

2

Rights Reserved.

This work is subject to copyright. All rights are reserved,
whether the whole or part of the material is concerned
specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks.

ISBN: 9781483544731

3

Preface

The motivation to write this book comes from facts that there
a gamut of frameworks and technologies today to build a
custom enterprise applications using Java frameworks. Which
options should I go with and what are the choices that I need
to make. Do I need to procure multiple frameworks or Java
EE (5 and above) provides comprehensive capabilities to
build an enterprise application. Understanding this and the
pros and cons of the several J2EE technologies how they fit
into the Java enterprise application is the subject of this book.
This book also addresses the NFRs and explains how they
will be addressed in the solution. This title provides a step by
step approach and best practices to help architects and SME
evangelize the solution which cover various views/diagrams
including design decision, assumptions, and risk and
mitigation actions.

There are no reference artifacts in today that covers the entire
process from requirements to solutioning for an enterprise
grade Java Application. These references focus on describing
the frameworks and its capability but none provides an
end-2-end view and process of how the solution can be
evangelized including addressing NFRs. This critical areas
covered are transaction, security, frameworks, hardware
sizing, deployment models and scaling of the applications.
Most of the books and references will provide theoretical
approach giving only limited guidance which is not adequate
for real world scenarios or enterprise scale applications. The
book is a good reference for understanding how the UML
notations and various models are leveraged by SME,
designers and architects to document enterprise applications.

4

This book describes the process of building a full scale real
world solution using the JEE (5.0 and above) application
framework.

5

Acknowledgements

Thank you to my discussion partners, reviewers and
supporters, whose valuable comments and feedback have
greatly contributed to this book. I look forward to your
feedback on this title on an on-going basis.

Special thanks to my wife Vaishali and family members for
the encouragement and constant support during the
development of the book.

6

About the Author

Sameer S Paradkar is an Enterprise Architect with has 15+
years of extensive experience in the ICT industry which spans
across Consulting, Product Development and Systems
Integration. He is certified in Open Group TOGAF, Oracle
Master Java EA (SCEA), TMForum NGOSS, IBM SOA
Solutions, IBM Cloud Solutions and ITIL Foundation V3. He
serves as an advisory architect and mentor on Enterprise
Architecture initiatives and continues to work as a Subject
Matter Expert and author. He has worked on multiple
architecture transformation engagements in the USA, UK,
Europe, Asia Pacific and Middle East Regions that presented
a phased roadmap to transformation that maximized the
business value, while minimizing cost and risks. He has been
a globe-trotter and has travelled to multiple countries in 5
continents in his ICT career.

• He has worked as an enterprise architect on several IT
architecture transformation and modernization projects
worldwide. Past clients includes AVIVA UK, AOL US, BT
UK, Citigroup - APAC, LIC India, Lloyds Bank UK,
Microsoft US, Mobily Saudi Arabia, Saudi Ports Saudi
Arabia, Siemens AG Germany, STC Saudi Arabia, Telecom
New Zealand, Telenor Asia Pacific, Telstra Australia,
Tunsiana Telecom, Walgreens US.

• He has engaged with Department Heads, Technical and
Business leader’s levels in the past and advised them on

7

technology adoption strategy and roadmaps. He has worked
as Enterprise Architect as part of the Enterprise Architecture
Consulting advisory practice focusing on assessments,
strategy alignment, business case development and
governance across industry verticals.

• He has written several articles over the last few years that
have been published worldwide including BPTrends,
BPMInstitite and SOAInstitute.

• He has also worked as Consultant with focus on EAI, SOA,
and BPM envisaging and building IT systems and
business-critical applications for Fortune 100 customers - for
major Retail, Banking, Telecom, Insurance, and Healthcare
verticals.

• He has proven successful experience leading and driving
multiple large scale architecture modernization programs for
several years.

Prior to EY - IT Transformation - IT Advisory He has
worked in organizations like IBM GBS, Wipro Consulting
Services, Infosys Technologies and Deloitte Consulting and
specializes in IT Strategies and Enterprise transformation
initiatives.

8

Contents

Rights Reserved.

Preface

Acknowledgements

About the Author

Contents

List of Figures

Part I - Solution

Introduction

Tackling Business Problem

Risks and Assumptions

Class Diagram – from Domain Model to Class Diagrams

Component Diagram – Logical Architecture

Deployment Diagram – Physical Architecture

Sequence Diagram – from Use Cases to Sequence
Diagrams

Design Decisions

9

Summary

Business Problem – Case Study

Solution

Objective and Scope

Zamco Business Domain Model

Assumptions

Architecture Decisions

Risks and Mitigation

Zamco Architecture Overview

Zamco Application Framework

Zamco UML Diagrams

Part II – Non-Functional Requirements

Tackling the NFRs

NFRs – Solution

Performance

Scalability

Availability

10

Security

Reliability

Extensibility and Maintainability

Manageability

Sessions (State) Management

Transaction & Concurrency

Persistence

Distribution

Part III – Java EE Best Practices

Best Practices – Java EE Applications

Web Tier

Business Tier

Persistent Tier

Methodology & Processes

Summary

Glossary

PART IV – Appendices

11

Appendix I: Approach and Methodology

Approach – Solutioning

Appendix II: Java EE Vs Dot Net

Java EE

Dot Net

Appendix III: Open Source Development

Advantages and Disadvantages of Open Source

Appendix IV: Sizing and Capacity Planning

Step I: Create User Scenarios

Step II: Add Monitoring Capability

Step III: Add User Load

Step IV: Analyze Results

Step V: Remediate

Step VI: Rinse & Repeat

References

End

12

List of Figures

Figure 1: Java EE Framework Components

Figure 2: Java EE Framework Comparison

Figure 3: Java EE Vs Spring

Figure 4: Zamco Domain Model

Figure 5: Use Case Diagram Zamco

Figure 6: Application Tiers – Zamco

Figure 7: Presentation Request Processing – Class
Diagram

Figure 8: Presentation Request Processing – Sequence
Diagram

Figure 9: Business Service Access – Class Diagram

Figure 10: Business Service Access – Sequence Diagram

Figure 11: Data Service Provider – Zamco

Figure 12: Common Services – Zamco

Figure 13: Main Class Diagram – Zamco

Figure 14: Web Tier Class Diagram – Zamco

Figure 15: Component Diagram – Zamco

13

Figure 16: Deployment Diagram – Zamco

Figure 17: Post Oil Product for Sale Sequence Diagram –
Zamco

Figure 18: Bid on Oil Product Sequence Diagram –
Zamco

Figure 19: Transfer Ownership Ship Product Sequence
Diagram – Zamco

Figure 20: Pay for Winning Bid Sequence Diagram –
Zamco

Figure 21: Java EE Framework 7

Figure 22: RUP Methodology

Figure 23: Growth Projections

14

Part I - Solution

15

Introduction

This book presents a specific scenario similar in complexity
to that you can expect in a real world for enterprise
customers, and then presents a step by step approach to
creating the Java Application. The solution is built using Java
EE frameworks and technologies. Initial context around the
business problem is presented which includes business
requirements, use cases and NFR expected for the solution.
As an architect you will be required to apply your analytical
abilities and knowledge of Java technologies and frameworks
to come up with the best solution for the given problem
statement while making the right design choices where ever
required. As an architect you will be required to make
assumptions, design decision and identify risk and mitigation
actions which are also captured and covered in this artifact.

Non-functional requirements are critical to the success of
project and NFRs are the life-line of any software application.
Capturing and addressing them is a critical activity in any IT
project. This book provides comprehensive details for
analysis and solutioning of non-functional requirements for
the enterprise Java Application.

16

Figure 1: Java EE Framework Components

17

Tackling Business Problem

The analyst’s team will come up with a brief introduction to
the customer background and the needs for a Java EE
application. They will include a structured description of the
main requirements, a domain model, use case diagrams and
NFRs and you are expected to deliver the solution for the
Java application using the Java EE technologies and
framework.

The business problem captured or discussed during
workshops might be vague and may specify very high-level
description of the main use cases and thus there will be many
open questions or areas where further deep dive should be
planned. The requirements may be incomplete namely the use
case diagrams, and miss information necessary for the design.
Therefore you have to fill the missing parts for yourself and
replace the missing information with assumptions, perhaps
adding the unclear element to the list of risks. This is best
done through workshops, interview and discussion with
various stakeholders from business and technology
departments. Once the proper levels of details are available
and you have the solution in your mind, it isn’t too difficult to
draw the views for the solution using a suitable Visual editor.
One can leverage tools like MS Visio for the diagrams as they
are very intuitive and more than solves the purpose.

The key part of the solution itself the various diagrams or the
views are the key outputs delivered by the architects. As an
architect you have to decide which components or interfaces
the system should have their integration into the eco-system

18

and how the non-functional and functional requirements will
be addressed.

The process will also involve a considerable amount of time
estimating the resource (Hardware) requirements of the
application and exploring and comparing deployment
environments and the non-functional characteristics for
various physical vs the cloud options. This section will cover
this methodology and approach that you should apply while
creating your Java solution.

The solution typically includes among other things

• Class Diagram

• Component Diagram that describes various tiers and
components in scope

• Deployment diagram that describes the proposed physical
layout of the major tiers

• Sequence or Collaboration diagram for each use case

• Technical risks & mitigation strategies

• Design Decision that are made for the Solutions

• Assumptions made for the Solution

Risks and Assumptions

In this segment you are tested on the ability to recognize the
top technical risks present in the given business scenario and

19

the technology landscape and how these will be addressed by
your solution. Be strategic and objective in your assessment
of risk. Low-level risks should be avoided and high-level,
systemic risks that would be nightmare scenarios should be
included in this section. E.g In an online auctioning
application, a security limitation in any form would be a
major risk than worrying about if the application could run in
multiple browsers. The mitigation and hopefully complete
removal will be the focus of this section.

Class Diagram – from Domain Model to Class Diagrams

One has to ensure that all the objects detailed in the domain
model are present in the class diagram. Select and commit to
a method or framework that describes how you plan to build
the solution at the web/presentation, business logic,
persistence, and integration tiers. There are some important
points to note on the class diagram, as follows:

• The level of details in the class diagram will include the
entities, important manager EJBs and few other classes
representing important architectural concepts (a cache, an
interceptor, a DAO for accessing an external tool etc. which
needs to be addressed by the solution)

• The domain model will map to classes nearly directly, only
on a few occasions modifications and extensions will be
required e.g. introducing a base class.

• Annotations will be used to show how specific items in the
domain model are mapped onto JEE components specifically,
session beans and Entity classes. The class diagram will

20

contain important information pertaining @Entity or
@Embeddable, where ever applicable.

• The class diagram remains web framework agnostic. Any
web framework can be leveraged to build the solution.

Class diagram may also contain types, packages,
relationships, and even instances such as objects and links.
Class diagrams are static; they display what interacts but not
what happens when they do interact. A class diagram can
have three kinds of relationships:

• Association is a relationship between instances of the two
classes. An association exists between two classes if an
instance of one class must know about the other to perform its
work. In a diagram, an association is a link connecting two
classes.

• Aggregation is an association in which one class belongs to
a collection. An aggregation shows a diamond end pointing to
the part containing the whole.

• Generalization is an inheritance link indicating one class is a
superclass of another. A generalization shows a triangle
pointing to the superclass.

Using the initial list of business classes, you develop class
diagrams by identifying and defining the relationships among
the classes from the domain model. This is done in an
interactive development workshop with business partners. It
is also useful to keep these diagrams on display on a
whiteboard or other medium, and to develop it gradually as
the project progresses. The diagrams are stored on a UML

21

tool to provide access to all team members and other
interested parties. The class diagrams are also shows
relationships among classes. This aspect of the diagrams may
tend to evolve later in the design process, as lower level
classes are identified. The class diagrams will improve the
definition of the classes, which in turn may require changes to
the sequence diagrams and, when developed, the state
transition diagrams. These other diagrams will also have an
impact on the class diagrams.

Component Diagram – Logical Architecture

The component diagram is another view of the system, at a
higher level than the class diagram. In this view, you are
expected to demonstrate the ability to visualize the system at
a higher level and understand all of the critical parts in your
solution. If you have proposed a MDBs to solve a particularly
integration issue, here is where you need to depict in the
diagram. The component diagram represents the high-level
parts that make up the modeled application. This diagram is a
high-level depiction of the components and the relationships.
A component diagram depicts the components’ refined
post-development or construction phase.

Component diagrams are physical versions of class diagrams.
A component diagram shows the relationships and
dependencies between software components, including Java
source code components, Java class components, and Java
deployable components JAR (Java Archive) files. Within the
deployment diagram, a software component may be
represented as a component type. With respect to Java EE
some components exist at compile time, some exist at archive
time, some exist at runtime and some exist at more than one

22

time. A compile-only component is the one that is meaningful
only at compile time similarly the runtime component in this
case would be an executable program.

Deployment Diagram – Physical Architecture

The deployment diagram captures information about the
infrastructure characteristics. Naming specific machines,
vendors, or routers may not be essential, as these decisions
change so quickly. Do indicate a vendor/machine-agnostic
way the resources you expect to be deployed in order to
support the architecture namely CPUs, RAM, network
requirements, disk configuration, and so on and then provide
concrete examples of a specific vendor/machine combination
that satisfies your theoretical capacity prediction. Although
the resources deemed necessary will vary from one scenario
to the next, the fundamental resources themselves will not.
These are as follows:

• CPUs (number of cores, clock speed)

• RAM (quantity in GB)

• Network (minimum interface speed)

• Storage (disk/SAN configuration)

Deployment diagram puts it altogether and captures the
configuration of the runtime elements of the application. This
diagram is obviously most useful when an application is
complete and ready to be deployed. Depicts the nodes i.e., a
JEE server, a database server it accesses, and the user
workstation used to access the JEE application.

23

Deployment diagrams show the physical configurations of
software and hardware. The deployment diagram
complements the component diagram. It shows the
configuration of runtime processing elements such as servers
and other hardware and the software components, processes,
and objects that they comprise. Software component instances
represent runtime manifestations of classes. Components that
do not runtime entities do not appear on these diagrams they
are shown on component diagrams. Deployment diagram is a
graphical representation of nodes connected by
communication links or associations. Nodes may contain
component instances, which indicate that the component
resides and runs on the node. The deployment diagram can be
used to show which components run on which nodes. The
migration of components from node to node or objects from
component to component may also be represented.

Sequence Diagram – from Use Cases to Sequence
Diagrams

Sequence diagram describes how groups of objects
collaborate in some behavior over time. It records the
behavior of a single use case. It displays objects and the
messages passed among these objects in the use case. A
design can have lots of methods in different classes. This
makes it difficult to determine the overall sequence of
behavior. This diagram is simple and logical, so as to make
the sequence and flow of control obvious.

The sequence diagram shows the explicit series of
interactions as they flow through the system to address the
desired objective or result. The sequence diagram is
especially useful in systems with time-dependent

24

functionality (such as real-time applications) and for complex
scenarios where time dependencies are critical. It has two
aspects namely Time and Various objects participating in a
sequence of events required for a purpose.

Usually the sequence of events to which the objects of the
system are subject is important in real-time applications, the
time axis is an important measurement. This view identifies
the roles of the objects in your system through the sequence
of states they traverse to accomplish the goal. This view is an
event driven perspective of the system. The relationships
among the roles are not shown. Class and object diagrams
present such static views. Sequence and interaction diagrams
are dynamic. They describe how objects collaborate or
interact. A sequence diagram is an interaction diagram that
details the functionality and messages (requests and
responses) and the timing. The time progresses as you move
down the page. The objects involved in the operation are
listed from left to right according to when they take part in the
message sequence. The sequence diagram can have a
clarifying note, text inside a dog-eared rectangle. Notes can
be put into any kind of UML diagram.

Sequence diagrams are models of business processes that
represent the different interactions between actors and objects
in the system. Each process has a process owner and goals
(such as cycle time, defect rate, and cost) and consists of a set
of business activities (in sequence and/or in parallel).

Sequence or collaboration diagram should be covered for
each specified use case. Do not roll one or more use cases
together into a single diagram to save time. Sequence
diagrams should be clear and broadly map to the complexity

25

of the use case. The classes and components you created in
the class and component diagram should be represented,
along with the calls between them necessary to implement the
use case being documented.

Design Decisions

This section provides highlights on the various design
decisions an architect has to make while building the
enterprise Java solutions. This section covers all the critical
areas including, transaction, security, frameworks, hardware
sizing, deployment models and scaling of the applications.

Java EE Frameworks for Rescue

The common practice in J2EE 1.3 and J2EE 1.4 was indeed to
supplement the J2EE stack with quite a lot of additional
frameworks.

Starting from Java EE 5 and now certainly with Java EE 6 &
7 you don't need additional frameworks as JEE provides
reference implementations for all the specs. Everything core
Spring container provided to J2EE can now be done with the
lightweight EJB3.1 and CDI component models, ORM
support is provided by JPA which is often implemented by
Hibernate. The MVC web framework is part of the standard
stack via JSF.

Of course individuals may still prefer the Spring and Struts
programming APIs, but with Java EE 6 there is no pressing
need to use them. Or put differently, it's no longer absolutely
needed to complement Java EE unless if there aren’t

26

corresponding reference implementation available from
Oracle.

RedHat Seam does provide some nice (portable) extensions to
Java EE and JSF was actually built to be used with extension
and third party component libraries. Such a library is however
not really a 'framework', but just gives you additional widgets
to use on your pages and not the same as replacing JSF with
say Struts or GWT.

Figure 2: Java EE Framework Comparison

N-Tier or No-Tier

N-Tier Systems if well architected and designed can help
achieve all non-functional service levels requirements of the
system. Due to a highly distributed model, manageability may
suffer a little in N-Tier systems, but since all systems are
highly modular, the issue is fairly easy to address. It is also
notable that Architects have to sometimes compromise a little
on one service level requirement, to achieve the desired effect
on another. For example Performance and Security show an
inverse proportional relationship.

Consists of:

27

• Client Tier: The tier with which the end user interacts.
Clients can be ‘thin clients’ as in the case of Browser based
applications or fat clients as in the case of client Java
applications.

• Web Tier: Decouples the client tier from the Business tier.
Java Servlets and JSPs reside in this tier. Servlets act as
Controllers; they translate incoming requests, and dispatch
them to components that can invoke the business events in the
Business Tier. JSP combine static templates with dynamic
data to create dynamic output that the client tier uses for
presentation to the user.

• Business / Application Logic Tier: Generally implemented
using Enterprise Java Beans (EJB) that act as business
process objects and business domain objects. EJB containers
provide various services such as Object Distribution,
Persistence, Transaction, Resource Management, and Security
and so on.

• Enterprise Information System Integration Tier: EIS
Integration tier interfaces between the Business (and
sometimes Web tier) objects and Enterprise Information
Systems. Example, Data Access Objects (DAO) decouples
Enterprise beans (typically Session Beans or BMP Entity
Beans) with Enterprise Data.

• Enterprise Information System Tier: This represents all the
Enterprise data. This could be in many forms including
Relational Databases, XML Databases, and ERP Systems and
so on.

EJB Container Model

28

The EJB Container sits between an EJB Server and EJBs. An
EJB Server can have one or more EJB Containers and each
container can manage one or more components. The EJB
Container manages the EJBHome and EJBObject
implementations. Via these objects, the container decorates
Enterprise Bean classes and provides various services such as:

• Life cycle management

• Naming

• Object Distribution

• Persistence

• Security

• Transactions

• Concurrency

The EJB Container also does resource management through
Instance Pooling and swapping (in the case of Stateless
Session Beans) and Passivation / Activation, in the case of
Stateful Session Beans and Entity Beans.

Enterprise Java Bean Vs No Beans

To accommodate a growing number of users, you may need
to distribute an application's components across multiple
machines. The enterprise beans of an application can not only
run on different machines, but also the location will remain
transparent to the clients. Transactions are required to ensure

29

data integrity. Enterprise beans support transactions, the
mechanisms that manage the concurrent access of shared
objects. The application will have a variety of clients. With
just a few lines of code, remote clients can locate enterprise
beans. These clients can be thin, various, and numerous.
Scalable applications can be building using EJBs.

EJB 3.0 has been split into two parts: the EJB spec and the
JPA spec. EJBs are now known as entities in JEE 5 and later
and are POJOs. JPA (Java Persistence API) is as the name
suggests the persistence part of the API. This is commonly
used in libraries like EclipseLink, Hibernate and Toplink.
Hibernate is the most popular and predates JPA but the
differences aren't so large. JPA is an ORM (object-relational
mapper) for projecting an object model onto a relational
database.

EJB 3 Improvements

• Simplified process of developing ejb reduces significantly
overhead.

• Using Java Language annotations as configuration improves
developer’s productivity.

• Specification of programmatic defaults, including for
metadata, reducing the need for the developer to specify
common, expected behaviors and requirements on the EJB
container.

• Encapsulation of environmental dependencies and JNDI
access through the use of annotations, dependency injection
mechanisms, and simple lookup mechanisms.

30

• Simplification of the enterprise bean types.

• EJB support inheritance and polymorphism.

• Light-weight CRUD operations with JPA EnityManager
API.

• Enhanced query JPA capabilities.

• Life cycle callback methods can be defined in ejb itself or in
a bean listener class.

• Interceptor facility listeners for session beans and
message-driven beans. An interceptor method may be defined
on the bean class or on an interceptor class associated with
the bean.

• It is possible to use both CMP and JPA in one application

Bean Managed Vs Container Managed Transaction

The Java Platform EE platform supports two
transaction-management paradigms: declarative transaction
demarcation and programmatic transaction demarcation.
Declarative transaction management refers to a
non-programmatic demarcation of transaction boundaries,
achieved by specifying within the deployment descriptor the
transaction attributes for the various methods of the
container-managed EJB component. This is a flexible
approach that facilitates changes in the application’s
transactional characteristics without modifying any code.
Container-managed transaction demarcation must be used by
entity EJB components.

31

In bean-managed transaction demarcation, the EJB bean uses
UserTransaction. Only session beans can choose to use
bean-managed transactions. In container-managed transaction
demarcation, the EJB container is responsible for transaction
demarcation. Moreover, you should use container-managed
transaction demarcation because it is less prone to error, and
you should let the container handle transaction demarcation
automatically. It frees the component provider from writing
transaction demarcation code in the component. It is easier to
group enterprise beans to perform a certain task with specific
transaction behavior. The application assembler can
customize the transaction attributes in the deployment
descriptor without modifying the code.

However, programmatic (procedural) access control is
sometimes necessary to satisfy fine-grained or
application-specific conditions.

Bean Managed Vs Container Managed Security

To simplify the development process for the enterprise bean
provider, the implementation of the security infrastructure is
left to the EJB container provider and the task of defining
security policies is left to the bean deployer. By avoiding
putting hard-coded security policies inside bean code, EJB
applications gain flexibility when configuring and
reconfiguring security policies for complex enterprise
applications. Applications also gain portability across
different EJB servers that may use different security
mechanisms. EJB framework specifies flexibility with regard
to security management, allowing it to be declarative
(container-managed) or programmatic (bean-managed).

32

Security management that defines method permissions is
declared in the enterprise bean’s deployment descriptor or by
using annotations (if using EJB 3.0). Container-managed
security makes an enterprise bean more flexible, since it isn’t
tied to the security roles defined by a particular application. A
security role is a name given to a grouping of information
resource access permissions that are defined for an
application. Associating a principal with this security role
grants the associated access permissions to that principal as
long as the principal is in the role.

However, programmatic (procedural) access control is
sometimes necessary to satisfy fine-grained or
application-specific conditions. Enterprise beans can
programmatically manage the security by using the
isCallerInRole() and getCallerPrincipal() methods contained
on the EJBs context object. The isCallerInRole() method tests
whether the caller has a given security role, returning true if
the caller has and false if not. The getCallerPrincipal()
method returns the java.security.Principal that identifies the
caller.

QoS Considerations

• Performance – A measure of the system in terms of response
time or number of transactions per unit time. Load
Distribution (e.g. DNS Round Robin) and Load Balancing are
two techniques that aid in higher performance. Tasks such as
Application Tuning, Server Tuning, and Database Tuning
also improve system perform.

o DNS Round Robin: A process for distributing load in a
system. If we have ten web servers that can service HTTP

33

requests, the first request is directed to server 1, the second to
server 2 and so on. When all ten servers have serviced one
request each, the process starts all over again. Note that this
one of the load distribution technique. DNS Round Robin
does not balance the load.

o Reverse proxy load balancing: Reverse proxy load
balancing is used when you have servers with different
amounts of CPUs and Memory. You might have some
powerful servers just to be used for SSL sessions and others
to handle static html. Using this will maximize the
performance of your application

• Scalability – The ability of a system to perform and behave
in a satisfactory manner with increases in load. Scalability can
be achieved in two ways – Vertical (adding additional
processors, memory or disks to existing hardware) and
Horizontal (adding more machines to the system.) Vertical
scalability is easier to implement than Horizontal scalability.
Many J2EE vendors do however support horizontal scaling as
well.

• Reliability – The ability of a system to assure the integrity
and consistency of the application and all its data as the load
increases.

• Availability – The ability of a system to assure that all
services and resources are always accessible. This can be
achieved through fault tolerance (the ability to prevent system
failures in the event of service(s) / component(s) failures,
commonly implemented via redundancy) techniques such as
Active and Passive Replication.

34

Legacy Connectivity Options

• Screen Scraper: A screen scraper emulates a mainframe
terminal. Basically the screen scraper logs onto the
mainframe like a normal user and sends requests to the
mainframe and then reads the response. The problem with a
screen scraper is that if you change any of the mainframes
code there is always the possibility that the screen scraper will
stop working.

• Java Native Interface: JNI is used to allow Java to
communicate with programs written in languages like C++. In
effect you are wrapping the C++ code to make it available to
Java. For example you will wrap a C++ method debitAccount
(int amount) with a similar Java method; the Java method will
just call the C method. This means you can now make the
method accessible via RMI

• JAVA IDL: Java IDL adds CORBA (Common Object
Request Broker Architecture) capability to the Java platform,
providing standards-based interoperability and connectivity.
Java IDL enables distributed Web-enabled Java applications
to transparently invoke operations on remote network services
using the industry standard IDL (Object Management Group
Interface Definition Language) and IIOP (Internet Inter-ORB
Protocol) defined by the Object Management Group. Runtime
components include Java ORB for distributed computing
using IIOP communication.

Hibernate Vs JPA

JPA is just a specification, meaning there is no
implementation. You can annotate your classes as much as

35

you would like with JPA annotations, however without an
implementation nothing will happen. Think of JPA as the
guidelines that must be followed or an interface, while
Hibernate's JPA implementation is code that meets the API as
defined by the JPA specification and provides the under the
hood functionality.

When you use Hibernate with JPA you are actually using the
Hibernate JPA implementation. The benefit of this is that you
can swap out Hibernate's implementation of JPA for another
implementation of the JPA specification. When you use
Hibernate you are locking into the implementation because
other ORMs may use different methods/configurations and
annotations, therefore you cannot just switch over to another
ORM. As an architect you have a choice of JPA
implementations for e.g Oracle provides its JPA reference
implementation which is EclipseLink

JPA Pros:

• Isolate application from the database.

• Increase manageability of application.

• Improve developer productivity.

• Ease of development generated correct and efficient
persistence logic.

• Can outperform hand-crafted SQL, reducing the number of
database round-trips.

36

• JPA entities can be used outside container environment
hence promoting re-usability and coding effort.

• JPA entities can be used on both presentation layer and
business logic layer, thus reducing coding effort, size of code
and maintenance cost associated

• Supports lazy loading of objects hence improving
performance.

• Best integration with EJB 3.

• Used when model has complex relationships between tables.

JPA Cons:

• Imply loss of performance cause include additional layer.

• Can not explicitly tunning SQL by hand.

• When datastore is not well supported by ORM providers.

• Developers need skilled in ORM (learning curve).

Java EE Vs Spring

Some points to help you choose between Java EE 6 and
Spring

• Freedom to choose container - There are more than 14 Java
EE 6 compliant application servers today, with a variety of
open source and commercial offerings. A Java EE 6
application can be deployed on any of those containers. So if

37

you deployed your application on GlassFish today and would
like to scale up then you can deploy the same application to
WebLogic. And because of the portability of a Java EE 6
application, you can even take it a different vendor altogether.
Spring requires a runtime which could be any of these app
servers as well. Spring also has a different definition of
portability where they claim to bundle all the libraries in the
WAR file and move to any application server. But that
archive could be bloated.

• Vendor choice - The Java EE 6 platform is created using the
Java Community Process where all the big players like
Oracle, IBM, RedHat, and Apache are contributing to make
the platform successful. Each application server provides the
basic Java EE 6 platform compliance and has its own
competitive offerings. This allows you to choose an
application server for deploying your Java EE 6 applications.
If you are not happy with the support or feature of one vendor
then you can move your application to a different vendor
because of the portability promise offered by the platform.

• Spring is a set of products from a single company, one price
book, one support organization, one sustaining organization,
one sales organization, etc. Java EE, backed by multiple
vendors, is a safer bet for those that are risk averse.

• Production support - With Spring, typically you need to get
support from two vendors - VMWare and the container
provider. With Java EE 6, all of this is typically provided by
one vendor. For example, Oracle offers commercial support
from systems, operating systems, JDK, application server,
and applications on top of them. VMWare certainly offers

38

complete production support but this will putting all your
eggs in one basket.

• Maintainability - With Spring, you will be building your
own distribution with multiple JAR files, integrating,
patching, versioning, etc of all those components. Spring's
claim is that multiple JAR files allow you can pick the latest
versions of different components. The Java EE application
servers manage all of this for you and provide a well-tested
and commercially supported bundle.

While it is always good to realize that there is something new
and improved that updates and replaces older frameworks like
Spring, the good news is the Java EE 6 container not only
offers what is described, but also lets you deploy and run your
Spring applications on them while you go through an upgrade
to a more modern architecture. The end result is you get the
best of both worlds keeping your legacy investment but
moving to a more agile, lightweight world of Java EE 6.

Figure 3: Java EE Vs Spring

JSF Vs JSP

39

Using JSF, one will get automatic binding of data to visual
components, mapping, and validation of input data and saving
of state between requests. Using JSP - you have to implement
it manually. JSF also supports Ajax interaction with the
server.

If you are developing an application that requires a standard
behavior, such as data entry, editing and display - JSF is the
best bet. If you need an online application with fast response,
navigation within a page on the client side, such as Gmail or
twitter - you can spend a lot of time translating the client-side
logic components in the JSF. In this case, you better use the
JSP, as a source of data and JavaScript library to display data.
Therefore JSF is not suitable for all types of projects so those
who use JSP will not be moving to JSF.

JSF Pros :

• MVC framework. Offers a clean separation between
behavior and presentation.

• UI component model (binding, events, state saving,
validation).

• Multiples front-ends (desktop and mobiles browsers).

• Hides the HTTP infrastructure.

• Use IDE RAD environments.

• Automatic event handling (map http requests to component
specific).

40

• Automatic server side validations and conversion.

• Automatic I18N e I10L.

• All features result in reduces development time.

• Expression Language and Tag Libraries

JSF Cons :

• Standard HTML editor will not render the JSF. Need to
deploy JSF app to page rendered.

Estimating Resource Needs – Hardware Sizing

The NFR specifies the no. of concurrent users and the
required up time. The transactions per second – tps can be
derived from this data. So below are a few examples that can
give you an idea for the hardware sizing of the solution.

Example 1: Business Application

The application is a JEE learning management software that
must support 2000 concurrent users with the availability of
24/7 and hence needs a very powerful DB Hardware. The
infrastructure is:

• 2 physical Application Server nodes and HTTP Server

o 4 GB Memory (2GB will be for OS)

o 8 (virtual) processors

41

• Database

o master-slave with automatic fail-over

o 32 GB RAM

o 24 (virtual) processors

Example 2: Web Application

Liferay Portal for 5000 registered users with 500 of them
accessing it concurrently would need an application server
with 4GB memory and a 3GHz quad-core Xeon processor;
for the database, a server below 4GB/1-quad 3GHz would
suffice.

Conclusion

Given the examples above, other information, for a
requirement of 200 concurrent users doing no
resource-intensive actions and 10h/day availability, One 4GB,
2-core 2.5GHz machine running both a single AS and the DB
would be able to satisfy the performance requirements.

IBM recommends typical deployments of IBM WebSphere
Application Server v7.0 require at least a high-cpu medium
instance to have access to enough physical memory and
computing power. That means 2 GB RAM and 2 (virtual)
cores each with the power of 2.5-3.0 GHz 2007 Opteron or
Xeon processor. This is minimum production configuration to
run WebSphere and can be taken is as the minimum
configuration for any standard Java EE web application.

42

Often installations find that the database server runs out of
capacity much sooner than the WebLogic Server does. You
must plan for a database server that is sufficiently robust to
handle the application. A good application will require a
database three to four times more powerful than the
application server hardware.

Multiple Nodes Vs Single Node in Production

It will be sufficient to deploy a single server instance on a
machine for limited number of concurrent user’s e.g 400
concurrent users, since the Application Server and
accompanying JVM are both designed to scale for multiple
processors. However, it can be beneficial to create multiple
instances on one machine for application isolation and rolling
upgrades.

Deployment Environment – Cloud or Physical

You may choose one of three deployment environments:

• Renting a physical server – Is the most expensive but may
be more cost-effective in the long term, especially if there is
permanent high load on the server.

• Renting a Virtual Private Server (VPS) –Offerings have
low resources (such as 0.5-1.5 GB, ~ 1 GHz) and are thus
rarely suitable for Java EE

• Cloud Deployment – very flexible (easy addition of a new
instance, scale an instance up/down) will provide very good
SLAs, but the final price may increase due to various small
fees that gets accumulated.

43

Summary

Remember a clear and easy-to-understand picture is worth a
thousand words. It is important to remember that the
diagrams/views provided represent one way of documenting
the java solution. As long as you follow the criteria outlined
in the earlier sections, feel free to provide your own UML
diagrams that showcase your unique solution to the assigned
business scenario. Specifically do the following:

• Emphasis should be on the business solution i.e. if your
class diagram is 80% frameworks and 20% business logic and
is a candidate for failure.

• Augment diagrams with English text, but ensure that your
diagrams hold water on their own. Make sure the views/
diagrams are legible.

• Common parts of an enterprise web application may not be
mentioned explicitly in the requirements like user
registration/login, administration. This should be addressed
by the solution.

• Engage with stakeholders and conduct workshop and
discussions if there is no clarity around certain aspects of the
requirements or what is expected to be delivered as part of the
solution.

• Make suitable assumption when required and document
these in the specifications so that that is available for all
parties.

44

• Risk and Mitigation is an important area and must be
covered. All the high-level, systemic risks should be
addressed and mitigation actions should be identified.

• Design decisions should be documented along with the
rationale in the design artifact.

45

Business Problem – Case Study

Background:

The Oil and Gas industry is under constant pressure to
innovate. Geopolitical instability, environmental , rising
energy prices and consumption have created a business
environment where inflexible oil companies are penalized by
a combination of free market pricing and government
sanctions, but where nimble and flexible companies can reap
monetary rewards. Zamco is an oil company headquartered in
the United Kingdom, with important operations in
Middle-east and the Gulf of Mexico. The company has
recently entered into an agreement with a large oil auctioning
marketplace to bring its product to market more efficiently,
improving cash flow and reduce the cost of distribution. The
internal business case at Zamco projects cost savings of 22
percent over five years and improved margin and yield
management of 6 percent per annum over the current steady
state of the business, making this one of the most important
projects currently under development at the company.

Workshop Output

You are the architect for the marketplace project at Zamco.
You have been tasked by the Zamco management to lead the
team responsible for the design, implementation and ongoing
management of the complete system as a turnkey or complete
solution. After an intensive series of discovery workshops
with in-house business analysts and subject matter experts,
you know the following facts:

46

• The oil auctioning marketplace exposes a Java
technology–based API using Java Message Service (TMS)
technology to allow companies to send messages placing oil
for sale and to bid for oil with characteristics, such as
guaranteed messaging, message acknowledgment, and
message security available.

• Zamco already runs a complex pricing system in-house that
calculates what the price for each placement of oil in the
auction marketplace should be (based on how it was
extracted, its distance and transportation method to its final
destination point). As the solution architect, you need to
integrate with this system using web services to price the oil
before making it available to the auction market place for
sale.

• The final remaining external system is Zamco’ s inventory
management system that is also accessed using web services
and will allow you to see what unsold capacity remains
available for auction.

• Zamco has a relationship with Merchant Bank to handle the
transactions.

• The actual placement of orders for the auction management
system are handled manually Zamco employs a team of
traders who track the rise and fall of oil prices and use a
combination of timing and pricing information and other
systems outside the scope of this project to determine the best
time to buy or sell oil placements.

• System performance (99 percent of all messages to be
constructed and sent in three seconds or less to the IP address

47

of the API server), scalability (400 concurrent users),
availability (99.999 percent during core working hours), and
security (128-bit encryption at a minimum) are all key
requirements and you must explicitly address each
requirement in your proposed solution.

Domain Model: The following diagram depicts the domain
model for the business scenario.

Figure 4: Zamco Domain Model

Use Cases: The following diagram depicts the business use
cases for the solution scenario.

Figure 5: Use Case Diagram Zamco

48

Solution

This document provides comprehensive architectural
overview of Market Place Integration System for Zamco. This
application will be referred to as Zamco Application in this
artifact aka System Under Development - SuD. It serves as a
communication medium between the Software Architect and
other project team roles regarding System Architecture.
Zamco Application will be developed using a Java EE
architecture framework and component-based architecture.
This solution architecture document will address the
interlinking of various components/sub-systems that
participate in the end to end interactions to achieve the
business goals and objectives. This architecture adheres to the
Java EE 5 standards and best practice architectural guidelines
and methodologies and elaborates them in the context of
current integration project.

The purpose of the solution architecture document is to
provide:

• An end to end overview to various stakeholders regarding
the functionality to be implemented as part of the scope

• A link between the business scenarios in terms of how they
are interlinked to derive a tangible e2e functionality for the
Zamco business

• Key architecture decisions and assumptions

• The Risk and mitigation actions for Zamco Application

49

• This document provides the following UML views

o Class Diagram

o Component Diagram

o Deployment

o Sequence Diagram

• Overview of non-functional aspects for the solution and how
they are addresses in the solution.

Objective and Scope

This section describes the scope and objective for the Zamco
Market Integration Project. The Oil and Gas industry is under
constant pressure to innovate. Geopolitical instability,
environmental issues, and rising energy prices and
consumption have created a business environment where
inflexible oil companies are punished by a combination of
free market pricing and government sanctions, but where
nimble and flexible companies can reap monetary rewards.
Zamco is an oil company headquartered in the United
Kingdom, with important operations in Russia, Africa, and
the Gulf of Mexico. The company has recently entered into an
agreement with a large oil auctioning marketplace to bring its
product to market more efficiently, improving cash flow and
reduce the cost of distribution. The internal business case at
Zamco projects cost savings of 22 percent over five years and
improved margin and yield management of 7 percent per
annum over the current steady state of the business

50

Key Use Case that are in the scope of this project:

• Post Oil Product for Sale

• Bid on Oil Product

• Transfer Ownership/Ship Oil Product

• Pay for Winning Bids

The system designed must meet the following criteria i.e.
non-functional requirements

• Performance: 99% of all transactions to be under 3 seconds
or less.

• Scalability: Should support 400 concurrent users

• Availability: 99.999% availability during core working
hours.

• Security: A Minimum of 128 bit encryption.

Zamco Business Domain Model

The following domain model describes the key objects
identified during the workshops for Zamco Market
Integration Project. These objects and relationships are
addressed in the solution design. Pl refer to domain model in
figure 4.

Assumptions

51

#
System/
Component/
Framework

Assumption

1 Auctioning
Market Place

The auctioning market place will provide
the capability / functionality for auctioning
the products. The Zamco Application - SuD
(System under Development) will interface
with this external system thro’ the published
interfaces.

2 Auctioning
Market Place

The auctioning market place interfaces will
provide the requisite mechanism for
de-cryption/encryption, access control and
transport layer security.

3 Auctioning
Market Place

The standard SLA (response time) for
auctioning market place interface will be
fewer than 2 seconds

4
Merchant
Banking
System

The Merchant Bank will provide an open
standards interface for the Zamco
Application – SuD to be consumed that will
be based on interoperable protocol like
SOAP over HTTP

5
Merchant
Banking
System

The Merchant Banking System interface
will provide a mechanism for de-cryption/
encryption, access control and transport
layer security.

6
Merchant
Banking
System

The standard SLA (response time) for
merchant bank interface will be fewer than
2 seconds

7 Inventory
System

The standard SLA (response time) for
Inventory System interface will be fewer
than 2 seconds

52

8 Pricing
System

The standard SLA (response time) for
Pricing System interface will be fewer than
2 seconds

9 Pricing
System

Zamco Application integrates with Pricing
Systems for pricing the Oil Product before
it’s placed in the auction market place. The
pricing system will invoke the requisite
external system for pricing calculation.

10Deployment
Configuration

Web Server, Application Server and DB
Server details are not included in the
requirements and will be finalized with
Zamco.

11
Zamco
Application
JEE Version

Architecture will follow the JEE 5
specification and hence JPA and JTA will
be leveraged for persistence and
transactions mechanism.

12
Zamco
Application –
Security

The application will use LDAP for
authentication at the web tier.
The application will use role based security
at the web and business tier for
authorization.

Architecture Decisions

#
System/
Component/
Framework

Architecture Decision

1
Zamco
Architecture
Framework

Consistent structure and functional separation
imposed by the MVC framework makes the
applications more reliable and easier to
maintain and extend. For these reasons, the

53

Zamco application is designed using
framework.

2Common
Capabilities

Application will be built using error &
exception handling, logging and resource
injection capability provided by the JEE
framework. This will make the application
maintainable, reliable and facilitate faster
issue resolutions.

3Design
Patterns

Design Patters are leveraged thro’ out the
solution architecture as they make the
application maintainable and extensible.

4 Java EE
Framework

To provide scalability and business logic
reusability EJBs are leveraged to build the
solution. Enterprise Beans technology
provides scalability, reliability, a
Component-Based development model, and
common horizontal services such as pooling,
declarative transaction and security.

5
Distributed
Architecture
Support

The Zamco Application is designed with open
standards based and interoperable interfaces
and components for supporting distributed
architecture.

Risks and Mitigation

Risk is the product of probability of a threat exploiting
vulnerability and the impact to the organization. The process
of architecture risk management is the process of identifying
those risks in software and then addressing them.

Risk mitigation refers to the process of prioritizing,
implementing and maintaining the appropriate risk reducing

54

measures recommended from the risk analysis process.
Mitigating a risk means changing the architecture of the
software or business in one of more ways to reduce the
likelihood or impact of risk.

#Risk Mitigation

1

Lack of Security Mechanism/
controls while interacting
with the Merchant Bank will
result in the sensitive data
being compromised

Merchant Bank architecture
should provide encryption/
decryption components while
interacting with the Bank
APIs

2

Lack of Security Mechanism/
controls while interacting
with the Auctioning Market
Place will result in the
sensitive data being
compromised

Auctioning Market Place
architecture should provide
encryption/deprecation
components while interacting
with the Auctioning Market
Place

3

Application/Interface
non-availability for Merchant
Bank will result in decrease
of customer satisfaction
resulting in loss of revenues

Merchant Bank should
provide high availability
architecture to ensure that the
Zamco NFRs are met.

4

Application/Interface
non-availability for
Auctioning Market Place
will result in decrease of
customer satisfaction
resulting in loss of revenues

Auctioning Market Place
should provide high
availability architecture to
ensure that the Zamco NFRs
are met.

5

Application/Interface
non-availability for Pricing
System will result in
decrease of customer

Pricing System should
provide high availability
architecture to ensure that
NFRs are met.

55

satisfaction resulting in loss
of revenues

6

Application/Interface
non-availability for Inventory
System will result in
decrease of customer
satisfaction resulting in loss
of revenues

Inventory System should
provide high availability
architecture to ensure that
NFRs are met.

7

Lack of Zamco Applications
Scalability will result in
decrease of customer
satisfaction

Java EE stateless session
beans are used for handling
core business logic to support
high scalability and
distribution while clustering
the server.
Load balancer can be
configured to route traffic to
the backup servers when
primary’s reaches its
capacity threshold.

Zamco Architecture Overview

Zamco Application has its components grouped into five
major tiers. They are Client Tier, Presentation tier, Business
Tier, Integration Tier, and Data Tier. The System is accessed
using internet browsers like Internet explorer and Firefox over
internet or intranet.

• The Client Tier is the point from where the users connect to
the Application. Zamco Application uses Web browsers to
access the Application.

o Browsers

56

• The Presentation Tier is used to host the presentation
components and manage session for each user. Zamco
Application Web container and Web components are grouped
in this tier.

o JSF Framework

• The Business Logic Tier is where the business application
processing takes place. Zamco Application uses EJB
Container and Business components are grouped in this tier.

o EJBs (Entity’s , Session and Message Driven Bean)

o Java Mail

o JAAS

o JAXP

o JAXB

• The Integration Tier handles connection to EIS, retrieving
and updating data into the EIS tier. Entities are used for
search and large record retrieval.

o JMS/MQ (Encryption/Decryption)

o JAX-WS /Web Services (Encryption/Decryption)

• The Data Tier is where the application's data is persisted in
relational databases or legacy application. Zamco Application
uses RDBMS for managing the data.

57

o JPA

o JTA

Figure 6: Application Tiers – Zamco

The solution architecture defines the key system, application
components and integration necessary to process the data and
support Zamco business processes.

Zamco Application Framework

This section provides the details of the framework
components and corresponding design patterns leveraged in
the application architecture.

PRESENTATION REQUEST PROCESSING

Presentation Request Processing has been derived by
combining the following:

• Front Controller

• Command Handler (BackingBean Classes)

• Business Delegate (Business Service Provider/Proxies to
Business Services)

58

The participant diagram and the collaboration diagram of the
mechanism are shown below.

Figure 7: Presentation Request Processing – Class
Diagram

The following key architectural decisions have been captured
by the Presentation Request Processing mechanisms:

• All user requests are handled by a single web Controller (the
front controller of the application)

• The front controller forwards the request to the appropriate
Command Handler with the help of resource and access
mapping information stored in the form of an XML file
(BackingBean.xml)

• Command Handler manages user interactions for a specific
use case and co-ordinates use case interactions with the user.

• The Command Handlers does not perform business logic.
Instead, they use Business delegates as the Business provider
to the Application Server services.

• The Command Handlers do not produce any User output.
Instead, they call views to create HTML type of a stream that
is returned to the user.

• Views are implemented as JSPs.

59

• Business delegates are implemented as Java Beans that run
in the thread of the calling Delegates.

Figure 8: Presentation Request Processing – Sequence
Diagram

BUSINESS SERVICE ACCESS

Business Service Access combines implementation strategies
of the following Sun Java EE patterns:

• Business Delegate

• Session Facade

• Service Locator

The participant diagram and the collaboration diagram of the
mechanism are shown below.

Figure 9: Business Service Access – Class Diagram

60

This mechanism is a blueprint to access the Application
Server components for the organisation. The architecture does
not allow any Presentation layer components (Command
Handlers in particular) to communicate directly with entities.
Hence only beans that can be accessed remotely are session
beans.

The mechanism captures the following architectural
decisions:

• All business service components are implemented as
Session EJBs or have Session EJB facades.

• A client (in most cases it is a Bean handlers) that requires
access to a Business service component and creates an
instance of a Business Delegate.

As a consequence of using two mechanism of framework, the
application has a distinct separation between presentation and
business logic. The boundary is business delegates, which are
smart proxies to business services of application. This
separation is desirable for few reasons.

• It provides an explicit contract between designers and
developers of presentation tier and the business tier of the
system

• It allows the business tier to change independently from
presentation tier

• It allows for concurrent development of the two tiers.

61

Figure 10: Business Service Access – Sequence Diagram

DATA SERVICE ACCESS

The application architecture uses Local CMP Entity Beans for
read/write operations on the database. These will handle
concurrency for accounts when there are situations both
customer and agents accessing the same details.

Figure 11: Data Service Provider – Zamco

COMMON ELEMENT & SERVICES

Common elements and services is the grouping (a package) of
support elements and services that do not belong to any of the
Business components, but belong to the framework that
underlines the Application.

62

Figure 12: Common Services – Zamco

The package contains the following elements and services:

• Presentation Request Processing

• Business Request Processing

• Logging Framework

• Utility Classes

• XML Parser

Zamco UML Diagrams

The following section depicts the various diagrams for the
Zamco application. This section consists of the following
diagrams

• Class Diagram

• Component Diagram

• Deployment Diagram

• Sequence Diagrams

63

This section along with application framework forms the
end-2-end depiction of architecture for Zamco application.
The application framework section predominately focused on
the presentation and business tier consisting of the MVC
framework and the various classes that participate in MVC
architecture e.g business delegate, front controller, service
locator and business services EJBs. There is also a master list
of all classes for Zamco Application that is shown as part of
the List of Class Zamco section.

MAIN CLASS DIAGRAM

This section depicts the main class diagram for the Zamco
Application. This diagram depicts the key classes for Zamco
application. The class diagram is developed from the domain
model and models elements as entities, session beans, MDB
and Java Bean, as well as reorganizing the elements into a
classic n-tier layered architecture. The section List of Classes
– Zamco provides the comprehensive list of all the classes for
the Zamco application along with the description. This is the
master list of all classes in the Zamco Application. The main
class diagram shows details pertaining the following:

• JSPs for the Key Use Case Scenarios

• Controller/s

• Entities

• Stateless Sessions Beans (Business Logic)

• Message Driven Beans

64

• External Application/Systems Interface

Classes omitted (to ensure readability) from the main class
diagram and are covered as part of the application framework
section or other diagrams.

• JSPs (Login, Logout, Home) & (Admin)

• Backing beans for All JSPs

• Business Delegates

• Service Locator

The class diagram remains framework agnostic and any web
framework is an acceptable choice. The Zamco Application
leverages JSF for the presentation tier design. The class
diagram uses annotations to show how the domain model
have been mapped to JEE components specifically sessions
beans and entity beans.

65

Figure 13: Main Class Diagram – Zamco

WEB TIER CLASS DIAGRAM

The following depicts the web tier class diagram for Zamco
Application.

Figure 14: Web Tier Class Diagram – Zamco

LIST OF ALL THE CLASSES

This section provides comprehensive list of all the classes for
the Zamco application. This is master list of all the classes in
the Zamco Application. This table provides the class name, its
tier, its sub-system and the description for each in the below
table.

66

67

68

COMPONENT DIAGRAM

The section depicts the component diagram for the Zamco
Application. This diagram shows the component interactions
for the Zamco Application. The component diagram is
another view of the system, at a higher level than the class
diagram. The component diagram builds further on the class
diagram, related classes are logically grouping together into
components that carry out a distinct business operation. The
component diagram is laid out so as to make the layered
nature of the architecture clear.

This component diagram consist of the following tiers

• Presentation Tier

• Business Logic & Persistence Tier

• Integration Tier

• External Systems / Interfaces

69

Figure 15: Component Diagram – Zamco

Deployment Diagram!

The following diagram shows the deployment diagram for the
Zamco Application. The deployment diagram captures
information about how the system operates in production. The
deployment diagram depicts how the proposed solution will
execute at runtime, including the hardware and configuration
that will be needed to support the software solution. In this
diagram, we have adopted the convention of specifying three
hardware profiles (A, B and C) to call out the fact that we
expect the web server, application servers and the database
server to require different system resources.

The deployment diagram is divided into the following tiers:

• Web Server

• Application Server

• Database Server

70

• External Applications

To be able to provide high availability a hot backup has been
configured. Although primary application server is capable of
handling 400 users, hot backup server will be able to handle
users when primary server fails. Load balancer will be
configured to route traffic when primary fails or reaches its
capacity threshold.

Figure 16: Deployment Diagram – Zamco

NODE DESCRIPTIONS

The following table lists the various nodes that are part of the
architecture and the description.

#Node Description

71

1Client PC Client PC provides the web browser to access
the Zamco application over internet

2
Zamco
Web
Server

Zamco Web Server hosts the HTTP listener
process

3
Zamco
Application
Server

Zamco Application Server node runs the
business components and handles connection
pooling

4
Zamco
Database
Server

Runs the RDBMS instance

5Web
Container

Java EE Servlet Container provided by web
server. All servlets and JSPs will be executed
under control of this Container. In Web
Container there will be one Servlet container
per Web Application instance.
Protocol : HTTP/HTTPS

6EJB
Container

Java EE EJB Container provided by application
server. All EJBs will be executed under control
of this Container. There will one EJB container
per Application instance.
Protocol : RMI-IIOP, JMS/MQ, JAX-WS

HARDWARE PROFILES OF NODES

In the deployment diagram, we have adopted the convention
of specifying three hardware profiles (A, B and C) to call out
the fact that we expect the web server, application servers and
the database tier to require different system resources.

#Tier Hardware Profile Details

72

1Web Tier

CPU: 1 Multi Core CPU, 2.5-3 GHz
Memory: 4 GB
Disk: 12 K RPM HD
OS: 32 Bit
Network: 10 GbE

2Application Tier

CPU: 1 Quad Core CPU, 2.5-3 GHz
Memory: 8 GB
Disk: 15 K RPM HD
OS: 32 Bit
Network: 10 GbE

3Database Tier

CPU: 2 Quad Core CPU, 2.5-3 GHz
Memory: 32 GB
Disk: 15 K RPM HD
OS: 64 Bit
Network: 10 GbE

73

Sequence Diagram

The sequence diagram shows the flow of messages between
different objects. The sequence diagram explains the use case
realization of Post Oil Product for Sale Use Case, Bid on Oil
Product Use Case, Transfer Ownership Use Case, and Pay for
Winning Bid Use Cases.

POST OIL PRODUCT FOR SALE – SEQUENCE
DIAGRAM

The following diagram shows the mapping to the Post Oil
Product for Sale Use Case. This allows the Zamco
Representative to place oil product for sale in the market
place.

Figure 17: Post Oil Product for Sale Sequence Diagram –
Zamco

74

BID ON OIL PRODUCT – SEQUENCE DIAGRAM

The following diagram shows the mapping to Bid on Oil
Product Use Case. This allows potential buyer to place bids
for a specific quantity of Oil Product. The potential buyer
searches offers matching desired criterion and the system
responds with matching offer. The potential buyer selects a
specific offer of interest and places bid for the product.

Figure 18: Bid on Oil Product Sequence Diagram –
Zamco

75

TRANSFER OWNERSHIP / SHIP OIL PRODUCT –
SEQUENCE DIAGRAM

The following diagram shows the mapping to the Transfer
Ownership Use Case. This allows an authorized Zamco
Representative to transfer Ownership of the purchased offer
directly to the purchaser or to a named intermediary for
transport to destination. This is initiated with the Zamco
Representative selects a specified close successful offer.

Figure 19: Transfer Ownership Ship Product Sequence
Diagram – Zamco

76

PAY FOR WINNING BID – SEQUENCE DIAGRAM

The following diagram shows the mapping to the Pay for
Winning Bid Use Case. This allows the authorized buyer to
pay for an oil product won at the auction. After successful
buyer executes request for successful bid the system responds
with successful bid.

Figure 20: Pay for Winning Bid Sequence Diagram –
Zamco

77

Part II – Non-Functional Requirements

78

Tackling the NFRs

You should have a clear view on the non-functional
characteristics of the application and why your solution meets
and or exceeds these requirements. You should also
understand and appreciate the main technical risks inherent in
both the business and technology landscape and provide
mitigations actions.

• Performance

• Scalability

• Reliability

• Security

• Availability

Maintainability Handling NFRs will boil down to the
following key aspects:

• Why and How are you meeting the individual
non-functional requirements (performance, security, ...)

• What were the individual technological choices you have
made and alternatives considered and why you’ve rejected
them.

• Key ones are communication with external systems, Patterns
leveraged, frameworks that were leveraged during the design
process

79

NFRs – Solution

The below sections describes the solution options for the NFR
for the given business problem.

Performance

The following mechanisms were recommended for Zamco
Application architecture to achieve required performance:

• The 3 tiers namely web, application and database are hosted
on different hardware machines. Hence the resource intensive
operations implemented in EJB tier and the Database are
hosted on dedicated hardware providing improved
performance.

• Use of connection pooling for data base connections will
improve performance.

• Use of bean pooling in the EJB container will improve the
performance

• Using Business Delegate pattern will reduce the number of
round trips between presentation and Business logic layer
hence improving the performance.

• Using Service locator will the improve performance. Service
Locator will avoid performance overhead due to initial
context creation and service lookups.

• Transfer Object can avoid network performance degradation
caused by chattier applications.

80

• Caching of objects will improve the application performance

Scalability

The following mechanisms were recommended for Zamco
Application architecture to achieve required scalability:

• The architecture is designed to support both vertical as well
as horizontal scalability.

• To handle more number of client requests the application
can be scaled by deploying additional Web containers in
multiple machines.

• The application server will be clustered which allows the
ability to add processing capability by simply adding
instances to the cluster.

• Using connection pooling for database and bean pooling for
EJB improves scalability of applications.

• Design of application using stateless session beans improves
scalability of application. (ProductSaleManager, BidManager
and PaymentManager)

• Application or database servers nodes can be added
(horizontal scaling) to improve the scalability of the
application.

• The business logic is not tightly coupled with web tier
components and hence deploying the application components
(EJB components) in separate node and clustering them is
very easy.

81

• The architecture does not use any entity beans (EJB 2.1).
This increases the amount of objects created in memory and
would enhance scalability.

Availability

The following mechanisms were recommended for Zamco
Application architecture to achieve high availability:

• Application is designed with a hot stand-by configuration
for high availability.

• Incase the primary servers goes down the load balancer will
be able to route the request to secondary / hot standby nodes.

• The load balancer can be configured to route traffic to hot
standby in case the primary reaches is capacity threshold.

• Stateless design - When a particular stateless server fails, its
work can be re-directed to a different server instance without
implications for state management.

Security

The following mechanisms were recommended for Zamco
Application architecture to achieve required security:

• The security will be provided through DMZ using inner and
outer firewall. Application and Database servers will be
behind the inner firewall and the web server will be behind
outer firewall in the DMZ.

82

• The architecture uses Form Based authentication for the web
tier and the security logic is implemented in reusable business
component (UserManager) in the application tier.

• SSL will provide the desired security for sending sensitive
information to critical systems like Merchant Bank and
Market Place

• JMS Message-level (Using Encryption and Digital
signatures) and Transport-layer security (Using SSL).

• The application will use LDAP for authentication at the web
tier and will use role based security at the web and business
tier for authorization.

Best Practices:

SQL Injection: Prepared or Dynamic SQL Statements

Cross Site Scripting: JSF Validation, Avoid JavaScript’s, and
Avoid Frame/iFrames

Denial of Service: Service Request Queue Technique.
Limiting the number of Concurrent Request and queuing all
excess requests.

Man-in-the-Middle: Using SSL, Avoid Frames/iFrames,
Avoid URL Rewriting

Reliability

The following mechanisms were recommended for Zamco
Application architecture to achieve reliability:

83

• Primary application server although serves all the request, a
backup server is configured to route traffic if primary goes
down.

• Data Integrity is achieved with security controls/
mechanisms which will prevent third party from making any
unauthorized access and/or changes to data.

• Database transactions would ensure data integrity as it will
be a full commit or a rollback based on success/failure status.

Extensibility and Maintainability

The following mechanisms were recommended for Zamco
Application architecture to achieve extensibility and
maintainability:

• The logical separation of the application into different tiers
(Client, Presentation, Business Logic, Integration and EIS
tier) allows a system to be flexible and easily maintainable.
When there are any changes in presentation, it will be done at
presentation tier and it will not affect the other tiers. If there
are business logic changes only EJB components business
logic is altered and it will not affect other tiers and vice versa.

• The architecture uses command pattern at the web tier (JSF
Backing Bean classes) for handling web events. Therefore,
when new functionalities are added to the system, it will not
affect the existing system. We can easily create a new web
action by developing new BackingBean class and configure it
in faces-config.xml file. Even modifying the existing
functionality becomes easy by changing the respective
Backing Bean classes.

84

• Object oriented design like encapsulation, inheritance, low
coupling and high cohesion are leveraged in application
design. So any change to sub systems will have less impact on
systems which are using it as long the interfaces remain same.

• Independence of interface from implementation – This
mechanism allows architects to substitute different
implementations for the same functionality.

• This is supported with good documentation of the
application (Architecture diagrams, Interface agreements with
external systems, Class diagrams, Sequence diagrams, Coding
Guidelines etc)

Manageability

The following mechanisms were recommended for Zamco
Application architecture to achieve manageability

• Good logging mechanism to indicate any Fatal or Error
conditions

• Leverage Tivoli software to provide extensive monitoring
and management capability for the application

• Instrumentation and profiling of code to ensure that it meets
the quality thresholds

Sessions (State) Management

The following mechanisms were recommended for Zamco
Application architecture for session / state management

85

• The architecture uses JSF Faces servlet (FrontController),
which is the gateway to all the incoming requests to the
system. It handles the client session at common place in
HttpSession object at the web tier.

• EJB tier is not used for handling the stateful session hence
affecting the application's scalability.

• Most of the application server supports HTTP session in
memory replication and will be used during the applications
clustered failover.

Transaction & Concurrency

The following mechanisms were recommended for Zamco
Application architecture for transaction & Concurrency

• The application design incorporates container-managed
transaction for database transactions, which allows for
simpler, more portable code.

• All transactions related to one component are managed by a
single workflow manager object through an EJB. This EJB is
a stateless session bean designed using the facade pattern.

• The architecture uses JPA Entity (Payment (@Entity)) to
handle the payment transaction. The method is invoked with
Requires New transaction attribute set via a stateless session
bean.

• Entity instance are based on rows and EntityManager takes
care of concurrency.

86

Persistence

The following mechanisms were recommended for Zamco
Application architecture for persistence

• The architecture uses JPA Entities to persist the data into the
relational database.

• JPA Entity provides composite view of relational tables to
easily manage the persistence and JPA query language
provides fast access to the table rows with optimized queries.

• The use of JPA Entities to persist the data increases
scalability across multiple nodes.

• JPA improves database portability because of database
independent JPA Query language.

Distribution

The following mechanisms were recommended for Zamco
Application architecture for distribution.

• The architecture uses remote stateless session beans for
accessing the business service from web tier. These
components act as the facade to the JPA Entity layer, which
are designed with composite model to support container
managed relationship.

• This way we can distribute the business components by
deploying with multiple machines and they can be accessed
by the web tier components from remote. This will increase
the application's scalability as well.

87

Part III – Java EE Best Practices

88

Best Practices – Java EE Applications

To provide some simple guidance for entering this world, I
have compiled this best-of-the-best list of what I feel are the
most important and significant best practices for Java EE. In
order to avoid omitting critical best practices the list instead is
an essential top best practices for Java EE application.

Web Tier

Leverage MVC

Clean separate business logic (Java beans and EJB
components) from controller logic (servlets/Struts actions)
from presentation (JSP, XML/XSLT). Good layering can
cover a multitude of sins.

This practice is so central to the successful adoption of Java
EE that there is no competition for the #1 slot.
Model-View-Controller (MVC) is fundamental to design a
good Java EE application. It is simply the division of labor of
your programs into the following parts:

Those responsible for business logic (the Model - often
implemented using Enterprise JavaBeans or plain old Java
objects). Those responsible for presentation of the user
interface (the View). Those responsible for application
navigation (the Controller -- usually implemented with Java
servlets or associated classes like Struts controllers).

There are a number of problems that can emerge from not
following basic MVC architecture. The most problems occur

89

from putting too much into the View portion of the
architecture. Practices like using JSP tag libraries to perform
database access, or performing application flow control
within a JSP are relatively common in small-scale
applications, but these can cause issues in later development
as JSPs become progressively more difficult to maintain and
debug.

Likewise, we often see migration of View layer constructs
into business logic. For instance, a common problem is to
push XML parsing technologies used in the construction of
views into the business layer. The business layer should
operate on business objects and not on a particular data
representation tied to the view.

However, just having the proper components does not make
your application properly layered. It is quite common to find
applications that have all three of servlets, JSPs, and EJB
components, where the majority of the business logic is done
in the servlet layer, or where application navigation is handled
in the JSP. You must be rigorous about code review and
refactoring to ensure that business logic is handled in the
Model layer only, that application navigation is solely the
province of the Controller layer, and that your Views are
simply concerned with rendering model objects into
appropriate HTML and Javascript.

Just a few years ago, user interface developers for Web
applications could choose from servlets and JSPs, struts, and
perhaps XML/XSL transformation. Since then, Tiles and
Faces have become popular, and now AJAX is gaining a
strong following. It would be a shame to have to redevelop an

90

application's core business logic every time the preferred user
interface technology changes.

Prefer JSFs as your first choice of presentation technology

Using JSF, one will get automatic binding of data to visual
components, mapping, and validation of input data and saving
of state between requests. Using JSP - you have to implement
it manually. JSF also supports Ajax interaction with the
server.

If you are developing an application that requires a standard
behavior, such as data entry, editing and display - that JSF is
the best bet. If you need an online application with fast
response, navigation within a page on the client side, such as
Gmail or twitter - you can spend a lot of time translating the
client-side logic components in the JSF. In this case, you
better use the JSP, as a source of data and JavaScript library
to display data.

Store only as much state as you require

Enable session persistence.

HttpSession are great for storing information about
application state. Unfortunately, developers often lose sight of
the intent of the HttpSession -- to maintain temporary user
state. It's not an arbitrary data cache. Many systems put
enormous amounts of data -- megabytes -- in each user's
session. Well, if there are 1000 logged-in users, each with a 1
MB HTTP session, that's one gigabyte or more of memory in
use just for sessions. Keep those HTTP sessions small and if
you don't your application's performance will suffer. Good

91

rule of thumb is something under 2K-4K. This isn't a hard
rule. 8K is still okay, but obviously slower than 2K.

One common problem is in using HttpSession to cache
information that can be easily recreated, if necessary. Since
the sessions are persisted, this is a very expensive decision
forcing unnecessary serialization and writing of the data.
Instead, use an in memory hash table to cache the data and
just keep a key to the data in the session. This enables the data
to be recreated should the user fail over to another application
server.

Enable session persistence, if you don't enable session
persistence, should a server is stopped for any reason (a
server failure or ordinary maintenance); any user that is
currently on that application server will lose their session.
That makes for a very unpleasant experience. They have to
log in again and redo whatever they were working on. If
instead, session persistence is enabled, AS will automatically
move the user (and their session) to another application
server, transparently. They won't even know it happened. This
works so well, that we've actually seen production systems
that crashes regularly still provide adequate service.

Business Tier

Always use session facades whenever you use EJB
components

Use local EJBs when architecturally appropriate.

Using a session facade is one of the best-established best
practices for the use of EJBs. In fact, the general practice is

92

widely advocated for any distributed technology, including
CORBA, EJB, and DCOM. Basically, the lower the
distribution "cross-section" of your application, the less time
will be wasted in overhead caused by multiple, repeated
network hops for small pieces of data. The way to accomplish
this is to create very large-grained "facade" objects that wrap
logical subsystems and that can accomplish useful business
functions in a single method call. Not only will this reduce
network overhead, but within EJBs, it also critically reduces
the number of database calls by creating a single transaction
context for the entire business function. This is actually one
of the core principles of Service Oriented Architecture
(SOA).

EJB specification, provide performance optimization for
co-located EJBs. Local interfaces must be explicitly invoked
by your application, requiring code changes and preventing
the ability to later distribute the EJB without application
changes. If you are certain the EJB call will always be local,
take advantage of the optimization of local EJBs. However,
the implementation of the session facade itself, typically a
stateless session bean, should be designed for remote
interfaces. This way, the EJB itself can be used remotely by
other clients without major breakage to existing business
logic.

For performance optimization, a local interface can be added
to the session facade. This takes advantage of the fact that
most of the time, in Web applications at least; your EJB client
and the EJB will be co-located within the same JVM.
Alternatively, Java EE application server configuration
optimizations, such as WebSphere "No Local Copies," can be
used if the session facade is invoked locally but using the

93

remote interface. However, you must be aware that these
alternatives change the semantics of the interaction from
pass-by-value to pass-by-reference. This can lead to subtle
errors in your code. It is best to use local EJBs, since the
behavior is controllable on a bean by bean basis, rather than
affecting the entire application server.

Use stateless session beans instead of stateful session beans

This makes your system more amenable to failover. Use the
HttpSession to store user-specific state.

A stateful session bean is exactly the same, architecturally, as
a CORBA object a single object instance, tied to a single
server, which is dependent upon that server for its life. If the
server goes down, the object values are lost, and any clients
of that bean are thus out of luck.

Java EE application servers providing for stateful session
bean failover can work around some issues, but stateful
solutions are not as scalable as stateless ones. For example, in
Application Server, requests for stateless session beans are
load-balanced across all of the members of a cluster where a
stateless session bean has been deployed. In contrast,
application servers cannot load-balance requests to stateful
beans. This means load may be spread disproportionately
across the servers in your cluster. In addition, the use of
stateful session beans pushes state to your application server,
which is undesirable. Stateful session beans increase system
complexity and complicate failure scenarios. One of the key
principles of robust distributed systems is the use of stateless
behavior whenever possible.

94

A stateless session bean approach is chosen for most
applications. Any user-specific state necessary for processing
should either be passed in as an argument to the EJB methods
(and stored outside the EJB through a mechanism like the
HttpSession), or be retrieved as part of the EJB transaction
from a persistent store (for instance, through the use of Entity
beans). Where appropriate, this information can be cached in
memory, but beware of the potential challenges that surround
keeping the cache consistent in a distributed environment.
Caching works best for read-only data.

In general, you should make sure that you plan for scalability
from day one. Examine all the assumptions in your design
and see if they still hold if your application will run on more
than one server. This rule applies not only in application code
in the cases outlined above, but also to situations like MBeans
and other administrative interfaces.

Use container-managed transactions.

Leverage two-phase commit transactions work in Java EE and
rely on them rather than developing your own transaction
management. The container will almost always be better at
transaction optimization.

Container-managed transactions (CMTs) provide two key
advantages that are nearly impossible to obtain without
container support: composable units of work, and robust
transactional behavior.

If your application code explicitly begins and ends
transactions (perhaps using javax.jts.UserTransaction, or even
native resource transactions), future requirements to compose

95

modules, perhaps as part of a refactoring, often requires
changing the transaction code. For example, if module A
begins a database transaction, updates the database and then
commits the transaction and module B does the same,
consider what happens when you try to use both from module
C. Module C, which is performing what is a single logical
action, is actually causing two independent transactions to
occur. If module B were to fail during an operation, module
A's work is still committed. This is not the desired behavior.
If, instead, module A and module B both used CMTs, module
C can also start a CMT (typically implicitly via the
deployment descriptor) and the work in modules A and B will
be implicitly part of the same unit of work without any need
for complex rework.

If your application needs to access multiple resources as part
of the same operation, you need two-phase commit
transactions. For example, if a message is removed from a
JMS queue and then a record is updated in a database based
on that message, it is important that either both operations
occur -- or that neither occurs. If the message was removed
from the queue and then the system failed without updating
the database, this system is inconsistent. Serious customer and
business implications result from inconsistent states.

We occasionally see client applications trying to implement
their own solutions. Perhaps the application code will try to
"undo" the queue operation if the database update fails. We
don't recommend this. The implementation is much more
complex than you initially think and there are many corner
cases (imagine what happens if the application crashes in the
middle of this). Instead, use two-phase commit transactions.
If you use CMT and access to two-phase commit capable

96

resources (like JMS and most databases) in a single CMT,
Application Server will take care of the dirty work. It will
make sure that the transaction is entirely done or entirely not
done, including failure cases such as a system crash, database
crash, or whatever. The implementation maintains
transactional state in transaction logs. We can't emphasize
enough the need to rely on CMT transactions if the
application accesses multiple resources. If the resources you
are accessing cannot provide for two-phase commit, then of
course you have no choice but to use a more complex
approach but you should do everything as possible within
your power to avoid this situation.

Take advantage of application server features requiring
no code modification

With features such as Application Server caching and the
Prepared Statement cache, the performance gains are
substantial and the overhead is minimal.

Best practice above states a clear case as to why you should
be very prudent in applying application-server-specific
features that modify your code. It makes portability difficult
and may make version migration challenging as well.
However, there are a suite of application-server specific
features, in Application Server, that you can and should take
full advantage of precisely because they do not modify your
code. Your code should be written to the specification, but if
you know about these features and how to properly use them
you can take advantage of significant performance gains.

For one example of this, in WebSphere Application Server,
you should turn on dynamic caching and use servlet caching.

97

The performance gains are substantial and the overhead
minimal, while the programming model is unaffected. The
merits of caching to improve performance are well
understood. Unfortunately, the current Java EE specification
does not include a mechanism for servlet/JSP caching.
However, WebSphere Application Server provides support
for page and fragment caching through its dynamic cache
function without requiring any application changes. The
cache policy is specified declaratively and configuration is
through XML deployment descriptors. Therefore, your
application is unaffected, remaining Java EE specification
compliant and portable, while benefiting from the
performance optimizations provided from WebSphere's
servlet and JSP caching.

The performance gains from dynamic caching of servlets and
JSPs can be substantial, depending on the application
characteristics. Performance benefits go up to a multiplier of
10 from applying dynamic caching to an existing RDF
(Resource Description Format) site summary (RSS) servlet.

For additional performance gains, the WebSphere Application
Server servlet/JSP results cache is integrated with the
WebSphere plug-in ESI Fragment processor, the IBM HTTP
Server Fast Response Cache Accelerator (FRCA) and Edge
Server caching capabilities. For heavy read-based workloads,
significant additional benefits are gained through leveraging
these capabilities.

For another example of the principle take advantage of the
WebSphere Prepared Statement Cache when writing JDBC
code. By default, whenever you use a JDBC
PreparedStatement in WebSphere Application Server, it will

98

compile the statement once and then place it in a cache that
will be reused not just later in the same method where the
PreparedStatement is created, but across all points in your
program where the same SQL code is used in the same or
another PreparedStatement. Saving this re-compilation step
can result in a significantly lower number of calls to the
JDBC driver and improve the performance of your
application. You don't have to do anything special to take
advantage of this; just write your JDBC code to use
PreparedStatements. By writing your code to use a
PreparedStatement instead of a regular JDBC Statement class
(which uses purely dynamic SQL) you can take advantage of
this performance enhancement while not losing any
portability.

One more important area that we see ignored far too often is
clustering. Applications need to be designed and delivered to
run in a clustered environment. Most realistic environments
require clustering for scalability and reliability. Applications
that don't cluster lead quickly to disaster.

Log your program state using a standard logging
framework

This includes exception handlers. Use a logging framework
like JDK 1.4 or above logging or Log4J.

Logging is sometimes the most tedious, undervalued part of
programming, but it is the difference between long hours of
debugging and going home at a reasonable time. As a general
rule of thumb, at every transition point, log it. When you're
passing parameters from one method to another method, or

99

between classes, log it. When doing some transformation on
an object, log it. When in doubt, log it.

Once you've made the decision to log, choose an appropriate
framework. There are lots of good choices out there but we
are partial to the JDK 1.4 trace APIs, as they are fully
integrated into the WebSphere Application Server trace
subsystem and are standards-based.

Persistent Tier

Favor Conventions over Exceptions

In an ideal world, the default configuration settings would
always be exactly what we wanted. Our use of configuration
by exception would not require any exceptions to be
configured. We can approach this ideal world by minimizing
the frequency and severity of our deviations from the
assumed configuration. Although there is nothing inherently
wrong about providing specific exceptions to the default
configuration settings, doing so requires more effort on our
part to denote and maintain the metadata describing the
exceptions to the default configuration.

Use Portable Inheritance Mapping Strategies

Even if your JPA provider does implement the optional “table
per concrete class” inheritance mapping strategy, it is best to
avoid this if you need JPA provider portability.

It is also best to use a single inheritance mapping strategy
within a given Java entity class hierarchy, because support for

100

mixing multiple mapping inheritance strategies within a
single class hierarchy is not required of JPA implementations.

Leverage the Latest Tools

Major integrated development environments (IDEs) now
bundle several JPA-related tools. JDeveloper offers a wizard
that can easily create JPA-based entity classes with
appropriate annotations directly from specified database
tables. With just a couple more clicks, the JDeveloper user
can similarly create a stateless session bean to act as a facade
for these newly created entity beans. NetBeans 6.0 offers
similar JPA wizards, and the Eclipse Dali project supports
JPA tools for the Eclipse IDE.

Add Spring to Your JPA

A developer can use Spring to write JPA-based applications
that can be easily run in standard Java environments, web
containers, and full application server EJB containers with no
changes necessary to the source code. This is accomplished
via the Spring container’s ability to inject datasources
configured outside of the code and to support transactions via
aspect-oriented programming also configured outside of the
code. The Spring framework enables JPA developers to
isolate specifics of handling JPA in the various environments
(Java SE standalone, Java EE web containers, and Java EE
EJB containers) in external configuration files, leaving
transparent JPA-based code.

Another feature Spring 2.0 offers JPA developers is the
@Repository annotation, which is helpful in assessing

101

database-specific issues underlying a JPA
PersistenceException.

Finally, the Spring framework provides a convenient
mechanism for referencing some of the JPA provider
extensions that are common across the JPA providers.

Methodology & Processes

Think out of Box

It may be possible that are working on a scenario/business
problem relating to an industry vertical that you know well
and you may feel the urge to provide a solution taking into
account your prior knowledge. Resist this temptation to go
with preconceived notations. In fact, architects who adopt this
approach tend to either fail.

Understand the problem statement and the scope thoroughly
and don’t let your pre-existing preferences and concepts
influence your decision.

Meticulously select Frameworks and Libraries

Understand the advantages and disadvantages of the
alternative technologies in each layer (JSF vs. JSP with JSTL
etc.) and when one is more suitable than the other.

It’s important to have knowledge outside of the scope of the
business problem. For example you should know the aspects
pertaining to security e.g Man in the Middle, Denial of
Service, Spoofing, encryption mechanisms etc.

102

Don’t push the cool technologies (JSF, EJB, JPA etc)
everywhere and don’t do or avoid doing something because in
general it is considered to be a good or bad practice. One has
to decide based on the capabilities of existing framework and
a rational consideration of the pros and cons. For example
even using JSP with JSTL tags to do database queries may be
the most suitable solution in some special case.

Don't reinvent the Wheel

Use common, proven frameworks like Apache Struts,
JavaServer Faces, and Eclipse RCP. Use proven patterns.

Back when we first started helping educate our clients in how
to use the then-emerging Java EE standards, we discovered
that developing a framework for user-interface development
significantly improved developer productivity over building
UI applications directly to the base servlet and JSP
specifications. As a result, many companies developed their
own UI frameworks that simplified the task of interface
development.

As open-source frameworks like Apache Struts began
development, the switchover to these new frameworks would
be automatic and quick. The benefits of having an
open-source community supporting the framework would be
readily apparent to developers, and that they would gain
universal acceptance very rapidly -- not only for new
development, but in retro-fitted applications as well.

What has proven surprising is that this turned out otherwise.
We still see many companies maintaining or even developing
new user-interface frameworks that are functionally

103

equivalent to Struts or JSF. There are many reasons why this
could be true: organizational inertia, "not invented here"
syndrome, lack of perceived benefit in changing working
code, or possibly even a slight sense of hubris in thinking that
you could do things "better" than the open-source developers
did in a particular framework.

However, the time is long-past when any of these reasons is
worth using as an excuse not to adopt a standard framework.
Struts and JSF are not only well accepted in the Java
community, but fully supported within the vendors like
Oracle and IBM. Likewise, in the rich client arena, the
Eclipse RCP (Rich Client Platform) has also gained wide
acceptance for building standalone rich clients. While not a
part of the Java EE standard, these frameworks are now a part
of the Java EE community, and should be accepted as such.

Develop as per customer specifications

Know the specifications by heart and deviate from them only
after careful consideration. Just because you can do
something doesn't mean you should.

It is very easy to cause yourself grief by trying to play around
at the edges of what Java EE anables you to do. We find
developers dig themselves into a hole by trying something
that they think will work "a little better" than what Java EE
allows, only to find that it causes serious problems in
performance, or in migration (from vendor to vendor, or more
commonly from version to version) later.

There are several places in which not taking the most
straightforward approach can definitely cause problems. A

104

common one today is where developers take over Java EE
security through the use of JAAS modules rather than relying
on built-in spec compliant application server mechanisms for
authentication and authorization. Be very wary of going
beyond the authentication mechanisms provided by the Java
EE specification. This can be a major source of security holes
and vendor compatibility problems. Likewise, rely on the
authorization mechanisms provided by the servlet and EJB
specs, and where you need to go beyond them, make sure you
use the spec's APIs (such as getCallerPrincipal()) as the basis
for your implementation. This way you will be able to
leverage the vendor-provided strong security infrastructure
and, where business needs require, support more complex
authorization rules.

Other common problems include using persistence
mechanisms that are not tied into the Java EE spec (making
transaction management difficult), relying on inappropriate
Java Standard Edition facilities (like threading or singletons)
within your Java EE programs, and "rolling your own"
solutions for program-to-program communication instead of
staying within supported mechanisms like Java 2 Connectors,
JMS, or Web services. Such design choices cause no end of
difficulty when moving from one Java EE compliant server to
another, or even when moving to new versions of the same
server. Using elements outside of Java EE often causes subtle
portability problems. The only time you should ever deviate
from a spec is when there is a clear problem that cannot be
addressed within the spec.

Finally, be careful about adopting new technologies too early.
Overzealously adopting a technology before it has been
integrated into the rest of the Java EE specification, or into a

105

vendor's product, is often a recipe for disaster. Support is
critical and if your vendor doesn't directly support a particular
technology, you should carefully consider if you should use
it. People tend to focus too much on easing the development
process and neglect to consider the long term consequences of
depending on large amounts of code developed outside your
organization which is not supported by a vendor. Many
project teams are enamored with new technology (for
example, the latest open source framework) and quickly
become dependent upon it without considering the very real
costs to the business. Frankly, the decision to use any
technology beyond what you've bought from your vendors
should be carefully reviewed by corporate architecture,
business, and legal teams (or their equivalent in your
environment); just as normal product purchasing decisions are
evaluated. After all, with rare exceptions, most of us are in the
business of solving business problems, not advancing
technology for the sheer fun of it.

Plan for Java EE security proactively

Turn on Application Server security. Lock down all your
EJBs and URLs to at least all authenticated users.

It's a continual source of astonishment to us how few
customers we work with originally plan to turn on
WebSphere Application Server's Java EE security. Only
around 50% of the customers we see initially plan to use this
feature. We have even worked with several major financial
institutions that did not plan on turning security on; luckily
this situation was usually addressed in review prior to
deployment.

106

Not leveraging Java EE security is a dangerous game.
Assuming your application requires security (almost all do);
you are betting that your developers can better build a
security infrastructure than the one you bought from the Java
EE vendor. This is not a good bet. Securing a distributed
application is extraordinarily difficult. For example, you need
to control access to EJBs using a network-safe encrypted
token. Most home-grown security infrastructures are not
secure -- with significant weaknesses that leave production
systems terribly vulnerable.

In particular, while products like Access Manager provide
excellent security features, they alone cannot secure an entire
Java EE application. They must work hand in hand with the
Java EE application server to secure all aspects of the system.

Another common reason given for not using Java EE security
is that the role-based model does not provide sufficiently
granular access control to meet complex business rules.
Though this is often true, this is no reason to avoid Java EE
security. Instead, leverage the Java EE authentication model
and Java EE roles in conjunction with your specific extended
rules. If a complex business rule is needed to make a security
decision, write the code to do it, basing the decision upon the
readily available and trustable Java EE authentication
information (the user's ID and roles).

Iterative and Incremental Development

Iterative development enables you to gradually master all the
moving pieces of Java EE. Build small, vertical slices through
your application rather than doing everything at once.

107

Java EE is big framework and if a development team is just
starting with Java EE, it is far too difficult to try learning it all
at once. There are simply too many concepts and APIs to
master. The key to success in this environment is to take Java
EE on in small, controlled steps.

This approach is best implemented through building small,
vertical slices through your application. Once a team has built
its confidence by building a simple domain model and
back-end persistence mechanism (perhaps using JDBC), and
has thoroughly tested that model, they can then move onto
mastering front-end development with servlets and JSPs that
use that domain model. If a development team finds a need
for EJBs, they could likewise start with simple session
facades atop container-managed persistence EJBs or
JDBC-based DAOs (Data Access Objects) before moving
onto more sophisticated constructs like message-driven beans
and JMS. This approach is nothing new, but relatively few
teams actually build their skills in this way.

Instead, most teams cave in to schedule pressures by trying to
build everything at once -- they attack the View layer, the
Model layer, and the Controller layer in MVC,
simultaneously. Instead, consider adopting some of the new
Agile development methods, such as Extreme Programming
(XP), that foster this kind of incremental learning and
development. There is a procedure often used in XP known as
Model First that involves building the domain model first as a
mechanism for organizing and implementing your user
stories. Basically, you build the domain model as part of the
first set of user stories you implement, and then build a UI on
top of it as a result of implementing later user stories. This fits
very well with letting a team learn technologies one at a time,

108

as opposed to sending them to a dozen simultaneous classes
(or letting them read a dozen books), which can be
overwhelming.

Also, iterative development of each application layer fosters
the application of appropriate patterns and best practices. If
you begin with the lower layers of your application and apply
patterns like Data Access Objects and session facades, you
should not end up with domain logic in your JSPs and other
View objects.

Finally, when you develop in thin vertical slices, it makes it
easier to start early in performance testing your application.
Delaying performance testing until the end of an application
development cycle is a sure recipe for disaster.

Leverage Java EE capabilities

Commit to building real Java EE applications that truly
leverage Java EE function.

One of the most disturbing things we've seen more than once
is an application that claims to "run in WebSphere" but isn't
really a WebSphere application. We've seen several examples
where there is a thin piece of code (perhaps a servlet) in
WebSphere Application Server and all of the remaining
application logic is actually in a separate process; for
example, a daemon process written in Java, C, C++ or
whatever -- but not using Java EE -- does the real work. This
is not the recommended approach. Virtually all of the
qualities of service that Application Server provides aren't
available to such applications. This can be quite a rude
awakening for folks that think this is a WebSphere

109

Application Server application. Ensure that your solution is
delivered in a vendor-neutral format.

110

Summary

Clarity makes it easy for the stakeholders to quickly and
concisely understand your proposed solution. As you develop
and document your solution, ask these questions to keep your
solution on track:

• Am I providing a solution to the business problem posed, or
am I solving what I want to solve?

• Is my solution clearly documented and does it reflect the
intent?

• Is my solution simple and concise, while clearly solving the
business problem as presented to me in the scenario?

When working with Java EE, most of the services we need
are provided by the application server. Therefore, the number
of required dependencies is minimal. In most cases, Java EE
provides configuration by exception, meaning there is very
little configuration to be done, and sensible defaults are used
in the vast majority of cases. When configuration is needed it
is done through annotations, which allows me to get the
whole picture just by looking at the source code, without
having to navigate back and forth between XML
configuration files and source code.

Figure 21: Java EE Framework 7

111

Java EE provides a platform for developing and deploying
multitiered, distributed applications that are designed to be
maintainable, scalable, and portable. Just as an office building
requires a lot of hidden infrastructure of plumbing, electricity,
and telecommunications, large-scale applications require a
great deal of support infrastructure. This infrastructure
includes database access, transaction support, and security.
Java EE provides that infrastructure and allows you to focus
on your applications.

Building distributed applications allows you to partition the
software into layers of responsibility, or tiers. Distributed
applications are commonly partitioned into three primary
tiers: presentation, business rules, and data access.
Partitioning applications into distinct tiers makes the software
more maintainable and provides opportunities for scaling up
applications as the demand on those applications increases.

Java EE architecture is based on the idea of building
applications around multiple tiers of responsibility. The
application developer creates components, which are hosted
by the Java EE containers. Containers play a central theme in
the Java EE architecture.

Servlets are one type of Java EE web component. They are
Java classes that are hosted within, and invoked by the Java
EE server by requests made to, a web server. These Servlets
respond to those requests by dynamically generating HTML,
which is then returned to the requesting client.

JSPs are very similar in concept to Servlets, but differ in that
the Java code is embedded within an HTML document. The
Java EE server then compiles that HTML document into a

112

Servlet, and that Servlet generates HTML in response to
client requests.

JSF is a Java EE technology designed to create full and rich
user interfaces. Standard user interface components are
created on the server and connected to business logic
components. Custom renderers take the components and
create the actual user interface.

JDBC is a technology that enables an application to
communicate with a data-storage. Most often that is a
relational database that stores data in tables that are linked
through logical relations between tables. JDBC provides a
common interface that allows you to communicate with the
database through a standard interface without needing to learn
the syntax of a particular database.

EJBs are the centerpiece of Java EE and are the component
model for building the business rules logic in a Java EE
application. EJBs can be designed to maintain state during a
conversation with a client or it can be stateless. They can also
be designed to be short-lived and ephemeral, or can be
persisted for later use. EJBs can also be designed to listen to
message queues and respond to specific messages. Java EE is
about a lot more than EJBs, although EJBs do play a
prominent role.

The Java EE platform provides a number of services beyond
the component hosting of Servlets, JSPs, and EJBs.
Fundamental services include support for XML, web services,
transactions, and security.

113

Extensive support for XML is a core component of Java EE.
Support for both document-based and stream-based parsing of
XML documents forms the foundation of XML support.
Additional APIs provide XML registry service, remote
procedure call invocation via XML, and XML-based
messaging support.

Web services, which rely heavily on XML, provide support
for describing, registering, finding, and invoking object
services over the Web. Java EE provides support for
publishing and accessing Java EE components as web
services.

Transaction support is required in order to ensure data
integrity for distributed database systems. This allows
complex, multiple-step updates to databases to be treated as a
single step with provisions to make the entire process
committed upon success or completely undone by rolling
back on a failure. Java EE provides intrinsic support for
distributed database transactions.

Java EE provides configurable security to ensure that
sensitive systems are afforded appropriate protection.
Security is provided in the form of authentication and
authorization.

114

Glossary

Sr
Abbreviation Description

1 RMI Remote method Invocation
2 JNDI Java Naming and Directory Interface
3 WAR Web Application archive
4 JNI Java Native Interface

5 JAAS Java Authentication and Authorization
Service

6 JCA Java Cryptography Architecture
7 JAR Java Archive
8 JTA Java Transaction API
9 JAXR Java API for XML Registries
10 JAX Java API for XML
11 JAXM Java API for XML Messaging
12 JCA Java Connector Architecture
13 AJAX Asynchronous JavaScript and XML
14 JMX Java Management eXtension
15 BMP Bean-Managed Persistence
16 BMT Bean-Managed Transaction
17 JPA Java Persistence API
18 JTA Java Transaction API

19 JAX-RPC Java API for XML-based Remote
Procedure Calls

20 POJO Plain Old Java Object

115

PART IV – Appendices

116

Appendix I: Approach and Methodology

RUP is based on software engineering best practices, offers a
configurable framework and is scalable to support enterprise
initiatives. Therefore, all aspects of RUP can also be applied
to the development of an SOA. RUP provides a systematic
approach to bridge the gap between business and IT to
support a major area of concern, identification of services and
how business processes are realized through execution of
services. RUP also provides support for both the bottom-up
and top-down approaches by acknowledgement of existing
design elements and through activities such as architectural
analysis to identify architectural elements such as services.

Figure 22: RUP Methodology

Approach – Solutioning

Domain decomposition represents a top-down approach
where business domains are decomposed into functional areas
across the value net. Through this technique we can establish
the scope of the effort. After domains have been decomposed
into functional areas, each area can then be further
decomposed into processes and sub-processes and high-level

117

business use cases. Experience shows that the business use
cases are considered good candidates for exposure.

Existing asset analysis represents the bottom-up approach
where we analyze and leverage APIs, transactions and models
from legacy and packaged applications as possible candidate
services.

Goal-service modeling provides a middle-out approach that
relates services to goals, sub goals, KPIs and metrics of the
enterprise. This technique provides a certain level of
validation in the form of a completeness check and may
reveal candidate services that were not identified through the
top-down and bottom-up activities.

Finally, subsystem analysis expands on sub-systems
identified during domain decomposition and specifies
interdependencies and flows between them. A key aspect of
the identification step is that it employs a meet-in-the-middle
approach including a combination of top-down, bottom-up
and middle-out analysis techniques. In many cases a pure
bottom-up approach is taken, however, this approach
typically leads to poor definition of services that are driven
mainly by architecture of legacy application interfaces and
not from a business perspective.

118

Appendix II: Java EE Vs Dot Net

Java EE Or .Net - An Unbiased Opinion

Java EE

• Java EE has better ORM-support than .NET. JPA, Hibernate
etc.NET comes with Entity Framework, but it isn't as lean as
JPA. In .NET world there are some ports from Java available
like e.g. NHibernate. .NET seems to more rely on stored
procedures, whereby in Java everything in domain objects
outside the DB.

• Build systems and CI tools in Java are more advanced.
Hudson, Maven and ANT are a really nice and lean solution.
On .Net side you can use NAnt or a proprietary MS tool.

• Community: Java community rocks - in .NET you have to
rely on MSDN. However - this can be considered as
advantage and disadvantage as well. You will find answers
for your issues and queries.

• Java is the most popular language and is #1.

• Java IDEs: If you are thinking about .NET vs. Java EE you
have already allocated some budget for tooling (otherwise the
choice would be obvious). In that case you should look at
IntelliJ first. It is the best, commercial IDE. If you are looking
for free IDEs, start with NetBeans (best out-of-the-box
experience) and Eclipse (the most popular one). Java tool
ecosystem is remarkable.

119

• Integration: Java integration story is excellent. One gets
connectors for SAP, AS400, files etc. for free. ESBs, LDAP
servers are free.

• Framework / Libraries: If you need a specific library - you
will find everything in Java. Before you are going to write a
single line of code you should do some research first.

• Strategic consideration: with Java EE you are truly
vendor-neutral. This is very handy in the price-negotiation
phase. You can even go into production without any costs
(subscriptions, licenses etc). Java EE apps are very portable.
Java EE is not even dependent on Oracle - it was developed
by all major vendors.

• Stability: Java language is stable for ages. There are no
breaking changes. Java EE 5 and 6 platform is backward
compatible as well. So you can deploy your legacy J2EE 1.X
app to a Java EE environment and smooth-migrate it.

• Best practices: Java EE are about 10 years on the market.
There are many applications and framework. The most
mistakes are already made and not the best practices / patterns
are very mature.

• In most of the .NET projects you will find open source
extensions, as well as, commercial .NET tools. Such a
mixture can be very "interesting" (regarding support issues)

• Operating System: you can choose whatever operating
system you want to for production and development.

120

• Opensource: 80% of Java applications in production are
built on open source tools. This is your ultimate insurance.

Dot Net

• Everything from one vendor.

• C# develops very fast and has nicer features, than Java. C#
shines in the DSL area. LINQ is very nice for database (and
tree-like) queries (however you should look at Scala and
Groovy if you need similar features).

• You don't have to search for a given solution as the choice is
clear. It can save you a considerable amount of time.

• Most of the tools at MSDN - there is no need to evaluate
tools and IDEs in advance.

• Visual Studio .NET is a very good environment with very
good DB and team extensions. With a commercial plugin
(e.g. Resharper), it good, as IntelliJ.

• The UI best practices are more consistent, than in Java.
ASP.NET MVC is e.g. the way to go in .NET. In Java EE you
will have to choose between JSF, Wicket, GWT and Struts 2.

• The language integration in .NET is seamless. You can
easily call methods from C# to VB.NET. In Java it is hard to
call Scala functions from Groovy.

• SharePoint, Exchange and Office Products are very well
integrated with .NET. You can access them with Java, but
will need third-party libraries.

121

• Continuous Integration comes already with Visual Studio
Team System.

122

Appendix III: Open Source Development

Separating the hype from reality isn’t easy when it comes to
Open Source. Not only has it become the technological
buzzword, but it has also become the epicenter of a great deal
of controversy: from copyright laws and intellectual property
debates to freedom of speech and arguments about
free-market competition. The J2EE market has evolved
swiftly, first by going through a phase of consolidation and
now by entering a phase of commoditization. This second
phase has been driven largely by the fact that in order to show
value, application server vendors can no longer rely on their
core application server. This has created a market of
value-added offerings, particularly in the area of development
tools and development productivity. Many Open Source tools
and frameworks showcased in this book are in this category.

Open Source is also changing the way programming is being
studied in universities around the world; new generations of
programmers leaving academia and entering the workplace
have either used or contributed to Open Source. Students
nowadays can learn by examining enterprise-level software
that displays contributions from a great many sources from
around the world.

At corporate IT departments worldwide, programmers are
rallying behind Open Source projects like Ant, JUnit, Tomcat,
and JBoss. Though the battle for the acceptance of Open
Source has been largely fought at the level of the programmer
and middle management, upper management, given the recent
impact of Linux on corporations, is beginning to see the many
advantages of Open Source, especially in the area of

123

enterprise Java. Organizations seeking to reduce software
development expenses have found that Open Source software
(OSS) provides a lower cost of ownership when compared to
commercial offerings, primarily because Open Source
software is free, both in price and restrictions.

Advantages and Disadvantages of Open Source

Many organizations are using Open Source projects to
varying degrees in daily development. Some organizations
use Open Source only during the development phases so that
it doesn’t affect any production environment. These
organizations might use Open Source for building, unit
testing, or integrated development environments (IDE).
Organizations may also use Open Source libraries as a form
of reuse for activities such as logging and XML parsing.
Open Source application servers, web containers, and
Common Object Request Broker Architecture (CORBA)
servers can be used to provide the infrastructure.
Organizations using Open Source are discovering there are
some compelling reasons for using Open Source besides the
financial benefits. Unfortunately, these organizations are also
discovering that there are some disadvantages as well.

Advantages

The most obvious and compelling reason to use Open Source
is the initial lower cost of ownership. Organizations are free
to copy and distribute software to multiple developers and
users. Consider an application with an installed base of 100
users and a 10-person development team using a $500
licensed commercial product. This would total $55,000 in
expenses. With Open Source products the organization could

124

immediately eliminate the large expense and increase the
install base without incurring additional expenses. Other
financial benefits can be realized as well. Because Open
Source is free to copy, the expense of license management
isn’t incurred. In addition, legal departments only have to
review and approve an Open Source license once for all
projects using that license rather than each time for each
commercial product license. Using popular Open Source
projects can reduce training expenses by providing a larger
resource pool. Developers can be hired from outside the
company with existing knowledge of Open Source
frameworks. It’s often difficult to hire developers that have
knowledge of a proprietary commercial framework. Industry
support is another reason to consider Open Source. Many
major companies such as IBM, Sun, Oracle, BEA, and
Borland are using Open Source projects. These organizations
have a vested interest in the project’s success because their
products rely on the framework. Contributors to the Java
Open Source projects aren’t necessarily the independent
programmers writing code in their spare time anymore.

Many of these large companies have departments dedicated to
Open Source. In addition, many of the Open Source projects
such as Eclipse, NetBeans, and Tomcat were initially donated
by large corporate backers. Consider the use of Open Source
as a means of expanding your development team to include
some of the best resources from all around the world. Access
to the source is an important advantage of Open Source. The
source code is the only 100 percent–accurate documentation.
JavaDocs, marketing material, architectural diagrams, and
instructions often aren’t kept up to date.

125

Open Source projects are more agile than commercial
products in their evolution. Often Open Source projects have
shorter release cycles than their commercial counterparts, if
for no other reason than the fact that most projects provide
nightly snapshots or direct access to the source code
repository. In addition, organizations don’t have to wait for a
vendor’s next release to get a bug fixed. Having source code
provides a means for the organization to fix the bug itself.
Organizations willing to contribute to Open Source projects
can also have influence on the future direction of the project.
Unlike proprietary development, Open Source has the
advantage of being reviewed and tested by potentially
hundreds or thousands of users. Unit and regression testing is
an important part of software quality. Open Source projects
such as the Jakarta Commons project requires that JUnit tests
be available and passed before version releases. Having
access to JUnit tests can reduce risks by providing means of
testing new releases against the unit tests of the currently
utilized release. The results of the tests can be used as a risk
management tool to determine the impact of an upgrade on a
project. Open Source can contribute to an individual’s career
development. Developers can use the source code to learn
new techniques or APIs. Open Source can also lower the
barriers of entry by allowing for more economical means of
evaluating new technologies. For inexperienced Java
developers, contributing to an Open Source project may be a
way of demonstrating knowledge to an employer or potential
employer. It’s common for developers to evaluate a
technology and prototype proof-of-concept applications using
an Open Source project as a development environment while
deploying on a commercial platform for production use.

Disadvantages

126

Open Source projects have been documented poorly. In
addition, Open Source software usually doesn’t have a
recognized company behind it to provide support, whether it’s
free or paid for. These disadvantages are changing though. A
new market has grown up around Open Source to provide
quality documentation and support—for a price. In addition,
many of the projects have active newsgroups or forums that
can be effectively used to troubleshoot an Open Source
application.

Open Source projects can also be plagued with
backward-compatibility problems. Open Source projects
don’t take backward compatibility into consideration as much
as commercial organizations. Yet, at the same time open
source projects tend to be more daring when it comes to
innovation and trying radically different ways to approach a
problem.

The biggest disadvantage of Open Source is lack of marketing
dollars. Often, organizations aren’t aware of the existence of
an Open Source project or how it might apply. Open Source
projects don’t have conference booths, magazine
advertisements, or salespeople explaining the problems they
can solve. Open Source projects also depend on the
enthusiasm and number of collaborators as well as the areas
that their efforts are focused on. For example, lack of
documentation and administrative tools is a common
complaint with regards to Open Source projects.

This brings to mind the successful emergence of Open Source
projects with heavy commercial backers such as the Eclipse
project, which is backed by IBM and thus has very good

127

documentation given the resources available, namely, IBM
staff technical writers and editors.

128

Appendix IV: Sizing and Capacity Planning

Benchmark your code on hardware similar to what you'll be
using in production, identify any bottlenecks, then determine
how much of a workload your current hardware can handle,
and/or how much hardware horsepower you need to handle
your target workload.

A brief overview of the process:

• Create User Scenarios

• Add monitoring capability

• Add User Load

• Analyze results

• Remediate

• Rinse & Repeat

Step I: Create User Scenarios

Set up an environment to test against. This should be a fairly
close your production hardware if possible, otherwise you
will be left extrapolating your data. Set up your servers,
accounts, websites, bandwidth, etc. Even if you do this in
VMs that's OK just as long as you're prepared to scale your
results.

Step II: Add Monitoring Capability

129

You'll need metrics to monitor e.g how many requests get
through to the web servers, and how many requests can
squeeze through per second before users start getting a
response time of over two seconds. You will have to monitor
RAM, CPU and disk usage to make sure that the load
balancer can handle the connections. might need to review
web server log files, start performance counters, or rely on the
reporting ability of your stress test tool. Aspects required to
be monitored:

• CPU usage

• RAM usage

• Disk usage

• Disk latency

• Network utilization

You might also choose to look at SQL deadlocks, seek times,
etc depending on what you're specifically testing.

Step III: Add User Load

Simulate a test load. There are plenty of tools that can do this,
with configurable options:

• JMeter (Web)

• Apache Benchmark (Web)

• Grinder (Web)

130

• httperf (Web)

• WCAT (Web)

• Visual Studio Load Test (Web)

• SQLIO (SQL Server)

Choose a number and let's say you're going to see how the
system responds with 10,000 hits a minute. It doesn't matter
what number you choose because you're going to repeat this
step many times, adjusting that number up or down to see
how the system responds.

Ideally, you should distribute these 10,000 requests over
multiple load testing clients/nodes so that a single client does
not become a bottleneck of requests. For example, JMeter's
Remote Testing provides a central interface from which to
launch several clients from a controlling JMeter machine.
Press the magic Go button and watch your web servers melt
down and crash.

Step IV: Analyze Results

So, now you need to go back to your metrics you collected in
step 2. You see that with 10,000 concurrent connections, your
high availability proxy box is barely breaking a sweat, but the
response time with two web servers is a touch over five
seconds. Remember, your response time is aiming for two
seconds. So, we need to make refinements to the
configurations.

Step V: Remediate

131

Now, you need to speed up your website by more than twice.
So you know that you need to either scale up, or scale out. To
scale up, get bigger web servers, more RAM, faster disks. To
scale out, get more servers.

Use your metrics from step 2, and testing, to make this
decision. For example, if you saw that the disk latency was
massive during the testing, you know you need to scale up
and get faster hard drives. If you saw that the processor was
sitting at 100% during the test, perhaps you need to scale out
to add additional web servers to reduce the pressure on the
existing servers. There's no generic right or wrong answer,
there's only what's right for you. Try scaling up, and if that
doesn't work, scale out instead. Or not, it's up to you and
some thinking outside the box. Let's say we're going to scale
out. So I decide to clone my two web servers (they're VMs)
and now I have four web servers.

Step VI: Rinse & Repeat

Start again from Step 3. If you find that things aren't going as
you expected (for example, we doubled the web servers, but
the response times are still more than two seconds), then look
into other bottlenecks. For example, you doubled the web
servers, but still have a crappy database server. Or you cloned
more VMs, but because they're on the same physical host, you
only achieved higher contention for the server’s resources.
You can then use this procedure to test other parts of the
system. Instead of hitting the load balancer, try hitting the
web server directly, or the SQL server using an SQL
benchmarking tool.

132

The factors that affect the scalability of the server and long
term strategy and tabulated below.

Figure 23: Growth Projections

Capacity planning starts with measurement, in this case
response time versus load. Once you know the degree to
which the programs slows down with load, which is NOT a
linear function, you can select a response time target, and then
discover what resources it will take to meet that target for a
given amount of load.

Performance measurement is always done with time units, as
they are what users care about and they can be scaled up and
down. Things like %CPU and IOPS are system-specific, so
you only use them when you have planned the system and
measured it in pre-production, to act as a "surrogate" for the
thing you care about, time.

133

References

[1] UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design (2nd Edition)

[2] Architecting Enterprise Solutions: Patterns for
High-Capability Internet-based Systems

[3] https://glassfish.java.net/

[3] http://arjan-tijms.omnifaces.org/2014/05/
implementation-components-used-by.html

[4] http://java.dzone.com/articles/walking-through-java-ee-6

[5] http://tomcat.apache.org/tomcat-7.0-doc/
cluster-howto.html

134

End

135

	Cover Page
	Title Page
	Copyright
	Preface
	Acknowledgements
	About the Author
	Contents
	List of Figures
	Part I - Solution
	Introduction
	Tackling Business Problem
	Risks and Assumptions
	Class Diagram – from Domain Model to Class Diagrams
	Component Diagram – Logical Architecture
	Deployment Diagram – Physical Architecture
	Sequence Diagram – from Use Cases to Sequence Diagrams
	Design Decisions
	Summary

	Business Problem – Case Study
	Solution
	Objective and Scope
	Zamco Business Domain Model
	Assumptions
	Architecture Decisions
	Risks and Mitigation
	Zamco Architecture Overview
	Zamco Application Framework
	Zamco UML Diagrams

	Part II – Non-Functional Requirements
	Tackling the NFRs
	NFRs – Solution
	Performance
	Scalability
	Availability
	Security
	Reliability
	Extensibility and Maintainability
	Manageability
	Sessions (State) Management
	Transaction & Concurrency
	Persistence
	Distribution

	Part III – Java EE Best Practices
	Best Practices – Java EE Applications
	Web Tier
	Business Tier
	Persistent Tier
	Methodology & Processes

	Summary
	Glossary
	PART IV – Appendices
	Appendix I: Approach and Methodology
	Approach – Solutioning

	Appendix II: Java EE Vs Dot Net
	Java EE
	Dot Net

	Appendix III: Open Source Development
	Advantages and Disadvantages of Open Source

	Appendix IV: Sizing and Capacity Planning
	Step I: Create User Scenarios
	Step II: Add Monitoring Capability
	Step III: Add User Load
	Step IV: Analyze Results
	Step V: Remediate
	Step VI: Rinse & Repeat

	References
	End

