added to the Connection interface. Reader methods, readNString()
and readNClob() have been added to the SQLInput interface to read the NCHAR,
NVARCHAR, LONGNVARCHAR, and NCLOB values. Writer methods, writeNClob() and
writeNString() have been added to the SQLOutput interface to write the NCHAR,
NVARCHAR, LONGNVARCHAR, and NCLOB values.

In JDBC 4.0, support for BLOB and CLOB SQL data types have been enhanced. To
create java.sql.Blob and java.sql.Clob objects, methods such as createBlob()
and createClob() have been added to the Connection interface. In the
PreparedStatement and CallableStatement interfaces, setBlob() method has
been overloaded to set the Blob values from an InputStream, and setClob()
method has been overloaded to set the Clob values from a Reader. In the ResultSet
interface, the updater method, updateBlob(), has been overloaded to update a
column from an InputStream and the updater method, updateClob(), has been
overloaded to update a column from a Reader. To free resources in Blob and Clob
objects, a method, free(), has been added to the Blob and Clob interfaces.

The setAsciiStream, setBinaryStream, and setCharacterStream methods in
the CallableStatement and PreparedStatement interfaces have been overloaded.
These interfaces have been overloaded to support the length parameter of type long
in addition to the length parameter of type int. The length parameter specifies
the length in bytes or characters of the InputStream or Reader object. Also, the
setAsciiStream, setBinaryStream, and setCharacterStream methods in the
CallableStatement and PreparedStatement interfaces have been overloaded with
versions without the length parameter.

The setBlob() method in the CallableStatement and PreparedStatement
interfaces has been overloaded with the other two methods to set parameter values
from the InputStream object, one with a length parameter for the length of the

Chapter 1

[25]

binary stream, and the other without a length parameter. If the InputStream length
does not match the specified length, an SQLException is generated. The setClob()
method in the CallableStatement and PreparedStatement interfaces has been
overloaded with other two methods to set parameter values from the Reader object,
one with a length parameter for the number of characters in the Reader object and
the other without a length parameter.

If the number of characters in the Reader object does not match the specified
length, an SQLEception is generated. Similar to the setter methods in the
PreparedStatement/CallableStatement, the updateAsciiStream,
updateBinaryStream, updateBlob, updateCharacterStream, and updateClob
methods in the ResultSet interface have been overloaded. Unlike the setBlob and
setClob methods of the PreparedStatement and CallableStatement interfaces,
the updateBlob and updateClob methods of the ResultSet interface do not
generate an SQLException, if the InputStream/Reader length does not match the
specified length.

SQL: 2003 XML Data Type Support
The SQL: 2003 standard supports a new data type, XML, for storing XML documents.
With the XML data type, an XML document can be stored in a database table column
similar to the other data types. JDBC 4.0 supports the SQL: 2003 standard. The java.
sql.SQLXML object is the Java mapping for the database type, XML. Prior to the SQLXML
Java data type, an XML type column value could be retrieved only as a String or CLOB,
which did not include the functionality to access different nodes in an XML document.

An XML type database column can be mapped to a Java data type with the help of
SQLXML data type. In JDBC 4.0 specification, a java.sql.Connection object has
the provision to create an SQLXML object that initially does not have any data. The
data can be added with the setString() method or the setBinaryStream(),
setCharacterStream(),and setResult() methods. An SQLXML object can be
retrieved from a ResultSet or a CallableStatement by using the overloaded
getSQLXML() method. The data in an SQLXML object can be retrieved by using the
getString() method or the getBinaryStream(), getCharacterStream(), and
getSource() methods. An SQLXML object can be stored in a database table column of
type XML, which is similar to any other data type using the setSQLXML() method of
the PreparedStatement interface.

SQL Server 2005 EXPRESS supports the XML data type whereas, SQL Server 2000 does
not. IBM's DB2 UDB V 9 also supports the XML data type. To find out if a database
supports the XML data type, obtain the database metadata from the Connection object:

DatabaseMetaData metadata= connection.getMetaData();

JDBC 4.0

[26]

The data types are supported with the getTypeInfo() method, as shown below:

ResultSet rs=metadata.getTypeInfo();

Iterate over the data type result set and output the TYPE_NAME column, as shown
below:

System.out.println("TYPE_NAME:"+rs.getString("TYPE_NAME"));

For SQL Server 2005 and IBM's DB2 UDB v9, the XML TYPE_NAME is output:

TYPE_NAME: XML

In the following subsections, the procedures to create an XML document, store it in a
database that supports the XML data type, and retrieve it from the database will
be discussed.

Generating an XML Document
We will discuss the procedure to create and initialize an SQLXML object. Import the
java.sql package, and the javax.xml.stream package:

import java.sql.*;
import javax.xml.stream.*;

The Java representation of an XML document in a database table is the SQLXML
object. Create an SQLXML object from the Connection object with the createSQLXML()
method, as shown below:

SQLXML sqlXML=connection.createSQLXML();

An SQLXML object can be initialized using one of the setString(),
setBinaryStream(), setCharacterStream(), or setResult() methods. An SQLXML
object can be initiated using the setResult() method and the StAXResult class.
Create an XMLStreamWriter object from a StAXResult object, as shown below:

StAXResult staxResult = sqlXML.setResult(StAXResult.class);
XMLStreamWriter xmlStreamWriter = staxResult.getXMLStreamWriter();

The SQLXML object becomes non-writable after the setResult()method is invoked.
Add the start of an XML document with the writeStartDocument(String,String)
method, as shown below:

xmlStreamWriter.writeStartDocument("UTF-8","1.0");

Chapter 1

[27]

The encoding and version of the XML document is specified in the
writeStartDocument method. Add the start of an element with the
writeStartElement(String localName) method, as shown below:

xmlStreamWriter.writeStartElement("catalog");

Add the element attributes by using the writeAttribute(String
localName, String value) method. Add an element of text by using
the writeCharacters(String text) method. Each start element would
have a corresponding end element tag. Add an end element by using the
writeEndElement() method. The writeEndElement() method does not specify the
element name as the writeStartElement(String) method:

xmlStreamWriter.writeEndElement();

Add end of the document by using the writeEndDocument() method:

xmlStreamWriter.writeEndDocument();

A SQLXML object can also be initiated using the SAXResult class. Create a SAXResult
object using the setResult() method of the SQLXML interface. Subsequently, obtain
the ContentHandler result using the getHandler() method:

SAXResult saxResult = sqlXML.setResult(SAXResult.class);
ContentHandler contentHandler= saxResult.getHandler();

Specify the start of an XML document using the startDocument() method:

contentHandler.startDocument();

Specify the start of an element using the startElement(String uri,String
localName,String qName,Attributes atts) method in which the parameter uri
specifies the element namespace, parameter localName specifies the element local
name, parameter qName specifies the element qualified name and parameter atts
of type Attributes specifies the element attributes. An Attributes object can be
created using the org.xml.sax.helpers.AttributesImpl class, which implements
the Attributes interface. An attribute can be added to the AttributesImpl object
using the addAttribute(String uri, String localName, String qName,
String type, String value) method:

AttributesImpl.AttributesImpl() attrs=new AttributesImpl();
attrs.addAttribute("","","journal","StringType","OracleMagazine");
contentHandler.startElement("","","catalog",attrs);

JDBC 4.0

[28]

The end of an element is specified with the endElement(String uri,String
localName,String qName) method. Also specify the end of the document with the
endDocument() method:

contentHandler.endElement("","","catalog");
contentHandler.endDocument();

An SQLXML object can also be initiated using the setCharacterStream() method.
Create a Writer object from the SQLXML object using the setCharacterStream()
method. Create a BufferedReader object from an input XML file. Read from the
BufferedReader, and output to the Writer object:

Writer writer= sqlXML.setCharacterStream();
BufferedReader bufferedReader = new BufferedReader(new FileReader(new
File("C:/catalog.xml")));
String line= null;
while((line = bufferedReader.readLine() != null) {
writer.write(line);
}

The SQLXML object becomes non-writable after the setCharacterStream() method
is invoked. An XML document can also be added to an SQLXML object with the
setString() method, as shown below:

sqlXML.setString("xmlString");

The SQLXML object becomes non-writable after invoking the setString()
method. If the setString(), setBinaryStream(), setCharacterStream(), or
setResult() method is invoked on an SQLXML object that has been previously
initiated, a SQLException is generated. If any of the setBinaryStream(),
setCharacterStream(), or setResult() methods are invoked more than once, a
SQLException is generated, and the previously returned InputStream, Writer, or
Result object is not effected.

Storing an XML Document
The SQLXML Java data type is stored in an XML document, just like any other Java
data type. Create a database table with an XML type column. Run the SQL statement
to create a database table, and obtain a Statement object from the Connection
object, as shown below:

Statement stmt=connection.createStatement();

Create a database table, Catalog with an XML type column, as shown below:

stmt.executeUpdate("CREATE Table Catalog(CatalogId int, Catalog
XML)");

Chapter 1

[29]

Create a PreparedStatement object to add values to a database table, as shown in
the following listing:

PreparedStatement statement=connection.prepareStatement("INSERT INTO
CATALOG(catalogId, catalog) VALUES(?,?)");

Set the int value with the setInt() method and the SQLXML value with the
setSQLXML() method, as shown below:

stmt.setInt(1, 1);
stmt.setSQLXML(2, sqlXML);

Update the database with the executeUpdate() method:

stmt.executeUpdate();

Retrieving an XML Document
An XML database data type row is retrieved as an SQLXML Java data type. Create a
PreparedStatement for a SELECT query, as shown below:

PreparedStatement stmt=connection.prepareStatement("SELECT * FROM
CATALOG WHERE catalogId=?");

Specify the catalogId value for which an XML document is to be retrieved:

stmt.setInt(1, 1);

Obtain a result set with the executeQuery() method:

ResultSet rs=stmt.executeQuery();

Obtain the SQLXML object for the catalog column of type XML, as shown below:

SQLXML sqlXML=rs.getSQLXML("Catalog");

Output the XML document in the SQLXML object by using the getString() method:

System.out.println(sqlXML.getString());

Accessing an XML Document Data
The XMLStreamReader interface can be used to read an XML document with an
event iterator. An XMLStreamReader object is obtained from a SQLXML object, as
shown below:

InputStream binaryStream = sqlXML.getBinaryStream();
XMLInputFactory factory = XMLInputFactory.newInstance();
XMLStreamReader xmlStreamReader = factory.createXMLStreamReader(binar
yStream);

JDBC 4.0

[30]

The SQLXML object becomes non-readable after calling the getBinaryStream()
method. The next event is obtained by using the next() method, as shown below:

while(xmlStreamReader.hasNext())
{
 int parseEvent=xmlStreamReader.next();
}

The next() method returns an int value that corresponds to an
XMLStreamConstants constant, which represents an event type. Some of the return
values of the next() method are listed in following table:

Event Type Description
ATTRIBUTE Specifies an attribute.
CDATA Specifies a Cdata.
CHARACTERS Text.
COMMENT An XML document comment.
NOTATION_DECLARATION Specifies a notation declaration.
START_DOCUMENT Specifies the start of a document
START_ELEMENT Specifies the start of an element.
END_ELEMENT Specifies the end of an element.
ENTITY_DECLARATION Specifies an entity declaration.
ENTITY_REFERENCE Specifies an entity reference.
NAMESPACE Specifies a namespace declaration.
SPACE Specifies an ignorable white space.

If the return value is ELEMENT, then the local name, prefix, and namespace can be
obtained by using the getLocalName(), getPrefix(), and getNamespaceURI()
methods, as shown below:

System.out.println("Element Local Name: "+xmlStreamReader.
getLocalName());
System.out.println("Element Prefix: "+xmlStreamReader.getPrefix());
System.out.println("Element Namespace:"+xmlStreamReader.
getNamespaceURI());

The attribute count in an element is obtained by using the getAttributeCount()
method. Iterate over the attributes and obtain the attribute local name by
using the getAttributeLocalName() method, the attribute value with the
getAttributeValue() method, the attribute prefix with the getAttributePrefix()
method, and the attribute namespace with the getAttributeNamespace() method:

Chapter 1

[31]

for(int i=0; i<xmlStreamReader.getAttributeCount();i++){
System.out.println("Attribute Prefix:"+xmlStreamReader.
getAttributePrefix(i));
System.out.println("Attribute Namespace:"+xmlStreamReader.getAttribute
Namespace(i));
System.out.println("Attribute Local Name:"+xmlStreamReader.getAttribut
eLocalName(i));
System.out.println("Attribute Value:"+xmlStreamReader.
getAttributeValue(i));
}

Support for Wrapper Pattern
Some vendor-specific JDBC resources that provide nonstandard JDBC methods are
wrapped for architectural reasons. Such JDBC resources can be unwrapped to access
instances with the wrapper pattern. Support for wrapper pattern is implemented
in the Wrapper interface. With the Wrapper interface, resources that are wrapped as
proxy classes can be accessed. The objective of the Wrapper interface is to provide a
standard method to access vendor-specific extensions inside standard JDBC objects,
such as, Connections, Statements, and ResultSets. The Wrapper interface is
extended by the following interfaces:

java.sql.Connection
java.sql.DataSource
java.sql.ResultSet
java.sql.Statement
java.sql.DatabaseMetaData
java.sql.ResultSetMetaData
java.sql.ParameterMetaData

The Wrapper interface provides the methods isWrapperFor(Class<?>) and
unwrap(Class<?>). The unwrap() method takes an interface as a parameter, and
returns an Object that implements the interface. The object that is returned is either
the object found to implement the specified interface, or a proxy for that object. The
isWrapperFor() method returns a boolean. This method is used to find out if an
instance implements the specified interface, or if an instance is a wrapper for an
object that implements the specified interface. If the object implements the specified
interface the value returned is true. If the object is a wrapper for the specified
interface, the isWrapperFor()method is invoked recursively on the wrapped object.
If the object does not implement the interface and is not a wrapper for the interface,
the value returned is false. The unwrap() method should be invoked, if the
isWrapperFor() method returns true.

•

•

•

•

•

•

•

JDBC 4.0

[32]

Create an object of type, java.sql.PreparedStatement and check if the
object is a wrapper for the Oracle JDBC specific interface, oracle.jdbc.
OraclePreparedStatement using the isWrapperFor() method. If the
object is a wrapper for the interface, create an instance of the oracle.jdbc.
OraclePreparedStatement JDBC interface using the unwrap() method:

String url="jdbc:oracle:thin:@localhost:1521:ORCL";
Connection connection = DriverManager.getConnection(url,"oe", "pw");
String sql="INSERT INTO CATALOG(catalogId, journal) VALUES(?,?)"
java.sql.PreparedStatement stmt = connection.prepareStatement(sql);
Class class = Class.forName("oracle.jdbc.OraclePreparedStatement");
if(stmt.isWrapperFor(class))
{
 OraclePreparedStatement ops = (OraclePreparedStatement)stmt.
unwrap(class);
 ops.defineColumnType(2, oracle.jdbc.OracleTypes.VARCHAR,4000);
}

Enhancements in SQLException
An error in interaction with the datasource is represented with the SQLException
class. JDBC 4.0 has enhanced support for navigation of chained SQLExceptions with
the iterator() method in the SQLException class. A chained SQLException is an
Exception that is linked with other Exceptions. The iterator() method iterates
over the chained exceptions and the chained causes. Chained exceptions can be
retrieved and iterated over (without having to invoke the getNextException() and
getCause() methods recursively) using the enhanced For-Each loop introduced in
J2SE 5. When an SQLException is generated using the For-Each loop, the chained
exceptions can be output as shown below:

catch(SQLException sqlException)
{
 for(Throwable e : sqlException)
 {
 System.out.println("Error encountered: " + e);
 }
}

In JDBC 4.0, four constructors have been added to the SQLException class with the
Throwable cause as one of the parameters. The getCause() method can return
non-SQLExceptions. In JDBC 4.0, three new categories of SQLExceptions have been
added, which are as follows:

SQLTransientException
SQLNonTransientException
SQLRecoverableException

•

•

•

Chapter 1

[33]

Categorization of the SQLExceptions facilitates the portability of error handling
code. SQLTransientException and SQLNonTransientException classes have
subclasses, which map to common SQLState class values. SQLState class provides
JDBC application's return code information about the most recently executed SQL
statement. The return code is sent by the database manager after the completion
of each SQL statement. The SQLState class values are defined in the SQL:
2003 specification.

A SQLTransientException indicates that the operation that generates the exception
could succeed, if retried. Subclasses of the SQLTransientException class are
discussed in following table:

SQLException SQLState Class Value Description
SQLTransient

ConnectionException.

08 Represents that a connection
operation that failed could
succeed, if the operation
is retried.

SQLTransaction

RollbackException.

40 Represents that a current
Statement was rolled back.

SQLTimeoutException. Does not correspond to a
standard SQLState.

Represents that a Statement
has timed out.

SQLNonTransientException indicates the operation, which generates the exception
that will not succeed without the cause of the SQLException being rectified.
Subclasses of the SQLNonTransientException are discussed in following table:

SQLException SQLState Class
Value

Description

SQLFeatureNotSupported
Exception.

0A Represents that a JDBC driver does
not support a feature.

SQLNonTransientConnection
Exception.

08 Represents that a connection
operation that failed will not succeed
if retried, without the cause of the
exception being corrected.

SQLDataException. 22 Represents various data errors
including non allowable conversion
and division by 0.

SQLIntegrityConstraint

ViolationException.

23 Represents an integrity constraint
exception.

SQLInvalidAuthorization
SpecException.

28 Represents an authorization
exception.

SQLSyntaxErrorException. 42 Represents an error in the SQL syntax.

JDBC 4.0

[34]

The SQLRecoverableException indicates that the operation that throws the
Exception can succeed, if the application performs some recovery steps and
retries the entire transaction(or the transaction branch in the case of a distributed
transaction). The recovery steps include at the least, closing the current connection
and obtaining a new connection.

A new subclass of the SQLException class, SQLClientInfoException, has been
added in the JDBC 4.0 specification. The SQLClientInfoException is generated,
if one or more client info properties could not be set on a Connection. The
SQLClientInfoException also lists the client info properties, which were not set.
Some databases that do not allow multiple client info properties to be set atomically
can generate the SQLClientInfoException exception after one or more client info
properties have been set. The client info properties that were not set can be retrieved
by using the getFailedProperties() method.

Connection Management
Connection pooling improves the performance and scalability of the connections
by providing a cache of the connections that are reusable across client sessions.
Connection pooling reduces the overhead of opening, initializing and closing
connections. One of the drawbacks of the connection pooling is that when a
connection in a connection pool becomes stale and unusable, the application
performance is reduced. JDBC 3.0 specification did not have the provision to track
connection state. Connection state tracking has been added to the Connection
interface in the JDBC 4.0 to find out if a connection is valid. The isValid(int
timeout) method returns true, if the connection is valid. The isValid() method
validates a connection with a SQL query, or another mechanism. If a connection is
not valid, the connection can be closed, thus reducing the accumulation of unusable
connections. The Connection object conn can be closed, if it is not in use:

if(!conn.isClosed())
if(!conn.isValid())
conn.close();

Connection state tracking and closing of invalid connections are implemented by the
connection pool manager. Another drawback of connection pooling has been that
one or more connections assigned from a connection pool in a web or application
server can bog down an application. JDBC 3.0 does not have the provision to
identify the connections that use the excess of CPU time. JDBC 4.0 has added the
setClientInfo() and getClientInfo() methods to the Connection interface
using which, client specific information can be specified on a Connection object,
when a Connection is assigned to an application. Client specification information
includes user name and application name. The DatabaseMetaData interface in JDBC
4.0 provides a new method, getClientInfoProperties(). Client info properties

Chapter 1

[35]

supported by a JDBC driver can be obtained using the getClientInfoProperties()
method. When one or more connections bog down the application, the
getClientInfo() method can be used to identify which connections could be
causing the reduction in performance. Some standard client info properties that a
JDBC driver can support are discussed in the following table:

Client Info Property Description
ApplicationName. The name of the application that is using the

connection.
ClientUser. The name of the user.
ClientHostname. The hostname on which the application is

running.

Similar to connection pooling, JDBC 4.0 provides Statement pooling to reduce the
overheads of opening, initiating, and closing Statement objects. Frequently used
Statement objects can be pooled using the setPoolable(boolean poolable)
method. The isPoolable() method is used to check if a Statement object is
poolable. The Statement object, stmt can be pooled, if poolable:

if(stmt.isPoolable())
stmt.setPoolable(true);

Scalar Functions
Most databases support numeric, string, time, date, system, and conversion functions
on the scalar values. SQL statements run using the Statement object, and can
include the scalar functions using the JDBC escape syntax. JDBC 4.0 provides some
new scalar function, which are discussed in the following table:

Scalar Function Description
CHAR_LENGTH
CHARACTER_LENGTH

Returns the length of a string expression.

CURRENT_DATE Returns the current date.
CURRENT_TIME Returns the current time.
CURRENT_TIMESTAMP Returns the current timestamp.
EXTRACT Extracts a field from a datetime value.
OCTET_LENGTH Returns the length of a string expression in

octets (bytes).

JDBC 4.0

[36]

JDBC 4.0 support in Oracle Database
Support for JDBC 4.0 specification is a JDBC driver feature, and not a database
feature. Oracle Database 11g JDBC drivers support JDBC 4.0 specification. Add the
ojdbc6.jar file to the CLASSPATH environment variable to use the JDBC 4.0 features.
JDK 6.0 is required for JDBC 4.0 support. Oracle database 11g JDBC drivers can be
used with the Oracle database 9i and the later versions. Oracle database 11g JDBC
drivers support all the JDBC 4.0 features except the SQLXML Java data type that is
used to access the SQL data type XML. Oracle database 11g JDBC drivers support the
wrapper pattern to access non-standard Oracle JDBC resources. Oracle extensions to
the JDBC are available in the oracle.jdbc package.

The oracle.jdbc.OracleStatement interface can be unwrapped using the
unwrap() method to create a oracle.jdbc.OracleStatement object. As the
Statement interface extends the Wrapper interface, create a Statement object from a
Connection object, conn. Check if the Statement object is a wrapper for the oracle.
jdbc.OracleStatement interface using the isWrapperFor() method. Obtain a
OracleStatement object from the interface using the unwrap() method to use the
methods of the OracleStatement interface:

Statement stmt = conn.createStatement();
Class class = Class.forName("oracle.jdbc.OracleStatement");
if(stmt.isWrapperFor(class))
{
 OracleStatement oracleStmt = (OracleStatement)stmt.unwrap(class);
 oracleStmt.defineColumnType(1, Types.NUMBER);
}

Oracle database 11g JDBC drivers support the enhanced chained exceptions in
the JDBC 4.0 SQLException class. JDBC 4.0 has added a distinction between the
permanent errors and transient errors. Permanent errors are errors that occur in the
correct operation of the database system and continue to recur, until the cause of
the error is removed. Transient errors are errors occurring due to the failure of some
segment of the system, or due to timeouts, and these may not recur if the operation
that generated the error is retried. Oracle database 11g JDBC drivers support the
different categories of SQLException.

Oracle database 11g JDBC drivers support the ROWID SQL data type. Each table in
an Oracle database has a ROWID pseudocolumn that identifies a row in a table. The
SQL data type of the ROWID column is ROWID. Usually a rowid uniquely identifies a
row in a database. But rows in different tables that are stored in a cluster may have
the same rowid. Rowids should not be used as the primary key for a database table.
If a row is deleted and reinserted using an Import or Export utility, its rowid may
get modified. If a row is deleted, its rowid can be assigned to a row added later. The
ROWID pseudocolumn can be used in the SELECT and WHERE clauses. Rowid values
have the following applications:

Chapter 1

[37]

1. Rowids are the fastest way to access a row in a database table.
2. Rowids are unique identifiers for rows in a table.
3. Rowids represent how rows are stored in a table.

A ROWID column value can be retrieved using the getter methods in the ResultSet
and CallableStatement interfaces. Retrieve the ROWID column value for the current
row in a ResultSet object, rs, as shown below:

java.sql.RowId rowid=rs.getRowId();

A RowId object is valid till the identified row is not deleted. A RowId duration
of the validity can be obtained using the getRowIdLifetime() method of the
DatabaseMetaData interface. The duration of validity can be one of the int values in
the following table:

int Value Description
ROWID_UNSUPPORTED Databases do not support the ROWID SQL

data type.
ROWID_VALID_TRANSACTION Valid for the duration of transaction in

which it is created.
ROWID_VALID_SESSION Valid for the duration of a session in which

it is created across all transactions.
ROWID_VALID_FOREVER Valid across all sessions.
ROWID_VALID_OTHER Validity not known.

A RowId value can be used with a parameterized PreparedStatement to set a
parameter value with a RowId object. A RowId value can also be used with an
updatable ResultSet to update a column with a RowId object.

Oracle database 11g JDBC drivers support the National Character Set (NCS) data
types NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB. Oracle database 11g drivers
also support Large Object data types (LOBs). The Connection interface provides
createBlob, createClob, and createNClob methods to create Blob, Clob, and
NClob objects. Create a Blob object as shown below:

String url="jdbc:oracle:thin:@localhost:1521:ORCL";
Connection connection = DriverManager.getConnection(url,"oe", "pw");
Blob aBlob = connection.createBlob();

The LOB objects created do not contain any data. Data can be added using the setter
methods in the Blob, Clob, and NClob interfaces. To add data to the Blob object,
obtain an OutputStream object from the Blob object:

OutputStream outputStream=aBlob.setBinaryStream(1);

JDBC 4.0

[38]

LOB objects can be used as input parameters with a PreparedStatement object
using the setBlob, setClob, and setNClob methods. The Blob object created
previously can be set as a parameter value on a PreparedStatement object, pstmt,
as follows:

pstmt.setBlob(2,aBlob);

For an updatable ResultSet, the updateBlob, updateClob, and updateNClob
methods can be used to update a Blob, Clob, or NClob column value. Update a
ResultSet object, rs, of column type, BLOB, with the Blob object already created:

rs.updateBlob(3,aBlob);

Blob, Clob, and NClob data can be retrieved using the getBlob, getClob, and
getNClob methods in the ResultSet and CallableStatement interfaces. Retrieve a
Blob object corresponding to a BLOB column from a ResultSet object, rs:

Blob blob=rs.getBlob(2);

Either the entire data in a Blob object can be retrieved using the getBinaryStream()
method, or the partial data in the Blob object can be retrieved using the
getBinaryStream(long pos,long length) method. Here, the parameter, pos,
specifies the offset position for start of data retrieval and the length parameter
specifies the length in bytes of the data to be retrieved. Retrieve 100bytes of data
from the Blob object that was created previously with an offset position of 200:

InputStream inputStream = aBlob.getBinaryStream(200, 100);

LOBs are valid at least for the duration of the transaction in which it is created. For
long running transactions, it can be better to release LOB resources using the free()
method:

aBlob.free();

JDBC 4.0 support in MySQL Database
MySQL database server provides support for the JDBC 4.0 specification in the
Connector/J 5.1 JDBC drivers. MySQL's Connector/J 5.1 supports the JDBC 4.0
features, listed below:

1. Auto-registration of the JDBC driver with the DriverManager via the J2SE
Service Provider mechanism.

2. Connection validity check using the isValid() method of the Connection
interface.

3. Categorized SQLExceptions based on recoverability or retry-ability, and
class of the underlying error.

Chapter 1

[39]

4. Unwrapping of MySQL-specific extensions for JDBC.
5. Support for SQLXML. MySQL database does not support the SQL: 2003 SQL

data type XML. JDBC 4.0 specification does not specify that the SQL data
type to store a SQLXML object is required to be the SQL: 2003 XML data type.
MySQL's Connector/J 5.1 JDBC driver supports the SQLXML Java data type.

6. Support for setting per-connection client info using the setClientInfo()
method of the Connection interface.

7. Support for National Character Set data types NCHAR, NVARCHAR,
LONGNVARCHAR, and NCLOB.

JDBC 4.0 support in IBM's DB2 UDB
IBM Data Server Driver for JDBC and SQLJ Version 4.0 supports the JDBC 4.0
specification. To use the JDBC 4.0 features, add the db2jcc4.jar file to the
CLASSPATH environment variable. The JDBC 4.0 driver name is,"IBM Data Server
Driver for JDBC and SQLJ" instead of the previous, "IBM DB2 JDBC Universal Driver
Architecture". IBM Data Server Driver for JDBC and SQLJ supports most of the JDBC
4.0 features.

JDBC support has been added for the JDBC 4.0 java.sql.RowId interface for
updating and retrieving data in ROWID columns. JDBC support has also been added
for the java.sql.SQLXML interface for storing, updating, and retrieving data in XML
columns. The IBM Data Server Driver for JDBC and SQLJ supports the following
client info properties to identify the client connections:

1. ApplicationName
2. ClientAccountingInformation
3. ClientHostname
4. ClientUser

IBM Data Server Driver for JDBC and SQLJ supports the new SQLException
subclasses, in the JDBC 4.0 specification. It also supports chained exceptions. The
wrapper pattern is supported to access vendor-specific resources. The following IBM
Data Server Driver for JDBC and SQLJ-specific interfaces in the com.ibm.db2.jcc
package extend the Wrapper interface:

1. DB2Connection
2. DB2BaseDataSource
3. DB2SimpleDataSource
4. DB2Statement

JDBC 4.0

[40]

5. DB2ResultSet
6. DB2DatabaseMetaData

Example Connection using a JDBC 4.0
Driver
We will connect with a database using a JDBC 4.0 driver. We will use Java DB as
the example database. Java DB is Sun's version of the open-source Apache Derby
database. Java DB is a lightweight (only 2MB), yet fully transactional, secure, and
standards-based component. It also supports the SQL, JDBC, and Java EE standards.
Java DB is a 100% Java technology database, and since Java is portable across
platforms, Java DB can be run on any platform and its applications can be migrated
to other open standard databases. Java DB is packaged with JDK 6. Therefore, all that
is required to install Java DB is to install JDK 6. We connect with Java DB database
using the JDBC 4.0 driver. Create a Java application, JDBCConnection.java, in a
directory, C:/JavaDB, and add the directory to the CLASSPATH system environment
variable. Java DB can be started in the embedded mode or as network server.
Embedded mode is used to connect to the Java DB from a Java application running
in the same JVM as the Java DB database. Java DB as a network server is used to
connect with the database from different JVMs across the network. We will start Java
DB in embedded mode from the JDBCConnection.java application. We will load
the JDBC 4.0 driver automatically using the Java SE Service Provider mechanism.
For automatic loading of the JDBC driver, we need to add the Java DB JDBC 4.0
driver JAR file, C:/Program Files/Sun/JavaDB/lib/derby.jar to the CLASSPATH
variable. Java DB provides a batch script, setEmbeddedCP.bat in the bin directory to
set the CLASSPATH for the embedded mode. Run the setEmbeddedCP script from the
directory from which the JDBCConnection.java application is to be run as follows:

"C:\Program Files\Sun\JavaDB\bin\setEmbeddedCP.bat"

JAR file, derby.jar is added to the CLASSPATH. The derby.jar file includes a
directory structure, META-INF/services/, and a file, java.sql.Driver, in the
services directory. The java.sql.Driver file specifies the following JDBC driver
class for the Java DB that is to be loaded automatically using the Java SE Service
Provider mechanism:

org.apache.derby.jdbc.AutoloadedDriver

Chapter 1

[41]

In the JDBCConnection.java application, specify the connection URL for the Java
DB database. Create a new database instance by specifying the database name,
demodb, and the create attribute as, true:

String url="jdbc:derby:demodb;create=true";

Connect with the Java DB database using the getConnection() method of the
DriverManager class:

Connection conn = DriverManager.getConnection(url);

The DriverManager automatically loads the JDBC 4.0 driver class, org.apache.
derby.jdbc.AutoloadedDriver, which is specified in the java.sql.Driver file
using the Java SE Service Provider mechanism. The JDBC driver is not required
to be loaded using the Class.forName() method using a JDBC 3.0 driver. The
JDBCConnection.java application is listed below:

import java.sql.*;
public class JDBCConnection
{
 public void connectToDatabase()
 {
 try
 {
 String url="jdbc:derby:demodb;create=true";
 Connection conn = DriverManager.getConnection(url);
 System.out.println("Connection Established");
 }
 catch (SQLException e)
 {
 System.out.println(e.getMessage());
 }
 }
 public static void main(String[] argv)
 {
 JDBCConnection jdbc = new JDBCConnection();
 jdbc.connectToDatabase();
 }
}

JDBC 4.0

[42]

Other Relational Database Management Systems (RDBMS) databases provide a
JDBC 4.0 driver that can be connected using the JDBC 4.0 driver, as discussed for
the Java DB database. The connection URLs, and JDBC 4.0 drivers for some of the
commonly used databases are discussed in following table:

Database Connection URL JDBC 4.0 Driver
MySQL (4.1, 5.0, 5.1
and the 6.0 alpha).

jdbc:mysql://
localhost:3306/test

MySQL Connector/J 5.1
(http://dev.mysql.com/
downloads/connector/
j/5.1.html) META-INF/
services/java.sql.Driver is required
to be added to the CLASSPATH as
it is not included in the driver
JAR file.

Oracle Database
(9.01 and later).

jdbc:oracle:thin:@
localhost:1521:ORCL

Oracle Database 11g JDBC Driver's
(http://www.oracle.com/
technology/software/tech/
java/sqlj_jdbc/htdocs/
jdbc_111060.html) java.sql.
Driver file is included in the JDBC
JAR file, ojdbc6.jar.

IBM DB2 for
Linux UNIX and
Windows.

jdbc:db2://
localhost:50000/SAMPLE

IBM Data Server Driver for JDBC
and SQLJ version 4.0's (https://
www14.software.ibm.
com/webapp/iwm/web/reg/
download.do?source=swg-
informixfpd&S_
PKG=dl&lang=en_US&cp=UTF-
8) java.sql.Driver file is not
included in the JDBC JAR file,
db2jcc4.jar.

SQL Server
Database (MS SQL
Server 6.5 - 2005
with all Service
Packs).

jdbc:inetdae7:
localhost:1433

i-net MERLIA JDBC 4.0
driver for MS SQL Database's
(http://www.inetsoftware.
de/products/jdbc/mssql/
merlia/) java.sql.Driver file is
not included in the JDBC JAR file,
Merlia.jar.

Chapter 1

[43]

Summary
In this chapter, you have been introduced to the JDBC API and the new features in
JDBC 4.0 specification. The DriverManager class is used to connect with a database.
The Connection interface represents a database connection. The Savepoint interface
represents a savepoint in a transaction. This is the point up to which the changes
would be rolled back, if the transaction is rolled back. The Statement interface is
used to run static SQL statements. The ResultSet interface represents the result set
table generated by running SQL statements on a database. The PreparedStatement
represents a compiled SQL statement that can be run more than once with different
parameters. The DatabaseMetadata interface represents the database metadata, such
as, table name, schema name, column name, and column type. The SQLException
class represents the database access error or other SQL errors. JDBC 4.0 specification
provides some new features to facilitate the development of JDBC applications.
Support for new SQL data types has been added. The new features include,
automatic SQL Driver loading, SQL: 2003 XML Data Type support,
support for wrapper pattern, enhancements in SQLException, and enhanced
connection management.

Configuring JDBC in
Oracle JDeveloper

Oracle JDeveloper is a free Integrated Development Environment (IDE) for
modeling, developing, debugging, optimizing, and deploying Java applications.
JDeveloper 10g is used to develop J2EE applications comprising the JSPs, EJBs,
Struts, Servlets, and the Java classes that may require accessing a database table in
the Oracle 10g Database, or a third-party database. Unlike Eclipse, which requires
a plugin, JDeveloper has a built-in provision to establish a JDBC connection with a
database. JDeveloper is the only Java IDE with an embedded application server, the
Oracle Containers for J2EE (OC4J). This database-based web application may run in
JDeveloper without requiring a third-party application server. However, JDeveloper
also supports third-party application servers. Starting with JDeveloper 11,
application developers may point the IDE to an application server instance (or OC4J
instance), including third-party application servers that they want to use for testing
during development. JDeveloper provides connection pooling for the efficient use of
database connections. A database connection may be used in an ADF BC application,
or in a JavaEE application.

A database connection in JDeveloper may be configured in the Connections
Navigator. A Connections Navigator connection is available as a DataSource
registered with a JNDI naming service. The database connection in JDeveloper is
a reusable named connection that developers configure once and then use in as
many of their projects as they want. Depending on the nature of the project and
the database connection, the connection is configured in the bc4j.xcfg file or a
JavaEE data source. Here, it is necessary to distinguish between data source and
DataSource. A data source is a source of data; for example an RDBMS database
is a data source. A DataSource is an interface that represents a factory for JDBC
Connection objects. JDeveloper uses the term Data Source or data source to refer to a
factory for connections. We will also use the term Data Source or data source to refer
to a factory for connections, which in the javax.sql package is represented by the

Configuring JDBC in Oracle JDeveloper

[46]

DataSource interface. A DataSource object may be created from a data source
registered with the JNDI (Java Naming and Directory) naming service using JNDI
lookup. A JDBC Connection object may be obtained from a DataSource object using
the getConnection method. As an alternative to configuring a connection in the
Connections Navigator a data source may also be specified directly in the data source
configuration file data-sources.xml. In this chapter we will discuss the procedure
to configure a JDBC connection and a JDBC data source in JDeveloper 10g IDE. We
will use the MySQL 5.0 database server and MySQL Connector/J 5.1 JDBC
driver, which support the JDBC 4.0 specification. In this chapter you will learn
the following:

Creating a database connection in JDeveloper Connections Navigator
Configuring the Data Source and Connection Pool associated with the
connection configured in the Connections Navigator
The common JDBC Connection Errors
Creating a Connection Pool and Data Source
Connecting to a Database from a Web Application
The JDBC 4.0 Version of the Web Application

Before we create a JDBC connection and a data source we will discuss connection
pooling and DataSource.

Connection Pooling and DataSource
The javax.sql package provides the API for server-side database access. The main
interfaces in the javax.sql package are DataSource, ConnectionPoolDataSource,
and PooledConnection. The DataSource interface represents a factory for
connections to a database. In Chapters 1 and 2, we obtained a Connection object
using the DriverManager class. DataSource is an alternative and a preferred method
of obtaining a JDBC connection. An object that implements the DataSource interface
is typically registered with a Java Naming and Directory API-based naming service.
DataSource interface implementation is driver-vendor specific. The DataSource
interface has three types of implementations:

Basic implementation: In basic implementation there is 1:1 correspondence
between a client's Connection object and the connection with the database.
This implies that for every Connection object, there is a connection with the
database. With the basic implementation, the overhead of opening, initiating,
and closing a connection is incurred for each client session.

•

•

•

•

•

•

•

Chapter 2

[47]

Connection pooling implementation: A pool of Connection objects is
available, from which connections are assigned to the different client
sessions. A connection pooling manager implements the connection pooling.
When a client session does not require a connection, the connection is
returned to the connection pool and becomes available to other clients. Thus,
the overheads of opening, initiating, and closing connections are reduced.
Distributed transaction implementation: Distributed transaction
implementation produces a Connection object that is mostly used for
distributed transactions and is always connection pooled. A transaction
manager implements the distributed transactions.

An advantage of using a data source is that code accessing a data source does not
have to be modified when an application is migrated to a different application
server. Only the data source properties need to be modified. A JDBC driver that
is accessed with a DataSource does not register itself with a DriverManager. A
DataSource object is created using a JNDI lookup and subsequently a Connection
object is created from the DataSource object. For example, if a data source JNDI
name is jdbc/OracleDS a DataSource object may be created using JNDI lookup.
First, create an InitialContext object and subsequently create a DataSource object
using the InitialContext lookup method. From the DataSource object create a
Connection object using the getConnection() method:

InitialContext ctx=new InitialContext();
DataSource ds=ctx.lookup("jdbc/OracleDS");
Connection conn=ds.getConnection();

The JNDI naming service, which we used to create a DataSource object is provided
by J2EE application servers such as the Oracle Application Server Containers for
J2EE (OC4J) embedded in the JDeveloper IDE.

A connection in a pool of connections is represented by the PooledConnection
interface, not the Connection interface. The connection pool manager, typically
the application server, maintains a pool of PooledConnection objects. When an
application requests a connection using the DataSource.getConnection() method,
as we did using the jdbc/OracleDS data source example, the connection pool
manager returns a Connection object, which is actually a handle to an object that
implements the PooledConnection interface. A ConnectionPoolDataSource object,
which is typically registered with a JNDI naming service, represents a collection of
PooledConnection objects. The JDBC driver provides an implementation of the
ConnectionPoolDataSource, which is used by the application server to build and
manage a connection pool. When an application requests a connection, if a suitable
PooledConnection object is available in the connection pool, the connection pool
manager returns a handle to the PooledConnection object as a Connection object. If
a suitable

•

•

Configuring JDBC in Oracle JDeveloper

[48]

PooledConnection object is not available, the connection pool manager invokes the
getPooledConnection() method of the ConnectionPoolDataSource to create a
new PooledConnection object. For example, if connectionPoolDataSource is
a ConnectionPoolDataSource object a new PooledConnection gets created
as follows:

PooledConnection
pooledConnection=connectionPoolDataSource.getPooledConnection();

The application does not have to invoke the getPooledConnection() method
though; the connection pool manager invokes the getPooledConnection() method
and the JDBC driver implementing the ConnectionPoolDataSource creates a
new PooledConnection, and returns a handle to it. The connection pool manager
returns a Connection object, which is a handle to a PooledConnection object, to the
application requesting a connection. When an application closes a Connection object
using the close() method, as follows, the connection does not actually get closed.

conn.close();

The connection handle gets deactivated when an application closes a Connection
object with the close() method. The connection pool manager does the
deactivation. When an application closes a Connection object with the close()
method any client info properties that were set using the setClientInfo method are
cleared. The connection pool manager is registered with a PooledConnection object
using the addConnectionEventListener() method. When a connection is closed
the connection pool manager is notified and the connection pool manager deactivates
the handle to the PooledConnection object, and returns the PooledConnection
object to the connection pool to be used by another application. The connection pool
manager is also notified if a connection has an error. A PooledConnection object is
not closed until the connection pool is being reinitialized, the server is shutdown, or
a connection becomes unusable.

In addition to connections being pooled, PreparedStatement objects are also pooled
by default if the database supports statement pooling. It can be discovered if a database
supports statement pooling using the supportsStatementPooling() method of the
DatabaseMetaData interface. The PeparedStatement pooling is also managed by
the connection pool manager. To be notified of PreparedStatement events such as a
PreparedStatement getting closed or a PreparedStatement becoming unusable, a
connection pool manager is registered with a PooledConnection manager using the
addStatementEventListener() method. A connection pool manager deregisters a
PooledConnection object using the removeStatementEventListener() method.
Methods addStatementEventListener and removeStatementEventListener are
new methods in the PooledConnection interface in JDBC 4.0. Pooling of Statement
objects is another new feature in JDBC 4.0. The Statement interface has two new
methods in JDBC 4.0 for Statement pooling: isPoolable() and setPoolable().

Chapter 2

[49]

The isPoolable method checks if a Statement object is poolable and the
setPoolable method sets the Statement object to poolable. When an
application closes a PreparedStatement object using the close() method the
PreparedStatement object is not actually closed. The PreparedStatement object
is returned to the pool of PreparedStatements. When the connection pool
manager closes a PooledConnection object by invoking the close() method
of PooledConnection all the associated statements also get closed. Pooling of
PreparedStatements provides significant optimization, but if a large number
of statements are left open, it may not be an optimal use of resources. Thus, the
following procedure is followed to obtain a connection in an application server using
a data source:

1. Create a data source with a JNDI name binding to the JNDI naming service.
2. Create an InitialContext object and look up the JNDI name of the data

source using the lookup method to create a DataSource object. If the JDBC
driver implements the DataSource as a connection pool, a connection pool
becomes available.

3. Request a connection from the connection pool. The connection pool
manager checks if a suitable PooledConnection object is available. If a
suitable PooledConnection object is available, the connection pool manager
returns a handle to the PooledConnection object as a Connection object to
the application requesting a connection.

4. If a PooledConnection object is not available the connection pool
manager invokes the getPooledConnection() method of the
ConnectionPoolDataSource, which is implemented by the JDBC driver.

5. The JDBC driver implementing the ConnectionPoolDataSource creates a
PooledConnection object and returns a handle to it.

6. The connection pool manager returns a handle to the PooledConnection
object as a Connection object to the application requesting a connection.

7. When an application closes a connection, the connection pool manager
deactivates the handle to the PooledConnection object and returns the
PooledConnection object to the connection pool.

ConnectionPoolDataSource provides some configuration properties to configure
a connection pool. The configuration pool properties are not set by the JDBC client,
but are implemented or augmented by the connection pool. The properties can
be set in a data source configuration. Therefore, it is not for the application itself
to change the settings, but for the administrator of the pool, who also happens to
be the developer sometimes, to do so. Connection pool properties supported by
ConnectionPoolDataSource are discussed in following table:

Configuring JDBC in Oracle JDeveloper

[50]

Connection Pool Property Type Description
maxStatements int Maximum number of statements the pool

should keep open. 0 (zero) indicates that
statement caching is not enabled.

initialPoolSize int The initial number of connections the pool
should have at the time of creation.

minPoolSize int The minimum number of connections in the
pool. 0 (zero) indicates that connections are
created as required.

maxPoolSize int The maximum number of connections in the
connection pool. 0 indicates that there is no
maximum limit.

maxIdleTime int Maximum duration (in seconds) a connection
can be kept open without being used before
the connection is closed. 0 (zero) indicates that
there is no limit.

propertyCycle int The interval in seconds the pool should wait
before implementing the current policy defined
by the connection pool properties.

maxStatements int The maximum number of statements the pool
can keep open. 0 (zero) indicates that statement
caching is not enabled.

Setting the Environment
Before getting started, we have to install the JDeveloper 10.1.3 IDE and the MySQL
5.0 database. Download JDeveloper from: http://www.oracle.com/technology/
software/products/jdev/index.html. Download the MySQL Connector/J 5.1,
the MySQL JDBC driver that supports JDBC 4.0 specification. To install JDeveloper
extract the JDeveloper ZIP file to a directory. Log in to the MySQL database and set
the database to test. Create a database table, Catalog, which we will use in a web
application. The SQL script to create the database table is listed below:

CREATE TABLE Catalog(CatalogId VARCHAR(25)
PRIMARY KEY, Journal VARCHAR(25), Publisher VARCHAR(25),
 Edition VARCHAR(25), Title Varchar(45), Author Varchar(25));
INSERT INTO Catalog VALUES('catalog1', 'Oracle Magazine',
 'Oracle Publishing', 'Nov-Dec 2004', 'Database Resource Manager',
'Kimberly Floss');
INSERT INTO Catalog VALUES('catalog2', 'Oracle Magazine', 'Oracle
Publishing', 'Nov-Dec 2004', 'From ADF UIX to JSF', 'Jonas Jacobi');

Chapter 2

[51]

MySQL does not support ROWID, for which support has been added in JDBC 4.0.
Having installed the JDeveloper IDE, next we will configure a JDBC connection
in the Connections Navigator. Select the Connections tab and right-click on the
Database node to select New Database Connection.

Click on Next in Create Database Connection Wizard. In the Create Database
Connection Type window, specify a Connection Name—MySQLConnection for
example—and set Connection Type to Third Party JDBC Driver, because we will be
using MySQL database, which is a third-party database for Oracle JDeveloper and
click on Next. If a connection is to be configured with Oracle database select Oracle
(JDBC) as the Connection Type and click on Next.

Configuring JDBC in Oracle JDeveloper

[52]

In the Authentication window specify Username as root (Password is not required
to be specified for a root user by default), and click on Next. In the Connection
window, we will specify the connection parameters, such as the driver name and
connection URL; click on New to specify a Driver Class. In the Register JDBC Driver
window, specify Driver Class as com.mysql.jdbc.Driver and click on Browse to select
a Library for the Driver Class. In the Select Library window, click on New to create a
new library for the MySQL Connector/J 5.1 JAR file. In the Create Library window,
specify Library Name as MySQL and click on Add Entry to add a JAR file entry
for the MySQL library. In the Select Path Entry window select mysql-connector-
java-5.1.3-rc\mysql-connector-java-5.1.3-rc-bin.jar and click on Select. In the Create
Library window, after a Class Path entry gets added to the MySQL library, click on
OK. In the Select Library window, select the MySQL library and click on OK. In
the Register JDBC Driver window, the MySQL library gets specified in the Library
field and the mysql-connector-java-5.1.3-rc\mysql-connector-java-5.1.3-rc-bin.jar
gets specified in the Classpath field. Now, click on OK. The Driver Class, Library,
and Classpath fields get specified in the Connection window. Specify URL as jdbc:
mysql://localhost:3306/test, and click on Next.

Chapter 2

[53]

In the Test window click on Test Connection to test the connection that we have
configured. A connection is established and a success message gets output in the
Status text area. Click on Finish in the Test window. A connection configuration,
MySQLConnection, gets added to the Connections navigator.

The connection parameters are displayed in the structure view. To modify any of
the connection settings, double-click on the Connection node. The Edit Database
Connection window gets displayed. The connection Username, Password, Driver
Class, and URL may be modified in the Edit window.

Configuring JDBC in Oracle JDeveloper

[54]

A database connection configured in the Connections navigator has a JNDI name
binding in the JNDI naming service provided by OC4J. Using the JNDI name
binding, a DataSource object may be created in a J2EE application. To view, or
modify the configuration settings of the JDBC connection select Tools | Embedded
OC4J Server Preferences in JDeveloper. In the window displayed, select Global |
Data Sources node, and to update the data-sources.xml file with the connection
defined in the Connections navigator, click on the Refresh Now button. Checkboxes
may be selected to Create data-source elements where not defined, and to Update
existing data-source elements.

Chapter 2

[55]

The connection pool and data source associated with the connection configured
in the Connections navigator get listed. Select the jdev-connection-pool-
MySQLConnection node to list the connection pool properties as Property Set A
and Property Set B.

Configuring JDBC in Oracle JDeveloper

[56]

The tuning properties of the JDBC connection pool may be set in the Connection
Pool window. The different tuning attributes are listed in following table:

Tuning Attribute Attribute Description Default Value

Abandoned
Connection
Timeout

Interval (seconds) after which a
connection acquired by a user that
has been inactive is returned to
the cache.

-1 implies that the feature is
not in effect.

Retry Interval Interval (seconds) after which a failed
connection attempt is retried. Used
with Max Connect Attempts.

1

Disable Connection
Pooling

Specifies if application server's
connection pooling is to be disabled.
This attribute is available because
some drivers provide connection
pooling inside the driver.

False

Inactivity Timeout The number of seconds of inactivity
after which an unused connection is
removed from the pool.

Inactivity Timeout

Initial Limit The initial number of connections
in the connection pool. If value is
greater than 0, the specified number
of connections are pre-created and
available in the connection cache,
thus reducing the time required to
build the cache to its optimal size.

0

Login Timeout The number of seconds after which a
login attempt is timed out. 0 implies
that the system timeout value is used.
If a system timeout is not defined, a
login attempt is not timed out.

0

Max Connect
Attempts

The maximum number of connection
attempts to a database. Used in
conjunction with retry interval.

3

Max Connections The maximum number of available
database connections in the
connection pool. A value of 0 or less
implies that there is no maximum
limit.

0

Min Connections The minimum number of database
connections in the connection pool.

0

Chapter 2

[57]

Select Property Set B to specify additional connection pool properties.

The connection pool properties in Property Set B are discussed in the following table:

Property Description Default Value
Num Cached
Statements

Specifies the maximum number of prepared and
callable statements that should be cached for each
connection in each connection pool. Statement
caching increases system performance. A value
greater than 0 enables statement caching.

0

Property Check
Interval

Specifies the time interval (seconds) after which
property values are checked for new values, and
time out limits are implemented.

900

Time to Live
Timeout

Specifies the maximum number of seconds a used
connection may be active, after which it is closed
and returned to the connection pool. -1 indicates
that the feature is not enabled.

-1

Configuring JDBC in Oracle JDeveloper

[58]

Property Description Default Value
Used Connection
Wait Timeout

Number of seconds for which a used connection
remains unused before being returned to the
connection pool. Only applies if the maximum
numbers of connections that a connection pool
may cache have been acquired by clients, and a
client requests a connection.

60

Validate
Connections

Specifies if connections are to be validated, when
given to a client. Used in conjunction with Validate
Connection Statements.

False

Validate
Connection
Statements

Specifies the SQL statements used to validate
connections before being acquired by a client.

None

The Connection Factory node specifies the Factory Class, User name, Password,
Login Timeout, and connection URL. The factory class must implement one of the
following interfaces: java.sql.Driver, javax.sql.DataSource, javax.sql.
ConnectionPoolDataSource, javax.sql.XADataSource.

Chapter 2

[59]

The Managed DataSource node specifies the managed data sources associated with
the connection, and which are data sources managed by the OC4J. A managed data
source is an OC4J implementation of the javax.sql.DataSource interface that
wraps a JDBC driver class, or data source class. Even if the factory class does not
implement the javax.sql.DataSource interface, the OC4J implementation of the
factory class implements the javax.sql.DataSource interface. A managed data
source supports connection caching, global transaction management, and error
handling, all provided by the OC4J. A managed data source is associated with a
connection pool, and thus has the advantage of being able to specify the tuning
parameters. The JNDI Name of the data source is specified in the managed data
source window. The JNDI Name is in the jdbc/MySQLConnectionDS format,
with MySQLConnection being the connection name configured in the
Connections navigator.

Configuring JDBC in Oracle JDeveloper

[60]

A connection MySQLConnection in the Connections navigator is available as a
data source with the JNDI Name binding jdbc/MySQLConnectionDS. To obtain
a connection from the data source, add a resource-ref element to the web
application in which a connection is to be obtained. In a Servlet or JSP application, a
connection may be obtained with the data source JNDI Name.

InitialContext initialContext = new InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource)
initialContext.lookup("java:comp/env/jdbc/MySQLConnectionDS");
java.sql.Connection conn = ds.getConnection();

JavaEE 5 defines annotations to support resource injection. Resource injection is the
injection of external resources, such as a data source in a JEE 5 application using
the javax.annotation.Resource annotation. JDeveloper 11 will support resource
injection with annotations to obtain a handle of a data source. For example, define a
catalogDS resource of the javax.sql.DataSource type, as shown below:

private @Resource DataSource catalogDS;

The catalogDS field of type javax.sql.DataSource is annotated with the
@Resource annotation. JNDI lookup is not required with resource injection, and the
DataSource resource is also not defined in the web.xml deployment descriptor.

JDBC Configuration Errors
You might get errors while configuring a JDBC connection. If you are using MySQL,
and the connection URL is incorrect, or the MySQL database is not running, the
following error message is generated:

Communications link failure

If you are using Oracle database, some possible connection configuration errors are
listed below:

IO exception: The Network Adapter could not establish the connection

IO exception: Connection refused

The The Network Adapter could not establish the connection exception is caused by one or
more of the following configuration errors:

1. The database host name, port number, or database instance name is wrong.
2. The database TNSListener has not been started. The TNSListener may be

started with the lsnrctl utility.

 C:\>lsnrctl start

Chapter 2

[61]

The Connection refused exception is caused by one or more of the following
configuration errors:

1. The database SID specified is incorrect.
2. The database instance has not been started. To start the database instance

connect to SQL*Plus as SYSDBA.
 C:\>sqlplus SYS/<pwd> AS SYSDBA

At the SQL prompt, start the database instance with the startup command.

SQL>startup

Creating a Managed Data Source
In the previous section, a JDBC connection was obtained in the Connections
navigator. A corresponding JNDI managed data source becomes available for the
Connections navigator connection. A data source object is configured with a JNDI
Name binding in the OC4J server integrated with JDeveloper. A data source may
also be configured in the Embedded OC4J Server Preferences window directly,
or may be configured declaratively by modifying the data-sources.xml file. We
will discuss each of these methods for creating a data source. A data source may be
configured at the Global level or the Current Workspace level. A Global data source
is available to all applications while a Current Workspace data source is available
only in the current workspace. To create a new Global data source, select Tools |
Embedded OC4J Preferences and select the Global | Data Sources node, and click
on the New button.

Configuring JDBC in Oracle JDeveloper

[62]

Before we are able to configure a managed data source, we need to configure a
connection pool. In the Create Data Source window select Transaction Level as
Connection Pool, specify a connection pool name, and click on the OK button.

A new connection pool gets created and its tuning properties may be set, as
required. In the Connection Factory window, specify a Factory Class, User name,
Password, Login Timeout, and connection URL. The Factory Class is required
to implement one of the following interfaces: java.sql.Driver, javax.sql.
DataSource, javax.sql.ConnectionPoolDataSource, javax.sql.XADataSource.
The Factory Class for a MySQL managed data source can be a MySQL class
that implements the javax.sql.DataSource interface, for example the com.
mysql.jdbc.jdbc2.optional.MysqlDataSource and com.mysql.jdbc.jdbc2.optional.
MysqlConnectionPoolDataSource classes, or it can be a class that implements
the java.sql.Driver interface, for example the com.mysql.jdbc.Driver class.
Whether a class implementing the java.sql.Driver interface is used, or a class
implementing the javax.sql.DataSource interface is used, the OC4J server
wraps the class and provides an implementation of the javax.sql.DataSource
interface. We will use the data source class com.mysql.jdbc.jdbc2.optional.
MysqlConnectionPoolDataSource. A Password is not required for a root user, by
default. Specify the connection URL as jdbc:mysql://localhost:3306/test. Click on
OK to configure the connection pool.

Chapter 2

[63]

Create a data source by selecting the Global | Data Sources node, and click on New,
as we did for creating a Connection Pool. In the Create Data Source window, select
Transaction Level as Managed Data Source, specify a data source Name and click on
OK. A data source may also be configured as a Native Data Source. The difference
between a Managed Data Source and a Native Data Source is that the OC4J server
does not wrap a Native Data Source. The OC4J server does not provide connection
caching for a Native Data Source. A Native Data Source does not support global/
distributed transactions. A distributed transaction is a transaction that spans over
multiple database servers. If a Native Data Source is to be configured, specify a data
source class that implements the javax.sql.DataSource interface. A Connection
Pool is not to be configured for a Native Data Source.

Configuring JDBC in Oracle JDeveloper

[64]

A new Managed Data Source gets added. Specify the Connection Pool Name with
which the data source is to be associated as the Connection Pool that we configured
earlier. Specify a JNDI Name, User name, Password, Login Timeout, Transaction
Level, and click on OK.

A Managed Data Source gets configured and updates the data-sources.xml file
using the Refresh button. A Managed Data Source may also be created declaratively
by modifying the data-sources.xml configuration file directly in the directory:
C:\JDeveloper\jdev\system\oracle.j2ee.10.1.3.nn.nn\embedded-oc4j\config.
<JDeveloper10.1.3> is the directory in which JDeveloper is installed. Add a
managed-data-source element to the data-sources.xml file specifying the
configuration of the DataSource object. The managed-data-source element includes
the data source class used to obtain a DataSource object. The managed-data-source
element for configuring a data source, MySQLDataSource, with the MySQL database,
using jndi-name jdbc/MySQLDataSource, is listed below:

<managed-data-source name='MySQLDataSource'
connection-pool-name='MySQL Connection Pool'
jndi-name='jdbc/MySQLDataSource'/>
<connection-pool name='MySQL Connection Pool'>

Chapter 2

[65]

<connection-factory factory-class='com.mysql.jdbc.jdbc2.optional.
MysqlConnectionPoolDataSource'
user='root'
password=''
url="jdbc:mysql://localhost:3306/test">
</connection-factory>
</connection-pool>

The elements in the data-sources.xml file are based on the XML Schema
http://www.oracle.com/technology/oracleas/schema/data-sources-10_
1.xsd. The root element is data-sources, and the data-sources element has
one or more managed-data-source, connection-pool, and native-data-source
elements. The managed-data-source element has the following attributes: name,
user, password, login-timeout, tx-level, schema, connection-pool-name, and
jndi-name. Each managed-data-source element is associated with a connection
pool, which is specified in the connection-pool element. A connection-pool
element has a connection-factory sub-element and attributes, which are discussed
in following table:

Element Description Default Value
name Connection pool name. -1
min-connections Minimum number of connections in the

connection pool.
0

max-connections Maximum number of open connections in a
connection pool. Value of 0 or less indicates that
there is no maximum limit.

0

initial-limit Initial number of connections in the connection
pool when created or reinitialized. Specifying an
initial size of connection pool reduces ramp-up
time to an optimal size.

0

used-connection-
wait-timeout

When a connection pool has a maximum number
of connections and all the connections in the pool
are being used, the connection pool waits for the
specified time for a client to release a connection
to the connection pool.

60

inactivity-timeout When a connection in a connection pool has
been inactive for the inactivity timeout period (in
seconds), the connection is removed.

60

login-timeout Specifies the amount of time (in seconds), a data
source waits to establish a connection with the
database. A value of 0 specifies the default system
timeout.

0

Configuring JDBC in Oracle JDeveloper

[66]

Element Description Default Value
connection-retry-
interval

Specifies the interval (in seconds) to wait before
retrying a connection with the database.

1

max-connect-
attempts

Specifies the number of times to retry to connect
to a database.

3

validate-
connection

If set to true, this validates a connection with the
database, when a connection is given to a client,
using the SQL statement specified in the validate-
connection-statement attribute.

False

validate-
connection-
statement

Statement runs when a connection is given to a
client from the connection pool.

None

num-cached-
statements

Specifies the maximum number of statements that
are cached for a connection. A value greater than 0
enables statement caching.

0

time-to-live-
timeout

Not enabled by default, this element specifies the
maximum time (in seconds) a used connection
may be active before being closed and returned
to the connection pool. The statement handles are
also closed, when a connection is closed.

-1

abandoned-
connection-timeout

Supported with Oracle database only and
not enabled by default, this element specifies
inactivity timeout for used connections.

-1

disable-server-
connection-pooling

Disables application server's connection
pooling. The element is used with JDBC drivers
that support connection pooling inside the
driver. With Oracle JDBC driver using Implicit
Connection Cache, its value is not used.

False

property-check-
interval

Used with Oracle database only. This element
specifies the time interval (in seconds), after which
the time-outs are applied.

900

lower-threshold-
limit

The lower threshold limit on the connection limit.
Defaults to 20%.

20%

If a native data source is used, connection caching is performed mainly
programmatically. The OracleDataSource provides connection caching using
the methods getConnectionCacheName(), setConnectionCacheName(Stri
ng cacheName), getConnectionCacheProperties(), and setConnectionCa
cheProperties(java.util.Properties cp). Alternatively, the connection
cache manager class OracleConnectionCacheManager may be used to specify
connection caching. The OracleConnectionCacheManager class provides the
getCacheManagerInstance(), createCache(String cacheName,
javax.sql.DataSource ds, Properties cacheProperties),

Chapter 2

[67]

createCache(javax.sql.DataSource ds, Properties cacheProperties),
removeCache(String cacheName, int mode), refreshCache(String
cacheName, int mode), and getCacheProperties(String cacheName) methods,
to configure the connection cache. With a native data source, declarative connection
caching may also be specified in the native-data-source element in the
data-sources.xml file with the property elements. The connection cache properties
that may be specified in a native data source are discussed in the following table:

Connection Cache Property Type Description
connectionCacheName String Cache Name.
connectionCachingEnabled Boolean Specifies if implicit connection caching is

enabled.
fastConnectionFailoverEnabled Boolean Specifies if fast connection failover is

enabled. Implicit connection caching should
also be enabled to enable fast connection
failover. Fast connection failover provides
load balancing of available connections in
the connection cache. Moreover, invalid
connections are closed with fast
connection failover.

The Managed Data Source is the preferred data source as the connection pooling is
implemented by the OC4J server, and the developer does not have to implement the
connection pooling. In the next section, we will develop a web application to retrieve
data from MySQL database. Delete the managed data source, MySQLDataSource,
and the connection pool, MySQLConnectionPool configured in this section by
selecting the managed data source/connection pool in the Tools | Embedded OC4J
Server Preferences window and by selecting the Delete button. Update the
data-sources.xml configuration file using the Refresh Now button

Connecting to a Database from a Web
Application
If a Java application is used to connect to a database, a JDBC connection may be
obtained using the getConnection() method of the DriverManager class. If a JDBC
connection is to be obtained in a web application, a data source with a JNDI naming
service binding must be configured in an application server, such as the OC4J
embedded in JDeveloper IDE. The data source object configured in data-sources.
xml may be used in a Servlet or JSP in JDeveloper. In this section, we will connect
to MySQL database using the managed data source we configured in the previous
section. First, we need to create a project in JDeveloper with File | New. In the New
Gallery window, select General | Applications in Categories and Application in

Configuring JDBC in Oracle JDeveloper

[68]

Items and click on OK. Specify the Application Name in the Create Application
window and click on the OK button. Specify the Project Name in the Create
Project window and click on the OK button. A new project is added to the
Applications Navigator.

In the Applications Navigator window right-click on the Project node and select
New. In the New Gallery window, select Web Tier | JSP in Categories, and JSP in
Items, and click on OK.

Chapter 2

[69]

The Create JSP Wizard gets started. In the Web Application window, select J2EE 1.4
as the J2EE version and click on Next. In the JSP File window, specify a File Name
and click on Next.

Select the default settings in the Error Page Options window, if an error page is not
to be used to handle unhandled exceptions. If an error page is to be used to handle
unhandled exceptions, select Use an Error Page and click on the Next button. Select
the Default Settings in the Tag Libraries window as we will not be using any tag
libraries in this chapter, and click on Next. Select the Default Settings in the HTML
Options window, with the the HTML Version being 4.0.1 Transitional, and click
on Next.

Configuring JDBC in Oracle JDeveloper

[70]

On clicking finish in the Finish window, a JSP gets added to the project. To the
web.xml file, add a resource-ref element in the Managed Data Source.

The res-ref-name specifies the JNDI name of the Managed Data Source. The
resource-ref element is listed below:

<resource-ref>
 <res-ref-name>jdbc/MySQLConnectionDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

We also need to copy mysql-connector-java-5.1.3-rc-bin.jar to the
C:\JDeveloper\j2ee\home\applib directory, which adds the MySQL Connector/J
JDBC 4.0 driver to the runtime class path of the web application.

Chapter 2

[71]

Setting J2SE Version to JDK 6.0
JDBC 4.0 driver requires JDK 6.0. Therefore, we have to set the J2SE version for the
JDBC4 project to J2SE 6.0. Select the Project node in the Applications Navigator
and select Tools | Project Properties. In the Project Properties window, select the
Libraries node. Click on the Change button for the J2SE Version field. In the Edit
J2SE Definition window, click New.

Configuring JDBC in Oracle JDeveloper

[72]

In the Create J2SE window, click on Browse to select a JDK 6.0 java.exe executable
file. Specify a J2SE Name, and click on OK. A new J2SE Definition gets created in the
Edit J2SE Definition window. Select the J2SE6.0 definition and click on OK.

Click on OK in the Project Properties window.

Developing and Running JSP
Next, we will obtain a JDBC connection in the MySQLDataSource JSP, using
the Managed Data Source configured in the previous section. The OC4J server
embedded in JDeveloper 10.1.3 does not support JDBC 4.0. Therefore, we will not be
able to use the JDBC 4.0 features in the web application. Most of the J2EE application
servers such as WebLogic server, JBoss server, and WebSphere server do not support
JDBC 4.0. Sun Java System Application Server 9.1 is the only application server that
supports JDBC 4.0.

However, we will use the JDBC 4.0 driver and the JDBC 4.0 features may be used
with an application server that supports JDBC 4.0. Copy the MySQL JDBC 4.0 JAR
file to the <JDeveloper>\j2ee\home\applib directory, <JDeveloper> being the

Chapter 2

[73]

JDeveloper installation directory. All that is required for a developer to use JDBC 4.0
is an application server that supports the JDBC 4.0 driver. In the MySQLDataSource
JSP, create a DataSource object from the Managed Data Source that we configured
earlier. First, we have to create an InitialContext object and then create a javax.
sql.DataSource object using the lookup() method to look up the data source
resource, which is specified in the web.xml file as an external resource using the
resource-ref element. We have to prefix the JNDI name jdbc/MySQLDS with the
JNDI context java:comp/env. For a tutorial on JNDI Naming, refer to the JNDI
Tutorial: http://java.sun.com/products/jndi/tutorial/.

InitialContext initialContext = new InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource) initialContext.
lookup("java:comp/env/jdbc/MySQLConnectionDS");

Obtain a JDBC connection from the DataSource object, using the
getConnection() method.

java.sql.Connection connection = ds.getConnection();

Run an SQL query and create an HTML table from the result set of the query. Create
a Statement object from the Connection object using the createStatement()
method. Run an SQL query using the executeQuery() method of the Statement
object. Iterate over the result set and retrieve column values from the result set rows,
to create an HTML table. Close the ResultSet object, the Statement object, and the
Connection object using the close() method, which is defined for each of these
interfaces. The MySQLDataSource.jsp is listed below:

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page language="java" import="java.sql.*, javax.naming.*, javax.
sql.*" %>
<%
 InitialContext initialContext = new InitialContext();
 javax.sql.DataSource ds = (javax.sql.DataSource)
 initialContext.lookup("java:comp/env/jdbc/MySQLDS");
 java.sql.Connection connection = ds.getConnection();
 Statement stmt=connection.createStatement();
 ResultSet resultSet=stmt.executeQuery("Select * from Catalog");
%>
<table border="1" cellspacing="0">
 <tr>
 <th>CatalogId</th>
 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
<%

Configuring JDBC in Oracle JDeveloper

[74]

 while (resultSet.next())
 {
%>
 <tr>
 <td><%out.println(resultSet.getString(1));%></td>
 <td><%out.println(resultSet.getString(2));%></td>
 <td><%out.println(resultSet.getString(3));%></td>
 <td><%out.println(resultSet.getString(4));%></td>
 <td><%out.println(resultSet.getString(5));%></td>
 <td><%out.println(resultSet.getString(6));%></td>
 </tr>
<%
 }
%>
</table>
<%
 resultSet.close();
 stmt.close();
 if(!connection.isClosed())
 connection.close();
%>

Run the JSP, by right-clicking on the JSP node in the Applications Navigator and
selecting Run.

Chapter 2

[75]

The output from the JSP gets displayed in the default browser:

JDBC 4.0 Version
The OC4J embedded in JDeveloper 10g does not support JDBC 4.0. When support
gets added for JDBC 4.0, JDBC 4.0's features may be added to the JSP web application
that we have developed in the previous section. Provision to set client info properties
on the Connection object is a new feature in JDBC 4.0. Client info properties may
be set using the setClientInfoProperty() method of the Connection object. Set
client info properties ApplicationName, ClientUser, and ClientHostname
as follows:

connection.setClientInfo("ApplicationName","DataDirectApp");
connection.setClientInfo("ClientUser","DataDirect");
connection.setClientInfo("ClientHostname","DataDirectHost");

If the database supports statement caching, we can set statement pooling to
true. To find out whether the database supports statement pooling create a
DatabaseMetaData object. Using the supportsStatementPooling() method test
if the database supports statement pooling. If the database supports statement
pooling check if the Statement is poolable using the isPoolable() method. If
the Statement object is poolable, set the Statement object to poolable using the
setPoolable() method:

DatabaseMetaData metaData=connection.getMetaData();
if(metaData.supportsStatementPooling())
 {
 if(stmt.isPoolable())
 stmt.setPoolable(true);
 }

Configuring JDBC in Oracle JDeveloper

[76]

We may use support for the wrapper pattern with the Wrapper interface, which is
extended by the Statement interface. Oracle's extensions to the JDBC API provide an
OracleStatement interface that extends the Statement interface. Using the wrapper
pattern create an object of type OracleStatement type. First we need to check if the
Statement object is a wrapper for the oracle.jdbc.OracleStatement using the
isWrapperFor() method. Subsequently create an object of type OracleStatement
type using the unwrap() method:

OracleStatement oracleStmt=null;
Class class = Class.forName("oracle.jdbc.OracleStatement");
if(stmt.isWrapperFor(class))
 {
 oracleStmt = (OracleStatement)stmt.unwrap(class);
 }

The OracleStatement object may be used to set column types for different columns
to be fetched from the database, using the defineColumnType() method. Also, the
number of rows to be prefetched may be set, using the setRowPrefetch() method.

If the database supports ROWID of SQL type, we may add a column for the ROWID
value of a row in the result set. A ROWID column value may be retrieved as a java.
sql.RowId object using the getRowId() method. Oracle database 10g supports the
ROWID data type. Therefore, modify the SELECT query to add a column for the
ROWID pseudocolumn.

ResultSet resultSet= oracleStmt.executeQuery("Select ROWID, CATALOGID,
JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from Catalog");

We also have to add a column of type ROWID to the HTML table created from the
result set. A ROWID column value is retrieved from a ResultSet object using the
getRowId() method. The RowId object may be converted to a String value using the
toString() method:

<%out.println(resultSet.getRowId("ROWID").toString());%>

Enhanced support for chained exceptions in the SQLException interface may be
used in the JSP web application. We need to specify an errorPage in the input.jsp
for error handling:

<%@ page errorPage="errorpage.jsp" %>

In the errorpage.jsp, the enhanced for-each loop is used to retrieve the chained
exceptions and chained causes.

<%@ page isErrorPage="true" %>
<%
 for(Throwable e : exception)

Chapter 2

[77]

 {
 out.println("Error encountered: " + e);
 }
%>

The JDBC 4.0 version of the input.jsp, which may run in JDeveloper when supports
get added for JDBC 4.0 in the OC4J server, is listed below:

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page language="java" import="java.sql.*, javax.naming.*, javax.
sql.*,oracle.jdbc.*" %>
<%@ page errorPage="errorpage.jsp" %>
<%
 InitialContext initialContext = new InitialContext();
 DataSource ds = (DataSource)
 initialContext.lookup("java:comp/env/jdbc/OracleDS");
 java.sql.Connection connection = ds.getConnection();
 connection.setClientInfo("ApplicationName","DataDirectApp");
 connection.setClientInfo("ClientUser","DataDirect");
 connection.setClientInfo("ClientHostname","DataDirectHost");
 Statement stmt=connection.createStatement();
 DatabaseMetaData metaData=connection.getMetaData();
 if(metaData.supportsStatementPooling())
 {
 if(stmt.isPoolable())
 stmt.setPoolable(true);
 }
 OracleStatement oracleStmt=null;
 Class class = Class.forName("oracle.jdbc.OracleStatement");
 if(stmt.isWrapperFor(class))
 {
 oracleStmt = (OracleStatement)stmt.unwrap(class);
 oracleStmt.defineColumnType(1, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(2, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(3, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(4, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(5, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(6, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(7, OracleTypes.VARCHAR);
 oracleStmt.setRowPrefetch(2);
 }
 ResultSet resultSet=oracleStmt.executeQuery("Select ROWID, CATALOGID,
JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from Catalog");
%>
<table border="1" cellspacing="0">

Configuring JDBC in Oracle JDeveloper

[78]

 <tr>
 <th>Row Id</th>
 <th>Catalog Id</th>
 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <%
 while (resultSet.next())
 {
 %>
 <tr>
 <td><%out.println(resultSet.getRowId("ROWID").toString());%></td>
 <td><%out.println(resultSet.getString(1));%></td>
 <td><%out.println(resultSet.getString(2));%></td>
 <td><%out.println(resultSet.getString(3));%></td>
 <td><%out.println(resultSet.getString(4));%></td>
 <td><%out.println(resultSet.getString(5));%></td>
 <td><%out.println(resultSet.getString(6));%></td>
 </tr>
 <%
 }
 %>
</table>
<%
 resultSet.close();
 oracleStmt.close();
 if(!connection.isClosed())
 connection.close();
%>

Summary
JDeveloper IDE provides a built-in Connections navigator to configure a connection
with any relational database for which a JDBC driver is available. A connection
configured in the Connections navigator is also available as a data source. In this
chapter, we have configured a JDBC connection in JDeveloper with MySQL database
using the MySQL Connector/J 5.1 JDBC 4.0 driver. We also created a managed
data source in the OC4J embedded in JDeveloper and used the data source in a web
application. Subsequently, we discussed the JDBC 4.0 version of the web application.

Connecting to a Database
with JSTL SQL Tag Library

JSP 1.1 and the later versions of JSP support reusable modules called custom actions.
A custom action is invoked with a custom tag in a JSP page. A collection of custom
tags is called a tag library. Various SQL tag libraries are available for accessing a
database. The JavaServer Pages Standard Tag Library (JSTL) is a tag library, which
provides SQL tags for accessing a database. JSTL 1.1 requires a JSP container that
supports Servlet specification 2.4 and JSP specification 2.0. In this chapter, we will
discuss the JSTL SQL tag library and develop a JSTL SQL tag library application
in JDeveloper 10.1.3 with embedded OC4J, which supports Servlet 2.4 and JSP 2.0
specifications. The JSTL SQL tag library was created before JDBC 4.0 specification
became available. If you are using the JDBC 4.0 driver with JDK 6.0, you would still
be able to use the JSTL SQL tag library. We will be using JDBC 4.0 with JDK 6.0 for
accessing the Oracle database using the JSTL SQL tag library. First, let us discuss the
JSTL SQL tag library tags.

Overview of JSTL SQL and Core Tags
The JSTL SQL tag library provides various tags for accessing a database, creating a
database table, updating, deleting, and querying a database. The SQL tag library URI
is: http://java.sun.com/jsp/jstl/sql. The syntax for including the JSTL SQL tag
library in a JSP page is the taglib directive shown below. The URI is used to define
a namespace for the tag library, which avoids conflicts that could occur if another tag
library with similar names for their tags is used on the same JSP page.

<%@ taglib prefix="sql" uri=" http://java.sun.com/jsp/jstl/sql" %>

The different tags in the JSTL SQL tag library are discussed in the following table. All
the tag attributes in the table are of java.lang.String type, unless specified to be of
another type. Attributes are not required, unless specified to be required.

Connecting to a Database with JSTL SQL Tag Library

[80]

Tag Name Description Attributes
transaction Creates a transaction in which a

group of SQL statements are run.
Establishes a transaction context
for sql:query and sql:update
subtags. The sql:query and
sql:update tags within a sql:
transaction tag must not specify
a dataSource attribute. The sql:
transaction tag commits or
rollbacks (if a transaction occurs)
the transaction by invoking the
commit(), or rollback() method.

dataSource- Specifies a data
source, which is either a relative
path to a JNDI resource, or JDBC
parameters to a DriverManager
class. JDBC parameters are
driver class, connection url,
user name, and password.
isolation- Specifies the
transaction isolation level.
Isolation level value may be "read_
committed", "read_uncommitted",
"repeatable_read", or "serializable".
Isolation level values were
discussed in Chapter 1. The
default is the isolation level of the
data source.

query Runs a SQL query. The SQL
query may be specified in the sql
attribute, or in the query element. If
dataSource is specified, query tag
should not be within a transaction
tag. The result of the query is
stored in scoped variable var. If
the query produces no results, an
empty Result object is returned.
The query statement may include
parameter markers ("?") identifying
PreparedStatement parameters.
Order of rows in a result set may
vary with RDBMS implementation,
unless an ORDER BY clause is
specified. If a query tag is specified
in a transaction tag, the
Connection object is obtained from
the transaction tag.

var(required)- Scoped variable for
the query. Var is of type, javax.
servlet.jsp.jstl.sql.
Result.
scope- Scope of variable. Scope
may be "page", "request", "session",
or "application".
sql-SQL query statement
dataSource- Datasource
associated with the query. The
data source is either a relative
path to a JNDI resource, or JDBC
parameters to a DriverManager
class.
startRow- Specifies the start row of
the Result returned by the query.
The default is '0', which is also
the index of the start row of the
original result set.
maxRows- The maximum number
of rows in the query result set.
The default includes all the rows.
Value should be >-1. Value of –1
also includes all rows.

Chapter 3

[81]

Tag Name Description Attributes
update Runs a SQL statement. The SQL

statement may be specified in the
sql attribute or within update
element tags. The SQL statement
may be a CREATE, UPDATE,
INSERT, or a DELETE statement.
SQL DDL statements may also be
run. The update statement may
contain parameter markers ("?")
identifying PreparedStatement
parameters, whose value is
specified using enclosed sql:
param, or sql:dataParam tags.
If scope is specified, var must
also be specified. If dataSource
is specified, sql:update tag
should not be specified within a
sql:transaction tag. If sql:
update tag is specified in a sql:
transaction tag, Connection
object is obtained from the sql:
transaction tag.

var- Scoped variable for the result
of the SQL statement, which is
the update count of the UPDATE,
DELETE, INSERT statements.
Attribute var is of Integer type.

scope- Scope of variable.

sql- SQL statement, which may
be a CREATE, UPDATE, INSERT, or
DELETE statement.

dataSource- Datasource
associated with the update
statement. The data source is
either a relative path to a JNDI
resource or JDBC parameters to a
DriverManager class.

param Specifies the value of parameter
markers ("?") in a SQL statement
using a subtag of sql:query,
and sql:update tags. Parameters
are substituted in the order that
they are specified. If the value is
null, parameter is set to SQL NULL
value.

value- Parameter value.

dateParam Sets the value of parameter markers
("?") in a SQL statement for values
of type java.util.Date parameter
using subtag of sql:query, or
sql:update tag.

value- Parameter value for
DATE, TIME, or TIMESTAMP
database.

type- "date" "time" or "timestamp".
If value is null, value is set to SQL
NULL.

Connecting to a Database with JSTL SQL Tag Library

[82]

Tag Name Description Attributes
setDataSource Creates and exports a data source

as a scoped variable to be used in
the JSP page.

var- Scoped variable for data
source, which is either a relative
path to a JNDI resource, or JDBC
parameters to a DriverManager
class. var is either of type String
or DataSource.
scope- Scope of variable.
dataSource- Datasource. A
relative path to a JNDI resource,
or JDBC parameters to a
DriverManager
url- Database connection URL.
user- Username.
password- Password.

We will also be using some of the JSTL Core 1.1 tag library tags. JSTL Core 1.1 tag
library provides tags for expression evaluation, loops, conditional evaluation, import
of URL based resources, and output of the results of expression evaluation. Some
familiarity with expression language (EL- http://www.oracle.com/technology/
sample_code/tutorials/jsp20/simpleel.html) is required to use the JSTL Core
1.1 tags. The JSTL Core 1.1 tag library tags are discussed in the following table.
Attributes are not required, unless specified to be required.

Tag Description Attributes
catch Catches a java.lang.

Throwable thrown by any
of its enclosed actions.

var (String)- Scoped variable
representing the exception thrown by
the enclosed action.

choose Specifies the context
for mutually exclusive
conditional execution of
operations marked by
<when> and <otherwise>.

None.

forEach Iterates over a collection of
objects.

test (boolean)- Required attribute
that specifies the test condition for
evaluation of content.
var (java.lang.String)- Name of the
exported variable for the resulting
value of test condition.

scope (java.lang.String)- Scope of
variable.

Chapter 3

[83]

Tag Description Attributes
forTokens Iterates over tokens. items (java.lang.String)- Required

attribute that specifies the tokens to
iterate over.

delims (java.lang.String)- Required
attribute, which specifies the
delimiters that separate the tokens.

begin (int)- Specifies the index at
which iteration is to begin. First
token has index 0.

end (int)- Specifies index at which
iteration ends.

step (int)- The step value to get the
next token.
var (String)- Name of the exported
scoped variable for the current item
of iteration.

varStatus (String)- Name of the
exported scoped variable for the
status of the iteration.

if Evaluates content if an
expression evaluates to true.

test (Boolean)- Required attribute
that specifies the test condition.
var (String)- Name of the exported
scoped variable for the resulting
value under test condition.

scope (String)- Scope of variable.
import Imports the content of an

URL-based resource.
All attributes are of the String type.
url- Required attribute that specifies
URL of the resource to import.
var- Name of the exported scoped
variable for the resources content.

scope- Scope of the variable.

varReader- Same as var, but of the
Reader type.

context- Name of the context for a
relative URL.

charEncoding- Character encoding
of the content of the URL resource.

Connecting to a Database with JSTL SQL Tag Library

[84]

Tag Description Attributes
otherwise Specifies the last alternative

in a <c:choose> action.
None.

out Evaluates an expression and
outputs the result.

All attributes are of the String type.
value- Required attribute that
specifies expression to be evaluated.

default- Default value if resulting
value is null.

escapeXml- Specifies if characters
<, >, &, ', " in resulting string should
be converted to their corresponding
character entity codes.

param Adds a parameter to an
import tag containing URL.

name- Required attribute that
specifies name of query string
parameter.
value- Value of parameter.

redirect Redirects to a new URL. All attributes are of String type.
url- Redirects to the URL of the
resource.

context- Name of the context when
redirecting to a relative URL.

remove Removes a scoped variable. All attributes are of String type.
var- Required attribute that specifies
the name of the scoped variable to be
removed.

scope- Scope of the variable.
set Sets the result of an

expression evaluation as a
property of a target object.

All attributes are of String type.
var- Name of the exported scoped
variable that contains the resulting
value of the expression evaluation.
value- Expression to be evaluated.

target- Target object whose value
will be set.

property- Property in the target
object to be set.

scope- Scope for variable.

Chapter 3

[85]

Tag Description Attributes
url Creates a URL with optional

query parameters.
All attributes are of String type.
var- Name of the exported scoped
variable for the processed URL.

scope- Scope of variable.
value- URL to be processed.

context- Context for a relative URL.
when Subtag that would be

evaluated, if a test condition
evaluates to true.

test (boolean)- Required attribute
that specifies the test condition.

Setting the Environment
Download JDeveloper 10.1.3 from: http://www.oracle.com/technology/
software/products/jdev/index.html. Extract the JDeveloper zip file to a
directory, which installs the JDeveloper IDE. Download the Oracle database. Install
the Oracle database including the sample schemas. We need to copy the Oracle
database 11g JDBC drivers JAR file, ojdbc6.jar, for JDBC 4.0 to C:\JDeveloper\j2ee\
home\applib directory. Keep a copy of the JDBC JAR files and delete them from
the C:\JDeveloper\jdbc\lib directory. Copy back the deleted JDBC JAR files to the
directory after running the JSTL application. We also need to set the J2SE Version to
JDK 6.0 as explained in Chapter 2. In JDeveloper, create a project for the JSTL SQL
taglib. Select File | New, and in the New Gallery window, select General in the
Categories list and Application in the Items list. Click on OK button. In the Create
Application window, specify an Application Name, JSTLApp, and click on OK. In
the Create Project window specify a Project Name, JSTLSQL, and click on OK. An
Application and a Project node get added to the Applications Navigator.

Connecting to a Database with JSTL SQL Tag Library

[86]

Select the project node and select File | New. In the Categories, select
Web Tier | JSP and select JSP in the Items listed, and click on OK. In the Create
JSP Wizard, click the next button. In the Web Application window, select J2EE 1.4
which is required for JSTL 1.1, and click on Next. In the JSP File window, specify a
File Name, catalog.jsp, and click on Next. Select the default setting, Do Not Use an
Error Page to Handle Uncaught Exceptions in This File, in the Error Page Options
window and click on next. In the Tag Libraries window, select the libraries JSTL
Core 1.1 and JSTL SQL 1.1 and click on the Next button.

Select the default settings in the HTML Options window, and click on Next. Once
you click on Finish in the Finish window, a JSP and a web.xml get added to
the project.

After creating a project in JDeveloper in the Applications-Navigator, select the
project node and select Tools | Project Properties. Select the Libraries node in the
Project Properties window. The libraries should be listed in the project libraries.
If any of these libraries is not in the project libraries, add a library with the Add
Library button. For example, to add the JSTL 1.1 library, click on Add Library and
select the JSTL 1.1 library and then click on OK

Chapter 3

[87]

Creating a Database Table
In this section, we will create a database table in the Oracle database using the JSTL
1.1 SQL tags in JDeveloper 10.1.3 IDE. The database table will be created using the
catalog.jsp JSP, which was created in the Setting the Environment section. The taglib
directives for the JSTL SQL taglib and the JSTL Core taglib shown below get added
to the catalog.jsp, because the JSTL SQL 1.1 and JSTL Core 1.1 taglibs were selected
while creating the JSP.

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

Connecting to a Database with JSTL SQL Tag Library

[88]

To access the Oracle database, create a data source with the SQL tag setDataSource.
JDeveloper provides a Component Palette to add JSTL SQL tags to a JSP page. Select
the JSTL 1.1 SQL Component Palette. Position the cursor in the JSP page and in the
JSTL SQL Component Palette select the SetDataSource tag.

In the setDataSource tag specify the JDBC driver, oracle.jdbc.OracleDriver, in
the driver attribute for the Oracle database. Specify the connection URL as: jdbc:
oracle:thin:@localhost:1521:ORCL for the Oracle database. Also specify the
username as OE, and the password. To add a tag attribute, press the space bar in the
setDataSource tag and double-click on the attribute.

Chapter 3

[89]

The sql:setDataSource tag with the added attributes, is shown below:

<sql:setDataSource driver="oracle.jdbc.OracleDriver" url="jdbc:oracle:
thin:@localhost:1521:ORCL" user="OE" password="pw"/>

Connecting to a Database with JSTL SQL Tag Library

[90]

Next, create a transaction with the sql:transaction tag to run SQL statements, to
create a database table and to add rows to the database table. Position the cursor in
the JSP page, and select Transaction in the JSTL 1.1 SQL Component Palette.

The sql:transaction tag provides dataSource and isolation attributes, which can
be similarly added to the setDataSource tag attributes. Add the following sql:
transaction tag to the JSP page.

<sql:transaction>
</sql:transaction>

Chapter 3

[91]

The sql:update tag is used to create a database table and add rows to the
database table. The sql:update tag is added within the sql:transaction
tag. Position the cursor between the opening sql:transaction tag and the
closing sql:transaction tag, and select the Update tag in the JSTL 1.1 SQL
Component Palette.

Connecting to a Database with JSTL SQL Tag Library

[92]

The sql:update may include the sql, dataSource, var, and scope attributes.
First, create a database table with the JSTL SQL tags. The SQL CREATE statement is
specified in the sql attribute of the sql:update tag. To add the sql attribute, press
the space bar in the sql:update tag and double-click on the sql attribute in the
attributes listed:

The sql:update tag to create a database table is as follows:

<sql:update sql="CREATE TABLE OE.Catalog(CatalogId VARCHAR(25)
PRIMARY KEY, Journal VARCHAR(25), Publisher VARCHAR(25),
 Edition VARCHAR(25), Title Varchar(45), Author Varchar(25))">
</sql:update>

Next, add rows to the database table, with the sql:update tag. The INSERT
statement is specified in the sql attribute of the sql:update tag.

<sql:update sql="INSERT INTO OE.Catalog VALUES('catalog1', 'Oracle
Magazine', 'Oracle Publishing', 'Nov-Dec 2004', 'Database Resource
Manager', 'Kimberly Floss')">
</sql:update>

Chapter 3

[93]

The catalog.jsp page needed to create a database table and to insert rows in the
database table, is shown in the following listing:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=windows-1252"/>
 <title>catalog</title>
 </head>
 <body><sql:setDataSource driver="oracle.jdbc.OracleDriver"
url="jdbc:oracle:thin:@localhost:1521:ORCL" user="OE" password="pw"/>
 <sql:transaction>
<sql:update sql="CREATE TABLE OE.Catalog(CatalogId VARCHAR(25)
PRIMARY KEY, Journal VARCHAR(25), Publisher VARCHAR(25),
 Edition VARCHAR(25), Title Varchar(45), Author Varchar(25))">
</sql:update>
<sql:update sql="INSERT INTO OE.Catalog VALUES('catalog1', 'Oracle
Magazine', 'Oracle Publishing', 'Nov-Dec 2004', 'Database Resource
Manager', 'Kimberly
Floss')">
</sql:update>
<sql:update sql="INSERT INTO OE.Catalog VALUES('catalog2', 'Oracle
Magazine', 'Oracle Publishing', 'Nov-Dec 2004', 'From ADF UIX to JSF',
'Jonas Jacobi')">
</sql:update>
<sql:update sql="INSERT INTO OE.Catalog VALUES('catalog3', 'Oracle
Magazine',
'Oracle Publishing','March-April 2005','Starting with Oracle ADF',
'Steve Muench')">
</sql:update>
 </sql:transaction>
<%out.println("Database Table Created");%>
 </body>
</html>

Connecting to a Database with JSTL SQL Tag Library

[94]

Run the JSP, by right-clicking the JSP node in the Applications Navigator and
selecting Run.

The database table gets created and rows get added to the database table.

Updating a Database Table
In this section, a database table row will be updated. Create a JSP catalogUpdate.
jsp in the JSTLSQL project. As in the previous section, set the data source for the
JSP page with the setDataSource tag. The UPDATE SQL statement is run with the
sql:update tag. Add an Update tag to the JSP page from the Component Palette.
The SQL statement has placeholders for specifying IN parameters for the UPDATE
statement. Add the UPDATE SQL statement in the sql attribute of the sql:update tag.

<sql:update sql="UPDATE OE.CATALOG SET TITLE=?, AUTHOR=?
WHERE CATALOGID=?">
</sql:update>

Chapter 3

[95]

The values for the IN parameters are specified with the sql:param tags. Position the
cursor in the sql:update statement, and select the Param tag in the JSTL 1.1 SQL
Component Palette.

Connecting to a Database with JSTL SQL Tag Library

[96]

The param value is set with the value attribute in the sql:param tag. To add the
value attribute, press the space bar in the sql:param tag and double-click on the
value attribute.

Specify the param value and similarly add sql:param tags to specify the param
values corresponding to the IN parameters in the UPDATE SQL statement, as
listed below:

<sql:param value="Introduction to ADF"/>
<sql:param value="Muench, Steve"/>
<sql:param value="catalog3"/>

The catalogUpdate.jsp is listed below:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;

Chapter 3

[97]

charset=windows-1252"/>
 <title>catalogUpdate</title>
 </head>
 <body>
 <sql:setDataSource driver="oracle.jdbc.OracleDriver"
url="jdbc:oracle:thin:@localhost:1521:ORCL" user="oe"
password="pw"/>
<sql:update sql="UPDATE OE.CATALOG SET TITLE=?, AUTHOR=?
WHERE CATALOGID=?">
<sql:param value="Introduction to ADF"/>
<sql:param value="Muench, Steve"/>
<sql:param value="catalog3"/>
 </sql:update>
</body>
</html>

Run catalogUpdate.jsp by right-clicking on the JSP and selecting Run.

The database table gets updated.

Connecting to a Database with JSTL SQL Tag Library

[98]

Querying a Database Table
In this section, the database table created and modified in the previous sections will
be queried, and the result is displayed in a HTML table. Create a JSP, catalogQuery.
jsp. Select the JSTL Core 1.1 and JSTL SQL 1.1 tag libraries for the JSP. As in the
previous sections, add a setDataSource tag for obtaining a connection with the
Oracle database. The SQL taglib tag to query a database is sql:query. Position the
cursor in the JSP page, and select Query tag in the SQL Component Palette.

In the Insert Query window, specify the var attribute, which is a required attribute.
The var attribute specifies the variable for the result set returned by the Query tag.
Select the Advanced Properties tab.

Chapter 3

[99]

Specify the SQL query in the sql attribute field and click on the OK button.

The sql:query tag gets added to the JSP page:

<sql:query var="catalog" sql="SELECT * FROM CATALOG"/>

Add a <table> to display the result set of the Query tag. Add the table headers. A
row will be added corresponding to each row in the result set. Select the JSTL 1.1
Core component library and add a ForEach tag to the <table>.

Connecting to a Database with JSTL SQL Tag Library

[100]

The var attribute of the c:forEach tag specifies the variable corresponding to a row
in the result set. The items attribute specifies the EL binding to iterate over the rows
in the result set returned by the Query tag. The rows in the result set returned by the
sql:query tag are obtained with ${catalog.rows} EL expression. The c:forEach
tag in the catalogQuery.jsp JSP is as follows:

<c:forEach var="journal" items="${catalog.rows}">
</c:forEach>

Next, output the values corresponding to each column in a row to the JSP table. The
JSP table values are added with the c:out tag. Add a c:out tag for each column
from the JSTL 1.1 Core Component Palette, to the c:forEach tag.

In the Insert Out window, specify the EL expression to bind a column Value. The
column Value bindings are obtained with the column names in the result set. To bind
a column Value, click on the Bind button. The journal is the variable corresponding
to a row in the result set. For example, the EL expression to bind the CatalogId
column is ${journal.CatalogId}. Specify the EL expression in the Expression text
area in the Bind to Data window, and click on the OK button.

Chapter 3

[101]

Click on the OK button in the Insert Out window.

Similarly add c:out tags for the other columns in the result set. The catalogQuery.
jsp is listed below:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=windows-1252"/>
 <title>catalogQuery</title>
 </head>
 <body><sql:setDataSource driver="oracle.jdbc.OracleDriver"
url="jdbc:oracle:thin:@localhost:1521:ORCL" user="oe"

Connecting to a Database with JSTL SQL Tag Library

[102]

password="pw"/><sql:query var="catalog" sql="SELECT * FROM
OE.CATALOG"/>
<table border>
<tr>
 <td>CatalogId</td>
 <td>Journal</td>
 <td>Publisher</td>
 <td>Edition</td>
 <td>Title</td>
 <td>Author</td>
</tr>
<c:forEach var="journal" items="${catalog.rows}">
<tr>
 <td>
 <c:out value="${journal.CatalogId}"/>
 </td>
 <td><c:out value="${journal.Journal}"/></td>
 <td><c:out value="${journal.Publisher}"/></td>
 <td><c:out value="${journal.Edition}"/></td>
 <td><c:out value="${journal.Title}"/></td>
 <td><c:out value="${journal.Author}"/></td>
</tr>
</c:forEach>
</table>
</body>
</html>

To run the catalogQuery.jsp, right-click on the JSP and select Run:

Chapter 3

[103]

The result set obtained with the Query tag gets displayed in a HTML table.

Summary
The JSTL SQL tag library provides access to a database. JDeveloper 10.1.3 facilitates
the development of a JSTL SQL application with a Component Palette for the JSTL
SQL 1.1 tags, from which tag library tags may be added to a JSP application. In this
chapter, you have learnt to create an Oracle database table using JSTL SQL 1.1 tags
in JDeveloper 10.1.3. You have also learnt to update the database table and query the
database table using JSTL SQL 1.1 tags.

Configuring JDBC in JBoss
Application Server

JBoss 4.0 is an open-source application server configured to use Hypersonic
Database (HSQLDB) by default. However, some Java 2 Platform Enterprise Edition
(J2EE) developers would like to use databases other than Hypersonic Database to
develop and deploy applications. The JBoss application server provides data source
access for Enterprise Java Beans (EJB) persistence, and for J2EE applications. In this
chapter, we will see how to configure JBoss to use other databases.

The JBoss 4.0 server makes use of Java Database Connectivity (JDBC) configuration
files and data source files to configure the server with a database. To use the server
with a database other than the default database, Hypersonic, the JDBC configuration
files have to be modified and the data source file for the database has to be made
available to the server. Download the JBoss 4.0 application server ZIP file from
http://labs.jboss.com/jbossas/downloads and install JBoss server by extracting
the ZIP file to a directory. In this chapter, you will learn how to do the following:

Deploy a web application to JBoss Application Server from JDeveloper
JDBC 4.0 version of the web application deployed to
JBoss server

Configure JBoss server with Oracle database 10g with JDBC 4.0 Driver
Configure JBoss server with MySQL Database with JDBC 4.0 Driver
Configure JBoss server with PostgreSQL database server with
JDBC 4.0 Driver
Configure JBoss server with DB2 UDB database with JDBC 4.0 Driver
Configure JBoss server with MS SQL Server with JDBC 4.0 Driver

•

°

•

•

•

•

•

Configuring JDBC in JBoss Application Server

[106]

Deploying a Web Application to JBoss
from JDeveloper
In this section we will create a web application and deploy the web application to
JBoss application server, all from JDeveloper IDE. JDeveloper has a built-in feature to
configure a connection with JBoss application server, and deploy a web application
to the server. First, create an application in JDeveloper by selecting File | New. In
the New Gallery window select General in Categories and Application in Items and
click on OK. In the Create Application window, specify an Application Name and
click on the OK button. In the Create Project window, specify a project name and
click OK. An application and a project get added to the Applications Navigator.
Next, to add a JSP select the project node in the Applications Navigator and select
File | New. In the New Gallery window select Web Tier | JSP in Categories and
JSP in Items and click on OK. The Create JSP Wizard gets started. Now, click on
Next. Select J2EE 1.4 in the Web Application window and click on OK. Specify a
File Name in the JSP File window, and click on the Next button. Select the default
setting in the Error Page Options window and click Next. Click on Next in the Tag
Libraries window. Select the default settings in the HTML Options window, and
click on Next. Click on Finish in the Finish window. Now, a JSP and web.xml gets
added to Applications Navigator.

Next, create a database table in the MySQL database using the following SQL script:

CREATE TABLE Catalog(CatalogId VARCHAR(25)
PRIMARY KEY, Journal VARCHAR(25), Publisher VARCHAR(25),
 Edition VARCHAR(25), Title Varchar(45), Author Varchar(25));
INSERT INTO Catalog VALUES('catalog1', 'Oracle Magazine',
 'Oracle Publishing', 'Nov-Dec 2004', 'Database Resource Manager',
'Kimberly Floss');
INSERT INTO Catalog VALUES('catalog2', 'Oracle Magazine', 'Oracle
Publishing', 'Nov-Dec 2004', 'From ADF UIX to JSF', 'Jonas Jacobi');

Chapter 4

[107]

Configure a connection with the MySQL database in JBoss application server as
explained in the Configuring JBoss Server with MySQL Database section. We will obtain
a connection with the MySQL database in catalog.jsp. Create an InitialContext
object, and create a DataSource object using JNDI lookup on the MySQL data
source, configured in JBoss application server.

InitialContext initialContext = new InitialContext();
DataSource ds = (DataSource)
initialContext.lookup("java:/MySqlDS");

Create a Connection object from the DataSource object using the getConnection()
method and create a Statement object from the Connection object using the
createStatement() method. Run an SQL query on the Catalog table using the
executeQuery() method of the Statement interface. Iterate over the ResultSet and
create an HTML table. The catalog.jsp file is listed below:

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page language="java" import="java.sql.*, javax.naming.*, javax.
sql.*" %>
<%
 InitialContext initialContext = new InitialContext();
 DataSource ds = (DataSource)
 initialContext.lookup("java:/MySqlDS");
 java.sql.Connection connection = ds.getConnection();
 Statement stmt=connection.createStatement();
 ResultSet resultSet=stmt.executeQuery("Select * from Catalog");
%>
<table border="1" cellspacing="0">
 <tr>
 <th>CatalogId</th>
 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <%
 while (resultSet.next())
 {
 %>
 <tr>
 <td><%out.println(resultSet.getString(1));%></td>
 <td><%out.println(resultSet.getString(2));%></td>
 <td><%out.println(resultSet.getString(3));%></td>
 <td><%out.println(resultSet.getString(4));%></td>

Configuring JDBC in JBoss Application Server

[108]

 <td><%out.println(resultSet.getString(5));%></td>
 <td><%out.println(resultSet.getString(6));%></td>
 </tr>
 <%
 }
 %>
</table>
<%
 resultSet.close();
 stmt.close();
 if(!connection.isClosed())
 connection.close();
%>

We will configure a connection with the JBoss application server in JDeveloper.
Select the Connections tab, and in the Connections navigator, right-click on
Application Server node and select the New Application Server Connection.

Chapter 4

[109]

In the Create Application Server Connection Wizard, click the Next button. In the
Type window specify a Connection Name, select Connection Type as JBoss 4.0.x, and
click on Next.

In the JBoss Directory window, specify the deploy directory of the JBoss application
server and click on Next.

Configuring JDBC in JBoss Application Server

[110]

Click on Finish in the Finish window. A JBossConnection node gets added to the
Application Server node in Connections navigator.

We will deploy the web application that we created to the JBoss application server.
First, in order to create a deployment profile for the web application, select
File | New. In the New Gallery window, select General | Deployment Profiles in
Categories and WAR File in Items, and click on OK.

Chapter 4

[111]

In the Create Deployment Profile window specify a Deployment Profile Name and
click on OK. In the WAR Deployment Profile Properties window specify a J2EE
Web Context Root and click OK.

Configuring JDBC in JBoss Application Server

[112]

A deployment profile for the web application gets added to the Applications
Navigator. We configured a connection with the JBoss application server earlier. So,
next, deploy the deployment profile to the JBoss application server. Select Deploy to
| JBossConnection by right-clicking on the deployment profile.

The web application gets deployed to the JBoss application server. Start the JBoss
application server using the C:\JBoss\jboss-4.0.5.GA\bin\run batch script,
if not done already. Run the catalog.jsp using URL http://localhost:8080/
jboss/catalog.jsp. A connection gets established with MySQL database using the
JNDI data source configured in the JBoss application server and an HTML table gets
displayed for the catalog.jsp:

Chapter 4

[113]

JDBC 4.0 Version
JBoss application server 4 does not support JDBC 4.0. When support is added for
JDBC 4.0, we will be able to use the new features in JDBC 4.0. JDBC 4.0 supports
connection tracking to close unusable connections. Connection tracking is
implemented by the connection pool manager using the isValid() method of the
Connection interface. If the connection pool manager detects that a connection
is not valid, it closes the connection thus reducing the accumulation of unusable
connections, which hamper connection pool performance. For a Connection object
conn, connection tracking is implemented as follows:

if(!connection.isValid())
 connection.close();

MySQL Connector/J 5.1 driver supports the wrapper pattern, which is implemented
in the Wrapper interface. MySQL-specific extensions to the JDBC API contain
vendor-specific methods, which may be accessed using the wrapper pattern.
MySQL's extensions to the JDBC API are available in the com.mysql.jdbc package.
It provides the com.mysql.jdbc.Connection interface as an extension to the java.
sql.Connection interface. Check if the java.sql.Connection object is a wrapper
for the com.mysql.jdbc.Connection interface using the isWrapperFor() method
to unwrap the com.mysql.jdbc.Connection resource and obtain an object that
implements the interface. If the java.sql.Connection object is a wrapper, then
unwrap the MySQL extension to the Connection interface using the unwrap()
method, and create an object of type com.mysql.jdbc.Connection.

Class class = Class.forName("com.mysql.jdbc.Connection");
if(connection.isWrapperFor(class)) {
com.mysql.jdbc.Connection conn= (com.mysql.jdbc.Connection)connection.
unwrap(class);
}

Another new feature available in JDBC 4.0 for connection management is
the provision to set client info properties on a Connection object. Thus, if the
connection pool has a reduced performance due to inordinate excessive use of
CPU by some connections, the connection pool manager is able to identify which
of the connections are causing the excessive use of CPU and is able to close those
connections. To set and get client info properties, the Connection interface provides
the setClientInfo() and the getClientInfo() methods. For example, set the
ApplicationName, ClientUser, and ClientHostname client info properties:

conn.setClientInfo("ApplicationName","JBossApp");
conn.setClientInfo("ClientUser","JBossUser");
conn.setClientInfo("ClientHostname","JBossHost");

Configuring JDBC in JBoss Application Server

[114]

MySQL's extension to the Connection interface provides a method
clientPrepareStatement(), which may be used to create a client-side prepared
statement and run an SQL query.

String sql="SELECT CATALOGID, JOURNAL, PUBLISHER, EDITION, TITLE,
 AUTHOR from Catalog WHERE CATALOGID=?";
PreparedStatement pstmt=conn.clientPrepareStatement(sql);

Prepared statements are precompiled SQL statements that may run with different
parameter values. Prepared statements reduce the risk of SQL injection due to
separation of logic and data, and also improve performance. Prepared statements
are either server-side prepared statements or client-side prepared statements. With
server-side prepared statements, on receipt of a SQL statement, a database parses the
statement, checks for syntax errors, prepares an execution plan for the statement, and
runs the statement. When the database receives the same statement again, it uses the
previously prepared statement with the same execution plan to run the statement. If
a statement is to be run multiple times with different parameters, it is advantageous
to use prepared statements. Prepared statements are compiled only once by the
database server and run multiple times with different parameter values.

The advantage of prepared statements is better performance due to increased speed
and reduced CPU load. Moreover, the same compiled statement and execution plan
are used by the database server. If a database server does not support server-side
prepared statements, which are the same as those of MySQL databases (versions
before 4.1), the prepared statements may be emulated by the driver. These are called
client-side prepared statements.

MySQL's Connector/J 5.1 driver provides support for enhanced chained exceptions.
Exceptions chained to a SQLException and causes of the exceptions can be retrieved
using the For-Each loop, introduced in J2SE 6.0. Specify an error page in catalog.jsp:

<%@ page errorPage="errorpage.jsp" %>

In the error page use the For-Each loop to output the chained exceptions and
chained causes.

<%@ page isErrorPage="true" %>
<%
 for(Throwable e : exception)
 {
 out.println("Error encountered: " + e);
 }
%>

Chapter 4

[115]

The JDBC 4.0 version of the catalog.jsp deployed to JBoss is listed below:

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page language="java" import="java.sql.*, javax.naming.*, javax.
sql.*,oracle.jdbc.*" %>
<%@ page errorPage="errorpage.jsp" %>
<%
 InitialContext initialContext = new InitialContext();
 DataSource ds = (DataSource)
 initialContext.lookup("java:/MySqlDS");
 java.sql.Connection connection = ds.getConnection();
connection.setClientInfo("ApplicationName","JBossApp");
connection.setClientInfo("ClientUser","JBossUser");
connection.setClientInfo("ClientHostname","JBossHost");
Class class = Class.forName("com.mysql.jdbc.Connection");
if(connection.isWrapperFor(class))
 {
 com.mysql.jdbc.Connection conn=
 (com.mysql.jdbc.Connection)connection.unwrap(class);
 conn.setClientInfo("ApplicationName","JBossApp");
 conn.setClientInfo("ClientUser","JBossUser");
 conn.setClientInfo("ClientHostname","JBossHost");
 String sql="SELECT CATALOGID, JOURNAL, PUBLISHER, EDITION, TITLE,
 AUTHOR from Catalog WHERE CATALOGID=?";
 PreparedStatement pstmt=conn.clientPrepareStatement(sql);
 pstmt.setString(1, "catalog1");
 ResultSet rs=pstmt.executeQuery();
%>
<table border="1" cellspacing="0">
 <tr>
 <th>Catalog Id</th>
 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <%
 while (rs.next())
 {
 %>
 <tr>
 <td><%out.println(resultSet.getString(1));%></td>
 <td><%out.println(resultSet.getString(2));%></td>
 <td><%out.println(resultSet.getString(3));%></td>

Configuring JDBC in JBoss Application Server

[116]

 <td><%out.println(resultSet.getString(4));%></td>
 <td><%out.println(resultSet.getString(5));%></td>
 <td><%out.println(resultSet.getString(6));%></td>
 </tr>
 <%
 }
 %>
</table>
<%
 rs.close();
 pstmt.close();
 if(!connection.isClosed())
 connection.close();
 }
%>

JBoss Deployment Descriptors for EJBs
We would need to configure some EJB configuration files to use a JBoss application
server data source in an EJB. The standardjaws.xml configuration file represents
the JBossCMP engine. It contains the JNDI name of the default data source, jdbc-
sql mappings, and CMP entity bean settings. Instead use the jaws.xml file to use a
custom configuration for mapping Container-Managed-Persistence (CMP) entity
EJBs. In both cases, the file is copied to the META-INF directory of the EJB .jar file.
The standardjaws.xml and jaws.xml configuration files do the following:

1. Specify a data source and a type mapping for the data source
2. Specify how tables are built or used
3. Define finder methods to access the entity beans
4. Define type mappings

A data source is a Java Naming and Directory Interface (JNDI) object used to obtain
a connection from a connection pool to a database. Hypersonic Database is the
default data source configured with JBoss 4.0. You need to modify jaws.xml or
standardjaws.xml to use another database with CMP entity EJBs.

The standardjbosscmp-jdbc.xml configuration file is the standard deployment
descriptor to configure the JBoss CMP container. It can be replaced with a custom
configuration version called jbosscmp-jdbc.xml and goes in the META-INF directory
of the EJB .jar file. JBoss 4.0 is set as a default to a Hypersonic Database. We need to
edit this file to use another database. The file paths in the following sections would
be relative to the JBoss installation directory, if they are relative paths.

Chapter 4

[117]

Configuring JBoss Server with Oracle
Database
Oracle is a leading enterprise database used for its performance and reliability. To
configure JBoss 4.0 with Oracle, we need to put Oracle's driver classes in the runtime
classpath of the JBoss application server. Copy Oracle database 11g JDBC 4.0 driver's
JAR file, ojdbc6.jar, to the C:\JBoss\jboss-4.0.5.GA\server\default\lib
directory. We also need to set the JAVA_HOME environment variable to JDK 6.0.

To use Oracle's transactional (XA) data source, copy /docs/examples/jca/oracle-
xa-ds.xml to the /server/default/deploy directory. The directory paths are
relative to the JBoss application server installation directory. To configure with the
non-XA data source, copy /docs/examples/jca/oracle-ds.xml to the /server/
default/deploy directory and modify the oracle-ds.xml configuration file. The
<driver-class/> and <connection-url/> settings for Oracle would vary with the
type of driver used. The <driver-class/> and <connection-url/> settings for
Oracle are listed in the following table:

Driver Type Driver Class Connection URL
Oracle OCI Type 2 Driver oracle.jdbc.OracleDriver jdbc:oracle:oci:@<database>
Oracle Thin Type 4 Driver oracle.jdbc.OracleDriver jdbc:oracle:thin:@<host>:

<port>:<database>
Oracle OCI XA Type 4
Driver

oracle.jdbc.xa.client.
OracleXADataSource

jdbc:oracle:oci:@<database>

Oracle Thin XA Type 4
Driver

oracle.jdbc.xa.client.
OracleXADataSource

jdbc:oracle:thin:@<host>:
<port>:<database>

In the Connection URL setting, <host> is the HOST value specified in
the <Oracle10g>/network/ADMIN/tnsnames.ora file, <port> is the
PORT value specified in the tnsnames.ora file, and <database> is the
database name. <Oracle10g> is the directory in which Oracle database
is installed.

Finally, we need to modify \server\default\conf\login-config.xml to use
Oracle. Add the following <application-policy> element to login-config.xml:

<application-policy name = "OracleDbRealm">
 <authentication>
 <login-module code = "org.jboss.resource.security.
ConfiguredIdentityLoginModule" flag = "required">
 <module-option name = "principal"></module-option>
 <module-option name = "userName">OE</module-option>

Configuring JDBC in JBoss Application Server

[118]

 <module-option name = "password">pw</module-option>
 <module-option name = "managedConnectionFactoryName">jboss.jca:serv
ice=LocalTxCM,name=OracleDS</module-option>
 </login-module>
 </authentication>
</application-policy>

This configures the JBoss application server with the Oracle database. To use CMP
Entity EJBs with the Oracle data source, some additional modifications are required.
Modify the standardjbosscmp-jdbc.xml or jbosscmp-jdbc.xml configuration file
setting the <datasource> and <datasource-mapping> elements to use Oracle.

<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/OracleDS</datasource>
 <datasource-mapping>Oracle9i</datasource-mapping>
 </defaults>
</jbosscmp-jdbc>

Modify the standardjaws.xml or jaws.xml configuration file setting the
<datasource> and <type-mapping> elements:

<jaws>
 <datasource>java:/OracleDS</datasource>
 <type-mapping>Oracle9i</type-mapping>
</jaws>

Modifying the oracle-ds.xml, standardjaws.xml, standardjbosscmp-jdbc.
xml, and login-config.xml files configures the JBoss 4.0 server to be used with an
Oracle database.

Configuring JBoss Server with MySQL
Database
MySQL is an open-source database used by many open-source projects and small
organizations. To use JBoss 4.0 with MySQL, we have to put the MySQL driver
classes into the runtime classpath of JBoss application server and copy the MySQL
Connector/J 5.1 driver JAR file to the C:\JBoss\jboss-4.0.5.GA\server\
default\lib directory. MySQL Connector/J 5.1 driver supports JDBC 4.0 and can
be obtained from http://dev.mysql.com/downloads/connector/j/5.1.html. We
also need to set the JAVA_HOME environment variable to JDK 6.0.

Chapter 4

[119]

To use the MySQL data source, copy /docs/examples/jca/mysql-ds.xml to the
/server/default/deploy directory. Modify the mysql-ds.xml configuration file by
setting <driver-class/> to com.mysql.jdbc.Driver and <connection-url/> to
jdbc:mysql://localhost:3306/test.

Finally, modify server/default/conf/login-config.xml with MySQL database
settings and add the following <application-policy/> element to \server\
default\conf\login-config.xml:

<application-policy name = "MySqlDbRealm">
 <authentication>
 <login-module code = "org.jboss.resource.security.
ConfiguredIdentityLoginModule" flag = "required">
 <module-option name ="principal"></module-option>
 <module-option name ="userName">root</module-option>
 <module-option name ="password"></module-option>
 <module-option name ="managedConnectionFactoryName">
jboss.jca:service=LocalTxCM,name=MySqlDS</module-option>
 </login-module>
 </authentication>
</application-policy>

The above <application-policy/> element configures the JBoss server with
the MySQL database. The following JBoss configuration with MySQL database is
not required for the example application in this chapter. To use CMP entity EJBs
with the MySQL data source some additional modifications are required. Set the
<datasource> and <datasource-mapping> elements in the standardjbosscmp-
jdbc.xml or jbosscmp-jdbc.xml file.

<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/MySqlDS</datasource>
 <datasource-mapping>mySQL</datasource-mapping>
 </defaults>
</jbosscmp-jdbc>

We also have to set the <datasource> and <type-mapping> elements in the
standardjaws.xml or jaws.xml file.

<jaws>
 <datasource>java:/MySqlDS</datasource>
 <type-mapping>mySQL</type-mapping>
</jaws>

Modifying the mysql-ds.xml, standardjaws.xml, standardjbosscmp-jdbc.
xml, and login-config.xml files configures the JBoss 4.0 server to be used with a
MySQL database.

Configuring JDBC in JBoss Application Server

[120]

Configuring JBoss Server with
PostgreSQL Database
PostgreSQL database is one of the most commonly used open-source relational
databases. The first step is to get the database driver classes into the runtime classpath
of JBoss application server. The JDBC 4.0 driver for PostgreSQL database may be
obtained from http://jdbc.postgresql.org/download.html. Copy the PostgreSQL
driver JAR file postgresql-8.2-507.jdbc4.jar to the JBoss installation's /server/
default/lib directory. We also need to set the JAVA_HOME environment variable to
JDK 6.0 and then use its data source by copying /docs/examples/jca/postgres-
ds.xml to the /server/default/deploy directory.

Modify the postgres-ds.xml configuration file by setting <driver-class/>
to org.postgresql.Driver and <connection-url/> to jdbc:postgresql://
localhost:5432/postgres.

Finally, modify \server\default\conf\login-config.xml to use the PostgreSQL
database and add the following <application-policy/> element to the file:

<application-policy name = "PostgreSQLDbRealm">
 <authentication>
 <login-module code = "org.jboss.resource.security.
ConfiguredIdentityLoginModule"
flag = "required">
 <module-option name ="principal"></module-option>
 <module-option name = "userName">sa</module-option>
 <module-option name = "password">pw</module-option>
 <module-option name = "managedConnectionFactoryName">
jboss.jca:service=LocalTxCM,name=PostgreSQLDS</module-option>
 </login-module>
 </authentication>
</application-policy>

The above <application-policy/> element configures the JBoss application
server with the PostgreSQL database. If a CMP entity EJB needs to access the
PostgreSQL data source, some additional modifications would be required. Modify
standardjbosscmp-jdbc.xml or jbosscmp-jdbc.xml to set the <datasource> and
<datasource-mapping> elements.

<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/PostgreSQLDS</datasource>
 <datasource-mapping>PostgreSQL</datasource-mapping>
 </defaults>
</jbosscmp-jdbc>

Chapter 4

[121]

We also have to modify standardjaws.xml or jaws.xml to set the <datasource>
and <type-mapping> elements.

<jaws>
 <datasource>java:/PostgreSQLDS</datasource>
 <type-mapping>PostgreSQL</type-mapping>
</jaws>

By modifying the postgres-ds.xml, standardjaws.xml, standardjbosscmp-jdbc.
xml, and login-config.xml, the JBoss 4.0 server is configured to be used with a
PostgreSQL database.

Configuring JBoss Server with DB2
Database
IBM's DB2 Universal Database is a full-featured, robust, scalable, and easy-to-use
database server, which may be used on Linux, UNIX, and Windows platforms.
Begin by adding its driver to the runtime classpath of the JBoss application server.
IBM Data Server Driver for JDBC and SQLJ Version 4.0 supports JDBC 4.0 and may
be downloaded from https://www14.software.ibm.com/webapp/iwm/web/reg/
download.do?source=swg-informixfpd&S_PKG=dl&lang=en_US&cp=UTF-8#. For
JDBC 4.0 functionality add the db2jcc4.jar to the JBoss's installation /server/
default/lib directory. To use the JDBC 4.0 features set the JAVA_HOME environment
variable to JDK 6.0. Copy /docs/examples/jca/db2-ds.xml to the /server/
default/deploy directory to configure the JBoss server with the DB2 data source.

Next, modify the db2-ds.xml configuration file by setting <driver-class/>
to com.ibm.db2.jcc.DB2Driver and <connection-url/> to jdbc:db2://
localhost:50000/database with DB2 being the database name. Finally, add the
following <application-policy/> element to \server\default\conf\login-
config.xml:

<application-policy name = "DB2DbRealm">
 <authentication>
 <login-module code = "org.jboss.resource.security.
ConfiguredIdentityLoginModule" flag = "required">
 <module-option name = "principal">sa</module-option>
 <module-option name = "userName">sa</module-option>
 <module-option name = "password">pw</module-option>
 <module-option name = "managedConnectionFactoryName">jboss.jca:
service=LocalTxCM,name=DB2DS
</module-option>
 </login-module>
 </authentication>
</application-policy>

Configuring JDBC in JBoss Application Server

[122]

This <application-policy/> element configures the JBoss application server with
the DB2 database. Additional modifications would be required, if the DB2 database
is to be accessed from a CMP entity EJB. Modify the standardjbosscmp-jdbc.xml
or jbosscmp-jdbc.xml as follows:

<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/DB2DS</datasource>
 <datasource-mapping>DB2</datasource-mapping>
 </defaults>
</jbosscmp-jdbc>

We also have to modify standardjaws.xml or jaws.xml to set <datasource> and
<type-mapping>.

<jaws>
 <datasource>java:/DB2DS</datasource>
 <type-mapping>DB2</type-mapping>
</jaws>

The above configuration changes allow us to use DB2 with JBoss.

Configuring JBoss Server with SQL
Server
SQL Server is a comprehensive data management and analysis solution to build,
deploy, and manage enterprise applications. In this section, we will configure JBoss
application server with SQL Server 2000 and SQL Server 2005. Copy the SQL Server
JDBC 4.0 JAR file to JBoss server as we did with the other databases. I-net software's
Merlia JDBC drivers support JDBC 4.0, where the Merlia driver ZIP file Merlia_
Trial_7.02.zip may be obtained from http://www.inetsoftware.de/products/
jdbc/mssql/merlia/. Extract the Merlia ZIP file to a directory, add Merlia.jar
to the JBoss's installation /server/default/lib directory, and set the JAVA_HOME
environment variable to JDK 6.0. We also have to copy the SQL Server data source
file to the JBoss server deploy directory. Copy docs\examples\jca\mssql-ds.xml
for non-transactional data source, or \docs\examples\jca\mssql-xa-ds.xml for
transactional data source to the \server\default\deploy directory.

Modify the mssql-ds.xml configuration file to set the driver class and connection
URL, and specify <driver-class/> as com.inet.tds.TdsDriver. For SQL Server
2000, specify <connection-url/> as jdbc:inetdae7:localhost:1433; for SQL
Server 2005, specify <connection-url/> as jdbc:inetdae7:localhost:port. The
variable port number for SQL Server 2005 is obtained from the SQL Server

Chapter 4

[123]

Configuration Manager. Select the SQL Server 2005 Network Configuration |
Protocols for SQLEXPRESS node in the SQL Server Configuration Manager. Right-
click on the TCP/IP node, select Properties, and then select the IP Addresses tab.
In IP ALL, the TCP Dynamic Port specifies the port for SQL Server 2005. The port
number for SQL Server 2005 changes when the server is restarted.

Finally, we have to add the following <application-policy/> element to \server\
default\conf\login-config.xml:

<application-policy name = "SQLServerRealm">
 <authentication>
 <login-module code = "org.jboss.resource.security.
ConfiguredIdentityLoginModule" flag = "required">
 <module-option name = "principal"></module-option>
 <module-option name = "userName">sa</module-option>
 <module-option name = "password">pw</module-option>
 <module-option name = "managedConnectionFactoryName">jboss.jca:serv
ice=LocalTxCM,name=MSSQLDS</module-option>
 </login-module>
 </authentication>
</application-policy>

The above <application-policy/> element configures the SQL Server database
with the JBoss application server. If a CMP entity EJB is deployed to JBoss with
SQL Server access, we have to modify the standardjbosscmp-jdbc.xml/
jbosscmp-jdbc.xml and standardjaws.xml/jaws.xml configuration files. Set the
<datasource> and <datasource-mapping> elements of standardjbosscmp-jdbc.
xml or jbosscmp-jdbc.xml as follows:

<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/MSSQLDS</datasource>
 <datasource-mapping>MS SQLSERVER</datasource-mapping>
 </defaults>
</jbosscmp-jdbc>

Set the <datasource> and <type-mapping> elements in standardjaws.xml or
jaws.xml as follows:

<jaws>
 <datasource>java:/MSSQLDS</datasource>
 <type-mapping>MS SQLSERVER</type-mapping>
</jaws>

Configuring JDBC in JBoss Application Server

[124]

For SQL Server 2000, set the datasource-mapping or type-mapping to MS
SQLSERVER2000. These configuration changes allow configuration of the JBoss with
SQL Server database.

Summary
The JBoss 4.0 server is configured with the Hypersonic database by default.
However, it is a simple matter of changing a few configuration files to use any one
out of several popular databases. In this chapter, we have configured the JBoss
application server with the Oracle database, MySQL database server, PostgreSQL
database server, MS SQL Server database, and the DB2 UDB database.

Configuring JDBC in
WebLogic Server

WebLogic Server provides database connectivity using data sources. A data source
is a pool of database connections from which a connection can be obtained. A data
source can be configured separately or combined with other data sources such as a
multi data source. A multi data source is like a pool of data sources, configured to
supply failover and load balancing across Database Management Systems. A data
source is configured with a JNDI binding. A DataSource object represents a data
source and is obtained using the JNDI lookup. A Connection object can be obtained
from a DataSource object using the getConnection() method. WebLogic Server
provides the Administration Console to configure a data source. WebLogic Server
9.x and 10.x includes Type 4 JDBC drivers, which are branded OEM versions of
DataDirect drivers for DB2, Informix, MS SQL Server, Sybase, and Oracle databases.
It also includes the DBMS vendor drivers from Sybase and Oracle. JDBC drivers for
other databases may be incorporated in the server by including the JAR files in the
server classpath.

New JDBC features in WebLogic Server 9.0 include support for JDBC 3.0, multiple
JNDI names for a data source, and the Logging Last Resource transaction option.
SQL Statement Timeout has been added to the connection pool configuration.
SecondsToTrustAnIdlePoolConnection and PinnedToThread connection pool
properties have been added to improve data source performance, which will be
discussed later in this chapter. The multi data source failover feature has been
improved. Statistics collection has been added to different connection parameters
for their performance diagnostics. In WebLogic Server 9.1, new features have been
added to WebLogic Type 4 JDBC drivers and Identity Based connection pooling
has also been added. Transaction, Diagnostic, and Security tabs have been added to
the Administration for configuring a data source. WebLogic Server 9.2 has added
support for BEA WebLogic Type 4 JDBC MS SQL Server driver. WebLogic Server
10.3 supports JDBC 4.0, but is a Technology Preview edition, and does not support
all the features of JDBC 4.0.

Configuring JDBC in WebLogic Server

[126]

In this chapter, you will learn how to:

Create a Data Source in WebLogic Server.
Configure Connection Pool Properties for a Data Source.
Create a multi data source in WebLogic Server.
Performance Tune WebLogic Server Connections.
Deploy a Web Application to WebLogic Server from JDeveloper.
JDBC 4.0 version of the Web Application.

Setting the Environment
Install the database that requires a JDBC connection. The procedure to install the
databases is discussed in Chapter 1. Download the JDBC driver for the database,
if WebLogic does not have a driver for the DBMS. We will configure the JDBC
connectivity with the Oracle database 10g. Copy the Oracle database JDBC driver
JAR file ojdbc14.jar from <Oracle>\jdbc\lib directory to the <weblogic91>\
samples\domains\wl_server\lib directory, <Oracle> being the Oracle database
10g installation directory and <weblogic91> being the WebLogic Server 9.1
installation directory. JAR files in the server lib directory get automatically added
to the classpath, on server startup. If a later version is required, replace it in the
lib directory. Alternatively, you can edit the <weblogic91>\samples\domains\
wl_server\bin\startWebLogic script by adding a driver JAR file to the classpath
argument constructed by the script. Put the JAR file ahead of weblogic.jar in
the classpath. Double-click on the <weblogic91>\samples\domains\wl_server\
startWebLogicEx command script to start the WebLogic examples server.

Creating a Data Source
A data source is a pool of JDBC connections from which a connection can be
obtained using the getConnection() method of a DataSource object. In this section,
we will create a data source in the WebLogic Server Administration Console. Access
the Administration Console with the URL http://localhost:7001/console, and
in the Administration Console, select the node Services | JDBC | DataSources.

•

•

•

•

•

•

Chapter 5

[127]

Click on Lock & Edit to activate the Data Sources page buttons. To create a new
JDBC data source, click on New in the Data Sources table.

Configuring JDBC in WebLogic Server

[128]

In the Create a New JDBC Data Source window, specify a data source name, and a
JNDI Name for the data source. A data source is bound on a JNDI naming service
with a JNDI name. Select a Database Type, and create a data source with the Oracle
database. Select Oracle as the Database Type, and select Oracle's Driver (Thin) as the
Database Driver, and click on next.

Chapter 5

[129]

A data source may be configured with any of the commonly used databases.
WebLogic Server provides Type 4 JDBC drivers from DataDirect for DB2, Informix,
Oracle, SQL Server, and Sybase. BEA-branded DataDirect, Sybase jConnect, and
Oracle thin drivers have been installed in the <weblogic9.1>/server/lib directory.
The different JDBC Type 4 drivers provided by WebLogic Server are listed in the
following table:

Database Versions
Supported

Driver Classes Connection URL

DB2 UDB 7.x, 8.1 and
8.2 on Linux, Unix, and
Windows.

XA-weblogic.jdbcx.
DB2DataSource.
Non XA- weblogic.jdbc. db2.
DB2Driver.

jdbc:bea:db2:
//db2_server_name:port;
DatabaseName= database

Informix 9.4 and later. XA- weblogic.jdbcx. informix.
InformixDataSource.
Non XA- weblogic.jdbc.
informix.InformixDriver.

jdbc:bea:informix:
//dbserver1:1543;
informixServer= dbserver1;
databaseName= dbname

MS SQL Server 7.0, SQL
Server 2000(SP1, SP2, and
SP3a) and SQL Server
2005.

XA- weblogic.
jdbcx.sqlserver.
SQLServerDataSource.
Non XA- weblogic.jdbc.
sqlserver.
SQLServerDriver.

jdbc:bea:sqlserver:
//dbserver:port

Oracle 9i (R1 and R2)
Oracle 10g.

XA- weblogic.jdbcx.oracle.
OracleDataSource.
Non XA- weblogic.jdbc.
oracle.OracleDriver.

jdbc:bea:oracle:

//dbserver:port

Sybase Adaptive Server
11.5, 11.9, 12.0, 12.5, 15.

XA- weblogic.jdbcx.sybase.
SybaseDataSource.
Non XA- weblogic.jdbc.
Sybase.SybaseDriver.

jdbc:bea:sybase:
//dbserver:port

Configuring JDBC in WebLogic Server

[130]

Databases which do not include a JDBC driver can be selected. If one such
driver is selected, add the driver zip or JAR file to the CLASSPATH variable in the
startWebLogic script; else add the JAR or zip file to the server lib directory. A
JDBC driver to a DBMS can be used, by specifying 'Other', and entering the driver
class name manually to the console. Any Type 4 JDBC driver can be manually added
to the classpath in the start-weblogic scripts, and need not to be put in the server
or lib directory:

In the Transaction Options window, the transaction attributes of the data source
are specified. If a XA driver is selected, global transactions would be automatically
supported with Two-Phase commit transaction protocol. A global, distributed, or XA
transaction is one that involves multiple DBMSes or resources, and which require a
2-Phase commit protocol to ensure an all-or-nothing resolution of the transaction. A
global transaction is managed by a Transaction Manager using JTA. For a non-XA
data source to support global transactions, check the Global Transactions checkbox.
Select the protocol which supports global transactions. Different transaction
protocols are listed in following table:

Transaction Protocol Description
Logging Last Resource (LLR). LLR optimization provides a better performance as

compared to an XA JDBC driver, for insert, update,
and delete operations. XA driver provides with a better
performance for read operations. Recommended over a
two-phase commit.

Two-Phase Commit. Emulates participation in a global transaction using JTA.
One-Phase Commit. This is the default setting. Only one resource may

participate in the global transaction with one-phase
commit.

Chapter 5

[131]

In the Transaction Options page, click on Next. In the Connection Properties
window, specify the Database Name as ORCL. Host Name as localhost, Port as
1521, and User Name as OE. Specify password for the OE username and click on the
Next button:

Configuring JDBC in WebLogic Server

[132]

In the Test Database Connection window, the driver class name, connection URL,
and user name for the Oracle database are specified. Click on the Test Database
Configuration, to test connection with the database:

A message is displayed indicating that a connection has been established. If the
database is not connected and an error message is displayed, then click on the Next
button. In the Select Targets window, select the server to which the data source is
to be deployed. To deploy to the examples server, select the examplesServer, and
click on Finish.

Chapter 5

[133]

A data source is configured and added to the Data Sources table. The data source is
registered with the JNDI name, with the help of a naming service and a target server
that are deployed by the data source and also listed in the data sources table:

Make the data source available to the applications in the server, by clicking on the
Activate Changes button. Until the Activate Changes or Undo All Changes button
is selected, a web application is not deployed to the WebLogic server.

Configuring a Data Source
The data source created in the previous section will be configured. Select the data
source to be configured in the Data Sources table, and also select the Configuration
tab, which is the default setting. In the Configuration window, the data source JNDI
name can be modified:

Configuring JDBC in WebLogic Server

[134]

Other configuration options for a data source are listed in following table:

Data Source Setting Description
Row Prefetch Row Prefetch fetches multiple rows from the server to the client in

a single server access, thus improving their performance.
Row Prefetch Size If row prefetching is enabled, specify the number of rows to be

fetched. Optimal size of the rows to be fetched depends on the
query.

Stream Chunk Size Specifies the data chunk size for streaming the data types.

Select the Connection Pool link to configure the connection pool associated with
the data source. Initial capacity, maximum capacity, and capacity increment can
be set in the connection pool configuration. The Advanced link is used to set the
advanced connection pool properties. Some of the connection pool settings are listed
in following table:

Connection Pool Setting Description
Initial Capacity Specifies the initial number of connections in the connection

pool. It also specifies the minimum number of available
connections in the connection pool.

Maximum Capacity Specifies the maximum number of connections in the
connection pool.

Capacity Increment Specifies the number of connections added to the
connection pool in a connection increment.

Statement Cache Type Specifies the algorithm used for caching prepared
statements. If the value is LRU, and a new statement is
created, the least recently used statement in the cache is
replaced. If the value is FIXED, the first statement that
populates the cache stays indefinitely.

Test Connections on
Reserve.

If Test Connections on Reserve checkbox is selected, then
connections are tested before being given to the client.
Test is required for connection pools in a multi data source
created with the Failover algorithm. If Test Connections
on Reserve is selected, then the Test Table Name should be
specified.

Test Frequency Specifies, in seconds, the interval to test unused connections
in a connection pool. If test fails, the connection is closed
and reopened. Again, if test fails, the connection is closed.
If Test Frequency more than 0 is specified, then Test Table
Name should be specified.

Chapter 5

[135]

Connection Pool Setting Description
Test Table Name Specifies the database table used to test connections. To

improve testing, specify a table without rows, or with
just few rows. The SQL query to test connection can be
specified with: SQL <query>. <query> is the query used to
test the database connection.

Init SQL Specifies the SQL statement used to initialize connection
with a database. The SQL statement is specified with: SQL
<sql statement>. <sql statement> is the SQL statement
used to test connection. A database table can be specified
without specifying 'SQL' at the start of the field. If a
database table is specified, a database connection is tested
with the SQL statement: "SELECT count(*) from InitSQL".

Shrink Frequency Specifies the wait time for reducing the connection pool
size with the pre-incremented value.

Connection Creation Retry
Frequency.

Specifies the number of seconds between each attempt to
establish a connection with a database.

Inactive Connection
Timeout.

Specifies the number of seconds when an unused
connection is returned to the connection pool.

Login Delay. Specifies the number of seconds delayed for establishing a
connection with a database. It is used for database servers
that cannot handle successive connection requests.

Maximum Waiting for
Connection

Specifies the maximum number of connection requests
waiting to obtain a connection from the connection pool.

Connection Reserve
Timeout

Specifies the number of seconds after which a connection
request will be timed out.

Statement Timeout Specifies the number of seconds after which a statement
will be timed out.

The transaction protocol settings can be configured with the Transaction link.
Monitoring statistics can be collected with the Diagnostics link. The profile
information can be collected. Some of the data source profiles are listed in
following table:

Profile Description
Profile Connection Usage Collects profile information about threads, which currently

uses connections from the connection pool.
Profile Connection
Reservation Wait

Collects profile information about threads, which is
currently waiting to reserve a connection from the
connection pool.

Profile Connection Leak Collects profile information about threads, which reserved
a connection from the connection pool and connection leak.

Configuring JDBC in WebLogic Server

[136]

Profile Description
Profile Connection Usage. Collects profile information about threads, which currently

uses connections from the connection pool.
Profile Connection
Reservation Failed.

Collects profile information about threads, which failed to
reserve a connection from the connection pool.

Profile Statement Cache
Entry.

Collects profile information about callable and prepared
statements, which is added to the statement cache and
about threads that create the statements.

Profile Statement Usage Collects profile information about threads, which currently
executes statements from the statement cache.

Profile Connection Last
Usage

Collects profile information about the previous thread that
had ultimately used a connection from the connection pool.

Profile Connection
Multithreaded Usage

Collects profile information about threads that erroneously
uses a connection, which was earlier obtained by a different
thread.

Profile Harvest Frequency It is the interval, in seconds, between threads when the
WebLogic Server harvests for profile data.

Select the Monitoring tab to monitor a data source. Select the Control tab to
administer the WebLogic Server instances, which is deployed by the data source. In
a deployed server instance, the statement cache can be cleared, and the server can be
suspended or shutdown.

Creating a Multi Data Source
A multi data source is an abstract group of data sources, which provides failover and
load balancing. A multi data source has a JNDI binding, similar to a data source. To
create a multi data source, click on the Services | JDBC | Multi Data Sources link in
the Administration Console:

Chapter 5

[137]

In the Multi Data Sources table, click on the New button to create a new multi data
source. In the Configure the Multi Data Source window, specify a data source name,
and a JNDI name. Select the algorithm type as Failover or load-balancing, and click
on Next.

Configuring JDBC in WebLogic Server

[138]

In the Select Targets window, select the examplesServer or any other server, by
deploying the multi data source to it and click on next.

In the Select Data Source Type window, select XA Driver for an XA data source,
or select Non-XA Driver for a non-XA data source, and click on Next. Because we
created an Oracle data source using a non-XA JDBC driver select Non-XA Driver.
In the Add Data Sources window, add data sources from the Available list to the
Chosen list. If a new data source is required, click on the Create a New Data Source
button, and then click on Finish.

Chapter 5

[139]

A new data source is configured and added to the Multi Data Sources table. Click on
the Activate Changes button to make the data source available to the applications.

A multi data source can be configured by selecting the multi data source link.
The targets to which the multi data source is deployed can be configured with the
Targets tab. The data sources in the multi data source can be configured with the
Data Sources link in the Configuration tab. The multi data source JNDI name can be
modified in the Configuration | General window. The Algorithm Type specifies
the algorithm used to select a data source from which a connection is obtained. If
algorithm type is Failover, connection request is always sent to the first data source
in the list. If the first data source has lost connectivity to the DBMS, connection
request will be sent successively to the next data source of the list, until a connection
is obtained or till it reaches to the end of the data source list. If the algorithm type
is Load Balancing, connection request's load is distributed evenly over the data
sources in the list. If load balancing is selected, connection failover is also provided
with connection requests. These connection requests are being sent to different data
sources in the list, until a connection gets established or till it reaches to the end of
the data source list.

A multi data source also provides the Failover Request If Busy, Failover Callback
Handler, and Test Frequency settings. For a multi data source with failover
algorithm when Failover Request If Busy is selected, the connection request is sent
to the next data source in the data source pool if all the connections in a data source
are busy. The Failover Callback Handler specifies the application class to handle
the callback, which is sent when a multi data source is ready to send a failover
connection request to another data source. Test Frequency specifies the interval, in
seconds, after which connections are tested. If a connection fails, the connection is
closed and reopened. If the connection fails again, then it is closed.

Configuring JDBC in WebLogic Server

[140]

WebLogic Server 9.x also supports Data Source Factories. Application scoped
connection pools use JDBC Data Source factories to provide with default connection
pool values. Configure a Data Source Factory by clicking on the Services | JDBC |
Data Source Factories link. Click on new in the Data Source Factories table. In the
Create a New JDBC Data Source Factory window, specify the data source factory
name, user name, and password. These are specified to log in to the database,
connection URL, driver class name, and factory name, and then click on OK. A data
source factory is created, and can be deployed to a target server node. The data
source factory name is used in the Administration Console, and in the configuration
file, config.xml. The Factory Name is used in the deployment descriptors.

Performance Tuning JDBC
For best stability and performance, configure the pool to create all the connections
it will need during startup, and retain them indefinitely. Hence, set the initial
capacity to equal the maximum capacity, which would be identical for each execute-
thread. Connection pooling provided by WebLogic Server data sources improves
performance, by making a pool of connections available for JDBC applications.
Connections do not have to be opened and closed for each client.

Test Connections on Reserve tests the connections before making a connection
available to a client and can reduce the performance. To prevent frequent connection
testing, set the connection pool attribute, Seconds to Trust an Idle Pool Connection.
This attribute specifies the number of seconds for which a connection that is known
to have been successfully used, is not tested with a SQL query. When JDBC is done
in external client JVMs, using RMI to do JDBC through WebLogic to the DBMS,
data source performance can be improved by selecting Row Prefetch Enabled, and
an optimal prefetch size in configuring a data source. Row prefetching improves
performance by prefetching multiple rows from the server to an external client. Row
prefetch is not recommended for JDBC in external clients through WebLogic. It is
much faster to produce JDBC in the WebLogic JVM, JSPs, servlet, EJBs, and so on.
Caching statements improves the performance of the connection testing by reusing
statements, rather than creating new statements. Statement caching is specified in the
connection pool configuration.

Here is the ideal standard for riskless WebLogic JDBC coding style. Pooling is fast, it
is best used in a quick per-invoke fashion:

/* This is how you should make any of your top-level methods that will produce
JDBC, work for any of your applications.*/

Chapter 5

[141]

public void myTopLevelJDBCMethod()
{
 Connection c = null;

/* All JDBC objects would be method level objects that ensure thread-safety and
prevent connection leaking. Define the connection object before the JDBC 'try'
block.*/
 try
 {

/* The above is the JDBC try block for the method. All the JDBCs' for this method in
the block is connected directly from the DataSource in the try block. Do not connect
it from any method that has kept a connection, and is sharing it for repeated use.*/
 c = myDataSource.getConnection();

/* You can pass the connection or sub-objects to sub-methods but none of these
methods must expect to keep or use the objects they receive after their method call
completes (eg).*/
 DoSomethingFancyWith(c);

/* Use Prepared or Callable Statements. They are usually faster, because we cache
them transparently with the pool.*/
 PreparedStatement p = c.prepareStatement(...);
 ResultSet rs = p.executeQuery();
 ProcessResult(myrs);

/* Close JDBC objects in the proper order: first resultset,; then statement; and then
connection.*/
 rs.close();

/* Always close result sets as soon as possible (ASAP) at the levels they were
created*/
 p.close();

/* Always close statements ASAP at the levels they were created. When the JDBC is
processed in the try-block, close the connection:*/
 c.close();

/* Always close connection-ASAP in the same method and the block that was used
to create or obtain it.*/
 c = null;

Configuring JDBC in WebLogic Server

[142]

/* Set the connection to null, so that the finally block below knows that it has been
taken care of.*/
 }
 catch (Exception e)
 {

/* Do whatever, according to your needs. You would not have a catch block, if it is
not needed.*/
 }
finally
 {

/* Always have the above finally block. A finally block is crucial to ensure that the
connection is closed and returned to the pool, and is not leaked.*/

/* Failsafe: Do every individual thing you want to do in the finally block in it's own
try block-catch-ignore so everything is attempted.*/
 try
 {
 if (c != null) c.close();
 }
 catch (Exception ignore)
 {
 }
 }
}

Deploying a Web Application to
WebLogic Server from JDeveloper
We will develop a web application to retrieve data from an Oracle database table
with the data source configured in the Configuring a Data Source section. Create an
example database table in the Oracle database. Create a table, Catalog, using a SQL
Client tool such as SQL * Plus, or a command-line utility with the following QL script:

CREATE TABLE Catalog(CatalogId INTEGER
PRIMARY KEY, Journal VARCHAR(25), Publisher VARCHAR(25),
 Edition VARCHAR(25), Title Varchar(45), Author Varchar(25));
INSERT INTO Catalog VALUES('1', 'Oracle Magazine', 'Oracle Publishing',
'Nov-Dec 2004', 'Database Resource Manager', 'Kimberly Floss');
INSERT INTO Catalog VALUES('2', 'Oracle Magazine', 'Oracle Publishing',
'Nov-Dec 2004', 'From ADF UIX to JSF', 'Jonas Jacobi');
INSERT INTO Catalog VALUES('3', 'Oracle Magazine', 'Oracle Publishing',
'March-April 2005', 'Starting with Oracle ADF ', 'Steve Muench');

Chapter 5

[143]

We will create a web application in JDeveloper to access the Oracle database. Before
starting JDeveloper we need to copy the <Weblogic91>\server\lib\weblogic.
jar to the <JDeveloper>\jdev\lib\ext directory. <WebLogic91> is the directory in
which your WebLogic Server 9.1 is installed. <JDeveloper> is the directory in which
JDeveloper is installed. Select File | New to create a new application and project. In
the New Gallery window, select General in Categories and Application in Items,
and click on OK. In the Create Application window, specify an application name
and click on OK. In the Create Project window, specify a project name and click
on OK. An application and a project are added to the Applications Navigator and
create a JSP, catalog.jsp. Select File | New, and in the New Gallery window select
Web Tier | JSP in Categories. Select JSP in Items and click OK. A JSP is added to
the Applications Navigator.

'

Import the java.sql, javax.sql, and javax.naming packages in the JSP. We have
to create an InitialContext object, which is required for JNDI naming operations:

InitialContext ctx=new InitialContext();

Previously, we had created a data source with JNDI name, jdbc/OracleDS. Create a
DataSource object from the JNDI name using the lookup() method:

DataSource ds=(DataSource)ctx.lookup("jdbc/OracleDS");

Obtain a JDBC connection from the DataSource object. Create a Connection object
using the getConnection() method of the DataSource object:

Connection connection=ds.getConnection();

Create a Statement object from the Connection object using the
createStatement() method:

Statement stmt=connection.createStatement();

Configuring JDBC in WebLogic Server

[144]

Run a SQL query with the executeQuery() method to return a ResultSet object.
Specify a SQL query, which selects all the columns of the example database
table, Catalog:

ResultSet resultSet=stmt.executeQuery("Select * from Catalog");

Create a HTML table with a row that corresponds to each row in the result set, and
a column that corresponds to each column in the result set. Add a header row to the
html table. Iterate over the result set, and add row values to the html table:

while (resultSet.next())
{
 <tr>
 <td><%out.println(resultSet.getString(1));%></td>
 </tr>
}

The JSP page, catalog.jsp, which is used to generate a HTML table from the
example database table with the data source configured in the WebLogic server, is
listed below:

<%@ page contentType="text/html"%>
<%@ page import="java.sql.*,javax.sql.*,javax.naming.*"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
 <title>WebLogic Application</title>
</head>
<body>
<%
 InitialContext ctx=new InitialContext();
 DataSource ds=(DataSource)ctx.lookup("jdbc/OracleDS");
 Connection connection=ds.getConnection();
 Statement stmt=connection.createStatement();
 ResultSet resultSet=stmt.executeQuery("Select * from Catalog");
%>
<table border="1" cellspacing="0">
 <tr>
 <th>CatalogId</th>

Chapter 5

[145]

 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <%
 while (resultSet.next())
 {
 %>
 <tr>
 <td><%out.println(resultSet.getString(1));%></td>
 <td><%out.println(resultSet.getString(2));%></td>
 <td><%out.println(resultSet.getString(3));%></td>
 <td><%out.println(resultSet.getString(4));%></td>
 <td><%out.println(resultSet.getString(5));%></td>
 <td><%out.println(resultSet.getString(6));%></td>
 </tr>
 <%
 }
 resultSet.close();
 stmt.close();
 connection.close();
 %>
</table>
</body>
</html>

We will deploy the web application to the WebLogic server. <JDeveloper> is
the directory in which JDeveloper is installed. To deploy a web application to the
WebLogic server, we have to perform the following operations:

1. Create a connection to the WebLogic Server.
2. Create a deployment profile for the web application.
3. Deploy the deployment profile to the WebLogic Server using the connection

to the server.

Configuring JDBC in WebLogic Server

[146]

We have to start the WebLogic server to establish a connection with the server. To
create a connection to the WebLogic Server, right-click on the Application Server
node in the Connections navigator, and select New Application Server Connection.

Click on Next in the Create Application Server Connection Wizard. In the Type
window, specify a Connection Name and select Connection Type as WebLogic
Server 9.x, and then click on Next.

Chapter 5

[147]

In the Authentication window specify the username (default is 'weblogic') and
password (default is 'weblogic') which were specified when the WebLogic server was
installed. In the Connection window, specify Host Name as localhost, Port as 1521,
Target Node as examplesServer, and the Path to weblogic.jar.

In the Test window, click the Test Connection button to test connection with the
WebLogic server. A "Success" message is displayed, if a connection is established.
If a connection is not established, an error message is generated. For example, an
error is generated, if the WebLogic server have not been started prior to testing the
connection with the server. An application server connection node is added to the
Connections navigator.

Configuring JDBC in WebLogic Server

[148]

We will create a deployment profile from the web application. Select File | New and
in the New Gallery window, select General | Deployment Profiles. Select WAR File
in Items and click on OK.

In the Create Deployment Profile window, specify the deployment profile name,
webapp1, which is the default, and click on OK. In the WAR Deployment Profile
Properties window specify J2EE web context root as 'weblogic'. The connection
that we created with the WebLogic server is a t3 protocol connection. By default,
a deployment profile uses the http protocol to deploy to the WebLogic server.
Therefore, we have to modify the deployment profile protocol to t3. Select
the Platform | WebLogic 9.x node, modify the adminurl option from
http://${hostname}:${port} to t3://${hostname}:${port} and click on OK.

Chapter 5

[149]

Before a J2EE application may be deployed to the WebLogic Server, the WebLogic
Server is required not to be in the Lock & Edit mode. Deploy the deployment profile
to the WebLogic Server, by right-clicking on the deployment profile and select the
Deploy to | WebLogicConnection link.

Configuring JDBC in WebLogic Server

[150]

The web application is deployed to the WebLogic Server, and the output in
JDeveloper is shown below:

Deployment started.
Target platform is WebLogic Server 9.x (WebLogicConnection).
Checking weblogic.xml for completeness...
Wrote WAR file to C:\JDeveloper\jdev\mywork\WebLogicApp\WebLogic\
deploy\webapp1.war
Wrote EAR file to C:\JDeveloper\jdev\mywork\WebLogicApp\WebLogic\
deploy\webapp1.ear
C:\JDeveloper\jdk\jre\bin\javaw.exe -classpath
C:\wls\weblogic91\server\lib\weblogic.jar weblogic.Deployer -adminurl
t3://localhost:7001 -user weblogic -password **** -debug -verbose -
deploy -upload -source
C:\JDeveloper\jdev\mywork\WebLogicApp\WebLogic\deploy\webapp1.ear -
name webapp1
weblogic.Deployer invoked with options: -adminurl
t3://localhost:7001 -user weblogic -debug -verbose -deploy -upload -
source
C:\JDeveloper\jdev\mywork\WebLogicApp\WebLogic\deploy\webapp1.ear -
name webapp1
[WebLogicDeploymentManagerImpl.<init>():103] : Constructing
DeploymentManager for J2EE version V1_4 deployments
[WebLogicDeploymentManagerImpl.getNewConnection():146] : Connecting to
admin server at localhost:7001, as user weblogic
[ServerConnectionImpl.getEnvironment():282] : setting environment
[ServerConnectionImpl.getEnvironment():285] : getting context using
t3://localhost:7001
[ServerConnectionImpl.getMBeanServer():237] : Connecting to
MBeanServer at service:jmx:t3://localhost:7001/jndi/weblogic.
management.mbeanservers.domainruntime
[ServerConnectionImpl.getMBeanServer():237] : Connecting to
MBeanServer at service:jmx:t3://localhost:7001/jndi/weblogic.
management.mbeanservers.runtime
[DomainManager.resetDomain():36] : Getting new domain
[DomainManager.resetDomain():39] : Using pending domain: false
[MBeanCache.addNotificationListener():96] : Adding notification
listener for weblogic.deploy.api.spi.deploy.mbeans.TargetCache@1827d1
[MBeanCache.addNotificationListener():103] : Added notification
listener for weblogic.deploy.api.spi.deploy.mbeans.TargetCache@1827d1
[MBeanCache.addNotificationListener():96] : Adding notification
listener for weblogic.deploy.api.spi.deploy.mbeans.ModuleCache@8f9a32
[MBeanCache.addNotificationListener():103] : Added notification
listener for weblogic.deploy.api.spi.deploy.mbeans.ModuleCache@8f9a32
[ServerConnectionImpl.initialize():170] : Connected to WLS domain:
wl_server

Chapter 5

[151]

[ServerConnectionImpl.setRemote():463] : Running in remote mode
[ServerConnectionImpl.init():160] : Initializing ServerConnection :
weblogic.deploy.api.spi.deploy.internal.ServerConnectionImpl@111bfbc
[BasicOperation.dumpTmids():744] : Incoming tmids:
[BasicOperation.deriveAppName():139] : appname established as: webapp1
<Info> <J2EE Deployment SPI> <BEA-260121> <Initiating deploy operation
for application, webapp1 [archive: C:\JDeveloper\jdev\mywork\
WebLogicApp\WebLogic\deploy\webapp1.ear], to configured targets.>
[ServerConnectionImpl.upload():639] : Uploaded app to C:\wls\
weblogic91\samples\domains\wl_server\.\servers\examplesServer\upload\
webapp1
[BasicOperation.hasJMSModules():489] : checking if jms: META-INF/
application.xml
[BasicOperation.hasJMSModules():489] : checking if jms: webapp1.war
[BasicOperation.dumpTmids():744] : Incoming tmids:
[BasicOperation.dumpTmids():746] : {Target=examplesServer, WebLogicTar
getType=server, Name=webapp1}, targeted=true
[BasicOperation.loadGeneralOptions():661] : Delete Files:false
Timeout :3600000
Targets: examplesServer
ModuleTargets={}
SubModuleTargets={}
}
Files: null
Deployment Plan: null
App root: C:\wls\weblogic91\samples\domains\wl_server\.\servers\
examplesServer\upload\webapp1
App config: C:\wls\weblogic91\samples\domains\wl_server\.\servers\
examplesServer\upload\webapp1\plan
Deployment Options:
{isRetireGracefully=true,isGracefulProductionToAdmin=false,isGracefulI
gnoreSessions=false,retireTimeout
Secs= 1,undeployAllVersions=false,archiveVersion=null,planVersion=nul
l,isLibrary=false,libSpecVersion=null,libImplVersion=null,stageMode=n
ull,clusterTimeout=3600000,altDD=null,altWlsDD=null,name=webapp1,sec
urityModel=null,securityValidationEnabled=false,versionIdentifier=nul
l,isTestMode=false,forceUndeployTimeout=0,defaultSubmoduleTargets=tru
e,timeout=0}
[BasicOperation.execute():401] : Initiating deploy operation for app,
webapp1, on targets:
Task 1 initiated: [Deployer:149026]deploy application webapp1 on
examplesServer.
Task 1 completed: [Deployer:149026]deploy application webapp1 on
examplesServer.
Target state: deploy completed on Server examplesServer
[ServerConnectionImpl.close():328] : Closing DM connection

Configuring JDBC in WebLogic Server

[152]

[ServerConnectionImpl.close():348] : Unregistered all listeners
[ServerConnectionImpl.closeJMX():368] : Closed JMX connection
[ServerConnectionImpl.closeJMX():380] : Closed Runtime JMX connection
Elapsed time for deployment: 2 minutes, 10 seconds
---- Deployment finished.

Invoke the JSP with the URL http://localhost:7001/weblogic/catalog.jsp.
The JSP runs in the WebLogic server and generates an html table:

JDBC 4.0 Version
Neither WebLogic Server 9.x nor 10.x supports JDBC 4.0. In a later version of
WebLogic server, we can avail the new features in JDBC 4.0. To use the JDBC 4.0
driver, we will modify the catalog.jsp to get connected to the Oracle database
from the WebLogic Server. Oracle database 11g JDBC drivers support JDBC 4.0,
and can be downloaded from: http://www.oracle.com/technology/software/
tech/java/sqlj_jdbc/htdocs/jdbc_111060.html. The JDBC 4.0 features can
be used by adding the JDBC 4.0 JAR file, ojdbc6.jar, to the server lib directory,
or to the classpath variable of the startWebLogic script. JDBC 4.0 has added
support for setting client info properties on Connection objects to identify
connections that could bog down an application. Standard client info properties are
ApplicationName, ClientUser, and ClientHostname. In the JDBC 4.0 version of the
web application, set the standard client info properties on the Connection object:

connection.setClientInfo("ApplicationName","OracleApp");
connection.setClientInfo("ClientUser","OracleUser");
connection.setClientInfo("ClientHostname","OracleHost");

Connection state tracking is a connection management feature added in JDBC 4.0.
Connection state tracking is used to identify connections that are unusable, and
close the connections. Connection state tracking is implemented by the WebLogic
connection pool manager using the isValid() method of the Connection object:

if(!connection.isValid())
connection.close();

Chapter 5

[153]

PreparedStatements are pooled by default in a connection pool, if the database
supports statement pooling. Statement pooling reduces the overhead of opening,
initializing, and closing the statements, which are frequently being used. JDBC
4.0 also has added support, for pooling of the Statement object. WebLogic server
pools statements for all DBMSes or drivers, by default. In JDBC 4.0, the support for
statement pooling is irrelevant to the WebLogic JDBC applications.

Oracle JDBC provides some extensions to the JDBC API with additional methods.
JDBC 4.0 has added a new feature called wrapper pattern, which can be used to
access the vendor-specific JDBC resources. The wrapper pattern is implemented in
the Wrapper interface, which is extended by the following interfaces:

java.sql.Connection
java.sql.Statement
java.sql.DatabaseMetaData
java.sql.ParameterMetaData
java.sql.ResultSetMetaData
java.sql.ResultSet
javax.sql.Datasource

Oracle JDBC API provides the oracle.jdbc.OracleStatement interface as an
extension to the java.sql.Statement interface. The OracleStatement interface can
be unwrapped to create an object of its type. To create an OracleStatement object,
test if a Statement object is a wrapper for the OracleStatement interface, using the
isWrapperFor() method. If the Statement object is a wrapper, then unwrap the
OracleStatement interface using the unwrap() method given below:

Class class = Class.forName("oracle.jdbc.OracleStatement");
if(stmt.isWrapperFor(class))
{
 OracleStatement oracleStmt = (OracleStatement)stmt.unwrap(class);
}

The OracleStatement object can be used to set the column type using the
defineColumnType() method. Defining column type is used for performance
optimization and data type conversion. If the same statement object is used to
run different queries, then clear the previously defined column types using the
clearDefines() method. Set the column type of the first column to OracleTypes.
Number, and the second column to OracleTypes.VARCHAR:

oracleStmt.clearDefines();
oracleStmt.defineColumnType(1, OracleTypes.NUMBER);
oracleStmt.defineColumnType(2, OracleTypes.VARCHAR);

Configuring JDBC in WebLogic Server

[154]

JDBC 4.0 also supports data types, such as ROWID, NCLOB, and NBLOB. Oracle database
supports the ROWID data type. The ROWID psuedocolumn in an Oracle database table
identifies a unique row in the table. Add the ROWID column to the SELECT query:

ResultSet resultSet=oracleStmt.executeQuery("Select ROWID, CATALOGID,
JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from Catalog");

To the HTML table, add a column for the ROWID column, and add values to it using
the getRowId() method in the ResultSet interface:

<td><%out.println(resultSet.getRowId("ROWID").toString());%></td>

JDBC 4.0 has added enhanced support for chained SQLExceptions. The chained
exceptions and chained causes can be retrieved using the FOR-EACH loop introduced
in JDK 6.0. In the error JSP page, the FOR-EACH loop is used to output the chained
exceptions and chained causes. Previously, the getNextException() and
getCause() methods were invoked iteratively to retrieve the chained exceptions and
chained causes:

<%@ page isErrorPage="true" %>
<%
 for(Throwable e : exception)
 {
 out.println("Error encountered: " + e);
 }
%>

The JDBC 4.0 version of catalog.jsp is listed below:

<%@ page contentType="text/html"%>
<%@ page import="java.sql.*,javax.sql.*,java.util.*,javax.naming.*,
oracle.jdbc.OracleStatement"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
 <title>WebLogic Application</title>
</head>
<body>
<%
 InitialContext ctx=new InitialContext();
 DataSource ds=(DataSource)ctx.lookup("jdbc/OracleDS");
 Connection connection=ds.getConnection();
 connection.setClientInfo("ApplicationName","OracleApp");
 connection.setClientInfo("ClientUser","OracleUser");
 connection.setClientInfo("ClientHostname","OracleHost");
 Statement stmt=connection.createStatement();

Chapter 5

[155]

 DatabaseMetaData metaData=connection.getMetaData();
 if(metaData.supportsStatementPooling())
 {
 if(stmt.isPoolable())
 stmt.setPoolable(true);
 }
 Class class = Class.forName("oracle.jdbc.OracleStatement");
 if(stmt.isWrapperFor(class))
 {
 OracleStatement oracleStmt = (OracleStatement)stmt.unwrap(class);
 oracleStmt.clearDefines();
 oracleStmt.defineColumnType(1, OracleTypes.NUMBER);
 oracleStmt.defineColumnType(2, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(3, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(4, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(5, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(6, OracleTypes.VARCHAR);
 oracleStmt.defineColumnType(7, OracleTypes.VARCHAR);
 ResultSet resultSet=oracleStmt.executeQuery("Select ROWID,
CATALOGID, JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from Catalog");
%>
<table border="1" cellspacing="0">
 <tr>
 <th>CatalogId</th>
 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <%
 while (resultSet.next())
 {
 %>
 <tr>
 <td><%out.println(resultSet.getRowId("ROWID").toString());%></td>
 <td><%out.println(resultSet.getString(1));%></td>
 <td><%out.println(resultSet.getString(2));%></td>
 <td><%out.println(resultSet.getString(3));%></td>
 <td><%out.println(resultSet.getString(4));%></td>
 <td><%out.println(resultSet.getString(5));%></td>
 <td><%out.println(resultSet.getString(6));%></td>
 </tr>
 <%

Configuring JDBC in WebLogic Server

[156]

 }
 resultSet.close();
 stmt.close();
 connection.close();
 }
 %>
</table>
</body>
</html>

Summary
WebLogic Server 9.x has a new feature, multi data source, which is a group of data
sources with a JNDI name binding. A multi data source facilitates the maximum
data sources that are available. WebLogic Server 8.1 also had multi data sources
called MultiPools. Any pool or multipool is accessed via a DataSource. For 9.0 and
the later versions, the DataSource to access the notion of a pool or multipool have
been combined. In WebLogic Server 9.x, a connection pool configuration used in
WebLogic Server 8.1 has been removed. The data source configuration in WebLogic
Server 9.x provides enhanced connection request failover and load balancing
between data sources. In a WebLogic server version that supports JDBC 4.0, the new
features of JDBC 4.0 such as connection state tracking, Java SE chained facility, and
the wrapper pattern to access non-standard resources can be availed.

Configuring JDBC
in WebSphere

Application Server
WebSphere application server 6.1, is a J2EE and web services technology based
application server for developing J2EE applications. The WebSphere application
server is used to develop JDBC applications. The IBM DB2 9 offers some new
features, which are suitable for developing a JDBC 4.0 application. DB2 9 has added
support for the SQL XML data type, which can be used in conjunction with the
SQLXML java data type. It is a new data type in JDBC 4.0 to store and retrieve XML
documents. The DB2 database server provides access from WebSphere application
server by configuring a JDBC Provider, which is a WebSphere proprietary term in
the application server.

In this chapter, we will configure a data source in WebSphere application server 6.1
to connect to DB2 9 database. We will deploy a web application to the WebSphere
application server that consists of a JSP to generate an HTML table using the data
source configured in the server. We will use the DB2 JDBC Type 4 driver for creating
JDBC connection to the DB2 9 database. The Type 4 driver has an advantage over the
Type 2 driver: it provides direct access to the DB2 database. In this chapter, you'll
learn about the following:

Create a JDBC Provider with DB2 9 database in the WebSphere Application
Server 6.1.
Create a Data Source with DB2 9 database in the WebSphere
Application Server 6.1.

•

•

Configuring JDBC in WebSphere Application Server

[158]

Deploy a Web Application from JDeveloper 10g to the WebSphere
Application Server 6.1 to connect with the DB2 Database 9.
JDBC 4.0 Version of the Web Application.

Setting the Environment
The following preliminary setup is required before configuring a JDBC connection
with the DB2 9 database from the WebSphere application server 6.1:

1. Download and install the DB2 9 database from http://www.ibm.com/
developerworks/downloads/im/udb/?S_TACT=105AGX28&S_CMP=TRIALS.

2. Create a sample database, SAMPLE, in the DB2 9 database server.
3. Create an example table comprising a catalog of journal articles in the

database. The SQL script to create the example table is listed below:
 CREATE TABLE DB2ADMIN.Catalog(CatalogId VARCHAR(25) PRIMARY KEY
 NOT NULL, Journal VARCHAR(25), Section VARCHAR(25), Edition
 VARCHAR(25), Title VARCHAR(75), Author VARCHAR(25))

 INSERT INTO DB2ADMIN.Catalog VALUES('catalog1', 'developerWorks',
 'Java Technology', 'Nov 2004', 'Getting started with enumerated
 types', 'Brett McLaughlin');

 INSERT INTO DB2ADMIN.Catalog VALUES('catalog2', 'developerWorks',
 'XML', 'Apr 2005', 'Transform Eclipse navigation files to DITA
 navigation files', 'Loretta Hicks');

4. Download the WebSphere application server 6.1 from http://www14.
software.ibm.com/webapp/download/preconfig.jsp?id=2005-01-19+10
%3A47%3A53.647228R&S_TACT=104CBW71&S_CMP= and install the WebSphere
application server.

Configuring a JDBC Provider
In this section, we will configure a JDBC connection with the DB2 9 database from the
WebSphere application server 6.1. Start the WebSphere application server from the
First steps console. Access the WebSphere Administration console from the First steps
console, or with the URL https://localhost:9043/ibm/console/logon.jsp.

•

•

Chapter 6

[159]

In the login page, specify the User ID and Password, and click on Login. The
administration console page is displayed. The administration console page has
provision to configure JDBC, deploy applications, set environment variables, and
define login configurations.

Select the Resources | JDBC | JDBC Providers node to configure a new JDBC
provider. A JDBC provider is used to access a database. It consists of settings for the
database, the JDBC driver type and the driver class.

Configuring JDBC in WebSphere Application Server

[160]

Select the Scope, Server for defining a new JDBC provider. Scope defines the level at
which the JDBC providers are available. WebSphere architecture comprises of three
levels: cells, nodes, and servers. A cell is an administrative domain that consists of a
group of nodes. A node is a group of WebSphere Application Server that manages
server processes. The application server is the primary runtime component in a
WebSphere Application Server configuration. If the JDBC Provider is to be made
available from all application servers in a node, select Node as the Scope. If the JDBC
Provider is to be made available in all the nodes of a cell, select Cell as the Scope.
Select New to configure a new JDBC provider.

In the Create a new JDBC provider window, select DB2 as the database type. If
the database with which a connection is to be configured is not listed, select User-
Defined for the database type. Select the Provider type as DB2 Universal JDBC
Driver Provider. For DB2 database type on Windows, the provider type DB2
Universal JDBC Provider (XA) is used for distributed transactions. If the database
type selected is User-Defined, the provider type User-Defined JDBC Provider is
specified. Select the implementation type, Connection pool data source. If the User-
Defined database type is selected as the implementation type, User-Defined is also
specified. If the provider type DB2 Universal JDBC Provider (XA) is selected, then
select the implementation type, XA DataSource and click on next.

Chapter 6

[161]

The Class path field specifies the JAR files in the Class path. The db2jcc.jar, which
has the DB2 JDBC Type 4 driver, and the db2jcc_license_cu.jar, which is the
license file for the DB2 database server are included in the Class path setting. The
Class path field also includes some environment variables. Specify the directory
location, which is saved as an environment variable DB2UNIVERSAL_JDBC_DRIVER_
PATH, for the JDBC JAR files and click on Next.

Configuring JDBC in WebSphere Application Server

[162]

In the Summary page, the summary of the JDBC Provider configuration is displayed.
Now, click on the Finish button.

The settings specified are applied to the local configuration. On clicking the Save link
in the Messages frame, the changes are applied to the master configuration.

Chapter 6

[163]

A JDBC Provider for the DB2 database is configured and added to the list of
JDBC Providers.

Configuring a Data Source
We will configure a JDBC data source, to retrieve data from the DB2 database.
The JDBC Provider that we have already configured, supplies the driver
class for the data source. The default driver class name is com.ibm.db2.jcc.
DB2ConnectionPoolDataSource. Another driver class can be specified instead of
the default. To configure a new data source, select the JDBC provider, DB2
Universal JDBC Driver Provider.

Configuring JDBC in WebSphere Application Server

[164]

Click on the Datasources link in the Additional Properties header.

A table of data sources is displayed. Now, click on New to add a new data source.

Chapter 6

[165]

In the Create a data source window, specify a data source name and a JNDI
name. J2EE connector authentication data entries are used to login to a database,
by a JDBC data source. Connector authentication data entries define the database
access credentials. Click on create a new J2C authentication alias link to create a
Component-managed authentication alias.

Configuring JDBC in WebSphere Application Server

[166]

A table of J2C authentication data entries is displayed. Click on New to add a J2C
authentication data entry.

In the J2C authentication data entry configuration frame, specify an alias for the data
entry. Also specify the user id and password to login to the DB2 database, and click
on Apply.

Chapter 6

[167]

Click on Save to save the workspace changes to master configuration.

A new J2C authentication data entry is added. Click on the Data sources link to
configure a new data source.

Configuring JDBC in WebSphere Application Server

[168]

Click on New in the Data sources table to create a new data source.

Specify a JNDI name for the data source. In the Component-managed authentication
alias field, select the J2C authentication alias that we have configured earlier, and
click on Next.

Chapter 6

[169]

In the data source properties window, specify the database name (SAMPLE), driver
type (type 4), server name (localhost), and port number (50000), and then click
on Next.

In the Summary page, a summary of the data source configuration is displayed.
Now, click on Finish.

Configuring JDBC in WebSphere Application Server

[170]

A new data source is added to the data sources table. Click on Save to save the data
source to the master configuration.

Select the data source checkbox, and click on Test Connection to test the JDBC
connection with the DB2 database.

Chapter 6

[171]

A message is displayed indicating that the JDBC connection with the DB2 database
was successful.

Configure additional connection pool properties by selecting the datasource link and
the Connection pool properties link in the Additional Properties header.

Configuring JDBC in WebSphere Application Server

[172]

Specify the connection pool properties. Connection timeout is the maximum number
of seconds an application waits for a connection from the connection pool before
timing out. Maximum connections is the maximum number of connections in the
connection pool. Minimum connections is the minimum number of connections in
the connection pool.

Deploying a Web Application to the
WebSphere from JDeveloper
We will develop a JSP application to retrieve data from the DB2 database, and
display the data in a browser. JDeveloper does not have the provision to connect to
WebSphere application server, or deploy an application to WebSphere. JDeveloper
can be used to create a JSP that can be deployed to WebSphere. Create an application
by selecting File | New. In the New Gallery window, select General in Categories
and Application in Items, and click on OK. In the Create Application window
specify the application name, select application template as no template and click
on OK. In the Create Project window, specify the project name and click on ok. An
application and a project are added to JDeveloper. Add a JSP to the project. Select
File | New and in the New Gallery window, select Web Tier | JSP. In the Items,
select JSP and click on ok. Click on next in the Create JSP Wizard. Select J2EE 1.4

Chapter 6

[173]

in the Web Application window, and click on next. Specify the File Name in the
JSP File window, and click on next. As an error page is not being used, select the
default settings in the Error Page Options and click on next. Click on next in the Tag
Libraries window, as we will not be using any tag libraries. Click on next, in the
HTML Options window. Click on finish, in the Finish window. A JSP and a
web.xml is added to the WebSphere application.

In the JSP, create an InitialContext object for JNDI naming operations. Create
a DataSource object using the lookup() method on the data source JNDI name
that we had created earlier, in this chapter. Create a Connection object from the
DataSource object using the getConnection() method:

InitialContext initialContext = new InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource)initialContext.
lookup("jdbc/DB2");
java.sql.Connection conn = ds.getConnection();

Create a Statement object from the Connection object using the
createStatement() method. Run a SQL query to retrieve data from the DB2
database, using the executeQuery() method of the Statement object. The query
runs and generates a ResultSet object:

java.sql.Statement stmt = conn.createStatement();
ResultSet resultSet=stmt.executeQuery("Select * from Catalog");

Iterate over the result set using next() method, and display the data in a HTML
table. The JSP page, Catalog.jsp is listed:

<%@ page contentType="text/html"%>
<%@ page import="java.sql.*,javax.naming.*" %>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>WebSphere JSP Application</title>
</head>

Configuring JDBC in WebSphere Application Server

[174]

<body>
<%
 InitialContext initialContext = new InitialContext();
 javax.sql.DataSource ds = (javax.sql.DataSource)
 initialContext.lookup("jdbc/DB2");
 java.sql.Connection conn = ds.getConnection();
 java.sql.Statement stmt = conn.createStatement();
 ResultSet resultSet=stmt.executeQuery("Select * from Catalog");%>
 <table border="1" cellspacing="0">
 <tr>
 <th>CatalogId</th>
 <th>Journal</th>
 <th>Section</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <%
 while (resultSet.next())
 {
 %>
 <tr>
 <td><%out.println(resultSet.getString(1));%></td>
 <td><%out.println(resultSet.getString(2));%></td>
 <td><%out.println(resultSet.getString(3));%></td>
 <td><%out.println(resultSet.getString(4));%></td>
 <td><%out.println(resultSet.getString(5));%></td>
 <td><%out.println(resultSet.getString(6));%></td>
 </tr>
 <%
 }
 resultSet.close();stmt.close();conn.close();
 %>
 </table>
</body>
</html>

Chapter 6

[175]

To create a web application deployment profile, select File | New and in the New
Gallery window, select General | Deployment Profiles in Categories. In Items,
select the WAR File and click on ok.

Configuring JDBC in WebSphere Application Server

[176]

In the Create Deployment Profile window, specify a deployment profile name,
webapp1, and click on ok. In the WAR Deployment Profile Properties window,
select the General node. Specify a J2EE web context root, websphere (for example)
and click on ok.

Chapter 6

[177]

A web application deployment profile is created. Right-click on the deployment
profile and select Deploy to EAR file.

Configuring JDBC in WebSphere Application Server

[178]

A webapp1.ear file is created in the project deploy directory. Copy the webapp1.
ear file to the C:\Program Files\IBM\WebSphere\AppServer\installableApps
directory. Install the webapp1 web application to the WebSphere server. Select
Applications | Install New Application node in the WebSphere administration
console, and select the webapp1.ear file as the application to install. Click on the
Next button.

Chapter 6

[179]

Select the default installation options, and click on Next. The webapp1 enterprise
application has a web module, webapp1.war. In the Map modules to servers
window, specify the server to which the web module is to be deployed. Select the
webapp1.war module, select the WebSphere server node and click on Apply and
then click on next.

In the Map virtual hosts for web modules frame, select the checkbox adjacent to
the webapp1.war file, and select default_host as the virtual host. Click on the
Next button.

Configuring JDBC in WebSphere Application Server

[180]

Click on finish in the Summary page to create the web application
deployment configuration.

Web application is installed in the WebSphere application server and the deployment
changes are saved in the local configuration. Click on Save to save the changes to the
master configuration.

Chapter 6

[181]

Select the Applications | Enterprise Applications link to display the installed
applications. The webapp1 web application is listed in the table of installed enterprise
applications. Select the checkbox adjacent to the webapp1 web application, and click
on Start.

Web application, webapp1 is started on the WebSphere application server.

Configuring JDBC in WebSphere Application Server

[182]

Run the Catalog.jsp in the server with the URL http://localhost:9080/
websphere/Catalog.jsp. The JSP application runs in the server and the data in DB2
database is displayed in the browser.

JDBC 4.0 Version
WebSphere application server 6 does not support JDBC 4.0 specification, but
IBM provides a JDBC driver that supports JDBC 4.0. IBM Data Server Driver and
SQLJ Version 4.0 supports JDBC 4.0. They can be obtained from https://www14.
software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-
idsjs11. A WebSphere application server version that supports JDBC 4.0 adds
db2jcc4.jar from the IBM Data Server Driver for JDBC and SQLJ, to the server
class path. Also, the WebSphere server would have to be run on JDK 6.0 to use the
JDBC 4.0 features.

JDBC 4.0 has added support for connection management, which includes the
provision to track the state of connections and identify the connections based on
client info properties. Connection state tracking has application in tracking the
connections that are unusable, but they are still open and available in the connection
pool. Unusable connections cause reduction in performance. Prior to the new feature
in JDBC 4.0, a connection pool had to be reinitiated if unusable connections in the
connection pool had been accummulated. With the connection state tracking feature
implemented by the connection pool manager, a connection state can be obtained
using the isValid() method of the Connection interface. If a Connection object is
unusable, the Connection object would be closed.

if(!connection.isValid())
connection.close();

Another new connection management feature that has been added in JDBC 4.0 is
connection tracking, which is different from connection state tracking. In connection
tracking, some client info properties are set on a Connection object. If some
connections reduces application performance those connections would be tracked
using the client info properties. Client info properties are set on a Connection object
using the setClientInfo() method and are retrieved using the getClientInfo()
method. In the catalog.jsp, set the client info properties ApplicationName,
ClientUser, and ClientHostname as follows:

Chapter 6

[183]

connection.setClientInfo("ApplicationName","WebSphereApp");
connection.setClientInfo("ClientUser","WebSphereUser");
connection.setClientInfo("ClientHostname","WebSphereHost");

PreparedStatements are pooled by default and provide recycling of
PreparedStatement objects instead of creating new PreparedStatement objects.
PreparedStatement objects that are frequently used do not have to be opened,
initialized, and closed for each client request. JDBC 4.0 has also introduced
Statement pooling in which frequently used Statement objects are not closed, but
are returned to a statement pool from which other clients can use these objects.
To add statement pooling to a connection pool: First, test if the database supports
statement pooling using the supportsStatementPooling() method of the
DatabaseMetaData interface. Second, test if the Statement object is poolable using
the isPoolable() method. If it is poolable, the Statement object can be pooled
using the setPoolable(true) method:

java.sql.Statement stmt = conn.createStatement();
DatabaseMetaData metaData=connection.getMetaData();
if(metaData.supportsStatementPooling())
{
 if(stmt.isPoolable())
 stmt.setPoolable(true);
}

JDBC 4.0 has introduced support for the wrapper pattern using which non-
standard vendor-specific JDBC resources can be accessed. The wrapper pattern is
implemented in the Wrapper interface. JDBC interfaces that are to be made available
as extensions to the JDBC API should extend the Wrapper interface. In the IBM Data
Server Driver for JDBC and SQLJ, the Wrapper interface is extended by the following
interfaces in the com.ibm.db2.jcc package:

DB2Connection.
DB2BaseDataSource.
DB2SimpleDataSource.
DB2Statement.
DB2ResultSet.
DB2DatabaseMetaData.

•

•

•

•

•

•

Configuring JDBC in WebSphere Application Server

[184]

Vendor-specific interfaces provide additional methods in the JDBC API. For
example, create DB2Statement object using the wrapper pattern to use the
setDB2ClientProgramId() method, which sets the program Id from a connection
in the DB2Statement interface. Test if the Statement object is a wrapper for the
DB2Statement interface using the isWrapperFor() method. If the Statement object
is a wrapper, unwrap the DB2Statement interface using the unwrap() method to
create a DB2Statement object. Also, invoke the setDB2ClientProgramId() method
of the DB2Statement object:

Class class = Class.forName("com.ibm.db2.jcc.DB2Statement");
if(stmt.isWrapperFor(class))
{
 com.ibm.db2.jcc.DB2Statement db2Stmt = (com.ibm.db2.jcc.
DB2Statement)stmt.unwrap(class);
 db2Stmt.setDB2ClientProgramId("WebSphereprogram");
}

JDBC 4.0 has introduced support for the SQL ROWID data type. ROWID type column
values can be retrieved using the getRowId() method. ROWID identifies a row
uniquely in a database table and is fastest method to access a row. As the DB2
database supports the ROWID data type, add a column for ROWID in the SELECT query:

ResultSet resultSet=db2Stmt.executeQuery("Select ROWID, CATALOGID,
JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from Catalog");

Retrieve ROWID column values using the getRowId() method of the
ResultSet interface:

<td><%out.println(resultSet.getRowId("ROWID").toString());%></td>

Prior to JDK 5.0, collections had to be iterated using the iterators and the index
variables. JDK 5.0 introduced an enhanced FOR loop using which collections can
be iterated without iterators and index variables. For example, if a java.util.
Collection of String objects is to be iterated, then the String objects in the
Collection are to be retrieved. An Iterator would be created using for loop. The
String objects in the Collection are retrieved using the next() method:

for(Iterator i = c.iterator(); i.hasNext();)
{
 String str = (String) i.next();
}

The String objects in a Collection of Strings are retrieved using the enhanced
for loop, introduced in JDK 5.0:

for(String string : c)
{
 String str =string
}

Chapter 6

[185]

SQLExceptions can have chained exceptions and cause of a SQLException can have
chained causes. Using the enhanced for loop chained exceptions, the chained causes
for a SQLException can be output as follows:

for(Throwable e : exception)
{
 out.println("Error encountered: " + e);
}

The JDBC 4.0 version of the web application JSP, catalog.jsp to retrieve DB2 UDB
database data and to display it in a HTML table, is listed below:

<%@ page contentType="text/html"%>
<%@ page import="java.sql.*, javax.naming.*, com.ibm.db2.jcc.
DB2Statement " %>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>WebSphere JSP Application</title>
</head>
<body>
<%
 InitialContext initialContext = new InitialContext();
 javax.sql.DataSource ds = (javax.sql.DataSource)
 initialContext.lookup("jdbc/DB2DataSource");
 java.sql.Connection conn = ds.getConnection();
 connection.setClientInfo("ApplicationName","WebSphereApp");
 connection.setClientInfo("ClientUser","WebSphereUser");
 connection.setClientInfo("ClientHostname","WebSphereHost");
 java.sql.Statement stmt = conn.createStatement();
 DatabaseMetaData metaData=connection.getMetaData();
 if(metaData.supportsStatementPooling())
 {
 if(stmt.isPoolable())
 stmt.setPoolable(true);
 }
 Class class = Class.forName("com.ibm.db2.jcc.DB2Statement");
 if(stmt.isWrapperFor(class))
 {
 com.ibm.db2.jcc.DB2Statement db2Stmt = (com.ibm.db2.jcc.
DB2Statement)stmt.unwrap(class);
 db2Stmt.setDB2ClientProgramId("WebSphereprogram");
 ResultSet resultSet=db2Stmt.executeQuery("Select ROWID, CATALOGID,
JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from Catalog");
%>

Configuring JDBC in WebSphere Application Server

[186]

<table border="1" cellspacing="0">
 <tr>
 <th>RowId</th>
 <th>CatalogId</th>
 <th>Journal</th>
 <th>Section</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <%
 while (resultSet.next())
 {
 %>
 <tr>
 <td><%out.println(resultSet.getRowId("ROWID").toString());%></td>
 <td><%out.println(resultSet.getString(1));%></td>
 <td><%out.println(resultSet.getString(2));%></td>
 <td><%out.println(resultSet.getString(3));%></td>
 <td><%out.println(resultSet.getString(4));%></td>
 <td><%out.println(resultSet.getString(5));%></td>
 <td><%out.println(resultSet.getString(6));%></td>
 </tr>
 <%
 }
 resultSet.close();
 stmt.close();
 connection.close();
 }
 %>
</table>
</body>
</html>

Summary
WebSphere 6.1 application server has the provision to create a JDBC Provider and a
JDBC data source with a relational data source. In this chapter, we configured a JDBC
connection in Web Sphere with DB2 9 database. The combination of the IBM's DB2
database and IBM's WebSphere application server is suitable for the development of
JDBC applications. DB2 V9 supports the SQL XML data type that can be used with a
new Java data type in JDBC 4.0, called SQLXML. IBM Data Server Driver for JDBC and
SQLJ Version 4.0 supports JDBC 4.0 specification.

XML SQL Utility
Extensible Markup Language (XML) is the standard medium of data exchange on
the Web. Examples of data exchange with XML are web feeds (RSS feeds and Atom
feeds), and web services. Data exchanged using XML documents may be required to
be stored in a relational database, or an XML document may require to be generated
from a database table. An XML document is a hierarchical data structure where
various elements may be mapped to columns in a database table. Therefore, by
mapping various elements to a table, you can store XML in relational databases, and
this mapping process is called XML-to-SQL mapping technology. Oracle created
the XML SQL Utility (XSU) Java API to map XML to SQL and SQL to XML. The
table to which an XML document is being mapped to must to be created prior to
the mapping of the XML document to the database. With XSU, XML elements are
mapped to database table columns. Mapping an XML document to a database table
with XSU does not store the attributes of the document. The attributes may be stored
by applying an Extensible Stylesheet Language Transformation (XSLT) to the
XML document prior to storing it transforming the attributes you want to store into
elements, which may be mapped to columns. With XSU, the data in the database
may be updated, deleted, and retrieved. The XML document generated with XSU
does not include attributes. Attributes may be added to the XML document by
applying an XSLT to the document obtained with XSU.

JDBC 4.0 introduced the SQLXML Java data type, which we discussed in Chapter 1,
to store and access XML documents in a column of SQL XML data type. But some
database drivers such as the Oracle database 11g JDBC drivers do not support the
SQLXML data type yet. Also, XSU has the advantage of the provision to apply an
XSLT stylesheet to the data mapped from a database table to an XML document. We
will use the Oracle database 11g JDBC 4.0 driver for the XML SQL Utility to take
advantage of some of the JDBC 4.0 features such as automatic driver loading and
support for enhanced chained exceptions.

XML SQL Utility

[188]

JDeveloper 10.1.3 includes an XSU utility library to store an XML document in an
SQL database, and to retrieve it from the database. Class OracleXMLSave is used
to store an XML document in a database table, and the element tags are mapped
to the database columns. Class OracleXMLQuery is used to generate an XML
document from a database table. Database table columns are mapped to an XML
document as element tags. Mapping of an XML document to a database table with
the OracleXMLSave class does not include mapping of the XML document element
attributes; we may store the element attributes by converting the attributes to
elements. The procedure to map an XML document with elements and attributes to
an Oracle database 10g table, and to map the database columns to an XML document
with attributes; is discussed as an example in this chapter. You are not restricted
to using Oracle to store XML documents with XSU. You can easily use another
relational database such as MySQL. An XML document, catalog.xml, is used as an
example to map to a database table and is listed below:

<?xml version="1.0" encoding="utf-8"?>
<catalog>
 <journal title="Oracle Magazine" publisher="Oracle Publishing"
edition="July-August 2005">
 <catalogId>catalog1</catalogId>
 <article section="Technology">
 <title> Tuning Undo Tablespace </title>
 <author> Kimberly Floss </author>
 </article>
 </journal>
 <journal title="Oracle Magazine" publisher="Oracle Publishing"
edition="Nov-Dec 2003">
 <catalogId>catalog2</catalogId>
 <article section="DEVELOPER">
 <title>Starting with Oracle ADF</title>
 <author>Steve Muench</author>
 </article>
 </journal>
</catalog>

In this chapter, you will learn how to:

Map an XML Document to a Database Table with XSU
Update a Database Table from an XML Document with XSU
Delete a Database Table Row from an XML Document with XSU
Map a Database Table to an XML Document with XSU

•

•

•

•

Chapter 7

[189]

Setting the Environment
We need to create a JDeveloper project to store an XML document with XML SQL
Utility. In the JDeveloper project, create an XML document catalog.xml by selecting
File | New. In the New Gallery window, select General | XML in Categories and
XML Document in Items. Also add XML files catalog-update.xml and catalog-
delete.xml. Create XSL Stylesheets input.xsl and output.xsl in the JDeveloper
project by selecting File | New. The chapter also lists the above-mentioned XML
files and XSL stylesheets. XML documents catalog-update.xml and catalog-
delete.xml, and XSLT stylesheets input.xsl and output.xsl are listed later in this
chapter. Copy the catalog.xml, catalog-delete.xml, catalog-update.xml, input.xsl,
and output.xsl listings to the JDeveloper XSU project. In the New Gallery window,
select General | XML in Categories and XSL Style Sheet in Items. Create a Java
application, XMLToDatabase.java, in the JDeveloper project by selecting File | New.
In the New Gallery window, select General in Categories and Java Class in Items.
The directory structure of the XSU application is shown below:

XML SQL Utility

[190]

We need to add some libraries and JAR files to the project. As we are using the
JDBC 4.0 driver, we need to add the JDBC 4.0 driver JAR file to the project libraries.
Download the Oracle Database 11g JDBC driver's JAR file, ojdbc6.jar from
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/
jdbc_111060.html. Select Tools | Project Properties, and in the Project Properties
window, select Libraries. Select the Add Library button to add Oracle XML SQL
Utility and Oracle XML Parser v2 libraries. Select the Add Jar/Directory button to
add <JDeveloper>/rdbms/jlib/xdb.jar and ojdbc6.jar, <JDeveloper> being
the JDeveloper installation directory. The JAR files and libraries required for the
XML SQL Utility are shown below:

Oracle database 11g JDBC 4.0 drivers require JDK 6.0. We need to set the J2SE
Version to JDK 6.0., then download and install JDK 6.0 from http://java.sun.
com/javase/downloads/index.jsp. Select Tools | Project Properties to set the
J2SE version to JDK 6.0 and in the Project Properties window, select Libraries.
The J2SE Version field specifies the J2SE version used for Java applications in
JDeveloper. Click on the Change button in J2SE Version, and click on New in the
Edit J2SE Definition window to define a new J2SE version definition. Select the J2SE
Executable for JDK 6.0 in the Create J2SE window and click on OK. A J2SE definition
for JDK 6.0 gets added to Edit J2SE Definition window. Select the J2SE 6.0 definition
and click on OK in the Edit J2SE Definition window.

Chapter 7

[191]

The JDK 6.0 J2SE definition gets added to the J2SE Version field in the Project
Properties window. Now, click on OK.

Also install Oracle database 10g including sample schemas. Oracle database 11g
JDBC drivers can be used with Oracle database 10g and all the JDBC 4.0 features
can be advantageous if using an application server that supports JDBC 4.0. In the
database create a database instance, and a database table, JOURNAL. The example
XML document will be mapped to the database table. The SQL script used to create a
database table in a sample schema, OE is illustrated below:

CREATE TABLE OE.JOURNAL (CATALOGID VARCHAR(255) PRIMARY KEY, JOURNAL_
TITLE VARCHAR(255), PUBLISHER VARCHAR(255), EDITION VARCHAR(255),
ARTICLE_SECTION VARCHAR(255), TITLE VARCHAR(255), AUTHOR VARCHAR(255));

XML SQL Utility

[192]

XML Document to SQL Database
Mapping
If the XML document had been stored with XSU, only the element tags in the XML
document would have got stored. The attributes in the XML document would
not have got stored. Attributes in an XML document can be stored by mapping
them to elements. The attributes can be converted to elements by applying an
XSLT stylesheet to the XML document. This section discusses the procedure to
store an XML document with attributes in a database table. The XML document is
stored in a database table using the OracleXMLSave class, which is imported in the
XMLToDatabase.java application.

Create a connection with the database. If we were using a JDBC 3.0 driver, we
would have registered the Oracle JDBC driver with DriverManager using the
registerDriver(Driver) method. JDBC 4.0 adds support for automatic driver
registration using the Java SE Service Provider mechanism. The Oracle database 11g
JDBC 4.0 drivers JAR file, ojdbc6.jar, includes a META-INF/services/java.sql.
Driver file. For the Oracle JDBC driver, this file includes:

oracle.jdbc.OracleDriver

All the driver classes specified in the java.sql.Driver file becomes available to the
DriverManager when a connection is requested from the DriverManager using the
getConnection() method. Therefore, we will not be registering the Oracle JDBC
driver with the DriverManager. Obtain a connection from DriverManager using the
getConnection(String url, String user, String password) method:

Connection conn =
DriverManager.getConnection("jdbc:oracle:thin:@<host>:<port>:<SID>",
"<user>","<password>");

<host> is the database host.
<port> is the database port.
<SID> is the database SID.
<user> is the username to log in to the database.
<password> is the password to log in to the database.
Values for <host>, <port>, and <SID> can be obtained from the
<Oracle 10g>/NETWORK/ADMIN/tnsnames.ora file.

Chapter 7

[193]

An SQLException can be generated while obtaining a connection to the Oracle
database. The SQLException generated may contain chained exceptions and chained
causes. JDBC 4.0 has added support for the Java SE chained exception facility, which
is also called the cause facility. Prior to JDBC 4.0, the getNextException() and
getCause() methods had to be called recursively to retrieve the chained exceptions
and causes. JDBC 4.0 has enhanced support for these chained exceptions using the
for loop introduced in J2SE 6.0. SQLException interface implements the Iterable
interface. The chained exceptions may be output using the enhanced for-each loop
as shown below:

catch(SQLException exception)
{
 for(Throwable e : exception)
 {
 System.out.println("Error encountered: " + e);
 }
}

We need to create an OracleXMLSave class object to save an XML document to a
database table, JOURNAL.

OracleXMLSave oracleXMLSave =new OracleXMLSave(conn, "JOURNAL");

JOURNAL is the database table created in the Setting the Environment section. Convert
the attributes to element tags in the given example XML document. The attributes
are converted to element tags by applying an XSLT to the XML document. Set an
XSLT on the OracleXMLSave object using the setXSLT(Reader, String) method.
The String parameter specifies the URL to be used to include import and
external entities.

Reader xsltReader=new FileReader(new File("input.xsl"));
oracleXMLSave.setXSLT(xsltReader, null);

The XSLT, input.xslt, is used to convert the attributes to elements in the given
XML document, as an example:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
<xsl:output method="xml/text" omit-xml-declaration="no"/>
<xsl:template match="/">
<xsl:element name="catalog">
<xsl:apply-templates select="catalog/journal"/>
</xsl:element>
</xsl:template>
<xsl:template match="journal">

XML SQL Utility

[194]

<xsl:element name="journal">
<xsl:element name="journal_title">
<xsl:value-of select="@title"/>
</xsl:element>
<xsl:element name="catalogId">
<xsl:value-of select="catalogId"/>
</xsl:element>
<xsl:element name="publisher">
<xsl:value-of select="@publisher"/>
</xsl:element>
<xsl:element name="edition">
<xsl:value-of select="@edition"/>
</xsl:element>
<xsl:apply-templates select="article"/>
</xsl:element>
</xsl:template>
<xsl:template match="article">
<xsl:element name="article_section">
<xsl:value-of select="@section"/>
</xsl:element>
<xsl:copy-of select="title"/>
<xsl:copy-of select="author"/>
</xsl:template>
</xsl:stylesheet>

The input.xslt transformation converts attributes, title and section in the XML
document, to elements, journal_title and article_title. Set the tag for the row
enclosing element. Setting the row tag to null implies that a row tag is not defined
and the top-level elements of the document correspond to the database table rows.
The row tag is set to journal. Each journal tag in the example, XML document
corresponds to a database table row. Each row in the table represents a journal entry;
the journal entry is the row enclosing element.

oracleXMLSave.setRowTag("journal");

Set the columns containing the primary key in the database table using the setKeyCo
lumnList(String[]keyColNames) method. Set CATALOGID as a primary
key column:

String [] keyColNames = new String[1];
keyColNames[0] = "CATALOGID";
oracleXMLSave.setKeyColumnList(keyColNames);

XSU maps the XML document elements to database table columns, based on element
tag names. To match element tags that are case-insensitive set ignore case to true.

oracleXMLSave.setIgnoreCase(true);

Chapter 7

[195]

Create an InputStream from the XML document, catalog.xml.

InputStream input=new FileInputStream(new File("catalog.xml"));

Map the example XML document to a database table using the
insertXML(InputStream) method. The insertXML() method is overloaded, and
the input can be specified as a Document object, an InputStream object, a Reader
object, a String object, or a URL object:

oracleXMLSave.insertXML(input);

The XSLT, input.xslt, gets applied to the XML document. The XML document,
with the attributes converted to elements, gets stored in the database. Close the
OracleXMLSave object using the close() method:

oracleXMLSave.close();

The XMLToDatabase application is listed completely, later in the chapter. Selected
operations can be run by commenting out the methods that are not required. For
example, to map an XML document to a database table, comment out invocations
to all the methods except the xmlToSQL() method. To run an XMLToDatabase.java
application, in JDeveloper right-click on the application node and select Run.

XML SQL Utility

[196]

The XML document input.xml gets mapped to the Oracle database table JOURNAL.

Updating Database from XML Document
In this section, we will update a database table from an XML document, using the
OracleXMLSave class, and create an OracleXMLSave object using a Connection
object. JOURNAL is the database table that has to be modified.

OracleXMLSave oracleXMLSave =new OracleXMLSave(conn, "JOURNAL");

Set the row enclosing element tag using the setRowTag(String) method, and set the
row tag to journal. Also set ignore case to true.

oracleXMLSave.setRowTag("journal");
oracleXMLSave.setIgnoreCase(true);

Set key columns using the setKeyColumnList(String[]) method and set
CATALOGID as a key column.

String [] keyColNames = new String[1];
keyColNames[0] = "CATALOGID";
oracleXMLSave.setKeyColumnList(keyColNames);

Specify an array of columns to be updated, and also specify the columns to be
updated using the setUpdateColumnList(String[]) method. We will modify the
EDITION column and the TITLE column with an XML document.

String[] updateColNames = new String[2];
updateColNames[0] = "EDITION";
updateColNames[1] = "TITLE";
oracleXMLSave.setUpdateColumnList(updateColNames);

Data to be updated in the database table is specified in an XML document. The XML
document, catalog-update.xml, specifies a journal element with catalogId,
"catalog2". Only the EDITION and TITLE columns for table, JOURNAL with row
catalogId containing catalog2 will be modified. Catalog-update.xml is
listed below:

<?xml version="1.0" encoding="utf-8"?>
<catalog>
<journal>
 <catalogId>catalog2</catalogId>
 <journal_title>Oracle Magazine</journal_title>
 <publisher>Oracle Publishing</publisher>
 <edition>September-October 2005</edition>
 <article_section>Developer</article_section>

Chapter 7

[197]

 <title>Creating Search Pages</title>
 <author>Steve Muench</author>
</journal>
</catalog>

Create an InputStream object from catalog-update.xml.

InputStream input=new FileInputStream(new File("catalog-update.xml"));

Update database table JOURNAL using the updateXML(InputStream) method.
The updateXML() method is overloaded and the database table row can be updated
from one of the following: a Document object, an InputStream object, a Reader
object, a String object, or a URL object. Close the OracleXMLSave object using
close() method.

oracleXMLSave.updateXML(input);
oracleXMLSave.close();

To update the database table, JOURNAL, comment out all method invocations in the
XMLToDatabase.java application, except the updateDatabase() method. As a
result, database table JOURNAL gets updated.

Deleting a Row in a Database
We will delete a database table row using the XML SQL Utility. A database table
row can be deleted by specifying element tags corresponding to key columns in an
XML document. An example XML document, catalog-delete.xml, specifies the
catalogId, "catalog2". We will delete from the table JOURNAL the row for which
the primary key column, CATALOGID, that has the value "catalog2" as specified in
catalog-delete.xml is listed below:

<?xml version="1.0" encoding="utf-8"?>
<catalog>
<journal>
 <catalogId>catalog2</catalogId>
</journal>
</catalog>

We have to create an OracleXMLSave object, setting the row enclosing tag and setting
ignore case to true, as discussed in the previous section.

OracleXMLSave oracleXMLSave =new OracleXMLSave(conn, "JOURNAL");
oracleXMLSave.setRowTag("journal");
oracleXMLSave.setIgnoreCase(true);

XML SQL Utility

[198]

Set key columns using the setKeyColumnList(String[] keyColumns) method and
set CATALOGID as a key column.

String [] keyColNames = new String[1];
keyColNames[0] = "CATALOGID";
oracleXMLSave.setKeyColumnList(keyColNames);

Create an InputStream from the catalog-delete.xml document.

InputStream input=new FileInputStream(new File("catalog-delete.xml"));

Delete a database table row using the deleteXML(InputStream) method. The
deleteXML()method is overloaded, and a database table row can be deleted using
one of the following: a Document object, an InputStream object, a Reader object,
a String object, or a URL object. Close the OracleXMLSave object using the
close() method.

oracleXMLSave.deleteXML(input);
oracleXMLSave.close();

Comment out all the method invocations in the XMLToDatabase.java application,
except the deleteRow() method, to delete a row from the JOURNAL table using
catalog-delete.xml. As a result, a database table row specified in catalog-
delete.xml gets deleted from the JOURNAL table.

SQL Database to XML Document
Mapping
We will map the database table JOURNAL to an XML document, using the XML
SQL Utility. The OracleXMLQuery class is used to convert a database table to an
XML document. In the generated XML document, an XML element gets created
corresponding to each of the database table columns. Element attributes do not get
created, and to create them apply an XSLT to the XML document that was created
from the database table with the OracleXMLQuery class.

The procedure to create an XML document with elements and element attributes
is discussed in this section. Import the OracleXMLQuery class and create an
OracleXMLQuery class object:

OracleXMLQuery query = new OracleXMLQuery(conn, "SELECT CATALOGID,
JOURNAL_TITLE, PUBLISHER, EDITION, ARTICLE_SECTION, TITLE,
AUTHOR FROM JOURNAL");

Chapter 7

[199]

Variable conn is the JDBC connection used to query the database. The SELECT
SQL statement specifies the query to select data from the database table, JOURNAL.
Apply an XSLT to the OracleXMLQuery object to generate an XML document that
includes element attributes. An XSLT is set on an OracleXMLQuery object using the
setXSLT(Reader, String) method. The String parameter specifies the URL for
external entities.

Reader xsltReader=new FileReader(new File("output.xsl"));
query.setXSLT(xsltReader, null);

The XSLT, output.xslt, is listed below:

<?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml"/>
 <xsl:template match="/ROWSET">
 <xsl:element name="CATALOG">
 <xsl:apply-templates select="journal"/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="journal">
 <xsl:element name="journal">
 <xsl:attribute name="title">
 <xsl:value-of select="JOURNAL_TITLE"/>
 </xsl:attribute>
 <xsl:attribute name="publisher">
 <xsl:value-of select="PUBLISHER"/>
 </xsl:attribute>
 <xsl:attribute name="edition">
 <xsl:value-of select="EDITION"/>
 </xsl:attribute>
 <xsl:element name="catalogId">
 <xsl:value-of select="CATALOGID"/>
 </xsl:element>
 <xsl:element name="article">
 <xsl:attribute name="section">
 <xsl:value-of select="ARTICLE_SECTION"/>
 </xsl:attribute>
 <xsl:copy-of select="TITLE"/>
 <xsl:copy-of select="AUTHOR"/>
 </xsl:element>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

XML SQL Utility

[200]

Set the row enclosing tag, the element tag in the XML document being generated
corresponding to a database table row, as journal:

query.setRowTag("journal");

Generate an XML document from the database table, JOURNAL, using the
getXMLString() method:

String xmlString=query.getXMLString();

Output the XML string to a catalog-output.xml file, using PrintWriter:

OutputStream output=new FileOutputStream(new File("catalog-output.
xml"));
PrintWriter printWriter=new PrintWriter(output);
printWriter.print(xmlString);
printWriter.flush();

The XSLT output.xslt is applied to the XML document generated with XSU. The
XML document stored in the database is generated. In XSU version 2.1.0 (included in
XDK 10g), a database column can be mapped to an attribute, by customizing the SQL
SELECT statement. To map a column to an attribute, create an alias for the column
and prepend the @ sign to the alias. To map the CATALOGID column to a catalogId
attribute, the SELECT query would be as follows:

SELECT CATALOGID "@catalogId", JOURNAL_TITLE, PUBLISHER, EDITION,
ARTICLE_SECTION, TITLE, AUTHOR FROM JOURNAL;

XMLToDatabase.java, the Java program used to store an XML document in a
database and to retrieve an XML document from a database, is listed below:

package xsu;
import oracle.xml.sql.query.OracleXMLQuery;
import oracle.xml.sql.dml.OracleXMLSave;
import java.sql.*;
import java.io.*;
public class XMLToDatabase
{
 public void xmlToSQL(Connection conn)
 {
 try
 {
 OracleXMLSave oracleXMLSave = new OracleXMLSave(conn, "JOURNAL");
 String[] keyColNames = new String[1];
 keyColNames[0] = "CATALOGID";
 oracleXMLSave.setKeyColumnList(keyColNames);
 /*Reader xsltReader=new FileReader(new File("input.xsl"));*/
 oracleXMLSave.setXSLT("input.xsl", null);
 oracleXMLSave.setIgnoreCase(true);

Chapter 7

[201]

 oracleXMLSave.setRowTag("journal");
 InputStream input = new FileInputStream(new File("catalog.xml"));
 oracleXMLSave.insertXML(input);
 oracleXMLSave.close();
 }
 catch (IOException e)
 {
 System.out.println("IOException" + e.getMessage());
 }
 }
 public void updateDatabase(Connection conn)
 {
 try
 {
 OracleXMLSave oracleXMLSave = new OracleXMLSave(conn, "JOURNAL");
 oracleXMLSave.setRowTag("journal");
 oracleXMLSave.setIgnoreCase(true);
 String[] keyColNames = new String[1];
 keyColNames[0] = "CATALOGID";
 oracleXMLSave.setKeyColumnList(keyColNames);
 String[] updateColNames = new String[2];
 updateColNames[0] = "EDITION";
 updateColNames[1] = "TITLE";
 oracleXMLSave.setUpdateColumnList(updateColNames);
 InputStream input = new FileInputStream(new File(
 "catalog-update.xml"));
 oracleXMLSave.updateXML(input);
 oracleXMLSave.close();
 }
 catch (IOException e)
 {
 System.out.println("IOException" + e.getMessage());
 }
 }
 public void deleteRow(Connection conn)
 {
 try
 {
 OracleXMLSave oracleXMLSave = new OracleXMLSave(conn, "JOURNAL");
 oracleXMLSave.setRowTag("journal");
 oracleXMLSave.setIgnoreCase(true);
 String[] keyColNames = new String[1];
 keyColNames[0] = "CATALOGID";
 oracleXMLSave.setKeyColumnList(keyColNames);
 InputStream input = new FileInputStream(
 new File("catalog-delete.xml"));
 oracleXMLSave.deleteXML(input);
 oracleXMLSave.close();
 }
 catch (IOException e)

XML SQL Utility

[202]

 {
 System.out.println("IOException" + e.getMessage());
 }
 }
 public void sqlToXML(Connection conn)
 {
 try
 {
 OracleXMLQuery query = new OracleXMLQuery(conn, "SELECT CATALOGID,
 JOURNAL_TITLE, PUBLISHER, EDITION, ARTICLE_SECTION, TITLE,
 AUTHOR FROM JOURNAL");
 Reader xsltReader = new FileReader(new File("output.xsl"));
 query.setXSLT(xsltReader, null);
 query.setRowTag("journal");
 String xmlString = query.getXMLString();
 OutputStream output = new FileOutputStream(
 new File("catalog-output.xml"));
 PrintWriter printWriter = new PrintWriter(output);
 printWriter.print(xmlString);
 printWriter.flush();
 }
 catch (IOException e)
 {
 System.out.println("IOException" + e.getMessage());
 }
 }
 public static void main(String[] args)
 {
 try
 {
 Connection conn = DriverManager.getConnection(
 "jdbc:oracle:thin:@localhost:1521:ORCL", "OE", "calgary");
 XMLToDatabase xmlToDB = new XMLToDatabase();
 /* xmlToDB.xmlToSQL(conn);
 xmlToDB.updateDatabase(conn);
 xmlToDB.deleteRow(conn);*/
 xmlToDB.sqlToXML(conn);
 conn.close();
 }
 catch (SQLException exception)
 {
 for (Throwable e: exception)
 {
 System.out.println("Error encountered: " + e);
 }
 }
 }
}

Chapter 7

[203]

The selected operations can be run by commenting out the methods that are not
required. To map a database table, JOURNAL, to an XML document, comment
out invocations to all the methods except the sqlToXML() method. To run an
XMLToDatabase.java application, in JDeveloper right-click on the application node,
and select Run.

The output from the application generates an XML document, catalog-output.xml,
in which a journal element has been removed. To add the catalog-output.xml to
XSU project, click on the project node and select View | Refresh.

JDBC 4.0 has a new feature in SQLExceptions, categorization of SQLExceptions.
SQLExceptions are categorized into SQLNonTransientException,
SQLRecoverableException, and SQLTransientException. Stop the TNSListener
for the Oracle database 10g, and run the XMLToDatabase.java application with all
the commented method invocations, except the sqlToXML() method. The following
exception is displayed:

Error encountered: java.sql.SQLRecoverableException: Io exception: The
Network Adapter could not establish the connection

XML SQL Utility

[204]

The exception indicates that the SQLException is an SQLRecoverableException.
This implies that a JDBC operation would succeed, if a recovery operation were
performed. If the TNSListener is started, the SQLException is removed. In the
exception message, the SQLException is not chained to another SQLException.

Summary
Oracle XML SQL Utility is used to map an XML document to a relational database
and vice versa. The XML SQL Utility (XSU) does not store the attributes in an XML
document. The attributes can be stored by applying an XSLT to the XML document.
In this chapter, the Oracle database has been used to store an XML document. We
can also use the open-source MySQL database to do the same. We used the Oracle
database 11g JDBC 4.0 driver to map an XML document to an Oracle database table,
and also to map an Oracle database table to an XML document. We used some of the
new features in JDBC 4.0, such as automatic driver loading, and enhanced support
for chained SQLExceptions.

XSQL
In Chapter 7, we discussed the mapping of XML to SQL and SQL to XML. XML SQL
Utility is a Java API. However, SQL to XML mapping may also be done with XSQL
using the JDBC driver without any Java code. The Oracle XSQL Pages Publishing
Framework, which is included in Oracle JDeveloper 10g, supports the processing
of SQL queries to generate XML. XSQL may also be used to run SQL DML (Data
Manipulation Language) statements other than SQL SELECT such as INSERT, UPDATE,
and DELETE. An XSQL page consists of the XSQL tags in the urn:oracle-xsql
namespace. An XSQL page request is sent to the XSQL Servlet, which invokes the
XSQL Page Processor.

The XSQL Pages Publishing Framework integrates XML, SQL, and XSLT. The XSQL
Page Processor processes XSQL page templates. The XSQL Page Processor uses the
Oracle XML Parser to parse XSQL Page templates and uses the XSLT Stylesheets to
transform output from XSQL page processing. XSQL Pages Framework uses XML
SQL Utility (XSU) to query the database and generate XML from an SQL query. A
JDBC connection is used to access the database to process SQL queries. XML output
generated with XSQL may be required in a different format or the output may need
to be modified, for which XSQL Pages Framework supports XSLT transformations.

An XSQL application consists of a client XSQL page, an XSQLConfig.xml
configuration file, a server-side XSQL Servlet, and a database. An XSQL page (.xsql
file) consists of SQL query statements defined in <xsql:query></xsql:query> tags.
XSQL may also be used to create and update a database table with data from an XML
document with <xsql:dml></xsql:dml> tags. XSQL supports XSLT transformation
of XML data retrieved using an XSQL query. The XSLT Stylesheet with which XML
data is to be transformed is specified in the XSQL page. When an XSQL page is run
in JDeveloper the following procedure is followed to process the XSQL page:

1. The XSQL page request is sent from a browser to the XSQL Servlet.
2. The XSQL Servlet forwards the request to the XSQL Page Processor to

process the .xsql page.

XSQL

[206]

3. The XSQL Page Processor parses the XSQL page with Oracle XML Parser and
caches the page.

4. The XSQL Page processor connects to the database using the connection
attribute in the XSQL page.

5. The XSQL Page Processor uses XML SQL Utility (XSU) to generate XML from
SQL queries.

6. The XSQL Page Processor generates an XML datagram by replacing each
XSQL action element, such as xsql:query, with the XML results returned by
its action handler.

7. If an XSLT Stylesheet is specified, the XSQL Page Processor parses the
stylesheet and caches it.

8. The XSQL Page Processor transforms the XML datagram by applying the
XSLT stylesheet using the Oracle XSLT Processor.

9. The XSQL Page Processor returns the XML/HTML output from the XSLT
transformation to the XSQL Servlet to be displayed in a browser.

In this chapter, we will query an example database table containing a catalog with
XSQL. Subsequently, we will display the XML output as an HTML table via XSLT
transformation. In this chapter you will learn the following:

Creating an XSQL page to run an SQL query and generating XML
Using bind parameters in the SQL query
Applying XSQL query attributes to customize XML output
Applying XSLT transformation to XML output

Overview of XSQL Tags
In this section, we will discuss the different XSQL tags that may be specified in an
XSQL page. The root element in an XSQL page is <page>. Some of the XSQL tags are
discussed in following table. XSQL tag attributes are optional unless specified to be
required in the table.

•

•

•

•

Chapter 8

[207]

XSQL Tag Description Attributes
xsql:query Runs an SQL query and includes

result set as XML.
Refer to the second Table

xsql:dml Runs a DML SQL statement or a
PL/SQL anonymous block.

name (required): Name
of page level parameter.
ignore-empty-value:
Specifies if empty value
("") should be ignored.
Default is 'no'.
value:Param value.

xsql:set-page-param Sets a page-level parameter. name (required): Name
of page level parameter.
ignore-empty-value:
Specifies if empty value
("") should be ignored.
Default is 'no'.
value:Param value.

xsql:set-session-param Sets a session level param. Same as xsql:set-page-
param.

xsql:set-stylesheet-param Sets XSLT stylesheet param. Same as xsql:set-page-
param.

xsql:include-param Includes XML representing name
and value of a page param. For
example, If page param is
defined as:
<xsql:set-page-param
name="param1"
value="paramValue"/>
An include-param defined
as <xsql:include-param
name="param1"/>
includes following XML in XML
output:
<param1>paramValue</param1>

Name (required): Name
of param to include.

xsql:query Runs an SQL query and includes
result set as XML

Refer to the second Table

XSQL

[208]

XSQL Tag Description Attributes
xsql:include-request-
params

Includes an XML fragment
representing the names and values
of all HTTP parameters, cookies,
and session variables. For
example, if
<xsql:include-request-params/>
is specified, the following XML
fragment gets included:
<request><parameters><param1
>value1
</param1></parameters><sessio
n><var1>
value1</var1></
session><cookies>
<cookiename1>cookieValue
</cookiename1></cookies>
</request>

xsql:include-xml Includes external XML content
from an absolute, relative, or
parameterized URL.

href (required): Absolute,
relative or parameterized
URL that may be a static
file or a dynamic source.

xsql:include-xsql Includes XML output of another
XSQL page.

href (required):
Absolute, relative, or
parameterized URL of an
XSQL resource.
reparse: Specifies if the
included XSQL page
should be reparsed.
Default value is 'no'.

Chapter 8

[209]

XSQL Tag Description Attributes
xsql:insert-
request

Inserts XML document or HTML Form
that has been posted in the request to a
database table or view. The XML document
may be transformed with an XSLT.
If an HTML Form is posted,
an XML document containing request
parameters, session variables, and cookies.
Example XML document:
<request><parameters><param1>value1
</param1></parameters><session><var1>
varValue</var1></session><cookies>

<cookiename1>cookieValue</cookiename1>
</cookies></request>

table (required):
Name of table view or
synonym.

transform: Relative or
absolute URL of XSLT
to transform the XML
document.

columns: Space or
comma separated list of
columns

date-format: Date
format for data field
values.

xsql:update-
request

Updates the rows represented in the XML
document posted.

In addition to attributes
of xsql: insert-request:
key-columns: Space
or comma-separated
listed of columns whose
values are used to
identify a table row.

xsql:delete-
request

Deletes the rows represented in the XML
document posted.

Same as xsql:update-
request except columns
is not an attribute.

xsql:insert-
param

Inserts the value of a parameter into a database
table or view.

name (required):
Param name.
table (required):
Table name.
date-format: Date
format for date field
values.
transform: Relative,
absolute or
parameterized URL of
XSLT.

XSQL

[210]

XSQL Tag Description Attributes
xsql:set-cookie Sets the value of an HTTP cookie. name (required):

Name of HTTP cookie.
domain: Domain in
which cookie is valid and
readable. Default value
is complete domain of
document creating the
cookie.
ignore-empty-value:
Specifies if empty value
is to be ignored. Default
value is 'no'.
max-age: Maximum age
of cookie in seconds.
Default age is the user
current browser session.
only-if-unset: Specifies
if cookies should be set
only if cookie is currently
not defined. Default
value is 'no'.
path: Relative URL
within the domain in
which cookie is valid and
readable. Default value
is the URL path of the
document creating the
cookie.
value: Cookie value.

Setting the Environment
In this section, we will discuss the preliminary setup required to create an XSQL
application, which is not much, as the XSQLServlet is specified in web.xml and the
XSQL libraries are added to the project when an XSQL page is created. Oracle database
11g JDBC drivers may be used with any Oracle database version 9i and later. We will
use Oracle database 10g. We need to install Oracle database 10g including sample
schemas. We need to create and start an instance of the Oracle Database. Connect to
the database with the Order Entry (OE) sample schema (username).

CONNECT OE/<password>

Chapter 8

[211]

Run the following SQL script to create a database table that consists of an
example catalog:

CREATE TABLE Catalog(Journal VARCHAR(25), Publisher

 Varchar(25),Edition VARCHAR(25), Title Varchar(45), Author

 Varchar(25));

INSERT INTO Catalog VALUES('Oracle Magazine', 'Oracle

 Publishing','July-August 2005', 'Tuning Undo Tablespace', 'Kimberly

 Floss');

INSERT INTO Catalog VALUES('Oracle Magazine', 'Oracle

 Publishing','September-October 2005', 'Creating Search Pages',

 'Steve Muench');

We need to create a JDeveloper project for an XSQL application:

Configuring a Connection
We also need to create a database connection to run an XSQL query. By default
Oracle XSQL Pages use Oracle JDBC data sources configured in the J2EE web
application environment. The factory element in the connection-manager element
in XSQLConfig.xml sets the XSQL Pages to use the JDBC data sources.

<connection-manager>
…
<factory>
 oracle.xml.xsql.XSQLOracleDatasourceConnectionManager
</factory>
</connection-manager>

XSQL pages also have the provision to use XSQLConfig.xml-based named
connections by setting the connection-manager factory class in XSQLConfig.xml
as follows:

<factory>oracle.xml.xsql.XSQLConnectionManagerFactoryImpl</factory>

XSQL

[212]

If third-party JDBC data sources are to be used in an XSQL page set the
connection-manager factory class in XSQLConfig.xml as follows:

<factory> oracle.xml.xsql.XSQLDatasourceConnectionManager</factory>

JDeveloper 10.1.3.3 provides three different methods to create a database connection
from an XSQL page:

A JDBC Connection in Connections Navigator. A Connections Navigator
connection has a corresponding data source with a JNDI name
binding available.
A data source configured in the Embedded OC4J Preferences Window or the
data-sources.xml.
A connection specified in XSQLConfig.xml file.

To create a database connection in Connections Navigator, select the Database
| New Database Connection node in the Connections Navigator. A Create
Connection Wizard starts. Click on Next. In the Type frame, specify a Connection
Name and select Connection Type as Oracle (JDBC). In the Authentication frame,
specify a Username and Password and click Next. In the Connection frame specify a
JDBC Driver, Host Name, JDBC Port, and database SID and click Next.

•

•

•

Chapter 8

[213]

In the Test frame, click the Test Connection button to test the JDBC connection.
Click the Finish button to configure the database connection. A connection node
is added to the Connections | Database node in the Applications Navigator. The
xsqlConnection is available as a jdbc/xsqlConnectionDS JNDI resource.

A connection may also be configured in embedded OC4J server data-
sources.xml configuration file, <JDeveloper10.1.3>\jdev\system\oracle.
j2ee.10.1.3.34.12\embedded-oc4j\config\data-sources.xml, declaratively
or using the Tools | Embedded OC4J Preferences | Global | Data Sources as
explained in Chapter 2. <JDeveloper10.1.3> is the directory in which JDeveloper
is installed. Add a managed-data-source element to the data-sources.xml file,
specifying the connection configuration for a data source. The managed-data-
source element includes the data source class used to obtain a data source object.
The managed-data-source element is listed below:

<managed-data-source name='XSQLDataSource' connection-pool-
name='Oracle Connection Pool' jndi-name='jdbc/XSQLDataSource'/>
<connection-pool name='Oracle Connection Pool'> <connection-factory
factory-class='oracle.jdbc.pool.OracleDataSource' user='OE'
password='pw' url="jdbc:oracle:thin:@<host>:<port>:<SID>"> </
connection-factory> </connection-pool>

<host> is the database host, localhost by default.
<port> is the port number, 1521 by default.
<SID> is the database SID, ORCL by default.
 <host>, <port>, and <SID> values may be obtained from the
tnsnames.ora file.

XSQL

[214]

To connect to a database in an XSQL page using a JDBC data source, specify the
JDBC data source JNDI name in the connection attribute of the page element. For
example, if the JDBC data source JNDI name is jdbc/XSQLDataSource, specify the
connection attribute as follows.

<page xmlns:xsql="urn:oracle-xsql" connection="jdbc/XSQLDataSource">
</page>

An XSQL page connection with a database may also be created by modifying the
XSQLConfig.xml file. An XSQLConfig.xml file is added to the src folder of a project
when an XSQL file is created. First specify the connection-manager factory class
in XSQLConfig.xml as follows:

<factory>oracle.xml.xsql.XSQLConnectionManagerFactoryImpl</factory>

In the <connectiondefs> element, in XSQLConfig.xml, add a <connection>
element specifying the connection to be created. Create a connection with the
OE schema:

<connection name="dbConnection">
 <username>OE</username>
 <password>pw</password>
 <dburl>jdbc:oracle:thin:@<HOST>:<PORT>:<SID></dburl>
 <driver>oracle.jdbc.OracleDriver</driver>
</connection>

Attribute name is the connection name.
<username> is the username used to log in to the database.
<password> is the password used to log in to the database.
<dburl> is the URL of the database.
<driver> is the JDBC driver used to connect to the database.
<HOST> is the Oracle 10g Production database host.
<PORT> is the database port.
<SID> is the database SID.

Chapter 8

[215]

To use a named connection configured in the XSQLConfig.xml file in an XSQL page,
specify the value of the connection attribute in the <page> tag of an XSQL page
as dbConnection.

Creating XSQL Queries
In this section, we will create an XSQL page (queryDb.xsql) in JDeveloper. To create
an XSQL file, select the project node in the Applications Navigator frame and select
File | New. In the New Gallery window, select General | XML in Categories.
In Items, select the XSQL File and click on OK.

XSQL

[216]

In the Create XSQL File frame, specify a File Name and click on OK. An XSQL page
is added to the JDeveloper project including an XSQLConfig.xml configuration file.

Chapter 8

[217]

The libraries required for an XSQL application are added to the project libraries.

We will construct an XSQL page to query the example database table Catalog and
generate an XML document. The XSQL Component Palette provides different XSQL
components that were discussed in the first table in this chapter. Next we'll add
<xsql:query></xsql:query> tags to the XSQL page to process XSQL queries. The
application of XSQL queries may require the use of bind variables, the variables in a
SQL statement.

XSQL

[218]

Bind variables can be set using the values of URL parameters, session variables,
cookie values, or page parameters. In our example, we'll set XSQL query bind
variables with page parameters. Bind variables, specified with the bind-params
attribute in the <xsql:query> tag, are used in the SQL statement within the <xsql:
query> tag. The bind variables are represented with '?' in a SQL statement. The
value of the bind parameters is specified with the <xsql:set-page-params/> tag.
Position the cursor in the XSQL page and select Set Page Param component in the
Component Palette.

Chapter 8

[219]

In the Set Page Param frame, specify the name property value as JOURNAL, and
click on Next. Specify value of a page param as SQL or a String. Select Specify Param
Value As String and specify param value as "Oracle Magazine", and click on Next.
Select a database connection to be used by the XSQL page and select Finish.

XSQL

[220]

In an XSQL page, a database connection may be specified as a global connection
using the connection attribute in the page tag. If some of the XSQL page elements
use a different connection specify the connection using the connection attribute in
the individual elements. The connection attribute in an element overrides the
global connection. Similarly add another page param, PUBLISHER with value "Oracle
Publishing" Next, add an xsql:Query element. Position the cursor in the XSQL page
and select Query in the XSQL Component Palette.

Chapter 8

[221]

Specify any xsql:query element properties if required and click on Next.

Select the database connection to be used by the XSQL query and click on Next. In
the Query window, specify an SQL statement that defines an SQL query and click on
Finish. Use the following SQL statement to retrieve data from the Catalog database:

SELECT JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR FROM CATALOG WHERE
 JOURNAL=? AND PUBLISHER=?

XSQL

[222]

An xsql:query tag is added to the XSQL page. A connection attribute specifying
the JDBC data source is added to the page tag. Next we will add bind params to the
xsql:query element. Position the cursor in xsl:query tag and select bind-params
from the list displayed.

A bind-params attribute is added to the xsql:query element. Add to the
bind-params attribute "JOURNAL PUBLISHER". The bind-params attribute value is a
string list and the values for the parameters are obtained from the set-page-param
tag. The queryDb.xsql page is listed below:

<page xmlns:xsql="urn:oracle-xsql"
 connection="jdbc/xsqlConnectionDS">
 <xsql:set-page-param name="JOURNAL" ignore-empty-value="no"
 value="Oracle Magazine"/>
 <xsql:set-page-param name="PUBLISHER" ignore-empty-value="no"
 value="Oracle Publishing"/>
 <xsql:query bind-params="JOURNAL PUBLISHER" max-rows="-1" null-
 indicator="no" tag-case="lower">
SELECT JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from
 OE.Catalog WHERE JOURNAL=? AND PUBLISHER=?
</xsql:query>
</page>

Chapter 8

[223]

Some of the other attributes that may be specified in the xsql-query tag are
discussed in the following table:

Attribute Description Type
bind-params Ordered, space-delimited list of query parameters

including array valued parameters, whose values
are used in the JDBC bind variable.

String

date-format Date Format for data column. Valid values are of
the type java.text.SimpleDateFormat.

String

id-attribute Attribute to identify each row in the result set.
The default is 'num'.

String

error-statement If set to true (default), generates an xsql-error
element for an SQL statement with an error.

boolean

id-attribute-column Specifies name of column in result set whose
value is to be used in each row as the row ID
attribute value. Default is to use the row
count value.

String

include-schema If yes, includes an inline XML schema for the
structure of the result set. Default value is no.

boolean

max-rows Maximum number of rows to fetch after skipping
the rows specified in the skip-rows attribute.
Default is to fetch all rows.

boolean

null-indicator Specifies if null column values are to be included
in the output XML with NULL="Y" for the
element. Default is to omit elements with
null values.

boolean

row-element Specifies the row element to be used instead of
the default ROW.

String

rowset-element Specifies the row set element to use instead of the
default ROWSET element.

String

skip-rows Number of rows to skip before fetching from the
result set.

integer

tag-case Case of the element names. Valid values are
lower and upper. Default is to use the name of
the column as specified in the query statement.

String

XSQL

[224]

To run the XSQL page, right-click on the queryDb.xsql node and select Run. The
XSQL query runs and an XML document that represents the result set of the XSQL
query is generated.

In the next section, we'll use some of the <xsql:query> tag attributes in an XSQL
query.

Applying XSQL Query Attributes
The <xsql:query> tag provides XSQL attributes to modify the data retrieved with
the XSQL query and to modify the XML document produced with the XSQL query.
The different XSQL attributes and their applications were discussed in the second
table in this chapter. Some of the xsql-query attributes, such as page-params, are
only available in the XSQL page.

To demonstrate XSQL query attributes, delete queryDB.xsql and create an XSQL
page similar to the previous section, except when an XSQL Query is added from
Component Palette, specify query attributes, and click on Next.

Chapter 8

[225]

Select a database connection and click on Next. In the Query window, specify an
SQL statement and click on Finish. Specify parameter markers in the SQL statement
as we will be using bind parameters.

XSQL

[226]

The queryDB.xsql page is listed below:

<?xml version = '1.0' encoding = 'windows-1252'?><page xmlns:
xsql="urn:oracle-xsql" connection="jdbc/xsqlConnectionDS">
<xsql:set-page-param name="JOURNAL" ignore-empty-value="no"
 value="Oracle Magazine"/>
<xsql:set-page-param name="PUBLISHER" ignore-empty-value="no"
 value="Oracle Publishing"/>
<xsql:query bind-params="JOURNAL PUBLISHER" fetch-size="1" id-
 attribute="catalogId" max-rows="2" null-indicator="yes" row-
 element="CATALOG" rowset-element="CATALOGS" tag-case="upper">
SELECT JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from
 OE.Catalog WHERE JOURNAL=? AND PUBLISHER=?
</xsql:query>
</page>

Right-click on queryDb.xsql XSQL page and select Run. The XSQL query runs and
an XML document is displayed.

In the following section, we'll discuss XSLT transformation of the output from an
XSQL query.

Chapter 8

[227]

Transforming XSQL Output
An XSQL page supports the transformation of query output using an XSLT. In this
section, we will add XSLT transformation to the XML document generated with an
XSQL query. Add an XSLT file with File | New. In the New Gallery window select
General | XML in Categories and XSL Style Sheet in Items, and click on OK. In
the Create XSL File frame, specify a file name and click on OK. An XSL stylesheet is
added to XSQL project.

The XSLT, catalog.xsl, used to generate an HTML table from an XSQL query XML
output is listed below:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
<xsl:output encoding="ISO-8859-1" method="text/html" />
<xsl:template match="//page">
<html>
 <head>
 <title>Oracle Catalog</title>
 </head>
 <body>
 <table border="1" cellspacing="0">

XSQL

[228]

 <tr>
 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <xsl:for-each select="ROWSET/ROW">
 <tr>
 <td><xsl:value-of select="JOURNAL"/></td>
 <td><xsl:value-of select="PUBLISHER"/></td>
 <td><xsl:value-of select="EDITION"/></td>
 <td><xsl:value-of select="TITLE"/></td>
 <td><xsl:value-of select="AUTHOR"/></td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
</html>
</xsl:template>
</xsl:stylesheet>

Save the catalog.xls stylesheet to the same directory as the queryDB.xsql, the
public_html directory, using File | Save. The XSL Stylesheet to transform XSQL
output is specified in an XSQL page with xml-stylesheet element:

<?xml-stylesheet type="text/xsl" href="catalog.xsl"?>

The XSQL page, queryDb.xsql, with an xml-stylesheet element is listed below:

<?xml version = '1.0' encoding = 'windows-1252'?>
<?xml-stylesheet type="text/xsl" href="catalog.xsl"?>
<page xmlns:xsql="urn:oracle-xsql" connection="jdbc/xsqlConnectionDS">
 <xsql:set-page-param name="JOURNAL" value="Oracle Magazine"/>
 <xsql:set-page-param name="PUBLISHER" value="Oracle Publishing"/>
 <xsql:query bind-params="JOURNAL PUBLISHER">
SELECT JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR from
 OE.Catalog WHERE JOURNAL=? AND PUBLISHER=?
</xsql:query>
</page>

Chapter 8

[229]

To run XSQL page, right-click on queryDb.xsql node and select Run.

The XSQL query runs and the XML output is transformed with an XSLT.

XSQL

[230]

JDBC 4.0 Version
OC4J server embedded in JDeveloper 10g or JDeveloper 11g does not support
the JDBC 4.0 specification. In a later version of JDeveloper that supports JDBC 4.0
specification, the new features in JDBC 4.0 may be used with an XSQL application.
To use the JDBC 4.0 features we would need to configure the JDBC connection with
Oracle database using the Oracle database 11g JDBC 4.0 drivers JAR file, ojdbc6.
jar. As JDBC 4.0 drivers required JDK 6.0, set the J2SE Version to JDK 6.0 by
selecting Tools | Project Properties and subsequently selecting Libraries. The JDK
version may be set in the J2SE Version field. With the JDBC 4.0 driver we may use
the connection management features such as connection state tracking. Connection
state tracking is implemented by the connection pool manager using the isValid()
method of the Connection interface. The connection pool manager determines if a
connection in a connection pool is unusable by invoking the isvalid() method on
the connection. If the connection is not valid the connection pool manager closes the
connection using the close() method.

if(!connection.isValid())
connection.close();

Summary
Oracle XSQL Pages Publishing Framework is used to generate an XML document
using an SQL query. XSLT may be applied to the XML generated with XSQL to
transform the XML output. A JDBC connection is used to connect to a database to
run the SQL query statements. Oracle JDeveloper supports the XSQL framework.
The XML document generated with XSQL may be customized by specifying the row
element, the row set element, and other attributes of the XSQL query. In a JDeveloper
version that supports JDBC 4.0 in the embedded OC4J, JDBC 4.0 features such as
connection state tracking may be used in an XSQL application.

Oracle Web RowSet
In the previous two chapters we mapped an XML document to a relational database
using XSU and a relational database table to an XML document using XSU and
XSQL. In this chapter we will use the XML document representation of a result set
generated with an SQL query to modify a relational database table.

The ResultSet interface requires a persistent connection with a database to invoke
the insert, update, and delete row operations on the database table data. The RowSet
interface extends the ResultSet interface and is a container for tabular data that
may operate without being connected to the data source. Thus, the RowSet interface
reduces the overhead of a persistent connection with the database.

In J2SE 5.0, five new implementations of RowSet—JdbcRowSet, CachedRowSet,
WebRowSet, FilteredRowSet, and JoinRowSet—were introduced. The WebRowSet
interface extends the RowSet interface and is the XML document representation of a
RowSet object. A WebRowSet object represents a set of fetched database table rows,
which may be modified without being connected to the database.

Support for Oracle Web RowSet is a new feature in Oracle Database 10g driver.
Oracle Web RowSet precludes the requirement for a persistent connection with the
database. A connection is required only for retrieving data from the database with
a SELECT query and for updating data in the database after all the required row
operations on the retrieved data have been performed. Oracle Web RowSet is used
for queries and modifications on the data retrieved from the database. Oracle Web
RowSet, as an XML document representation of a RowSet facilitates the transfer
of data.

In Oracle Database 10g and 11g JDBC drivers, Oracle Web RowSet is implemented in
the oracle.jdbc.rowset package. The OracleWebRowSet class represents a Oracle
Web RowSet. The data in the Web RowSet may be modified without connecting
to the database. The database table may be updated with the OracleWebRowSet
class after the modifications to the Web RowSet have been made. A database JDBC
connection is required only for retrieving data from the database and for updating

Oracle Web RowSet

[232]

the database. An XML document representation of the data in a Web RowSet may
be obtained for data exchange. In this chapter the Web RowSet feature in Oracle 10g
database JDBC driver is implemented in JDeveloper 10g. An example Web RowSet
will be created from a database. The Web RowSet will be modified and stored in the
database table.

In this chapter we will learn the following:

Creating a Oracle Web RowSet object
Adding a row to Oracle Web RowSet
Reading a row from Oracle Web RowSet
Updating a row in Oracle Web RowSet
Deleting a row from Oracle Web RowSet
Updating Database Table with modified Oracle Web RowSet

Setting the Environment
We will use Oracle database to generate an updatable OracleWebRowSet object.
Therefore, install Oracle database 10g including the sample schemas. Connect to the
database with the OE schema:

SQL> CONNECT OE/<password>

Create an example database table, Catalog, with the following SQL script:

CREATE TABLE OE.Catalog(Journal VARCHAR(25), Publisher Varchar(25),

 Edition VARCHAR(25), Title Varchar(45), Author Varchar(25));

INSERT INTO OE.Catalog VALUES('Oracle Magazine', 'Oracle

 Publishing', 'July-August 2005', 'Tuning Undo Tablespace',

 'Kimberly Floss');

INSERT INTO OE.Catalog VALUES('Oracle Magazine', 'Oracle

 Publishing', 'March-April 2005', 'Starting with Oracle ADF', 'Steve

 Muench');

Configure JDeveloper 10g for Web RowSet implementation. Create a project in
JDeveloper. Select File | New | General | Application. In the Create Application
window specify an Application Name and click on Next. In the Create Project
window specify a Project Name and click on Next. A project is added in the
Applications Navigator.

•

•

•

•

•

•

Chapter 9

[233]

Next, we will set the project libraries. Select Tools | Project Properties and in the
Project Properties window select Libraries | Add Library to add a library. Add the
Oracle JDBC library to project libraries. If the Oracle JDBC drivers version prior to
the Oracle database 10g (R2) JDBC drivers version is used, create a library from the
Oracle Web RowSet implementation classes JAR file, C:\JDeveloper10.1.3\jdbc\
lib\ocrs12.jar. The ocrs12.jar is required only for JDBC drivers prior to Oracle
database 10g (R2) JDBC drivers. In Oracle database 10g (R2) JDBC drivers Oracle
RowSet implementation classes are packaged in the ojdbc14.jar. In Oracle database
11g JDBC drivers Oracle RowSet implementation classes are packaged in ojdbc5.
jar and ojdbc6.jar.

In the Add Library window select the User node and click on New. In the
Create Library window specify a Library Name, select the Class Path node
and click on Add Entry. Add an entry for ocrs12.jar. As Web RowSet was
introduced in J2SE 5.0, if J2SE 1.4 is being used we also need to add an entry for
the RowSet implementations JAR file, rowset.jar. Download the JDBC RowSet
Implementations 1.0.1 zip file, jdbc_rowset_tiger-1_0_1-mrel-ri.zip, from
http://java.sun.com/products/jdbc/download.html#rowset1_0_1 and extract
the JDBC RowSet zip file to a directory. Click on OK in the Create Library window.
Click on OK in the Add Library window. A library for the Web RowSet application
is added.

Oracle Web RowSet

[234]

Now configure an OC4J data source. Select Tools | Embedded OC4J Server
Preferences. A data source may be configured globally or for the current
workspace. If a global data source is created using Global | Data Sources, the
data source is configured in the C:\JDeveloper10.1.3\jdev\system\oracle.
j2ee.10.1.3.36.73\embedded-oc4j\config \data-sources.xml file. If a data
source is configured for the current workspace using Current Workspace | Data
Sources, the data source is configured in the data-sources.xml file. For example,
the data source file for the WebRowSetApp application is WebRowSetApp-data-
sources.xml. In the Embedded OC4J Server Preferences window configure either
a global data source or a data source in the current workspace with the procedure
discussed in Chapter 2. A global data source definition is available to all applications
deployed in the OC4J server instance. A managed-data-source element is added to
the data-sources.xml file.

<managed-data-source name='OracleDataSource' connection-pool-
 name='Oracle Connection Pool' jndi-name='jdbc/OracleDataSource'/>
<connection-pool name='Oracle Connection Pool'>
 <connection-factory factory-
 class='oracle.jdbc.pool.OracleDataSource' user='OE' password='pw'
 url="jdbc:oracle:thin:@localhost:1521:ORCL">
 </connection-factory>
</connection-pool>

Add a JSP, GenerateWebRowSet.jsp, to the WebRowSet project. Select File | New
| Web Tier | JSP | JSP. Click on OK. Select J2EE 1.3 or J2EE 1.4 in the Web
Application window and click on Next. In the JSP File window specify a File Name
and click on Next. Select the default settings in the Error Page Options page and
click on Next. Select the default settings in the Tag Libraries window and click on
Next. Select the default options in the HTML Options window and click on Next.
Click on Finish in the Finish window. Next, configure the web.xml deployment
descriptor to include a reference to the data source resource configured in the data-
sources.xml file as shown in following listing:

<resource-ref>
 <res-ref-name>jdbc/OracleDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Chapter 9

[235]

Creating a Web RowSet
In this section we will create a Web RowSet from a database table and an XML
document representation of the Web RowSet is generated. Create a Java class in
JDeveloper with File | New | General | Java Class. In the Create Java Class
window specify the class name, WebRowSetQuery, and package name and click on
OK. A Java class, WebRowSetQuery.java gets added to the WebRowSet project. In the
Java application first import the oracle.jdbc.rowset package classes. Create an
OracleWebRowSet class object:

OracleWebRowSet webRowSet=new OracleWebRowSet();

Set the data source name to obtain a JDBC connection with the database. The data
source name is configured in the data-sources.xml file:

webRowSet.setDataSourceName("jdbc/OracleDataSource");

Set the SQL query command for the OracleWebRowSet class object:

webRowSet.setCommand(selectQuery);

Oracle Web RowSet

[236]

Variable selectQuery is the String value for the SQL statement that is to be used to
query the database. SQL statement value is obtained from an input field in a JSP. Set
the username and password to obtain a JDBC connection:

webRowSet.setUsername("OE");
webRowSet.setPassword("<password>");

Set the read only, fetch size, and max rows attributes of the OracleWebRowSet object:

webRowSet.setReadOnly(false);
webRowSet.setFetchSize(5);
webRowSet.setMaxRows(3);

Run the SQL command specified in the setCommand() method with the
execute() method:

webRowSet.execute();

A Web RowSet is created consisting of the data retrieved from the database table
with the SQL query. Generate an XML document from the Web RowSet using the
writeXml() method;

OutputStreamWriter output=new OutputStreamWriter(new
FileOutputStream(new File("c:/output/output.xml")));
webRowSet.writeXml(output);

Oracle Web RowSet also provides readXml() methods to read an Oracle Web
RowSet object in XML format using a Reader object or an InputStream object. If the
readXml() methods are to be used set one of the following JAXP system properties:

javax.xml.parsers.SAXParserFactory

javax.xml.parsers.DocumentBuilderFactory

For example, set the SAXParserFactory property as follows:

System.setProperty("javax.xml.parsers.SAXParserFactory",
 "oracle.xml.jaxp.JXSAXParserFactory");

WebRowSetQuery.java also has methods to read, update, delete, and insert a
row in the database table, which will be discussed in the subsequent sections.
WebRowSetQuery.java application is listed below:

package webrowset;
import oracle.jdbc.rowset.*;
import java.io.*;
import java.sql.SQLException;
public class WebRowSetQuery
{

•

•

Chapter 9

[237]

 public OracleWebRowSet webRowSet;
 public String selectQuery;
 public WebRowSetQuery()
 {
 }
 public WebRowSetQuery(OracleWebRowSet webRowSet)
 {
 this.webRowSet = webRowSet;
 }
 public void generateWebRowSet(String selectQuery)
 {
 try
 {
 webRowSet = new OracleWebRowSet();
 webRowSet.setDataSourceName("jdbc/OracleDataSource");
 webRowSet.setCommand(selectQuery);
 webRowSet.setUsername("oe");
 webRowSet.setPassword("pw");
 webRowSet.setReadOnly(false);
 webRowSet.setFetchSize(5);
 webRowSet.setMaxRows(3);
 webRowSet.execute();
 }
 catch (SQLException e)
 {
 System.out.println(e.getMessage());
 }
 }
 public void generateXMLDocument()
 {
 try
 {
 OutputStreamWriter output = new OutputStreamWriter(
 new FileOutputStream(new File("c:/output/output.xml")));
 webRowSet.writeXml(output);
 }
 catch (SQLException e)
 {
 System.out.println(e.getMessage());
 }
 catch (IOException e)
 {
 }
 }
 public void deleteRow(int row)
 {
 try
 {
 webRowSet.absolute(row);
 webRowSet.deleteRow();

Oracle Web RowSet

[238]

 }
 catch (SQLException e)
 {
 System.out.println(e.getMessage());
 }
 }
 public void insertRow(String journal, String publisher,
 String edition, String title, String author)
 {
 try
 {
 webRowSet.moveToInsertRow();
 webRowSet.updateString(1, journal);
 webRowSet.updateString(2, publisher);
 webRowSet.updateString(3, edition);
 webRowSet.updateString(4, title);
 webRowSet.updateString(5, author);
 webRowSet.insertRow();
 }
 catch (SQLException e)
 {
 System.out.println(e.getMessage());
 }
 }
 public void updateRow(int rowUpdate, String journal,
 String publisher, String edition, String title, String author)
 {
 try
 {
 webRowSet.absolute(rowUpdate);
 webRowSet.updateString(1, journal);
 webRowSet.updateString(2, publisher);
 webRowSet.updateString(3, edition);
 webRowSet.updateString(4, title);
 webRowSet.updateString(5, author);
 webRowSet.updateRow();
 }
 catch (SQLException e)
 {
 System.out.println(e.getMessage());
 }
 }
 public String[] readRow(int rowRead)
 {
 String[] resultSet = null;
 try
 {
 resultSet = new String[5];
 webRowSet.absolute(rowRead);
 resultSet[0] = webRowSet.getString(1);

Chapter 9

[239]

 resultSet[1] = webRowSet.getString(2);
 resultSet[2] = webRowSet.getString(3);
 resultSet[3] = webRowSet.getString(4);
 resultSet[4] = webRowSet.getString(5);
 }
 catch (SQLException e)
 {
 System.out.println(e.getMessage());
 }
 return resultSet;
 }
 public void updateDatabase()
 {
 try
 {
 webRowSet.acceptChanges();
 }
 catch (java.sql.SQLException e)
 {
 System.out.println(e.getMessage());
 }
 }
}

The SELECT query with which the Web RowSet is created is input from the
GenerateWebRowSet.jsp JSP, which was added in the Setting the Environment
section, and is listed below:

<%@ page contentType="text/html;charset=windows-1252"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
 <title>Generate WebRowSet</title>
 </head>
 <body>
 <form>
 </form>
 <%
 String selectQuery=request.getParameter("selectQuery");
 webrowset.WebRowSetQuery query=new webrowset.WebRowSetQuery();
 if(selectQuery!=null)
 {
 query.generateWebRowSet(selectQuery);
 query.generateXMLDocument();
 }
 %>
 <form name="query" action="GenerateWebRowSet.jsp" method="post">
 <table>
 <tr>

Oracle Web RowSet

[240]

 <td>Select Query:</td>
 </tr><tr><td>
 <textarea name="selectQuery" rows="5"
 cols="50"></textarea>
 </td>
 </tr><tr><td>
 <input class="Submit" type="submit" value="Apply"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Right-click on the GenerateWebRowSet.jsp and select Run to run the JSP.

In the JSP page displayed, specify the SQL query from which a Web RowSet is to be
generated. For example, specify SQL Query:

SELECT JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR FROM OE.Catalog

Chapter 9

[241]

Click on Apply.

A Web RowSet is generated and an XML document is generated from the Web
RowSet. The XML document output from the Web RowSet includes the metadata
information for the JDBC data source, the database table, and the data in the table;
the data element tag represents the data in the database table. An XML document
generated from a Web RowSet is based on the DTD (http://java.sun.com/j2ee/
dtds/RowSet.dtd). The XML document generated from the example database table
Catalog as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE RowSet PUBLIC '-//Sun Microsystems, Inc.//DTD RowSet//EN'
 'http://java.sun.com/j2ee/dtds/RowSet.dtd'>
<RowSet>
 <properties>
 <command>SELECT JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR FROM
 OE.Catalog</command>
 <concurrency>1007</concurrency>
 <datasource>jdbc/OracleDataSource</datasource>
 <escape-processing>true</escape-processing>
 <fetch-direction>1002</fetch-direction>
 <fetch-size>10</fetch-size>
 <isolation-level>2</isolation-level>
 <key-columns>
 </key-columns>
 <map></map>
 <max-field-size>0</max-field-size>
 <max-rows>3</max-rows>
 <query-timeout>0</query-timeout>

Oracle Web RowSet

[242]

 <read-only>false</read-only>
 <rowset-type>1005</rowset-type>
 <show-deleted>false</show-deleted>
 <url>jdbc:oracle:thin:@localhost:1521:ORCL</url>
 </properties>
 <metadata>
 <column-count>5</column-count>
 <column-definition>
 <column-index>1</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>25</column-display-size>
 <column-label>JOURNAL</column-label>
 <column-name>JOURNAL</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>2</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>25</column-display-size>
 <column-label>PUBLISHER</column-label>
 <column-name>PUBLISHER</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>

Chapter 9

[243]

 </column-definition>
 <column-definition>
 <column-index>3</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>25</column-display-size>
 <column-label>EDITION</column-label>
 <column-name>EDITION</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>4</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>45</column-display-size>
 <column-label>TITLE</column-label>
 <column-name>TITLE</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>5</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>

Oracle Web RowSet

[244]

 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>25</column-display-size>
 <column-label>AUTHOR</column-label>
 <column-name>AUTHOR</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 </metadata>
 <data>
 <row>
 <col>Oracle Magazine</col>
 <col>Oracle Publishing</col>
 <col>July-August 2005</col>
 <col>Tuning Undo Tablespace</col>
 <col>Kimberly Floss</col>
 </row>
 <row>
 <col>Oracle Magazine</col>
 <col>Oracle Publishing</col>
 <col>March-April 2005</col>
 <col>Starting with Oracle ADF</col>
 <col>Steve Muench</col>
 </row>
 </data>
</RowSet>

In this section, the procedure to generate a Web RowSet from a database table was
explained. In the following section the Web RowSet is modified and the modified
data stored in the database table.

Chapter 9

[245]

Modifying a Database Table with Web
RowSet
With ResultSet interface, to modify the data in the database, a JDBC connection
with the database is required to insert, delete, or update a database table row. With
a Web RowSet, the data may be modified in the OracleWebRowSet object, and a
connection is required only to update the database table with the data in the Web
RowSet after all the modifications have been made to the Web RowSet. In this
section, the data in the Web RowSet is modified and the database table is updated
with the modified Web RowSet. A JDBC connection is not required to modify the
data in the example Web RowSet. An OracleWebRowSet object is generated as in the
previous section.

Create a JSP, ModifyWebRowSet.jsp, to create and modify a Web RowSet from an SQL
query. Also add JSPs CreateRow.jsp, ReadRow.jsp, UpdateRow.jsp, DeleteRow.jsp,
and UpdateDatabase.jsp, which are listed later in this chapter. ModifyWebRowSet.
jsp, the JSP used to create and modify a Web RowSet is listed as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page session="true"%>
<html>
 <head>
 <title>Modify Database Table with Web RowSet</title>
 </head>
 <body>
 <h3>Modify Database Table with Web RowSet</h3>
 <%webrowset.WebRowSetQuery query=null;%>
 <%String selectQuery=request.getParameter("selectQuery");
 if(selectQuery!=null){
 query=new webrowset.WebRowSetQuery();
 query.generateWebRowSet(selectQuery);
 session.setAttribute("query", query);
 }
%>
 <form name="query" action="ModifyWebRowSet.jsp" method="post">
 <table>
 <tr>
 <td>Select Query:</td>
 </tr><tr><td>
 <textarea name="selectQuery" rows="5"
 cols="50"></textarea>

Oracle Web RowSet

[246]

 </td></tr><tr><td>
 <input class="Submit" type="submit" value="Apply Query"/>
 </td></tr>
 <tr><td>Create Row</td></tr>
 <tr><td>Read Row</td></tr>
 <tr><td>Update Row</td></tr>
 <tr><td>Delete Row</td></tr>
 <tr><td>Update
 Database</td></tr>
 </table>
 </form>
 </body>
</html>

The directory structure of the Web RowSet application is shown in the Applications
Navigator. Run the ModifyWebRowSet.jsp JSP in JDeveloper. The JSP is displayed
in a browser. Specify a SQL query to generate a Web RowSet. Click on Apply Query
Subsequently we will modify the Web RowSet and update the database.

Chapter 9

[247]

A Web RowSet is generated. We will use the Web RowSet object to create,
read, update, and delete the result set obtained with the SQL query. In the
ModifyWebRowSet.jsp, set the WebRowSetQuery object as a session object attribute:

session.setAttribute("query", query);

The OracleWebRowSet object of the ModifyWebRowSet object will be used in the
Create, Read, Update, and Delete JSPs.

Creating a New Row
Next, create a new row in the Web RowSet. Click on the Create Row link in the
ModifyWebRowSet.jsp JSP.

Oracle Web RowSet

[248]

The CreateRow.jsp is displayed. Specify the row values to add and click on Apply.

In the CreateRow.jsp, the input values are retrieved from the JSP and the
insertRow() method of the WebRowSetQuery class is invoked. The WebRowSetQuery
object is retrieved from the session object:

WebRowSetQuery query=(webrowset.WebRowSetQuery)
 session.getAttribute("query");

In the insertRow() method OracleWebRowSet object cursor is moved to the
insert row:

webRowSet.moveToInsertRow();

Set the row values with the updateString() method:

webRowSet.updateString(1, journal);
webRowSet.updateString(2, publisher);
webRowSet.updateString(3, edition);
webRowSet.updateString(4, title);
webRowSet.updateString(5, author);

Chapter 9

[249]

Add the row to the OracleWebRowSet:

webRowSet.insertRow();

A new row is added in the OracleWebRowSet object. A new row is not yet added to
the database. CreateRow.jsp is listed as follows:

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page session="true"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=windows-1252">
 <title>Create Row with Web RowSet</title>
 </head>
 <body>
 <form><h3>Create Row with Web RowSet</h3>
 <table>
 <tr><td>Modify Web RowSet
 Page</td></tr>
 </table>
 </form>
 <%
 webrowset.WebRowSetQuery query=null;
 query=(webrowset.WebRowSetQuery)
 session.getAttribute("query");
 String journal=request.getParameter("journal");
 String publisher=request.getParameter("publisher");
 String edition=request.getParameter("edition");
 String title=request.getParameter("title");
 String author=request.getParameter("author");
 if(journal!=null||publisher!=null||edition!=null||title!=null
 ||author!=null){
 query.insertRow(journal, publisher, edition, title, author);

 }
 %>
 <form name="query" action="CreateRow.jsp" method="post">
 <table>
 <tr>
 <td>
 <h4>Insert Row</h4>
 </td>
 </tr>

Oracle Web RowSet

[250]

 <tr>
 <td>Journal:</td>
 </tr>
 <tr>
 <td>
 <input name="journal" type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Publisher:</td>
 </tr>
 <tr>
 <td>
 <input name="publisher" type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Edition:</td>
 </tr>
 <tr>
 <td>
 <input name="edition" type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Title:</td>
 </tr>
 <tr>
 <td>
 <input name="title" type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Author:</td>
 </tr>
 <tr>
 <td>
 <input name="author" type="text" size="50"
 maxlength="250"/>
 </td>

Chapter 9

[251]

 </tr>
 <tr>
 <td>
 <input class="Submit" type="submit" value="Apply"/>
 </td>
 </tr>
 </table></form></body></html>

Reading a Row
Next, we will read a row from the OracleWebRowSet object. Click on Modify
Web RowSet link in the CreateRow.jsp. In the ModifyWebRowSet JSP click on the
Read Row link. The ReadRow.jsp JSP is displayed. In the ReadRow JSP specify the
Database Row to Read and click on Apply.

Oracle Web RowSet

[252]

The second row values are retrieved from the Web RowSet:

In the ReadRow JSP the readRow() method of the WebRowSetQuery.java application
is invoked. The WebRowSetQuery object is retrieved from the session object.

WebRowSetQuery query=(webrowset.WebRowSetQuery)
 session.getAttribute("query");

The String[] values returned by the readRow() method are added to the ReadRow
JSP fields. In the readRow() method the OracleWebRowSet object cursor is moved to
the row to be read.

webRowSet.absolute(rowRead);

Retrieve the row values with the getString() method and add to String[]. Return
the String[] object.

String[] resultSet=new String[5];
resultSet[0]=webRowSet.getString(1);
resultSet[1]=webRowSet.getString(2);
resultSet[2]=webRowSet.getString(3);
resultSet[3]=webRowSet.getString(4);
resultSet[4]=webRowSet.getString(5);
return resultSet;

Chapter 9

[253]

ReadRow.jsp JSP is listed as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page session="true"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=windows-1252">
 <title>Read Row with Web RowSet</title>
 </head>
 <body>
 <form><h3>Read Row with Web RowSet</h3>
<table>
 <tr>
 <td>Modify Web RowSet
 Page</td>
 </tr>
</table>
 </form>
 <%
 webrowset.WebRowSetQuery query=null;
 query=(webrowset.WebRowSetQuery)
 session.getAttribute("query");
 String rowRead=request.getParameter("rowRead");
 String journalUpdate=request.getParameter("journalUpdate");
 String publisherUpdate=request.getParameter("publisherUpdate");
 String editionUpdate=request.getParameter("editionUpdate");
 String titleUpdate=request.getParameter("titleUpdate");
 String authorUpdate=request.getParameter("authorUpdate");
 if((rowRead!=null))
{
 int row_Read=Integer.parseInt(rowRead);
 String[] resultSet=query.readRow(row_Read);
journalUpdate=resultSet[0];
publisherUpdate=resultSet[1];
 editionUpdate=resultSet[2];
titleUpdate=resultSet[3];
authorUpdate=resultSet[4];
 }
 %>
 <form name="query" action="ReadRow.jsp" method="post">
 <table>
 <tr>
 <td>Database Row to Read:</td>
 </tr>
 <tr>
 <td>
 <input name="rowRead" type="text" size="25"

Oracle Web RowSet

[254]

 maxlength="50"/>
 </td>
 </tr>
 <tr>
 <td>Journal:</td>
 </tr>
 <tr>
 <td>
 <input name="journalUpdate" value='<%=journalUpdate%>'
 type="text" size="50" maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Publisher:</td>
 </tr>
 <tr>
 <td>
 <input name="publisherUpdate"
 value='<%=publisherUpdate%>' type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Edition:</td>
 </tr>
 <tr>
 <td>
 <input name="editionUpdate" value='<%=editionUpdate%>'
 type="text" size="50" maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Title:</td>
 </tr>
 <tr>
 <td>
 <input name="titleUpdate" value='<%=titleUpdate%>'
 type="text" size="50" maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Author:</td>
 </tr>
 <tr>
 <td>
 <input name="authorUpdate" value='<%=authorUpdate%>'
 type="text" size="50" maxlength="250"/>
 </td>
 </tr><tr>
 <td>

Chapter 9

[255]

 <input class="Submit" type="submit" value="Apply"/>
 </td>
 </tr>
 </table>
 </form>
 </body></html>

Updating a Row
Next, we will update a row in the OracleWebRowSet object. Click on the Modify
Web RowSet Page link in the ReadRow JSP. In the ModifyWebRowSet JSP click on the
Update Row link. In the UpdateRow JSP specify the row to be updated and specify
the modified values. For example, update the second row. Click on Apply.

Oracle Web RowSet

[256]

The UpdateRow JSP invokes the updateRow() method of the WebRowSetQuery Java
class. The WebRowSetQuery object is retrieved from the session object:

WebRowSetQuery query=(webrowset.WebRowSetQuery)
 session.getAttribute("query");

In the updateRow() method the OracleWebRowSet object cursor is moved to the row
to be updated:

webRowSet.absolute(rowUpdate);

The row values are updated with the updateString() method of the
OracleWebRowSet object:

webRowSet.updateString(1, journal);
webRowSet.updateString(2, publisher);
webRowSet.updateString(3, edition);
webRowSet.updateString(4, title);
webRowSet.updateString(5, author);

Update the OracleWebRowSet object with the updateRow() method:

webRowSet.updateRow();

The row in the OracleWebRowSet object is updated. The row in the database table is
not updated yet. UpdateRow.jsp is listed as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page session="true"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=windows-1252">
 <title>Update Row in Database Table with Web RowSet</title>
 </head>
 <body>
 <form><h3>Update Row in Database Table with Web RowSet</h3>
 <table>
 <tr>
 <td>Modify Web RowSet
 Page</td>
 </tr>
</table>
 </form>
 <%
webrowset.WebRowSetQuery query=null;
 query=(webrowset.WebRowSetQuery)
 session.getAttribute("query");

Chapter 9

[257]

 String rowUpdate=request.getParameter("rowUpdate");
 String journalUpdate=request.getParameter("journalUpdate");
 String publisherUpdate=request.getParameter("publisherUpdate");
 String editionUpdate=request.getParameter("editionUpdate");
 String titleUpdate=request.getParameter("titleUpdate");
 String authorUpdate=request.getParameter("authorUpdate");
 if((rowUpdate!=null))
{
 System.out.println(rowUpdate +"Row to Update");
 int row_Update=Integer.parseInt(rowUpdate);
 query.updateRow(row_Update, journalUpdate, publisherUpdate,
 editionUpdate, titleUpdate, authorUpdate);
 }
 %>
 <form name="query" action="UpdateRow.jsp" method="post">
 <table>
 <tr>
 <td>Database Row to Update:</td>
 </tr>
 <tr>
 <td>
 <input name="rowUpdate" type="text" size="25"
 maxlength="50"/>
 </td>
 </tr>
 <tr>
 <td>Journal:</td>
 </tr>
 <tr>
 <td>
 <input name="journalUpdate" type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Publisher:</td>
 </tr>
 <tr>
 <td>
 <input name="publisherUpdate" type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Edition:</td>
 </tr>
 <tr>
 <td>
 <input name="editionUpdate" type="text" size="50"

Oracle Web RowSet

[258]

 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Title:</td>
 </tr>
 <tr>
 <td>
 <input name="titleUpdate" type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>Author:</td>
 </tr>
 <tr>
 <td>
 <input name="authorUpdate" type="text" size="50"
 maxlength="250"/>
 </td>
 </tr>
 <tr>
 <td>
 <input class="Submit" type="submit" value="Apply"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Deleting a Row
Next, we will delete a row from the OracleWebRowSet object. Click on the Modify
Web RowSet link in the UpdateRow JSP. In the ModifyWebRowSet JSP click on the
Delete Row link. In the Delete Row JSP specify the row to delete and click on
Apply. For example, delete the third row.

Chapter 9

[259]

In the DeleteRow JSP the deleteRow() method of the WebRowSetQuery Java class is
invoked. The WebRowSetQuery object is retrieved from the session object:

WebRowSetQuery query=(webrowset.WebRowSetQuery)
 session.getAttribute("query");

In the deleteRow() method the OracleWebRowSet object cursor is moved to the row
to be deleted:

webRowSet.absolute(row);

Delete the row with the deleteRow() method of the OracleWebRowSet object. The
create, update, and delete operations are performed on the OracleWebRowSet object,
not on the database table. The DeleteRow.jsp is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page session="true"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=windows-1252">
 <title>Delete Database Table Row with Web RowSet</title>
 </head>
 <body>
 <form><h3>Delete Database Table Row with Web RowSet</h3>
 <table>
 <tr>
 <td>Modify Web RowSet

Oracle Web RowSet

[260]

 Page</td>
 </tr>
</table>
 </form>
 <%
 webrowset.WebRowSetQuery query=null;
 query=(
 webrowset.WebRowSetQuery)session.getAttribute("query");
 String deleteRow=request.getParameter("deleteRow");
 if((deleteRow!=null)){
 int delete_Row=Integer.parseInt(deleteRow);
 query.deleteRow(delete_Row);
 }
 %>
 <form name="query" action="DeleteRow.jsp" method="post">
 <table>
 <tr>
 <td><h4>Delete Row</h4></td>
 </tr>
 <tr>
 <td>
 <input name="deleteRow" type="text" size="25"
 maxlength="50"/>
 </td>
 </tr>
 <tr>
 <td>
 <input class="Submit" type="submit" value="Apply"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Updating Database Table
Next, we will update the database table with the modified OracleWebRowSet
object. Click on the Modify Web RowSet link in the DeleteRow JSP. In the
ModifyWebRowSet JSP, click on the Update Database link. In the UpdateDatabase.
jsp, click on Apply.

Chapter 9

[261]

In the UpdateDatabase.jsp, the WebRowSetQuery object is retrieved from the
session object:

WebRowSetQuery query=(WebRowSet.WebRowSetQuery)
 session.getAttribute("query");

If the WebRowSetQuery object is not null, invoke the updateDatabase() method of
the WebRowSetQuery.java class. Also output the XML document which represents
the modifications made to the Web RowSet:

if(query!=null){
 query.updateDatabase();
 query.generateXMLDocument();
}

In the updateDatabase() method the database table is updated using the
acceptChanges() method:

webRowSet.acceptChanges();

The database table, Catalog, is updated with the modifications made in the
OracleWebRowSet. The UpdateDatabase.jsp JSP is listed below:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page session="true"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
 <title>Update Database Table with Web RowSet</title>
 </head>
 <body>
 <h3>Update Database Table with Web RowSet</h3>
 <% webrowset.WebRowSetQuery query=null;%>

Oracle Web RowSet

[262]

 <%
 String
updateDatabase=request.getParameter("updateDatabase");
 if(updateDatabase!=null)
 query
=(webrowset.WebRowSetQuery)session.getAttribute("query");
 if(query!=null)
{
 query.updateDatabase();
 query.generateXMLDocument();}
%>
 <form name="query" action="UpdateDatabase.jsp" method="post">
 <input type="hidden" name="updateDatabase" value=
 "Update Database"/>
 <table>
 <tr>
 <td>Update Database
 </td>
 </tr>
 <tr>
 <td>
 <input class="Submit" type="submit" value="Apply"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

The XML document corresponding to the OracleWebRowSet object after the
modifications are made is listed below. The modified XML document, as compared
to the XML document before modifications has a row added, a row modified, and a
row deleted.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE RowSet PUBLIC '-//Sun Microsystems, Inc.//DTD RowSet//EN'
 'http://java.sun.com/j2ee/dtds/RowSet.dtd'>
<RowSet>
 <properties>
 <command>SELECT JOURNAL, PUBLISHER, EDITION, TITLE, AUTHOR FROM
 OE.Catalog</command>
 <concurrency>1007</concurrency>
 <datasource>jdbc/OracleDataSource</datasource>

Chapter 9

[263]

 <escape-processing>true</escape-processing>
 <fetch-direction>1002</fetch-direction>
 <fetch-size>10</fetch-size>
 <isolation-level>2</isolation-level>
 <key-columns>
 </key-columns>
 <map></map>
 <max-field-size>0</max-field-size>
 <max-rows>3</max-rows>
 <query-timeout>0</query-timeout>
 <read-only>false</read-only>
 <rowset-type>1005</rowset-type>
 <show-deleted>false</show-deleted>
 <url>jdbc:oracle:thin:@localhost:1521:ORCL</url>
 </properties>
 <metadata>
 <column-count>5</column-count>
 <column-definition>
 <column-index>1</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>25</column-display-size>
 <column-label>JOURNAL</column-label>
 <column-name>JOURNAL</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>2</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>

Oracle Web RowSet

[264]

 <column-display-size>25</column-display-size>
 <column-label>PUBLISHER</column-label>
 <column-name>PUBLISHER</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>3</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>25</column-display-size>
 <column-label>EDITION</column-label>
 <column-name>EDITION</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>4</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>45</column-display-size>
 <column-label>TITLE</column-label>
 <column-name>TITLE</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>

Chapter 9

[265]

 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 <column-definition>
 <column-index>5</column-index>
 <auto-increment>false</auto-increment>
 <case-sensitive>true</case-sensitive>
 <currency>false</currency>
 <nullable>1</nullable>
 <signed>true</signed>
 <searchable>true</searchable>
 <column-display-size>25</column-display-size>
 <column-label>AUTHOR</column-label>
 <column-name>AUTHOR</column-name>
 <schema-name></schema-name>
 <column-precision>0</column-precision>
 <column-scale>0</column-scale>
 <table-name></table-name>
 <catalog-name></catalog-name>
 <column-type>12</column-type>
 <column-type-name>VARCHAR2</column-type-name>
 </column-definition>
 </metadata>
 <data>
 <row>
 <col>Oracle Magazine</col>
 <col>Oracle Publishing</col>
 <col>July-August 2005</col>
 <col>Configuring Undo Tablespace</col>
 <col>Floss, Kimberly</col>
 </row>
 <row>
 <col>Oracle Magazine</col>
 <col>Oracle Publishing</col>
 <col>March-April 2004</col>
 <col>Oracle Certified Master</col>
 <col>Jim Dillani</col>
 </row>
 </data>
</RowSet>

Oracle Web RowSet

[266]

Query the database table Catalog, the output produced. A new row has been added,
a row modified, and a row deleted.

In this section a Web RowSet was generated from a database table, the WebRowSet
was modified, and the database table updated with the modified Web RowSet.

JDBC 4.0 Version
The OC4J embedded in JDeveloper 10g or JDeveloper 11g does not implement JDBC
4.0 specification. The new features in JDBC 4.0 may be availed of in a later version of
JDeveloper that supports JDBC 4.0 specification.

In the JDBC 4.0 version of the web application, add the Oracle database 11g JDBC
4.0 drivers JAR file, ojdbc6.jar, to the j2ee/home/applib directory, which is in the
runtime class path of a web applications running in OC4J server. Also add ojdbc6.
jar to the project libraries by selecting Tools | Project Properties and subsequently
selecting Libraries | Add Jar/Directory. For the JDBC 4.0 drivers we need to set
the JDK version to JDK 6.0. Select the project node in Applications-Navigator and
select Tools | Project Properties. Select the Libraries node in the Project Properties
window and click on J2SE Version field's Change button to set the JDK version. In
the Edit J2SE Definition window, click on New. In the Create J2SE window, select a
JDK 6.0 J2SE Executable and click on OK.

Chapter 9

[267]

In the Edit J2SE Definition window, select the JDK 6.0 J2SE Definition and click OK.

Oracle Web RowSet

[268]

In the Project Properties window the J2SE Version gets set to JDK 6.0.

JDBC 4.0 provides enhanced connection management. JDBC 4.0 has added support
for connection state tracking using which unusable connections can be identified
and closed. The connection state tracking is implemented by the connection
pool manager using a new method in the Connection interface, isValid(). The
connection pool manager determines if a Connection object is valid by invoking
the isValid() method on the Connection object. If the Connection object is not
valid the connection pool manager closes the connection. Prior to the new feature,
to track connection state the connection pool manager typically had to close all the
connections in a connection pool and reinitiate the connection pool if the connection
pool performance got reduced due to unusable connections. A connection pool
manager implements the connection state tracking as follows:

if(!connection.isValid())
connection.close();

Chapter 9

[269]

An SQLException in a JDBC application might be chained to other SQLExceptions
and a developer would be interested in retrieving the chained exceptions.
In JDBC 3.0 the chained exceptions and the chained causes of the exceptions
had to be retrieved by invoking the getNextException() and getCause()
methods recursively.

catch(SQLException e)
 {
while(e != null)
 {
System.out.println("SQLException Message:" + e.getMessage());
Throwable t = e.getCause();
while(t != null)
 {
System.out.println("SQLException Cause:" + t);
t = t.getCause();
}
e = e.getNextException();
}
}

JDBC 4.0 has added support for the Java SE chained exception facility also called the
cause facility. The support for the Java SE chained exception facility is implemented
with following new features.

Four new constructors in the SQLException class that have the Throwable
cause as one of the parameters.
SQLException class supports the enhanced for-each loop introduced in
J2SE 5.0 to retrieve the chained exceptions and chained causes without
invoking the getNextException() and getCause() methods recursively.
The getCause() method supports non-SQLExceptions.

Chained exceptions and chained causes may be retrieved using the enhanced
for-each loop as follows:

catch(SQLException sqlException)
 {
for(Throwable e : sqlException)
 {
System.out.println("Error encountered: " + e);
}
}

•

•

•

Oracle Web RowSet

[270]

JDBC 4.0 drivers have also added support for SQL data types ROWID and National
Character Set data types NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB
in the RowSet interface.

The WebRowSetQuery class used in this chapter with the chained exceptions retrieved
using the enhanced for-each loop is listed below:

package webrowset;
import oracle.jdbc.rowset.*;
import java.io.*;
import java.sql.SQLException;
public class WebRowSetQuery
 {
 public OracleWebRowSet webRowSet;
 public String selectQuery;
 public WebRowSetQuery() {
 }
 public WebRowSetQuery(OracleWebRowSet webRowSet)
 {
 this.webRowSet = webRowSet;
 }
 public void generateWebRowSet(String selectQuery)
 {
 try
 {
 webRowSet = new OracleWebRowSet();
 webRowSet.setDataSourceName("jdbc/OracleDataSource");
 webRowSet.setCommand(selectQuery);
 webRowSet.setUsername("oe");
 webRowSet.setPassword("pw");
 webRowSet.setReadOnly(false);
 webRowSet.setFetchSize(5);
 webRowSet.setMaxRows(3);
 webRowSet.execute();

 }
 catch (SQLException sqlException)
 {
 for (Throwable e: sqlException)
 {
 System.out.println("Error encountered: " + e);
 }
 }
 }
 public void generateXMLDocument()

Chapter 9

[271]

 {
 try
 {
 OutputStreamWriter output =
 new OutputStreamWriter(new FileOutputStream(new
 File("c:/output/output.xml")));
 webRowSet.writeXml(output);
 } catch (SQLException sqlException)
 {
 for (Throwable e: sqlException)
 {
 System.out.println("Error encountered: " + e);
 }
 }
 catch (IOException e)
 {
 }
 }
 public void deleteRow(int row)
 {
 try
 {
 webRowSet.absolute(row);
 webRowSet.deleteRow();
 } catch (SQLException sqlException)
 {
 for (Throwable e: sqlException)
 {
 System.out.println("Error encountered: " + e);
 }
 }
 }
public void insertRow(String journal, String publisher, String
 edition,
 String title, String author)
 {
 try
 {
 webRowSet.moveToInsertRow();
 webRowSet.updateString(1, journal);
 webRowSet.updateString(2, publisher);
 webRowSet.updateString(3, edition);
 webRowSet.updateString(4, title);
 webRowSet.updateString(5, author);

Oracle Web RowSet

[272]

 webRowSet.insertRow();
 } catch (SQLException sqlException)
 {
 for (Throwable e: sqlException)
 {
 System.out.println("Error encountered: " + e);
 }
 }
 }
public void updateRow(int rowUpdate, String journal, String
 publisher,
 String edition, String title, String author)
 {
 try
 {
 webRowSet.absolute(rowUpdate);
 webRowSet.updateString(1, journal);
 webRowSet.updateString(2, publisher);
 webRowSet.updateString(3, edition);
 webRowSet.updateString(4, title);
 webRowSet.updateString(5, author);
 webRowSet.updateRow();
 } catch (SQLException sqlException)
 {
 for (Throwable e: sqlException)
 {
 System.out.println("Error encountered: " + e);
 }
 }
 }
 public String[] readRow(int rowRead)
 {
 String[] resultSet = null;
 try
 {
 resultSet = new String[5];
 webRowSet.absolute(rowRead);
 resultSet[0] = webRowSet.getString(1);
 resultSet[1] = webRowSet.getString(2);
 resultSet[2] = webRowSet.getString(3);
 resultSet[3] = webRowSet.getString(4);
 resultSet[4] = webRowSet.getString(5);
 } catch (SQLException sqlException)
 {

Chapter 9

[273]

 for (Throwable e: sqlException)
 {
 System.out.println("Error encountered: " + e);
 }
 }
 return resultSet;
 }
 public void updateDatabase()
 {
 try {
 webRowSet.acceptChanges();
 } catch (SQLException sqlException)
 {
 for (Throwable e: sqlException)
 {
 System.out.println("Error encountered: " + e);
 }
 }
 }
}

Summary
A persistent connection with a database is required to make updates to the database
with the ResultSet interface. The RowSet extends the ResultSet interface. RowSet
has the advantage of not requiring a persistent JDBC database connection for the
modification of data. WebRowSet interface further extends the RowSet interface and
represents a RowSet object as an XML document, thus facilitating the transfer of data
for query and modification by remote clients who are not connected to the database.
JDBC 4.0 features such as connection state tracking and Java SE chained exceptions
facility may be availed of in a Web RowSet application in a server that supports
JDBC 4.0.

Creating a JSF Data Table
JavaServer Faces (JSF) provides a set of User Interface (UI) components that may be
used to display database data in conjunction with the JDBC API. JDeveloper 10.1.3
edition supports the reference implementation of JSF 1.1_02. The JSF HTML tag
library provides different User Interface components in the Component Palette for
developing a web application. Data Table is a UI component, which represents a data
collection in a table, in the JSF HTML component palette. The Data Table component
may be used to display database data with a static or dynamically generated
SQL query.

JDeveloper 10.1.3 provides a Create Data Table Wizard to create a JSF Data Table.
In this chapter we will create a Data Table by binding the Data Table to a managed
bean (MBean) in the Create Data Table Wizard and by binding the Data Table to a
specified number of columns in the Create Data Table Wizard, and by subsequently
creating a Data Table with the JSF API. The JSF class javax.faces.component.html.
HtmlDataTable represents a Data Table. The columns in a Data Table are represented
by the javax.faces.component.UIColumn class. Managed beans are Java objects that
represent some resources, and that are managed by the JSF framework and that may
be used as a component model. In this chapter we will learn about:

Creating a Data Table using an MBean with the Create Data Table Wizard
Creating a Data Table using the JSF API with the Create Data Table Wizard

Setting the Environment
Install the Oracle database 10g, including the sample schemas, and create a database
instance. The Data Table is created from an example database table, OE.Catalog.
Create the example table, OE.Catalog, using the following SQL script:

CREATE TABLE OE.Catalog(CatalogId INTEGER PRIMARY KEY, Journal

 VARCHAR(25), Publisher VARCHAR(25), Edition VARCHAR(25), Title

 Varchar(45), Author Varchar(25));

•
•

Creating a JSF Data Table

[276]

INSERT INTO OE.Catalog VALUES('1', 'Oracle Magazine', 'Oracle

 Publishing', 'Nov-Dec 2004', 'Database Resource Manager',

 'Kimberly Floss');

INSERT INTO OE.Catalog VALUES('2', 'Oracle Magazine', 'Oracle

 Publishing', 'Nov-Dec 2004', 'From ADF UIX to JSF','Jonas Jacobi');

INSERT INTO OE.Catalog VALUES('3', 'Oracle Magazine', 'Oracle

 Publishing', 'March-April 2005', 'Starting with Oracle ADF ',

 'Steve Muench');

Creating a Data Table by Binding a
MBean
In this section we will create a Data Table with the Create Data Table Wizard by
binding the Data Table with a managed bean that represents the data source for the
Data Table . The procedure to create a Data Table using an MBean is as follows:

1. Create a JavaBean class for a Web Service.
2. Create a Service Endpoint Interface (SEI) for the Web Service.
3. Generate a Web Service from the Javabean class and the SEI.
4. Create a client class for Web Service. In the client class, connect to Oracle

database using JDBC and run an SQL query to create a ResultSet, which
represents the collection of data objects that we will bind to the Data Table.

5. Create an MBean from the Web Service client class.
6. In a JSF page bind a Data Table to the MBean.

First, create an application and a project in JDeveloper 10.1.3 as shown.

Chapter 10

[277]

The Data Table JSF application consists of three tiers: the database, the middle-tier
MBean, and the JSF user interface. Add a JavaBean class to the project for the middle
tier. The Bean class consists of getter and setter values for the different columns of
the Data Table. The JavaBean class is added with File | New. In the New Gallery
window select General | Java Class in Categories and click on OK. JavaBean class
DataTable.java is listed below.

package datatable;
public class DataTable
{
 private int catalogId;
 private String journal;
 private String publisher;
 private String edition;
 private String title;
 private String author;
 public DataTable()
 {}
 public int getCatalogId(){
 return this.catalogId;}
 public void setCatalogId(int catalogId){
 this.catalogId=catalogId;}
 public String getJournal(){
 return this.journal;}
 public void setJournal(String journal){
 this.journal=journal;}
 public String getPublisher(){
 return this.publisher;}
 public void setPublisher(String publisher){
 this.publisher=publisher;}
 public String getEdition(){
 return this.edition;}
 public void setEdition(String edition){
 this.edition=edition;}
 public String getTitle(){
 return this.title;}
 public void setTitle(String title){
 this.title=title;}
 public String getAuthor(){
 return this.author;}
 public void setAuthor(String author){
 this.author=author;}
 public static void main(String[] args){
 DataTable dataTable = new DataTable();
 }
}

Creating a JSF Data Table

[278]

Add a MyWebService1SEI.java SEI for the Bean class with File | New. In the
New Gallery window select General in Categories and Java Interface in Items.
MyWebService1SEI.java is listed below.

package datatable;
import java.rmi.RemoteException;
public interface MyWebService1SEI extends java.rmi.Remote
{ public java.lang.String getTitle() throws RemoteException;
 public void setTitle(java.lang.String param0) throws
RemoteException;
 public int getCatalogId() throws RemoteException;
 public void setCatalogId(int param0) throws RemoteException;
 public java.lang.String getJournal() throws RemoteException;
 public void setJournal(java.lang.String param0) throws
RemoteException;
 public java.lang.String getPublisher() throws RemoteException;
 public void setPublisher(java.lang.String param0) throws
RemoteException;
 public java.lang.String getEdition() throws RemoteException;
 public void setEdition(java.lang.String param0) throws
RemoteException;
 public java.lang.String getAuthor() throws RemoteException;
 public void setAuthor(java.lang.String param0) throws
RemoteException;
}

Next, generate a web service from the middle-tier JavaBean class and SEI. Right-click
on the DataTable.java Bean class and select Create J2EE Web Service.

Chapter 10

[279]

In the Select J2EE Version window, select J2EE 1.4 (JAX-RPC) web services. In the
Class window select the default Web Service Name and select the default settings
for Service Endpoint Interface and click on Next. In the Message Format window
select the SOAP Message Format, which may be set to Wrapped or Unwrapped. The
SOAP Message Format specifies the SOAP binding document style. In the Wrapped
style the wsdl:operation name is specified as the same as the root element of an XML
document. Select the SOAP Message Format as Document/Wrapped. The Generate
Schema with Qualified Elements checkbox is selected by default, which implies that
schema elements are namespace prefixed. Web service attachments are processed
using MIME encoding.

Multipurpose Internet Mail Extensions (MIME) format is used to transmit messages
and is a basic component of the HTTP communication protocol. MIME supports text
and header information in non-ASCII character sets, and non-text attachments. To
use MIME encoding, select the Use MIME Encoding checkbox. Click on Next. In
Specify Custom DataType Serializers, specify mapping between the XML types and
their corresponding Java types. Select the default settings and click on Next. In the
Mapping window optionally specify the mapping between Java Web Service and
the corresponding WSDL elements. Select the default settings and click on Next. The
Methods window displays the Web Service methods. Click on Next. In the Handler
Details window, select the default settings and click on Next. In the State window,
select the default settings and click on Next. In the Additional Classes window, click
on Next. A web service for the middle-tier gets added to the project.

Creating a JSF Data Table

[280]

Next, generate a client class for the web service. Right-click on the web service node
and select Generate Web Service Proxy.

In the Shared Service Endpoint Interface window, click on Yes. In the Port
Endpoints window, select Run Against a service deployed to Embedded OC4J
checkbox and click on OK. A client class for the web service gets added to the project.

Chapter 10

[281]

In the client class we will access Oracle database and run an SQL query to create
a ResultSet from the Catalog table, which we created earlier. To the client class,
add an import statement for the java.sql.* package and a getDataResultSet
method, which returns a ResultSet of data retrieved from a database table. In
the getDatResultSet method, load the Oracle JDBC driver class oracle.jdbc.
OracleDriver and create a connection with Oracle database using getConnection
method of the DriverManager class. Create a Statement object from the Connection
object using the createStatement method of Connection object. By default you may
iterate through a ResultSet only once and from the first row to the last row. To create
a scrollable result, specify result set type as ResultSet.TYPE_SCROLL_INSENSITIVE.
For a read-only result set specify result set concurrency as ResultSet.CONCUR_READ_
ONLY. Run an SQL query using executeQuery method of Statement object.

Creating a JSF Data Table

[282]

The getDataResultSet method is listed as follows:

public ResultSet getDataResultSet(){
 ResultSet rs=null;
 try{
 Class.forName("oracle.jdbc.OracleDriver");
 String url="jdbc:oracle:thin:@localhost:1521:ORCL";
 Connection connection = DriverManager.getConnection(url,
 "OE", "pw");
 Statement stmt=connection.createStatement(ResultSet.
 TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
 rs=stmt.executeQuery("SELECT * FROM OE.CATALOG");
 }catch(SQLException e){}
 catch(ClassNotFoundException e){}
 return rs;
 }

Next, we will create a Data Table in a JSF page. Add a JSF page to the
Applications-Navigator project with File | New. In the New Gallery window
select Web Tier | JSF in Categories and JSF JSP in Items.

Chapter 10

[283]

In the JSP File window specify a File Name, catalog.jsp, and click on Next. In the
Component Binding window select Automatically Expose UI Components in a
New Managed Bean.

Creating a JSF Data Table

[284]

In the Error Page Options window, select the default setting, which is to not use an
error page, and click on Next. In the Tag Libraries window, the JSF HTML and JSF
Core tag libraries are pre-selected. Data Table is a JSF HTML tag library component.
JSF Core tag library implements the standard JSF core tags. Click on Next.

Chapter 10

[285]

In the HTML Options window, select the default settings and click on Next. In
the Finish window, click on Finish. A JSF page including the faces-config.xml
configuration file and a backing bean for the JSF page are added to the Applications-
Navigator project node. Next we will add an MBean, which encapsulates the client
class of the middle-tier Web Service. Open the faces-config.xml configuration file,
select the Overview tab and click on New.

Creating a JSF Data Table

[286]

In the Create Managed Bean window, specify managed bean name, CatalogBean,
and specify the Web Service client class, which was generated earlier, in the Class
field and select request as the Scope. Click on OK.

A managed bean for the Web service client class gets added.

Chapter 10

[287]

Next, we will add a Data Table to the JSF page. Select the JSF HTML Component
Palette. Select the JSF page node in the Applications Navigator, position the cursor
in the JSF page, and select Data Table in the JSF HTML Component Palette.

Creating a JSF Data Table

[288]

The Create Data Table Wizard starts. Click on Next in the introduction window. In
the Binding window, select the Bind the Data Table Now radio button and click on
Next. The Number of Columns option is for binding the Data Table using the JSF
API, which we will discuss in the next section.

In the Bind Data Table window, the Value field specifies the data objects collection
from which a Data Table is to be generated. The Class field specifies the Bean class
for the data objects collection and the Var field specifies the variable for a row of data
in the data objects collection. Click on Bind to bind a data objects collection to the
Data Table.

Chapter 10

[289]

Select All Types in the Filter By selection. Select the dataResultSet variable from
the CatalogBean MBean that we generated earlier. Add the selected variable to the
Expression window with the > button. Click on OK. The Expression represents an
EL expression for the data objects collection returned by the dataResultSet method
of the Web Service client class, which was encapsulated in the CatalogBean MBean.

In the Bind Data Table window, specify the bean class DataTable from which the
Web service was created in the Class field. In the Var field, specify a variable for a
row of data in the data objects collection. Click on Next.

Creating a JSF Data Table

[290]

In the Header and Row Data window, the column headers in the Data Table and EL
expressions for the column values in the Data Table are specified. Modify the order
of columns to match the columns in the database table from which Data Table is to
be generated and click on Next.

In the Finish window, click on the Finish button. The Data Table headers and
EL expressions for column values are added to the JSF page. Right-click on the
catalog.jsp node and select Run to generate a Data Table.

Chapter 10

[291]

A Data Table gets generated and gets displayed in the default browser.

Creating a Data Table with the JSF API
In the previous section, we generated a Data Table from a static query in a Web
service client class. In this section we will generate a Data Table from a dynamic
query specified in the JSF page. We will use the Create Data Table Wizard to bind
the Data Table to a specified number of columns and in the backing bean generate
the Data Table with the JSF API. The procedure to create a Data Table from a
database table with the JSF API is as follows:

1. Create a JSF Page.
2. Add an Input Text JSF component to the JSF page. We will use the Input

Text to specify an SQL query from which the Data Table will be generated.
3. Add a Command Button from the Component Palette to submit the SQL

query. We will bind the command button to a backing bean method with
which we will create the Data Table.

4. Add a Data Table from the Component Palette. In the Create Data Table
Wizard specify the number of columns to match the number of columns in
the database table from which the Data Table is to be created.

5. In the backing bean retrieve the SQL query specified in the Input Text and
create a Data Table using the JSF API.

Creating a JSF Data Table

[292]

Delete the JSFDataTable application, including the application contents, created
in the previous section. As in the previous section, create an application and a
project. Add a JSF page with File | New. In the New Gallery window, select Web
Tier | JSF in Categories and JSF JSP in Items. Click on OK. To the JSF page add
the JDeveloper CSS style from the CSS Component Palette. To the JSF page add a
Heading 2. Specify heading as 'JSF Data Table'.

Chapter 10

[293]

Next, position the cursor below the heading in the JSF page Design view and add
an Input Text UI component from the JSF HTML Component Palette. To add a UI
component from the JSF HTML Component Palette, click on the component in the
Component Palette. We will specify the SQL query for generating a Data Table in the
Input Text.

Creating a JSF Data Table

[294]

Position the cursor in the JSF page below the input text and add a Command Button
component from the JSF HTML Component Palette. We will submit the SQL
query with the command button. Set the text on the Command Button in the
Property Inspector.

Next, position the cursor in the JSF page below the command button and add a Data
Table from the Component Palette.

Chapter 10

[295]

The Create Data Table Wizard gets started. Click on Next. In the Binding window,
select Number of Columns and specify a value, the number of columns in the
database table from which the Data Table is generated as 6. Click on Finish.

Creating a JSF Data Table

[296]

A Data Table gets added to the JSF page. The Data Table does not contain any
column headers or column data yet. We will add backing bean binding for the Data
Table columns and column headers to generate a Data Table.

Modify the catalog.jsp JSF page to specify the backing bean binding for the
different columns in the Data Table. Replace the following listing:

<h:dataTable binding="#{backing_catalog.dataTable1}" id="dataTable1">
 <h:column/>
 <h:column/>
 <h:column/>
 <h:column/>
 <h:column/>
 <h:column/>
 </h:dataTable>

with the following listing:

<h:dataTable rows="5" binding="#{backing_catalog.dataTable1}">
 <h:column binding="#{backing_catalog.column1}"/>
 <h:column binding="#{backing_catalog.column2}"/>
 <h:column binding="#{backing_catalog.column3}"/>

Chapter 10

[297]

 <h:column binding="#{backing_catalog.column4}"/>
 <h:column binding="#{backing_catalog.column5}"/>
 <h:column binding="#{backing_catalog.column6}"/>
 </h:dataTable>

Next, bind the command button to a backing bean method in which the Data Table
will be generated. Double-click on the command button. In the Bind Action Property
window, select the default action method in the backing bean for the command
button and click on OK. The backing bean class for the JSF page, Catalog.java gets
displayed. Add UIColumn component variables for the Data Table columns and add
getter/setter methods for the UIColumn components. Modify the commandButton1_
action method, which is called when the Data Table button is clicked. In the
commandButton1_action method, obtain a JDBC connection with the database.
Load the driver class oracle.jdbc.OracleDriver using the Class.forName
method. Create a Connection object using the getConnection method of the
DriverManager class:

Class.forName("oracle.jdbc.driver.OracleDriver");
String url="jdbc:oracle:thin:@<host>:1521:<database>";
Connection connection = DriverManager.getConnection(url,
 "OE", "<password>");

In the connection URL <host> is the database Host and <database> is
the database instance.

Create a Statement object using createStatement method. Specify result set type
as scrollable and result set concurrency as read-only.

Statement
 stmt=connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

Query the database with the SQL Select statement specified in the Input Text field
of the JSF page. The Input Text value is retrieved by invoking the getValue method
of the backing bean property for the Input Text. The SQL query is run using the
executeQuery method of Statement object. The executeQuery method generates a
ResultSet object.

ResultSet rs=stmt.executeQuery((String)inputText1.getValue());

Using the backing bean property for the Data Table, set the border and cell padding
on the Data Table. The border is set using the setBorder method and the cell
padding is set using the setCellPadding method:

dataTable1.setBorder(5);
dataTable1.setCellpadding("1");

Creating a JSF Data Table

[298]

Set the variable for a row of data in the ResultSet retrieved from the database with
the setVar method:

dataTable1.setVar("catalog");

Set the header values for the columns in the Data Table. The Data Table has columns
for each of the columns in the database table. Column headers are added by creating
HtmlOutputText header components and setting the headers on the UIColumn
components with the setHeader method. HtmlOutputText value is setting using
the setValue method. For example, the column header for the CatalogId column is
added as follows:

HtmlOutputText headerComponent = new HtmlOutputText();
headerComponent.setValue("CatalogId");
column1.setHeader(headerComponent);

For each of the columns in the Data Table, specify a value binding for an
HtmlOutputText component and add the component to the column. Value binding
for an HtmlOutputText component is set using the setValueBinding method. An
HtmlOutputText component is added to a UIColumn component by invoking the
getChildren method and subsequently invoking the add method. For example, for
the CatalogId column an HtmlOutputText component is added as follows:

HtmlOutputText column1Text=new HtmlOutputText();
ValueBinding vb =
FacesContext.getCurrentInstance().getApplication().createValueBinding(
"#{catalog.catalogid}");
column1Text.setValueBinding("value", vb);
column1.getChildren().add(column1Text);

Create a ResultSetDataModel object. A ResultSetDatModel object is used to
wrap a ResultSet object, which is required to be scrollable. Set the ResultSet
retrieved with the SQL query as the data for the ResultSetDataModel using the
setWrappedData method:

ResultSetDataModel dataModel=new ResultSetDataModel();
dataModel.setWrappedData(rs);

Bind the Data Table with the ResultSetDataModel object using the
setValue method.

dataTable1.setValue(dataModel);

The modified backing bean class Catalog.java is listed below:

package datatable.backing;
import javax.faces.component.html.HtmlCommandButton;
import javax.faces.component.html.HtmlDataTable;

Chapter 10

[299]

import javax.faces.component.html.HtmlForm;
import javax.faces.component.html.HtmlInputText;
import javax.faces.component.UIColumn;
import javax.faces.component.html.HtmlOutputText;
import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;
import javax.faces.model.ResultSetDataModel;
import java.sql.*;
public class Catalog {
 private HtmlForm form1;
 private HtmlInputText inputText1;
 private HtmlCommandButton commandButton1;
 private HtmlDataTable dataTable1;
 private UIColumn column1;
 private UIColumn column2;
 private UIColumn column3;
 private UIColumn column4;
 private UIColumn column5;
 private UIColumn column6;
 public void setForm1(HtmlForm form1) {
 this.form1 = form1;
 }
 public HtmlForm getForm1() {
 return form1;
 }
 public void setInputText1(HtmlInputText inputText1) {
 this.inputText1 = inputText1;
 }
 public HtmlInputText getInputText1() {
 return inputText1;
 }
 public void setCommandButton1(HtmlCommandButton commandButton1) {
 this.commandButton1 = commandButton1;
 }
 public HtmlCommandButton getCommandButton1() {
 return commandButton1;
 }
 public void setDataTable1(HtmlDataTable dataTable1) {
 this.dataTable1 = dataTable1;
 }
 public HtmlDataTable getDataTable1() {
 return dataTable1;
 }
 public void setColumn1(UIColumn column1) {
 this.column1 = column1;
 }
 public UIColumn getColumn1() {

Creating a JSF Data Table

[300]

 return column1;
 }
 public void setColumn2(UIColumn column2) {
 this.column2 = column2;
 }
 public UIColumn getColumn2() {
 return column2;
 }
 public void setColumn3(UIColumn column3) {
 this.column3 = column3;
 }
 public UIColumn getColumn3() {
 return column3;
 }
 public void setColumn4(UIColumn column4) {
 this.column4 = column4;
 }
 public UIColumn getColumn4() {
 return column4;
 }
 public void setColumn5(UIColumn column5) {
 this.column5 = column5;
 }
 public UIColumn getColumn5() {
 return column5;
 }
 public void setColumn6(UIColumn column6) {
 this.column6 = column6;
 }
 public UIColumn getColumn6() {
 return column6;
 }
 public String commandButton1_action()
 {
 // Add event code here...
 ResultSet rs=null;
 try{
 Class.forName("oracle.jdbc.OracleDriver");
 String url="jdbc:oracle:thin:@localhost:1521:ORCL";
 Connection connection = DriverManager.getConnection(url,
 "OE", "pw");
 Statement stmt=connection.createStatement(ResultSet.
 TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
 rs=stmt.executeQuery((String)inputText1.getValue());
 dataTable1.setBorder(5);
 dataTable1.setCellpadding("1");
 dataTable1.setVar("catalog");

Chapter 10

[301]

 HtmlOutputText headerComponent = new HtmlOutputText();
 headerComponent.setValue("CatalogId");
 column1.setHeader(headerComponent);
 headerComponent = new HtmlOutputText();
 headerComponent.setValue("Journal");
 column2.setHeader(headerComponent);
 headerComponent = new HtmlOutputText();
 headerComponent.setValue("Publisher");
 column3.setHeader(headerComponent);
 headerComponent = new HtmlOutputText();
 headerComponent.setValue("Edition");
 column4.setHeader(headerComponent);
 headerComponent = new HtmlOutputText();
 headerComponent.setValue("Title");
 column5.setHeader(headerComponent);
 headerComponent = new HtmlOutputText();
 headerComponent.setValue("Author");
 column6.setHeader(headerComponent);
 HtmlOutputText column1Text=new HtmlOutputText();
 ValueBinding vb =
FacesContext.getCurrentInstance().getApplication().createValueBinding(
"#{catalog.catalogid}");
 column1Text.setValueBinding("value", vb);
 column1.getChildren().add(column1Text);
 HtmlOutputText column2Text=new HtmlOutputText();
 vb =
FacesContext.getCurrentInstance().getApplication().createValueBinding(
"#{catalog.journal}");
 column2Text.setValueBinding("value", vb);
 column2.getChildren().add(column2Text);
 HtmlOutputText column3Text=new HtmlOutputText();
 vb =
FacesContext.getCurrentInstance().getApplication().createValueBinding(
"#{catalog.publisher}");
 column3Text.setValueBinding("value", vb);
 column3.getChildren().add(column3Text);
 HtmlOutputText column4Text=new HtmlOutputText();
 vb =
FacesContext.getCurrentInstance().getApplication().createValueBinding(
"#{catalog.edition}");
 column4Text.setValueBinding("value", vb);
 column4.getChildren().add(column4Text);
 HtmlOutputText column5Text=new HtmlOutputText();
 vb = FacesContext.getCurrentInstance().getApplication().createVal
ueBinding("#{catalog.title}");
 column5Text.setValueBinding("value", vb);
 column5.getChildren().add(column5Text);

Creating a JSF Data Table

[302]

 HtmlOutputText column6Text=new HtmlOutputText();
 vb = FacesContext.getCurrentInstance().getApplication().
 createValueBinding("#{catalog.author}");
 column6Text.setValueBinding("value", vb);
 column6.getChildren().add(column6Text);
 ResultSetDataModel dataModel=new ResultSetDataModel();
 dataModel.setWrappedData(rs);
 dataTable1.setValue(dataModel);
 rs.close();
 stmt.close();
 connection.close();
 }
 catch(SQLException e){System.out.println(e.getMessage());}
 catch(ClassNotFoundException e){ System.out.println(e.
getMessage());}
 return null;
 }}

Right-click on the JSF JSP page node and select Run. The JSF page gets displayed.
Specify a SQL query in the input field (for example, SELECT * FROM OE.CATALOG) and
select the Data Table button.

The Data Table for the specified SELECT SQL query is generated.

Chapter 10

[303]

JDBC 4.0 Version
The OC4J server embedded in JDeveloper 10g or 11g does not support JDBC 4.0
specification; but in a later version of JDeveloper that supports JDBC 4.0, the JDBC
4.0 features may be added to the JSF application used to create a Data Table. JDBC
4.0 provides new features such as enhanced connection management, automatic
driver loading, support for wrapper pattern, statement pooling, categorization of
SQLExceptions and enhanced support for the Java SE chained exceptions facility.
To use the JDBC 4.0 features you would need to download the Oracle database 11g
JDBC 4.0 drivers JAR file, ojdbc6.jar from http://www.oracle.com/technology/
software/tech/java/sqlj_jdbc/htdocs/jdbc_111060.html. Copy ojdbc6.
jar to the j2ee/home/lib directory, which is in the runtime class path of web
applications running in OC4J server. As JDBC 4.0 drivers require JDK 6.0, we would
also need to set J2SE version to JDK 6.0. To set the JDK version select Tools | Project
Properties and select Libraries in Project Properties window. Select the Change
button for the J2SE Version field to set the JDK to 6.0.

You don't have to modify the JSF application to add connection state tracking to
the application. Connection state tracking is implemented by the connection pool
manager and is used to track unusable connections in the connection pool. Unusable
connections could hamper connection pool performance. Prior to the new feature in
JDBC 4.0, a connection pool manager had to close all the connections and reinitiate
the connection pool if some of the connections in the connection pool became
unusable The Connection interface in JDBC 4.0 provides a new method isValid()
using which a connection pool manager tests if a connection is still valid and closes
the connection if the connection has become unusable.

if(!connection.isValid())

connection.close();

We used two different methods to create a Data Table. In each of the methods we
obtained a connection with the database using the Class.forName method to load
the Oracle JDBC driver. JDBC 4.0 provides automatic driver loading using the Java SE
Service Provider mechanism. To use the Java SE Service Provider mechanism, create a
java.sql.Driver file in the META-INF/services directory and specify the different
JDBC drivers that are to be available for automatic loading. The Oracle database 11g
drivers JAR file ojdbc 6.jar contains a META-INF/services/java.sql.Driver file
with the oracle.jdbc.OracleDriver class specified in it. With the automatic driver
loading feature, we won't need to invoke the Class.forName method.

Creating a JSF Data Table

[304]

Unlike connection state tracking, you have to modify the JSF application if you
want to avail of the connection identification feature in JDBC 4.0. The Connection
interface in JDBC 4.0 has two new methods setClientInfo and getClientInfo to
set and get client info properties. Sometimes one or more connections bog down the
whole application by using excessive CPU. Using the client info properties the JDBC
driver is able to identify the connection clients that could be causing the reduction in
performance. The standard client info properties that are supported in JDBC 4.0 are
ApplicationName, ClientUser, and ClientHostname. In the getDataResultSet
method in the Web Service client class, which was used to create an MBean and
subsequently a Data Table, set the client info properties as follows:

connection.setClientInfo("ApplicationName","OracleApp");
connection.setClientInfo("ClientUser","OracleUser");
connection.setClientInfo("ClientHostname","OracleHost");

Similarly, set the client info properties in the backing bean method commandButton1_
action, which was used to create a Data Table with an SQL query specified in the
Input Text field. A ResultSet of client info properties supported by a database
may be obtained using the getClientInfoProperties() method of
DatabaseMetaData interface:

DatabaseMetaData metaData=connection.getMetaData();
ResultSet clientInfo=metaData.getClientInfoProperties();

PreparedStatements are pooled by default if the database supports statement
pooling. For efficient use of Statement objects JDBC 4.0 provides Statement object
pooling. Frequently used Statement objects may be pooled using the setPoolable
method. First, test if the Statement object is poolable using the isPoolable method
and subsequently set the Statement object to be poolable.

if(stmt.isPoolable())
stmt.setPoolable(true);

JDBC 4.0 supports the wrapper pattern for accessing nonstandard methods in
vendor specific extensions to the JDBC API. For example, the oracle.jdbc.
OracleStatement interface, which extends the Statement interface provides
some methods not in the Statement interface. The Statement interface extends
the Wrapper interface in JDK 6.0. To use the wrapper pattern to access the
OracleStatement, interface test if the Statement object is a wrapper for the
OracleStatement interface using the isWrapperFor method. If a wrapper, create
an object of type OracleStatement using the unwrap method. Subsequently the
defineColumnType method of OracleStatement interface may be invoked to
specify the column SQL type for a column. Database table data is fetched into a
ResultSet in the specified column type. Pre-defining column types saves the JDBC
driver a round trip to the database to find out what the column type for a column

Chapter 10

[305]

is. If column types are to be specified using defineColumnType column types of all
the columns has to be set. If only a few of the columns are set or more columns than
columns in a SQL query are set a SQLException gets generated. For example, the
column types for the different columns in the SQL query with which a Data Table is
created is set as follows:

Class class = Class.forName("oracle.jdbc.OracleStatement");
if(stmt.isWrapperFor(class)) {
OracleStatement oracleStmt = (OracleStatement)stmt.unwrap(class);
oracleStmt.defineColumnType(1, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(2, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(3, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(4, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(5, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(6, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(7, OracleTypes.VARCHAR);

}

Another new feature JDBC 4.0 provides is support for the for-each loop to iterate
over chained exceptions and chained causes. Chained exceptions are exceptions that
are linked to an exception. In JDBC 3.0, chained exceptions could only be retrieved
by invoking the getNextException method recursively. Using the Java SE chained
exception facility in JDBC 4.0 chained exceptions and chained causes may be
retrieved as follows:

catch(SQLException e){
for(Throwable e : exception) {
out.println("Error encountered: " + e);
}
}

The getDataResultSet method with the JDBC 4.0 features added is listed as follows:

public ResultSet getDataResultSet(){
 ResultSet rs=null;
 try{
 String url="jdbc:oracle:thin:@localhost:1521:ORCL";
 Connection connection = DriverManager.getConnection(url,
 "OE", "pw");
connection.setClientInfo("ApplicationName","OracleApp");
connection.setClientInfo("ClientUser","OracleUser");
connection.setClientInfo("ClientHostname","OracleHost");

 Statement stmt=connection.createStatement(ResultSet.TYPE_SCROLL_
INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
DatabaseMetaData metaData=connection.getMetaData();
if(metaData.supportsStatementPooling()){
if(stmt.isPoolable())
stmt.setPoolable(true);
}

Creating a JSF Data Table

[306]

Class class = Class.forName("oracle.jdbc.OracleStatement");
if(stmt.isWrapperFor(class)) {
OracleStatement oracleStmt = (OracleStatement)stmt.unwrap(class);
oracleStmt.defineColumnType(1, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(2, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(3, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(4, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(5, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(6, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(7, OracleTypes.VARCHAR);

rs=stmt.executeQuery("SELECT * FROM OE.CATALOG");
}

 }catch(SQLException e){for(Throwable e : exception) {
out.println("Error encountered: " + e);
}
 return rs;
 }

Similarly, modify the commandButton1_action method in the JSF backing bean.

Summary
JSF UI Component Data Table may be used to display database data retrieved with
a static SQL query or a dynamically generated SQL query. JDeveloper provides the
Create Data Table Wizard to create a Data Table. A Data Table may be generated
by either binding the Data Table to an MBean or with the JSF API. In a JDeveloper
version that supports JDBC 4.0 the new features in JDBC 4.0 such as connection state
tracking, statement pooling, connection identification, support for wrapper pattern,
and Java SE chained exception facility may be availed of.

Creating a JSF Panel Grid
In the previous chapter, we displayed database data using the JSF Data Table
component. In this chapter, we will discuss JSF Panel Grid to add and retrieve data
from a database with the JDBC API. We will also validate data as data is added to the
database. A panel grid is a UIPanel component represented by the javax.faces.
HtmlPanelGrid class and the h:panelGrid tag. JDeveloper provides the Create
PanelGrid Wizard to create a panel grid.

A panel grid displays a set of components in a specified number of columns. Only
the number of columns needs to be specified in generating a panel grid; the number
of rows is not required. The number of rows is based on the number of components
in the grid and the number of columns in the grid. The components in a panel grid
are added to the specified number of columns. A new panel grid row is started after
the specified number of columns in a row have been allocated. For example, if the
specified number of columns in a panel grid is three and the number of components
to be added to the panel grid is ten. The first three components are added to the first
row, the next three to the second row. Another three components are added to the
third row and one to the fourth row.

In this chapter, a panel grid will be generated from a database table with the Create
PanelGrid Wizard. The Create PanelGrid Wizard provides two methods to create a
panel grid. A panel grid may be created either by first creating an empty panel grid
and subsequently adding components to the panel grid, or by binding a managed
bean to the panel grid. We will discuss both these methods to create a panel grid. The
data for the panel grid will be retrieved/added using JDBC in the JSF backing bean.
In this chapter, we will learn the following:

Creating an empty panel grid with Create JSF Panel Grid Wizard and adding
JSF UI Components to the panel grid.
Creating a panel grid with Create JSF Panel Grid Wizard by binding a
managed bean to the panel grid.
Adding a JSF Validator to a panel grid.
Adding a JSF Converter to a panel grid.

•

•

•
•

Creating a JSF Panel Grid

[308]

Setting the Environment
Install the JDeveloper 10.1.3 IDE. Install the Oracle 10g database including the
sample schemas. In SQL Plus, create an example database table from which a panel
grid will be generated. The SQL script to generate the example database table is
as follows:

CREATE TABLE OE.Catalog(CatalogId INTEGER PRIMARY KEY, Journal

 VARCHAR(25), Publisher VARCHAR(25), Edition VARCHAR(25), Title

 Varchar(45), Author Varchar(25), HREF VARCHAR(125));

INSERT INTO OE.Catalog VALUES('1', 'Oracle Magazine', 'Oracle

 Publishing', 'Nov-Dec 2004', 'Database Resource Manager', 'Kimberly

 Floss', 'http://www.oracle.com/technology/oramag/oracle/04-

 nov/o64tuning.html');

INSERT INTO OE.Catalog VALUES('2', 'Oracle Magazine', 'Oracle

 Publishing', 'Nov-Dec 2004', 'From ADF UIX to JSF', 'Jonas

 Jacobi','http://www.oracle.com/technology/oramag/oracle/04-

 nov/o64jsf.html');

INSERT INTO OE.Catalog VALUES('3', 'Oracle Magazine', 'Oracle

 Publishing', 'March-April 2005', 'Starting with Oracle ADF ',

 'Steve Muench', 'http://www.oracle.com/technology/oramag/oracle/05-

 mar/o25window.html');

Creating a Panel Grid by Binding Rows
In this section we will create a panel grid by binding rows to the panel grid. First, we
will create an empty panel grid by specifying the number of columns in the panel
grid. Subsequently, we will add JSF UI components to the empty panel grid from
the JSF HTML Component Palette. The components added to an empty panel grid
automatically get added in the specified number of columns. To create a JSF panel
grid, only the number of columns needs to be specified.

In this section, we will generate a panel grid of output labels, an input text field,
output text fields, and command buttons. We will add a panel grid to a JSF page
and add UI components from the Component Palette to the panel grid. We will
create a panel grid from the fields of a journal catalog. The example journal catalog
in the Catalog table has catalog id, journal, publisher, edition, title, author and url
href fields. In the JSF application, the values for the various output text fields are
retrieved from the Oracle database for a specified input catalog id. First, create a
project for creating a panel grid.

Chapter 11

[309]

Next, add a JSF page to the project with File | New. In the New Gallery window,
select Web Tier | JSF in Categories and JSF JSP in Items. In the Create JSF JSP
wizard select J2EE 1.4 in the Web Application window and click on Next. In the
JSP File window specify a File Name and click on Next. In the Component Binding
window select the Automatically Expose UI Components in a New Managed Bean.
The backing bean name, class and package are pre-specified. Click on Next.

Creating a JSF Panel Grid

[310]

In the Error Page Options window, select the default settings, which are to not use
an error page, and click Next. In the Tag Libraries window, the default libraries
(JSF Core 1.0 and JSF HTML 1.0) are selected by default. Click Next. In the HTML
Options window, select the default settings and click on Next. In the Finish window,
click on Finish. A JSF page gets added to the project. Add the JDeveloper CSS
stylesheet to the JSF JSP page. Add a Heading 2 header JSF Panel Grid. Next, add a
Panel Grid to the JSF page. Position the cursor below the heading in the JSF page and
select Panel Grid in the JSF HTML Component Palette.

In the Create PanelGrid Wizard, click on Next. In the PanelGrid Options window
select the Create empty panel grid radio button and specify the Number of
Columns in the panel grid, 2 in the example JSF application. Click on Finish.

Chapter 11

[311]

An empty JSF Panel Grid is added to the JSF page. Next, we will add components
from the Component Palette to the panel grid. The components added to the empty
panel grid are arranged in two columns. Position the cursor in the panel grid and
select Output Label in the Component Palette.

Creating a JSF Panel Grid

[312]

An Output Label is added to the JSF page. Position the cursor to the right of the
output label with the right arrow key and select Input Text in the Component Palette.

An input text field gets added to the JSF page. To add another component to the JSF
page, position the cursor to the right of the previous component with the right arrow
key. Next, add an Output Label. The output label gets added in a new row as the
panel grid has only two columns.

Chapter 11

[313]

Add Output Text fields and Output Labels to the panel grid to four rows. In the fifth
row add a Output Label and a Output Hyperlink.

Next, we will add an Output Text component to the Output Hyperlink component.
Select the Output Hyperlink component in the JSF page and select Output Text
in the Component Palette. An output text field gets added to the output hyperlink
component. An output hyperlink is a UI component that is similar to a <a/>
component in a HTML page. The output text in the output link is text that gets
displayed in the hyperlink.

Creating a JSF Panel Grid

[314]

Add another row of Output Label and Output Text components. Next, add a row of
command buttons to the panel grid.

In the Property Inspector, set the text on the Output Labels and the command
buttons. To specify the text value for a component, click on the component and
specify the text value in the Value property in the Property Inspector.

Chapter 11

[315]

The example JSF application also demonstrates the data conversion and validation
provided by the JSF specification. By specifying a Validator for a component the
component value may be validated to be within a specified range, and by specifying
a Converter for a component, the component value may be converted to the specified
converter type. Specify the validateLongRange validator for the Catalog ID input
text field:

<f:validateLongRange minimum="1" maximum="3"/>

If the value in the Catalog ID input field is not within the specified range of 1 and 3 a
validation error gets generated. The different types of validators provided by the JSF
are listed in the following table:

Validator Description
validateLongRange Validates a long value to be within a

specified range.
validateLength Validates the length of a String value to be

within a specified range.
validateDoubleRange Validates a double value to be within the

specified range.

Register an Integer data type converter with the Catalog ID input text field:

<f:converter converterId="javax.faces.Integer" />

The value specified in the input text field gets converted to java.lang.Integer
type. Next, add a message component to display an error message by the Catalog
ID input text field. Add the input text and message components to a panel
group component. Select the catalog.jsp node in the Applications Navigator
and select the Source tab in the editor window. Replace the <h:inputText
binding="#{backing_catalog.inputText1}" id="inputText1"/> component
with the following h:panelGroup component.

<h:panelGroup>
 <h:inputText binding="#{backing_catalog.inputText1}"
 id="inputText1">
 <f:converter converterId="javax.faces.Integer" />
 <f:validateLongRange minimum="1" maximum="3"/>
 </h:inputText>
 <h:message for="inputText1"/>
</h:panelGroup>

Creating a JSF Panel Grid

[316]

We have added the h:panelGroup component declaratively. JDeveloper also has the
provision to add the panelGroup component when adding the inputText component
using the surround with option. Next, add a action method for the command buttons.
Select the catalog.jsp node in Applications Navigator and select the Design
tab. Double click on the Submit command button. In the Bind Action Property
window, select the managed Bean backing_catalog and backing bean method as
commandButton1_action. Add an import statement for the java.sql package to the
backing bean class panelgrid.backing.Catalog.java.

In the command button action method query the example database table
OE.CATALOG with the Catalog ID specified in the input field. Load the Oracle JDBC
driver oracle.jdbc.OracleDriver using the Class.forName method. Create a
Connection object using the getConnection method of the DriverManager class.
Create a Statement object from the Connection object using the createStatement
method. Specify the result set type as scrollable and result set concurrency as
read-only. Retrieve the Catalog ID input in the JSF page in the Input Text field by
invoking the getValue method on the backing bean attribute for the Input Text.
Run an SQL query using the executeQuery method to generate a ResultSet.
Set the values retrieved in the result set in the output text fields and the
output hyperlink using the setValue method. The following listing shows the
commandButton1_action method:

public String commandButton1_action() {
 // Add event code here...
 ResultSet rs=null;
 try{
 Class.forName("oracle.jdbc.OracleDriver");
 String url="jdbc:oracle:thin:@localhost:1521:ORCL";
 Connection connection =
 DriverManager.getConnection(url,"OE", "pw");
Statement stmt=connection.createStatement(ResultSet.
 TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
String query="SELECT * FROM OE.CATALOG WHERE CATALOGID=
 "+inputText1.getValue();
 rs=stmt.executeQuery(query);
 rs.next();
 outputText1.setValue(rs.getString("Journal"));
 outputText2.setValue(rs.getString("Publisher"));
 outputText3.setValue(rs.getString("Edition"));
 outputLink1.setValue(rs.getString("HRef"));
 outputText4.setValue(rs.getString("Title"));
 outputText5.setValue(rs.getString("Author"));
 rs.close();
 stmt.close();
 connection.close();
 }catch(SQLException e){
 }catch(ClassNotFoundException e){

Chapter 11

[317]

 }
 return null;
 }

The SQL query handling may also be specified in a server-side helper class instead
of directly in the managed bean. The Clear button clears the fields in the JSF page.
Double click on the Clear command button in the Design mode. In the Bind
Action Property window, select the backing_catalog managed bean and the
commandButton2_action method. Modify the commandButton2_action method
to set the output text field values to an empty string. The commandButton2_action
method is listed below:

public String commandButton2_action() {
 // Add event code here...
 outputText1.setValue("");
 outputText2.setValue("");
 outputText3.setValue("");
 outputText4.setValue("");
 outputLink1.setValue("");
 outputText5.setValue("");

 return null;
 }

Right-click on the JSF JSP page catalog.jsp in the Applications Navigator and
select Run. The JSF Panel Grid gets displayed. The output labels and input text field/
output text fields are displayed in two columns.

Creating a JSF Panel Grid

[318]

Specify a Catalog ID in the input field and select the Submit button. The database
table column values corresponding to the specified catalog id are displayed in the
panel grid. The title is displayed as a hyperlink, which may be selected to display the
referred document.

Chapter 11

[319]

The output text fields may be reset to empty text fields by selecting the Clear button.
Next, we will demonstrate the validation of the input text value. Specify a Catalog
Id input text value that is not within the validator range of 1 and 3 and click on the
Submit button:

Creating a JSF Panel Grid

[320]

A validation error is generated to indicate that the specified Catalog ID is not in the
range specified in the validator.

In this section, we created a JSF panel grid by binding two columns to the panel
grid and subsequently adding JSF components to the empty panel grid from the
Component Palette.

Creating a Panel Grid by Binding a
Managed Bean
In this section, we will create a panel grid by binding a managed bean to the panel
grid in the Create PanelGrid Wizard. We had used a similar managed bean binding
to create a Data Table in the previous chapter. A managed bean is a Java object that
represents a resource. The example panel grid is an input form to update a

Chapter 11

[321]

journal catalog in Oracle database. The procedure to create a panel grid by binding a
managed bean is as follows.

1. Create a Java Bean class to represent the different fields in a journal catalog.
2. Create a managed bean from the Java Bean class.
3. Bind the managed bean to a panel grid in a JSF page.

Delete the JSFPanelGrid application created in the pevious section and create a
similar application and a project in Applications-Navigator for the panel grid.
Generate a managed bean from a JavaBean class. A managed bean implements
a resource, a JavaBean class in the example application. The JavaBean class has
properties and getter/setter methods for the properties corresponding to the
different columns in the example database table. Add a Java class to the project
with File | New. In the New Gallery window select General in Categories and
Java Class in Items. In the Create Java Class window specify the class name,
PanelGridBean, and the package name, example.panelgrid. To the PanelGridBean
copy the following listing.

package example.panelgrid;
public class PanelGridBean
{
 private int catalogId;
 private String journal;
 private String publisher;
 private String edition;
 private String title;
 private String author;
 private String href;
 public PanelGridBean(){
 }
 public int getCatalogId(){
 return this.catalogId;
 }
 public void setCatalogId(int catalogId){
 this.catalogId=catalogId;
 }
 public String getJournal(){
 return this.journal;
 }
 public void setJournal(String journal){
 this.journal=journal;
 }
 public String getPublisher(){
 return this.publisher;
 }
 public void setPublisher(String publisher){
 this.publisher=publisher;
 }
 public String getEdition(){

Creating a JSF Panel Grid

[322]

 return this.edition;
 }
 public void setEdition(String edition){
 this.edition=edition;
 }
 public String getTitle(){
 return this.title;
 }
 public void setTitle(String title){
 this.title=title;
 }
 public String getAuthor(){
 return this.author;
 }
 public void setAuthor(String author){
 this.author=author;
 }
 public String getHref(){
 return this.href;
 }
 public void setHref(String href){
 this.href=href;
 }
}

Next, add a JSF JSP page, catalog.jsp, to the project with File | New. In the New
Gallery window select Web Tier | JSF in Categories and select JSF JSP in Items.
Click on OK. Next, we will create a managed bean from the Java Bean class. Open
the faces-config.xml configuration file node in the Applications Navigator and
select the Overview tab in the editor window. Select the Managed Beans node (if not
already selected). Click on New to add a new managed bean.

Chapter 11

[323]

In the Create Managed Bean window, specify the managed bean name,
PanelGridMBean, and select the Javabean class, PanelGridBean, as the Class for
the managed bean. Select request as the Scope and click on OK. A managed bean,
PanelGridMBean gets created.

The JSF panel grid may also be used to specify initial values for the input text fields
in an input form. Specify the initial values of managed bean properties in the
faces-config.xml file. Select the faces-config.xml file node and the Source tab. To
the PanelGridMBean, add the initial values of the managed bean properties with the
<managed-property/> element. The managed-bean element in faces-config.xml
with the managed bean properties specified is listed:

<managed-bean>
 <managed-bean-name>backing_catalog</managed-bean-name>
 <managed-bean-class>panelgrid.backing.Catalog</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!--oracle-jdev-comment:managed-bean-jsp-link:1catalog.jsp-->
 </managed-bean>
 <managed-bean>
 <managed-bean-name>PanelGridMBean</managed-bean-name>
 <managed-bean-class>example.panelgrid.PanelGridBean</managed-
 bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>catalogId</property-name>
 <value>1</value>
 </managed-property>
 <managed-property>
 <property-name>journal</property-name>
 <value>Oracle Magazine</value>
 </managed-property>
 <managed-property>
 <property-name>publisher</property-name>

Creating a JSF Panel Grid

[324]

 <value>Oracle Publishing</value>
 </managed-property>
 <managed-property>
 <property-name>edition</property-name>
 <value>Nov-Dec 2004</value>
 </managed-property>
 <managed-property>
 <property-name>title</property-name>
 <value>Database Resource Manager</value>
 </managed-property>
 <managed-property>
 <property-name>author</property-name>
 <value>Kimberly Floss</value>
 </managed-property>
 <managed-property>
 <property-name>href</property-name>
 <value>http://www.oracle.com/technology/oramag/oracle/04-
 nov/o64tuning.html</value>
 </managed-property>
 </managed-bean>

Add a panel grid to the JSF page, catalog.jsp. Position the cursor in the JSF
page and select Panel Grid in the Component Palette.

Chapter 11

[325]

The Create PanelGrid Wizard gets started. Click on Next. In the PanelGrid Options
window select the Panel Grid from Managed Bean or Expression radio button.
Click on Bind to bind the panel grid with a managed bean.

In the Expression Builder window, select the JSF Managed Beans |
PanelGridMBean node and add the PanelGridMBean to the Expression field
with the > button.

Creating a JSF Panel Grid

[326]

In the PanelGrid Options window, select the Javabean class, PanelGridBean in the
Class field and click on Next.

In the Fields Selection window sort the order of the selected fields to correspond to
the OE.CATALOG database table columns. Click on Next.

Chapter 11

[327]

In the Components Detail select the <header> row and specify a header in the
Label field. Select the Catalog Id row and select the Type as Input Text. Specify the
Catalog Id field as a required field by selecting the Required checkbox. Select the
Associate Message checkbox to add a message component column to the panel grid.
The error messages get displayed in the message component. Click on the Advanced
button to register a validator and a converter with the Catalog Id input text field.
A JSF validator is used to validate input fields values and a JSF converter is used to
convert input field values.

In the Advanced Properties window, select the Integer converter. The Catalog Id
input text field value gets converted to Integer type with the converter.

Creating a JSF Panel Grid

[328]

Next, select the Validator tab and select the Validate Long Range validator. Specify
the Minimum and Maximum values for the validator. The validator validates the
Catalog Id input field value to be within the specified range.

In the Components Detail window, specify the Type as Input Text for the other
fields and click on Next. In the Finish window click on Finish. A JSF Panel grid is
added to the JSF page catalog.jsp. Add a command button Submit to the JSF page.

Chapter 11

[329]

Next, we will modify the command button action method in the backing bean.
Double-click on the command button in the Design tab. In the Bind Action property
window select the default settings for Managed Bean and Method and click on OK.
In the command button action method retrieve the input field values and update
the database table for the specified catalog id. Add an import statement to the
backing bean class for the java.sql package. In the commandButton1_action
method load the Oracle JDBC driver oracle.jdbc.OracleDriver using the
Class.forName method.

Create a Connection object using the getConnection method of DriverManager
class. Create a Statement object from the Connection object using createStatement
method. Specify the result set type as scrollable and result set concurrency as read-
only. Retrieve the Input Text field values using getValue method. Update database
table Catalog by running an UPDATE SQL statement using the executeQuery method.
The commandButton1_action method is listed below.

public String commandButton1_action() {
 // Add event code here...
 ResultSet rs=null;
 try{Class.forName("oracle.jdbc.OracleDriver");
 String url="jdbc:oracle:thin:@localhost:1521:ORCL";
 Connection connection =
 DriverManager.getConnection(url,"OE", "pw");
Statement
 stmt=connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 int catalogId=((Integer)(inputText0.getValue())).
intValue();
 String journal=(String)inputText1.getValue();
 String publisher=(String)inputText2.getValue();
 String edition=(String)inputText3.getValue();
 String title=(String)inputText4.getValue();
 String author=(String)inputText5.getValue();
 String href=(String)inputText6.getValue();
String query="UPDATE OE.CATALOG SET
 JOURNAL="+"'"+journal+"'"+","+"PUBLISHER="+"'"+publisher+ "'"+
 ","+"EDITION="+"'"+edition+"'"+","+ "TITLE=" +"'"+title+"'"+","+"
 AUTHOR="+"'"+author+"'"+"," +" HREF="+"'"+href+"'"+"WHERE
 CATALOGID="+"'"+catalogId+"'";
stmt.executeUpdate(query);stmt.close();connection.close();}
 catch(SQLException e){System.out.println(e.getMessage());}
 catch(ClassNotFoundException e)
 {System.out.println(e.getMessage());}return null;}

Creating a JSF Panel Grid

[330]

Right-click on the catalog.jsp node and select Run. The panel grid with the initial
values specified in the input fields is displayed:

To update a database table row specify the Catalog Id for the row and the input
field values, and click on the Submit button. The input field Catalog Id is specified
as a Required field. If an input value is not specified in the Catalog Id field a
validation error is generated. The validation error gets displayed in the message
component column.

Chapter 11

[331]

Next, we will demonstrate the validator registered with the Catalog Id input field.
Specify a Catalog Id input value not within the range of 1 and 3 and click on the
Submit button. A validation error is generated in the message column.

Creating a JSF Panel Grid

[332]

JDBC 4.0 Version
In a JDeveloper version that supports JDBC 4.0 in its embedded OC4J server, we may
add the JDBC 4.0 features to the JSF panel grid application. JDBC 4.0 provides new
features such as enhanced connection management, automatic driver loading using
Java SE Service Provider mechanism, support for wrapper pattern to access
vendor-specific extensions to JDBC API, statement pooling, and support for Java SE
chained exceptions facility and categorization of exceptions.

For the JDBC 4.0 version of the JSF panel grid application, we need to download
the Oracle database 11g JDBC 4.0 drivers JAR file, ojdbc6.jar, from http://www.
oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_
111060.html. The JDBC 4.0 driver requires JDK 6.0. Therefore, we need to set the
J2SE version to JDK 6.0 in JDeveloper. To set the JDK version select Tools | Project
Properties. In the Project Properties window select Libraries and in the J2SE
Version field specify the JDK 6.0 version.

The JDBC 4.0 drivers JAR file, ojdbc6.jar, contains a META-INF/services/
java.sq.Driver file that specifies the Oracle JDBC driver class oracle.jdbc.
OracleDriver. The java.sql.Driver field is included in ojdbc6.jar for the Java
SE Service Provider mechanism to load JDBC drivers. In the JDBC 4.0 version of
commandButton1_action() method in the backing bean class, remove the line in
which the Oracle JDBC driver is loaded using the Class.forName() method.

JDBC 4.0 provides connection state tracking using the isValid() method in the
Connection interface. The connection pool manager tests if a connection has
become unusable with the isValid method. If a connection has become unusable,
the connection pool manager closes the connection using the close() method.
Connection state tracking reduces the overhead of closing all the connections in a
connection pool and reinitiating a connection pool if some of the connections in the
connection pool become unusable.

Another connection management feature JDBC 4.0 provides is connection client
identification. Sometimes some of the client connections bog down the application
by consuming excessive CPU. Earlier versions of JDBC did not have the provision
to identify such client connections. The Connection interface in JDBC 4.0 has
two new methods setClientInfo and getClientInfo to set and get client info
properties. Thus, a Connection object is identified by its client info properties. The
different client info properties supported by a database may be obtained using
the getClientInfoProperties method of the DatabaseMetaData interface. The
standard client info properties are ApplicationName, ClientUser, and Hostname.

In addition to PreparedStatements pooling JDBC 4.0 provides Statement pooling.
Frequently used Statements may be pooled using the setPoolable() method. The
isPoolable() method is used to test if a Statement object is poolable.

Chapter 11

[333]

JDBC 4.0 supports the wrapper pattern in the Wrapper interface to access vendor-
specific extensions to JDBC API. Oracle JDBC extensions are available in the
oracle.jdbc. package. For example, to access the nonstandard methods in
the OracleStatement interface, which extends the Statement interface, test
if a Statement object is a wrapper for the OracleStatement interface using
the isWrapperFor method. If the Statement object is a wrapper, unwrap
the OracleStatement interface using the unwrap() method to create a
OracleStatement object. Subsequently, the defineColumnType method of the
OracleStatement object may be invoked to define column types. Defining column
types saves the JDBC driver a roundtrip to the database to find the column types.
When an SQL query is run the database table data is fetched into the defined column
types in the ResultSet.

JDBC 4.0 provides support for the Java SE chained exceptions facility, also called
the cause facility, to retrieve chained exceptions. JDBC 4.0 also retrieves non-
SQLException chained exceptions. In the JDBC 4.0 version of the panel grid
application, the chained exceptions and chained causes are retrieved using the
enhanced for-each loop introduced in J2SE 5.0.

The JDBC 4.0 version of the commandButton1_action() method to retrieve the field
values for a specified Catalog ID is listed as follows:

public String commandButton1_action() {
 // Add event code here...
 ResultSet rs=null;
 try{

 String url="jdbc:oracle:thin:@localhost:1521:ORCL";
 Connection connection =
 DriverManager.getConnection(url,"OE", "pw");

connection.setClientInfo("ApplicationName","OracleApp");
connection.setClientInfo("ClientUser","OracleUser");
connection.setClientInfo("ClientHostname","OracleHost");

Statement stmt=connection.createStatement(ResultSet.TYPE_SCROLL_
INSENSITIVE, ResultSet.CONCUR_READ_ONLY);

DatabaseMetaData metaData=connection.getMetaData();
if(metaData.supportsStatementPooling()){
if(stmt.isPoolable())
stmt.setPoolable(true);
}

Class class = Class.forName("oracle.jdbc.OracleStatement");
if(stmt.isWrapperFor(class)) {
OracleStatement oracleStmt = (OracleStatement)stmt.unwrap(class);
oracleStmt.defineColumnType(1, OracleTypes.VARCHAR);

Creating a JSF Panel Grid

[334]

oracleStmt.defineColumnType(2, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(3, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(4, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(5, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(6, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(7, OracleTypes.VARCHAR);
String query="SELECT * FROM OE.CATALOG WHERE CATALOGID="+inputText1.
getValue();
 rs=stmt.executeQuery(query);
rs=stmt.executeQuery("SELECT * FROM OE.CATALOG");

outputText1.setValue(rs.getString("Journal"));
 outputText2.setValue(rs.getString("Publisher"));
 outputText3.setValue(rs.getString("Edition"));
 outputLink1.setValue(rs.getString("HRef"));
 outputText4.setValue(rs.getString("Title"));
 outputText5.setValue(rs.getString("Author"));
} rs.close();
stmt.close();
connection.close();
 }catch(SQLException e){for(Throwable e : exception) {
out.println("Error encountered: " + e);
}
 return null;
 }

Summary
JSF panel grid is a UI component used to display a set of UI components in a
specified number of columns in a grid layout. In this chapter, the panel grid is used
to display catalog data retrieved from a database. Panel grid is also used to convert
and validate input field values. A panel grid may be created in Create PanelGrid
Wizard either by binding rows or by binding a managed bean. In the JDBC 4.0
version of the panel grid application, we added JDBC 4.0 features automatic driver
loading, client info properties, statement pooling, and wrapper pattern.

Creating a Report with
JasperReports

JasperReports is a Java reporting tool to prepare reports for presentation. A
JasperReports report is an HTML, PDF, Excel XLS, CSV, or a XML report. The data
for a JasperReports report is static data or is data retrieved from a database table with
an SQL query. JasperReports is designed to be included in Java/J2EE applications to
generate dynamic presentation reports.

In this chapter, we will create JasperReports reports in JDeveloper. JasperReports
uses JDBC to connect to database and retrieve data for a JasperReports report. A
JDBC connection with the Oracle database 10g is established in the JasperReports
configuration file (.xml file). We will create a PDF report and an Excel spreadsheet
report using JasperReports. In this chapter we will learn the following:

Create a PDF Report with JasperReports
Create a Excel Spreadsheet with JasperReports

Setting the Environment
Download the open-source JasperReports tool JAR file jasperreports-2.0.5.jar.
Download the iText Java-PDF library itext-2.1.0.jar. Download the Jakarta-POI
ZIP file poi-bin-3.0.2-FINAL-20080204.zip. Download Commons Digester 1.8
and extract the ZIP file to a directory. Install the JDeveloper 10g IDE Studio Edition
Complete Install. Download and install the Oracle database from: http://www.
oracle.com/database/index.html 10g.

Create an example database table, Catalog from which a JasperReports PDF report
and Excel report will be generated. Create the database table in Oracle SQL *Plus.
The SQL script to create the example table is listed below.

•

•

Creating a Report with JasperReports

[336]

CREATE TABLE OE.Catalog(CatalogId VARCHAR(25), Journal VARCHAR(25),

 Publisher Varchar(25),Edition VARCHAR(25), Title Varchar(45),

 Author Varchar(25));

INSERT INTO OE.Catalog VALUES('catalog1', 'Oracle Magazine', 'Oracle

 Publishing', 'July-August 2005', 'Tuning Undo Tablespace',

 'Kimberly Floss');

INSERT INTO OE.Catalog VALUES('catalog2', 'Oracle Magazine', 'Oracle

 Publishing','March-April 2005', 'Starting with Oracle ADF ', 'Steve

 Muench');

Create a JDBC connection to the Oracle database from the JDeveloper IDE. To create
a connection select the Connections tab, select the Database node in the Connections
Navigator, right-click on the Database node, and select New Database Connection.
In the Create Database Connection (Type) window displayed, specify a Connection
Name and set Connection Type to Oracle(JDBC).

Click on Next. In the Authentication window, specify the Username and Password
and click on Next. In the Connection window, specify the Driver type, Host Name,
JDBC Port, SID and click on Next.

Chapter 12

[337]

In the Test window, click on Test Connection. If a connection with the database
is established, a success message is displayed. Click on Finish to complete the
connection configuration. A connection node gets added to the Connections
Navigator. The JDBC connection JasperReportsConnection is available as a JNDI
resource jdbc/JasperReportsConnectionDS. The data source will be used to
retrieve data from the database to generate a JasperReports report.

Creating a Report with JasperReports

[338]

We also need to download and install Adobe Acrobat Reader for the PDF report and
MS Excel for the Excel report.

Installing JasperReports
In this section, a JasperReports project is created in JDeveloper IDE and the libraries
required for the JasperReports report are created. First, select File | New in the
JDeveloper IDE. In the New Gallery window, select General in the Categories
listed and select Application in the Items listed. Click on the OK button. Specify
an Application Name in the Create Application window. Click on the OK button.
Specify a Project Name in the Create Project window and click on the OK button. A
JasperReports application and project is added to the Applications-Navigator.

Next, add libraries required to generate a JasperReports report to the project.
Select the JasperReports project node in the Applications-Navigator and select
Tools | Project Properties. In the Project Properties window, select the Libraries
node. Add a library with the Add Library button and add a JAR/Directory with the
Add Jar/Directory button. Add the libraries/JAR files listed in the following table.

Library/Jar/Zip Description
jasperreports-2.0.5.jar JasperReports API.
Commons BeanUtils JavaBeans utility classes

Commons Collections Collections framework extension classes

Commons Digester 1.8 jar Classes for processing XML documents

Commons Logging Logging classes
poi-bin-3.0.2-FINAL-
20080204.jar

Jakarta POI API to generate an Excel
document

itext-2.1.0 PDF library
Oracle XML Parser v2 XML parser API

Chapter 12

[339]

The libraries created are listed in the Libraries window. Click on the OK button in
the Project Properties window.

Configuring the JasperReports
Configuration File
A JasperReports report design is specified in a XML configuration file. In this
section, the XML configuration file, catalog.xml, is configured for a PDF report.
A JasperReports configuration file is an XML file based on the jasperreport.dtd
DTD. The root element of the configuration file is jasperReport. Some of the other
elements (with commonly used sub elements and attributes) in a JasperReports XML
file are listed in following table:

Creating a Report with JasperReports

[340]

XML Element Description Sub Elements Attributes
jasperReport Root Element reportFont, parameter,

queryString, field,
variable, group,
title, pageHeader,
columnHeader,
detail, columnFooter,
pageFooter.

name, columnCount,
pageWidth,
pageHeight,
orientation,
columnWidth,
columnSpacing,
leftMargin,
rightMargin,
topMargin,
bottomMargin.

reportFont Report level font
definitions.

Report level font
definitions.

name, isDefault,
fontName,size,
isBold, isItalic,
isUnderline,
isStrikeThrough,
pdfFontName,
pdfEncoding,
isPdfEmbedded

parameter Object references
used in generating
a report. Referenced
with P${name}

parameterDescription,
defaultValueExpression.

name,class

queryString Specifies the SQL
query for retrieving
data from a database.

- -

field Database table
columns included in
report. Referenced
With F${name}

fieldDescription name,class

variable Variable used in
the report XML file.
Referenced with
V${name}

variableExpression,

initialValueExpression

name,class

title Report title. band -
pageHeader Page Header band -
columnHeader Specifies the different

columns in the
report.

band -

detail Specifies the column
values.

band -

columnFooter Column footer band -
pageFooter Page footer. band -

Chapter 12

[341]

A band in a report represents a report section. A band element includes staticText
and textElement elements. A staticText element is used to add static text to
a report, for example column headers. A textElement element is used to add
dynamically generated text to a report, for example column values retrieved from
a database table. In the Generating a PDF Report section, a JasperReports PDF report
is generated from the example Catalog table. The queryString of the example
JasperReports configuration XML file, catalog.xml, specifies the SQL query to
retrieve the data for the report.

<queryString><![CDATA[SELECT CatalogId, Journal, Publisher, Edition,
 Title, Author FROM OE.Catalog]]></queryString>

The reportElement elements specify the ARIAL_NORMAL, ARIAL_BOLD, and ARIAL_
ITALIC fonts used in the report. The PDF report has the columns CatalogId,
Journal, Publisher, Edition, Title, Author. The JasperReports configuration file,
catalog.xml, is listed below.

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//
EN"
"http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">
<jasperReport name="PDFReport" pageWidth="1250">
<!-- Specify report fonts. -->
<reportFont name="Arial_Normal" isDefault="true" fontName="Arial"
 size="15" isBold="false" isItalic="false"
isUnderline="false" isStrikeThrough="false" pdfFontName="Helvetica"
 pdfEncoding="Cp1252" isPdfEmbedded="false"/>
<reportFont name="Arial_Bold" isDefault="false" fontName="Arial"
 size="15" isBold="true" isItalic="false" isUnderline="false"
isStrikeThrough="false" pdfFontName="Helvetica-Bold"
 pdfEncoding="Cp1252" isPdfEmbedded="false"/>
 <reportFont name="Arial_Italic" isDefault="false" fontName="Arial"
 size="12" isBold="false" isItalic="true"
isUnderline="false" isStrikeThrough="false" pdfFontName="Helvetica-
 Oblique" pdfEncoding="Cp1252" isPdfEmbedded="false"/>
<!-- Specify report parameters. -->
<parameter name="ReportTitle" class="java.lang.String"/>
<!-- Specify SQL Query -->
<queryString><![CDATA[SELECT CatalogId, Journal, Publisher, Edition,
 Title, Author FROM Catalog]]></queryString>
<field name="CatalogId" class="java.lang.String"/>
<field name="Journal" class="java.lang.String"/>
<field name="Publisher" class="java.lang.String"/>
<field name="Edition" class="java.lang.String"/>
<field name="Title" class="java.lang.String"/>

Creating a Report with JasperReports

[342]

<field name="Author" class="java.lang.String"/>
<!-- Specify report title.-->
<title>
 <band height="50">
 <textField>
 <reportElement x="350" y="0" width="200" height="50" />
 <textFieldExpression
 class="java.lang.String">$P{ReportTitle}
 </textFieldExpression>
 </textField>
 </band>
</title>
<!-- Specify page header.-->
 <pageHeader>
 <band>
 </band>
 </pageHeader>
<!-- Specify column headers.-->
 <columnHeader>
 <band height="20">
 <staticText>
 <reportElement x="0" y="0" width="100" height="20"/>
 <textElement>

 </textElement>
 <text><![CDATA[CATALOG ID]]></text>
 </staticText>
 <staticText>
 <reportElement x="125" y="0" width="150" height="20"/>
 <textElement>

 </textElement>
 <text><![CDATA[JOURNAL]]></text>
 </staticText>
 <staticText>
 <reportElement x="300" y="0" width="150" height="20"/>
 <textElement>

 </textElement>
 <text><![CDATA[PUBLISHER]]></text>
 </staticText>
 <staticText>
 <reportElement x="475" y="0" width="150" height="20"/>
 <textElement>

Chapter 12

[343]

 </textElement>
 <text><![CDATA[EDITION]]></text>
 </staticText>
<staticText>
 <reportElement x="650" y="0" width="250" height="20"/>
 <textElement>

 </textElement>
 <text><![CDATA[TITLE]]></text>
 </staticText>
 <staticText>
 <reportElement x="925" y="0" width="200" height="20"/>
 <textElement>

 </textElement>
 <text><![CDATA[AUTHOR]]></text>
 </staticText>
 </band>
 </columnHeader>
<!-- Specify column data binding.-->
<detail>
 <band height="20">
 <textField>
 <reportElement x="0" y="0" width="100" height="20"/>
 <textFieldExpression
 class="java.lang.String"><![CDATA[$F{CatalogId}]]>
 </textFieldExpression>
 </textField>
 <textField pattern="0.00">
 <reportElement x="125" y="0" width="150" height="20"/>
 <textFieldExpression
 class="java.lang.String"><![CDATA[$F{Journal}]]>
 </textFieldExpression>
 </textField>
 <textField pattern="0.00">
 <reportElement x="300" y="0" width="150" height="20"/>
 <textFieldExpression
 class="java.lang.String"><![CDATA[$F{Publisher}]]>
 </textFieldExpression>
 </textField>
 <textField>
 <reportElement x="475" y="0" width="150" height="20"/>
 <textFieldExpression

Creating a Report with JasperReports

[344]

 class="java.lang.String"><![CDATA[$F{Edition}]]>
 </textFieldExpression>
 </textField>
 <textField pattern="0.00">
 <reportElement x="650" y="0" width="250" height="20"/>
 <textFieldExpression
 class="java.lang.String"><![CDATA[$F{Title}]]>
 </textFieldExpression>
 </textField>
 <textField>
 <reportElement x="925" y="0" width="200" height="20"/>
 <textFieldExpression
 class="java.lang.String"><![CDATA[$F{Author}]]>
 </textFieldExpression>
 </textField>
 </band>
 </detail>
<columnFooter>
 <band>
 </band>
 </columnFooter>
<pageFooter>
 <band height="15">
 <staticText>
 <reportElement x="0" y="0" width="40" height="15"/>
 <textElement>

 </textElement>
 <text><![CDATA[Page #]]></text>
 </staticText>
 <textField>
 <reportElement x="40" y="0" width="100" height="15"/>
 <textElement>

 </textElement>
 <textFieldExpression
 class="java.lang.Integer"><![CDATA[$V{PAGE_NUMBER}]]>
 </textFieldExpression>
 </textField>
 </band>
 </pageFooter>
<summary>
 <band>
 </band>
 </summary>
</jasperReport>

Chapter 12

[345]

Generating a PDF Report
We will use the JasperReports classes and interfaces to generate a PDF file from the
catalog.xml file. Add an XML file to the JasperReports project with File | New.
In the New Gallery window, select General | XML in the Categories listed and
XML Document in the Items listed. Click on the OK button. Specify a File Name,
catalog.xml, in the Create XML File window and click on the OK button.

Creating a Report with JasperReports

[346]

An XML document is added to the JasperReports project. Copy catalog.xml listing
from the previous section to the XML document, catalog.xml. Save catalog.xml
to the C:/JasperReports directory with File | Save As. Create a JSP to generate a
JasperReports report. Right-click on the JasperReports project node and select New.
In the New Gallery window, select Web Tier | JSP in the Categories listed and
select JSP in the Items listed. Click on the OK button. In the Create JSP Wizard, click
on Next. In the Web Application window, select Servlet 2.4/JSP 2.0 and click on
Next. In the JSP File window, specify catalog.jsp as the File Name and select the
default Directory Name. Click on Next. Select the default selection in the Error Page
Options window and click on Next. In the Tag Libraries window, click on Next. In
the HTML Options page, click on Next. In the Finish window, click on Finish. JSP
catalog.jsp is added to the JasperReports project.

The JDBC data source, jdbc/JasperReportsConnectionDS, is required to be
configured in the JSP web.xml configuration file. Add the following resource-ref
element to the web.xml file:

<resource-ref>
<res-ref-name>jdbc/JasperReportsConnectionDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

In the catalog.jsp, first, import the JasperReports classes and interfaces:

<%@ page import="java.io.*, java.util.*, java.sql.Connection,javax.
sql.DataSource, javax.naming.InitialContext, net.sf.jasperreports.
engine.*, net.sf.jasperreports.engine.design.JasperDesign,net.
sf.jasperreports.engine.xml.JRXmlLoader" %>

Next, create a InputStream for the JasperReports configuration file, catalog.xml.
Next, load the XML file with JRXmlLoader class static method load(). The load()
method is overloaded and a XML configuration file may be loaded from a File
object, an InputStream object, or a String object. The load() method returns a
JasperDesign object.

Chapter 12

[347]

InputStream input=new FileInputStream(new File("c:/JasperReports/
catalog.xml"));
JasperDesign design = JRXmlLoader.load(input);

A JasperDesign object represents the report design. Compile the report design
file with the JasperCompileManager method compileReport(). The compilation
of the report design file validates the JasperReports XML file (catalog.xml)
with the jaspereports.dtd DTD and converts the report expressions in a
ready-to-evaluate form. The compileReport() method returns a JasperReport
object, which represents the compiled report.

JasperReport report = JasperCompileManager.compileReport(design);

Create a Connection object to retrieve data from the database to create a PDF
file. Create a InitialContext object to lookup the data source JNDI with the
lookup() method. Obtain a JDBC connection from the data source using the
getConnection() method.

InitialContext initialContext = new InitialContext();
DataSource ds = (DataSource)initialContext.lookup
 ("java:comp/env/jdbc/JasperReportsConnectionDS");
Connection conn = ds.getConnection();

Generate a JasperReports report from the compiled report. Fill the compiled
report with data from the database using the fillReport() method of the
JasperFillManager class. The fillReport() method returns a JasperPrint object,
which represents the report document that may be viewed, printed, or exported to
other formats:

JasperPrint print =JasperFillManager.fillReport(report,parameters,
 conn);

The parameters in the fillReport() method consist of the parameter values
specified in the <parameter/> elements of the XML configuration file.
Catalog.xml has the parameter ReportTile, therefore specify a value for the
ReportTitle parameter.

Map parameters = new HashMap();
parameters.put("ReportTitle", "PDF JasperReport");

A JasperReports report may be exported to a XML file, a PDF file, an HTML file, a
CSV file, or a Excel XLS file. Export the generated JasperReports to a PDF file using
the exportReportToPdfStream() method of the JasperExportManager class:

OutputStream output=new FileOutputStream(new File("c:/JasperReports/
catalog.pdf"));
JasperExportManager.exportReportToPdfStream(print, output);

Creating a Report with JasperReports

[348]

The JSP file, catalog.jsp, is listed below:

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page import="java.io.*, java.util.*, java.sql.Connection,javax.
sql.DataSource, javax.naming.InitialContext,
net.sf.jasperreports.engine.*, net.sf.jasperreports.engine.design.
JasperDesign,net.sf.jasperreports.engine.xml.JRXmlLoader" %>
<%InputStream input=new FileInputStream(new
 File("c:/JasperReports/catalog.xml"));
 JasperDesign design = JRXmlLoader.load(input);
 JasperReport report = JasperCompileManager.compileReport(design);
 Map parameters = new HashMap();
 parameters.put("ReportTitle", "PDF JasperReport");
 InitialContext initialContext = new InitialContext();
 DataSource ds = (DataSource)initialContext.lookup
 ("java:comp/env/jdbc/JasperReportsConnectionDS");
 Connection conn = ds.getConnection();
 JasperPrint print = JasperFillManager.fillReport(report,
 parameters, conn);
 OutputStream output=new FileOutputStream
 (new File("c:/JasperReports/catalog.pdf"));
 JasperExportManager.exportReportToPdfStream(print, output);%>

Copy code from the catalog.jsp listing to catalog.jsp in the JasperReports
application. To run the catalog.jsp JSP, right-click on the catalog.jsp node and
select Run.

Chapter 12

[349]

A catalog.pdf PDF file is generated. The PDF file can be opened in an Adobe
Acrobat Reader.

Creating an Excel Spreadsheet
Create a catalog-excel.jsp in the JasperReports project in JDeveloper for
creating a Excel spreadsheet. If an Excel report is required, use a JRXlsExporter
object to export the JasperReports document to an Excel spreadsheet. Specify an
OutputStream to output the Excel spreadsheet. Specify a ByteArrayOutputStream
for the output from the JRXlsExporter object:

OutputStream ouputStream=new FileOutputStream
 (new File("c:/JasperReports/catalog.xls"));
ByteArrayOutputStream byteArrayOutputStream = new
 ByteArrayOutputStream();

Create a JRXlsExporter object and set the JasperPrint object from which the
report is to be generated and the OutputStream to output the report.

JRXlsExporter exporterXLS = new JRXlsExporter();
exporterXLS.setParameter(JRXlsExporterParameter.JASPER_PRINT, print);
exporterXLS.setParameter
(JRXlsExporterParameter.OUTPUT_STREAM,byteArrayOutputStream);

Export the JasperReport document using the exportReport() method:
exporterXLS.exportReport();

Output the JasperReports excel report to catalog.xls file:
ouputStream.write(byteArrayOutputStream.toByteArray());
ouputStream.flush();
ouputStream.close();

The catalog-excel.jsp is listed as follows:
<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page import="java.io.*, java.util.*, java.sql.Connection,javax.
sql.DataSource, javax.naming.InitialContext,
net.sf.jasperreports.engine.*, net.sf.jasperreports.engine.design.
JasperDesign,net.sf.jasperreports.engine.xml.JRXmlLoader,

Creating a Report with JasperReports

[350]

net.sf.jasperreports.engine.export.*"
%>
<%
 InputStream input=new FileInputStream
 (new File("c:/JasperReports/catalog.xml"));
 JasperDesign design = JRXmlLoader.load(input);
 JasperReport report = JasperCompileManager.compileReport(design);
 Map parameters = new HashMap();
 parameters.put("ReportTitle", "Excel JasperReport");
 InitialContext initialContext = new InitialContext();
 DataSource ds = (DataSource)initialContext.lookup
 ("java:comp/env/jdbc/JasperReportsConnectionDS");
 Connection conn = ds.getConnection();
 JasperPrint print = JasperFillManager.fillReport
 (report, parameters, conn);
 OutputStream ouputStream=new FileOutputStream
 (new File("c:/JasperReports/catalog.xls"));
 ByteArrayOutputStream byteArrayOutputStream = new
 ByteArrayOutputStream();
 JRXlsExporter exporterXLS = new JRXlsExporter();
 exporterXLS.setParameter(
 JRXlsExporterParameter.JASPER_PRINT, print);
 exporterXLS.setParameter(JRXlsExporterParameter.
 OUTPUT_STREAM, byteArrayOutputStream);
 exporterXLS.exportReport();
 ouputStream.write(byteArrayOutputStream.toByteArray());
 ouputStream.flush();
 ouputStream.close();

%>

To generate an Excel report right-click on the catalog-excel.jsp and select Run.
The Excel spreadsheet may be opened in MS Excel or Excel Viewer.

Chapter 12

[351]

JDBC 4.0 Version
In the JDBC 4.0 version of the JasperReports application, to generate a PDF report,
use the Oracle database 11g JDBC 4.0 drivers JAR file, ojdbc6.jar, instead of the
Oracle JDBC library. JDBC 4.0 drivers require JDK 6.0. Therefore, set the J2SE
Version to JDK 6.0 in the Project Properties window. To modify the J2SE Version,
select the Libraries node in Project Properties window. Click on the Change button
for the J2SE Version field. In the Edit J2SE Definition window, click on New to
create a J2SE definition for JDK 6.0. In the Create J2SE window, select a JDK 6.0 Java
Executable and click on OK. Select the JDK 6.0 definition in Edit J2SE Definition
window and click on OK. The J2SE Version gets set to JDK 6.0 in Project Properties
window. Click on OK in Project Properties.

The JDBC 4.0 features can be availed in a JDeveloper version that supports JDBC
4.0 in the embedded OC4J. JDBC 4.0 provides enhanced connection management
with connection state tracking and connection client identification. Connection state
tracking is implemented by the connection pool manager. If some of the connections
in a connection pool become unusable, the connection pool manager closes those
connections. Prior to the connection state tracking feature, the connection pool
manager typically closed all connections and reinitiated the connection pool if
some of the connections became unusable. Closing connections and opening new
connections incurs an overhead. The Connection interface in JDK 6.0, which
supports JDBC 4.0, has a isValid() method to test the validity of a connection.
The connection pool manager invokes the isValid method on connections and if a
connection returns false the connection pool manager closes the connection using
close() method as follows:

if(!connection.isValid())
connection.close();

The connection client identification is implemented by the JDBC driver. Connection
client identification is used to identify connections that might be bogging down
an application due to excessive usage of CPU. The JDK 6.0 Connection interface
provides two new methods for connection client identification; setClientInfo()
and getClientInfo(). A Connection object is identifiable by the client info
properties set on the Connection using setClientInfo(). The different client info
properties supported by a database may be obtained from the database metadata
using getClientInfoProperties method of the DatabaseMetaData interface.

DatabaseMetaData metaData=connection.getMetaData();
ResultSet clientInfo=metaData.getClientInfoProperties();

Creating a Report with JasperReports

[352]

The standard client info properties are ApplicationName, ClientUser, and
ClientHostname. In the JDBC 4.0 version of the JasperReports application, set the
standard client info properties as follows:

connection.setClientInfo("ApplicationName","OracleApp");
connection.setClientInfo("ClientUser","OracleUser");

connection.setClientInfo("ClientHostname","OracleHost");

In JDBC 4.0 version of the JasperReports application we may also avail the support
for Java SE chained exceptions facility. Specify an error page in the JasperReports JSP
and in the error page, retrieve the chained exceptions and chained causes using the
enhanced for-each loop introduced in J2SE 5.0 as follows:

for(Throwable e : exception) {
out.println("Error encountered: " + e);
}

The JDBC 4.0 version of the JasperReports application to generate a PDF report is
listed below.

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page import="java.io.*, java.util.*, java.sql.Connection,javax.
sql.DataSource, javax.naming.InitialContext,
net.sf.jasperreports.engine.*, net.sf.jasperreports.engine.design.
JasperDesign,net.sf.jasperreports.engine.xml.JRXmlLoader"
%>
<%
 InputStream input=new FileInputStream
 (new File("c:/JasperReports/catalog.xml"));
 JasperDesign design = JRXmlLoader.load(input);
 JasperReport report = JasperCompileManager.compileReport(design);
 Map parameters = new HashMap();
 parameters.put("ReportTitle", "PDF JasperReport");
 InitialContext initialContext = new InitialContext();
 DataSource ds = (DataSource)initialContext.lookup
 ("java:comp/env/jdbc/JasperReportsConnectionDS");
 Connection conn = ds.getConnection();
connection.setClientInfo("ApplicationName","OracleApp");
connection.setClientInfo("ClientUser","OracleUser");
connection.setClientInfo("ClientHostname","OracleHost");

 JasperPrint print = JasperFillManager.fillReport(report,
 parameters, conn);
 OutputStream output=new FileOutputStream(new File("c:/
JasperReports/catalog.pdf"));
 JasperExportManager.exportReportToPdfStream(print, output);
%>

Chapter 12

[353]

The same modifications apply to the JasperReports application to generate an
Excel spreadsheet.

Summary
JasperReports is a Java reporting tool to generate HTML, XML, PDF, CSV, or XLS
reports. In this chapter we learned how to create a PDF and an Excel spreadsheet
report from a database table using JDBC to connect to the database and run an SQL
query. We added JDBC 4.0 features connection state tracking and connection client
identification in the JDBC 4.0 version of the JasperReports application.

Creating a Spreadsheet with
Apache POI

Database table data is often required to be presented as an Excel spreadsheet. The
Apache POI project provides Java APIs for processing Microsoft OLE 2 Compound
Document Format Files, which include XLS and DOC files. The Apache POI HSSF
component of the Apache POI project is a Java API to access and generate Excel
Workbooks and Excel spreadsheets. Apache POI HSSF does not support the new
Excel 2007 .xlsx OOXML file format, which is not OLE2 based. An Excel workbook
consists of spreadsheets and an Excel spreadsheet consists of rows and cells. The
layout and fonts of a spreadsheet are also set with the Apache POI HSSF Java API.

The Apache POI HSSF project is a Java API to create an Excel workbook and an Excel
spreadsheet. The implementation of the Apache POI HSSF project is provided in
the org.apache.poi.hssf.usermodel package. The data in the Excel spreadsheet
generated with the POI HSSF project may be static data, or dynamically retrieved
data from a database. In this chapter we will discuss the procedure to create an Excel
spreadsheet from an Oracle database table. The Excel spreadsheet is generated in the
JDeveloper IDE.

Setting the Environment
The org.apache.poi.hssf.usermodel package classes are required to generate
an Excel spreadsheet. Download the Apache POI library's poi-bin-3.0.2-FINAL-
20080204.zip file from http://www.apache.org/dyn/closer.cgi/poi/ and
extract the ZIP file to an installation directory. Install JDeveloper 10g (10.1.3).
Install the Oracle database 10g including sample schemas. Create a database
instance. Create an example database table from which an Excel spreadsheet will be
generated. The SQL script to create example table Catalog is listed as follows:

Creating a Spreadsheet with Apache POI

[356]

CREATE TABLE OE.Catalog(CatalogId VARCHAR(25), Journal VARCHAR(25),

 Publisher Varchar(25),Edition VARCHAR(25), Title Varchar(255),

 Author Varchar(25));

INSERT INTO OE.Catalog VALUES('catalog1', 'Oracle Magazine',

 'Oracle Publishing', 'March-April 2005', 'Starting with Oracle ADF

 ', 'Steve Muench');

INSERT INTO OE.Catalog VALUES('catalog2', 'Oracle Magazine',

 'Oracle Publishing','Jan-Feb 2005', 'Understanding Optimization',

 'Kimberly Floss');

Next, we will create a JDeveloper project for generating an Excel spreadsheet and
add a library for the Apache POI JAR file to the project. Also, we will create a JDBC
connection with the Oracle database for retrieving the data for the Excel spreadsheet.

First, create a JDBC connection to the Oracle database from the JDeveloper IDE.
To create a connection select the Connections tab, select the Database node in the
Connections Navigator, right click on the Database node, and select New Database
Connection. In the Create Database Connection (Type) window displayed, specify a
Connection Name and set Connection Type to Oracle(JDBC).

Chapter 13

[357]

Click on Next. In the Authentication window, specify the Username and Password
and click on Next. In the Connection window, specify the Driver type, Host Name,
JDBC Port, SID and click on Next.

In the Test window, click on Test Connection. If a connection with the database
is established a success message is displayed. Click on Finish to complete the
connection configuration. A connection node is added to the Connections Navigator.

Creating a Spreadsheet with Apache POI

[358]

The JDBC connection ApachePOIConnection is available as a data source
jdbc/ApachePOIConnectionDS. The data source is used to retrieve data from
the database to generate an Excel spreadsheet. Next, create a JDeveloper project
for generating an Excel spreadsheet. Select File | New in the JDeveloper IDE. In
the New Gallery window, select General|Applications in the Categories listed
and select Application in the Items listed. Click on the OK button. In the Create
Application window, specify an Application Name, select the No Template
Application Template and click on the OK button. In the Create Project window,
specify a Project Name and click on the OK button. An application and a project is
added to the Applications-Navigator.

Next, add a library for the Apache POI JAR file to the project. Select the Apache POI
project node in the Applications-Navigator. Select Tools | Project Properties. In
the Project Properties window, select the Libraries node. Click on the Add Library
button to create a new library. In the Add Library window click on the New button
to add a new library. In the Create Library window specify a Library Name and
click on the Add Entry button.

In the Select Path Entry window select the poi-3.0.2-FINAL-20080204.jar file
and click on the Select button. The selected JAR file is added to the Class Path
node in the Create Library window. Click on the OK button in the Create Library
window. The Apache POI library is added to the Add Library window. Click on
the OK button in the Add Library window. The Apache POI library is created and
added to the Libraries. The poi-3.0.2-FINAL-20080204.jar file can also be added
to the ApachePOI project using the Add Jar/Directory button.

Chapter 13

[359]

Creating an Excel Spreadsheet
In this section an Excel spreadsheet will be generated from the example database
table. First, create a JSP application to generate an Excel spreadsheet. Right-click
on the ApachePOI project node in the Applications Navigator and select New. In
the New Gallery window select Web Tier | Java Server Pages. In the Items listed,
select JSP Page and click on the OK button. In the Create JSP Wizard select a Web
Application version and click on the Next button. In the JSP File window specify a
file name and click on Next. Click on the Next window in the Tag Libraries window.
Select the default options in the HTML Options page and click on the Next button.
In the Finish window, click on Finish. A JSP gets added to the Apache POI project in
the Applications-Navigator.

Creating a Spreadsheet with Apache POI

[360]

Add a resource reference for the JDBC data source jdbc/ApachePOIConnectionDS,
which was configured in the previous section, to the JSP web.xml configuration file.
Add a resource-ref element to the web.xml file.

<resource-ref>
 <res-ref-name>jdbc/ApachePOIConnectionDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

In the catalog.jsp an Excel spreadsheet will be created from an Oracle database
table. The Apache POI HSSF project is used to generate an Excel spreadsheet. The
Apache POI HSSF package has classes for the different components of an Excel
spreadsheet. Some of the commonly used classes of the Apache POI HSSF package
are listed in the following table.

Class Name Description
HSSFWorkbook Represents an Excel Spreadsheet Workbook.
HSSFSheet Represents an Excel Spreadsheet.
HSSFHeader Specifies a Spreadsheet Header.
HSSFRow Specifies a Spreadsheet Row.
HSSFCell Specifies a Spreadsheet Cell
HSSFCellStyle Specifies the Cell style
HSSFFont Specifies the font for the spreadsheet
HSSFChart Represents a Chart
HSSFDateUtil Specifies Excel dates
HSSFPrintSetup Specifies the print setup for an Excel document

In the JSP application, first, import the Apache POI HSSF package:

<%@ page import="org.apache.poi.hssf.usermodel.*, java.sql.*,
 java.io.*,javax.naming.InitialContext"%>

Create an Excel stylesheet workbook using the HSSFWorkbook class:

HSSFWorkbook wb=new HSSFWorkbook();

Next, create an Excel spreadsheet from the HSSFWorkbook object using the
createSheet() method:

HSSFSheet sheet1=wb.createSheet("sheet1");

Chapter 13

[361]

The data for the stylesheet is retrieved from an Oracle database table. Obtain a JDBC
connection from the database. First, create an InitialContext object. Subsequently,
create a DataSource object using the lookup() method of the InitialContext class
to lookup the data source JNDI. Obtain a connection from the DataSource object
using the getConnection() method:

InitialContext initialContext = new InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource)
initialContext.lookup("java:comp/env/jdbc/ApachePOIConnectionDS");
java.sql.Connection conn = ds.getConnection();

Create a Statement object using the createStatement() method of the Connection
interface. Run an SQL query on the Catalog table using the executeQuery()
method of the Statement interface to generate a ResultSet object.

Statement stmt=conn.createStatement();
ResultSet resultSet=stmt.executeQuery("Select * from Catalog");

Create a header row for the Excel spreadsheet using the createRow() method of the
HSSFRow class. The rows in an Excel spreadsheet are '0' based.

HSSFRow row=sheet1.createRow(0);

Set the header row cell values corresponding to the table columns. Create a cell
with the createCell() method of the HSSFRow class and set the cell value using the
setCellValue() method. For example, the value for the first cell in the row is set to
CatalogId as follows:

row.createCell((short)0).setCellValue("CatalogId");

To add rows to the spreadsheet, iterate over the result set and add a row for each of
the table rows. Retrieve the column values from the ResultSet and set the values in
the row cells:

for (int i=1;resultSet.next(); i++){
 row=sheet1.createRow(i);
row.createCell((short)0).setCellValue(resultSet.getString(1));
row.createCell((short)1).setCellValue(resultSet.getString(2));
row.createCell((short)2).setCellValue(resultSet.getString(3));
row.createCell((short)3).setCellValue(resultSet.getString(4));
row.createCell((short)4).setCellValue(resultSet.getString(5));
}

Create a directory C:/excel. Create a FileOutputStream to output the Excel
spreadsheet to an XLS file. An XLS file represents an excel spreadsheet.

FileOutputStream output=new FileOutputStream(new File("c:/excel/
catalog.xls"));

Creating a Spreadsheet with Apache POI

[362]

Output the Excel spreadsheet to a XLS file using the write() method of the
HSSFWorkbook class.

wb.write(output);

The catalog.jsp used to generate an Excel spreadsheet is listed below.

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page import="org.apache.poi.hssf.usermodel.*, java.sql.*, java.
io.*,javax.naming.InitialContext"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
 <title>untitled</title>
 </head>
 <body><%HSSFWorkbook wb=new HSSFWorkbook();
HSSFSheet sheet1=wb.createSheet("sheet1");
InitialContext initialContext = new InitialContext();
 javax.sql.DataSource ds = (javax.sql.DataSource)
 initialContext.lookup("java:comp/env/jdbc/ApachePOIConnectionDS");
 java.sql.Connection conn = ds.getConnection();
Statement stmt=conn.createStatement();
ResultSet resultSet=stmt.executeQuery("Select * from Catalog");
HSSFRow row=sheet1.createRow(0);
row.createCell((short)0).setCellValue("CatalogId");
row.createCell((short)1).setCellValue("Journal");
row.createCell((short)2).setCellValue("Publisher");
row.createCell((short)3).setCellValue("Edition");
row.createCell((short)4).setCellValue("Title");
row.createCell((short)5).setCellValue("Author");
 for (int i=1;resultSet.next(); i++)
 {
 row=sheet1.createRow(i);
row.createCell((short)0).setCellValue(resultSet.getString(1));
row.createCell((short)1).setCellValue(resultSet.getString(2));
row.createCell((short)2).setCellValue(resultSet.getString(3));
row.createCell((short)3).setCellValue(resultSet.getString(4));
row.createCell((short)4).setCellValue(resultSet.getString(5));
row.createCell((short)5).setCellValue(resultSet.getString(6));
}

Chapter 13

[363]

FileOutputStream output=new FileOutputStream(new File("c:/excel/
catalog.xls"));
wb.write(output);
output.close();
resultSet.close();
stmt.close();
conn.close();
%>
 </body>
</html>

To run the catalog.jsp JSP in the JDeveloper embedded OC4J server, right-click on
the JSP node in the Applications-Navigator and select Run.

Creating a Spreadsheet with Apache POI

[364]

An Excel spreadsheet which may be opened in MS Excel or the Excel Viewer tool
is generated:

JDBC 4.0 Version
In the JDBC 4.0 version of the Apache POI application, we need to create a JDBC
connection with Oracle database using the Oracle database 11g JDBC 4.0 drivers,
which may be obtained from: http://www.oracle.com/technology/software/
tech/java/sqlj_jdbc/htdocs/jdbc_111060.html. Use the ojdbc6.jar JDBC
JAR file to configure a JDBC connection and data source with Oracle data source. As
JDBC 4.0 drivers required JDK 6.0, set the J2SE Version to JDK 6.0 by selecting Tools
| Project Properties. In the Project Properties window, select the Libraries node and
select a JDK 6.0 Java executable in the J2SE Version field.

We will add the following JDBC 4.0 features to the Apache POI application:

Connection state tracking
Connection client identification using client info properties
Statement pooling

•

•

•

Chapter 13

[365]

Wrapper pattern
Java SE chained exception facility

Connection state tracking is implemented by the connection pool manager and is
used to identify connections that have become unusable in the connection pool. JDBC
4.0 provides the isValid() method in the Connection interface for connection state
tracking. If the isValid() method returns false the connection pool manager closes
the connection.

if(!connection.isValid())
connection.close();

Connection client identification is used to identify connections that might cause
reduced performance due to excessive CPU usage. Connections are associated with
application clients using client info properties. The Connection interface in JDBC
4.0 includes two new method setClientInfo() and getClientInfo() to set and
get client info properties. Client info properties supported by a database may be
retrieved using the getClientInfoProperties() method of the DatabaseMetaData
interface as follows:

DatabaseMetaData metaData=connection.getMetaData();
ResultSet rsClientInfo=metadata.getClientInfoProperties();

The standard client info properties ApplicationName, ClientUser, and
ClientHostname may be set on the Connection object as follows:

conn.setClientInfo("ApplicationName","OracleApp");
conn.setClientInfo("ClientUser","OracleUser");

conn.setClientInfo("ClientHostname","OracleHost");

PreparedStatement objects are pooled by default if the database supports
statement pooling. JDBC 4.0 has also added the provision to pool Statement
objects. Frequently used Statement objects are recommended to be pooled to avoid
the overhead of closing and opening new Statement objects. Statement pooling
is implemented using the isPoolable() and setPoolable() methods of the
Statement object as follows:

if(stmt.isPoolable())
stmt.setPoolable(true);

The Wrapper interface in JDBC 4.0 provides access to nonstandard JDBC methods
in vendor-specific extensions to JDBC API using the wrapper pattern. The Wrapper
interface is extended by the following JDBC interfaces:

CachedRowSet

CallableStatement

•

•

•

•

Creating a Spreadsheet with Apache POI

[366]

Connection

DatabaseMetaData

DataSource

FilteredRowSet

JdbcRowSet

JoinRowSet

ParameterMetaData

PreparedStatement

ResultSet

ResultSetMetaData

RowSet

RowSetMetaData

Statement

WebRowSet

Any vendor-specific interface extending these interfaces implement the wrapper
pattern as it also extends the Wrapper interface. For example, the OracleStatement
interface in Oracle's extension to the JDBC API extends the Statement interface
and thus extends the Wrapper interface. The OracleStatement interface provides
methods that are not defined in the Statement interface. We will use the
OracleStatement interface instead of the Statement interface to run SQL queries.
To create an OracleStatement object, first determine if the Statement object is a
wrapper for the OracleStatement interface using the isWrapperFor() method. If
a wrapper, unwrap the OracleStatement interface to create an OracleStatement
object using unwrap() method in the Wrapper interface. Subsequently invoke the
defineColumnType() method of OracleStatement object to set column types.

JDBC 4.0 supports the Java SE chained exceptions facility to retrieve chained
exceptions and chained causes. Chained exceptions are exceptions that are linked
to an exception. JDBC 4.0 supports the enhanced for loop introduced in J2SE 5.0 to
iterate over chained exceptions as follows:

for(Throwable e : exception) {
out.println("Error encountered: " + e);
}

The JDBC 4.0 version of the Apache POI application is listed as follows.

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page import="org.apache.poi.hssf.usermodel.*, java.sql.*, java.
io.*,javax.naming.InitialContext, oracle.jdbc.OracleStatement"%>

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 13

[367]

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
 <title>untitled</title>
 </head>
 <body><%
ResultSet resultSet;
HSSFWorkbook wb=new HSSFWorkbook();
HSSFSheet sheet1=wb.createSheet("sheet1");
InitialContext initialContext = new InitialContext();
 javax.sql.DataSource ds = (javax.sql.DataSource)
 initialContext.lookup("java:comp/env/jdbc/ApachePOIConnectionDS
");
 java.sql.Connection conn = ds.getConnection();

conn.setClientInfo("ApplicationName","OracleApp");
conn.setClientInfo("ClientUser","OracleUser");
conn.setClientInfo("ClientHostname","OracleHost");

Statement stmt=conn.createStatement();
DatabaseMetaData metaData=connection.getMetaData();
if(metaData.supportsStatementPooling()){
if(stmt.isPoolable())
stmt.setPoolable(true);
}

Class class = Class.forName("oracle.jdbc.OracleStatement");
if(stmt.isWrapperFor(class)) {
OracleStatement oracleStmt = (OracleStatement)stmt.unwrap(class);
oracleStmt.defineColumnType(1, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(2, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(3, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(4, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(5, OracleTypes.VARCHAR);
oracleStmt.defineColumnType(6, OracleTypes.VARCHAR);

resultSet=oracleStmt.executeQuery("SELECT * FROM OE.CATALOG");
}
HSSFRow row=sheet1.createRow(0);
row.createCell((short)0).setCellValue("CatalogId");
row.createCell((short)1).setCellValue("Journal");
row.createCell((short)2).setCellValue("Publisher");

Creating a Spreadsheet with Apache POI

[368]

row.createCell((short)3).setCellValue("Edition");
row.createCell((short)4).setCellValue("Title");
row.createCell((short)5).setCellValue("Author");
 for (int i=1;resultSet.next(); i++)
 {
 row=sheet1.createRow(i);
row.createCell((short)0).setCellValue(resultSet.getString(1));
row.createCell((short)1).setCellValue(resultSet.getString(2));
row.createCell((short)2).setCellValue(resultSet.getString(3));
row.createCell((short)3).setCellValue(resultSet.getString(4));
row.createCell((short)4).setCellValue(resultSet.getString(5));
row.createCell((short)5).setCellValue(resultSet.getString(6));
}
FileOutputStream output=new FileOutputStream(new File("c:/excel/
catalog.xls"));
wb.write(output);
output.close();
resultSet.close();
stmt.close();
conn.close();
%>
 </body>
</html>

Summary
In this chapter, an Excel spreadsheet was generated from an Oracle database table
using the Apache POI HSSF API. The Apache POI HSSF API may also be used to
parse an Excel spreadsheet and subsequently store the spreadsheet in a database.
In the JDBC 4.0 version of the Apache POI application we added JDBC 4.0 features
connection state tracking, setting of client info properties, statement caching, access
of nonstandard JDBC methods using the Wrapper interface, and the Java SE chained
exceptions facility.

Creating Oracle ADF
Business Components

Oracle Application Development Framework (ADF) is a J2EE framework that
simplifies J2EE development and Oracle JDeveloper provides a declarative
development environment for it. The Business Components for Java (BC4J)
layer of the ADF is a JDBC-based programming framework for developing
database-centric business services in Java. ADF Business Components use JDBC to
query the database. A Business Components application consists of entity objects,
view objects, and application module and additionally associations and view links.
ADF Business Components may be used with different view layers like JavaServer
pages, UIX, and Swing.

The Entity Object in ADF Business Components performs all the database interaction
and validation and is also where the business logic gets defined. Entity Objects
are based on database tables and map table columns to attributes in Java. Entity
Objects encapsulate business logic, define validation rules, and also cache data.
Typically, View Objects consist of SQL queries to present a subset of the business
data (view) modeled by the entity objects. View Objects may or may not be based
on Entity Objects.

View Objects provide a client with row sets of data, which may be modified, by the
client; View Objects are basically row set iterators that allow programs to navigate
over a collection of data. One Entity Object can be accessed from different View
Objects. Multiple instances of a View Object can be used in an application. The
ADF Business Components View Objects are exposed to the view layer through
an Application Module, which represents the logical data model and manages
data transactions. The business components associations represent the associations
between entity objects, and the view links represent the links between the queries
in different view objects. Associations and view links are not required features of a
business components applications.

Creating Oracle ADF Business Components

[370]

The BC4J layer of ADF is used to develop view objects and entity objects for a
database table. An application module, which consists of the view objects, connects
to the database and retrieves the data to create view objects. An application module
may be used to connect to a database in the Connections Navigator or may be
integrated with a Client/View web application using the business components Java
API. A Client/View web application, which may be a Java/JSP application, has
the oracle.jbo package classes and interfaces available to connect an application
module to a database and create view objects. In this chapter, business components
are created from an Oracle database table. Subsequently, a web application is created
to connect the business components application module to the database and create
view objects.

Setting the Environment
Business components are developed in JDeveloper 10g. Install the JDeveloper 10g
IDE. Install the Oracle 10g database. Create an instance of the database. Create an
example table in the database from which business components will be generated.
The SQL script to create the example table Catalog is listed below.

CREATE TABLE OE.Catalog(CatlogId VARCHAR(25) PRIMARY KEY, Journal

 VARCHAR(25), Publisher Varchar(25),Edition VARCHAR(25), Section

 VARCHAR(25), Title Varchar(75), Author Varchar(25));

INSERT INTO OE.Catalog VALUES('catalog1', 'Oracle Magazine', 'Oracle

 Publishing', 'Nov-Dec 2004','ORACLE DEVELOPER', 'From ADF UIX to

 JSF', 'Jonas Jacobi');

INSERT INTO OE.Catalog VALUES('catalog2', 'Oracle Magazine', 'Oracle

 Publishing', 'Nov-Dec 2004', 'TECHNOLOGY', 'Database Resource

 Manager', 'Kimberly Floss');

INSERT INTO OE.Catalog VALUES('catalog3', 'Oracle Magazine','Oracle

 Publishing','March-April 2005','ORACLE DEVELOPER','Starting with

 Oracle ADF', 'Steve Muench');

Next, create a JDBC connection with the Oracle 10g database. In the Connections
Navigator, right-click on the Database node and select New Database Connection.
In the Create Database Connection Type window, specify a connection name and
select Oracle JDBC as the Connection Type. In the Authentication window, specify
a Username and Password and click on Next. In the Connection window, select thin
or oci as the Driver. In the Host Name field, specify the Oracle database host name.
The Host is specified in the tnsnames.ora file of the database. Specify the JDBC Port
and SID, which are also specified in the tnsnames.ora file. Click on Next to display
the Test window. In the Test window click, on the Test Connection button to test the
JDBC connection. A Success message is displayed if the connection with the database
is established. Click on Finish to complete the connection configuration.

Chapter 14

[371]

A connection node is added to the Connections Navigator. The OE schema of the
connection node displays the Catalog table, which was created in the database.

Configuring a BC4J Project
In this section, a business components workspace and project are created, business
components are created from an Oracle database table, and the business components
project is tested in JDeveloper. First, create an application workspace. Select
File | New in JDeveloper. In the New Gallery window, select General and
Application in the Items listed. In the Create Application window specify the
Application Name, a Directory Name for the application, and select an Application
Template. Select the Web Application [JSP, Struts ADF BC] template.

Creating Oracle ADF Business Components

[372]

An application workspace, BC4JApp gets added to the Applications-Navigator. The
application has a Model node and a ViewController node.

Creating Business Components
In this section, business components are created from the Oracle database table
Catalog, which was created in the previous section. The default business components
created from the table will be modified in JDeveloper. Right-click on the Model node
and select New.

Chapter 14

[373]

In the New Gallery window select Project Technologies in the Filter By. Select
Business Tier | ADF Business Components in Categories, and select Business
Components from Tables in the Items listed.

Creating Oracle ADF Business Components

[374]

In the Initialize Business Components Project window, select the database
connection in the Connection list to create business components from
database tables.

In the Login window, specify User Name and Password and click on OK. The
Create Business Components from Tables wizard starts. Click on Next.

Chapter 14

[375]

The Entity Objects window is displayed. Specify the entity objects that are to be
created from the database tables. First, select the schema in the Schema list that has
the database tables from which the business components are created. The catalog
table is in the OE schema, thus select the OE schema. Click on the Query button.
The database tables in the OE schema are listed in the Available display section.
Select OE.CATALOG table in the Available list and with the Copy (>) button or with
Alt+C transfer the selected table to the Selected section. Entity Object Catalog gets
specified. Click on Next.

The View Objects window is displayed. The entity objects that are available to
generate the default updatable view objects are listed in the Available section.
Select entity objects from the Available section and transfer them to the Selected
section with the Copy (>) button or with Alt+C. Select the Catalog entity object
in the Available list and copy the entity object to the Selected list. View Object,
CatalogView, is specified. CatalogView is the default view object for the selected
entity object.

Creating Oracle ADF Business Components

[376]

The default view object has all of the attributes in the entity object, and the SELECT
query selects all of the database columns. Click on Next.

The Read-Only View Objects window is displayed. The database Schema for which
the tables for view objects are available is listed in the Schema field. The Object
Types checkbox Tables is checked by default. The available tables are listed in the
Available selection list. Select the tables for which read-only view objects are to be
generated and shift the tables to the Selected list. As an example select the Catalog
table for read-only view objects and click on Next.

Chapter 14

[377]

The Application Module window is displayed. Specify an application module name
and click on Next.

In the Diagram window, select the Business Components Diagram checkbox
if a diagram is required to created and click on Next. In the Finish window, the
business components are listed. For the Oracle database table Catalog, the business
components are entity object Catalog, updatable view object CatalogView,
read-only view object CatalogView1, and application module AppModule. If the
selected entity objects have an association, a view link is also generated. Click on
Finish to generate the business components.

Creating Oracle ADF Business Components

[378]

The business components for the Catalog table are generated and added to the
Applications-Navigator. View Object instances CatalogView1 and CatalogView1_1
are generated. CatalogView1 is the view object instance corresponding to the
updatable view object CatalogView. CatalogView1_1 is the view object instance
corresponding to the read-only view object, CatalogView1.

The business components created from the database table Catalog are the default
business components. The entity object, the view objects, and the application module
may be modified in JDeveloper. To modify the entity object, Catalog, right-click on
the Catalog entity object node and select Edit Catalog.

Chapter 14

[379]

In the Entity Object Editor, click on the Attributes node. The attributes of the entity
object are listed. The entity object attributes correspond to the database columns in
the Catalog table. To remove an attribute select the attribute in the Entity Attributes
list and click on the Remove button. To add an attribute from an unmapped table
column click on the New from Table button. To add an attribute, which does not
have a corresponding table column click on the New button. As an example, add a
new attribute, which does not have a corresponding table column.

Creating Oracle ADF Business Components

[380]

In the New Entity Attribute window specify the attribute Name, Type and Default
value. Select the Persistent checkbox for a persistent field and click on OK.

The new attribute ArticleAbstract is added to the entity object Catalog. To
remove an attribute from an entity object, first remove the attribute from the view
objects. Click on the Apply button to apply the attribute additions/removals. Click
on the OK button.

Chapter 14

[381]

To synchronize the attribute additions made to the Catalog entity object with the
Oracle database table, right-click on the entity object node and select Synchronize
with Database. The Synchronize with Database window displays the modifications
required to synchronize the database with the entity object. If a new persistent
attribute is added to an entity object, a new table column is also required in the table
prior to creating the persistent attribute. If a new table column is not added, a
persistent entity object is modified to a transient attribute. Select Entity: Catalog
and click on the Synchronize button to synchronize the entity object with
the database. A window displays the message, The following Synchronization
Actions were performed successfully. As a database table column was not created
for the ArticleAbstract column, the ArticleAbstract attribute is set as a
transient attribute.

Creating Oracle ADF Business Components

[382]

To modify the updatable view object, CatalogView, right-click on the view object
node and select Edit CatalogView. The View Object Editor displays the attributes
and SQL query of the view object. Select the Attributes node to edit the view object
attributes. Select the SQL Statement node to edit the view object SELECT query.

Next, we will test the business components application. To test the business
components application, right-click on the application module node and select Test.
The Connect window is displayed. In the Connect window, the JDBC connection
used to connect with the database is selected. Select the Connection Type (JDBC
URL or Datasource) and Connection Name and click on the Connect button.

Chapter 14

[383]

The business components application is connected to the database and the Local
window is displayed. The Local window has an application module node and a
view objects instance results nodes. CatalogView1 is the view object instance for the
updatable view object CatalogView and CatalogView1_1 is the view object instance
for the read-only view object CatalogView1. Double-click on the updatable view
object instance CatalogView1 node to display the results of the view object query.

Creating Oracle ADF Business Components

[384]

The Go to next/previous record, Go to next/previous page, and Go to last/first
record links may be used to navigate through the view object query results. To add a
new record, select the Insert a new record link.

Chapter 14

[385]

As an example, delete a record with the Delete the current record link. To commit
the changes to a transaction, select Database | Commit.

Creating Oracle ADF Business Components

[386]

To view the data represented by a view object as XML select View | Data As XML.
A window for the view object XML data is displayed

The SQL query used to create a view object may be modified in the View Object
Editor. Right-click on the view object node and select Edit CatalogView. In the
View Object Editor window select the SQL Statement node. By default the SELECT
list and the FROM clause of the SQL query are automatically defined. To override
the default setting of the SELECT list and the FROM clause, check the Expert Mode
checkbox. As an example, specify a WHERE clause for the SQL query. Click on the
Apply button to apply the changes to the SQL query.

Chapter 14

[387]

A window pops up to test the SQL query syntax. If the query syntax is correct,
a Query is valid message is displayed. Click on OK in the View Object Editor
window. Right-click on the application module node and select Test to the test
the modified business components application. Click on Connect in the Connect
window. In the Oracle Business Components Browser, the results of the filtered
query are displayed. With the WHERE clause set to section='ORACLE DEVELOPER',
only the results with the section column value 'ORACLE DEVELOPER' are displayed.

Creating Oracle ADF Business Components

[388]

A new attribute may also be added/removed to the view object in the View Object
Editor. For example, select the transient attribute ArticleAbstract and add it to the
CatalogView view object. Click on the Apply button to apply the attribute additions
or removals. Click on OK.

Right-click on the application module node and select Test to test the modified
business components application. A new field ArticleAbstract is added to the
results of the view object query. If the added attribute is a transient attribute,
it does not get persisted to the database with the Database | Commit selection;
only a persistent attribute is added to the database. A transient attribute does
get displayed in the View Object XML Data window with View | Data as XML
selection if a value is specified for the attribute.

Chapter 14

[389]

The updatable view object, CatalogView1, is updatable as explained in the previous
section. Next, select the read-only view object instance node CatalogView1_1. The
read-only view object instance only displays the results; the results from the view
object query are not modifiable.

Creating Oracle ADF Business Components

[390]

In this section, a business components application module was created and tested
with the Oracle database. In the next section, we will create a web application for the
business components.

Developing a BC4J Web Application
In this section a web application is created in the ViewController project of the
Model-ViewController application. A web application JSP will invoke the business
components in the Model project. Add the Model project business components to
the classpath of the ViewController project. Select the ViewController project in the
Applications Navigator. Select Tools | Project Properties in the JDeveloper IDE. In
the Project Properties window, select the Common | Dependencies node. In the
Project Dependencies window, click in the Model.jpr checkbox. Click on the OK
button. The Model project gets added to the classpath of the View project.

The JSP application will be integrated with the BC4J components in the Model
project. To create a JSP right-click on the ViewController project and select New.
In the New Gallery window, select Web Tier | Java Server Pages. Select JSP Page
in the Items listed. In the Create JSP page, specify TestClient as the File Name
and a Directory Name for the JSP page. The JSP page TestClient.jsp is added to
the ViewController project of the BC4J application workspace. JDeveloper provides
integrated support for the Oracle JDBC driver. For ADF/BC4J applications with a
database other than Oracle database copy JDBC JAR file to BC4J/lib directory.

Chapter 14

[391]

In the TestClient.jsp, import the oracle.jbo package and the oracle.jbo.
client.Configuration class:

<%@page import="oracle.jbo.*, oracle.jbo.client.Configuration"%>

Create an application module name variable:

String appModule = "model.AppModule";

The application module name is specified in the AppModuleJndiName, element in the
<BC4JApp>\Model\src\model\common\bc4j.xcfg configuration file. <BC4JApp>
is the application workspace directory:

<AppModuleJndiName>model.AppModule</AppModuleJndiName>

Create an application module config name variable:

String cfg="AppModuleLocal";

Creating Oracle ADF Business Components

[392]

The application module config name is specified in the name attribute of the
AppModuleConfig element in the bc4j.xcfg file:

<AppModuleConfig name="AppModuleLocal"> </AppModuleConfig>

Create a view object instance variable:

String viewObject = "CatalogView1";

The view object instance is listed in the View Object Instances node in
the application module Structure window in the JDeveloper. Create an
ApplicationModule object from the BC4J application module using the
createRootApplicationModule() static method of the Configuration class:

ApplicationModule applicationModule =(ApplicationModule)
 Configuration.createRootApplicationModule(appModule, cfg);

Obtain a Transaction object from the ApplicationModule object using the
getTransaction() method. If the application module is not connected to the
database connect to the database with the connect method.

Transaction transaction=applicationModule.getTransaction();
 if(transaction.isConnected()==false)
 transaction.connect("jdbc:oracle:thin:@<HOST>:<PORT>:<SID>", "OE",
 "<password>");

<HOST> is the database host name.
<PORT> is the database port.
<SID> is the database instance.
<password> is the password for the OE schema.

Obtain the view object instance from the application module using the
findViewObject() method:

ViewObject vo = applicationModule.findViewObject(viewObject);

Iterate over the view object to output the attributes of the view object rows to the
browser. A row in a view object is represented with the oracle.jbo.Row interface.
Obtain the first row with the first() method of the ViewObject interface.

Row row = vo.first();

A row attribute is obtained using the getAttribute() method of the Row interface:

<% out.println(row.getAttribute(i++).toString());%>

Chapter 14

[393]

Obtain the next row in the view object using the next() method:

row = vo.next();

Release and remove the application module using the
releaseRootApplicationModule() method of the Configuration class:

Configuration.releaseRootApplicationModule(applicationModule, true);

TestClient.jsp JSP is listed below.

<%@ page
contentType="text/html;charset=windows-1252"%>
<%@ page import="oracle.jbo.*,
oracle.jbo.client.Configuration" %>
<html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=windows-1252">
 <title>BC4J Web Application</title>
 </head>
 <body>
 <%
 String appModule = "model.AppModule"; //App Module name
 String cfg="AppModuleLocal";//Config Name
 String viewObject = "CatalogView1"; //name of view object
 ApplicationModule applicationModule =(ApplicationModule)
 Configuration.createRootApplicationModule(appModule, cfg);
 //Establish connection with database
 Transaction
 transaction=applicationModule.getTransaction();
 if(transaction.isConnected()==false)
 transaction.connect("jdbc:oracle:thin:@localhost:1521:ORCL", "OE",
 "pw");
 // Find the viewobject included in the appmodule
 ViewObject vo = applicationModule.findViewObject(viewObject);
%>
 <table border="1" cellspacing="0">
 <tr>
 <th>CatalogId</th>
 <th>Journal</th>
 <th>Publisher</th>
 <th>Edition</th>
 <th>Section</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
 <% Row row = vo.first();
 while (row != null)
 { int i=0;

Creating Oracle ADF Business Components

[394]

 %><tr>
 <td><% out.println(row.getAttribute(i++).toString());%></td>
 <td><%out.println(row.getAttribute(i++).toString());%></td>
 <td><%out.println(row.getAttribute(i++).toString());%></td>
 <td><%out.println(row.getAttribute(i++).toString());%></td>
 <td><%out.println(row.getAttribute(i++).toString());%></td>
 <td><% out.println(row.getAttribute(i++).toString());%></td>
 <td><%out.println(row.getAttribute(i).toString());%></td>
 </tr>
 <%

 row = vo.next();
 } %>
 </table>
 <%
 Configuration.releaseRootApplicationModule(applicationModule,
 true);
 %>
 </body>
</html>

In JSP TestClient.jsp the application module connects with the database
with a JDBC URL. The application module may also be connected to the
database with a data source. For a JDBC connection DBConnection1 in the
Connections-Navigator a data source with JNDI name jdbc/DBConnection1DS is
available. An application module is connected to a database with a data source with
the connectToDataSource method of the Transaction interface:

transaction.connectToDataSource(null,"jdbc/DBConnection1DS","OE",
 "<password>", false);

To run the TestClient.jsp, right-click on the JSP node in the Applications
Navigator and select Run. The output of the JSP is displayed in the default browser.

Chapter 14

[395]

JDBC 4.0 Version
ADF Business Components use JDBC to access the database. OC4J server embedded
in JDeveloper 10g or JDeveloper does not support JDBC 4.0. The new features in
JDBC 4.0 may be availed in a JDeveloper version that supports JDBC 4.0. To use
JDBC 4.0 in ADF Business Components configure a database connection with the
Oracle database 11g JDBC 4.0 drivers JAR file ojdbc6.jar. We also need to set
JDK version to JDK 6.0. To set the JDK version select Tools | Project Properties. In
the Project Properties window, select Libraries. In the J2SE Version field, click on
Change to select a JDK 6.0 Java executable.

We would be able to use those JDBC 4.0 features that are implemented by the OC4J
server. Connection state tracking is implemented by the connection pool manager
and is used to track unusable connections. Prior to the new feature of connection
state tracking a connection pool manager would typically close all the connections
and reinitiate a connection pool if some of the connections in the connection pool
became unusable. Using the isValid() method of Connection interface in JDBC
4.0, the connection pool manager is able to determine if a connection is still valid. If a
connection is not valid, the connection pool manager closes the connection.

if(!connection.isValid())
connection.close();

Summary
The ADF Business Components is a JDBC-based framework. The ADF Business
components in JDeveloper may be configured with the Oracle database, as explained
in this chapter or a third-party database by configuring a library for the JDBC
driver for the database. A web application may be created with the ADF business
components using the oracle.jbo package classes and interfaces. In a JDeveloper
version that supports JDBC 4.0 we may also add the JDBC 4.0 features.

Hibernate
Hibernate is an open-source, JDBC-based object/relational persistence and
query service. Hibernate is used to map data representation in a Java object to a
database. Hibernate supports several databases including DB2, MySQL, Oracle,
and PostgreSQL. With Hibernate, Java data types are mapped to SQL data types.
Hibernate generates the required SQL to create, update, and delete database tables.
Hibernate is used for generating tables from a Java Bean class and adding, retrieving,
updating and deleting data to the tables.

Hibernate is preferred over other database persistence technologies, such as
Castor, TopLink, and Entity EJB, because of lesser complexity, greater flexibility,
open-source architecture, and support for different databases without the
requirement to provide vendor-specific SQL code in the data access layer. Hibernate
also provides classes for Ant build tasks, which may be integrated into an Ant build
file. In this chapter, we will integrate Hibernate with the JDeveloper 10.1.3 IDE and
the Oracle database 10g for developing an object/relational application.

The database persistence provided by Hibernate is based on a mapping file and
a database properties file. The .hbm.xml mapping file consists of class definitions
for database persistence, which specify the Javabean properties to be mapped to a
database table, the database schema name, the database table name, and the table
columns corresponding to the Javabean properties. The tables may be generated
from the mapping file or prior to developing the Hibernate application.

The mapping file specifies the Java classes for database persistence, the different
fields and field types in the Java objects, and the corresponding database table
columns and column types. The Java classes for a database application may be
generated from the mapping file or before developing the Hibernate application.
The database properties file (a hibernate.properties file) specifies the database,
the JDBC driver, and the connection URL for the database applications. The Ant task
classes net.sf.hibernate.tool.hbm2java.Hbm2JavaTask and org.hibernate.
tool.hbm2ddl.SchemaExportTask are used to map the mapping file to Java
classes and database tables respectively. The Java classes are subsequently used to

Hibernate

[398]

add/retrieve/update/delete data in the database tables. In this chapter, an example
mapping file, (catalog.hbm.xml), consisting of properties for a journal catalog, is
mapped to a database table, OE.Catalog, and to a Java class, Catalog.java.

Hibernate and JDBC
Hibernate is a JDBC-based database persistence framework. A Hibernate
application's Java to SQL mappings are defined in the org.hibernate.cfg.
Configuration object. The mappings are compiled from XML mapping files. A XML
mapping file is added to a Configuration object as follows:

Configuration cfg = new
 Configuration().addResource("Catalog.hbm.xml");

Hibernate configuration properties, which include JDBC properties, are set using one
of the following methods:

1. Set the configuration properties using setProperties() method of the
Configuration object.

2. Specify the configuration properties in the hibernate.properties file.
3. Specify the properties as System properties.
4. Specify the properties in the hibernate.cfg.xml file.

A SessionFactory is used to create and pool connections. A SessionFactory is
created from a Configuration object as follows:

SessionFactory sessionFactory = cfg.buildSessionFactory();

When a Session object is created a JDBC connection is obtained from the
connection pool.

Session session = sessionFactory.openSession();

Hibernate creates and pools connections either using java.sql.DriverManager or a
data source. If connections are to be created and pooled using a DriverManager, the
JDBC connection properties discussed in the following table need to be specified.

Property Description
hibernate.connection.driver_class JDBC Driver Class
hibernate.connection.url JDBC Connection URL
hibernate.connection.username Database User Name

Chapter 15

[399]

Property Description
hibernate.connection.password Database User Password
hibernate.connection.pool_size Optional Property. Maximum number of

pooled connections.
hibernate.dialect The Dialect for the database. For

the Oracle database specify org.
hibernate.dialect.OracleDialect

To develop a Hibernate application in an application server, obtain connections from
a data source with a JNDI name binding. The data source properties discussed in the
following table configure a Hibernate application with a data source.

Property Description
hibernate.connection.datasource Datasource JNDI name
hibernate.jndi.url JNDI provider URL (optional)
hibernate.jndi.class JNDI InitialContextFactory class (optional)
hibernate.connection.username Database Username
hibernate.connection.password Database Password

JDBC connections obtained from a data source automatically participate in the
container managed transactions of the application server. Arbitrary connection
properties may be set using the hibernate.connection prefix. For example,
connection property hibernate.connection.charSet sets a character set. Some of
the other Hibernate, JDBC and connection configuration properties that may be set
are discussed in the following table:

Property Description
hibernate.jdbc.fetch_size Specifies JDBC Fetch Size
hibernate.jdbc.batch_size Enables Batch Updates
hibernate.default_schema Specifies schema name for unqualified

table names.
hibernate.jdbc.use_scrollable_
resultset

Enables Scrollable ResultSets

hibernate.connection.isolation Specifies JDBC transaction isolation level.
hibernate.connection.
autocommit

Enables autocommit for JDBC pooled
connections.

Hibernate

[400]

Property Description
hibernate.connection.
release_mode

Specifies when Hibernate should release
JDBC connections to the pool. By default
JDBC connections are released when a
Session object is closed. The following
values may be specified:
auto (default)

on_close- When a connection is closed.
after_transaction- At the end of a
transaction.
after_statement- At the end of a
statement.

hibernate.jdbc.use_scrollable_
resultset

Enables Scrollable ResultSets

hibernate.connection.<propert
yName>

Specifies a JDBC property to be used by
DriverManager.getConnection()

hibernate.jndi.<propertyName> Specifies a JDBC property for the JNDI
InitialContextFactory.

If the JDeveloper OC4J server supports JDBC 4.0, the JDBC 4.0 features such as
connection state tracking may be availed of. Connection state tracking is implemented
by the connection pool manager to identify and close unusable connections.

In this chapter you will learn the following:

Creating a Database Table using Hibernate
Adding data to the Database Table using Hibernate
Retrieving data from the Database Table using Hibernate
Updating data in Database Table using Hibernate
Deleting data from Database Table using Hibernate

Setting the Environment
The Hibernate API classes are required to integrate Hibernate with JDeveloper.
Download the Hibernate 3.2 and Hibernate Extension 2.1.3 ZIP files from
http://www.hibernate.org/ and extract the files to an installation directory, C:/
Hibernate. A hibernate-3.2 directory is created for the Hibernate 3.2 and a tools
directory is created for the extension classes. Also download Hibernate 2.1.6, which
is required for the net.sf.hibernate.tool.hbm2java.Hbm2JavaTask tool.

•

•

•

•

•

Chapter 15

[401]

Extract the Hibernate 2.1.6 ZIP file to the C:/Hibernate directory; hibernate 2.1.6
directory is created. Install the JDeveloper 10g IDE. Install the Oracle database 10g
and create a database instance including the sample schemas.

Next, the Hibernate JAR files required to develop a Hibernate application will be
integrated into a JDeveloper 10g project. First, select File | New in the JDeveloper
IDE. In the New Gallery window, select General | Applications in the Categories
listed and select Application in the Items listed. Specify a Application Name
and Directory Name in the Create Application window with No Template
as the Application Template. In the Create Project window, specify a project
name and click on OK. A Hibernate application and project is added to the
Applications-Navigator.

Next, add libraries required to generate a Hibernate application to the project. Select
the Hibernate project node in the Applications-Navigator. Select Tools | Project
Properties. In the Project Properties window, select the Libraries node. Select the
Add Library button to create a new library. In the Add Library window select, the
New button. In the Create Library window, specify Hibernate in the Library Name
field and click on the Add Entry button. In the Select Path Entry window, select the
hibernate3.jar file and click on the Select button. The selected JAR file is added
to the Class Path node in the Create Library window. Click on the OK button in the
Create Library window. Click on the OK button in the Add Library window. The
Hibernate library gets created and added to the Selected Libraries. Similarly create
libraries for the other JAR files required for a Hibernate application.

Hibernate

[402]

The libraries created and the corresponding JAR files are listed in the following table:

Project Library Description JAR/Zip File
Hibernate The Hibernate API classes

including the org.hibernate.tool.
hbm2ddl.SchemaExportTask class.

<Hibernate>/hibernate-3.2/
hibernate3.jar

Hibernate-
Extensions

The hibernate extension
classes including the net.
sf.hibernate.tool.
hbm2java.Hbm2JavaTask
class.

<Hibernate>/tools/
hibernate-tools.jar

Hibernate-Lib The auxiliary Hibernate classes. <Hibernate>/hibernate3.2/lib/
dom4j-1.6.1.jar,<Hibernate>/
hibernate-3.2/ lib/commons-
logging-1.0.4.jar,
<Hibernate>/ hibernate-3.2/
lib/commons-collections-
2.1.1.jar, <Hibernate>/
hibernate-3.2/lib/ehcache-
1.2.3.jar, <Hibernate>/
hibernate-3.2/lib/cglib-2.1.3.jar,
<Hibernate>/ hibernate-
3.2/lib/jta.jar, <Hibernate>/
hibernate-3.2/lib/asm.jar,
<Hibernate>/ hibernate-3.2/
lib/antlr-2.7.6.jar

Oracle JDBC The Oracle JDBC library.
Delete orai18n.jar from
<JDeveloper 10.1.3>\jdbc\lib.

In previous table <Hibernate> is the directory in which the Hibernate
is installed. <JDeveloper 10.1.3> is the directory in which JDeveloper
10.1.3 is installed.

Chapter 15

[403]

The libraries created are listed in the Libraries window as shown in the
following table:

Developing Hibernate Mapping and
Properties Files
The Hibernate mapping file (a .hbm.xml file) and the Hibernate properties file
(hibernate.properties file) form the basis of a Hibernate application. The
mapping file consists of class definitions. Each class definition consists of a set of
properties to be mapped to a Java class and a database table. The field/column types
and additional characteristics of the columns such as length, not-null, and unique
are also specified with the properties. Some of the more often used tags in the
mapping file are listed in the following table:

Hibernate

[404]

Tag Name Description Attributes Sub Elements
hibernate-mapping The root element schema, package class

class Specifies the class
definition for mapping a
Hibernate Java class to a
database table.

table,schema id,property,set,list

id Required element in a
class definition.

column,type,length column,generator

property Specifies a class
property, which
corresponds to a table
column and a Java
class field.

type,column, length,
not-null, unique

column

The example mapping file in this chapter consists of a class and class properties for a
journal catalog. The element <generator class="native"/> is required in the <id>
element to generate Java classes from the mapping file. The element <generator
class="native"/> specifies the identifier generation strategy. The example
mapping file, catalog.hbm.xml is listed below.

<?xml version="1.0"?><!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
<class name="hibernate.Catalog" table="OE.CATALOG">
<id name="id" type="string" column="ID">
 <generator class="native"/> </id>
 <property name="journal" column="JOURNAL" type="string"/>
 <property name="publisher" column="PUBLISHER" type="string"/>
 <property name="edition" column="EDITION" type="string"/>
 <property name="title" column="TITLE" type="string"/>
 <property name="author" column="AUTHOR" type="string"/>
</class>
</hibernate-mapping>

Create a mappings directory in the C:/Hibernate directory and copy the catalog.
hbm.xml file to it. The Hibernate properties file, hibernate.properties, specifies
the database configuration for persistence to a database and query from the database.
The properties file is a text file with properties specified in the <property>=<value>.
The required JDBC connection properties of a hibernate.properties file are listed
in the first table in this chapter.

Chapter 15

[405]

In the hibernate.properties file for the example application in this chapter, the
Oracle database example schema OE is specified for the username property. The Oracle
Thin Type 4 driver is used with the driver class as oracle.jdbc.OracleDriver. The
hibernate.properties file for the Oracle database is listed below.

hibernate.connection.driver_class=oracle.jdbc.OracleDriver
hibernate.connection.url=jdbc:oracle:thin:@localhost:1521:ORCL
hibernate.connection.username=OE
hibernate.connection.password=
hibernate.dialect=org.hibernate.dialect.OracleDialect

Create a properties directory in the C:/Hibernate directory and copy the
hibernate.properties file to the properties directory.

Creating a Database Table
In this section, Java classes are generated from the example Hibernate mapping file
(catalog.hbm.xml) and a Oracle database table is generated from the mapping
file and the properties file (hibernate.properties). The mapping classes and
database table are generated with a Ant build file. The Hibernate API provides the
net.sf.hibernate.tool.hbm2java.Hbm2JavaTask task class to generate Java
classes from a hbm.xml mapping file and the org.hibernate.tool.hbm2ddl.
SchemaExportTask task class to generate a database table from a mapping file. First,
create a Ant build file in Jdeveloper 10g IDE. Select File | New. In the New Gallery
window select General | Ant. In the Items listed select Empty Buildfile.

Hibernate

[406]

In the Create Ant Buildfile specify a File Name, build.xml, and a Directory
Name for the build file. A build.xml file is added to the Hibernate project in the
Applications-Navigator.

The example build.xml consists of targets for the following:

1. Generate Java classes from the mapping file.
2. Compile the Java classes.
3. Generate a database table from the mapping file and the hibernate.

properties file.

We will discuss the structure of the build.xml file in detail. Add the
<project/> tag, which specifies the project name, the default target and the
basedir attribute. Add build file properties, which correspond to Hibernate
directories. The directories are specified relative to the base directory, which is
specified in the basedir attribute of the project element. The properties in the
example build.xml are listed in the following table.

Chapter 15

[407]

Property Value Description
src.dir src The directory in which

the Java classes from the
mapping file are generated.

classes.dir classes

hibernate-3.2 hibernate-3.2

hibernate-2.1 hibernate-2.1

hibernate.mappings mappings

jdbc C:\oracle\
product\10.2.0\
db_1\jdbc\lib

The directory with the
classes12.jar file and the
ojdbc14.jar.

hibernate.extensions tools The directory with the
hibernate-tools.jar file.

hibernate.properties properties The directory that has the
hibernate.properties file.

In the build.xml file, add a <path/> element to specify the classpath for the build.
xml file targets. The classpath includes the hibernate3.jar, hibernate-tools.
jar, ojdbc14.jar, and the auxiliary Hibernate and Hibernate extensions JAR files.
The init target generates the directories for the build.xml file. The javaGenerator
target generates Java classes from the Hibernate mapping file with the net.
sf.hibernate.tool.hbm2java.Hbm2JavaTask class. The compile target compiles
the Java classes generated from the mapping file. The schemaGenerator target
generates the database table from the mapping file and the properties file with the
org.hibernate.tool.hbm2ddl.SchemaExportTask class. The example build.xml
file is listed below.

<?xml version="1.0"?>
<project name="Hibernate"
default="schemaGenerator" basedir="C:\Hibernate">
 <property name="src.dir" value="src"/>
 <property name="classes.dir" value="classes"/>
 <property name="hibernate-3.2" value="hibernate-3.2"/>
 <property name="hibernate-2.1" value="hibernate-2.1"/>
 <property name="hibernate.mappings" value="mappings"/>
 <property name="jdbc"
 value="C:\oracle\product\10.2.0\db_1\jdbc\lib"/>
 <property name="hibernate.extensions" value="tools"/>
 <property name="hibernate.properties" value="properties"/>
 <path id="project.class.path">
 <pathelement location="${classes.dir}" />

Hibernate

[408]

 <fileset dir="${hibernate-3.2}">
 <include name="hibernate3.jar"/>
 </fileset>
 <fileset dir="${hibernate-2.1}">
 <include name="hibernate2.jar"/>
 </fileset>
 <fileset dir="${hibernate-3.2}/lib">
 <include name="*.jar"/>
 </fileset>
 <fileset dir="${hibernate-2.1}/lib">
 <include name="commons-lang-1.0.1.jar"/>
 </fileset>
 <fileset dir="${hibernate.extensions}/lib">
 <include name="*.jar"/>
 </fileset>
 <fileset dir="${hibernate.extensions}">
 <include name="hibernate-tools.jar"/>
 </fileset>
 <fileset dir="${jdbc}">
 <include name="ojdbc14.jar"/>
 </fileset>
 </path>
 <target name="init">
<mkdir dir="${src.dir}"/>
 <mkdir dir="${classes.dir}"/>
 </target>
 <taskdef name="javaGen"
 classname="net.sf.hibernate.tool.hbm2java.Hbm2JavaTask"
 classpathref="project.class.path"/>
 <target name="javaGenerator" depends="init">
 <javaGen output="${src.dir}">
 <fileset dir="${hibernate.mappings}">
 <include name="catalog.hbm.xml"/>
 </fileset>
 </javaGen>
 </target>
 <target name="compile" depends="javaGenerator">
 <javac srcdir="${src.dir}"
 destdir="${classes.dir}">
 <classpath refid="project.class.path"/></javac>
 </target>
 <taskdef name="schemaGen"
classname="org.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="project.class.path"/>
 <target name="schemaGenerator" depends="compile">
<schemaGen properties="${hibernate.properties}/hibernate.properties"
output="schema.ddl" create="true" quiet="no">
 <fileset
dir="${hibernate.mappings}">
 <include name="catalog.hbm.xml"/>

Chapter 15

[409]

 </fileset>
</schemaGen>
 </target>
</project>

Copy the build.xml listing to the build.xml file in the JDeveloper Hibernate
project. Build the targets in the build.xml file. Right-click on the build.xml file node
and select Run Ant. In the Run Ant window, select the schemaGenerator target.
The targets preceding the schemaGenerator target also get built as the targets are
specified in the depends attribute.

A Java class corresponding to the mapping file is generated. The Java class has getter
and setter methods for each of the class properties specified in the mapping file.
Catalog.java, the Java class, generated with Hibernate mapping file is listed
as follows:

package hibernate;
import java.io.Serializable;
import org.apache.commons.lang.builder.ToStringBuilder;
/** @author Hibernate CodeGenerator */
public class Catalog implements Serializable {
 /** identifier field */
 private Integer id;
 /** nullable persistent field */

Hibernate

[410]

 private String journal;
 /** nullable persistent field */
 private String publisher;
 /** nullable persistent field */
 private String edition;
 /** nullable persistent field */
 private String title;
 /** nullable persistent field */
 private String author;
 /** full constructor */
 public Catalog(String journal, String publisher, String edition,
 String title, String author) {
 this.journal = journal;
 this.publisher = publisher;
 this.edition = edition;
 this.title = title;
 this.author = author;
 }
 /** default constructor */
 public Catalog() {
 }
 public Integer getId() {
 return this.id;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public String getJournal() {
 return this.journal;
 }
 public void setJournal(String journal) {
 this.journal = journal;
 }
 public String getPublisher() {
 return this.publisher;
 }
 public void setPublisher(String publisher) {
 this.publisher = publisher;
 }
 public String getEdition() {
 return this.edition;
 }
 public void setEdition(String edition) {
 this.edition = edition;
 }
 public String getTitle() {
 return this.title;
 }
 public void setTitle(String title) {
 this.title = title;

Chapter 15

[411]

 }
 public String getAuthor() {
 return this.author;
 }
 public void setAuthor(String author) {
 this.author = author;
 }
 public String toString() {
 return new ToStringBuilder(this)
 .append("id", getId())
 .toString();
 }
}

A database table, specified in the table attribute of the class element in the mapping
file, is generated as shown in the output from build.xml.

The CREATE TABLE script generated with Hibernate is as follows:

create table OE.CATALOG (ID varchar2(255) not null, JOURNAL
varchar2(255), PUBLISHER varchar2(255), EDITION varchar2(255), TITLE
varchar2(255), AUTHOR varchar2(255), primary key (ID))

create sequence hibernate_sequence

Hibernate

[412]

The structure of the OE.Catalog table generated is as follows:

In the following section table data will be added, retrieved, updated, and deleted
with the Java class generated from the mapping file and the hibernate.properties
properties file.

Modifying Table Data with Hibernate
In this section a middle-tier Hibernate Java application is developed to add/update
and delete data to the table generated from the mapping file, catalog.hbm.xml. The
Java application is not the JavaBean class generated from the mapping file. The
Java application integrates the JavaBean class generated from the mapping file,
the mapping file, and the properties file to provide a database persistence and
query service.

Select File | New and in the New Gallery window select General | Java Class. In
the Create Java Class window, specify a class name, HibernateDB.java, and a class
package, hibernate. A Java class is added to the Hibernate project. Next, copy the
mapping file catalog.hbm.xml and the C:/Hibernate/src/hibernate/Catalog.
java java bean class to the hibernate directory. The directory structure of the
Hibernate application is shown in following figure.

Chapter 15

[413]

To the project libraries add the directory containing the hibernate.properties file.
Also add the Commons lang JAR file from the Hibernate 2.1.6 directory.

In the Hibernate Java application import the Hibernate API classes. Import the Java
class that was generated from the mapping file.

Adding Data to the Database Table
Create a Catalog class object and set values for the different fields of the Java class
with the setter methods.

Catalog catalog=new Catalog();
 catalog.setId("catalog 1");
 catalog.setJournal("Oracle Magazine");
 catalog.setPublisher("Oracle Publishing");
 catalog.setEdition("Jan-Feb 2004");
 catalog.setTitle("Understanding Optimization");
 catalog.setAuthor("Kimberly Floss");

Hibernate

[414]

Interface org.hibernate.Session, the main runtime interface between a Java
application and Hibernate, is used to create, update, and delete data in a database. A
Session object is obtained from a SessionFactory. The SessionFactory interface
provides openSession() methods to create a database connection and open a
session on the connection, or open a session on a specified connection. The org.
hibernate.cfg.Configuration class is used to specify configuration properties,
JavaBean persistence class and mapping files to create a SessionFactory object.
Create a Configuration object:

Configuration config=new Configuration();

Add the JavaBean persistence class, Catalog.class to the Configuration object
using the addClass() method.

config.addClass(example.hibernate.Catalog.class);

The mapping file, catalog.hbm.xml, which is copied to the same directory as the
mapped Java class is configured with the Configuration object. The hibernate.
properties file in the Class path of the Hibernate application gets configured as the
properties file for the Configuration object. Create a SessionFactory object from
the Configuration object using the buildSessionFactory() method.

SessionFactory sessionFactory=config.buildSessionFactory();

The SessionFactory creates and pools JDBC connections for the Hibernate
application. First, we will add data to the database table that was created with the
hibernate mapping file and the hibernate properties file. Obtain a Session object
from the SessionFactory object using the openSession() method.

Session sess = sessionFactory.openSession();

A JDBC connection gets obtained from the connection pool when a Session
is opened. Hibernate obtains and pools connections using java.sql.
DriverManager. Obtain a Transaction object from the Session object using the
beginTransaction() method to add data to the database table.

org.hibernate.Transaction tx = sess.beginTransaction();

Store the JavaBean object, created earlier, in the database with the save() method
and commit the transaction using the commit() method:

sess.save(catalog);
tx.commit();

The values specified in the Catalog object get stored in the database table. Close the
Session object using the close() method:

sess.close();

Chapter 15

[415]

Retrieving Data from the Database Table
Next, we will retrieve the data stored in the database table. Create a query to select
data from the table. The query is defined in Hibernate Query Language (HQL)
syntax which is similar to SQL.

String hqlQuery ="from example.hibernate.Catalog";

If the Select clause is not specified in the query all of the fields selected in the
From clause are selected from the mapped class. The From clause is specified with
the mapped Java class, example.hibernate.Catalog, not the database table. The
Java class object to database mapping is performed by the mapping file and the
properties file. Open a Session object from the SessionFactory object using the
openSession() method:

Session sess = sessionFactory.openSession();

Create a Query object with the createQuery(hqlQuery) method of the
Session object:

Query query = sess.createQuery(hqlQuery);

Obtain a List from the HQL query with the list() method of the Query object:
List list = query.list();

Iterate over the List and output values for the specified HQL query. For example
the Journal column value is output as follows:

for (int i = 0; i < list.size(); i++) {
Catalog catalog = (Catalog) list.get(i);
 System.out.println("CatalogId " + catalog.getId() +
 + " Journal: " + catalog.getJournal());
 }

Updating the Database Table
Next, we will update table values with the Hibernate Java application. Create a
query to select data, which is to be modified, from the table

String hqlQuery="from Catalog";

Obtain a Session object from the SessionObject.

Session sess = sessionFactory.openSession();

Obtain a Transaction object from the Session object.

Transaction tx = sess.beginTransaction();

Hibernate

[416]

Create a Query object from the HQL query using the createQuery() method of the
Session object. Obtain a List result set with the list() method. Obtain the
JavaBean object to be modified.

Query query = sess.createQuery(hqlQuery);
 List list = query.list();
Catalog catalog = (Catalog) list.get(0);

As an example, set the value of the publisher field to "Oracle Magazine".

catalog.setPublisher("Oracle Magazine");

Begin a Session transaction using the beginTransaction() method of the
Session object.

Transaction tx = sess.beginTransaction();

Update the database table with the saveOrUpdate() method of the Session object
and commit the transaction:

sess.saveOrUpdate(catalog);
tx.commit();

Deleting Data
Next, delete a table row with the Hibernate API. As an example, delete the table row
for edition "March-April 2005". Create a HQL query which selects a database table
row to delete.

String hqlQuery="from Catalog as catalog where catalog.edition='March-
April 2005'";

Open a database session with the openSession() method of the
SessionFactory object:

Session sess = sessionFactory.openSession();

Create a Query object with the HQL query. Obtain the result set List for the HQL
query. Obtain the result set item to be deleted:

Query query = sess.createQuery(hqlQuery);
List list = query.list();
Catalog catalog = (Catalog) list.get(0);

Begin a session transaction using the beginTransaction() method:

Transaction tx = sess.beginTransaction();

Chapter 15

[417]

Delete the row specified in the HQL query with the delete() method of the
Session object and commit the transaction:

sess.delete(catalog);
tx.commit();

The example Java application, HibernateDB.java, has the addToCatalog method to
add data, retrieveFromCatalog method to retrieve data, updateCatalog method
to update data, and deleteFromCatalog method to delete data. The following list
contains HibernateDB.java:

package hibernate;
import hibernate.Catalog;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import org.hibernate.Query;
import java.util.List;

public class HibernateDB {
 Transaction tx;
 Session sess;
 Configuration config;
 SessionFactory sessionFactory;
 public void addToCatalog() {
 try {
 Catalog catalog = new Catalog();
 catalog.setId("catalog 1");
 catalog.setJournal("Oracle Magazine");
 catalog.setPublisher("Oracle Publishing");
 catalog.setEdition("Jan-Feb 2004");
 catalog.setTitle("Understanding Optimization");
 catalog.setAuthor("Kimberly Floss");

 Catalog catalog2 = new Catalog();
 catalog2.setId("catalog 2");
 catalog2.setJournal("Oracle Magazine");
 catalog2.setPublisher("Oracle Publishing");
 catalog2.setEdition("March-April 2005");
 catalog2.setTitle("Starting with Oracle ADF");
 catalog2.setAuthor("Steve Muench");

 config = new Configuration();
 config.addClass(Catalog.class);
 sessionFactory = config.buildSessionFactory();
 sess = sessionFactory.openSession();
 tx = sess.beginTransaction();

Hibernate

[418]

 sess.save(catalog);
 sess.save(catalog2);
 tx.commit();
 } catch (Exception e) {
 try {
 if (tx != null) {
 tx.rollback();
 }
 } catch (
 org.hibernate.HibernateException excp) {
 }
 } finally {
 try {
 if (sess != null) {
 sess.close();
 }
 } catch (
 org.hibernate.HibernateException excp) {
 }
 }
 }
 public void retrieveFromCatalog() {
 try {
 String hqlQuery = "from Catalog";
 config = new Configuration();
 config.addClass(Catalog.class);
 sessionFactory = config.buildSessionFactory();
 sess = sessionFactory.openSession();
 Query query = sess.createQuery(hqlQuery);
 List list = query.list();
 for (int i = 0; i < list.size(); i++) {
 Catalog catalog = (Catalog) list.get(i);
 System.out.println(
 "CatalogId " + catalog.getId() +
 " Journal: " + catalog.getJournal());
 System.out.println(
 "CatalogId " + catalog.getId() +
 " Publisher: " + catalog.getPublisher());
 System.out.println(
 "CatalogId " + catalog.getId() +
 " Edition: " + catalog.getEdition());
 System.out.println(
 "CatalogId " + catalog.getId() + " Title " +
 catalog.getTitle());

Chapter 15

[419]

 System.out.println(
 "CatalogId " + catalog.getId() +
 " Author: " + catalog.getAuthor());
 }
 if (sess != null) {
 sess.close();
 }
 } catch (org.hibernate.HibernateException e) {
 }
 }
 public void updateCatalog() {
 try {
 String hqlQuery = "from Catalog";
 config = new Configuration();
 config.addClass(Catalog.class);
 sessionFactory = config.buildSessionFactory();
 sess = sessionFactory.openSession();
 Query query = sess.createQuery(hqlQuery);
 List list = query.list();
 Catalog catalog = (Catalog) list.get(0);
 catalog.setPublisher("Oracle Magazine");
 tx = sess.beginTransaction();
 sess.saveOrUpdate(catalog);
 tx.commit();
 } catch (Exception e) {
 try {
 if (tx != null) {
 tx.rollback();
 }
 } catch (
 org.hibernate.HibernateException excp) {
 }
 } finally {
 try {
 if (sess != null) {
 sess.close();
 }
 } catch (
 org.hibernate.HibernateException excp) {
 }
 }
 }
 public void deleteFromCatalog() {
 try {

Hibernate

[420]

 String hqlQuery = "from Catalog as catalog WHERE
 catalog.edition='March-April 2005'";
 config = new Configuration();
 config.addClass(Catalog.class);
 sessionFactory = config.buildSessionFactory();
 sess = sessionFactory.openSession();
 Query query = sess.createQuery(hqlQuery);
 List list = query.list();
 Catalog catalog = (Catalog) list.get(0);
 tx = sess.beginTransaction();
 sess.delete(catalog);
 tx.commit();
 } catch (Exception e) {
 try {
 if (tx != null) {
 tx.rollback();
 }
 } catch (
 org.hibernate.HibernateException excp) {
 }
 } finally {
 try {
 if (sess != null) {
 sess.close();
 }
 } catch (
 org.hibernate.HibernateException excp) {
 }
 }
 }

 public static void main(String[] argv) {
 HibernateDB hibernateDB = new HibernateDB();
 hibernateDB.addToCatalog();
 /*hibernateDB.retrieveFromCatalog();
 hibernateDB.updateCatalog();
 hibernateDB.deleteFromCatalog();*/
 }
}

Chapter 15

[421]

Copy HibernateDB.java to the Hibernate project. To add data to the Catalog
table, comment out all the methods except addToCatalog(). To run the Java
application, right-click on the application node and select Run. To retrieve data
from the database, comment out all the methods in the HibernateDB.java class
except retrieveFromCatalog() and run the application. The Hibernate application
retrieves the Catalog table data.

To update the database table, comment out all the methods except updateCatalog()
and run the HibernateDB application. To delete from the Catalog table, comment
out all the methods except the deleteFromCatalog() method and run the
HibernateDB application.

Summary
Object/relational mapping without a database persistence and query service requires
JDBC API and vendor-specific SQL scripts to create, update, delete database tables.
With Hibernate the JDBC API and the SQL scripts are not required. Hibernate
generates the SQL script to add, retrieve, update, and delete data from a database.
Hibernate provides the net.sf.hibernate.tool.hbm2java.Hbm2JavaTask Apache
Ant build task to generate a JavaBean class from a hbm.xml configuration file and
the org.hibernate.tool.hbm2ddl.SchemaExportTask Apache Ant build task to
generate a database table from a hbm.xml configuration file.

Index
A
ADF business components

about 369
BC4J project, configuring 371, 372
BC4J web application, developing 390-394
business components, creating 372-390
entity object 369
environment, setting 370
JDBC 4.0 version 395
view objects 369

Apache POI. See also Apache POI HSSF
JDBC 4.0 features, adding 365-368
JDBC 4.0 version 364-368

Apache POI HSSF
about 355
Apache POI library, downloading 355
classes 360
environment, setting 355-357
Excel spreadsheet, creating 359, 360
HSSFCell 360
HSSFCellStyle 360
HSSFChart 360
HSSFDateUtil 360
HSSFFont 360
HSSFHeader 360
HSSFPrintSetup 360
HSSFRow 360
HSSFSheet 360
HSSFWorkbook 360
implementation 355

Application Development Framework
Business Components. See ADF
business components

B
BC4J 370
BC4J project, configuring 371, 372
BC4J web application, developing 390-394
business components, creating 372-390
Business Components for Java. See BC4J

C
CMP 116
connection cache property

connectionCacheName 67
connectionCachingEnabled 67
fastConnectionFailoverEnabled 67

connection factory
connection URL 58
Factory Class 58
Login Timeout 58
Password 58
User name 58

connection interface
close() method 9
commit() method 8
createArrayOf() method 9
createBlob() method 9
createClob() method 9
createNClob() method 9
createSQLXML() method 9
createStruct() method 9
getClientInfo() method 9
isValid() method 9
methods 9
setAutoCommit(boolean autoCommit)

method 8

[424]

setClientInfo() method 9
setReadOnly() method 8

connection pooling
about 34
drawbacks 34

connection pool element
connection factory, sub-element 65, 66

connection pool property
about 49
attributes 56
initialPoolSize 50
maxIdleTime 50
maxPoolSize 50
maxStatements 50
minPoolSize 50
propertyCycle 50
property set A 56
property set B 57

Container-Managed-Persistence. See CMP

D
data, deleting with Hibernate API 416-421
database

connecting to, from web application 67
connecting to, with JSTL SQL tag library 79

database connection, JDBC 4.0 driver used
40-42

DatabaseMetadata interface
about 18
autoCommitFailureClosesAllResultSets()

method 21
getClientInfoProperties() method 21
getColumns(String catalog,String

schemaPattern,String
tableNamePattern,String
columnNamePattern) method 20

getFunctionColumns() method 21
getFunctions() method 21
getMaxColumnsInSelect() method 19
getProcedures(String catalog,String

schemaPattern, String
procedureNamePattern) method 20

getRowIdLifetime() method 20
getSchemas() method 21

getTables(String catalog,String
schemaPattern,String tableNamePatter
n,String[] types) method 19

getTypeInfo() method 18
supportsBatchUpdates() method 18
supportsGroupBy() method 19
supportsResultSetConcurrency() method

18
supportsResultSetType() method 18
supportsSavepoints() method 18
supportsStoredFunctionsUsingCallSyntax()

method 21
supportsTransactions() method 18

database table. See also Oracle database;
creating 87-94
creating, Hibernate used 405-412
creating, JSTL SQL 1.1 tags used 87
data, deleting with Hibernate API 416-421
data adding, Hibernate used 413, 415
data retrieving, Hibernate used 415
modifying, with Web RowSet 245, 247
querying 98-103
querying, JSTL SQL 1.1 tags used 98
row, deleting 197
updating 94-97
updating, from XML document 196, 197
updating, JSTL SQL 1.1 tags used 94
updating, with Hibernate Java application

415
updating, with Web RowSet 260

data source 125
DataSource interface

about 45
advantages 47
basic implementation 46
connection pooling implementation 47
distributed transaction implementation 47
implementation, types 46

Data Table. See JSF Data Table
DB2 database

JBoss server, configuring 121, 122
DriverManager class

Class.forName() method 7
getConnection() method 8
getDrivers() method 8

[425]

E
evironment

setting 50
Excel spreadsheet, creating with Apache

POI HSSF 359
Excel spreadsheet, creating with

JasperReports 349
Extensible Markup Language. See XML
Extensible Stylesheet Language

Transformation. See XSLT

F
factory class, JDeveloper 62

G
getClientInfoProperties() method 21
getColumns(String catalog,String

schemaPattern,String
tableNamePattern,String
columnNamePattern) method 20

getFunctionColumns() method 21
getFunctions() method 21
getMaxColumnsInSelect() method 19
getProcedures(String catalog,String

schemaPattern, String
procedureNamePattern) method 20

getRowIdLifetime() method 20
getSchemas() method 21
getTables(String catalog,String

schemaPattern,String tableNamePatte
rn,String[] types) method 19

getTypeInfo() method 18
getConnection() method 8
getDrivers() method 8
getHoldability() method 16
getNCharacterStream() method 16
getNClob() method 16
getNString() method 16
getRowId() method 16
getSQLXML() method 16
getSavepointId() method 11
getSavepointName() method 11
getCause() method 21

getErrorCode() method 21
getMessage() method 21
getNextException() method 21
getSQLState() method 21
getMoreResults() method 12
getResultSet() method 12
getUpdateCount() method 12

H
Hibernate

about 397
data, adding to database table 413-415
data, deleting 416-421
data, retrieving from database table 415
database table, creating 405-412
database table, updating 415
data table, modifying 412, 413
directory structure 412
environment, setting 400
mapping file 403, 404

Hibernate and JDBC 398
connection configuration properties

399, 400
data source properties 399
JDBC connection properties 398, 399

Hypersonic Database (HSQLDB) 105

I
IBM DB2 9 157
installing, JasperReports 338

J
J2SE

setting to, JDK 6.0 71, 72
JasperReports

about 335
configuration file, configuring 339-344
environment, setting 335-338
Excel spreadsheet, creating 349, 350
installing 338
JDBC 4.0 version 351, 353
PDF report, generating 345-349

JavaServer Faces User Interface. See JSF UI
JavaServer Pages Standard Tag Library. See

JSTL;

[426]

JBoss
application server connection, creating 109
deployment descriptors, for EJBs 116
web application, deploying from

JDeveloper 106-108
JBoss 4.0

about 105
Hypersonic Database (HSQLDB) 105
zip file, downloading 105

JBoss application server. See JBoss server
JBoss deployment descriptors

for EJBs 116
JBoss server

configuring, with DB2 database 121
configuring, with MySQL database 118
configuring, with Oracle database 117
configuring, with PostgreSQL database 120
configuring, with SQL server 122
JDBC 4.0 version 113-116

JDBC
configuration errors 60
IBM Data Server Driver 182

JDBC 4.0
about 75, 76
features 23
J2SE version, setting to JDK 6.0 71, 72
support in IBM’s DB2 UDB 39
support in MySQL database 38
support in Oracle database 36-38

JDBC 4.0, features
connection management 34
connection pooling 35
data types, support 23-25
scalar functions 35
SQL driver, loading 23
SQLException, enhancements 32
statement pooling 35
wrapper pattern, support for 31
XML data type, support for 25, 26

JDBC 4.0 drivers
i-net MERLIA JDBC 4.0 driver for MS SQL

Database 42
IBM Data Server Driver for JDBC and SQLJ

version 4.0 42
MySQL Connector/J 5.1 42
Oracle Database 11g JDBC Drivers 42

JDBC 4.0 version
about 266
automatic driver loading 332
catlog.jsp, deploying to JBoss 115, 116
cause facility 269
client info properties 332
connection client identification 351
connection identification feature 304
connection state tracking 152, 182, 268, 303,

351
connection tracking 113, 114, 182
datatypes, supported 154
for ADF business components 395
for Apache POI 364-368
for IBM Data Server Driver 182
for JasperReports 351, 353
for JBoss server 113-116
for JSF Data Table 303-305
for JSF panel grid 332-334
for SQLJ version 182
for Web RowSet 266-269
for XSQL 230
Java SE chained exception facility 269, 305
of web application JSP 185, 186
SQL data types 270
statement pooling 303, 332
support for wrapper pattern feature 303
wrapper pattern 153, 183, 332

JDBC configuration errors 60
JDBC Exceptions. See SQLException
JDBC provider, configuring 158-163
JDeveloper

about 45
connection, configuring with JBoss 108
connection pool, configuring 62
connections navigator 45
database, connecting to 67-70
database connection, configuring in

connections navigator 45
database connection, creating 52, 53
DataSource 45
data source 45
downloading 50
embedded OC4J server preferences 61, 62
environment, setting 50
factory class 62

[427]

installing 50-52
JDBC, configuring 45
JNDI 46
JSP, creating 69, 70
JSP, developing 72, 73
JSP, running 74
Managed Data Source, creating 63, 64
objects, pooling 48
OC4J application server 45
OC4J server preferences, embedded 64
PooledConnection interface 47, 48
PreparedStatement pooling 48
web application, deploying to JBoss

106-108
JNDI 46, 47
JSF data table

about 275
creating, JSF API used 291-302
creating, MBean used 276-291
environment, setting 275, 276
JDBC 4.0 version 303-306

JSF panel grid
about 307
environment, setting 308
JDBC 4.0 version 332-334
JSF validator, adding 327
panel grid creating, by binding managed

bean 320-331
panel grid creating, by binding rows

308-320
validators 315

JSF UI 275
JSP

creating 70
developing 72, 73
running 74

JSTL 79
JSTL Core 1.1 tag library

catch tag 82
choose tag 82
forEach tag 82
forTokens tag 83
if tag 83
import tag 83
otherwise tag 84
out tag 84
param tag 84

redirect tag 84
remove tag 84
set tag 84
tags 82
url tag 85
when tag 85

JSTL SQL tag library
component palette 88
dateParam tag 81
environment, setting 85, 86
JDeveloper 10.1.3, downloading 85
overview 79
param tag 81
query tag 80
setDataSource tag 82
taglib directives 87
tags 79
transcation tag 80
update tag 81

K
KEEP_CURRENT_RESULT, ResultSet 12

L
loading, SQL driver 23

M
managed data source

creating 63, 64
mapping file, Hibernate 404

class 404
hibernate-mapping 404
id 404
property 404
tags 404

multi data source 125
MySQLConnection 60
MySQL database

JBoss server, configuring 118, 119

N
native data source and managed data source,

differences 63

[428]

O
OC4J 45, 59
Oracle database

<connection-url/> settings 117
<driver-class/> settings 117
accessing 88
c:forEach tag, catalogQuery.jsp 100
catalog.jsp 93
catalogQuery.jsp 101, 102
catalogQuery.jsp, running 102, 103
catalogUpdate.jsp 96
catalogUpdate.jsp, running 97
column value, binding 100
database table, creating 87-94
database table, querying 98-103
database table, updating 94-97
EL expression, specifying 100
Insert out window 101
JBoss server, configuring 117, 118
non-XA data source copy 117
param value 96
setDataSource tag 88
sql:param tag 96
sql:query tag 98
sql:query tag, adding 99
sql:setDataSource tag 89
sql:transaction tag 90
sql:update tag 91, 92
tag attribute, adding 88
transaction, creating 90
transactional (XA) data source copy 117
value attribute, adding 96
var attribute 100
XA data source copy 117

Oracle database 10g driver
Oracle Web RowSet 231

Oracle Web RowSet. See Web RowSet

P
panel grid. See JSF panel grid
PDF report, generating 345
PostgreSQL database

JBoss server, configuring 120, 121
PreparedStatement interface

about 17

setNCharacterStream() method 18
setNClob() method 18
setNString() method 17
setRowId() method 17
setSQLXML() method 18

property set A, connection pool property
Abandoned Connection Timeout 56
Disable Connection Pooling 56
Inactivity Timeout 56
Initial Limit 56
Login Timeout 56
Max Connect Attempts 56
Max Connections 56
Min Connections 56
Retry Interval 56

property set B, connection pool property
Num Cached Statements 57
Property Check Interval 57
Time to Live Timeout 57
Used Connection Wait Timeout 58
Validate Connections 58
Validate Connection Statements 58

Q
query

XSQL queries, creating 215
XSQL query attributes 224

R
ResultSet interface

about 14
absolute(int row) method 14
afterLast() method 14
beforeFirst() method 14
first() method 14
getHoldability() method 16
getNCharacterStream() method 16
getNClob() method 16
getNString() method 16
getRowId() method 16
getSQLXML() method 16
insertRow() method 15
isAfterLast() method 15
isBeforeFirst() method 15
isClosed() method 16
isFirst() method 15

[429]

isLast() method 15
last() method 14
moveToCurrentRow() method 15
moveToInsertRow() method 15
relative(int rows) method 14
updateNCharacterStream() method 16
updateNClob() method 16
updateNString() method 16
updateRow() method 15
updateRowId() method 16
updateSQLXML() method 16

row
creating 247
deleting 258
reading 251
updating 255

S
Savepoint interface

getSavepointId() method 11
getSavepointName() method 11
rollback() method 10
setting, setSavepoint() method used 11

scalar functions
CHAR_LENGTH 35
CHARACTER_LENGTH 35
CURRENT_DATE 35
CURRENT_TIME 35
CURRENT_TIMESTAMP 35
EXTRACT 35
OCTET_LENGTH 35

SQL 2003 XML data type support
about 25, 26
XML document, generating 26, 28
XML document, retrieving 29
XML document, storing 28
XML document data, accessing 29, 31

SQL database
mapping to XML document, XSU used

198-203
SQLException

getCause() method 21
getErrorCode() method 21
getMessage() method 21
getNextException() method 21
getSQLState() method 21
SQLClientInfoException class 34

SQLNonTransientException class 33
SQLNonTransientException class,

subclasses 33
SQLTransientException class 33
SQLTransientException class, subclasses 33
subclasses 22

SQLException class 32
SQL server

JBoss server, configuring 122, 124
SQL tag library URI 79
Statement interface

about 11
CLOSE_CURSORS_AT_COMMIT, result

set holdability 11
CONCUR_READ_ONLY, result set

concurrency 11
CONCUR_UPDATABLE, result set

concurrency 11
createStatement() method 12
createStatement(int resultSetType,

int resultSetConcurrency) method 12
createStatement(int resultSetType, int

resultSetConcurrency, int
resultSetHoldability) method 12

execute() method 12
getMoreResults() method 12
getResultSet() method 12
getUpdateCount() method 12
HOLD_CURSORS_OVER_COMMIT, result

set holdability 11
isClosed() method 13
isPoolable() method 13
result set concurrency 11
result set holdability 11
result set type 11
setPoolable() method 13
TYPE_FORWARD_ONLY, result set type

11
TYPE_SCROLL_INSENSITIVE, result set

type 11
TYPE_SCROLL_SENSITIVE, result set type

11

T
transactions

about 9, 10
commit() method 9

[430]

rollback() method 9
TRANSACTION_NONE, transaction isola-

tion level 10
TRANSACTION_READ_COMMITTED,

transaction isolation level 10
TRANSACTION_REPEATABLE_READ,

transaction isolation level 10
TRANSACTION_SERIALIZABLE,

transaction isolation level 10
transaction isolation level 10
transaction isolation level() method 10
transaction isolation level, setting 10

U
updateNCharacterStream() method 16
updateNClob() method 16
updateNString() method 16
updateRow() method 15
updateRowId() method 16
updateSQLXML() method 16

V
view objects 369

W
web application

creating, with ADF business components
370

deploying, to JBoss from JDeveloper
106-108

deploying, to WebSphere from JDeveloper
172-182

deploying to WebLogic Server,
from JDeveloper 142-152

JDBC 4.0 version 185
web application to WebSphere, deploying

from JDeveloper 172-182
WebLogic Server

connection pool, settings 134, 135
connection pooling 140-142
data source, configuring 133
data source, creating 126-128
data source, profiles 135, 136
data source, settings 134
environment, setting 126

JDBC 4.0 version 152, 154
JDBC Type 4 drivers 129
multi data source, creating 136-140
performane tuning 140
web application, deploying from

JDeveloper 142-152
WebLogic Server 9.x 125
Web RowSet

creating 235-240
database table, modifying 245
database table, updating 260
directory structure 246, 247
environment, setting 232-234
JDBC 4.0 version 266-269
modifying, from SQL query 245
modifying, JSP used 245
row, creating 247-251
row, deleting 258-265
row, reading 251-255
row, updating 255-258
XML document 241-244

WebSphere
about 157
data source, configuring 163-172
environment, setting 158
JDBC provider, configuring 158-163
web application, deploying from

JDeveloper 172-182
wrapper interface

extending 31
isWrapperFor() method 31
unwrap() method 31

X
XML 187
XML document

data, accessing 29
database table updating, XSU used 196, 197
generating 26, 28
mapping to SQL database, XSU used

192-196
retrieving 29
storing 28

XML SQL Utility. See XSU
XSLT

about 187

[431]

XSQL
about 205
connection, configuring 211
connection, configuring in embedded OC4J

server 213, 214
database connection, creating 212
environment, setting 210
JDBC 4.0 version 230
page processor, steps 205, 206
XSQL output transforming, XSLT used

227-229
XSQL page, creating 215-222
XSQL queries, creating 215
XSQL query attributes, demonstrating

224-227
XSQL tags, overview 206

xsql-query tag, XSQL
attributes 223
bind-params attribute 223
date-format attribute 223
error-statement attribute 223
id-attribute 223
id-attribute-column 223
include-schema attribute 223
max-rows attribute 223
null-indicator attribute 223
row-element attribute 223
rowset-element attribute 223

skip-rows attribute 223
tag-case attribute 223

XSQL queries, creating 215
XSQL query attributes, applying 224
XSQL tags

xsql.delete-request 209
xsql.dml 207
xsql.include-param 207
xsql.include-request-params 208
xsql.include-xml 208
xsql.include-xsql 208
xsql.insert-param 209
xsql.insert-request 209
xsql.query 207
xsql.set-cookie 210
xsql.set-page-param 207
xsql.set-session-param 207
xsql.set-stylesheet-param 207
xsql.update-request 209

XSU
about 187
database table from XML document,

updating 196, 197
environment, setting 189-191
SQL database to XML document, mapping

198-203
XML document to SQL database, mapping

192-196

	JDBC 4.0 and Oracle JDeveloper for J2EE Development
	Table of Contents
	Preface
	Chapter 1: JDBC 4.0
	DriverManager Class
	Connection Interface
	Transactions
	Savepoint Interface
	Statement Interface
	ResultSet Interface
	PreparedStatement Interface
	Database Metadata
	JDBC Exceptions
	New Features in JDBC 4.0
	Automatic SQL Driver Loading
	Enhanced Data Type Support
	SQL: 2003 XML Data Type Support
	Generating an XML Document
	Storing an XML Document
	Retrieving an XML Document
	Accessing an XML Document Data

	Support for Wrapper Pattern
	Enhancements in SQLException
	Connection Management
	Scalar Functions

	JDBC 4.0 support in Oracle Database
	JDBC 4.0 support in MySQL Database
	JDBC 4.0 support in IBM's DB2 UDB

	Example Connection using a JDBC 4.0 Driver
	Summary

	Chapter 2: Configuring JDBC in Oracle JDeveloper
	Connection Pooling and DataSource
	Setting the Environment
	JDBC Configuration Errors
	Creating a Managed Data Source
	Connecting to a Database from a Web Application
	Setting J2SE Version to JDK 6.0
	Developing and Running JSP

	JDBC 4.0 Version
	Summary

	Chapter 3: Connecting to a Database with JSTL SQL Tag Library
	Overview of JSTL SQL and Core Tags
	Setting the Environment
	Creating a Database Table
	Updating a Database Table
	Querying a Database Table
	Summary

	Chapter 4: Configuring JDBC in JBoss Application Server
	Deploying a Web Application to JBoss from JDeveloper
	JDBC 4.0 Version

	JBoss Deployment Descriptors for EJBs
	Configuring JBoss Server with Oracle Database
	Configuring JBoss Server with MySQL Database
	Configuring JBoss Server with PostgreSQL Database
	Configuring JBoss Server with DB2 Database
	Configuring JBoss Server with SQL Server
	Summary

	Chapter 5: Configuring JDBC in WebLogic Server
	Setting the Environment
	Creating a Data Source
	Configuring a Data Source
	Creating a Multi Data Source
	Performance Tuning JDBC
	Deploying a Web Application to WebLogic Server from JDeveloper
	JDBC 4.0 Version
	Summary

	Chapter 6: Configuring JDBC in WebSphere Application Server
	Setting the Environment
	Configuring a JDBC Provider
	Configuring a Data Source
	Deploying a Web Application to the WebSphere from JDeveloper
	JDBC 4.0 Version
	Summary

	Chapter 7: XML SQL Utility
	Setting the Environment
	XML Document to SQL Database Mapping
	Updating Database from XML Document
	Deleting a Row in a Database
	SQL Database to XML Document Mapping
	Summary

	Chapter 8: XSQL
	Overview of XSQL Tags
	Setting the Environment
	Configuring a Connection
	Creating XSQL Queries
	Applying XSQL Query Attributes
	Transforming XSQL Output
	JDBC 4.0 Version
	Summary

	Chapter 9: Oracle Web RowSet
	Setting the Environment
	Creating a Web RowSet
	Modifying a Database Table with Web RowSet
	Creating a New Row
	Reading a Row
	Updating a Row
	Deleting a Row
	Updating Database Table
	JDBC 4.0 Version
	Summary

	Chapter 10: Creating a JSF Data Table
	Setting the Environment
	Creating a Data Table by Binding a MBean
	Creating a Data Table with the JSF API
	JDBC 4.0 Version
	Summary

	Chapter 11: Creating a JSF Panel Grid
	Setting the Environment
	Creating a Panel Grid by Binding Rows
	Creating a Panel Grid by Binding a Managed Bean
	JDBC 4.0 Version
	Summary

	Chapter 12: Creating a Report with JasperReports
	Setting the Environment
	Installing JasperReports
	Configuring the JasperReports Configuration File
	Generating a PDF Report
	Creating an Excel Spreadsheet
	JDBC 4.0 Version
	Summary

	Chapter 13: Creating a Spreadsheet with Apache POI
	Setting the Environment
	Creating an Excel Spreadsheet
	JDBC 4.0 Version
	Summary

	Chapter 14: Creating Oracle ADF Business Components
	Setting the Environment
	Configuring a BC4J Project
	Creating Business Components
	Developing a BC4J Web Application
	JDBC 4.0 Version
	Summary

	Chapter 15: Hibernate
	Hibernate and JDBC
	Setting the Environment
	Developing Hibernate Mapping and Properties Files
	Creating a Database Table
	Modifying Table Data with Hibernate
	Adding Data to the Database Table
	Retrieving Data from the Database Table
	Updating the Database Table
	Deleting Data
	Summary

	Index

