

1

Learn Java/J2EE core concepts and key areas

With

Java/J2EE Job Interview Companion

By

K.Arulkumaran
&

A.Sivayini

Technical Reviewers

Craig Malone
Stuart Watson

Arulazi Dhesiaseelan
Lara D’Albreo

Cover Design, Layout, & Editing

A.Sivayini

Acknowledgements

A. Sivayini
Mr. & Mrs. R. Kumaraswamipillai

2

Java/J2EE

Job Interview Companion

Copy Right 2005-2007 ISBN 978-1-4116-6824-9

The author has made every effort in the preparation of this book to ensure the accuracy of the information. However,
information in this book is sold without warranty either expressed or implied. The author will not be held liable for any

damages caused or alleged to be caused either directly or indirectly by this book.

Please e-mail feedback & corrections (technical, grammatical and/or spelling) to
java-interview@hotmail.com

First Edition (220+ Q&A): Dec 2005
Second Edition (400+ Q&A): March 2007

3

Outline

SECTION DESCRIPTION

What this book will do for you?

Motivation for this book

Key Areas index

SECTION 1 Interview questions and answers on:

Java

 Fundamentals
 Swing
 Applet
 Performance and Memory issues
 Personal and Behavioral/Situational
 Behaving right in an interview
 Key Points

SECTION 2 Interview questions and answers on:

Enterprise Java

 J2EE Overview
 Servlet
 JSP
 JDBC / JTA
 JNDI / LDAP
 RMI
 EJB
 JMS
 XML
 SQL, Database, and O/R mapping
 RUP & UML
 Struts
 Web and Application servers.
 Best practices and performance considerations.
 Testing and deployment.
 Personal and Behavioral/Situational
 Key Points

SECTION 3 Putting it all together section.

How would you go about…?

1. How would you go about documenting your Java/J2EE application?

2. How would you go about designing a Java/J2EE application?

3. How would you go about identifying performance problems and/or memory leaks in your Java

application?

4. How would you go about minimizing memory leaks in your Java/J2EE application?

5. How would you go about improving performance of your Java/J2EE application?

6. How would you go about identifying any potential thread-safety issues in your Java/J2EE

application?

7. How would you go about identifying any potential transactional issues in your Java/J2EE

4

application?

8. How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE

application?

9. How would you go about applying the UML diagrams in your Java/J2EE project?

10. How would you go about describing the software development processes you are familiar with?

11. How would you go about applying the design patterns in your Java/J2EE application?

12. How would you go about designing a Web application where the business tier is on a separate

machine from the presentation tier. The business tier should talk to 2 different databases and your
design should point out the different design patterns?

13. How would you go about determining the enterprise security requirements for your Java/J2EE

application?

14. How would you go about describing the open source projects like JUnit (unit testing), Ant (build

tool), CVS (version control system) and log4J (logging tool) which are integral part of most
Java/J2EE projects?

15. How would you go about describing Service Oriented Architecture (SOA) and Web services?

SECTION 4 Emerging Technologies/Frameworks

 Test Driven Development (TDD).

 Aspect Oriented Programming (AOP).

 Inversion of Control (IoC) (Also known as Dependency Injection).

 Annotations or attributes based programming (xdoclet etc).

 Spring framework.

 Hibernate framework.

 EJB 3.0.

 JavaServer Faces (JSF) framework.

SECTION 5 Sample interview questions …

 Java

 Web Components

 Enterprise

 Design

 General

GLOSSARY OF TERMS

RESOURCES

INDEX

5

Table of contents

Outline___ 3
Table of contents __ 5
What this book will do for you? __ 7
Motivation for this book __ 8
Key Areas Index __ 11
Java – Interview questions & answers ___ 13

Java – Fundamentals ___ 14
Java – Swing __ 69
Java – Applet__ 76
Java – Performance and Memory issues ___ 78
Java – Personal and Behavioral/Situational __ 83
Java – Behaving right in an interview__ 89
Java – Key Points __ 91

Enterprise Java – Interview questions & answers __ 94
Enterprise - J2EE Overview __ 95
Enterprise - Servlet__ 108
Enterprise - JSP __ 126
Enterprise – JDBC & JTA___ 145
Enterprise – JNDI & LDAP __ 155
Enterprise - RMI __ 159
Enterprise – EJB 2.x ___ 163
Enterprise - JMS __ 180
Enterprise - XML __ 190
Enterprise – SQL, Database, and O/R mapping___ 197
Enterprise - RUP & UML__ 206
Enterprise - Struts___ 214
Enterprise - Web and Application servers ___ 218
Enterprise - Best practices and performance considerations ___ 222
Enterprise – Logging, testing and deployment ___ 225
Enterprise – Personal and Behavioral/Situational___ 228
Enterprise – Software development process___ 230
Enterprise – Key Points __ 233

How would you go about…?___ 238
Q 01: How would you go about documenting your Java/J2EE application? FAQ________________________________ 239
Q 02: How would you go about designing a Java/J2EE application? FAQ _____________________________________ 240
Q 03: How would you go about identifying performance and/or memory issues in your Java/J2EE application? FAQ_ 243
Q 04: How would you go about minimizing memory leaks in your Java/J2EE application? FAQ __________________ 244
Q 05: How would you go about improving performance in your Java/J2EE application? FAQ _____________________ 244
Q 06: How would you go about identifying any potential thread-safety issues in your Java/J2EE application? FAQ __ 245
Q 07: How would you go about identifying any potential transactional issues in your Java/J2EE application? FAQ __ 246

6

Q 08: How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE application? FAQ
 247
Q 09: How would you go about applying the UML diagrams in your Java/J2EE project? FAQ _____________________249
Q 10: How would you go about describing the software development processes you are familiar with? FAQ ________251
Q 11: How would you go about applying the design patterns in your Java/J2EE application? _____________________253
Q 12: How would you go about designing a Web application where the business tier is on a separate machine from the
presentation tier. The business tier should talk to 2 different databases and your design should point out the different
design patterns? FAQ__286
Q 13: How would you go about determining the enterprise security requirements for your Java/J2EE application? ___287
Q 14: How would you go about describing the open source projects like JUnit (unit testing), Ant (build tool), CVS
(version control system) and log4J (logging tool) which are integral part of most Java/J2EE projects? ________________292
Q 15: How would you go about describing Service Oriented Architecture (SOA) and Web services? FAQ ___________299

Emerging Technologies/Frameworks… __311
Q 01: What is Test Driven Development (TDD)? FAQ ___312
Q 02: What is the point of Test Driven Development (TDD)? What do you think of TDD?__________________________313
Q 03: What is aspect oriented programming (AOP)? Do you have any experience with AOP? _____________________313
Q 04: What are the differences between OOP and AOP? __317
Q 05: What are the benefits of AOP?___317
Q 06: What is attribute or annotation oriented programming? FAQ ___317
Q 07: What are the pros and cons of annotations over XML based deployment descriptors? FAQ _________________318
Q 08: What is XDoclet? __319
Q 09: What is inversion of control (IoC) (also known more specifically as dependency injection)? FAQ_____________319
Q 10: What are the different types of dependency injections? FAQ ___321
Q 11: What are the benefits of IoC (aka Dependency Injection)? FAQ ___322
Q 12: What is the difference between a service locator pattern and an inversion of control pattern? _______________323
Q 13: Why dependency injection is more elegant than a JNDI lookup to decouple client and the service? ___________323
Q 14: Explain Object-to-Relational (O/R) mapping? __323
Q 15: Give an overview of hibernate framework? FAQ __324
Q 16: Explain some of the pitfalls of Hibernate and explain how to avoid them? Give some tips on Hibernate best
practices? FAQ___333
Q 17: Give an overview of the Spring framework? What are the benefits of Spring framework? FAQ_______________334
Q 18: How would EJB 3.0 simplify your Java development compared to EJB 1.x, 2.x ? FAQ ______________________337
Q 19: Briefly explain key features of the JavaServer Faces (JSF) framework? __________________________________339
Q 20: How would the JSF framework compare with the Struts framework? How would a Spring MVC framework compare
with Struts framework?___341

Sample interview questions… __344
Java___345
Web components__345
Enterprise__345
Design___347
General __347

GLOSSARY OF TERMS__348
RESOURCES __350
INDEX __352

7

What this book will do for you?

Have you got the time to read 10 or more books and articles to add value prior to the interview? This book has been
written mainly from the perspective of Java/J2EE job seekers and interviewers. There are numerous books and articles
on the market covering specific topics like Java, J2EE, EJB, Design Patterns, ANT, CVS, Multi-Threading, Servlets, JSP,
emerging technologies like AOP (Aspect Oriented Programming), Test Driven Development (TDD), Dependency Injection
Dl (aka IoC – Inversion of Control) etc. But from an interview perspective it is not possible to brush up on all these books
where each book usually has from 300 pages to 600 pages. The basic purpose of this book is to cover all the core
concepts and key areas, which all Java/J2EE developers, designers and architects should be conversant with to perform
well in their current jobs and to launch a successful career by doing well at interviews. The interviewer can also use this
book to make sure that they hire the right candidate depending on their requirements. This book contains a wide range of
topics relating to Java/J2EE development in a concise manner supplemented with diagrams, tables, sample codes and
examples. This book is also appropriately categorized to enable you to choose the area of interest to you.

This book will assist all Java/J2EE practitioners to become better at what they do. Usually it takes years to understand all
the core concepts and key areas when you rely only on your work experience. The best way to fast track this is to read
appropriate technical information and proactively apply these in your work environment. It worked for me and hopefully it
will work for you as well. I was also at one stage undecided whether to name this book “Java/J2EE core concepts and
key areas” or “Java/J2EE Job Interview Companion”. The reason I chose “Java/J2EE Job Interview Companion” is
because the core concepts and key areas discussed in this book helped me to be successful in my interviews, helped me
to survive and succeed at my work regardless what my job (junior developer, senior developer, technical lead, designer,
contractor etc) was and also gave me thumbs up in code reviews. This book also has been set out as a handy reference
guide and a roadmap for building enterprise Java applications.

8

 Motivation for this book

I started using Java in 1999 when I was working as a junior developer. During those two years as a permanent employee,
I pro-actively spent many hours studying the core concepts behind Java/J2EE in addition to my hands on practical
experience. Two years later I decided to start contracting. Since I started contracting in 2001, my career had a much-
needed boost in terms of contract rates, job satisfaction, responsibility etc. I moved from one contract to another with a
view of expanding my skills and increasing my contract rates.

In the last 5 years of contracting, I have worked for 5 different organizations both medium and large on 8 different
projects. For each contract I held, on average I attended 6-8 interviews with different companies. In most cases multiple
job offers were made and consequently I was in a position to negotiate my contract rates and also to choose the job I
liked based on the type of project, type of organization, technology used, etc. I have also sat for around 10 technical tests
and a few preliminary phone interviews.

The success in the interviews did not come easily. I spent hours prior to each set of interviews wading through various
books and articles as a preparation. The motivation for this book was to collate all this information into a single book,
which will save me time prior to my interviews but also can benefit others in their interviews. What is in this book has
helped me to go from just a Java/J2EE job to a career in Java/J2EE in a short time. It has also given me the job
security that ‘I can find a contract/permanent job opportunity even in the difficult job market’.

I am not suggesting that every one should go contracting but by performing well at the interviews you can be in a position
to pick the permanent role you like and also be able to negotiate your salary package. Those of you who are already in
good jobs can impress your team leaders, solution designers and/or architects for a possible promotion by demonstrating
your understanding of the key areas discussed in this book. You can discuss with your senior team members about
performance issues, transactional issues, threading issues (concurrency issues) and memory issues. In most of
my previous contracts I was in a position to impress my team leads and architects by pinpointing some of the critical
performance, memory, transactional and threading issues with the code and subsequently fixing them. Trust me it is not
hard to impress someone if you understand the key areas.

For example:

 Struts action classes are not thread-safe (Refer Q113 in Enterprise section).
 JSP variable declaration is not thread-safe (Refer Q34 in Enterprise section).
 Valuable resources like database connections should be closed properly to avoid any memory and performance

issues (Refer Q45 in Enterprise section).
 Throwing an application exception will not rollback the transaction in EJB. (Refer Q77 in Enterprise section).

The other key areas, which are vital to any software development, are a good understanding of some of key design
concepts, design patterns, and a modeling language like UML. These key areas are really worthy of a mention in your
resume and interviews.

For example:

 Know how to use inheritance, polymorphism and encapsulation (Refer Q7, Q8, Q9, and Q10 in Java section.).
 Why use design patterns? (Refer Q5 in Enterprise section).
 Why is UML important? (Refer Q106 in Enterprise section).

If you happen to be in an interview with an organization facing serious issues with regards to their Java application
relating to memory leaks, performance problems or a crashing JVM etc then you are likely to be asked questions on
these topics. Refer Q72 – Q74 in Java section and Q123, Q125 in Enterprise section.

If you happen to be in an interview with an organization which is working on a pilot project using a different development
methodology like agile methodology etc or has just started adopting a newer development process or methodology
then you are likely to be asked questions on this key area.

If the team lead/architect of the organization you are being interviewed for feels that the current team is lacking skills in
the key areas of design concepts and design patterns then you are likely to be asked questions on these key areas.

9

Another good reason why these key areas like transactional issues, design concepts, design patterns etc are vital are
because solution designers, architects, team leads, and/or senior developers are usually responsible for conducting the
technical interviews. These areas are their favorite topics because these are essential to any software development.

Some interviewers request you to write a small program during interview or prior to getting to the interview stage. This is
to ascertain that you can code using object oriented concepts and design patterns. So I have included a coding key area
to illustrate what you need to look for while coding.

 Apply OO concepts like inheritance, polymorphism and encapsulation: Refer Q10 in Java section.
 Program to interfaces not to implementations: Refer Q12, Q17 in Java section.
 Use of relevant design patterns: Refer Q11, Q12 in How would you go about… section.
 Use of Java collections API and exceptions correctly: Refer Q16 and Q39 in Java section.
 Stay away from hard coding values: Refer Q05 in Java section.

L an g u ag e

F u n dam en ta ls

D esig n

C o n cep ts
D esig n

P atterns
S E cu rity

C on currency

Issues

P erfo rm an ce

Issues

M em o ry

Issu es

S calab ility

Issu es

S p ec ifica tio n

F un d am enta ls
E xcep tion

H and lin g

T ransactio na l

Issu es

B est

P ractices

S oftw are

D evelo p m ent
P ro cess

C O d ing

L F D C

D P S F

C I P I

M I S I

S E E H

T I B P

S D

C O

H ow m any books do I have to read to
unders tand and put toge ther a ll these
key areas?

H ow m any years o f experience
should I have to unders tand a ll these
key areas?

W ill these key areas he lp m e
progress in m y career?

W ill these key areas he lp m e cu t
qua lity code?

This book aims to solve the above dilemma.

My dad keeps telling me to find a permanent job (instead of contracting), which in his view provides better job security but
I keep telling him that in my view in Information Technology the job security is achieved only by keeping your knowledge
and skills sharp and up to date. The 8 contract positions I held over the last 5.5 years have given me broader experience
in Java/J2EE and related technologies. It also kept me motivated since there was always something new to learn in each
assignment, and not all companies will appreciate your skills and expertise until you decide to leave. Do the following
statements sound familiar to you when you hand in your resignation or decide not to extend your contract after getting
another job offer? “Can I tempt you to come back? What can I do to keep you here?” etc. You might even think why you
waited so long. The best way to make an impression in any organizations is to understand and proactively apply and

10

resolve the issues relating to the Key Areas discussed in this book. But be a team player, be tactful and don’t be
critical of everything, do not act in a superior way and have a sense of humor.

“Technical skills must be complemented with good business and interpersonal skills.”

Knowledge/understanding of the business.
Ability to communicate and interact effectively with the

business users/customers.
Ability to look at things from the user's perspective as

opposed to only technology perspective.
Ability to persuade/convince business with alternative

solutions.
Ability to communicate effectively with your fellow

developers, immediate and senior management.
Ability to work in a team as well as independently.

Problem solving/analytical skills.
Organizational skills.

Ability to cope with difficult situations like stress due to work
load, deadlines etc and manage or deal with difficult people.

Being a good listener with the right attitude.

You
Development team

Business users/
External customers

Immediate
management

Senior management

Give me an example
of a time when you
set a goal and were
able to achieve it?

Describe a time when you
were faced with a stressful
situation that demonstrated

your coping skills?

Describe a time when you had to
work with others in the organization

to accomplish the organizational
goals?

Give me an example of a time you
motivated others? Or dealt with a

difficult person?

IMPORTANT: Technical skills alone are not sufficient for you to perform well in your interviews and progress in your
career. Your technical skills must be complemented with business skills (i.e. knowledge/understanding of the business,
ability to communicate and interact effectively with the business users/customers, ability to look at things from the users’
perspective as opposed to only from technology perspective, ability to persuade/convince business with alternative
solutions, which can provide a win/win solution from users’ perspective as well as technology perspective), ability to
communicate effectively with your fellow developers, immediate and senior management, ability to work in a team as well
as independently, problem solving/analytical skills, organizational skills, ability to cope with difficult situations like stress
due to work load, deadlines etc and manage or deal with difficult people, being a good listener with the right attitude (It is
sometimes possible to have “I know it all attitude”, when you have strong technical skills. These are discussed in “Java
– Personal” and “Enterprise Java – Personal” sub-sections with examples.

Quick Read guide: It is recommended that you go through all the questions in all the sections (all it takes is to read a
few questions & answers each day) but if you are pressed for time or would like to read it just before an interview then
follow the steps shown below:

-- Read/Browse all questions marked as “FAQ” in all four sections.
-- Read/Browse Key Points in Java and Enterprise Java sections.

11

Key Areas Index

I have categorized the core concepts and issues into 14 key areas as listed below. These key areas are vital for any
good software development. This index will enable you to refer to the questions based on key areas. Also note that each
question has an icon next to it to indicate which key area or areas it belongs to. Additional reading is recommended for
beginners in each of the key areas.

Key Areas

 icon

--------------------------------------- Question Numbers --

 Java section Enterprise Java section How
would you

go
about…?

Emerging
Technologies
/ Frameworks

Language
Fundamentals LF

Q1-Q6, Q12-Q16, Q18-
Q24, Q26-Q33, Q35-
Q38, Q41-Q50, Q53-Q71

- Q10, Q15,
Q17, Q19

Specification
Fundamentals

SF

- Q1, Q2, Q4, Q6, Q7-Q15,
Q17-Q19, Q22, Q26-Q33,
Q35-Q38, Q41, Q42, Q44,
Q46-Q81, Q89-Q93, Q95-
Q97, Q99, 102, Q110,
Q112-Q115, Q118-Q119,
Q121, Q126, Q127, Q128

Q15

Design Concepts

DC

Q1, Q7-Q12, Q15, Q26,
Q22, Q56

Q2, Q3, Q19, Q20, Q21,
Q31, Q45, Q91, Q94, Q98,
Q101, Q106, Q107, Q108,
Q109, Q111

Q02, Q08,
Q09, Q15

Q3 - Q13,
Q13, Q14,
Q16, Q17,
Q18, Q20

Design Patterns

DP

Q12, Q16, Q24, Q36,
Q51, Q52, Q58, Q63,
Q75

Q5, Q5, Q22, Q24, Q25,
Q41, Q83, Q84, Q85, Q86,
Q87, Q88, Q110, Q111,
Q116

Q11, Q12

Q9 - Q13

Transactional
Issues TI

- Q43, Q71, Q72, Q73, Q74,
Q75, Q77, Q78, Q79

Q7

Concurrency Issues
CI

Q15, Q17, Q21, Q34,
Q42, Q46, Q62

Q16, Q34, Q72, Q78,
Q113

Q6

Performance Issues

PI

Q15, Q17,Q20-Q26,
Q46, Q62, Q72

Q10, Q16, Q43, Q45, Q46,
Q72, Q83-Q88, Q93, Q97,
Q98, Q100, Q102, Q123,
Q125, Q128

Q3, Q5

Memory Issues
MI

Q26, Q34, Q37,Q38,
Q42, Q51, Q73, Q74

Q45, Q93 Q3, Q4

Scalability Issues
SI

Q23, Q24

Q20, Q21, Q120, Q122

Exception Handling
EH

Q39, Q40

Q76, Q77

Security
SE

Q10, Q35, Q70 Q12, Q13, Q23, Q35, Q46,
Q51, Q58, Q81, Q92

Q13

Best Practices
BP

Q17, Q25, Q39, Q72,
Q73

Q10, Q16, Q39, Q40, Q41,
Q46, Q82, Q124, Q125

Q1, Q2

12

Software
Development
Process

SD
- Q103-Q109, Q129, Q130,

Q132, Q136
Q1, Q9,
Q10, Q14

Q1, Q2

Coding1

CO

Q05, Q10, Q12, Q14 –
Q21, Q23, Q25, Q26,
Q33, Q35, Q39, Q51,
Q52, Q55

Q10, Q18, Q21, Q23, Q36,
Q38, Q42, Q43, Q45, Q74,
Q75, Q76, Q77, Q112,
Q114, Q127, Q128

Q11, Q12

Frequently Asked
Questions

FAQ

Q1, Q6, Q7, Q9, Q10,
Q12, Q13, Q14, Q15,
Q16, Q18, Q20, Q21,
Q22, Q23, Q27, Q28,
Q29, Q30, Q31, Q32,
Q36, Q37, Q43, Q45,
Q46, Q48, Q51, Q52,
Q55, Q58, Q60, Q62,
Q63, Q64, Q67, Q68,
Q69, Q70, Q71
Q72 – Q86

Q1, Q2, Q3, Q7, Q10, Q11,
Q12, Q13, Q16, Q19, Q22,
Q24, Q25, Q27, Q28, Q30,
Q31, Q32, Q34, Q35, Q36,
Q39, Q40, Q41, Q42, Q43,
Q45, Q46, Q48, Q49, Q50,
Q52, Q53, Q61, Q63, Q65,
Q66, Q69, Q70, Q71, Q72,
Q73, Q76, Q77, Q82, Q83,
Q84, Q85, Q86, Q87, Q90,
Q91, Q93, Q95, Q96, Q97,
Q98, Q100, Q101, Q102,
Q107, Q108, Q110, Q113,
Q115, Q116, Q118, Q123,
Q124, Q125, Q126, Q129,
Q130, Q131, Q133, Q134,
Q135, Q136.

Q1, Q2,
Q3, Q4,
Q5, Q6,
Q7, Q8,
Q9, Q10,
Q12, Q15

Q1, Q6, Q7,
Q9, Q10, Q11,
Q15, Q16,
Q17, Q18

1 Some interviewers request you to write a small program during interview or prior to getting to the interview stage. This is to ascertain
that you can code using object oriented concepts and design patterns. I have included a coding key area to illustrate what you need to
look for while coding. Unlike other key areas, the CO is not always shown against the question but shown above the actual section of
relevance within a question.

Java

13

SECTION ONE

Java – Interview questions & answers

 Language Fundamentals LF
 Design Concepts DC
 Design Patterns DP
 Concurrency Issues CI
 Performance Issues PI
 Memory Issues MI
 Exception Handling EH
 Security SE
 Scalability Issues SI
 Coding1 CO

 FAQ - Frequently Asked Questions

1 Unlike other key areas, the CO is not always shown against the question but shown above the actual content of relevance within a
question.

K
E
Y

A
R
E
A
S

Java - Fundamentals

14

Java – Fundamentals

Q 01: Give a few reasons for using Java? LF DC FAQ
A 01: Java is a fun language. Let’s look at some of the reasons:

 Built-in support for multi-threading, socket communication, and memory management (automatic garbage
collection).

 Object Oriented (OO).

 Better portability than other languages across operating systems.

 Supports Web based applications (Applet, Servlet, and JSP), distributed applications (sockets, RMI, EJB etc)

and network protocols (HTTP, JRMP etc) with the help of extensive standardized APIs (Application
Programming Interfaces).

Q 02: What is the main difference between the Java platform and the other software platforms? LF
A 02: Java platform is a software-only platform, which runs on top of other hardware-based platforms like UNIX, NT etc.

The Java platform has 2 components:

 Java Virtual Machine (JVM) – ‘JVM’ is a software that can be ported onto various hardware platforms. Byte
codes are the machine language of the JVM.

 Java Application Programming Interface (Java API) – set of classes written using the Java language and run

on the JVM.

Q 03: What is the difference between C++ and Java? LF
A 03: Both C++ and Java use similar syntax and are Object Oriented, but:

 Java does not support pointers. Pointers are inherently tricky to use and troublesome.

 Java does not support multiple inheritances because it causes more problems than it solves. Instead Java
supports multiple interface inheritance, which allows an object to inherit many method signatures from
different interfaces with the condition that the inheriting object must implement those inherited methods. The
multiple interface inheritance also allows an object to behave polymorphically on those methods. [Refer Q9
and Q10 in Java section.]

 Java does not support destructors but adds a finalize() method. Finalize methods are invoked by the garbage
collector prior to reclaiming the memory occupied by the object, which has the finalize() method. This means
you do not know when the objects are going to be finalized. Avoid using finalize() method to release non-
memory resources like file handles, sockets, database connections etc because Java has only a finite
number of these resources and you do not know when the garbage collection is going to kick in to release
these resources through the finalize() method.

 Java does not include structures or unions because the traditional data structures are implemented as an

object oriented framework (Java Collections Framework – Refer Q16, Q17 in Java section).

Java - Fundamentals

15

 All the code in Java program is encapsulated within classes therefore Java does not have global variables or
functions.

 C++ requires explicit memory management, while Java includes automatic garbage collection. [Refer Q37 in

Java section].

Q 04: What are the usages of Java packages? LF
A 04: It helps resolve naming conflicts when different packages have classes with the same names. This also helps you

organize files within your project. For example: java.io package do something related to I/O and java.net
package do something to do with network and so on. If we tend to put all .java files into a single package, as the
project gets bigger, then it would become a nightmare to manage all your files.

You can create a package as follows with package keyword, which is the first keyword in any Java program
followed by import statements. The java.lang package is imported implicitly by default and all the other packages
must be explicitly imported.

package com.xyz.client ;
import java.io.File;
import java.net.URL;

Q 05: Explain Java class loaders? If you have a class in a package, what do you need to do to run it? Explain dynamic

class loading? LF
A 05: Class loaders are hierarchical. Classes are introduced into the JVM as they are referenced by name in a class that

is already running in the JVM. So, how is the very first class loaded? The very first class is especially loaded with
the help of static main() method declared in your class. All the subsequently loaded classes are loaded by the
classes, which are already loaded and running. A class loader creates a namespace. All JVMs include at least one
class loader that is embedded within the JVM called the primordial (or bootstrap) class loader. Now let’s look at
non-primordial class loaders. The JVM has hooks in it to allow user defined class loaders to be used in place of
primordial class loader. Let us look at the class loaders created by the JVM.

CLASS LOADER reloadable? Explanation

Bootstrap
(primordial)

No Loads JDK internal classes, java.* packages. (as defined in the sun.boot.class.path
system property, typically loads rt.jar and i18n.jar)

Extensions No Loads jar files from JDK extensions directory (as defined in the java.ext.dirs system
property – usually lib/ext directory of the JRE)

System No Loads classes from system classpath (as defined by the java.class.path property, which
is set by the CLASSPATH environment variable or –classpath or –cp command line
options)

Bootstrap
(primordial)

(rt.jar, i18.jar)

Extensions
(lib/ext)

System
(-classpath)

Sibling1
classloader

Sibling2
classloader

JVM class loaders

Classes loaded by Bootstrap class loader have no visibility into classes
loaded by its descendants (ie Extensions and Systems class loaders).

The classes loaded by system class loader have visibility into classes loaded
by its parents (ie Extensions and Bootstrap class loaders).

If there were any sibling class loaders they cannot see classes loaded by
each other. They can only see the classes loaded by their parent class
loader. For example Sibling1 class loader cannot see classes loaded by
Sibling2 class loader

Both Sibling1 and Sibling2 class loaders have visibilty into classes loaded
by their parent class loaders (eg: System, Extensions, and Bootstrap)

Class loaders are hierarchical and use a delegation model when loading a class. Class loaders request their
parent to load the class first before attempting to load it themselves. When a class loader loads a class, the child
class loaders in the hierarchy will never reload the class again. Hence uniqueness is maintained. Classes loaded

Java - Fundamentals

16

by a child class loader have visibility into classes loaded by its parents up the hierarchy but the reverse is not true
as explained in the above diagram.

Q. What do you need to do to run a class with a main() method in a package?

Example: Say, you have a class named “Pet” in a project folder “c:\myProject” and package named
com.xyz.client, will you be able to compile and run it as it is?

package com.xyz.client;

public class Pet {
 public static void main(String[] args) {
 System.out.println("I am found in the classpath");
 }
}

To run c:\myProject> java com.xyz.client.Pet

The answer is no and you will get the following exception: “Exception in thread "main" java.lang.-
NoClassDefFoundError: com/xyz/client/Pet”. You need to set the classpath. How can you do that? One of the
following ways:

1. Set the operating system CLASSPATH environment variable to have the project folder “c:\myProject”. [Shown

in the above diagram as the System –classpath class loader]
2. Set the operating system CLASSPATH environment variable to have a jar file “c:/myProject/client.jar”, which

has the Pet.class file in it. [Shown in the above diagram as the System –classpath class loader].
3. Run it with –cp or –classpath option as shown below:

c:\>java –cp c:/myProject com.xyz.client.Pet
 OR
c:\>java -classpath c:/myProject/client.jar com.xyz.client.Pet

Important: Two objects loaded by different class loaders are never equal even if they carry the same values, which mean a
class is uniquely identified in the context of the associated class loader. This applies to singletons too, where each class
loader will have its own singleton. [Refer Q51 in Java section for singleton design pattern]

Q. Explain static vs. dynamic class loading?

Static class loading Dynamic class loading
Classes are statically loaded with Java’s
“new” operator.

class MyClass {
 public static void main(String args[]) {
 Car c = new Car();
 }
}

Dynamic loading is a technique for programmatically invoking the functions of a
class loader at run time. Let us look at how to load classes dynamically.

Class.forName (String className); //static method which returns a Class

The above static method returns the class object associated with the class
name. The string className can be supplied dynamically at run time. Unlike the
static loading, the dynamic loading will decide whether to load the class Car or
the class Jeep at runtime based on a properties file and/or other runtime
conditions. Once the class is dynamically loaded the following method returns an
instance of the loaded class. It’s just like creating a class object with no
arguments.

class.newInstance (); //A non-static method, which creates an instance of a
 //class (i.e. creates an object).

Jeep myJeep = null ;
//myClassName should be read from a .properties file or a Constants class.
// stay away from hard coding values in your program. CO
String myClassName = "au.com.Jeep" ;
Class vehicleClass = Class.forName(myClassName) ;
myJeep = (Jeep) vehicleClass.newInstance();
myJeep.setFuelCapacity(50);

A NoClassDefFoundException is
thrown if a class is referenced with
Java’s “new” operator (i.e. static loading)
but the runtime system cannot find the
referenced class.

A ClassNotFoundException is thrown when an application tries to load in a
class through its string name using the following methods but no definition for the
class with the specified name could be found:

 The forName(..) method in class - Class.
 The findSystemClass(..) method in class - ClassLoader.
 The loadClass(..) method in class - ClassLoader.

Java - Fundamentals

17

Q. What are “static initializers” or “static blocks with no function names”? When a class is loaded, all blocks
that are declared static and don’t have function name (i.e. static initializers) are executed even before the
constructors are executed. As the name suggests they are typically used to initialize static fields. CO

public class StaticInitializer {
 public static final int A = 5;
 public static final int B; //note that it is not public static final int B = null;
 //note that since B is final, it can be initialized only once.

 //Static initializer block, which is executed only once when the class is loaded.

 static {
 if(A == 5)
 B = 10;
 else
 B = 5;
 }

 public StaticInitializer(){} //constructor is called only after static initializer block
}

The following code gives an Output of A=5, B=10.

public class Test {
 System.out.println("A =" + StaticInitializer.A + ", B =" + StaticInitializer.B);
}

Q 06: What is the difference between constructors and other regular methods? What happens if you do not provide a

constructor? Can you call one constructor from another? How do you call the superclass’s constructor? LF FAQ
A 06:

Constructors Regular methods
Constructors must have the same name as the class
name and cannot return a value. The constructors
are called only once per creation of an object while
regular methods can be called many times. E.g. for a
Pet.class

public Pet() {} // constructor

Regular methods can have any name and can be called any number of
times. E.g. for a Pet.class.

public void Pet(){} // regular method has a void return type.

Note: method name is shown starting with an uppercase to
differentiate a constructor from a regular method. Better naming
convention is to have a meaningful name starting with a lowercase
like:

public void createPet(){} // regular method has a void return type

Q. What happens if you do not provide a constructor? Java does not actually require an explicit constructor in
the class description. If you do not include a constructor, the Java compiler will create a default constructor in the
byte code with an empty argument. This default constructor is equivalent to the explicit “Pet(){}”. If a class includes
one or more explicit constructors like “public Pet(int id)” or “Pet(){}” etc, the java compiler does not create the
default constructor “Pet(){}”.

Q. Can you call one constructor from another? Yes, by using this() syntax. E.g.

public Pet(int id) {
 this.id = id; // “this” means this object
}
public Pet (int id, String type) {
 this(id); // calls constructor public Pet(int id)
 this.type = type; // ”this” means this object
}

Q. How to call the superclass constructor? If a class called “SpecialPet” extends your “Pet” class then you can
use the keyword “super” to invoke the superclass’s constructor. E.g.

public SpecialPet(int id) {
 super(id); //must be the very first statement in the constructor.
}

To call a regular method in the super class use: “super.myMethod();”. This can be called at any line. Some
frameworks based on JUnit add their own initialization code, and not only do they need to remember to invoke

Java - Fundamentals

18

their parent's setup() method, you, as a user, need to remember to invoke theirs after you wrote your initialization
code:

public class DBUnitTestCase extends TestCase {
 public void setUp() {
 super.setUp();
 // do my own initialization
 }
}

public void cleanUp() throws Throwable
{
 try {
 … // Do stuff here to clean up your object(s).
 }
 catch (Throwable t) {}
 finally{
 super.cleanUp(); //clean up your parent class. Unlike constructors
 // super.regularMethod() can be called at any line.
 }
}

Q 07: What are the advantages of Object Oriented Programming Languages (OOPL)? DC FAQ
A 07: The Object Oriented Programming Languages directly represent the real life objects like Car, Jeep, Account,

Customer etc. The features of the OO programming languages like polymorphism, inheritance and
encapsulation make it powerful. [Tip: remember pie which, stands for Polymorphism, Inheritance and
Encapsulation are the 3 pillars of OOPL]

Q 08: How does the Object Oriented approach improve software development? DC
A 08: The key benefits are:

 Re-use of previous work: using implementation inheritance and object composition.
 Real mapping to the problem domain: Objects map to real world and represent vehicles, customers,

products etc: with encapsulation.
 Modular Architecture: Objects, systems, frameworks etc are the building blocks of larger systems.

The increased quality and reduced development time are the by-products of the key benefits discussed above.
If 90% of the new application consists of proven existing components then only the remaining 10% of the code
have to be tested from scratch.

Q 09: How do you express an ‘is a’ relationship and a ‘has a’ relationship or explain inheritance and composition? What

is the difference between composition and aggregation? DC FAQ
A 09: The ‘is a’ relationship is expressed with inheritance and ‘has a’ relationship is expressed with composition. Both

inheritance and composition allow you to place sub-objects inside your new class. Two of the main techniques for
code reuse are class inheritance and object composition.

Inheritance [is a] Vs Composition [has a]

Building

Bathroom
House

class Building{

}

class House extends Building{

}

is a [House is a Building]

class House {
 Bathroom room = new Bathroom() ;

 public void getTotMirrors(){
 room.getNoMirrors();

 }
}

has a [House has a Bathroom]is a

has a

Inheritance is uni-directional. For example House is a Building. But Building is not a House. Inheritance uses
extends key word. Composition: is used when House has a Bathroom. It is incorrect to say House is a

Java - Fundamentals

19

Bathroom. Composition simply means using instance variables that refer to other objects. The class House will
have an instance variable, which refers to a Bathroom object.

Q. Which one to favor, composition or inheritance? The guide is that inheritance should be only used when
subclass ‘is a’ superclass.

 Don’t use inheritance just to get code reuse. If there is no ‘is a’ relationship then use composition for code

reuse. Overuse of implementation inheritance (uses the “extends” key word) can break all the subclasses, if
the superclass is modified.

 Do not use inheritance just to get polymorphism. If there is no ‘is a’ relationship and all you want is

polymorphism then use interface inheritance with composition, which gives you code reuse (Refer Q10
in Java section for interface inheritance).

What is the difference between aggregation and composition?

Aggregation Composition
Aggregation is an association in which one class
belongs to a collection. This is a part of a whole
relationship where a part can exist without a whole.
For example a line item is a whole and product is a
part. If a line item is deleted then corresponding
product need not be deleted. So aggregation has a
weaker relationship.

Composition is an association in which one class belongs to a
collection. This is a part of a whole relationship where a part
cannot exist without a whole. If a whole is deleted then all parts are
deleted. For example An order is a whole and line items are parts.
If an order is deleted then all corresponding line items for that
order should be deleted. So composition has a stronger
relationship.

Q 10: What do you mean by polymorphism, inheritance, encapsulation, and dynamic binding? DC SE FAQ
A 10: Polymorphism – means the ability of a single variable of a given type to be used to reference objects of

different types, and automatically call the method that is specific to the type of object the variable references. In a
nutshell, polymorphism is a bottom-up method call. The benefit of polymorphism is that it is very easy to add new
classes of derived objects without breaking the calling code (i.e. getTotArea() in the sample code shown
below) that uses the polymorphic classes or interfaces. When you send a message to an object even though you
don’t know what specific type it is, and the right thing happens, that’s called polymorphism. The process used by
object-oriented programming languages to implement polymorphism is called dynamic binding. Let us look at
some sample code to demonstrate polymorphism: CO

+area() : double

<<abstract>>
Shape

+area() : double

Circle

+area() : double

HalfCircle

+area() : double

Square

//client or calling code
double dim = 5.0; //ie 5 meters radius or width
List listShapes = new ArrayList(20);

Shape s = new Circle();
 listShapes.add(s); //add circle

s = new Square();
listShapes.add(s); //add square

getTotArea (listShapes,dim); //returns 78.5+25.0=103.5

//Later on, if you decide to add a half circle then define
//a HalfCircle class, which extends Circle and then provide an
//area(). method but your called method getTotArea(...) remains
//same.

s = new HalfCircle();
listShapes.add(s); //add HalfCircle

getTotArea (listShapes,dim); //returns 78.5+25.0+39.25=142.75

/** called method: method which adds up areas of various
** shapes supplied to it.
**/
public double getTotArea(List listShapes, double dim){
 Iterator it = listShapes.iterator();
 double totalArea = 0.0;
 //loop through different shapes
 while(it.hasNext()) {
 Shape s = (Shape) it.next();
 totalArea += s.area(dim); //polymorphic method call
 }
 return totalArea ;
}

Sample code:

For example: given a base
class/interface Shape,
polymorphism allows the
programmer to define
different area(double
dim1) methods for any
number of derived classes
such as Circle, Square etc.
No matter what shape an
object is, applying the area
method to it will return the
right results.

Later on HalfCicle can be
added without breaking
your called code i.e.
method getTotalArea(...)

Depending on what the
shape is, appropriate
area(double dim) method
gets called and calculated.

Circle area is 78.5sqm
Square area is 25sqm
HalfCircle area is 39.25
sqm

+area() : double

Circle

+area() : double

HalfCircle

+area() : double

Square

+area() : double

«interface»
Shape

Java - Fundamentals

20

Inheritance – is the inclusion of behavior (i.e. methods) and state (i.e. variables) of a base class in a derived class so
that they are accessible in that derived class. The key benefit of Inheritance is that it provides the formal mechanism for
code reuse. Any shared piece of business logic can be moved from the derived class into the base class as part of
refactoring process to improve maintainability of your code by avoiding code duplication. The existing class is called the
superclass and the derived class is called the subclass. Inheritance can also be defined as the process whereby one
object acquires characteristics from one or more other objects the same way children acquire characteristics from their
parents. There are two types of inheritances:

1. Implementation inheritance (aka class inheritance): You can extend an application’s functionality by reusing
functionality in the parent class by inheriting all or some of the operations already implemented. In Java, you can only
inherit from one superclass. Implementation inheritance promotes reusability but improper use of class inheritance can
cause programming nightmares by breaking encapsulation and making future changes a problem. With implementation
inheritance, the subclass becomes tightly coupled with the superclass. This will make the design fragile because if you
want to change the superclass, you must know all the details of the subclasses to avoid breaking them. So when using
implementation inheritance, make sure that the subclasses depend only on the behavior of the superclass, not on
the actual implementation. For example in the above diagram, the subclasses should only be concerned about the
behavior known as area() but not how it is implemented.

2. Interface inheritance (aka type inheritance): This is also known as subtyping. Interfaces provide a mechanism for
specifying a relationship between otherwise unrelated classes, typically by specifying a set of common methods each
implementing class must contain. Interface inheritance promotes the design concept of program to interfaces not to
implementations. This also reduces the coupling or implementation dependencies between systems. In Java, you can
implement any number of interfaces. This is more flexible than implementation inheritance because it won’t lock you into
specific implementations which make subclasses difficult to maintain. So care should be taken not to break the
implementing classes by modifying the interfaces.

Which one to use? Prefer interface inheritance to implementation inheritance because it promotes the design concept of
coding to an interface and reduces coupling. Interface inheritance can achieve code reuse with the help of object
composition. If you look at Gang of Four (GoF) design patterns, you can see that it favors interface inheritance to
implementation inheritance. CO

Implementation inheritance Interface inheritance with composition
Let’s assume that savings account and term deposit account
have a similar behavior in terms of depositing and
withdrawing money, so we will get the super class to
implement this behavior and get the subclasses to reuse this
behavior. But saving account and term deposit account
have specific behavior in calculating the interest.

Super class Account has reusable code as methods
deposit (double amount) and withdraw (double amount).

public abstract class Account {
 public void deposit (double amount) {
 System.out.println("depositing " + amount);
 }

 public void withdraw (double amount) {
 System.out.println ("withdrawing " + amount);
 }

 public abstract double calculateInterest(double amount);
}

public class SavingsAccount extends Account {

 public double calculateInterest (double amount) {
 // calculate interest for SavingsAccount
 return amount * 0.03;
 }

 public void deposit (double amount) {
 super.deposit (amount); // get code reuse
 // do something else
 }

 public void withdraw (double amount) {

Let’s look at an interface inheritance code sample, which makes use
of composition for reusability. In the following example the methods
deposit(…) and withdraw(…) share the same piece of code in
AccountHelper class. The method calculateInterest(…) has its specific
implementation in its own class.

public interface Account {
 public abstract double calculateInterest(double amount);
 public abstract void deposit(double amount);
 public abstract void withdraw(double amount);
}

Code to interface so that the implementation can change.

public interface AccountHelper {
 public abstract void deposit (double amount);
 public abstract void withdraw (double amount);
}

class AccountHelperImpl has reusable code as methods deposit
(double amount) and withdraw (double amount).

public class AccountHelperImpl implements AccountHelper {
 public void deposit(double amount) {
 System.out.println("depositing " + amount);
 }

 public void withdraw(double amount) {
 System.out.println("withdrawing " + amount);
 }

}

public class SavingsAccountImpl implements Account {

Java - Fundamentals

21

 super.withdraw (amount); // get code reuse
 // do something else
 }
}

public class TermDepositAccount extends Account {

 public double calculateInterest (double amount) {
 // calculate interest for SavingsAccount
 return amount * 0.05;
 }

 public void deposit(double amount) {
 super.deposit (amount); // get code reuse
 // do something else
 }

 public void withdraw(double amount) {
 super.withdraw (amount); // get code reuse
 // do something else
 }
}

 // composed helper class (i.e. composition).
 AccountHelper helper = new AccountHelperImpl ();

 public double calculateInterest (double amount) {
 // calculate interest for SavingsAccount
 return amount * 0.03;
 }

 public void deposit (double amount) {
 helper.deposit(amount); // code reuse via composition
 }

 public void withdraw (double amount) {
 helper.withdraw (amount); // code reuse via composition
 }
}

public class TermDepositAccountImpl implements Account {

 // composed helper class (i.e. composition).
 AccountHelper helper = new AccountHelperImpl ();

 public double calculateInterest (double amount) {
 //calculate interest for SavingsAccount
 return amount * 0.05;
 }

 public void deposit (double amount) {
 helper.deposit (amount) ; // code reuse via composition
 }

 public void withdraw (double amount) {
 helper.withdraw (amount) ; // code reuse via composition
 }

}

The Test class:

public class Test {
 public static void main(String[] args) {
 Account acc1 = new SavingsAccountImpl();
 acc1.deposit(50.0);

 Account acc2 = new TermDepositAccountImpl();
 acc2.deposit(25.0);

 acc1.withdraw(25);
 acc2.withdraw(10);

 double cal1 = acc1.calculateInterest(100.0);
 double cal2 = acc2.calculateInterest(100.0);

 System.out.println("Savings --> " + cal1);
 System.out.println("TermDeposit --> " + cal2);
 }
}

The output:

depositing 50.0
depositing 25.0
withdrawing 25.0
withdrawing 10.0
Savings --> 3.0
TermDeposit --> 5.0

Q. Why would you prefer code reuse via composition over inheritance? Both the approaches make use of
polymorphism and gives code reuse (in different ways) to achieve the same results but:

 The advantage of class inheritance is that it is done statically at compile-time and is easy to use. The disadvantage of

class inheritance is that because it is static, implementation inherited from a parent class cannot be changed at run-

Java - Fundamentals

22

time. In object composition, functionality is acquired dynamically at run-time by objects collecting references to other
objects. The advantage of this approach is that implementations can be replaced at run-time. This is possible because
objects are accessed only through their interfaces, so one object can be replaced with another just as long as they
have the same type. For example: the composed class AccountHelperImpl can be replaced by another more
efficient implementation as shown below if required:

public class EfficientAccountHelperImpl implements AccountHelper {
 public void deposit(double amount) {
 System.out.println("efficient depositing " + amount);
 }

 public void withdraw(double amount) {
 System.out.println("efficient withdrawing " + amount);
 }
}

 Another problem with class inheritance is that the subclass becomes dependent on the parent class implementation.

This makes it harder to reuse the subclass, especially if part of the inherited implementation is no longer desirable and
hence can break encapsulation. Also a change to a superclass can not only ripple down the inheritance hierarchy to
subclasses, but can also ripple out to code that uses just the subclasses making the design fragile by tightly coupling
the subclasses with the super class. But it is easier to change the interface/implementation of the composed class.

Due to the flexibility and power of object composition, most design patterns emphasize object composition over
inheritance whenever it is possible. Many times, a design pattern shows a clever way of solving a common problem
through the use of object composition rather then a standard, less flexible, inheritance based solution.

Encapsulation – refers to keeping all the related members (variables and methods) together in an object. Specifying
member variables as private can hide the variables and methods. Objects should hide their inner workings from the
outside view. Good encapsulation improves code modularity by preventing objects interacting with each other in
an unexpected way, which in turn makes future development and refactoring efforts easy. CO

setName (String name)
Strin

g g
etN

am
e()

int getMarks()
set

Mark
s(i

nt
mark

)

private int vmarks;
private String name;

Member
variables are
encapsulated,
so that they
can only be
accessed via
encapsulating
methods.

Class MyMarks {
 private int vmarks = 0;
 private String name;

 public void setMarks(int mark)
 throws MarkException {
 if(mark > 0)
 this.vmarks = mark;
 else {
 throw new MarkException("No negative
 Values");
 }
 }

 public int getMarks(){
 return vmarks;
 }
 //getters and setters for attribute name goes here.
}

Sample code

Being able to encapsulate members of a class is important for security and integrity. We can protect variables from
unacceptable values. The sample code above describes how encapsulation can be used to protect the MyMarks object
from having negative values. Any modification to member variable “vmarks” can only be carried out through the setter
method setMarks(int mark). This prevents the object “MyMarks” from having any negative values by throwing an
exception.

Q 11: What is design by contract? Explain the assertion construct? DC
A 11: Design by contract specifies the obligations of a calling-method and called-method to each other. Design by

contract is a valuable technique, which should be used to build well-defined interfaces. The strength of this
programming methodology is that it gets the programmer to think clearly about what a function does, what pre
and post conditions it must adhere to and also it provides documentation for the caller. Java uses the assert
statement to implement pre- and post-conditions. Java’s exceptions handling also support design by contract
especially checked exceptions (Refer Q39 in Java section for checked exceptions). In design by contract in
addition to specifying programming code to carrying out intended operations of a method the programmer also
specifies:

Java - Fundamentals

23

1. Preconditions – This is the part of the contract the calling-method must agree to. Preconditions specify the
conditions that must be true before a called method can execute. Preconditions involve the system state and the
arguments passed into the method at the time of its invocation. If a precondition fails then there is a bug in the
calling-method or calling software component.

On public methods On non-public methods
Preconditions on public methods are enforced by explicit checks
that throw particular, specified exceptions. You should not use
assertion to check the parameters of the public methods but
can use for the non-public methods. Assert is inappropriate
because the method guarantees that it will always enforce the
argument checks. It must check its arguments whether or not
assertions are enabled. Further, assert construct does not throw
an exception of a specified type. It can throw only an
AssertionError.

public void setRate(int rate) {
 if(rate <= 0 || rate > MAX_RATE){
 throw new IllegalArgumentException(“Invalid rate ” + rate);
 }
 setCalculatedRate(rate);
}

You can use assertion to check the parameters of the
non-public methods.

private void setCalculatedRate(int rate) {
 assert (rate > 0 && rate < MAX_RATE) : rate;
 //calculate the rate and set it.
}

Assertions can be disabled, so programs must not
assume that assert construct will be always executed:

//Wrong:
//if assertion is disabled, “pilotJob” never gets removed
assert jobsAd.remove(pilotJob);

//Correct:
boolean pilotJobRemoved = jobsAd.remove(pilotJob);
assert pilotJobRemoved;

2. Postconditions – This is the part of the contract the called-method agrees to. What must be true after a
method completes successfully. Postconditions can be used with assertions in both public and non-public
methods. The postconditions involve the old system state, the new system state, the method arguments and the
method’s return value. If a postcondition fails then there is a bug in the called-method or called software
component.

public double calcRate(int rate) {
 if(rate <= 0 || rate > MAX_RATE){
 throw new IllegalArgumentException(“Invalid rate !!! ”);
 }

 //logic to calculate the rate and set it goes here

 assert this.evaluate(result) < 0 : this; //message sent to AssertionError on failure
 return result;
 }

3. Class invariants - what must be true about each instance of a class? A class invariant as an internal invariant
that can specify the relationships among multiple attributes, and should be true before and after any method
completes. If an invariant fails then there could be a bug in either calling-method or called-method. There is
no particular mechanism for checking invariants but it is convenient to combine all the expressions required for
checking invariants into a single internal method that can be called by assertions. For example if you have a class,
which deals with negative integers then you define the isNegative() convenient internal method:

class NegativeInteger {
 Integer value = new Integer (-1); //invariant

 //constructor
 public NegativeInteger(Integer int) {
 //constructor logic goes here
 assert isNegative();
 }

 // rest of the public and non-public methods goes here. public methods should call
 // assert isNegative(); prior to its return

 // convenient internal method for checking invariants.
 // Returns true if the integer value is negative

 private boolean isNegative(){
 return value.intValue() < 0 ;
 }
}

Java - Fundamentals

24

The isNegative() method should be true before and after any method completes, each public method and
constructor should contain the following assert statement immediately prior to its return.

assert isNegative();

Explain the assertion construct? The assertion statements have two forms as shown below:

assert Expression1;
assert Expression1 : Expression2;

Where:
 Expression1 is a boolean expression. If the Expression1 evaluates to false, it throws an AssertionError without any

detailed message.
 Expression2 if the Expression1 evaluates to false throws an AssertionError with using the value of the Expression2 as

the error’s detailed message.

Note: If you are using assertions (available from JDK1.4 onwards), you should supply the JVM argument to
enable it by package name or class name.

java -ea[:packagename...|:classname] or java -enableassertions[:packagename...|:classname]
java –ea:Account

Q 12: What is the difference between an abstract class and an interface and when should you use them? LF DP DC

FAQ
A 12: In design, you want the base class to present only an interface for its derived classes. This means, you don’t want

anyone to actually instantiate an object of the base class. You only want to upcast to it (implicit upcasting, which
gives you polymorphic behavior), so that its interface can be used. This is accomplished by making that class
abstract using the abstract keyword. If anyone tries to make an object of an abstract class, the compiler prevents
it.

The interface keyword takes this concept of an abstract class a step further by preventing any method or function
implementation at all. You can only declare a method or function but not provide the implementation. The class,
which is implementing the interface, should provide the actual implementation. The interface is a very useful and
commonly used aspect in OO design, as it provides the separation of interface and implementation and
enables you to:

 Capture similarities among unrelated classes without artificially forcing a class relationship.
 Declare methods that one or more classes are expected to implement.
 Reveal an object's programming interface without revealing its actual implementation.
 Model multiple interface inheritance in Java, which provides some of the benefits of full on multiple

inheritances, a feature that some object-oriented languages support that allow a class to have more than one
superclass.

Abstract class Interface
Have executable methods and abstract methods. Have no implementation code. All methods are abstract.
Can only subclass one abstract class. A class can implement any number of interfaces.

Shape

Circle Square

CircleOnSquare

Diamond problem & use of interface

No multiple inheritance in JAVA

Circle Square CircleOnSquare

<<Interface>>
ShapeIF

<<Interface>>
CircleIF

<<Interface>>
SquareIF

Multiple interface inheritance in JAVA

Java - Fundamentals

25

 Q. When to use an abstract class?: In case where you want to use implementation inheritance then it is
usually provided by an abstract base class. Abstract classes are excellent candidates inside of application
frameworks. Abstract classes let you define some default behavior and force subclasses to provide any specific
behavior. Care should be taken not to overuse implementation inheritance as discussed in Q10 in Java section.

Q. When to use an interface?: For polymorphic interface inheritance, where the client wants to only deal with a
type and does not care about the actual implementation use interfaces. If you need to change your design
frequently, you should prefer using interface to abstract. CO Coding to an interface reduces coupling and
interface inheritance can achieve code reuse with the help of object composition. For example: The Spring
framework’s dependency injection promotes code to an interface principle. Another justification for using interfaces
is that they solve the ‘diamond problem’ of traditional multiple inheritance as shown in the figure. Java does not
support multiple inheritance. Java only supports multiple interface inheritance. Interface will solve all the
ambiguities caused by this ‘diamond problem’.

Design pattern: Strategy design pattern lets you swap new algorithms and processes into your program without
altering the objects that use them. Strategy design pattern: Refer Q11 in How would you go about… section.

Q 13: Why there are some interfaces with no defined methods (i.e. marker interfaces) in Java? LF FAQ
A 13: The interfaces with no defined methods act like markers. They just tell the compiler that the objects of the classes

implementing the interfaces with no defined methods need to be treated differently. Example java.io.Serializable
(Refer Q23 in Java section), java.lang.Cloneable, java.util.EventListener etc. Marker interfaces are also known as
“tag” interfaces since they tag all the derived classes into a category based on their purpose.

Q 14: When is a method said to be overloaded and when is a method said to be overridden? LF CO FAQ
A 14:

Method Overloading Method Overriding
Overloading deals with multiple methods in the same class
with the same name but different method signatures.

class MyClass {
 public void getInvestAmount(int rate) {…}

 public void getInvestAmount(int rate, long principal)
 { … }
}

Both the above methods have the same method names
but different method signatures, which mean the methods
are overloaded.

Overriding deals with two methods, one in the parent class and
the other one in the child class and has the same name and
signatures.

class BaseClass{
 public void getInvestAmount(int rate) {…}
}

class MyClass extends BaseClass {
 public void getInvestAmount(int rate) { …}
}

Both the above methods have the same method names and
the signatures but the method in the subclass MyClass
overrides the method in the superclass BaseClass.

Overloading lets you define the same operation in
different ways for different data.

Overriding lets you define the same operation in different
ways for different object types.

Q 15: What is the main difference between an ArrayList and a Vector? What is the main difference between HashMap

and Hashtable? What is the difference between a stack and a queue? LF DC PI CI FAQ
A 15:

Vector / Hashtable ArrayList / HashMap
Original classes before the introduction of Collections
API. Vector & Hashtable are synchronized. Any
method that touches their contents is thread-safe.

So if you don’t need a thread safe collection, use the ArrayList or
HashMap. Why pay the price of synchronization unnecessarily at
the expense of performance degradation.

Q. So which is better? As a general rule, prefer ArrayList/HashMap to Vector/Hashtable. If your application is a
multithreaded application and at least one of the threads either adds or deletes an entry into the collection
then use new Java collections API‘s external synchronization facility as shown below to temporarily synchronize
your collections as needed: CO

Map myMap = Collections.synchronizedMap (myMap); // single lock for the entire map
List myList = Collections.synchronizedList (myList); // single lock for the entire list

Java - Fundamentals

26

J2SE 5.0: If you are using J2SE5, you should use the new “java.util.concurrent” package for improved
performance because the concurrent package collections are not governed by a single synchronized lock as
shown above. The “java.util.concurrent” package collections like ConcurrentHashMap is threadsafe and at the
same time safely permits any number of concurrent reads as well as tunable number of concurrent writes. The
“java.util.concurrent” package also provides an efficient scalable thread-safe non-blocking FIFO queue like
ConcurrentLinkedQueue.

J2SE 5.0: The “java.util.concurrent” package also has classes like CopyOnWriteArrayList, CopyOnWrite-
ArraySet, which gives you thread safety with the added benefit of immutability to deal with data that changes
infrequently. The CopyOnWriteArrayList behaves much like the ArrayList class, except that when the list is
modified, instead of modifying the underlying array, a new array is created and the old array is discarded. This
means that when a caller gets an iterator (i.e. copyOnWriteArrayListRef.iterator()), which internally
holds a reference to the underlying CopyOnWriteArrayList object’s array, which is immutable and therefore can be
used for traversal without requiring either synchronization on the list copyOnWriteArrayListRef or need to
clone() the copyOnWriteArrayListRef list before traversal (i.e. there is no risk of concurrent modification) and
also offers better performance.

Array List / Stack etc
Java arrays are even faster than using an ArrayList/Vector
and perhaps therefore may be preferable if you know the
size of your array upfront (because arrays cannot grow
as Lists do).

ArrayList/Vector are specialized data structures that internally
uses an array with some convenient methods like add(..),
remove(…) etc so that they can grow and shrink from their initial
size. ArrayList also supports index based searches with
indexOf(Object obj) and lastIndexOf(Object obj) methods.

In an array, any item can be accessed.

These are more abstract than arrays and access is restricted.
For example, a stack allows access to only last item inserted.

Queue<E> (added in J2SE 5.0) Stack
First item to be inserted is the first one to be removed. Allows access to only last item inserted.

This mechanism is called First In First Out (FIFO). An item is inserted or removed from one end called the “top” of

the stack. This is called Last In First Out (LIFO) mechanism.

Placing an item in the queue is called “enqueue or
insertion” and removing an item from a queue is called
“dequeue or deletion”. Pre J2SE 5.0, you should write your
own Queue class with enqueue() and dequeue() methods
using an ArrayList or a LinkedList class.

J2SE 5.0 has a java.util.Queue<E> interface.

Placing the data at the top is called “pushing” and removing an
item from the top is called “popping”. If you want to reverse
“XYZ” ZYX, then you can use a java.util.Stack

Q 16: Explain the Java Collections Framework? LF DP FAQ
A 16: The key interfaces used by the collections framework are List, Set and Map. The List and Set extends the

Collection interface. Should not confuse the Collection interface with the Collections class which is a utility class.

Set (HashSet , TreeSet) List (ArrayList, LinkedList, Vector etc)
A Set is a collection with unique elements and prevents
duplication within the collection. HashSet and TreeSet are
implementations of a Set interface. A TreeSet is an
ordered HashSet, which implements the SortedSet
interface.

A List is a collection with an ordered sequence of elements
and may contain duplicates. ArrayList, LinkedList and
Vector are implementations of a List interface. (i.e. an index
based)

The Collections API also supports maps, but within a hierarchy distinct from the Collection interface. A Map is an
object that maps keys to values, where the list of keys is itself a collection object. A map can contain duplicate
values, but the keys in a map must be distinct. HashMap, TreeMap and Hashtable are implementations of a Map
interface. A TreeMap is an ordered HashMap, which implements the SortedMap interface.

Q. How to implement collection ordering? SortedSet and SortedMap interfaces maintain sorted order. The
classes, which implement the Comparable interface, impose natural order. By implementing Comparable, sorting
an array of objects or a collection (List etc) is as simple as:

Arrays.sort(myArray);
Collections.sort(myCollection); // do not confuse “Collections” utility class with the
 // “Collection” interface without an “s”.

Java - Fundamentals

27

For classes that don’t implement Comparable interface, or when one needs even more control over ordering based on
multiple attributes, a Comparator interface should be used.

Comparable interface Comparator interface
The “Comparable” allows itself to compare with another
similar object (i.e. A class that implements Comparable
becomes an object to be compared with). The method
compareTo() is specified in the interface.

The Comparator is used to compare two different objects. The
following method is specified in the Comparator interface.

public int compare(Object o1, Object o2)

Many of the standard classes in the Java library like String,
Integer, Date, File etc implement the Comparable interface
to give the class a "Natural Ordering". For example String
class uses the following methods:

public int compareTo(o)
public int compareToIgnoreCase(str)

You could also implement your own method in your
own class as shown below:

...imports

public class Pet implements Comparable {

 int petId;
 String petType;

 public Pet(int argPetId, String argPetType) {
 petId = argPetId;
 this.petType = argPetType;
 }

 public int compareTo(Object o) {
 Pet petAnother = (Pet)o;

 //natural alphabetical ordering by type
 //if equal returns 0, if greater returns +ve int,
 //if less returns -ve int
 return this.petType.compareTo(petAnother.petType);
 }

 public static void main(String[] args) {
 List list = new ArrayList();
 list.add(new Pet(2, "Dog"));
 list.add(new Pet(1, "Parrot"));
 list.add(new Pet(2, "Cat"));

 Collections.sort(list); // sorts using compareTo method

 for (Iterator iter = list.iterator(); iter.hasNext();) {
 Pet element = (Pet) iter.next();
 System.out.println(element);
 }
 }

 public String toString() {
 return petType;
 }

}
Output: Cat, Dog, Parrot

You can have more control by writing your Comparator class. Let us
write a Comparator for the Pet class shown on the left. For most cases
natural ordering is fine as shown on the left but say we require a
special scenario where we need to first sort by the “petId” and then by
the “petType”. We can achieve this by writing a “Comparator” class.

...imports

public class PetComparator implements Comparator, Serializable{

 public int compare(Object o1, Object o2) {
 int result = 0;

 Pet pet = (Pet)o1;
 Pet petAnother = (Pet)o2;

 //use Integer class's natural ordering
 Integer pId = new Integer(pet.getPetId());
 Integer pAnotherId = new Integer(petAnother.getPetId());

 result = pId.compareTo(pAnotherId);

 //if ids are same compare by petType
 if(result == 0) {
 result= pet.getPetType().compareTo
 (petAnother.getPetType());
 }

 return result;
 }

 public static void main(String[] args) {
 List list = new ArrayList();
 list.add(new Pet(2, "Dog"));
 list.add(new Pet(1, "Parrot"));
 list.add(new Pet(2, "Cat"));

 Collections.sort(list, new PetComparator());

 for (Iterator iter = list.iterator(); iter.hasNext();){
 Pet element = (Pet) iter.next();
 System.out.println(element);
 }
 }
}

Output: Parrot, Cat, Dog.

Note: some methods are not shown for brevity.

Important: The ordering imposed by a java.util.Comparator “myComp” on a set of elements “mySet” should be
consistent with equals() method, which means for example:

if compare(o1,o2) == 0 then o1.equals(o2) should be true.
if compare(o1,o2) != 0 then o1.equals(o2) should be false.

If a comparator “myComp” on a set of elements “mySet” is inconsistent with equals() method, then SortedSet or
SortedMap will behave strangely and is hard to debug. For example if you add two objects o1, o2 to a TreeSet

Java - Fundamentals

28

(implements SortedSet) such that o1.equals(o2) == true and compare(o1,o2) != 0 the second add operation will return
false and will not be added to your set because o1 and o2 are equivalent from the TreeSet’s perspective. TIP: It is always
a good practice and highly recommended to keep the Java API documentation handy and refer to it as required while
coding. Please refer to java.util.Comparator interface API for further details.

Design pattern: Q. What is an Iterator? An Iterator is a use once object to access the objects stored in a collection.
Iterator design pattern (aka Cursor) is used, which is a behavioral design pattern that provides a way to access
elements of a collection sequentially without exposing its internal representation.

Q. Why do you get a ConcurrentModificationException when using an iterator? CO

Problem: The java.util Collection classes are fail-fast, which means that if one thread changes a collection while another
thread is traversing it through with an iterator the iterator.hasNext() or iterator.next() call will throw
ConcurrentModificationException. Even the synchronized collection wrapper classes SynchronizedMap and
SynchronizedList are only conditionally thread-safe, which means all individual operations are thread-safe but compound
operations where flow of control depends on the results of previous operations may be subject to threading issues.

Collection<String> myCollection = new ArrayList<String>(10);

myCollection.add("123");
myCollection.add("456");
myCollection.add("789");

for (Iterator it = myCollection.iterator(); it.hasNext();) {
 String myObject = (String)it.next();
 System.out.println(myObject);
 if (someConditionIsTrue) {
 myCollection.remove(myObject); //can throw ConcurrentModificationException in single as
 //well as multi-thread access situations.
 }
}

Solutions 1-3: for multi-thread access situation:

Solution 1: You can convert your list to an array with list.toArray() and iterate on the array. This approach is not
recommended if the list is large.

Solution 2: You can lock the entire list while iterating by wrapping your code within a synchronized block. This approach
adversely affects scalability of your application if it is highly concurrent.

Solution 3: If you are using JDK 1.5 then you can use the ConcurrentHashMap and CopyOnWriteArrayList classes,
which provide much better scalability and the iterator returned by ConcurrentHashMap.iterator() will not throw
ConcurrentModificationException while preserving thread-safety.

Solution 4: for single-thread access situation:

Use:
 it.remove(); // removes the current object via the Iterator “it” which has a reference to
 // your underlying collection “myCollection”. Also can use solutions 1-3.

Avoid:
 myCollection.remove(myObject); // avoid by-passing the Iterator. When it.next() is called, can throw the exception
 // ConcurrentModificationException

Note: If you had used any Object to Relational (OR) mapping frameworks like Hibernate, you may have encountered this
exception “ConcurrentModificationException” when you tried to remove an object from a collection such as a java.util Set
with the intention of deleting that object from the underlying database. This exception is not caused by Hibernate but
rather caused by your java.util.Iterator (i.e. due to your it.next() call). You can use one of the solutions given above.

Q. What is a list iterator?

The java.util.ListIterator is an iterator for lists that allows the programmer to traverse the list in either direction (i.e.
forward and or backward) and modify the list during iteration.

Java - Fundamentals

29

JAVA collection framework

extends

ArrayList

AbstractCollection

AbstractList

AbstractSet

AbstractMap

Abstract
Sequential

List

LinkedList

Vector

TreeSet

HashSet

TreeMap

HashMap

<interface>
SortedMap<interface>

SortedSet

Linked
HashSet

<interface>
Collection

Weak
HashMap

<interface>
List <interface>

Set
<interface>

Map

<interface>
Random
Access

Linked
HashMap

Identity
HashMap

<interface>
Comparator

Arrays

implements

Stack

asList

java.util.Collections

(Diagram sourced from: http://www.wilsonmar.com/1arrays.htm)

What are the benefits of the Java Collections Framework? Collections framework provides flexibility, performance,
and robustness.

 Polymorphic algorithms – sorting, shuffling, reversing, binary search etc.
 Set algebra - such as finding subsets, intersections, and unions between objects.
 Performance - collections have much better performance compared to the older Vector and Hashtable classes with

the elimination of synchronization overheads.
 Thread-safety - when synchronization is required, wrapper implementations are provided for temporarily

synchronizing existing collection objects. For J2SE 5.0 use java.util.concurrent package.
 Immutability - when immutability is required wrapper implementations are provided for making a collection

immutable.
 Extensibility - interfaces and abstract classes provide an excellent starting point for adding functionality and

features to create specialized object collections.

Q. What are static factory methods? CO

Some of the above mentioned features like searching, sorting, shuffling, immutability etc are achieved with
java.util.Collections class and java.util.Arrays utility classes. The great majority of these implementations are provided
via static factory methods in a single, non-instantiable (i.e. private constrctor) class. Speaking of static factory
methods, they are an alternative to creating objects through constructors. Unlike constructors, static factory methods are
not required to create a new object (i.e. a duplicate object) each time they are invoked (e.g. immutable instances can be
cached) and also they have a more meaningful names like valueOf, instanceOf, asList etc. For example:

Instead of:
String[] myArray = {"Java", "J2EE", "XML", "JNDI"};
for (int i = 0; i < myArray.length; i++) {
 System.out.println(myArray[i]);
}

You can use:
String[] myArray = {"Java", "J2EE", "XML", "JNDI"};
System.out.println(Arrays.asList(myArray)); //factory method Arrays.asList(…)

For example: The following static factory method (an alternative to a constructor) example converts a boolean primitive
value to a Boolean wrapper object.

public static Boolean valueOf(boolean b) {
 return (b ? Boolean.TRUE : Boolean.FALSE)
}

Java - Fundamentals

30

Q 17: What are some of the best practices relating to Java collection? BP PI CI
A 17:

 Use ArrayList, HashMap etc as opposed to Vector, Hashtable etc, where possible to avoid any
synchronization overhead. Even better is to use just arrays where possible. If multiple threads concurrently
access a collection and at least one of the threads either adds or deletes an entry into the collection,
then the collection must be externally synchronized. This is achieved by:

Map myMap = Collections.synchronizedMap (myMap); //conditional thread-safety
List myList = Collections.synchronizedList (myList); //conditional thread-safety
// use java.util.concurrent package for J2SE 5.0 Refer Q16 in Java section under ConcurrentModificationException

 Set the initial capacity of a collection appropriately (e.g. ArrayList, HashMap etc). This is because Collection

classes like ArrayList, HashMap etc must grow periodically to accommodate new elements. But if you have a
very large array, and you know the size in advance then you can speed things up by setting the initial size
appropriately.

For example: HashMaps/Hashtables need to be created with sufficiently large capacity to minimize
rehashing (which happens every time the table grows). HashMap has two parameters initial capacity and
load factor that affect its performance and space requirements. Higher load factor values (default load factor
of 0.75 provides a good trade off between performance and space) will reduce the space cost but will
increase the lookup cost of myMap.get(…) and myMap.put(…) methods. When the number of entries in the
HashMap exceeds the current capacity * loadfactor then the capacity of the HasMap is roughly doubled by
calling the rehash function. It is also very important not to set the initial capacity too high or load factor too
low if iteration performance or reduction in space is important.

 Program in terms of interface not implementation: CO For example you might decide a LinkedList is the
best choice for some application, but then later decide ArrayList might be a better choice for performance
reason. CO

Use:
 List list = new ArrayList(100); // program in terms of interface & set the initial capacity.
Instead of:
 ArrayList list = new ArrayList();

 Return zero length collections or arrays as opposed to returning null: CO Returning null instead of zero
length collection (use Collections.EMPTY_SET, Collections.EMPTY_LIST, Collections.EMPTY_MAP) is more
error prone, since the programmer writing the calling method might forget to handle a return value of null.

 Immutable objects should be used as keys for the HashMap: CO Generally you use a java.lang.Integer or

a java.lang.String class as the key, which are immutable Java objects. If you define your own key class then it
is a best practice to make the key class an immutable object (i.e. do not provide any setXXX() methods
etc). If a programmer wants to insert a new key then he/she will always have to instantiate a new object (i.e.
cannot mutate the existing key because immutable key object class has no setter methods). Refer Q20 in
Java section under “Q. Why is it a best practice to implement the user defined key class as an
immutable object?”

 Encapsulate collections: CO In general collections are not immutable objects. So care should be taken not

to unintentionally expose the collection fields to the caller.

Avoid where possible Better approach
The following code snippet exposes the Set “setCars”
directly to the caller. This approach is riskier because
the variable “cars” can be modified unintentionally.

 public class CarYard{
 //...
 private Set<Car> cars = new HashSet<Car>();

 //exposes the cars to the caller
 public Set<Car> getCars() {
 return cars;
 }

 //exposes the cars to the caller
 public void setCars(Set<Car> cars) {

This approach prevents the caller from directly using
the underlying variable “cars”.

public class CarYard{

 private Set<Car> cars = new HashSet<Car>();
 //...
 public void addCar(Car car) {
 cars.add(car);
 }

 public void removeCar(Car car) {
 cars.remove(car);
 }

Java - Fundamentals

31

 this.cars = cars;
 }

 //...
}

 public Set<Car> getCars() {
 //use factory method from the Collections
 return Collections.unmodifiableSet (cars);
 }
}

 Avoid storing unrelated or different types of objects into same collection: CO This is analogous to

storing items in pigeonholes without any labeling. To store items use value objects or data objects (as
opposed to storing every attribute in an ArrayList or HashMap). Provide wrapper classes around your
collections API classes like ArrayList, HashMap etc as shown in better approach column. Also where
applicable consider using composite design pattern, where an object may represent a single object or a
collection of objects. Refer Q61 in Java section for UML diagram of a composite design pattern. If you are
using J2SE 5.0 then make use of “generics”. Refer Q55 in Java section for generics.

Avoid where possible Better approach
The code below is hard to maintain and understand by
others. Also gets more complicated as the requirements
grow in the future because we are throwing different
types of objects like Integer, String etc into a list just
based on the indices and it is easy to make mistakes
while casting the objects back during retrieval.

List myOrder = new ArrayList()

ResultSet rs = …

While (rs.hasNext()) {

 List lineItem = new ArrayList();

 lineItem.add (new Integer(rs.getInt(“itemId”)));
 lineItem.add (rs.getString(“description”));
 ….
 myOrder.add(lineItem);
}

return myOrder;

Example 2:

List myOrder = new ArrayList(10);

//create an order
OrderVO header = new OrderVO();
header.setOrderId(1001);
…
//add all the line items
LineItemVO line1 = new LineItemVO();
line1.setLineItemId(1);
LineItemVO line2 = new LineItemVO();
Line2.setLineItemId(2);

List lineItems = new ArrayList();
lineItems.add(line1);
lineItems.add(line2);

//to store objects
myOrder.add(order);// index 0 is an OrderVO object
myOrder.add(lineItems);//index 1 is a List of line items

//to retrieve objects
myOrder.get(0);
myOrder.get(1);

Above approaches are bad because disparate objects
are stored in the lineItem collection in example-1 and
example-2 relies on indices to store disparate objects.
The indices based approach and storing disparate
objects are hard to maintain and understand because
indices are hard coded and get scattered across the

When storing items into a collection define value objects as shown
below: (VO is an acronym for Value Object).

public class LineItemVO {
 private int itemId;
 private String productName;

 public int getLineItemId(){return accountId ;}
 public int getAccountName(){return accountName;}

 public void setLineItemId(int accountId){
 this.accountId = accountId
 }
 //implement other getter & setter methods
}

Now let’s define our base wrapper class, which represents an order:

public abstract class Order {
 int orderId;
 List lineItems = null;

 public abstract int countLineItems();
 public abstract boolean add(LineItemVO itemToAdd);
 public abstract boolean remove(LineItemVO itemToAdd);
 public abstract Iterator getIterator();
 public int getOrderId(){return this.orderId; }
}

Now a specific implementation of our wrapper class:

public class OverseasOrder extends Order {
 public OverseasOrder(int inOrderId) {
 this.lineItems = new ArrayList(10);
 this.orderId = inOrderId;
 }

 public int countLineItems() { //logic to count }

 public boolean add(LineItemVO itemToAdd){
 …//additional logic or checks
 return lineItems.add(itemToAdd);
 }

 public boolean remove(LineItemVO itemToAdd){
 return lineItems.remove(itemToAdd);
 }

 public ListIterator getIterator(){ return lineItems.Iterator();}
}

Now to use:

Order myOrder = new OverseasOrder(1234) ;

Java - Fundamentals

32

code. If an index position changes for some reason, then
you will have to change every occurrence, otherwise it
breaks your application.

The above coding approaches are analogous to storing
disparate items in a storage system without proper
labeling and just relying on its grid position.

LineItemVO item1 = new LineItemVO();
Item1.setItemId(1);
Item1.setProductName(“BBQ”);

LineItemVO item2 = new LineItemVO();
Item1.setItemId(2);
Item1.setProductName(“Outdoor chair”);

//to add line items to order
myOrder.add(item1);
myOrder.add(item2);
…

Q. How can you code better without nested loops? CO Avoid nested loops where possible (e.g. for loop within
another for loop etc) and instead make use of an appropriate java collection.

The approach using a Set is more readable and easier to
maintain and performs slightly better. If you have an array with
100 items then nested loops will loop through 9900 times and
utilizing a collection class will loop through only 100 times.

How to avoid nested loops with Java collection classes

Avoid where possible -- nested loops

public class NestedLoops {
 private static String[] strArray = {"Cat", "Dog", "Tiger", "Lion", "Lion"};

 public static boolean isThereDuplicateUsingLoop() {
 boolean duplicateFound = false;
 int loopCounter = 0;
 for (int i = 0; i < strArray.length; i++) {
 String str = strArray[i];
 int countDuplicate = 0;
 for (int j = 0; j < strArray.length; j++) {
 String str2 = strArray[j];
 if(str.equalsIgnoreCase(str2)) {
 countDuplicate++;
 }

 if(countDuplicate > 1) {
 duplicateFound = true;
 System.out.println("duplicate found for " + str);
 }
 loopCounter++;
 }//end of inner nested for loop

 if(duplicateFound) {
 break;
 }
 }//end of outer for loop

 System.out.println("looped " + loopCounter + " times");
 return duplicateFound;
 }

 public static void main(String[] args) {
 isThereDuplicateUsingLoop();
 }
}

--
output:
duplicate found for Lion
looped 20 times

Code to test if there are duplicate values in an array.

public class NonNestedLoop {
 private static String[] strArray = {"Cat", "Dog", "Tiger", "Lion", "Lion"};

 public static boolean isThereDuplicateUsingCollection() {
 boolean duplicateFound = false;
 int loopCounter = 0;

 Set setValues = new HashSet(10); // create a set

 for (int i = 0; i < strArray.length; i++) {
 String str = strArray[i];
 if(setValues.contains(str)) { // check if already has this value
 duplicateFound = true;
 System.out.println("duplicate found for " + str);
 }

 setValues.add(str); // add the value to the set

 loopCounter++;

 if(duplicateFound) {
 break;
 }
 } // end of for loop

 System.out.println("looped " + loopCounter + " times");
 return duplicateFound;
 }

 public static void main(String[] args) {
 isThereDuplicateUsingCollection();
 }
}

output:
duplicate found for Lion
looped 5 times

Better approach -- using a collections class like a Set

Java - Fundamentals

33

Q 18: What is the difference between “==” and equals(…) method? What is the difference between shallow comparison

and deep comparison of objects? LF CO FAQ
A 18: The questions Q18, Q19, and Q20 are vital for effective coding. These three questions are vital when you are

using a collection of objects for Example: using a java.util.Set of persistable Hibernate objects etc. It is easy to
implement these methods incorrectly and consequently your program can behave strangely and also is hard to
debug. So, you can expect these questions in your interviews.

== [shallow comparison] equals() [deep comparison]
The == returns true, if the variable reference points to
the same object in memory. This is a “shallow
comparison”.

The equals() - returns the results of running the equals() method of a
user supplied class, which compares the attribute values. The equals()
method provides “deep comparison” by checking if two objects are
logically equal as opposed to the shallow comparison provided by the
operator ==.

If equals() method does not exist in a user supplied class then the
inherited Object class's equals() method is run which evaluates if the
references point to the same object in memory. The object.equals() works
just like the "==" operator (i.e shallow comparison).

Overriding the Object class may seem simple but there are many ways to
get it wrong, and consequence can be unpredictable behavior. Refer Q19
in Java section.

== (identity)

id=1
name
=”Cat

”

Pet Object

Pet Object

id=1
name
=”Cat

”

Pet a = new Pet();

Pet b = new Pet();

If (a== b) returns false

If (a== b) returns true (a,b points to the
same object, after a is set to b with a=b)

a = b

id=1
name
=”Cat

”

id=1
name
=”Cat

”

Pet Object

Pet Object

a

b

equals() method

id=1
name
=”Cat

”

Pet Object

Pet Object
id=1

name
=”Cat

”

Pet a = new Pet();

Pet b = new Pet();

If (a.equals(b)) returns true
(both objects have same attribute values of id=1

and name=”Cat”)

If (a.equals(b)) returns true

a = b
id=1

name
=”Cat

”

id=1
name
=”Cat

”

Pet Object

Pet Object

a

b

Note: String assignment with the “new” operator follow the same rule as == and equals() as mentioned above.

String str = new String(“ABC”); //Wrong. Avoid this because a new String instance
 //is created each time it is executed.

Variation to the above rule:

The “literal” String assignment is shown below, where if the assignment value is identical to another String assignment
value created then a new String object is not created. A reference to the existing String object is returned.

String str = “ABC”; //Right because uses a single instance rather than
 //creating a new instance each time it is executed.

Let us look at an example:

Java - Fundamentals

34

public class StringBasics {
 public static void main(String[] args) {

 String s1 = new String("A"); //not recommended, use String s1 = "A"
 String s2 = new String("A"); //not recommended, use String s2 = "A"

 //standard: follows the == and equals() rule like plain java objects.

 if (s1 == s2) { //shallow comparison
 System.out.println("references/identities are equal"); //never reaches here
 }
 if (s1.equals(s2)) { //deep comparison
 System.out.println("values are equal"); // this line is printed
 }

 //variation: does not follow the == and equals rule

 String s3 = "A"; //goes into a String pool.
 String s4 = "A"; //refers to String already in the pool.

 if (s3 == s4) { //shallow comparison
 System.out.println("references/identities are equal"); //this line is printed
 }
 if (s3.equals(s4)) { //deep comparison
 System.out.println("values are equal"); //this line is also printed
 }
 }
}

Design pattern: String class is designed with Flyweight design pattern. When you create a String constant as shown
above in the variation, (i.e. String s3 = “A”, s4= “A”), it will be checked to see if it is already in the String pool. If it is in the
pool, it will be picked up from the pool instead of creating a new one. Flyweights are shared objects and using them can
result in substantial performance gains.

Q. What is an intern() method in the String class?

A pool of Strings is maintained by the String class. When the intern() method is invoked equals(…) method is invoked to
determine if the String already exist in the pool. If it does then the String from the pool is returned. Otherwise, this String
object is added to the pool and a reference to this object is returned. For any two Strings s1 & s2, s1.intern() ==
s2.intern() only if s1.equals(s2) is true.

Q 19: What are the non-final methods in Java Object class, which are meant primarily for extension? LF CO
A 19: The non-final methods are equals(), hashCode(), toString(), clone(), and finalize(). The other methods like

wait(), notify(), notifyAll(), getClass() etc are final methods and therefore cannot be overridden. Let us look at
these non-final methods, which are meant primarily for extension (i.e. inheritance).

Important: The equals() and hashCode() methods prove to be very important, when objects implementing these two
methods are added to collections. If implemented incorrectly or not implemented at all then your objects stored in a
collection like a Set, List or Map may behave strangely and also is hard to debug.

Method
name

Explanation

equals()

method with
public
access
modifier

This method checks if some other object passed to it as an argument is equal the object in which this method is
invoked. It is easy to implement the equals() method incorrectly, if you do not understand the contract. The contract
can be stated in terms of 6 simple principles as follows:

1. o1.equals(o1) which means an Object (e.g. o1) should be equal to itself. (aka Reflexive).

2. o1.equals(o2) if and only o2.equals(o1) So it will be incorrect to have your own class say “MyPet” to have a

equals() method that has a comparison with an Object of class “java.lang.String” class or with any other built-in
Java class. (aka Symmetric) .

3. o1.equals(o2) && o2.equals(o3) implies that o1.equals(o3) as well It means that if the first object o1 equals to

the second object o2 and the second object o2 is equal to the third object o3 then the first object o1 is equal to
the third object o3. For example, imagine that X, Y and Z are 3 different classes. The classes X and Y both
implement the equals() method in such a way that it provides comparison for objects of class X and class Y. Now
if you decide to modify the equals() method of class Y so that it also provides equality comparison with class Z,
then you will be violating this principle because no proper equals comparison exist for class X and class Z
objects. So, if two objects agree that they are equal and follow the above mentioned symmetric principle, then

Java - Fundamentals

35

one of them cannot decide to have a similar contract with another object of different class. (aka Transitive)

4. o1.equals(o2) returns the same as long as o1 and o2 are unmodified if two objects are equal, they must

remain equal as long as they are not modified. Similarly, if they are not equal, they must remain non-equal as long
as they are not modified. (aka Consistent)

5. !o1.equals(null) which means that any instantiable object is not equal to null. So if you pass a null as an

argument to your object o1, then it should return false. (aka null comparison)

6. o1.equals(o2) implies o1.hashCode() == o2.hashCode() This is very important. If you define a equals()

method then you must define a hashCode() method as well. Also it means that if you have two objects that are
equal then they must have the same hashCode, however the reverse is not true (i.e. if two objects have the same
hashCode does not mean that they are equal). So, If a field is not used in equals(), then it must not be used in
hashCode() method. (equals() and hashCode() relationship)

 public class Pet {
 int id;
 String name;

 public boolean equals(Object obj){
 if(this == obj) return true; // if both are referring to the same object

 if ((obj == null) || (obj.getClass() != this.getClass())) {
 return false;
 }

 Pet rhs = (Pet) obj;
 return id == rhs.id && (name == rhs.name ||
 (name != null && name.equals(rhs.name)));
 }

 //hashCode() method must be implemented here.
 …
}

hashCode()

method with
public
access
modifier

This method returns a hashCode() value as an Integer and is supported for the benefit of hashing based
java.util.Collection classes like Hashtable, HashMap, HashSet etc. If a class overrides the equals() method, it
must implement the hashCode() method as well. The general contract of the hashCode() method is that:

1. Whenever hashCode() method is invoked on the same object more than once during an execution of a Java

program, this method must consistently return the same integer result. The integer result need not remain
consistent from one execution of the program to the next execution of the same program.

2. If two objects are equal as per the equals() method, then calling the hashCode() method in each of the two

objects must return the same integer result. So, If a field is not used in equals(), then it must not be used in
hashCode() method.

3. If two objects are unequal as per the equals() method, each of the two objects can return either two different

integer results or same integer results (i.e. if 2 objects have the same hashCode() result does not mean that they
are equal, but if two objects are equal then they must return the same hashCode() result).

public class Pet {
 int id;
 String name;

 public boolean equals(Object obj){
 //as shown above.
 }

 //both fields id & name are used in equals(), so both fields must be used in
 //hashCode() as well.

 public int hashCode() {
 int hash = 9;
 hash = (31 * hash) + id;
 hash = (31 * hash) + (null == name ? 0 : name.hashCode());
 return hash;
 }

}

toString() The toString() method provided by the java.lang.Object returns a string, which consists of the class name

Java - Fundamentals

36

method with
public
access
modifier

followed by an “@” sign and then unsigned hexadecimal representation of the hashcode, for example
Pet@162b91. This hexadecimal representation is not what the users of your class want to see.

Providing your toString() method makes your class much more pleasant to use and it is recommended
that all subclasses override this method. The toString() method is invoked automatically when your object
is passed to println(), assert() or the string concatenation operator (+).

public class Pet {
 int id;
 String name;

 public boolean equals(Object obj){
 //as shown above.
 }

 public int hashCode() {
 //as shown before
 }

 public String toString() {
 StringBuffer sb = new StringBuffer();
 sb.append(“id=”).append(id);
 sb.append(“,name=”).append(name);
 return sb.toString();
 }

}

clone()

method with
protected
access
modifier

You should override the clone() method very judiciously. Implementing a properly functioning clone method is complex
and it is rarely necessary. You are better off providing some alternative means of object copying (refer Q26 in Java
section) or simply not providing the capability. A better approach is to provide a copy constructor or a static factory
method in place of a constructor.

//constructor
public Pet(Pet petToCopy){
 …
}

//static factory method
public static Pet newInstance(Pet petToCopy){
 …
}

The clone() method can be disabled as follows:

public final Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
}

finalize()

method
with
protected
access
modifier

Unlike C++ destructors, the finalize() method in Java is unpredictable, often dangerous and generally unnecessary.
Use try{} finally{} blocks as discussed in Q32 in Java section & Q45 in Enterprise section. The finalize() method should
only be used in rare instances as a safety net or to terminate non-critical native resources. If you do happen to call the
finalize() method in some rare instances then remember to call the super.finalize() as shown below:

protected void finalize() throws Throwable {
 try{
 //finalize subclass state
 }
 finally {
 super.finalize();
 }
}

Q 20: When providing a user defined key class for storing objects in the HashMaps or Hashtables, what methods do you

have to provide or override (i.e. method overriding)? LF PI CO FAQ
A 20: You should override the equals() and hashCode() methods from the Object class. The default implementation of

the equals() and hashcode(), which are inherited from the java.lang.Object uses an object instance’s memory
location (e.g. MyObject@6c60f2ea). This can cause problems when two instances of the car objects have the
same color but the inherited equals() will return false because it uses the memory location, which is different for

Java - Fundamentals

37

the two instances. Also the toString() method can be overridden to provide a proper string representation of your
object.

….
345678965

(hash value for
“John”)

76854676
(hash value for

“Sam”)

Map myMap = new HashMap();

myMap.put(“John”, “Sydney”);

myMap (HashMap)

Key index
array

hasCode()

1. call 2. store

“John” etc
list of keys which hash to the
same hash value 345678065.

Because often
two or more
keys can hash
to the same
hash value the
HashMap
maintains a
linked list of
keys that were
mapped to the
same hash
value.

storing value:

myMap.get(“John”);

retrieving value: 3. Call to
 find

the positio
n

4. found the position

equals()

5. Loop through list of keys at this position, and use

the equals() method to see if the key is present

uses

If the key is not found (i.e. equals() method returns false for all
items in the list), then it assumes that the key is not present in the
HashMap “myMap”.

Note: It is simplified for clarity. myMap.containsKey(“John”) also calls hashCode() & equals() methods. If two keys are equal then they must have
the same hashCode() value, But if two keys have the same hashCode() value does not mean that they are equal.

“Sydney” etc
List of values for the

corresponding list of keys

“Sam” etc

“Melbourne”
etc

hashCode() & equals() methods

List of keys

List of values

Q. What are the primary considerations when implementing a user defined key?

• If a class overrides equals(), it must override hashCode().
• If 2 objects are equal, then their hashCode values must be equal as well.
• If a field is not used in equals(), then it must not be used in hashCode().
• If it is accessed often, hashCode() is a candidate for caching to enhance performance.
• It is a best practice to implement the user defined key class as an immutable (refer Q21) object.

Q. Why it is a best practice to implement the user defined key class as an immutable object?

Problem: As per the code snippet shown below if you use a mutable user defined class “UserKey” as a HashMap
key and subsequently if you mutate (i.e. modify via setter method e.g. key.setName(“Sam”)) the key after the
object has been added to the HashMap then you will not be able to access the object later on. The original key
object will still be in the HashMap (i.e. you can iterate through your HashMap and print it – both prints as “Sam” as
opposed to “John” & Sam) but you cannot access it with map.get(key) or querying it with
map.containsKey(key) will return false because the key “John” becomes “Sam” in the “List of keys” at the key
index “345678965” if you mutate the key after adding. These types of errors are very hard to trace and fix.

Map myMap = new HashMap(10);
//add the key “John”
UserKey key = new UserKey(“John”); //Assume UserKey class is mutable
myMap.put(key, “Sydney”);
//now to add the key “Sam”
key.setName(“Sam”); // same key object is mutated instead of creating a new instance.
 // This line modifies the key value “John” to “Sam” in the “List of keys”
 // as shown in the diagram above. This means that the key “John” cannot be
 // accessed. There will be two keys with “Sam” in positions with hash
 // values 345678965 and 76854676.
myMap.put(key, “Melbourne”);

myMap.get(new UserKey(“John”)); // key cannot be accessed. The key hashes to the same position
 // 345678965 in the “Key index array” but cannot be found in the “List of keys”

Solution: Generally you use a java.lang.Integer or a java.lang.String class as the key, which are immutable Java
objects. If you define your own key class then it is a best practice to make the key class an immutable object (i.e.
do not provide any setXXX() methods in your key class. e.g. no setName(…) method in the UserKey class). If a
programmer wants to insert a new key then he/she will always have to instantiate a new object (i.e. cannot mutate
the existing key because immutable key object class has no setter methods).

Java - Fundamentals

38

Map myMap = new HashMap(10);
//add the key “John”
UserKey key1 = new UserKey(“John”); //Assume UserKey is immutable
myMap.put(key1, “Sydney”);

//add the key “Sam”
UserKey key2 = new UserKey(“Sam”); //Since UserKey is immutable, new instance is created.
myMap.put(key2, “Melbourne”);

myMap.get(new UserKey(“John”)); //Now the key can be accessed

Similar issues are possible with the Set (e.g. HashSet) as well. If you add an object to a “Set” and subsequently
modify the added object and later on try to query the original object it may not be present.
mySet.contains(originalObject) may return false.

J2SE 5.0 introduces enumerated constants, which improves readability and maintainability of your code. Java
programming language enums are more powerful than their counterparts in other languages. Example: As shown
below a class like “Weather” can be built on top of simple enum type “Season” and the class “Weather” can be
made immutable, and only one instance of each “Weather” can be created, so that your Weather class does not
have to override equals() and hashCode() methods.

public class Weather {
 public enum Season {WINTER, SPRING, SUMMER, FALL}
 private final Season season;
 private static final List<Weather> listWeather = new ArrayList<Weather> ();

 private Weather (Season season) { this.season = season;}
 public Season getSeason () { return season;}

 static {
 for (Season season : Season.values()) { //using J2SE 5.0 for each loop
 listWeather.add(new Weather(season));
 }
 }
 }

 public static ArrayList<Weather> getWeatherList () { return listWeather; }
 public String toString(){ return season;} //takes advantage of toString() method of Season.
}

Q 21: What is the main difference between a String and a StringBuffer class? LF PI CI CO FAQ
A 21:

String StringBuffer / StringBuilder (added in J2SE 5.0)
String is immutable: you can’t modify a string
object but can replace it by creating a new
instance. Creating a new instance is rather
expensive.

//Inefficient version using immutable String
String output = “Some text”
Int count = 100;
for(int i =0; i<count; i++) {
 output += i;
}
return output;

The above code would build 99 new String
objects, of which 98 would be thrown away
immediately. Creating new objects is not
efficient.

StringBuffer is mutable: use StringBuffer or StringBuilder when you want
to modify the contents. StringBuilder was added in Java 5 and it is
identical in all respects to StringBuffer except that it is not synchronized,
which makes it slightly faster at the cost of not being thread-safe.

//More efficient version using mutable StringBuffer
StringBuffer output = new StringBuffer(110);// set an initial size of 110
output.append(“Some text”);
for(int i =0; i<count; i++) {
 output.append(i);
}
return output.toString();

The above code creates only two new objects, the StringBuffer and the
final String that is returned. StringBuffer expands as needed, which is
costly however, so it would be better to initialize the StringBuffer with the
correct size from the start as shown.

Another important point is that creation of extra strings is not limited to overloaded mathematical operator “+” but
there are several methods like concat(), trim(), substring(), and replace() in String classes that generate new
string instances. So use StringBuffer or StringBuilder for computation intensive operations, which offer better
performance.

Q. What is an immutable object? Immutable objects whose state (i.e. the object’s data) does not change once it is
instantiated (i.e. it becomes a read-only object after instantiation). Immutable classes are ideal for representing

Java - Fundamentals

39

numbers (e.g. java.lang.Integer, java.lang.Float, java.lang.BigDecimal etc are immutable objects), enumerated
types, colors (e.g. java.awt.Color is an immutable object), short lived objects like events, messages etc.

Q. What are the benefits of immutable objects?

• Immutable classes can greatly simplify programming by freely allowing you to cache and share the references to

the immutable objects without having to defensively copy them or without having to worry about their values
becoming stale or corrupted.

• Immutable classes are inherently thread-safe and you do not have to synchronize access to them to be used in a

multi-threaded environment. So there is no chance of negative performance consequences.

• Eliminates the possibility of data becoming inaccessible when used as keys in HashMaps or as elements in

Sets. These types of errors are hard to debug and fix. Refer Q20 in Java section under “Q. Why it is a best
practice to implement the user defined key class as an immutable object? “

Q. How will you write an immutable class? CO

Writing an immutable class is generally easy but there can be some tricky situations. Follow the following guidelines:

1. A class is declared final (i.e. final classes cannot be extended).
public final class MyImmutable { … }

2. All its fields are final (final fields cannot be mutated once assigned).
private final int[] myArray; //do not declare as private final int[] myArray = null;

3. Do not provide any methods that can change the state of the immutable object in any way – not just setXXX

methods, but any methods which can change the state.

4. The “this” reference is not allowed to escape during construction from the immutable class and the immutable
class should have exclusive access to fields that contain references to mutable objects like arrays, collections
and mutable classes like Date etc by:

• Declaring the mutable references as private.
• Not returning or exposing the mutable references to the caller (this can be done by defensive copying)

Wrong way to write an immutable class Right way to write an immutable class
Wrong way to write a constructor:

public final class MyImmutable {

 private final int[] myArray;

 public MyImmutable(int[] anArray) {
 this.myArray = anArray; // wrong
 }

 public String toString() {
 StringBuffer sb = new StringBuffer("Numbers are: ");
 for (int i = 0; i < myArray.length; i++) {
 sb.append(myArray[i] + " ");
 }
 return sb.toString();
 }
}

// the caller could change the array after calling the
constructor.

int[] array = {1,2};
MyImmutable myImmutableRef = new MyImmutable(array) ;
System.out.println("Before constructing " + myImmutableRef);
array[1] = 5; // change (i.e. mutate) the element
System.out.println("After constructing " + myImmutableRef);

Out put:
Before constructing Numbers are: 1 2

Right way is to copy the array before assigning in the constructor.

public final class MyImmutable {

 private final int[] myArray;

 public MyImmutable(int[] anArray) {
 this.myArray = anArray.clone(); // defensive copy
 }

 public String toString() {
 StringBuffer sb = new StringBuffer("Numbers are: ");
 for (int i = 0; i < myArray.length; i++) {
 sb.append(myArray[i] + " ");
 }
 return sb.toString();
 }
}

// the caller cannot change the array after calling the constructor.

int[] array = {1,2};
MyImmutable myImmutableRef = new MyImmutable(array) ;
System.out.println("Before constructing " + myImmutableRef);
array[1] = 5; // change (i.e. mutate) the element
System.out.println("After constructing " + myImmutableRef);

Out put:
Before constructing Numbers are: 1 2

Java - Fundamentals

40

After constructing Numbers are: 1 5

As you can see in the output that the “MyImmutable” object
has been mutated. This is because the object reference gets
copied as discussed in Q22 in Java section.

After constructing Numbers are: 1 2

As you can see in the output that the “MyImmutable” object has not
been mutated.

Wrong way to write an accessor. A caller could get the array
reference and then change the contents:

public int[] getArray() {
 return myArray;
}

Right way to write an accessor by cloning.

public int[] getAray() {
 return (int[]) myArray.clone();
}

Important: Beware of using the clone() method on a collection like a Map, List, Set etc because they are not only difficult
to implement correctly refer Q19 in Java section but also the default behavior of an object’s clone() method automatically
yields a shallow copy. You have to deep copy the mutable objects referenced by your immutable class. Refer Q26 in Java
section for deep vs. shallow cloning and Q22 in Java section for why you will be modifying the original object if you do not
deep copy.

Q. How would you defensively copy a Date field in your immutable class?

public final class MyDiary {

 private Date myDate = null;

 public MyDiary(Date aDate){
 this.myDate = new Date(aDate.getTime()); // defensive copying by not exposing the “myDate” reference
 }

 public Date getDate() {
 return new Date(myDate.getTime); // defensive copying by not exposing the “myDate” reference
 }
}

Q 22: What is the main difference between pass-by-reference and pass-by-value? LF PI FAQ
A 22: Other languages use pass-by-reference or pass-by-pointer. But in Java no matter what type of argument you

pass the corresponding parameter (primitive variable or object reference) will get a copy of that data, which is
exactly how pass-by-value (i.e. copy-by-value) works.

In Java, if a calling method passes a reference of an object as an argument to the called method then the passed-
in reference gets copied first and then passed to the called method. Both the original reference that was
passed-in and the copied reference will be pointing to the same object. So no matter which reference you use, you
will be always modifying the same original object, which is how the pass-by-reference works as well.

ref d

Pass-by-value for primitive variables vs Object references

public void first(){
 int i= 10;
 int x = second(i);
 //At this point
 //value of i is still 10
 //value of x is 11
}
public int second(int k) {
 k++;
 return k ;
}

i = 10

k = 10

k = 11

Copy of i

stores i

copies i

acts on k

ref
public void first(){
 Car c = new Car("red")
 //At this point
 //color is Red
 second(c);
 //At this point
 //color is Blue
}
public void second(Car d)
{
 d.setColor(blue);
 //color is blue
}

Car object

String color = red

ref c

co
py

 o
f c

Primitive variables Object references

modifies the original
object through copied
reference

modifies the copy k
but not the original.

Changes
color = blue

If your method call involves inter-process (e.g. between two JVMs) communication, then the reference of the
calling method has a different address space to the called method sitting in a separate process (i.e. separate

Java - Fundamentals

41

JVM). Hence inter-process communication involves calling method passing objects as arguments to called method
by-value in a serialized form, which can adversely affect performance due to marshaling and unmarshaling cost.

Note: As discussed in Q69 in Enterprise section, EJB 2.x introduced local interfaces, where enterprise beans that can be used
locally within the same JVM using Java’s form of pass-by-reference, hence improving performance.

Q 23: What is serialization? How would you exclude a field of a class from serialization or what is a transient variable?

What is the common use? What is a serial version id? LF SI PI FAQ
A 23: Serialization is a process of reading or writing an object. It is a process of saving an object’s state to a sequence of

bytes, as well as a process of rebuilding those bytes back into a live object at some future time. An object is
marked serializable by implementing the java.io.Serializable interface, which is only a marker interface -- it simply
allows the serialization mechanism to verify that the class can be persisted, typically to a file.

Transient variables cannot be serialized. The fields marked transient in a serializable object will not be
transmitted in the byte stream. An example would be a file handle, a database connection, a system thread etc.
Such objects are only meaningful locally. So they should be marked as transient in a serializable class.

byte stream
write

to

Serialization

File
 class Car implements Serializable {
 String color = null;
 transient File fh = null;
 }

Car Object1

 Class Car implements
Serializable {

 String color = null;
 }

Car Object 2

deserialize
serialize

deserialize

Serialization can adversely affect performance since it:

 Depends on reflection.
 Has an incredibly verbose data format.
 Is very easy to send surplus data.

Q. When to use serialization? Do not use serialization if you do not have to. A common use of serialization is to
use it to send an object over the network or if the state of an object needs to be persisted to a flat file or a
database. (Refer Q57 on Enterprise section). Deep cloning or copy can be achieved through serialization. This
may be fast to code but will have performance implications (Refer Q26 in Java section).

To serialize the above “Car” object to a file (sample for illustration purpose only, should use try {} catch {} block):

Car car = new Car(); // The “Car” class implements a java.io.Serializable interface
FileOutputStream fos = new FileOutputStream(filename);
ObjectOutputStream out = new ObjectOutputStream(fos);
out.writeObject(car); // serialization mechanism happens here
out.close();

The objects stored in an HTTP session should be serializable to support in-memory replication of sessions to
achieve scalability (Refer Q20 in Enterprise section). Objects are passed in RMI (Remote Method Invocation)
across network using serialization (Refer Q57 in Enterprise section).

Q. What is Java Serial Version ID? Say you create a “Car” class, instantiate it, and write it out to an object
stream. The flattened car object sits in the file system for some time. Meanwhile, if the “Car” class is modified by
adding a new field. Later on, when you try to read (i.e. deserialize) the flattened “Car” object, you get the
java.io.InvalidClassException – because all serializable classes are automatically given a unique identifier. This
exception is thrown when the identifier of the class is not equal to the identifier of the flattened object. If you really
think about it, the exception is thrown because of the addition of the new field. You can avoid this exception being
thrown by controlling the versioning yourself by declaring an explicit serialVersionUID. There is also a small

Java - Fundamentals

42

performance benefit in explicitly declaring your serialVersionUID (because does not have to be calculated). So, it
is best practice to add your own serialVersionUID to your Serializable classes as soon as you create them as
shown below:

public class Car {
 static final long serialVersionUID = 1L; //assign a long value
}

Note: Alternatively you can use the serialver tool comes with Sun’s JDK. This tool takes a full class name on the
command line and returns the serialVersionUID for that compiled class. For example:

static final long serialVersionUID = 10275439472837494L; //generated by serialver tool.

Q 24: Explain the Java I/O streaming concept and the use of the decorator design pattern in Java I/O? LF DP PI SI
A 24: Java input and output is defined in terms of an abstract concept called a “stream”, which is a sequence of data.

There are 2 kinds of streams.

 Byte streams (8 bit bytes) Abstract classes are: InputStream and OutputStream
 Character streams (16 bit UNICODE) Abstract classes are: Reader and Writer

Design pattern: java.io.* classes use the decorator design pattern. The decorator design pattern attaches
responsibilities to objects at runtime. Decorators are more flexible than inheritance because the inheritance
attaches responsibility to classes at compile time. The java.io.* classes use the decorator pattern to construct
different combinations of behavior at runtime based on some basic classes.

Attaching responsibilities to classes at
compile time using subclassing.

Attaching responsibilities to objects at runtime using a decorator
design pattern.

Inheritance (aka subclassing) attaches
responsibilities to classes at compile time. When
you extend a class, each individual changes you
make to child class will affect all instances of the
child classes. Defining many classes using
inheritance to have all possible combinations is
problematic and inflexible.

By attaching responsibilities to objects at runtime, you can apply changes
to each individual object you want to change.

File file = new File(“c:/temp”);
FileInputStream fis = new FileInputStream(file);
BufferedInputStream bis = new BufferedInputStream(fis);

Decorators decorate an object by enhancing or restricting functionality of
an object it decorates. The decorators add or restrict functionality to
decorated objects either before or after forwarding the request. At runtime
the BufferedInputStream (bis), which is a decorator (aka a wrapper
around decorated object), forwards the method call to its decorated object
FileInputStream (fis). The “bis” will apply the additional functionality of
buffering around the lower level file (i.e. fis) I/O.

java.io.* class hierarchy

java.lang.Object

java.io.InputStream java.io.OutputStream java.lang.System java.io.Reader java.io.Writer

java.io.FileInputStream java.io.FileOutputStream java.io.InputStreamReader java.io.OutputStreamWriter

java.io.FileReader java.io.FileWriterjava.io.BufferedReaderNote: Only a few subclasses of abstract classes are
shown for clarity.

Q. How does the new I/O (NIO) offer better scalability and better performance?

Java - Fundamentals

43

Java has long been not suited for developing programs that perform a lot of I/O operations. Furthermore,
commonly needed tasks such as file locking, non-blocking and asynchronous I/O operations and ability to map file
to memory were not available. Non-blocking I/O operations were achieved through work around such as
multithreading or using JNI. The New I/O API (aka NIO) in J2SE 1.4 has changed this situation.

A server’s ability to handle several client requests effectively depends on how it uses I/O streams. When a server
has to handle hundreds of clients simultaneously, it must be able to use I/O services concurrently. One way to
cater for this scenario in Java is to use threads but having almost one-to-one ratio of threads (100 clients will have
100 threads) is prone to enormous thread overhead and can result in performance and scalability problems
due to consumption of memory stacks (i.e. each thread has its own stack. Refer Q34, Q42 in Java section) and
CPU context switching (i.e. switching between threads as opposed to doing real computation.). To overcome this
problem, a new set of non-blocking I/O classes have been introduced to the Java platform in java.nio package.
The non-blocking I/O mechanism is built around Selectors and Channels. Channels, Buffers and Selectors are
the core of the NIO.

Non-blocking I/O (i.e. New I/O)

Client-1

Client-2

Client-3

Se
le

ct
or

Channel

Channel

Channel

Key-5
client-2

Key-4
client-1

Key-3
client-3

Key-2
client-2

Key-1
client-1

Process

Demultiplexing

Multiplexing

sequentially processed
(unlike threads, no context switching and separate

stack allocations are required)

A Channel class represents a bi-directional communication channel (similar to InputStream and OutputStream)
between datasources such as a socket, a file, or an application component, which is capable of performing one or
more I/O operations such as reading or writing. Channels can be non-blocking, which means, no I/O operation will
wait for data to be read or written to the network. The good thing about NIO channels is that they can be
asynchronously interrupted and closed. So if a thread is blocked in an I/O operation on a channel, another thread
can interrupt that blocked thread.

A Selector class enables multiplexing (combining multiple streams into a single stream) and demultiplexing
(separating a single stream into multiple streams) I/O events and makes it possible for a single thread to efficiently
manage many I/O channels. A Selector monitors selectable channels, which are registered with it for I/O events
like connect, accept, read and write. The keys (i.e. Key1, Key2 etc represented by the SelectionKey class)
encapsulate the relationship between a specific selectable channel and a specific selector.

Buffers hold data. Channels can fill and drain Buffers. Buffers replace the need for you to do your own buffer
management using byte arrays. There are different types of Buffers like ByteBuffer, CharBuffer, DoubleBuffer, etc.

Design pattern: NIO uses a reactor design pattern, which demultiplexes events (separating single stream into
multiple streams) and dispatches them to registered object handlers. The reactor pattern is similar to an observer
pattern (aka publisher and subscriber design pattern), but an observer pattern handles only a single source of
events (i.e. a single publisher with multiple subscribers) where a reactor pattern handles multiple event sources
(i.e. multiple publishers with multiple subscribers). The intent of an observer pattern is to define a one-to-many
dependency so that when one object (i.e. the publisher) changes its state, all its dependents (i.e. all its
subscribers) are notified and updated correspondingly.

Another sought after functionality of NIO is its ability to map a file to memory. There is a specialized form of a
Buffer known as “MappedByteBuffer”, which represents a buffer of bytes mapped to a file. To map a file to
“MappedByteBuffer”, you must first get a channel for a file. Once you get a channel then you map it to a buffer and
subsequently you can access it like any other “ByteBuffer”. Once you map an input file to a “CharBuffer”, you can
do pattern matching on the file contents. This is similar to running “grep” on a UNIX file system.

Java - Fundamentals

44

Another feature of NIO is its ability to lock and unlock files. Locks can be exclusive or shared and can be held
on a contiguous portion of a file. But file locks are subject to the control of the underlying operating system.

Q 25: How can you improve Java I/O performance? PI BP
A 25: Java applications that utilize Input/Output are excellent candidates for performance tuning. Profiling of Java

applications that handle significant volumes of data will show significant time spent in I/O operations. This means
substantial gains can be had from I/O performance tuning. Therefore, I/O efficiency should be a high priority for
developers looking to optimally increase performance.

The basic rules for speeding up I/O performance are

 Minimize accessing the hard disk.
 Minimize accessing the underlying operating system.
 Minimize processing bytes and characters individually.

Let us look at some of the techniques to improve I/O performance. CO

 Use buffering to minimize disk access and underlying operating system. As shown below, with buffering

large chunks of a file are read from a disk and then accessed a byte or character at a time.

Without buffering : inefficient code

 try{
 File f = new File("myFile.txt");
 FileInputStream fis = new FileInputStream(f);
 int count = 0;
 int b = 0;
 while((b = fis.read()) != -1){
 if(b== '\n') {
 count++;
 }
 }
 // fis should be closed in a finally block.
 fis.close() ;
 }
catch(IOException io){}

Note: fis.read() is a native method call to the
underlying operating system.

With Buffering: yields better performance

try{
 File f = new File("myFile.txt");
 FileInputStream fis = new FileInputStream(f);
 BufferedInputStream bis = new BufferedInputStream(fis);
 int count = 0;
 int b = 0 ;
 while((b = bis.read()) != -1){
 if(b== '\n') {
 count++;
 }
 }
 //bis should be closed in a finally block.
 bis.close() ;
 }
catch(IOException io){}

Note: bis.read() takes the next byte from the input buffer and only
rarely access the underlying operating system.

Instead of reading a character or a byte at a time, the above code with buffering can be improved further by
reading one line at a time as shown below:

FileReader fr = new FileReader(f);
BufferedReader br = new BufferedReader(fr);
while (br.readLine() != null) count++;

By default the System.out is line buffered, which means that the output buffer is flushed when a new line
character (i.e. “\n”) is encountered. This is required for any interactivity between an input prompt and display
of output. The line buffering can be disabled for faster I/O operation as follows:

FileOutputStream fos = new FileOutputStream(file);
BufferedOutputStream bos = new BufferedOutputStream(fos, 1024);
PrintStream ps = new PrintStream(bos,false);

// To redirect standard output to a file instead of the “System” console which is the default for both “System.out” (i.e.
// standard output) and “System.err” (i.e. standard error device) variables

System.setOut(ps);

while (someConditionIsTrue)

System.out.println(“blah…blah…”);
}

Java - Fundamentals

45

It is recommended to use logging frameworks like Log4J with SLF4J (Simple Logging Façade for Java),
which uses buffering instead of using default behavior of System.out.println(…..) for better performance.
Frameworks like Log4J are configurable, flexible, extensible and easy to use.

 Use the NIO package, if you are using JDK 1.4 or later, which uses performance-enhancing features like

buffers to hold data, memory mapping of files, non-blocking I/O operations etc.

 I/O performance can be improved by minimizing the calls to the underlying operating systems. The Java

runtime itself cannot know the length of a file, querying the file system for isDirectory(), isFile(), exists() etc
must query the underlying operating system.

 Where applicable caching can be used to improve performance by reading in all the lines of a file into a Java

Collection class like an ArrayList or a HashMap and subsequently access the data from an in-memory
collection instead of the disk.

Q 26: What is the main difference between shallow cloning and deep cloning of objects? DC LF MI PI
A 26: The default behavior of an object’s clone() method automatically yields a shallow copy. So to achieve a deep copy

the classes must be edited or adjusted.

Shallow copy: If a shallow copy is performed on obj-1 as shown in fig-2 then it is copied but its contained objects
are not. The contained objects Obj-1 and Obj-2 are affected by changes to cloned Obj-2. Java supports shallow
cloning of objects by default when a class implements the java.lang.Cloneable interface.

Deep copy: If a deep copy is performed on obj-1 as shown in fig-3 then not only obj-1 has been copied but the
objects contained within it have been copied as well. Serialization can be used to achieve deep cloning. Deep
cloning through serialization is faster to develop and easier to maintain but carries a performance overhead.

Fig-2:Shallow cloning

Fig-3:Deep cloning

Shallow Vs Deep cloning

Obj-1

contained
Obj-1

contained
Obj-2

Fig-1:Original Object

containscontains

Obj-1

Cloned
Obj-2

contained
Obj-1

contained
Obj-2

Obj-1

contained
Obj-1

contained
Obj-2

Cloned
Obj-2

contained
Obj-1

contained
Obj-2

For example invoking clone() method on a collection like HashMap, List etc returns a shallow copy of HashMap,
List, instances. This means if you clone a HashMap, the map instance is cloned but the keys and values
themselves are not cloned. If you want a deep copy then a simple method is to serialize the HashMap to a
ByteArrayOutputSream and then deserialize it. This creates a deep copy but does require that all keys and values
in the HashMap are Serializable. Main advantage of this approach is that it will deep copy any arbitrary object
graph. Refer Q23 in Java section for deep copying using Serialization. Alternatively you can provide a static
factory method to deep copy. Example: to deep copy a list of Car objects.

public static List deepCopy(List listCars) {

 List copiedList = new ArrayList(10);

 for (Object object : listCars) { //JDK 1.5 for each loop

 Car original = (Car)object;

 Car carCopied = new Car(); //instantiate a new Car object

 carCopied.setColor((original.getColor()));

 copiedList.add(carCopied);

 }

 return copiedList;

}

Java - Fundamentals

46

Q 27: What is the difference between an instance variable and a static variable? How does a local variable compare to

an instance or a static variable? Give an example where you might use a static variable? LF FAQ
A 27:

Static variables Instance variables
Class variables are called static variables. There is only one
occurrence of a class variable per JVM per class loader.
When a class is loaded the class variables (aka static
variables) are initialized.

Instance variables are non-static and there is one
occurrence of an instance variable in each class instance
(i.e. each object). Also known as a member variable or a
field.

A static variable is used in the singleton pattern. (Refer Q51 in Java section). A static variable is used with a final
modifier to define constants.

Local variables Instance and static variables
Local variables have a narrower scope than instance
variables.

Instance variables have a narrower scope than static
variables.

The lifetime of a local variable is determined by execution
path and local variables are also known as stack variables
because they live on the stack. Refer Q34 for stack & heap.

Instance and static variables are associated with objects and
therefore live in the heap. Refer Q34 in Java section for
stack & heap.

For a local variable, it is illegal for code to fail to assign it a
value. It is the best practice to declare local variables only
where required as opposed to declaring them upfront and
cluttering up your code with some local variables that never
get used.

Both the static and instance variables always have a value. If
your code does not assign them a value then the run-time
system will implicitly assign a default value (e.g.
null/0/0.0/false).

Note: Java does not support global, universally accessible variables. You can get the same sorts of effects with classes that
have static variables.

Q 28: Give an example where you might use a static method? LF FAQ
A 28: Static methods prove useful for creating utility classes, singleton classes and factory methods (Refer Q51,

Q52 in Java section). Utility classes are not meant to be instantiated. Improper coding of utility classes can lead to
procedural coding. java.lang.Math, java.util.Collections etc are examples of utility classes in Java.

Q 29: What are access modifiers? LF FAQ
A 29:

 Modifier Used with Description
public Outer classes, interfaces,

constructors, Inner classes, methods
and field variables

A class or interface may be accessed from outside the
package. Constructors, inner classes, methods and field
variables may be accessed wherever their class is
accessed.

protected Constructors, inner classes, methods,
and field variables.

Accessed by other classes in the same package or any
subclasses of the class in which they are referred (i.e. same
package or different package).

private Constructors, inner classes,
methods and field variables,

Accessed only within the class in which they are declared

No modifier:
(Package by
default).

Outer classes, inner classes,
interfaces, constructors, methods, and
field variables

Accessed only from within the package in which they are
declared.

Q 30: Where and how can you use a private constructor? LF FAQ
A 30: Private constructor is used if you do not want other classes to instantiate the object and to prevent subclassing.

The instantiation is done by a public static method (i.e. a static factory method) within the same class.
 Used in the singleton design pattern. (Refer Q51 in Java section).
 Used in the factory method design pattern (Refer Q52 in Java section). e.g. java.util.Collections class (Refer

Q16 in Java section).
 Used in utility classes e.g. StringUtils etc.

Q 31: What is a final modifier? Explain other Java modifiers? LF FAQ
A 31: A final class can’t be extended i.e. A final class can not be subclassed. A final method can’t be overridden when its

class is inherited. You can’t change value of a final variable (i.e. it is a constant).

Java - Fundamentals

47

Modifier Class Method Variable
static A static inner class is just an inner

class associated with the class,
rather than with an instance of the
class.

A static method is called by classname.method
(e.g Math.random()), can only access static
variables.

Class variables are
called static variables.
There is only one
occurrence of a class
variable per JVM per
class loader.

abstract An abstract class cannot be
instantiated, must be a superclass
and a class must be declared
abstract whenever one or more
methods are abstract.

Method is defined but contains no
implementation code (implementation code is
included in the subclass). If a method is
abstract then the entire class must be abstract.

N/A

synchronized N/A Acquires a lock on the class for static
methods.
Acquires a lock on the instance for non-
static methods.

N/A

transient N/A N/A

variable should not be
serialized.

final Class cannot be inherited (i.e.
extended)

Method cannot be overridden. Makes the variable
immutable.

native N/A Platform dependent. No body, only signature. N/A

Note: Be prepared for tricky questions on modifiers like, what is a “volatile”? Or what is a “const”? Etc. The
reason it is tricky is that Java does have these keywords “const” and “volatile” as reserved, which means you can’t
name your variables with these names but modifier “const” is not yet added in the language and the modifier
“volatile” is very rarely used.

The “volatile” modifier is used on instance variables that may be modified simultaneously by other threads. The
modifier volatile only synchronizes the variable marked as volatile whereas “synchronized” modifier synchronizes
all variables. Since other threads cannot see local variables, there is no need to mark local variables as volatile.
For example:

volatile int number;
volatile private List listItems = null;

Java uses the “final” modifier to declare constants. A final variable or constant declared as “final” has a value that
is immutable and cannot be modified to refer to any other objects other than one it was initialized to refer to. So
the “final” modifier applies only to the value of the variable itself, and not to the object referenced by the variable.
This is where the “const” modifier can come in very useful if added to the Java language. A reference variable
or a constant marked as “const” refers to an immutable object that cannot be modified. The reference variable
itself can be modified, if it is not marked as “final”. The “const” modifier will be applicable only to non-primitive
types. The primitive types should continue to use the modifier “final”.

Q. If you want to extend the “java.lang.String” class, what methods will you override in your extending
class?

You would be tempted to say equals(), hashCode() and toString() based on Q19, Q20 in Java section but the
“java.lang.String” class is declared final and therefore it cannot be extended.

Q 32: What is the difference between final, finally and finalize() in Java? LF FAQ
A 32:

 final - constant declaration. Refer Q31 in Java section.
 finally - handles exception. The finally block is optional and provides a mechanism to clean up regardless of

what happens within the try block (except System.exit(0) call). Use the finally block to close files or to release
other system resources like database connections, statements etc. (Refer Q45 in Enterprise section)

 finalize() - method helps in garbage collection. A method that is invoked before an object is discarded by the
garbage collector, allowing it to clean up its state. Should not be used to release non-memory resources like
file handles, sockets, database connections etc because Java has only a finite number of these resources and
you do not know when the garbage collection is going to kick in to release these non-memory resources
through the finalize() method. Refer Q19 in Java Section.

Q 33: Why would you prefer a short circuit “&&, ||” operators over logical “& , |” operators? LF
A 33: Firstly NullPointerException is by far the most common RuntimeException. If you use the logical operator you can

get a NullPointerException. This can be avoided easily by using a short circuit “&&” operator as shown below.

Java - Fundamentals

48

There are other ways to check for null but short circuit && operator can simplify your code by not having to declare
separate if clauses.

if((obj != null) & obj.equals(newObj)) { //can cause a NullPointerException if obj == null
 ... // because obj.equals(newObj) is always executed.
}

Short-circuiting means that an operator only evaluates as far as it has to, not as far as it can. If the variable 'obj'
equals null, it won't even try to evaluate the 'obj.equals(newObj)’ clause as shown in the following example. This
protects the potential NullPointerException.

if((obj != null) && obj.equals(newObj)) { //cannot get a NullPointerException because
 ... //obj.equals(newObj) is executed only if obj != null
}

Secondly, short-circuit “&&” and “||” operators can improve performance in certain situations. For example:

if((number <= 7) || (doComputeIntensiveAnalysis(number) <= 13)) { //the CPU intensive
 //computational method in bold is executed only if number > 7.
}

Q 34: How does Java allocate stack and heap memory? Explain re-entrant, recursive and idempotent

methods/functions? MI CI
A 34: Each time an object is created in Java it goes into the area of memory known as heap. The primitive variables like

int and double are allocated in the stack (i.e. Last In First Out queue), if they are local variables and in the heap if
they are member variables (i.e. fields of a class). In Java methods and local variables are pushed into stack when
a method is invoked and stack pointer is decremented when a method call is completed. In a multi-threaded
application each thread will have its own stack but will share the same heap. This is why care should be taken in
your code to avoid any concurrent access issues in the heap space. The stack is thread-safe because each thread
will have its own stack with say 1MB RAM allocated for each thread but the heap is not thread-safe unless
guarded with synchronization through your code. The stack space can be increased with the –Xss option.

J a v a s ta c k & h e a p m e m o r y a llo c a t io n

S ta c k

H e a p

p u b lic c la s s S ta c k R e f {

 p u b lic v o id f irs t () {
 s e c o n d () ;
 / /a f te r
 }

 p u b lic v o id s e c o n d () {
 C a r c = n e w C a r () ;
 }

}

f ir s t ()

s e c o n d ()

f ir s t ()

s e c o n d () r e f c

f ir s t ()

C a r

1

2

3

4

R e f

p u b lic c la s s H e a p R e f{
 C a r c = n e w C a r () ;

 p u b lic v o id f irs t() {
 c = n e w C a r () ;
 }
}

C a rc
R e f

C a r

c C a r

2

1

Java - Fundamentals

49

All Java methods are automatically re-entrant. It means that several threads can be executing the same method
at once, each with its own copy of the local variables. A Java method may call itself without needing any special
declarations. This is known as a recursive method call. Given enough stack space, recursive method calls are
perfectly valid in Java though it is tough to debug. Recursive methods are useful in removing iterations from many
sorts of algorithms. All recursive functions are re-entrant but not all re-entrant functions are recursive. Idempotent
methods are methods, which are written in such a way that repeated calls to the same method with the same
arguments yield same results. For example clustered EJBs, which are written with idempotent methods, can
automatically recover from a server failure as long as it can reach another server (i.e. scalable).

Q 35: Explain Outer and Inner classes (or Nested classes) in Java? When will you use an Inner Class? LF SE
A 35: In Java not all classes have to be defined separate from each other. You can put the definition of one class inside

the definition of another class. The inside class is called an inner class and the enclosing class is called an outer
class. So when you define an inner class, it is a member of the outer class in much the same way as other
members like attributes, methods and constructors.

Q. Where should you use inner classes? Code without inner classes is more maintainable and readable.
When you access private data members of the outer class, the JDK compiler creates package-access member
functions in the outer class for the inner class to access the private members. This leaves a security hole. In
general we should avoid using inner classes. Use inner class only when an inner class is only relevant in the
context of the outer class and/or inner class can be made private so that only outer class can access it. Inner
classes are used primarily to implement helper classes like Iterators, Comparators etc which are used in the
context of an outer class. CO

Member inner class Anonymous inner class
public class MyStack {
 private Object[] items = null;
 …
 public Iterator iterator() {
 return new StackIterator();
 }
 //inner class
 class StackIterator implements Iterator{
 …
 public boolean hasNext(){…}
 }
}

public class MyStack {
 private Object[] items = null;
 …
 public Iterator iterator() {
 return new Iterator {
 …
 public boolean hasNext() {…}
 }
 }
}

Explain outer and inner classes?

Class Type Description Example + Class name
Outer
class

Package
member class
or interface

Top level class. Only type JVM
can recognize.

//package scope
class Outside{}

Outside.class

Inner
class

static nested
class or
interface

Defined within the context of the
top-level class. Must be static &
can access static members of its
containing class. No relationship
between the instances of outside
and Inside classes.

//package scope
class Outside {
 static class Inside{ }
}

Outside.class ,Outside$Inside.class

Inner
class

Member class Defined within the context of
outer class, but non-static. Until
an object of Outside class has
been created you can’t create
Inside.

class Outside{
 class Inside(){}
 }

Outside.class , Outside$Inside.class

Inner
class

Local class Defined within a block of code.
Can use final local variables and
final method parameters. Only
visible within the block of code
that defines it.

class Outside {
 void first() {
 final int i = 5;
 class Inside{}
 }
}

Outside.class , Outside1Inside.class

Java - Fundamentals

50

Inner
class

Anonymous
class

Just like local class, but no
name is used. Useful when only
one instance is used in a
method. Most commonly used in
AWT/SWING event model,
Spring framework hibernate call
back methods etc.

//AWT example
class Outside{
 void first() {
 button.addActionListener (new ActionListener()
 {
 public void actionPerformed(ActionEvent e) {
 System.out.println(“The button was pressed!”);
 }
 });
 }
}

Outside.class , Outside$1.class

Note: If you have used the Spring framework with the Hibernate framework (Both are very popular frameworks,
Refer section “Emerging Technologies/Frameworks”), it is likely that you would have used an anonymous inner
class (i.e. a class declared inside a method) as shown below:

//anonymous inner classes can only access local variables if they are declared as final
public Pet getPetById(final String id) {
 return (Pet) getHibernateTemplate().execute(new HibernateCallback() {
 public Object doInHibernate(Session session) {
 HibernateTemplate ht = getHibernateTemplate();
 // … can access variable “id”
 return myPet;
 }
 });
}

 Q. Are the following valid java statements?

Line: OuterClass.StaticNestedClass nestedObject = new OuterClass.StaticNestedClass();

Yes. The above line is valid. It is an instantiation of a static nested inner class.

OuterClass outerObject = new OuterClass();
Line: OuterClass.InnerClass innerObject = outerObject.new InnerClass();

Yes. The above line is valid. It is an instantiation of a member inner class. An instance of an inner class can exist
only within an instance of an outer class. The sample code for the above is shown below:

public class OuterClass {
 static class StaticNestedClass {
 StaticNestedClass(){
 System.out.println("StaticNestedClass");
 }
 }
 class InnerClass {
 InnerClass(){
 System.out.println("InnerClass");
 }
 }
}

Q 36: What is type casting? Explain up casting vs. down casting? When do you get ClassCastException? LF DP FAQ
A 36: Type casting means treating a variable of one type as though it is another type.

When up casting primitives as shown below from left to right, automatic conversion occurs. But if you go from
right to left, down casting or explicit casting is required. Casting in Java is safer than in C or other languages that
allow arbitrary casting. Java only lets casts occur when they make sense, such as a cast between a float and an
int. However you can't cast between an int and a String (is an object in Java).

byte short int long float double

int i = 5;
long j = i; //Right. Up casting or implicit casting
byte b1 = i; //Wrong. Compile time error “Type Mismatch”.
byte b2 = (byte) i ; //Right. Down casting or explicit casting is required.

Java - Fundamentals

51

When it comes to object references you can always cast from a subclass to a superclass because a subclass
object is also a superclass object. You can cast an object implicitly to a super class type (i.e. upcasting). If this
were not the case polymorphism wouldn’t be possible.

Object

Vehicle

CarBus

BMW

Vehicle v1 = new Car(); //Right.upcasting or implicit casting
Vehicle v2 = new Vehicle();

Car c0 = v1; //Wrong. compile time error "Type Mismatch".
 //Explicit or down casting is required

Car c1 = (Car)v1; // Right. down casting or explicit casting.
 // v1 has knowledge of Car due to line1

Car c2 = (Car)v2; //Wrong. Runtime exception ClassCastException
 //v2 has no knowledge of Car.

Bus b1 = new BMW(); //Wrong. compile time error "Type Mismatch"
Car c3 = new BMW(); //Right.upcasting or implicit casting

Car c4 = (BMW)v1; //Wrong. Runtime exception ClassCastException
Object o = v1; //v1 can only be upcast to its parent or
Car c5 = (Car)v1; //v1 can be down cast to Car due to line 1.

Upcasting vs Downcasting

You can cast down the hierarchy as well but you must explicitly write the cast and the object must be a
legitimate instance of the class you are casting to. The ClassCastException is thrown to indicate that code
has attempted to cast an object to a subclass of which it is not an instance. If you are using J2SE 5.0 then
“generics” will eliminate the need for casting (Refer Q55 in Java section) and otherwise you can deal with the
problem of incorrect casting in two ways:

 Use the exception handling mechanism to catch ClassCastException.

try{
 Object o = new Integer(1);
 System.out.println((String) o);
}
catch(ClassCastException cce) {
 logger.log(“Invalid casting, String is expected…Not an Integer”);
 System.out.println(((Integer) o).toString());
}

 Use the instanceof statement to guard against incorrect casting.

if(v2 instanceof Car) {
 Car c2 = (Car) v2;
}

Design pattern: The “instanceof” and “typecast” constructs are shown for the illustration purpose only.
Using these constructs can be unmaintainable due to large if and elseif statements and can affect
performance if used in frequently accessed methods or loops. Look at using visitor design pattern to avoid
these constructs where applicable. (Refer Q11 in How would you go about section…).

Points-to-ponder: You can also get a ClassCastException when two different class loaders load the same class because they
are treated as two different classes.

Q 37: What do you know about the Java garbage collector? When does the garbage collection occur? Explain different

types of references in Java? LF MI FAQ
A 37: Each time an object is created in Java, it goes into the area of memory known as heap. The Java heap is called

the garbage collectable heap. The garbage collection cannot be forced. The garbage collector runs in low
memory situations. When it runs, it releases the memory allocated by an unreachable object. The garbage
collector runs on a low priority daemon (i.e. background) thread. You can nicely ask the garbage collector to
collect garbage by calling System.gc() but you can’t force it.

Java - Fundamentals

52

What is an unreachable object?

G arb a g e C o llec tio n & U n re a ch a b le O b jec ts

re ac h a b le

rea ch ab le

C a s e 1

C a r a = ne w C ar();
C a r b = ne w C a r()

1re f a
C ar o b je c t

2re f b

C ar o b je c t

C a s e 2

a = ne w C a r() re ac h a b le

rea ch ab le

u n rea c h a b le

2re f b
C a r o b jec t

3re f a
C a r o b jec t

1
C ar ob je c t

C a s e 3

a = b
u n re ac h a b le

rea ch ab le

u n rea c h ab le

re f a C a r ob jec t
re f b

C a r ob jec t

1
C ar o b je c t

2

3

C a s e 4

a = nu ll;
b = nu ll;

u n re a ch a b le

u n re ac h a b le

u n re ac h a b le

C a r o b jec t

C a r o b jec t

1
C ar o b je c t

2

3

H e a p

An object’s life has no meaning unless something has reference to it. If you can’t reach it then you can’t ask it to
do anything. Then the object becomes unreachable and the garbage collector will figure it out. Java automatically
collects all the unreachable objects periodically and releases the memory consumed by those unreachable objects
to be used by the future reachable objects.

We can use the following options with the Java command to enable tracing for garbage collection events.
java -verbose:gc //reports on each garbage collection event.

Explain types of references in Java? java.lang.ref package can be used to declare soft, weak and phantom
references.

 Garbage Collector won’t remove a strong reference.
 A soft reference will only get removed if memory is low. So it is useful for implementing caches while

avoiding memory leaks.
 A weak reference will get removed on the next garbage collection cycle. Can be used for implementing

canonical maps. The java.util.WeakHashMap implements a HashMap with keys held by weak references.
 A phantom reference will be finalized but the memory will not be reclaimed. Can be useful when you want to

be notified that an object is about to be collected.

Java - Fundamentals

53

Q 38: If you have a circular reference of objects, but you no longer reference it from an execution thread, will this object

be a potential candidate for garbage collection? LF MI
A 38: Yes. Refer diagram below.

sample code

public void buildCar() {
 Car c = new Car();
 Engine e = new Engine();
 //lets create a circular reference
 c.engine = e;
 e.car = c;
}

buildCar()

Stack Heap

Car

Engine

Before buildCar() returns

Stack Heap

Car

Engine

After buildCar() returns

Both the Car & Engine are not reachable
and potential candidate for Garbage
Collection.

Garbage Collecting Circular References

Q 39: Discuss the Java error handling mechanism? What is the difference between Runtime (unchecked) exceptions

and checked exceptions? What is the implication of catching all the exceptions with the type “Exception”? EH BP
FAQ

A 39:
Errors: When a dynamic linking failure or some other “hard” failure in the virtual machine occurs, the virtual
machine throws an Error. Typical Java programs should not catch Errors. In addition, it’s unlikely that typical Java
programs will ever throw Errors either.

Exceptions: Most programs throw and catch objects that derive from the Exception class. Exceptions indicate
that a problem occurred but that the problem is not a serious JVM problem. An Exception class has many
subclasses. These descendants indicate various types of exceptions that can occur. For example,
NegativeArraySizeException indicates that a program attempted to create an array with a negative size. One
exception subclass has special meaning in the Java language: RuntimeException. All the exceptions except
RuntimeException are compiler checked exceptions. If a method is capable of throwing a checked exception it
must declare it in its method header or handle it in a try/catch block. Failure to do so raises a compiler error. So
checked exceptions can, at compile time, greatly reduce the occurrence of unhandled exceptions surfacing at
runtime in a given application at the expense of requiring large throws declarations and encouraging use of poorly-
constructed try/catch blocks. Checked exceptions are present in other languages like C++, C#, and Python.

Throw able and its subclasses

Object

Exception
Error

Throwable

Runtim eExceptionIOException

NullPointerException

LinkageError

Java - Fundamentals

54

Runtime Exceptions (unchecked exception)

A RuntimeException class represents exceptions that occur within the Java virtual machine (during runtime). An
example of a runtime exception is NullPointerException. The cost of checking for the runtime exception often
outweighs the benefit of catching it. Attempting to catch or specify all of them all the time would make your code
unreadable and unmaintainable. The compiler allows runtime exceptions to go uncaught and unspecified. If you
like, you can catch these exceptions just like other exceptions. However, you do not have to declare it in your
“throws" clause or catch it in your catch clause. In addition, you can create your own RuntimeException
subclasses and this approach is probably preferred at times because checked exceptions can complicate method
signatures and can be difficult to follow.

Q. What are the exception handling best practices: BP

1. Q. Why is it not advisable to catch type “Exception”? CO

Exception handling in Java is polymorphic in nature. For example if you catch type Exception in your code then it
can catch or throw its descendent types like IOException as well. So if you catch the type Exception before the
type IOException then the type Exception block will catch the entire exceptions and type IOException block is
never reached. In order to catch the type IOException and handle it differently to type Exception, IOException
should be caught first (remember that you can’t have a bigger basket above a smaller basket).

try{}
catch(Exception ex){
 //this block is reached
}
catch(IOException ioe) {
 //this block is never reached
 //There is a bigger basket
 //above me who will catch it
 //before I can.
}

try{}
catch(IOException ioe){
}
catch(Exception ex) {
}

Wrong approach

Right approach

basket

basket

basket

basket

Catching Exceptions

Hint: As shown in the diagram, think
of catching an exception in a basket.
You should always have the smaller
basket above the bigger basket.
Otherwise the bigger basket will
catch all the exceptions and the
smaller basket will not catch any.

The diagram above is an example for illustration only. In practice it is not recommended to catch type
“Exception”. We should only catch specific subtypes of the Exception class. Having a bigger basket (i.e.
Exception) will hide or cause problems. Since the RunTimeException is a subtype of Exception, catching the type
Exception will catch all the run time exceptions (like NullPointerException, ArrayIndexOutOfBoundsException) as
well.

Example: The FileNotFoundException is extended (i.e. inherited) from the IOException. So (subclasses have to
be caught first) FileNotFoundException (small basket) should be caught before IOException (big basket).

2. Q. Why should you throw an exception early? CO

The exception stack trace helps you pinpoint where an exception occurred by showing you the exact sequence of
method calls that lead to the exception. By throwing your exception early, the exception becomes more accurate
and more specific. Avoid suppressing or ignoring exceptions. Also avoid using exceptions just to get a flow control.

Instead of:
// assume this line throws an exception because filename == null.
InputStream in = new FileInputStream(fileName);
…

Java - Fundamentals

55

Use the following code because you get a more accurate stack trace:
…
if(filename == null) {
 throw new IllegalArgumentException(“file name is null”);
}

InputStream in = new FileInputStream(fileName);
…

3. Why should you catch a checked exception late in a catch {} block?

You should not try to catch the exception before your program can handle it in an appropriate manner. The natural
tendency when a compiler complains about a checked exception is to catch it so that the compiler stops reporting
errors. It is a bad practice to sweep the exceptions under the carpet by catching it and not doing anything with it.
The best practice is to catch the exception at the appropriate layer (e.g. an exception thrown at an integration layer
can be caught at a presentation layer in a catch {} block), where your program can either meaningfully recover
from the exception and continue to execute or log the exception only once in detail, so that user can identify the
cause of the exception.

4. Q. When should you use a checked exception and when should you use an unchecked exception?

Due to heavy use of checked exceptions and minimal use of unchecked exceptions, there has been a hot debate
in the Java community regarding true value of checked exceptions. Use checked exceptions when the client code
can take some useful recovery action based on information in exception. Use unchecked exception when client
code cannot do anything. For example Convert your SQLException into another checked exception if the client
code can recover from it. Convert your SQLException into an unchecked (i.e. RuntimeException) exception, if the
client code can not recover from it. (Note: Hibernate 3 & Spring uses RuntimeExceptions prevalently).

Important: throw an exception early and catch an exception late but do not sweep an exception under the carpet
by catching it and not doing anything with it. This will hide problems and it will be hard to debug and fix. CO

 A note on key words for error handling:
throw / throws – used to pass an exception to the method that called it.
try – block of code will be tried but may cause an exception.
catch – declares the block of code, which handles the exception.
finally – block of code, which is always executed (except System.exit(0) call) no matter what program flow, occurs
when dealing with an exception.
assert – Evaluates a conditional expression to verify the programmer’s assumption.

Q 40: What is a user defined exception? EH
A 40: User defined exceptions may be implemented by defining a new exception class by extending the Exception class.

public class MyException extends Exception {

 /* class definition of constructors goes here */
 public MyException() {
 super();
 }

 public MyException (String errorMessage) {
 super (errorMessage);
 }
}

Throw and/or throws statement is used to signal the occurrence of an exception. To throw an exception:

throw new MyException(“I threw my own exception.”)

To declare an exception: public myMethod() throws MyException {…}

Q 41: What are the flow control statements in Java? LF
A 41: The flow control statements allow you to conditionally execute statements, to repeatedly execute a block of

statements, or to just change the sequential flow of control.

Java - Fundamentals

56

Flow control
types

Keyword

Looping while, do-while, for

The body of the while loop is executed only if the expression is true, so it may not be executed even
once:

while(i < 5){...}

The body of the do-while loop is executed at least once because the test expression is evaluated
only after executing the loop body. Also, don't forget the ending semicolon after the while
expression.

do { … } while(i < 5);

The for loop syntax is:

for(expr1; expr2; expr3)
 {
 // body
 }

expr1 is for initialization, expr2 is the conditional test, and expr3 is the iteration expression.
Any of these three sections can be omitted and the syntax will still be legal:

for(; ;) {} // an endless loop

Decision
making

if-else, switch-case

The if-else statement is used for decision-making -- that is, it decides which course of action needs
to be taken.

if (x == 5) {…} else {..}

The switch statement is also used for decision-making, based on an integer expression. The
argument passed to the switch and case statements should be int, short, char, or byte. The
argument passed to the case statement should be a literal or a final variable. If no case matches, the
default statement (which is optional) is executed.

int i = 1;
switch(i)
 {
 case 0:
 System.out.println("Zero");break; //if break; is omitted case 1: also executed
 case 1:
 System.out.println("One");break; //if break; is omitted default: also executed
 default:
 System.out.println("Default");break;
 }

Branching break, continue, label:, return

The break statement is used to exit from a loop or switch statement, while the continue statement
is used to skip just the current iteration and continue with the next. The return is used to return from
a method based on a condition. The label statements can lead to unreadable and unmaintainable
spaghetti code hence should be avoided.

Exception
handling

try-catch-finally, throw

Exceptions can be used to define ordinary flow control. This is a misuse of the idea of exceptions,
which are meant only for exceptional conditions and hence should be avoided.

Q 42: What is the difference between processes and threads? LF MI CI
A 42: A process is an execution of a program but a thread is a single execution sequence within the process. A process

can contain multiple threads. A thread is sometimes called a lightweight process.

Java - Fundamentals

57

Process (JVM)

Stack Stack Stack

Each thread has its
own stack memory

Thread 1 Thread 3Thread 2

method1() method1() method1()

Process vs Threads

Heap
Object1 Object

2
Single heap per process
shared by all the threads

A JVM runs in a single process and threads in a JVM share the heap belonging to that process. That is why
several threads may access the same object. Threads share the heap and have their own stack space. This is
how one thread’s invocation of a method and its local variables are kept thread safe from other threads. But the
heap is not thread-safe and must be synchronized for thread safety.

Q 43: Explain different ways of creating a thread? LF FAQ
A 43: Threads can be used by either :

 Extending the Thread class
 Implementing the Runnable interface.

class Counter extends Thread {

 //method where the thread execution will start
 public void run(){
 //logic to execute in a thread
 }

 //let’s see how to start the threads
 public static void main(String[] args){
 Thread t1 = new Counter();
 Thread t2 = new Counter();
 t1.start(); //start the first thread. This calls the run() method.
 t2.start(); //this starts the 2nd thread. This calls the run() method.
 }
}

class Counter extends Base implements Runnable {

 //method where the thread execution will start
 public void run(){
 //logic to execute in a thread
 }

 //let us see how to start the threads
 public static void main(String[] args){
 Thread t1 = new Thread(new Counter());
 Thread t2 = new Thread(new Counter());
 t1.start(); //start the first thread. This calls the run() method.
 t2.start(); //this starts the 2nd thread. This calls the run() method.
 }
}

Q. Which one would you prefer and why? The Runnable interface is preferred, as it does not require your
object to inherit a thread because when you need multiple inheritance, only interfaces can help you. In the above
example we had to extend the Base class so implementing Runnable interface is an obvious choice. Also note
how the threads are started in each of the different cases as shown in the code sample. In an OO approach you

Java - Fundamentals

58

should only extend a class when you want to make it different from it’s superclass, and change it’s behavior. By
implementing a Runnable interface instead of extending the Thread class, you are telling to the user that the class
Counter that an object of type Counter will run as a thread.

Q 44: Briefly explain high-level thread states? LF
A 44: The state chart diagram below describes the thread states. (Refer Q107 in Enterprise section for state chart

diagram).

data/sync
received

Thread states(StateMachine diagram)

start();
Runnable

Dead
(finished)

Waiting

Running
(executing)done

Object.notify();
Object.notifyAll(); Sleeping

Scheduler swap
or Thread.yield();

chosen by
scheduler

Thread.sleep();
Object.wait();

Blocked on I/O
or

Synchronized
another thread closes socket

(Diagram sourced from: http://www.wilsonmar.com/1threads.htm)

 Runnable — waiting for its turn to be picked for execution by the thread scheduler based on thread priorities.

 Running: The processor is actively executing the thread code. It runs until it becomes blocked, or voluntarily

gives up its turn with this static method Thread.yield(). Because of context switching overhead, yield() should
not be used very frequently.

 Waiting: A thread is in a blocked state while it waits for some external processing such as file I/O to finish.

 Sleeping: Java threads are forcibly put to sleep (suspended) with this overloaded method:

Thread.sleep(milliseconds), Thread.sleep(milliseconds, nanoseconds);

 Blocked on I/O: Will move to runnable after I/O condition like reading bytes of data etc changes.

 Blocked on synchronization: Will move to Runnable when a lock is acquired.

 Dead: The thread is finished working.

Q 45: What is the difference between yield and sleeping? What is the difference between the methods sleep() and

wait()? LF FAQ
A 45: When a task invokes yield(), it changes from running state to runnable state. When a task invokes sleep(), it

changes from running state to waiting/sleeping state.

The method wait(1000), causes the current thread to sleep up to one second. A thread could sleep less than 1
second if it receives the notify() or notifyAll() method call. Refer Q48 in Java section on thread communication.
The call to sleep(1000) causes the current thread to sleep for exactly 1 second.

Q 46: How does thread synchronization occurs inside a monitor? What levels of synchronization can you apply? What is

the difference between synchronized method and synchronized block? LF CI PI FAQ
A 46: In Java programming, each object has a lock. A thread can acquire the lock for an object by using the

synchronized keyword. The synchronized keyword can be applied in method level (coarse grained lock – can
affect performance adversely) or block level of code (fine grained lock). Often using a lock on a method level is
too coarse. Why lock up a piece of code that does not access any shared resources by locking up an entire

Java - Fundamentals

59

method. Since each object has a lock, dummy objects can be created to implement block level synchronization.
The block level is more efficient because it does not lock the whole method.

class MethodLevel {
 //shared among threads
 SharedResource x, y ;

 pubic void synchronized method1() {
 //multiple threads can't access
 }

 pubic void synchronized method2() {
 //multiple threads can't access
 }

 public void method3() {
 //not synchronized
 //multiple threads can access
 }
}

class BlockLevel {
 //shared among threads
 SharedResource x, y ;
 //dummy objects for locking
 Object xLock = new Object(), yLock = new Object();

 pubic void method1() {
 synchronized(xLock){
 //access x here. thread safe
 }

 //do something here but don't use SharedResource x, y
 // because will not be thread-safe

 synchronized(xLock) {
 synchronized(yLock) {
 //access x,y here. thread safe
 }
 }

 //do something here but don't use SharedResource x, y
 //because will not be thread-safe
 }//end of method1
}

The JVM uses locks in conjunction with monitors. A monitor is basically a guardian who watches over a sequence
of synchronized code and making sure only one thread at a time executes a synchronized piece of code. Each
monitor is associated with an object reference. When a thread arrives at the first instruction in a block of code it
must obtain a lock on the referenced object. The thread is not allowed to execute the code until it obtains the lock.
Once it has obtained the lock, the thread enters the block of protected code. When the thread leaves the block, no
matter how it leaves the block, it releases the lock on the associated object.

Q. Why synchronization is important? Without synchronization, it is possible for one thread to modify a shared
object while another thread is in the process of using or updating that object’s value. This often causes dirty data
and leads to significant errors. The disadvantage of synchronization is that it can cause deadlocks when two
threads are waiting on each other to do something. Also synchronized code has the overhead of acquiring lock,
which can adversely affect the performance.

Q. What is a ThreadLocal class? ThreadLocal is a handy class for simplifying development of thread-safe
concurrent programs by making the object stored in this class not sharable between threads. ThreadLocal class
encapsulates non-thread-safe classes to be safely used in a multi-threaded environment and also allows you to
create per-thread-singleton. For ThreadLocal example: Refer Q15 (What is a Session?) in Emerging
Technologies/Frameworks section. Refer Q51 in Java section for singleton design pattern.

Q 47: What is a daemon thread? LF
A 47: Daemon threads are sometimes called "service" or “background” threads. These are threads that normally run at a

low priority and provide a basic service to a program when activity on a machine is reduced. An example of a
daemon thread that is continuously running is the garbage collector thread. The JVM exits whenever all non-
daemon threads have completed, which means that all daemon threads are automatically stopped. To make a
thread as a daemon thread in Java myThread.setDaemon(true);

Q 48: How can threads communicate with each other? How would you implement a producer (one thread) and a

consumer (another thread) passing data (via stack)? LF FAQ
A 48: The wait(), notify(), and notifyAll() methods are used to provide an efficient way for threads to communicate with

each other. This communication solves the ‘consumer-producer problem’. This problem occurs when the
producer thread is completing work that the other thread (consumer thread) will use.

Java - Fundamentals

60

Example: If you imagine an application in which one thread (the producer) writes data to a file while a second
thread (the consumer) reads data from the same file. In this example the concurrent threads share the same
resource file. Because these threads share the common resource file they should be synchronized. Also these
two threads should communicate with each other because the consumer thread, which reads the file, should wait
until the producer thread, which writes data to the file and notifies the consumer thread that it has completed its
writing operation.

Let’s look at a sample code where count is a shared resource. The consumer thread will wait inside the
consume() method on the producer thread, until the producer thread increments the count inside the produce()
method and subsequently notifies the consumer thread. Once it has been notified, the consumer thread waiting
inside the consume() method will give up its waiting state and completes its method by consuming the count (i.e.
decrementing the count).

T h read co m m u n icatio n (C o n su m er vs P ro d u cer th read s)

C lass C onsum erP rod ucer {

 p rivate in t count;

 pub lic synchron ized vo id consum e(){
 w h ile(count = = 0) {
 try{
 w ait()
 }
 catch (In terrup ted E xcep tion ie) {
 / /keep try ing
 }
 }
 count --; / / consum ed
 }

 p rivate synchron ized vo id p roduce(){
 coun t+ + ;
 notify(); / / no tify the consum er that count has been increm ented .
 }
}

Note: For regular classes you can use the Observer interface and the Observable class to implement the
consumer/producer communications with a model/view/controller architecture. The Java programming language
provides support for the Model/View/Controller architecture with two classes:

• Observer -- any object that wishes to be notified when the state of another object changes.
• Observable -- any object whose state may be of interest, and in whom another object may register an interest.

They are suitable for any system wherein objects need to be automatically notified of changes that occur in other
objects. E.g. Your ConfigMgr class can be notified to reload resource properties on change to *.properties file(s).

Q. What does join() method do? t.join() allows the current thread to wait indefinitely until thread “t” is finished.
t.join (5000) allows the current thread to wait for thread “t” to finish but does not wait longer than 5 seconds.

try {
 t.join(5000); //current thread waits for thread “t” to complete but does not wait more than 5 sec
 if(t.isAlive()){
 //timeout occurred. Thread “t” has not finished
 }
 else {
 //thread “t” has finished
 }
}

Java - Fundamentals

61

Q 49: If 2 different threads hit 2 different synchronized methods in an object at the same time will they both continue?
LF

A 49: No. Only one method can acquire the lock.

run(){
 car1.method2();
}

Thread1

run(){
 car1.method1();
 car2.method1();
 car1.method3()
}

Thread2

run(){
 car2.method2();
 car2.method3();
}

Thread3

synchronized method1() {}

synchronized method2() {}

method3() {}

Car1 object

synchronized method1() {}

synchronized method2() {}

method3() {}

Car2 object

Thread synchronization

4. Always ok. method3() is not synchronized

6.Always ok. method3() is not synchronized

1. ok. method1() is not busy.

3. ok. Method2() is not busy

2. No. method2() is busy

5. No. method1() is busy.

Note: If your job requires deeper understanding of threads then please refer to the following articles by Allen Holub at
http://www.javaworld.com. There are number of parts (part 1 – Part - 8) to the article entitled “Programming Java threads in
the real world”. URLs for some of the parts are: http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html,
http://www.javaworld.com/javaworld/jw-10-1998/jw-10-toolbox.html, etc.

Q 50: Explain threads blocking on I/O? LF
A 50: Occasionally threads have to block on conditions other than object locks. I/O is the best example of this. Threads

block on I/O (i.e. enters the waiting state) so that other threads may execute while the I/O operation is performed.
When threads are blocked (say due to time consuming reads or writes) on an I/O call inside an object’s
synchronized method and also if the other methods of the object are also synchronized then the object is
essentially frozen while the thread is blocked.

Be sure to not synchronize code that makes blocking calls, or make sure that a non-synchronized method
exists on an object with synchronized blocking code. Although this technique requires some care to ensure that
the resulting code is still thread safe, it allows objects to be responsive to other threads when a thread holding its
locks is blocked.

Note: The java.nio.* package was introduced in JDK1.4. The coolest addition is non-blocking I/O (aka NIO that stands for New
I/O). Refer Q24 in Java section for NIO.

Note: Q51 & Q52 in Java section are very popular questions on design patterns.

Q 51: What is a singleton pattern? How do you code it in Java? DP MI CO FAQ
A 51: A singleton is a class that can be instantiated only one time in a JVM per class loader. Repeated calls always

return the same instance. Ensures that a class has only one instance, and provide a global point of access. It
can be an issue if singleton class gets loaded by multiple class loaders or JVMs.

public class OnlyOne {

 private static OnlyOne one = new OnlyOne();

 // private constructor. This class cannot be instantiated from outside and
 // prevents subclassing.
 private OnlyOne(){}

 public static OnlyOne getInstance() {
 return one;
 }
}

Java - Fundamentals

62

To use it:

//No matter how many times you call, you get the same instance of the object.

OnlyOne myOne = OnlyOne.getInstance();

Note: The constructor must be explicitly declared and should have the private access modifier, so that it cannot
be instantiated from out side the class. The only way to instantiate an instance of class OnlyOne is through the
getInstance() method with a public access modifier.

Q. When to use: Use it when only a single instance of an object is required in memory for a single point of
access. For example the following situations require a single point of access, which gets invoked from various
parts of the code.

 Accessing application specific properties through a singleton object, which reads them for the first time from
a properties file and subsequent accesses are returned from in-memory objects. Also there could be
another piece of code, which periodically synchronizes the in-memory properties when the values get
modified in the underlying properties file. This piece of code accesses the in-memory objects through the
singleton object (i.e. global point of access).

 Accessing in-memory object cache or object pool, or non-memory based resource pools like sockets,

connections etc through a singleton object (i.e. global point of access).

Q. What is the difference between a singleton class and a static class? Static class is one approach to make a class
singleton by declaring all the methods as static so that you can’t create any instance of that class and can call the static methods
directly.

Q 52: What is a factory pattern? DP CO FAQ
A 52: A Factory method pattern (aka Factory pattern) is a creational pattern. The creational patterns abstract the

object instantiation process by hiding how the objects are created and make the system independent of the object
creation process. An Abstract factory pattern is one level of abstraction higher than a factory method pattern,
which means it returns the factory classes.

Factory method pattern (aka Factory pattern) Abstract factory pattern
Factory for what? Factory pattern returns one of the
several product subclasses. You should use a factory
pattern If you have a super class and a number of sub-
classes, and based on some data provided, you have to
return the object of one of the subclasses. Let’s look at
a sample code:

Factory pattern

Factory Product hierachy

+draw()

<<abstract>>
Shape

+draw()

Circle

+draw()

Square

+getShape(int shapeId)()

ShapeFactory

+getShape (int shapeId)()

SimpleShapeFactory

instantiates

public interface Const {
 public static final int SHAPE_CIRCLE =1;
 public static final int SHAPE_SQUARE =2;
 public static final int SHAPE_HEXAGON =3;
}

An Abstract factory pattern is one level of abstraction higher than
a factory method pattern, which means the abstract factory
returns the appropriate factory classes, which will later on
return one of the product subclasses. Let’s look at a sample code:

public class ComplexShapeFactory extends ShapeFactory {
 throws BadShapeException {
 public Shape getShape(int shapeTypeId){
 Shape shape = null;
 if(shapeTypeId == Const.SHAPE_HEXAGON) {
 shape = new Hexagon();//complex shape
 }
 else throw new BadShapeException
 (“shapeTypeId=” + shapeTypeId);
 return shape;
 }
}

Now let’s look at the abstract factory, which returns one of the
types of ShapeFactory:

public class ShapeFactoryType
 throws BadShapeFactoryException {

 public static final int TYPE_SIMPLE = 1;
 public static final int TYPE_COMPLEX = 2;

 public ShapeFactory getShapeFactory(int type) {

 ShapeFactory sf = null;

 if(type == TYPE_SIMPLE) {

Java - Fundamentals

63

public class ShapeFactory {
 public abstract Shape getShape(int shapeId);
}

public class SimpleShapeFactory extends
 ShapeFactory throws BadShapeException {
 public Shape getShape(int shapeTypeId){
 Shape shape = null;
 if(shapeTypeId == Const.SHAPE_CIRCLE) {
 //in future can reuse or cache objects.
 shape = new Circle();
 }
 else if(shapeTypeId == Const.SHAPE_SQUARE) {
 //in future can reuse or cache objects
 shape = new Square();
 }
 else throw new BadShapeException
 (“ShapeTypeId=”+ shapeTypeId);

 return shape;
 }
}

Now let’s look at the calling code, which uses the
factory:

ShapeFactory factory = new SimpleShapeFactory();

//returns a Shape but whether it is a Circle or a
//Square is not known to the caller.
Shape s = factory.getShape(1);
s.draw(); // circle is drawn

//returns a Shape but whether it is a Circle or a
//Square is not known to the caller.
s = factory.getShape(2);
s.draw(); //Square is drawn

 sf = new SimpleShapeFactory();
 }
 else if (type == TYPE_COMPLEX) {
 sf = new ComplexShapeFactory();
 }
 else throw new BadShapeFactoryException(“No factory!!”);

 return sf;
 }
}

Now let’s look at the calling code, which uses the factory:

ShapeFactoryType abFac = new ShapeFactoryType();
ShapeFactory factory = null;
Shape s = null;

//returns a ShapeFactory but whether it is a
//SimpleShapeFactory or a ComplexShapeFactory is not
//known to the caller.

factory = abFac.getShapeFactory(1);//returns SimpleShapeFactory

//returns a Shape but whether it is a Circle or a Pentagon is
//not known to the caller.

s = factory.getShape(2); //returns square.
s.draw(); //draws a square

//returns a ShapeFactory but whether it is a
//SimpleShapeFactory or a ComplexShapeFactory is not
//known to the caller.

factory = abFac.getShapeFactory(2);
//returns a Shape but whether it is a Circle or a Pentagon is
//not known to the caller.
s = factory.getShape(3); //returns a pentagon.
s.draw(); //draws a pentagon

Q. Why use factory pattern or abstract factory pattern? Factory pattern returns an instance of several (product
hierarchy) subclasses (like Circle, Square etc), but the calling code is unaware of the actual implementation class.
The calling code invokes the method on the interface for example Shape and using polymorphism the correct
draw() method gets invoked [Refer Q10 in Java section for polymorphism]. So, as you can see, the factory pattern
reduces the coupling or the dependencies between the calling code and called objects like Circle, Square etc. This
is a very powerful and common feature in many frameworks. You do not have to create a new Circle or a new
Square on each invocation as shown in the sample code, which is for the purpose of illustration and simplicity. In
future, to conserve memory you can decide to cache objects or reuse objects in your factory with no changes
required to your calling code. You can also load objects in your factory based on attribute(s) read from an external
properties file or some other condition. Another benefit going for the factory is that unlike calling constructors
directly, factory patterns have more meaningful names like getShape(…), getInstance(…) etc, which may make
calling code more clear.

Q. Can we use the singleton pattern within our factory pattern code? Yes. Another important aspect to
consider when writing your factory class is that, it does not make sense to create a new factory object for each
invocation as it is shown in the sample code, which is just fine for the illustration purpose.

ShapeFactory factory = new SimpleShapeFactory();

To overcome this, you can incorporate the singleton design pattern into your factory pattern code. The singleton
design pattern will create only a single instance of your SimpleShapeFactory class. Since an abstract factory
pattern is unlike factory pattern, where you need to have an instance for each of the two factories (i.e.
SimpleShapeFactory and ComplexShapeFactory) returned, you can still incorporate the singleton pattern as an
access point and have an instance of a HashMap, store your instances of both factories. Now your calling method
uses a static method to get the same instance of your factory, hence conserving memory and promoting object
reuse:

ShapeFactory factory = ShapeFactory. getFactoryInstance();//returns a singleton
factory.getShape();

Java - Fundamentals

64

Note: Since questions on singleton pattern and factory pattern are commonly asked in the interviews, they are included as part
of this section. To learn more about design patterns refer Q11, Q12 in How would you go about section…?

Q 53: What is a socket? How do you facilitate inter process communication in Java? LF
A 53: A socket is a communication channel, which facilitates inter-process communication (For example

communicating between two JVMs, which may or may not be running on two different physical machines). A
socket is an endpoint for communication. There are two kinds of sockets, depending on whether one wishes to
use a connectionless or a connection-oriented protocol. The connectionless communication protocol of the
Internet is called UDP. The connection-oriented communication protocol of the Internet is called TCP. UDP
sockets are also called datagram sockets. Each socket is uniquely identified on the entire Internet with two
numbers. The first number is a 32-bit (IPV4 or 128-bit is IPV6) integer called the Internet Address (or IP address).
The second number is a 16-bit integer called the port of the socket. The IP address is the location of the machine,
which you are trying to connect to and the port number is the port on which the server you are trying to connect is
running. The port numbers 0 to 1023 are reserved for standard services such as e-mail, FTP, HTTP etc.

S ocke ts

S end ing P rocess(JVM) R ece iving P rocess(JV M)

O pera ting Sys tem O pera ting S ys tem

IP add ress: 127 .0 .0 .1
po rt: 6678

po rt: 6678

N etwork com m unica tion

socke ts

The lifetime of the socket is made of 3 phases: Open Socket Read and Write to Socket Close Socket

To make a socket connection you need to know two things: An IP address and port on which to listen/connect. In
Java you can use the Socket (client side) and ServerSocket (Server side) classes.

Q 54: How will you call a Web server from a stand alone Java application/Swing client/Applet? LF
A 54: Using the java.net.URLConnection and its subclasses like HttpURLConnection and JarURLConnection.

URLConnection HttpClient (i.e. a browser)
Supports HEAD, GET, POST, PUT, DELETE, TRACE and
OPTIONS

Supports HEAD, GET, POST, PUT, DELETE, TRACE and
OPTIONS.

Does not support cookies. Does support cookies.
Can handle protocols other than http like ftp, gopher, mailto
and file.

Handles only http.

public class TestServletWriter {
 public static void main(String[] args)throws Exception{
 String host = "localhost"; //i.e 127.0.0.1
 String protocol = "http"; //request/response paradigm
 int port = 18080;
 String strURL = protocol + "://" + host + ":" + port + "/myRootContext/myServlet";
 java.net.URL servletURL = new java.net.URL(strURL);

 java.net.URLConnection con = servletURL.openConnection();
 con.setDoInput(true);
 con.setDoOutput(true);
 con.setUseCaches(false);
 con.setRequestProperty("Content-Type","application/x-www-form-urlencoded");

 // Write the arguments as post data
 ObjectOutputStream out = new ObjectOutputStream(con.getOutputStream());

 out.writeObject("Hello Servlet"); //write a serializable object to the servlet.
 out.flush();
 out.close();

Java - Fundamentals

65

 ObjectInputStream ois = new ObjectInputStream(con.getInputStream());//this line is a must
 // even if you have nothing to read back from the web server because http is a
 // request/response paradigm.

 String msg = (String)ois.readObject();
 System.out.println(msg);
 }
}

Note: Sun provides JSSE (Java Secure Socket Extension) as the technology to accomplish HTTPS over the Web.

This section would not be complete without discussing some of the exciting changes in the J2SE external version 5.0 and
the internal version 1.5.0 (“Tiger”) release.

Q 55: Explain some of the new features in J2SE 5.0, which improves ease of development? LF FAQ
A 55: The J2SE 5.0 release is focused along the key areas of ease of development, scalability, performance, quality,

etc. The new features include generics, metadata (aka annotations), autoboxing and auto-unboxing of
primitive types, enhanced “for” loop, enumerated type, static import, C style formatted output, formatted
input, varargs, etc. The following code sample depicts some of these new features. Brief explanation follows the
sample code, so if you do not understand any part of the code, come back to it after reading the brief explanation.

package sample;

//static import
import static sample.SampleStaticValues.NUM_ZERO;

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class CombinedNewFeatures {

 enum OddEven {odd,even} //use of enum keyword. An enum is a special classs.

 public static void main(String[] args) {

 //read from keyboard using the java.util.Scanner
 Scanner keyboard = new Scanner(System.in);

 System.out.println("Enter your first number?");
 int i1 = keyboard.nextInt();

 System.out.println("Enter your second number?");
 int i2 = keyboard.nextInt();

 //using generics for type safety
 List<Integer> numList = new ArrayList<Integer>();

 //using auto-boxing to convert primitive int i1,i2 to wrapper Integer object.
 numList.add(i1);
 numList.add(i2);
 //numList.add("just to prove type safety");//won't compile! Requires an Integer to be added

 //":" should be read as "foreach". So should read as, foreach "num" value in numList.
 for (Integer num : numList) {

 //using auto-unboxing feature to convert wrapper Integer object "num" to primitive.
 if(num >= 9){
 // C style printf. System.out.printf(String arg0, Object ...arg1).
 // this feature is possible due to var-args feature.
 System.out.printf("num is: %1s, list size: %2s \n", num, numList.size());
 //"%" symbol means we are using the format specifier, "1" means first arg.
 // Refer java.util.Formatter class API for the format specification details.
 }

 //need not do SampleStaticValues.NUM_ZERO due to static import feature
 if(num % 2 == NUM_ZERO){
 System.out.println("The num " + num + " is: " + OddEven.even);
 }
 else {

Java - Fundamentals

66

 System.out.println("The num " + num + " is: " + OddEven.odd);
 }
 }

 CombinedNewFeatures cnf = new CombinedNewFeatures();

 //invoking methods using varargs

cnf.addNumbers(i1);
 cnf.addNumbers(i1,i2);
 cnf.addNumbers(i1,i2,5);
 }

 //method using varargs
 public void addNumbers(Object ...args){
 int sum = 0;
 for (Object object : args) {
 sum += (Integer)object;
 }
 System.out.println("sum is " + sum);
 }

 @SuppressWarnings("deprecation") //metatag (annotation)
 public static void end(){
 Thread.currentThread().stop(); //stop() is a deprecated method
 }
}

package sample;

public class SampleStaticValues {
 public static int NUM_ZERO = 0;
 public static int NUM_ONE = 0;
}

package sample;

public class ExtendedCombinedNewFeatures extends CombinedNewFeatures {

 @Override //metatag. If you spell the methodName incorrectly, you will get a compile error.
 public void addNumbers(Object ...args) {
 //overrides baseclass methods
 }

 @Override //metatag
 public void addValues(Object ...args) { //compile error! must override a superclass method
 //…
 }
}

Scanner API provide a more robust mechanism for reading in data types rather than simply parsing strings from buffered
System.in calls. Prior to Scanner feature was introduced, to read from standard input it would be necessary to write
exception handling code and wrap an InputStreamReader and a BufferedReader around System.in. Scanner class
throws an unchecked exception InputMismatchException, which you could optionally catch. Scanner API simplifies your
code as follows:

Scanner keyboard = new Scanner(System.in); //no more wrapping with InputStreamReader and
 //BufferedReader around System.in
System.out.println("Enter your first number?");
int i1 = keyboard.nextInt(); //no more parsing strings e.g. new Integer("5").intValue();
System.out.println("Enter your second number?");
int i2 = keyboard.nextInt(); //no more parsing strings e.g. new Integer(str).intValue();

Generics allow you to pass types as arguments to classes just like values are passed to methods as parameters.
Generics are mainly intended for Java Collections API. The J2SE 5.0 compiler will check the type for you. So, the error
detection has been moved to compile time as opposed to runtime and ClassCastException is not likely to be thrown. It is
used in a typsafe manner and you do not have to cast when taking values out of the list.

List<Integer> numList = new ArrayList<Integer>(); //used in a typesafe way.
…
//numList.add("just to prove type safety"); //won't compile! An Integer value is required.
 //Error detection has been moved to compile time as opposed to Runtime.
for (Integer num : numList) { //you do not have to cast when you take values out of the list.

Java - Fundamentals

67

 …
}

Auto boxing/unboxing makes a programmer’s life easier by not having to write manual code for conversion between
primitive types such as int, float etc and wrapper types Integer, Float etc. The J2SE 5.0 will automatically box and unbox
this for you. So this is a convenience feature and is not a performance booster.

//using auto-boxing to convert primitive int i1,i2 to wrapper Integer object.
numList.add(i1); // no more code like -> numList.add(new Integer(i1)); autoboxed for you
numList.add(i2); // no more code like -> numList.add(new Integer(i2)); autoboxed for you
…
for (Integer num : numList) {

 //using auto-unboxing feature to convert wrapper Integer object "num" to primitive.
 if(num >= 9){ // no more code like if(num.intValue() >= 9) unboxed for you
 …
}

printf method (C style) takes the arguments of a format string and varargs format specifiers. The varargs feature
allows you to have as many format specifiers as you want. Refer java.util.Formatter API for format details. The printf()
feature would not be possible if not for varargs feature, which will be discussed next.

// System.out.printf(String arg0, Object ...arg1).this feature is possible due to var-args feature.
System.out.printf("num is: %1s, list size: %2s \n", num, numList.size());//format specifiers in bold
//"%" symbol means we are using the format specifier, "1" means first arg.
//Refer java.util.Formatter class API for the format specification details.

Varargs enables the compiler to assemble the array for you based on the argument list you pass to a method. The three
periods next to the parameter type (e.g. public void myMethod(Object … args)) denotes varargs. The type must be Object
and it must be the last argument or the only argument to the method. You can also pass primitive values due to the new
Autoboxing feature.

 //method using varargs
 public void addNumbers(Object ...args){ //only argument to the method. … means varargs
 int sum = 0;
 for (Object object : args) { // compiler converts to an object array Object[] args
 sum += (Integer)object;
 }
 System.out.println("sum is " + sum);
 }

The above method can be called following ways:

//invoking methods using varargs
cnf.addNumbers(i1); // one arg -> gets converted to Object[] args of size 1
cnf.addNumbers(i1,i2); // two arguments -> gets converted to Object[] args of size 2
cnf.addNumbers(i1,i2,5); // three arguments -> gets converted to Object[] args of size 3

The printf() method would not be possible, if not for varargs feature.

// C style printf. System.out.printf(String arg0, Object ...arg1).
// this feature is possible due to var-args feature.
System.out.printf("num is: %1s, list size: %2s \n", num, numList.size()); // two arguments

Static imports let you avoid qualifying static members with class names. Once the static member is imported then you
can use it in your code without the class name prefix.

//static import
import static sample.SampleStaticValues.NUM_ZERO;
…
//need not do SampleConstants.NUM_ZERO due to static import feature
if(num % 2 == NUM_ZERO){
 System.out.println("The num " + num + " is: " + OddEven.even);
}

package sample;

public class SampleStaticValues {
 public static int NUM_ZERO = 0;
 public static int NUM_ONE = 0;

Java - Fundamentals

68

}

Enhanced for loop eliminates error-proneness of iterators and does not require any index variables. Also known as a
“foreach” loop.

//":" should be read as "foreach". So should read as, foreach "num" value in numList.
for (Integer num : numList) { // no index variables.
 …
}

Enumerated types are type safe and force users of your class to use one of the acceptable values. Using static final
integer values are type-unsafe and can lead to subtle bugs in your code as shown below:

public class PartyNeeds {
 public static final int PLATES = 1;
 public static final int CUPS = 2;
}

For simplicity assume that PartyNeeds has 2 values 1 for plates and 2 for cups, but nothing is stoping the programmer
from assigning any other values like 3 or 4.

int partyItem = 3; //oops not a proper value as per class PartyNeeds but can happen and go
 //unnoticed

Enum will solve the above problem and it is a special type of class.

enum OddEven {odd,even} //use of “enum” keyword. An “enum” is a special classs.
…
if(num % 2 == NUM_ZERO){
 System.out.println("The num " + num + " is: " + OddEven.even);
}
else {
 System.out.println("The num " + num + " is: " + OddEven.odd);
}

Metadata lets you avoid writing boilerplate code, by enabling tools to generate it from annotations provided by the coder.
This is a declarative style programming.

…
public class CombinedNewFeatures {
 …
 public void addNumbers(Object ...args){
 int sum = 0;
 for (Object object : args) {
 sum += (Integer)object;
 }
 System.out.println("sum is " + sum);
 }
}

Now, the subclass of the above class with the @Override annotation can be written as shown below. If you misspell the
overridden method name, you will get a compile error. This will safeguard your method from not being called at runtime.
By adding the @Override metatag, the compiler complaints if you do not actually perform an override.

package sample;

public class ExtendedCombinedNewFeatures extends CombinedNewFeatures {

 @Override //metatag. If you spell the methodName incorrectly, you will get a compile error.
 public void addNumbers(Object ...args) {
 //overrides baseclass methods
 }

 @Override //metatag
 public void addValues(Object ...args) { //compile error! must override a superclass method
 //…
 }
}

Java - Swing

69

Java – Swing

Q 56: What is the difference between AWT and Swing? LF DC
A 56: Swing provides a richer set of components than AWT. They are 100% Java-based. There are a few other

advantages to Swing over AWT:

• Swing provides both additional components like JTable, JTree etc and added functionality to AWT-replacement
components.

• Swing components can change their appearance based on the current “look and feel” library that’s being used.
• Swing components follow the Model-View-Controller (MVC) paradigm, and thus can provide a much more

flexible UI.
• Swing provides “extras” for components, such as: icons on many components, decorative borders for

components, tool tips for components etc.
• Swing components are lightweight (less resource intensive than AWT).
• Swing provides built-in double buffering (which means an off-screen buffer [image] is used during drawing

and then the resulting bits are copied onto the screen. The resulting image is smoother, less flicker and quicker
than drawing directly on the screen).

• Swing provides paint debugging support for when you build your own component i.e.-slow motion rendering.

Swing also has a few disadvantages:

• If you’re not very careful when programming, it can be slower than AWT (all components are drawn).
• Swing components that look like native components might not behave exactly like native components.

Q 57: How will you go about building a Swing GUI client? LF
A 57: The steps involved in building a Swing GUI are:

• Firstly, you need a container like a Frame, a Window, or an Applet to display components like panels, buttons,
text areas etc. The job of a container is to hold and display components. A container is also a component
(note: uses a composite design pattern). A JPanel is a container as well.

import javax.swing.JFrame;
import javax.swing.JTextArea;

public class MyFrame extends JFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Frame Title");
 ...// rest of the code to follow
 }
}

• Create some components such as panels, buttons, text areas etc.

//create a component to add to the frame
final JTextArea comp = new JTextArea();
JButton btn = new JButton("click");

• Add your components to your display area and arrange or layout your components using the LayoutManagers.

You can use the standard layout managers like FlowLayout, BorderLayout, etc. Complex layouts can be
simplified by using nested containers for example having JPanels within JPanels and each JPanel can use its
own LayoutManager. You can create components and add them to whichever JPanels you like and JPanels
can be added to the JFrame’s content pane.

// Add the component to the frame's content pane;
// by default, the content pane has a border layout
frame.getContentPane().add(comp, BorderLayout.CENTER);
frame.getContentPane().add(btn, BorderLayout.SOUTH);

• Attach listeners to your components. Interacting with a Component causes an Event to occur. To associate a

user action with a component, attach a listener to it. Components send events and listeners listen for events.

Java - Swing

70

Different components may send different events, and require different listeners. The listeners are interfaces,
not classes.

 //Anonymous inner class registering a listener
 // as well as performing the action logic.
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 comp.setText("Button has been clicked");
 }
 });

• Show the frame.

 // set the frame size and Show the frame
 int width = 300;
 int height = 300;
 frame.setSize(width, height);
 frame.setVisible(true);

Note: For Applets, you need to write the necessary HTML code.

Q 58: Explain the Swing Action architecture? LF DP FAQ
A 58: The Swing Action architecture is used to implement shared behavior between two or more user interface

components. For example, the menu items and the tool bar buttons will be performing the same action no matter
which one is clicked. Another distinct advantage of using actions is that when an action is disabled then all the
components, which use the Action, become disabled.

Design pattern: The javax.swing.Action interface extends the ActionListener interface and is an abstraction of a
command that does not have an explicit UI component bound to it. The Action architecture is an implementation of
a command design pattern. This is a powerful design pattern because it allows the separation of controller logic
of an application from its visual representation. This allows the application to be easily configured to use different
UI elements without having to re-write the control or call-back logic.

Defining action classes:

class FileAction extends AbstractAction {
 //Constructor
 FileAction(String name) {
 super(name);
 }

 public void actionPerformed(ActionEvent ae){
 //add action logic here
}

}

To add an action to a menu bar:

JMenu fileMenu = new JMenu(“File”);
FileAction newAction = new FileAction(“New”);
JMenuItem item = fileMenu.add(newAction);
item.setAccelarator(KeyStroke.getKeyStroke(‘N’, Event.CTRL_MASK));

To add action to a toolbar

private JToolBar toolbar = new JToolBar();
toolbar.add(newAction);

So, an action object is a listener as well as an action.

Q 59: How does Swing painting happen? How will you improve the painting performance? LF
A 59: If you want to create your own custom painting code or troubleshoot your Swing components, then you need to

understand the basic concept of Swing painting.

• Swing GUI painting starts with the highest component that needs to be repainted and works it way down the
hierarchy of components. This painting process is coordinated by the AWT painting system, but Swing repaint

Java - Swing

71

manager and double-buffering code, which means an off-screen buffer [image] is used during drawing and
then the resulting bits are copied onto the screen. The resulting image is smoother, less flicker and quicker
than drawing directly on the screen.

• Swing components generally repaint themselves whenever necessary. For example when you invoke the

setTextt() on a component etc. This happens behind the scenes using a callback mechanism by invoking the
repaint() method. If a component’s size or position needs to change then the call to revalidate() method
precedes the call to repaint() method.

• Like event handling code, painting code executes on the event-dispatching thread (Refer Q62 in Java

Section). So while an event is being handled, no painting will occur and similarly while painting is happening
no events will take place.

• You can provide your own painting by overriding the paintComponent() method. This is one of 3 methods

used by JComponents to paint themselves.

public class MyFramePainting extends JFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Frame Title");

 MyPanel panel = new MyPanel();
 panel.setOpaque(true); //if opaque (i.e. solid) then Swing painting system
 //does not waste time painting behind the component.
 panel.setBackground(Color.white);
 panel.setLayout(new FlowLayout());

 ...//add to contentPane, display logic etc
 }
}

public class MyPanel extends JPanel implements MouseListener{

 Color col = Color.blue;

 public void paintComponent(Graphics gr){
 super.paintComponent(gr);

 gr.setColor(col);
 gr.drawLine(5,5, 200,200);
 }

 public MyPanel(){
 addMouseListener(this); //i.e the Panel itself
 }

 public void mouseClicked(MouseEvent ev){
 col = Color.red;
 repaint(); //invokes paintComponent(). Never invoke paintComponent() method directly
 }

 ...//other mouse events like onMousePressed etc
}

By default, the paintComponent() method paints the background if the component is opaque, then it performs
any custom painting. The other two methods are paintBorder(Graphics g) and paintChildren(Graphics g),
which tells to paint any border and paint any components contained by this component respectively. You
should not invoke or override these two methods.

Q. How will you improve the painting performance?

• On components with complex output, the repaint() method should be invoked with arguments which define

only the clip rectangle that needs updating (rectangle origin is on top left corner). Note: No paintXXXX()
methods (including paint() method) should not be explicitly invoked. Only repaint() method can be explicitly
invoked (which implicitly calls paintComponent() method) and only paintComponent() should be overridden if
required.

public void mouseClicked(MouseEvent ev){
 col = Color.red;
 repaint(0,0,50,50); //invokes paintComponent with a rectangle. The origin is at top left.
 }

Java - Swing

72

• You should never turn off double buffering for any Swing components.

• The Swing painting efficiency can be optimized by the following two properties:

opaque: If the opaque (i.e. solid) property is set to true with myComponent.setOpaque(true) then the Swing
painting system does not have to waste time trying to paint behind the component hence improves
performance.

Swing containment hierarchy using JPanels within JPanels and the painting process

JFrame

Content pane

JPanel - 1 (opaque)
(using say BorderLayout)

JPanel - 2 (opaque)
(using say GridLayout)

JPanel - 3 (opaque)
(using say

BorderLayout)

JPanel - 4 (non-
opaque)

(using say FlowLayout)

JButton 1 JButton 2 JTextField JLabel

First paints its solid grey background and then tells the JPanel to paint itself. If
the content pane is not opaque then messy repaints will occur.

Top-level container paints itself

We could make a JPanel a content pane by setting setOpaque(true). This will
remove unnecessary painting of the container content pane.

Opaque (solid)

Non-opaque
(transparent)

If JPanel is opaque (e.g. JPanel -2) , it paints its
background first & then the JPanel-2 asks its children
JButton 1 and JButton 2 to paint themselves.
If JPanel is non-opaque (e.g. JPanel 4), It looks up the
containment hierarchy to find the closest opaque
component (i.e. JPanel - 1). The opaque container JPanel
-1 paints itself first and then ask its children JPanel - 4 and
JLabel to paint themselves.

Opaque components like JButton 1, JButton 2 etc paint
themselves when repaint() method is called.
Non-opaque components like JLabel, look up its hierarchy
to find the closest opaque component, which is Jpanel-1
(because JPanel - 4 is opaque as well). The JPanel -1
paints itself first and then ask its children JPanel - 4 and
JLabel to paint themselves.

optimizedDrawingEnabled: This is a read only property (isOptimizedDrawingEnabled()) in JComponent, so
the only way components can change the default value is to subclass and override this method to return the
desired value. It’s always possible that a non-ancestor component in the containment tree could overlap your
component. In such a case the repainting of a single component within a complex hierarchy could require a lot
of tree traversal to ensure 'correct' painting occurs.

true: The component indicates that none of its immediate children overlap.
false: The component makes no guarantees about whether or not its immediate children overlap

Q 60: If you add a component to the CENTER of a border layout, which directions will the component stretch? LF FAQ
A 60: The component will stretch both horizontally and vertically. It will occupy the whole space in the middle.

Q 61: What is the base class for all Swing components? LF
A 61:

Design pattern: As you can see from the diagram below, containers collect components. Sometimes you want to
add a container to another container. So, a container should be a component. For example
container.getPreferredSize() invokes getPreferredSize() of all contained components. Composite design pattern
is used in GUI components to achieve this. A composite object is an object, which contains other objects.
Composite design pattern manipulates composite objects just like you manipulate individual components. Refer
Q11 in How would you go about…? section.

Java - Swing

73

+operation1()
+operation2()
+addComponent()
+removeComponent()

Composite

+operation1()
+operation2()

Component

+operation1()
+operation2()

Leaf

Client

1

-children

*

Composite Design Pattern

All the Swing components start with ‘J’. The hierarchy diagram is shown below. JComponent is the base class.

Swing Hierarchy

Panel

Applet

JApplet

Container

Component

Object

Window

Frame Dialog

JFrame JDialog

JComponent

JText

JLabel

JList

JMenuBar

JOptionPane

JPanel

JScrollBar

AbstractButton

JToggleButton JButton JMenuItem

(Diagram source: http://www.particle.kth.se/~fmi/kurs/PhysicsSimulation/Lectures/07A/swingDesign.html)

Q 62: Explain the Swing event dispatcher mechanism? LF CI PI FAQ
A 62: Swing components can be accessed by the Swing event dispatching thread. A few operations are guaranteed to

be thread-safe but most are not. Generally the Swing components should be accessed through this event-
dispatching thread. The event-dispatching thread is a thread that executes drawing of components and event-
handling code. For example the paint() and actionPerformed() methods are automatically executed in the event-
dispatching thread. Another way to execute code in the event-dispatching thread from outside event-handling or

Java - Swing

74

drawing code, is using SwingUtilities invokeLater() or invokeAndWait() method. Swing lengthy initialization
tasks (e.g. I/O bound and computationally expensive tasks), should not occur in the event-dispatching
thread because this will hold up the dispatcher thread. If you need to create a new thread for example, to
handle a job that’s computationally expensive or I/O bound then you can use the thread utility classes such as
SwingWorker or Timer without locking up the event-dispatching thread.

• SwingWorker – creates a background thread to execute time consuming operations.
• Timer – creates a thread that executes at certain intervals.

However after the lengthy initialization the GUI update should occur in the event dispatching thread, for thread
safety reasons. We can use invokeLater() to execute the GUI update in the event-dispatching thread. The other
scenario where invokeLater() will be useful is that the GUI must be updated as a result of non-AWT event.

Q 63: What do you understand by MVC as used in a JTable? LF DP FAQ
A 63: MVC stands for Model View Controller architecture. Swing “J” components (e.g. JTable, JList, JTree etc) use a

modified version of MVC. MVC separates a model (or data source) from a presentation and the logic that
manages it.

Component
(Eg: JTable):View & controller

Swing MVC architecture (e.g. JTable)

Model
Eg: TableModel

for JTable
UIDelegate

UI
Manager
look-and-feel

• Component (e.g. JTable, JTree, and JList): coordinates actions of model and the UI delegate. Each generic

component class handles its own individual view-and-controller responsibilities.

• Model (e.g. TableModel): charged with storing the data.

• UIDelegate: responsible for getting the data from model and rendering it to screen. It delegates any look-and-
feel aspect of the component to the UI Manager.

Q 64: Explain layout managers? LF FAQ
A 64: Layout managers are used for arranging GUI components in windows. The standard layout managers are:

• FlowLayout: Default layout for Applet and Panel. Lays out components from left to right, starting new rows if
necessary.

• BorderLayout: Default layout for Frame and Dialog. Lays out components in north, south, east, west and

center. All extra space is placed on the center.

• CardLayout: stack of same size components arranged inside each other. Only one is visible at any time. Used
in TABs.

• GridLayout: Makes a bunch of components equal in size and displays them in the requested number of rows

and columns.

• GridBagLayout: Most complicated but the most flexible. It aligns components by placing them within a grid of
cells, allowing some components to span more than one cell. The rows in the grid aren’t necessarily all the
same height, similarly, grid columns can have different widths as well.

Java - Swing

75

• BoxLayout: is a full-featured version of FlowLayout. It stacks the components on top of each other or places
them in a row.

Complex layouts can be simplified by using nested containers for example having panels within panels and each
panel can use its own LayoutManager. It is also possible to write your own layout manager or use manual
positioning of the GUI components. Note: Further reading on each LayoutManagers is recommended for Swing
developers.

Design pattern: The AWT containers like panels, dialog boxes, windows etc do not perform the actual laying out
of the components. They delegate the layout functionality to layout managers. The layout managers make use of
the strategy design pattern, which encapsulates family of algorithms for laying out components in the containers.
If a particular layout algorithm is required other than the default algorithm, an appropriate layout manager can be
instantiated and plugged into the container. For example, panels by default use the FlowLayout but it can be
changed by executing:

panel.setLayout(new GridLayout(4,5));

This enables the layout algorithms to vary independently from the containers that use them. This is one of the key
benefits of the strategy pattern.

Q 65: Explain the Swing delegation event model? LF
A 65: In this model, the objects that receive user events notify the registered listeners of the user activity. In most cases

the event receiver is a component.

• Event Types: ActionEvent, KeyEvent, MouseEvent, WindowEvent etc.
• Event Processors: JButton, JList etc.
• EventListeners: ActionListener, ComponentListener, KeyListener etc.

Swing Event Delegation Model

EVENT PROCESSOR
(eg JButton, JList etc)

EVENT LISTENER
(eg ActionListener etc)

EVENT

no
tifi

es

re
gis

te
rs

distributed

Java - Applet

76

Java – Applet

Q 66: How will you initialize an applet? LF
A 66: By writing your initialization code in the applet’s init() method or applet’s constructor.

Q 67: What is the order of method invocation in an applet? LF FAQ
A 67: The Applet’s life cycle methods are as follows:

• public void init() : Initialization method called only once by the browser.

• public void start() : Method called after init() and contains code to start processing. If the user leaves the
page and returns without killing the current browser session, the start () method is called without being
preceded by init ().

• public void stop() : Stops all processing started by start (). Done if user moves off page.

• public void destroy() : Called if current browser session is being terminated. Frees all resources used by the

applet.

Q 68: How would you communicate between applets and servlets? LF FAQ
A 68: We can use the java.net.URLConnection and java.net.URL classes to open a standard HTTP connection and

“tunnel” to a Web server. The server then passes this information to the servlet. Basically, the applet pretends to
be a Web browser, and the servlet doesn’t know the difference. As far as the servlet is concerned, the applet is
just another HTTP client. Applets can communicate with servlets using GET or POST methods.

The parameters can be passed between the applet and the servlet as name value pairs.

 http://www.foo.com/servlet/TestServlet?LastName=Jones&FirstName=Joe).

Objects can also be passed between applet and servlet using object serialization. Objects are serialized to and
from the inputstream and outputstream of the connection respectively.

Q 69: How will you communicate between two Applets? LF FAQ
A 69: All the applets on a given page share the same AppletContext. We obtain this applet context as follows:

AppletContext ac = getAppletContext();

AppletContext provides applets with methods such as getApplet(name), getApplets(), getAudioClip(url),
getImage(url), showDocument(url) and showStatus(status).

Q 70: What is a signed Applet? LF SE FAQ
A 70: A signed Applet is a trusted Applet. By default, and for security reasons, Java applets are contained within a

“sandbox”. Refer to the diagram below:

This means that the applets can’t do anything, which might be construed as threatening to the user’s machine
(e.g. reading, writing or deleting local files, putting up message windows, or querying various system parameters).
Early browsers had no provisions for Java applets to reach outside of the sandbox. Recent browsers, however
(Internet Explorer 4 on Windows etc), have provisions to give “trusted” applets the ability to work outside the
sandbox. For this power to be granted to one of your applets, the applet’s code must be digitally signed with your
unforgeable digital ID, and then the user must state that he trusts applets signed with your ID. The untrusted
applet can request to have privileges outside the sandbox but will have to request the user for privileges every
time it executes. But with the trusted applet the user can choose to remember their answer to the request, which
means they won’t be asked again.

Java - Applet

77

S ig n e d Ap p le t

V a lu ab le reso u rces like files
e tc

loca lcode R em oteC ode

S igned uns igned

J V M
 S andbox

can

access

Q 71: What is the difference between an applet and an application? Can you use an applet as an application? LF FAQ
A 71:

Applet Application
Applets don’t have a main method. They operate on life
cycle methods init(), start(), stop(), destroy() etc.

Has a static main() method.

Applets can be embedded in HTML pages and
downloaded over the Internet. Has a sandbox security
model.

Has no support for embedding or downloading. Has
no inherent security restriction.

Can only be executed within a Java compatible
container like browser, appletviewer etc.

Applications are executed at command line by java
tool.

Q. Can you use an applet as an application? Yes, by adding a main(String[] args) method to an applet.

Tech Tip #1:

-- If you want to create a new list (i.e. using java.util.List) of items from an array of objects, then it is more efficient and it is
a best practice to use Arrays.asList(…) method as opposed to executing in a loop and copying all elements of an array
one by one.

-- If you want to copy data from one array to another array then it is faster and it is a best practice to use
System.arraycopy(…) method as opposed to executing in a loop and copying all elements of an array one by one.

Q. Which of the following approaches would you prefer and why?

Approach-1
 if (“Peter”.equals(name)) {
 //….
 }

Approach-2
 if (name.equals(“Peter”)) {
 //….
 }

Approach-1 is preferred because the Approach-2 can throw a java.lang.NullPointerException if name is null.

Java – Performance and Memory issues

78

Java – Performance and Memory issues

Q. Give me an instance where you made a significant contribution in improving performance ?

There is a good chance that the position you are being interviewed for require someone with skills to identify performance
and/or memory issues and ability to optimize performance and solve memory issues. If you happen to be in an interview
with an organization facing serious issues with regards to their Java application relating to memory leaks, performance
problems or a crashing JVM etc then you are likely to be asked questions on these topics. You will find more questions
and answers relating to these key areas (i.e. performance and memory issues) in the Enterprise Java section and “How
would you go about…” sections. You could also demonstrate your skills in these key areas by reflecting back on your
past experiences as discussed in Q82 in Java section. Even though Q82 is a situational or behavioral question, you can
streamline your answer to demonstrate your technical strengths relating to these key areas as well as your behavioral
ability to cope with stress.

Q 72: How would you improve performance of a Java application? PI BP FAQ
A 72:

 Pool valuable system resources like threads, database connections, socket connections etc. Emphasize on
reuse of threads from a pool of threads. Creating new threads and discarding them after use can adversely
affect performance. Also consider using multi-threading in your single-threaded applications where possible to
enhance performance. Optimize the pool sizes based on system and application specifications and
requirements. Having too many threads in a pool also can result in performance and scalability problems
due to consumption of memory stacks (i.e. each thread has its own stack. Refer Q34, Q42 in Java section)
and CPU context switching (i.e. switching between threads as opposed to doing real computation.).

 Minimize network overheads by retrieving several related items simultaneously in one remote invocation if

possible. Remote method invocations involve a network round-trip, marshaling and unmarshaling of
parameters, which can cause huge performance problems if the remote interface is poorly designed. (Refer
Q125 in Enterprise section).

Most applications need to retrieve data from and save/update data into one or more databases. Database calls
are remote calls over the network. In general data should be lazily loaded (i.e. load only when required as
opposed to pre-loading from the database with a view that it can be used later) from a database to conserve
memory but there are use cases (i.e. need to make several database calls) where eagerly loading data and
caching can improve performance by minimizing network trips to the database. Data can be eagerly loaded
with a help of SQL scripts with complex joins or stored procedures and cached using third party frameworks or
building your own framework. At this point your interviewer could intercept you and ask you some pertinent
questions relating to caching like:

Q: How would you refresh your cache?
A: You could say that one of the two following strategies can be used:

1. Timed cache strategy where the cache can be replenished periodically (i.e. every 30 minutes, every
hour etc). This is a simple strategy applicable when it is acceptable to show dirty data at times and also
the data in the database does not change very frequently.

2. Dirty check strategy where your application is the only one which can mutate (i.e. modify) the data in

the database. You can set a “isDirty” flag to true when the data is modified in the database through your
application and consequently your cache can be refreshed based on the “isDirty” flag.

Q: How would you refresh your cache if your database is shared by more than one application?
A: You could use one of the following strategies:

1. Database triggers: You could use database triggers to communicate between applications sharing the
same database and write pollers which polls the database periodically to determine when the cache
should be refreshed. (Refer Q102 in Enterprise section)

2. XML messaging (Refer Enterprise – JMS subsection in Enterprise section) to communicate between

other applications sharing the same database or separate databases to determine when the cache
should be refreshed.

Java – Performance and Memory issues

79

 Optimize your I/O operations: use buffering (Refer Q25 in Java section) when writing to and reading from

files and/or streams. Avoid writers/readers if you are dealing with only ASCII characters. You can use streams
instead, which are faster. Avoid premature flushing of buffers. Also make use of the performance and
scalability enhancing features such as non-blocking and asynchronous I/O, mapping of file to memory etc
offered by the NIO (New I/O).

 Establish whether you have a potential memory problem and manage your objects efficiently: remove

references to the short-lived objects from long-lived objects like Java collections etc (Refer Q73 in Java
section) to minimize any potential memory leaks. Also reuse objects where possible. It is cheaper to recycle
objects than creating new objects each time. Avoid creating extra objects unnecessarily. For example use
mutable StringBuffer/StringBuilder classes instead of immutable String objects in computation expensive loops
as discussed in Q21 in Java section and use static factory methods instead of constructors to recycle
immutable objects as discussed in Q16 in Java section. Automatic garbage collection is one of the most highly
touted conveniences of Java. However, it comes at a price. Creating and destroying objects occupies a
significant chunk of the JVM's time. Wherever possible, you should look for ways to minimize the number of
objects created in your code:

o For complex objects that are used frequently, consider creating a pool of recyclable objects rather than

always instantiating new objects. This adds additional burden on the programmer to manage the pool, but
in selected cases it can represent a significant performance gain. Use flyweight design pattern to create
a pool of shared objects. Flyweights are typically instantiated by a flyweight factory that creates a limited
number of flyweights based on some criteria. Invoking object does not directly instantiate flyweights. It
gets it from the flyweight factory, which checks to see if it has a flyweight that fits a specific criteria (e.g.
with or without GST etc) in the pool (e.g. HashMap). If the flyweight exists then return the reference to the
flyweight. If it does not exist, then instantiate one for the specific criteria and add it to the pool (e.g.
HashMap) and then return it to the invoking object.

o If repeating code within a loop, avoid creating new objects for each iteration. Create objects before

entering the loop (i.e. outside the loop) and reuse them if possible.

o Use lazy initialization when you want to distribute the load of creating large amounts of objects. Use lazy

initialization only when there is merit in the design.

 Where applicable apply the following performance tips in your code:

o Use ArrayLists, HashMap etc as opposed to Vector, Hashtable etc where possible. This is because the
methods in ArrayList, HashMap etc are not synchronized (Refer Q15 in Java Section). Even better is to
use just arrays where possible.

o Set the initial capacity of a collection (e.g. ArrayList, HashMap etc) and StringBuffer/StringBuilder

appropriately. This is because these classes must grow periodically to accommodate new elements. So,
if you have a very large ArrayList or a StringBuffer, and you know the size in advance then you can speed
things up by setting the initial size appropriately. (Refer Q17, Q21 in Java Section).

o Minimize the use of casting or runtime type checking like instanceof in frequently executed methods or

in loops. The “casting” and “instanceof” checks for a class marked as final will be faster. Using
“instanceof” construct is not only ugly but also unmaintainable. Look at using visitor pattern (Refer Q11
in How would you go about…? section) to avoid “instanceof” constructs in frequently accessed methods.

o Do not compute constants inside a large loop. Compute them outside the loop. For applets compute it in

the init() method. Avoid nested loops (i.e. a “for” loop within another “for” loop etc) where applicable and
make use of a Collection class as discussed in “How can you code better without nested loops ?” --
Q17 in Java section.

o Exception creation can be expensive because it has to create the full stack trace. The stack trace is

obviously useful if you are planning to log or display the exception to the user. But if you are using your
exception to just control the flow, which is not recommended, then throw an exception, which is pre-
created. An efficient way to do this is to declare a public static final Exception in your exception class
itself.

o Avoid using System.out.println and use logging frameworks like Log4J etc, which uses I/O buffers (Refer

Q25 in Java section).

o Minimize calls to Date, Calendar, etc related classes. For example:

Java – Performance and Memory issues

80

//Inefficient code
public boolean isInYearCompanyWasEstablished(Date dateSupplied) {
 Calendar cal = Calendar.getInstance();
 cal.set(1998, Calendar.JAN, 01,0,0,0); //Should be read from a .proprerties file
 Date yearStart = cal.getTime();
 cal.setTime(1998,Calendar.DECEMBER, 31,0,0,0);//Should be read from .properties.
 Date yearEnd = cal.getTime();
 return dateSupplied.compareTo(yearStart) >=0 &&
 dateSupplied.compareTo(yearEnd) <= 0;
}

 The above code is inefficient because every time this method is invoked 1 “Calendar” object and two

“Date” objects are unnecessarily created. If this method is invoked 50 times in your application then 50
“Calendar” objects and 100 “Date” objects are created. A more efficient code can be written as shown
below using a static initializer block:

//efficient code
private static final YEAR_START;
private static final YEAR_END;

static{
 Calendar cal = Calendar.getInstance();
 cal.set(1998, Calendar.JAN, 01,0,0,0); //Should be read from a .proprerties file
 Date YEAR_START = cal.getTime();
 cal.setTime(1998,Calendar.DECEMBER, 31,0,0,0);//Should be read from .properties.
 Date YEAR_END = cal.getTime();

}

public boolean isInYearCompanyWasEstablished(Date dateSupplied) {
 return dateSupplied.compareTo(YEAR_START) >=0 &&
 dateSupplied.compareTo(YEAR_END) <= 0;

}

No matter, how many times you invoke the method isInYearCompanyWasEstablished(…), only 1
“Calendar” object 2 “Date” objects are created, since the static initializer block is executed only once
when the class is loaded into the JVM.

o Minimize JNI calls in your code.

Q. When in the development process should you consider performance issues?

Set performance requirements in the specifications, include a performance focus in the analysis and design and
also create a performance test environment.

Q. When designing your new code, what level of importance would you give to the following attributes?

-- Performance
-- Maintainability
-- Extendibility
-- Ease of use
-- Scalability

You should not compromise on architectural principles for just performance. You should make effort to write
architecturally sound programs as opposed to writing only fast programs. If your architecture is sound enough then
it would allow your program not only to scale better but also allows it to be optimized for performance if it is not fast
enough. If you write applications with poor architecture but performs well for the current requirements, what will
happen if the requirements grow and your architecture is not flexible enough to extend and creates a maintenance
nightmare where fixing a code in one area would break your code in another area. This will cause your application
to be re-written. So you should think about extendibility (i.e. ability to evolve with additional requirements),
maintainability, ease of use, performance and scalability (i.e. ability to run in multiple servers or machines) during
the design phase. List all possible design alternatives and pick the one which is conducive to sound design
architecturally (i.e. scalable, easy to use, maintain and extend) and will allow it to be optimized later if not fast
enough. You can build a vertical slice first to validate the above mentioned design attributes as discussed in Q82
in the Java section.

Java – Performance and Memory issues

81

Q. Rank the above attributes in order of importance?

There is no one correct answer for this question. [Hint] It can vary from application to application but typically if
you write 1 - extendable, 2 - maintainable and 3 – ease of use code with some high level performance
considerations, then it should allow you to optimize/tune for 4 - performance and 5 - scale. But if you write a code,
which only performs fast but not flexible enough to grow with the additional requirements, then you may end up re-
writing or carrying out a major revamp to your code. Refer SOA (Service Oriented Architecture) Q15 in How
would you go about… section.

Q 73: How would you detect and minimize memory leaks in Java? MI BP FAQ
A 73: In Java, memory leaks are caused by poor program design where object references are long lived and the

garbage collector is unable to reclaim those objects.

Detecting memory leaks:

 Use tools like JProbe, OptimizeIt etc to detect memory leaks.

 Use operating system process monitors like task manager on NT systems, ps, vmstat, iostat, netstat etc on

UNIX systems.

 Write your own utility class with the help of totalMemory() and freeMemory() methods in the Java Runtime
class. Place these calls in your code strategically for pre and post memory recording where you suspect to be
causing memory leaks. An even better approach than a utility class is using dynamic proxies (Refer Q11 in
How would you go about section…) or Aspect Oriented Programming (AOP) for pre and post memory
recording where you have the control of activating memory measurement only when needed. (Refer Q3 – Q5
in Emerging Technologies/Frameworks section).

Minimizing memory leaks:

In Java, typically memory leak occurs when an object of a longer lifecycle has a reference to objects of a short life cycle.
This prevents the objects with short life cycle being garbage collected. The developer must remember to remove the references
to the short-lived objects from the long-lived objects. Objects with the same life cycle do not cause any issues because the
garbage collector is smart enough to deal with the circular references (Refer Q38 in Java section).

 Design applications with an object’s life cycle in mind, instead of relying on the clever features of the JVM.

Letting go of the object’s reference in one’s own class as soon as possible can mitigate memory problems.
Example: myRef = null;

 Unreachable collection objects can magnify a memory leak problem. In Java it is easy to let go of an entire

collection by setting the root of the collection to null. The garbage collector will reclaim all the objects (unless
some objects are needed elsewhere).

 Use weak references (Refer Q37 in Java section) if you are the only one using it. The WeakHashMap is a

combination of HashMap and WeakReference. This class can be used for programming problems where you
need to have a HashMap of information, but you would like that information to be garbage collected if you are
the only one referencing it.

 Free native system resources like AWT frame, files, JNI etc when finished with them. Example: Frame,

Dialog, and Graphics classes require that the method dispose() be called on them when they are no longer
used, to free up the system resources they reserve.

Q 74: Why does the JVM crash with a core dump or a Dr.Watson error? MI
A 74: Any problem in pure Java code throws a Java exception or error. Java exceptions or errors will not cause a core

dump (on UNIX systems) or a Dr.Watson error (on WIN32systems). Any serious Java problem will result in an
OutOfMemoryError thrown by the JVM with the stack trace and consequently JVM will exit. These Java stack
traces are very useful for identifying the cause for an abnormal exit of the JVM. So is there a way to know that
OutOfMemoryError is about to occur? The Java J2SE 5.0 has a package called java.lang.management which
has useful JMX beans that we can use to manage the JVM. One of these beans is the MemoryMXBean.

An OutOfMemoryError can be thrown due to one of the following 4 reasons:

Java – Performance and Memory issues

82

 JVM may have a memory leak due to a bug in its internal heap management implementation. But this is highly
unlikely because JVMs are well tested for this.

 The application may not have enough heap memory allocated for its running. You can allocate more JVM

heap size (with –Xmx parameter to the JVM) or decrease the amount of memory your application takes to
overcome this. To increase the heap space:

java -Xms1024M -Xmx1024M

Care should be taken not to make the –Xmx value too large because it can slow down your application. The
secret is to make the maximum heap size value the right size.

 Another not so prevalent cause is the running out of a memory area called the “perm” which sits next to the

heap. All the binary code of currently running classes is archived in the “perm” area. The ‘perm’ area is
important if your application or any of the third party jar files you use dynamically generate classes. For
example: “perm” space is consumed when XSLT templates are dynamically compiled into classes, J2EE
application servers, JasperReports, JAXB etc use Java reflection to dynamically generate classes and/or
large amount of classes in your application. To increase perm space:

java -XX:PermSize=256M -XX:MaxPermSize=256M

 The fourth and the most common reason is that you may have a memory leak in your application as

discussed in Q73 in Java section.

[Good read/reference: “Know your worst friend, the Garbage Collector” http://java.sys-
con.com/read/84695.htm by Romain Guy]

Q. So why does the JVM crash with a core dump or Dr.Watson error?

Both the core dump on UNIX operating system and Dr.Watson error on WIN32 systems mean the same thing. The
JVM is a process like any other and when a process crashes a core dump is created. A core dump is a memory
map of a running process. This can happen due to one of the following reasons:

 Using JNI (Java Native Interface) code, which has a fatal bug in its native code. Example: using Oracle OCI

drivers, which are written partially in native code or JDBC-ODBC bridge drivers, which are written in non Java
code. Using 100% pure Java drivers (communicates directly with the database instead of through client
software utilizing the JNI) instead of native drivers can solve this problem. We can use Oracle thin driver,
which is a 100% pure Java driver.

 The operating system on which your JVM is running might require a patch or a service pack.

 The JVM implementation you are using may have a bug in translating system resources like threads, file

handles, sockets etc from the platform neutral Java byte code into platform specific operations. If this JVM’s
translated native code performs an illegal operation then the operating system will instantly kill the
process and mostly will generate a core dump file, which is a hexadecimal file indicating program’s state
in memory at the time of error. The core dump files are generated by the operating system in response to
certain signals. Operating system signals are responsible for notifying certain events to its threads and
processes. The JVM can also intercept certain signals like SIGQUIT which is kill -3 < process id > from the
operating system and it responds to this signal by printing out a Java stack trace and then continue to run.
The JVM continues to run because the JVM has a special built-in debug routine, which will trap the signal -3.
On the other hand signals like SIGSTOP (kill -23 <process id>) and SIGKILL (kill -9 <process id>) will cause
the JVM process to stop or die. The following JVM argument will indicate JVM not to pause on SIGQUIT
signal from the operating system.

java –Xsqnopause

Java – Personal and Behavioral/Situational

83

Java – Personal and Behavioral/Situational

Q 75: Did you have to use any design patterns in your Java project? DP FAQ
A 75: Yes. Refer Q12 [Strategy], Q16 [Iterator], Q24 [Decorator], Q36 [Visitor], Q51 [Singleton], Q52 [Factory],

Q58 [Command], Q61 [Composite], and Q63 [MVC-Model View Controller] in Java section and Q11, Q12 in
How would you go about… section for a detailed discussion on design patterns with class diagrams and
examples.

Resource: http://www.patterndepot.com/put/8/JavaPatterns.htm.

Why use design patterns, you may ask (Refer Q5 in Enterprise section). Design patterns are worthy of mention in
your CV and interviews. Design patterns have a number of advantages:

 Capture design experience from the past.
 Promote reuse without having to reinvent the wheel.
 Define the system structure better.
 Provide a common design vocabulary.

Some advice if you are just starting on your design pattern journey:

 If you are not familiar with UML, now is the time. UML is commonly used to describe patterns in pattern

catalogues, including class diagrams, sequence diagrams etc. (Refer Q106 - Q109 in Enterprise section).

 When using patterns, it is important to define a naming convention. It will be much easier to manage a project
as it grows to identify exactly what role an object plays with the help of a naming convention e.g.
AccountFacilityBusinessDelegate, AccountFacilityFactory, AccountFacilityValueObject, AccountDecorator,
AccountVisitor, AccountTransferObject (or AccountFacilityVO or AccountTO).

 Make a list of requirements that you will be addressing and then try to identify relevant patterns that are
applicable. You should not just apply a pattern for the sake of learning or applying a pattern because it could
become an anti-pattern.

IMPORTANT: Technical skills alone are not sufficient for you to perform well in your interviews and progress in your
career. Your technical skills must be complemented with business skills (i.e. knowledge/understanding of the business,
ability to communicate and interact effectively with the business users/customers, ability to look at things from the user’s
perspective as opposed to only technology perspective, ability to persuade/convince business with alternative solutions,
which can provide a win/win solution from users’ perspective as well as technology perspective), ability to communicate
effectively with your fellow developers, immediate and senior management, ability to work in a team as well as
independently, problem solving/analytical skills, organizational skills, ability to cope with difficult situations like stress due
to work load, deadlines etc and manage or deal with difficult people, being a good listener with the right attitude (It is
sometimes possible to have “I know it all attitude”, when you have strong technical skills. This can adversely affect your
ability to be a good listener, ability to look at things in a different perspective, ability to work well in a team and
consequently your progression in your career) etc. Some of these aspects are covered below and should be prepared for
prior to your job interview(s).

Q 76: Tell me about yourself or about some of the recent projects you have worked with? What do you consider your

most significant achievement? Why do you think you are qualified for this position? Why should we hire you and
what kind of contributions will you make? FAQ

A 76: [Hint:] Pick your recent projects and enthusiastically brief on it. Interviewer will be looking for how passionate
you are about your past experience and achievements. Also is imperative that during your briefing, you
demonstrate on a high level(without getting too technical) how you applied your skills and knowledge in some of
the following key areas:

 Design concepts and design patterns: How you understood and applied them.
 Performance and memory issues: How you identified and fixed them.
 Exception handling and best practices: How you understood and applied them.
 Multi-threading and concurrent access: How you identified and fixed them.

Java – Personal and Behavioral/Situational

84

Some of the questions in this section can help you prepare your answers by relating them to your current or past
work experience. For example:

 Design Concepts: Refer Q7, Q8, Q9, Q10, Q11 etc
 Design Patterns: Refer Q12, Q16, Q24, Q36, Q51, Q52, Q58, Q61, and Q63 in Java section and Q11, Q12

in “How would you go about…?” section for a more detailed discussion.
 Performance issues: Refer Q25, Q72 etc
 Memory issues: Refer Q37, Q38, Q42, Q73, and Q74
 Exception Handling: Refer Q39, Q40 etc
 Multi-threading (Concurrency issues): Refer Q15, Q17, Q21, Q34, Q42 and Q46 etc

Demonstrating your knowledge in the above mentioned areas will improve your chances of being successful in
your Java/J2EE interviews. 90% of the interview questions are asked based on your own resume. So in my view it
is also very beneficial to mention how you demonstrated your knowledge/skills by stepping through a recent
project on your resume.

The two other areas, which I have not mentioned in this section, which are also very vital, are transactions and
security. These two areas will be covered in the next section, which is the Enterprise section (J2EE, JDBC, EJB,
JMS, SQL, XML etc).

Even if you have not applied these skills knowingly or you have not applied them at all, just demonstrating that you
have the knowledge and an appreciation will help you improve your chances in the interviews. Also mention any
long hours worked to meet the deadline, working under pressure, fixing important issues like performance issues,
running out of memory issues etc.

The job seekers should also ask questions to make an impression on the interviewer. Write out specific questions
you want to ask and then look for opportunities to ask them during the interview. For example:

 Do you have any performance or design related issues? Succinctly demonstrate how you would go about

solving them or how you solved similar problems in your previous assignments.

 Do you follow any software development processes like agile methodology, XP, RUP etc? Briefly
demonstrate your experience, understanding and/or familiarity with the development methodology of
relevance.

 Do you use any open source frameworks like Spring, Hibernate, Tapestry etc? Any build tools like Ant, Maven

etc, and testing tools like JUnit etc briefly demonstrate your experience, understanding and/or familiarity
with the framework(s) of relevance.

Many interviewers end with a request to the applicant as to whether they have anything they wish to add. This is
an opportunity for you to end on a positive note by making succinct statements about why you are the best person
for the job by demonstrating your understanding of the key areas and how you applied them in your previous jobs.

Reflect back on your past jobs and pick two to five instances where you used your skills in the key areas
very successfully.

Q 77: Why are you leaving your current position? FAQ
A 77: [Hint]

 Do not criticize your previous employer or co-workers or sound too opportunistic.
 It is fine to mention a major problem like a buy out, budget constraints, merger or liquidation.
 You may also say that your chance to make a contribution is very low due to company wide changes or

looking for a more challenging senior or designer role.

Q 78: What do you like and/or dislike most about your current and/or last position? FAQ
A 78: [Hint]

The interviewer is trying to find the compatibility with the open position. So

Do not say anything like:

 You dislike overtime.

Java – Personal and Behavioral/Situational

85

 You dislike management or co-workers etc.

It is safe to say:

 You like challenges.
 Opportunity to grow into design, architecture, performance tuning etc
 Opportunity to learn and/or mentor junior developers..
 You dislike frustrating situations like identifying a memory leak problem or a complex transactional or a

concurrency issue. You want to get on top of it as soon as possible.

Q 79: How do you handle pressure? Do you like or dislike these situations? FAQ
A 79: [Hint] These questions could mean that the open position is pressure-packed and may be out of control. Know

what you are getting into. If you do perform well under stress then give a descriptive example. High achievers tend
to perform well in pressure situations.

Q 80: What are your strengths and weaknesses? Can you describe a situation where you took initiative? Can you

describe a situation where you applied your problem solving skills? FAQ
A 80: [Hint]

Strengths:

 Taking initiatives and being pro-active: You can illustrate how you took initiative to fix a transactional issue,

a performance problem or a memory leak problem.

 Design skills: You can illustrate how you designed a particular application using OO concepts.

 Problem solving skills: Explain how you will break a complex problem into more manageable sub-sections
and then apply brain storming and analytical skills to solve the complex problem. Illustrate how you went
about identifying a scalability issue or a memory leak problem.

 Communication skills: Illustrate that you can communicate effectively with all the team members, business

analysts, users, testers, stake holders etc.

 Ability to work in a team environment as well as independently: Illustrate that you are technically sound
to work independently as well as have the interpersonal skills to fit into any team environment.

 Hard working, honest, and conscientious etc are the adjectives to describe you.

Weaknesses:

Select a trait and come up with a solution to overcome your weakness. Stay away from personal qualities and
concentrate more on professional traits for example:

 I pride myself on being an attention to detail guy but sometimes miss small details. So I am working on

applying the 80/20 principle to manage time and details. Spend 80% of my effort and time on 20% of the
tasks, which are critical and important to the task at hand.

 Some times when there is a technical issue or a problem I tend to work continuously until I fix it without having

a break. But what I have noticed and am trying to practice is that taking a break away from the problem and
thinking outside the square will assist you in identifying the root cause of the problem sooner.

Q 81: What are your career goals? Where do you see yourself in 5-10 years? FAQ
A 81: [Hint] Be realistic. For example

 Next 2-3 years to become a senior developer or a team lead.
 Next 3-5 years to become a solution designer or an architect.

Situational questions: The open-ended questions like last two questions are asked by interviewers to identify specific
characteristics like taking initiative, performance standards, accountability, adaptability, flexibility, sensitivity,
communication skills, ability to cope stress etc. These questions are known as behavioral or situational questions. This

Java – Personal and Behavioral/Situational

86

behavioral technique is used to evaluate a candidate’s future success from past behaviors. The answers to these
questions must describe in detail a particular situation like an event, a project or an experience and how you acted on that
situation and what the results were. Prepare your answers prior to the interview using the “Situation Action Result (SAR)”
approach and avoid fabricating or memorizing your answers. You should try to relate back to your past experiences at
your previous employments, community events, sporting events etc. Sample questions and answers are shown below:

Q 82: Give me an example of a time when you set a goal and were able to achieve it? Give me an example of a time you

showed initiatiative and took the lead? Tell me about a difficult decision you made in the last year? Give me an
example of a time you motivated others? Tell me about a most complex project you were involved in? FAQ

A 82:
Situation: When you were working for the ZCC Software Technology Corporation, the overnight batch process
called the “Data Pacakager” was developed for a large fast food chain which has over 100 stores. This overnight
batch process is responsible for performing a very database intensive search and compute changes like cost of
ingredients, selling price, new menu item etc made in various retail stores and package those changes into XML
files and send those XML data to the respective stores where they get uploaded into their point of sale registers to
reflect the changes. This batch process had been used for the past two years, but since then the number of stores
had increased and so did the size of the data in the database. The batch process, which used to take 6-8 hours to
complete, had increased to 14-16 hours, which obviously started to adversely affect the daily operations of these
stores. The management assigned you with the task of improving the performance of the batch process to 5-6
hours (i.e. suppose to be an overnight process).

Action: After having analyzed the existing design and code for the “Data Packager”, you had to take the
difficult decision to let the management know that this batch process needed to be re-designed and re-written as
opposed to modifying the existing code, since it was poorly designed. It is hard to extend, maintain (i.e. making a
change in one place can break the code some where else and so on) and had no object reuse through caching
(makes too many unnecessary network trips to the database) etc. The management was not too impressed with
this approach and concerned about the time required to rewrite this batch process since the management had
promised the retail stores to provide a solution within 8-12 weeks. You took the initiative and used your
persuasive skills to convince the management that you would be able to provide a re-designed and re-written
solution within the 8-12 weeks with the assistance of 2-3 additional developers and two testers. You were
entrusted with the task to rewrite the batch process and you set your goal to complete the task in 8 weeks. You
decided to build the software iteratively by building individual vertical slices as opposed to the big bang waterfall
approach [Refer subsection “Enterprise – Software development process” in Enterprise – Java section]. You
redesigned and wrote the code for a typical use case from end to end (i.e. full vertical slice) within 2 weeks and
subsequently carried out functional and integration testing to iron out any unforeseen errors or issues. Once the
first iteration is stable, you effectively communicated the architecture to the management and to your fellow
developers. Motivated and mentored your fellow developers to build the other iterations, based on the first
iteration. At the end of iteration, it was tested by the testers, while the developers moved on to the next iteration.

Results: After having enthusiastically worked to your plan with hard work, dedication and teamwork, you were
able to have the 90% of the functionality completed in 9 weeks and spent the next 3 weeks fixing bugs, tuning
performance and coding rest of the functionality. The fully functional data packager was completed in 12 weeks
and took only 3-4 hours to package XML data for all the stores. The team was under pressure at times but you
made them believe that it is more of a challenge as opposed to think of it as a stressful situation. The newly
designed data packager was also easier to maintain and extend. The management was impressed with the
outcome and rewarded the team with an outstanding achievement award. The performance of the newly
developed data packager was further improved by 20% by tuning the database (i.e. partitioning the tables,
indexing etc).

Q 83: Describe a time when you were faced with a stressful situation that demonstrated your coping skills? Give me an

example of a time when you used your fact finding skills to solve a problem? Describe a time when you applied
your analytical and/or problem solving skills? FAQ

A 83:

Situation: When you were working for the Surething insurance corporation pty ltd, you were responsible for the
migration of an online insurance application (i.e. external website) to a newer version of application server (i.e. the
current version is no longer supported by the vendor). The migration happened smoothly and after a couple of
days of going live, you started to experience “OutOfMemoryError”, which forced you to restart the application
server every day. This raised a red alert and the immediate and the senior management were very concerned and
consequently constantly calling for meetings and updates on the progress of identifying the root cause of this
issue. This has created a stressful situation.

Java – Personal and Behavioral/Situational

87

Action: You were able to have a positive outlook by believing that this is more of a challenge as opposed to think
of it as a stressful situation. You needed to be composed to get your analytical and problem solving skills to get to
work. You spent some time finding facts relating to “OutOfMemoryError” (Refer Q74 in Java section). You were
tempted to increase the heap space as suggested by fellow developers but the profiling and monitoring did not
indicate that was the case. The memory usage drastically increased during and after certain user operations like
generating PDF reports. The generation of reports used some third party libraries, which dynamically generated
classes from your templates. So you decided to increase the area of the memory known as the “perm”, which sits
next to the heap. This “perm” space is consumed when the classes are dynamically generated from templates
during the report generation.

java -XX:PermSize=256M -XX:MaxPermSize=256M

Results: After you have increased the “perm” size, the “OutOfMemoryError” has disappeared. You kept
monitoring it for a week and everything worked well. The management was impressed with your problem solving,
fact finding and analytical skills, which had contributed to the identification of the not so prevalent root cause and
the effective communication with the other teams like infrastructure, production support, senior management, etc.
The management also identified your ability to cope under stress and offered you a promotion to lead a small team
of 4 developers.

Q 84: Describe a time when you had to work with others in the organization to accomplish the organizational goals?

Describe a situation where others you worked on a project disagreed with your ideas, and what did you do?
Describe a situation in which you had to collect information by asking many questions of several people? What
has been your experience in giving presentations to small or large groups? How do you show considerations for
others? FAQ

A 84:
Situation: You were working for Wealth guard Pty Ltd financial services organization. You were part of a
development team responsible for enhancing an existing online web application, which enables investors and
advisors view and manage their financial portfolios. The websites of the financial services organizations are
periodically surveyed and rated by an independent organization for their ease of use, navigability, content, search
functionality etc. Your organization was ranked 21st among 23 websites reviewed. Your chief information officer
was very disappointed with this poor rating and wanted the business analysts, business owners (i.e. within the
organization) and the technical staff to improve on the ratings before the next ratings, which would be done in 3
months.

Action: The business analysts and the business owners quickly got into work and came up with a requirements
list of 35 items in consultation with the external business users such as advisors, investors etc. You were assigned
the task of working with the business analysts, business owners (i.e internal), and project managers to provide a
technical input in terms of feasibility study, time estimates, impact analysis etc. The business owners had a pre-
conceived notion of how they would like things done. You had to analyze the outcome from both the business
owners’ perspective and technology perspective. There were times you had to use your persuasive skills to
convince the business owners and analysts to take an alternative approach, which would provide a more robust
solution. You managed to convince the business owners and analysts by providing visual mock-up screen shots of
your proposed solution, presentation skills, ability to communicate without any technical jargons, and listening
carefully to business needs and discussing your ideas with your fellow developers (i.e. being a good listener,
respecting others’ views and having the right attitude even if you know that you are right). You also strongly
believe that good technical skills must be complemented with good interpersonal skills and the right attitude. After
2-3 weeks of constant interaction with the business owners, analysts and fellow developers, you had helped the
business users to finalize the list of requirements. You also took the initiative to apply the agile development
methodology to improve communication and cooperation between business owners and the developers.

Results: You and your fellow developers were not only able to effectively communicate and collaborate with the
business users and analysts but also provided progressive feedback to each other due to iterative approach. The
team work and hard work had resulted in a much improved and more user friendly website, which consequently
improved its ratings from 21st to 13th within 3 months.

Refer Enterprise – Personal subsection in Enterprise section for more situational questions and answers.

Note: For Q75 – Q84 tailor your answers to the job. Also be prepared for the following questions, which ascertain how
you keep your knowledge up to date, what motivates you, your ability to take initiatives, be pro-active, eagerness to work
for the company, etc:

Q 85: What was the last Java related technical book or article you read? FAQ

Java – Personal and Behavioral/Situational

88

A 85:
 Mastering EJB by Ed Roman.
 EJB design patterns by Floyd Marinescu.
 Bitter Java by Bruce Tate.
 Thinking in Java by Bruce Eckel.
 Effective Java by Joshua Bloch.

Q. What is your favorite technical book? Effective Java by Joshua Bloch

Q 86: Which Java related website(s) or resource(s) do you use to keep your knowledge up to date beyond Google? FAQ
A 86:

 http://www.theserverside.com, http://www.javaworld.com, http://www-136.ibm.com/developerworks/Java,
http://www.precisejava.com, http://www.allapplabs.com, http://java.sun.com, http://www.martinfowler.com,
http://www.ambysoft.com etc.

Q 87: What past accomplishments gave you satisfaction? What makes you want to work hard? FAQ
A 87:

 Material rewards such as salary, perks, benefits etc naturally come into play but focus on your
achievements or accomplishments than on rewards.

 Explain how you took pride in fixing a complex performance issue or a concurrency issue. You could

substantiate your answer with a past experience. For example while you were working for Bips telecom, you
pro-actively identified a performance issue due to database connection resource leak. You subsequently took
the initiative to notify your team leader and volunteered to fix it by adding finally {} blocks to close the
resources. [Discussed in the Enterprise Java section]

 If you are being interviewed for a position, which requires your design skills then you could explain that in your

previous job with an insurance company you had to design and develop a sub-system, which gave you
complete satisfaction. You were responsible for designing the data model using entity relationship diagrams
(E-R diagrams) and the software model using the component diagrams, class diagrams, sequence diagrams
etc. [Discussed in the Enterprise Java section]

 If you are being interviewed for a position where you have to learn new pieces of technology/framework like

dependency injection (e.g. Spring framework), component based web development frameworks like Tapestry,
JSF etc, object to relational mapping frameworks like hibernate etc then you can explain with examples from
your past experience where you were not only motivated to acquire new skills/knowledge but also proved that
you are a quick and a pro-active learner. [Discussed in the Emerging Technologies/Frameworks section]

 If the job you are being interviewed for requires production support from time to time, then you could explain

that it gives you satisfaction because you would like to interact with the business users and/or customers to
develop your business and communication skills by getting an opportunity to understand a system from the
users perspective and also gives you an opportunity to sharpen your technical and problem solving skills. If
you are a type of person who enjoys more development work then you can be honest about it and indicate that
you would like to have a balance between development work and support work, where you can develop
different aspects of your skills/knowledge. You could also reflect an experience from a past job, where each
developer was assigned a weekly roster to provide support.

 You could say that, you generally would like to work hard but would like to work even harder when there are

challenges.

Q 88: Do you have any role models in software development?
A 88:

 Scott W. Ambler, Martin Fowler, Ed Roman, Floyd Marinescu, Grady Booch etc.

 Gavin King (Hibernate persistence framework), Rod Johnson (Spring framework), Howard M. Lewis Ship

(Tapestry web framework and Hivemind framework), Dennis Sosnoski (JiBX XML binding framework) etc.

Q 89: Why do you want to work for us? What motivates you? What demotivates you? What are you looking for in your

next job? What is your definition of an ideal job? FAQ (Research the company prior to the interview). Look at their
website. Know their product lines and their competitors. Learn about their achievements or strengths.

Java – Behaving right in an interview

89

Java – Behaving right in an interview

 Arrive 5-10 minutes before the interview. Never arrive too late or too early. If you are running late due to some

unavoidable situation, call ahead and make sure that the interviewers know your situation. Also, be apologetic for
arriving late due to unfortunate situation.

 First impressions are everything: Firm handshake, maintain eye contact, smile, watch your body language, be

pleasant, dress neatly and know the names of your interviewers and thank them by their names for the
opportunity.

 Try, not to show that you are nervous. Every body is nervous for interviews but try not to show it. [Hint: Just think that

even if you do not get the job, it is a good learning experience and you would do better in your next interview and
appreciate yourself for getting this far. You can always learn from your mistakes and do better at your next interview.]

 It is good to be confident but do not make up your answer or try to bluff. If you put something in your resume then

better be prepared to back it up. Be honest to answer technical questions because you are not expected to remember
everything (for example, you might know a few design patterns but not all of them etc). If you have not used a design
pattern in question, request the interviewer, if you could describe a different design pattern. Also, try to provide brief
answers, which means not too long and not too short like yes or no. Give examples of times you performed that
particular task. If you would like to expand on your answer, ask the interviewer if you could elaborate or go on. It is
okay to verify your answers every now and then but avoid verifying or validating your answers too often because
the interviewer might think that you lack self-confidence or you cannot work independently. But if you do not know the
answer to a particular question and keen to know the answer, you could politely request for an answer but should not
request for answers too often. If you think you could find the answer(s) readily on the internet then try to remember the
question and find the answer(s) soon after your interview.

 You should also ask questions to make an impression on the interviewer. Write out specific questions you want to

ask and then look for opportunities to ask them during the interview. Many interviewers end with a request to the
applicant as to whether they have anything they wish to add. This is an opportunity for you to end on a positive note
by making succinct statements about why you are the best person for the job.

 Try to be yourself. Have a good sense of humor, a smile and a positive outlook. Be friendly but you should not tell

the sagas of your personal life. If you cross your boundaries then the interviewer might feel that your personal life will
interfere with your work.

 Be confident. I have addressed many of the popular technical questions in this book and it should improve your

confidence. If you come across a question relating to a new piece of technology you have no experience with like
AOP (Aspect Oriented Programming) or IoC (Inversion of Control) or a framework like Tapestry, then you can mention
that you have a very basic understanding and demonstrate that you are a quick leaner by reflecting back on your past
job where you had to quickly learn a new piece of a technology or a framework. Also, you can mention that you keep
a good rapport with a network of talented Java/J2EE developers or mentors to discuss any design alternatives or work
a rounds to a pressing problem.

 Unless asked, do not talk about money. Leave this topic until the interviewer brings it up or you can negotiate this

with your agent once you have been offered the position. At the interview you should try to sell or promote your
technical skills, business skills, ability to adapt to changes, and interpersonal skills. Prior to the interview find
out what skills are required by thoroughly reading the job description or talking to your agent for the specific job and
be prepared to promote those skills (Some times you would be asked why you are the best person for the job?).
You should come across as you are more keen on technical challenges, learning a new piece of technology,
improving your business skills etc as opposed to coming across as you are only interested in money.

 Speak clearly, firmly and with confidence but should not be aggressive and egoistical. You should act interested in

the company and the job and make all comments in a positive manner. Should not speak negatively about past
colleagues or employers. Should not excuse yourself halfway through the interview, even if you have to use the
bathroom. Should not ask for refreshments or coffee but accept it if offered.

 At the end of the interview, thank the interviewers by their names for their time with a firm handshake, maintain

eye contact and ask them about the next steps if not already mentioned to know where you are at the process and
show that you are interested.

Java – Behaving right in an interview

90

In short, arrive on time, be polite, firm hand with a smile and do not act superior, act interested and enthusiastic but not desperate, make
eye contact at all times, ask questions but should not over do it by talking too much, it is okay to be nervous but try not to show it and be
honest with your answers because you are not expected to know the answers for all the technical questions. Unless asked, do not talk
about money and find every opportunity to sell your technical, business and interpersonal skills without over doing it. Finish the interview
with a positive note by asking about the next steps if not already mentioned, a firm hand shake with a “thank you for the interviewer’s
time” with an eye contact and a smile.

General Tip #1:

 Try to find out the needs of the project in which you will be working and the needs of the people within the project.

 80% of the interview questions are based on your own resume.

 Where possible briefly demonstrate how you applied your skills/knowledge in the key areas [design concepts, transactional issues,

performance issues, memory leaks etc], business skills, and interpersonal skills as described in this book. Find the right time to
raise questions and answer those questions to show your strength.

 Be honest to answer technical questions, you are not expected to remember everything (for example you might know a few design

patterns but not all of them etc). If you have not used a design pattern in question, request the interviewer, if you could describe a
different design pattern.

 Do not be critical, focus on what you can do. Also try to be humorous to show your smartness.

 Do not act superior. [Technical skills must be complemented with good interpersonal skills]

General Tip #2:

Prepare a skills/knowledge matrix in your Resume. This is very useful for someone who gained wide range of skills/knowledge in a short
span by being a pro-active learner (e.g. extra reading, additional projects, outside work development projects etc). For example:

Java 1.3 – 5.0 18 months
Servlets / JSP 12 months
J2EE (EJB, JMS, JNDI etc) 12 months
XML, XSD, XSLT etc 6 months
Hibernate 6 months
OOA & OOD 12 months
UML 4 months
Design patterns 5 months
SQL 12 months

General Tip #3:

Unless you are applying for a position as a junior or a beginner developer, having your resume start with all the Java training and
certifications may lead to a misunderstanding that you are a beginner. Your first page should concentrate on your achievements and
skills summary (As in General Tip #2) to show that you are a skilled professional. For example:

• Re-designed the data packager application for the XYZ Corporation, to make it more scalable, maintainable and extendable. [Shows

that you have design skills]

• Identified and fixed memory leak issues for the master lock application and consequently improved performance by 20% and further

improved performance by introducing multi-threading and other performance tuning strategies. Identified and fixed some
transactional issues for the Endeavor project, which is a web based e-commerce application. [Shows that you are a pro-active
developer with good understanding of multi-threading, transactional, performance and memory issues. Also shows that
you have worked on transactional and multi-threaded systems and have an eye for identifying potential failures.]

• Received an outstanding achievement award for my design and development work using Java/J2EE at the ABC Corporation.

Published an article entitled “Java Tips and Tricks”. [Shows that you take pride in your achievements]

• Mentored junior developers at JKL Corporation. [Shows that you are an experienced developer who would like to mentor

junior developers and you are not only a technology oriented person but also a people oriented person].

Reference your achievements and accomplishments with specific examples and/or relevant paperwork (but avoid overloading the hiring
manager with paperwork).

Java – Key Points

91

Java – Key Points

 Java is an object oriented (OO) language, which has built in support for multi-threading, socket communication,

automatic memory management (i.e. garbage collection) and also has better portability than other languages across
operating systems.

 Java class loaders are hierarchical and use a delegation model. The classes loaded by a child class loader have

visibility into classes loaded by its parents up the hierarchy but the reverse is not true.

 Java packages help resolve naming conflicts when different packages have classes with the same names. This also

helps you organize files within your project.

 Java does not support multiple implementation inheritance but supports multiple interface inheritance.

 Polymorphism, inheritance and encapsulation are the 3 pillar of an object-oriented language.

 Code reuse can be achieved through either inheritance (“is a” relationship) or object composition (“has a”

relationship). Favor object composition over inheritance.

 When using implementation inheritance, make sure that the subclasses depend only on the behavior of the

superclass, not the actual implementation. An abstract base class usually provides an implementation inheritance.

 Favor interface inheritance to implementation inheritance because it promotes the deign concept of coding to

interface and reduces coupling. The interface inheritance can achieve code reuse through object composition.

 Design by contract specifies the obligations of a calling-method and called-method to each other using pre-

conditions, post-conditions and class invariants.

 When using Java collections API, prefer using ArrayList or HashMap as opposed to Vector or Hashtable to avoid

any synchronization overhead. The ArrayList or HashMap can be externally synchronized for concurrent access by
multiple threads.

 Set the initial capacity of a collection appropriately and program in terms of interfaces as opposed to

implementations.

 The equals() - returns the results of running the equals() method of a user supplied class, which compares the

attribute values. The equals() method provides “deep comparison” by checking if two objects are logically equal as
opposed to the shallow comparison provided by the operator ==.

 The non-final methods equals(), hashCode(), toString(), clone(), and finalize() are defined in the Object class and

are primarily meant for extension. The equals() and hashCode() methods prove to be very important when objects
implementing these two methods are added to collections.

 If a class overrides the equals() method, it must implement the hashCode() method as well. If two objects are equal

as per the equals() method, then calling the hashCode() method in each of the two objects must return the same
hashCode integer result but the reverse is not true (i.e. If two objects have the same hashCode does not mean that
they are equal). If a field is not used in equals()method, then it must not be used in hashCode() method.

 When providing a user defined key class for storing objects in HashMap, you should override equals(), and

hashCode() methods from the Object class.

 Always override the toString() method, but you should override the clone() method very judiciously. The finalize()

method should only be used in rare instances as a safety net or to terminate non-critical native resources.

 String class is immutable and StringBuffer and StringBuilder classes are mutable. So it is more efficient to use a

StringBuffer or a StringBuilder as opposed to a String in a computation intensive situations (i.e. in for, while loops).

 Serialization is a process of writing an object to a file or a stream. Transient variables cannot be serialized.

 Java I/O performance can be improved by using buffering, minimizing access to the underlying hard disk and

operating systems. Use the NIO package for performance enhancing features like non-blocking I/O operation, buffers
to hold data, and memory mapping of files.

Java – Key Points

92

 Each time an object is created in Java it goes into the area of memory known as heap. The primitive variables are

allocated in the stack if they are local method variables and in the heap if they are class member variables.

 Threads share the heap spaces so it is not thread-safe and the threads have their own stack space, which is

thread-safe.

 The garbage collection cannot be forced, but you can nicely ask the garbage collector to collect garbage.

 There two types of exceptions checked (i.e. compiler checked) and unchecked (Runtime Exceptions). It is not

advisable to catch type Exception.

 A process is an execution of a program (e.g. JVM process) but a thread is a single execution sequence within the

process.

 Threads can be created in Java by either extending the Thread class or implementing the Runnable interface.

 In Java each object has a lock and a thread can acquire a lock by using the synchronized key word. The

synchronization key word can be applied in method level (coarse-grained lock) or block level (fine-grained lock
which offers better performance) of code.

 Threads can communicate with each other using wait(), notify(), and notifyAll() methods. This communication

solves the consumer-producer problem. These are non-final methods defined in the Object class.

 Sockets are communication channels, which facilitate inter-process communication.

 The J2SE 5.0 release is focused along the key areas of ease of development, scalability, performance, quality, etc.

The new features include generics, metadata, autoboxing and auto-unboxing of primitive types, enhanced for
loop, enumerated type, static import, C style formatted output with printf(), formatted input with the Scanner
class, varargs, etc.

 Swing uses the MVC paradigm to provide loose coupling and action architecture to implement a shared behavior

between two or more user interface components.

 Complex layouts can be simplified by using nested containers for example having panels within panels and each

panel can use its own LayoutManager like FlowLayout, BorderLayout, GridLayout, BoxLayout, CardLayout etc.
The containers like panels, dialog boxes, windows etc do not perform the actual laying out of the components. They
delegate the layout functionality to layout managers. The layout managers make use of the strategy design pattern,
which encapsulates family of algorithms for laying out components in the containers.

 The AWT containers like panels, dialog boxes, windows etc do not perform the actual laying out of the components.

They delegate the layout functionality to layout managers. The layout managers make use of the strategy design
pattern, which encapsulates family of algorithms for laying out components in the containers.

 Swing components should be accessed through an event-dispatching thread. There is a way to access the Swing

event-dispatching thread from outside event-handling or drawing code, is using SwingUtilities’ invokeLater() and
invokeAndWait() methods.

 Like event handling code, painting code executes on the event-dispatching thread. So while an event is being

handled, no painting will occur and similarly while painting is happening no events will take place.

 The paint() method should not be explicitly invoked. Only repaint() method can be explicitly invoked (which implicitly

calls paintComponent() method) and only paintComponent() method should be overridden if required.

 Swing uses a delegation event model, in which the objects that receive user events notify the registered listeners of

the user activity. In most cases the event receiver is a component.

 A signed applet can become a trusted applet, which can work outside the sandbox.

 In Java typically memory leak occurs when an object of longer life cycle has a reference to objects of a short life

cycle.

 You can improve performance in Java by :

1. Pooling your valuable resources like threads, database and socket connections.

Java – Key Points

93

2. Optimizing your I/O operations.
3. Minimizing network overheads, calls to Date, Calendar related classes, use of “casting” or runtime type

checking like “instanceof” in frequently executed methods/loops, JNI calls, etc
4. Managing your objects efficiently by caching or recycling them without having to rely on garbage collection.
5. Using a StringBuffer as opposed to String and ArrayList or HashMap as oppose to Vector or Hashtable
6. Applying multi-threading where applicable.
7. Minimizing any potential memory leaks.

 Finally, very briefly familiarize yourself with some of the key design patterns like:

1. Decorator design pattern: used by Java I/O API. A popular design pattern.
2. Reactor design pattern/Observer design pattern: used by Java NIO API.
3. Visitor design pattern: can be used to avoid instanceof and typecast constructs.
4. Factory method/abstract factory design pattern: popular pattern, which gets frequently asked in interviews.
5. Singleton pattern: popular pattern, which gets frequently asked in interviews.
6. Composite design pattern: used by GUI components and also a popular design pattern
7. MVC design pattern/architecture: used by Swing components and also a popular pattern.
8. Command pattern: used by Swing action architecture and also a popular design pattern.
9. Strategy design pattern: A popular design pattern used by AWT layout managers.

Refer Q11 in “How would you go about…” section for a detailed discussion and code samples on GoF (Gang of Four)
design patterns.

Recommended reading:

 The famous Gang of Four book: Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addiso-Wesley Publishing Co., 1995; ISBN: 0201633612).

 Effective Java Programming Language Guide – by Joshua Bloch

Tech Tip #2:

Always have the Java API handy and use the standard library to take advantage of the knowledge of the experts who
wrote it and the experience of those who have used it and tested it before you. Every developer should be familiar with
the following key libraries: java.lang and java.util are used very often and java.math and java.io are used less often.
The other libraries can be learned as and when required. If you have a specialized need then first look for a library and if
you cannot find one then you can implement your own. E.g.

//To copy an array to another array:
String[] array1 = {"a", "b", "c"};
String[] array2 = new String[2] ;
java.lang.System.arraycopy(array1,0,array2,0,2);

//convert an array to a list
List list = java.util.Arrays.asList(array2);
System.out.println(list);//prints [a, b]

//convert the list back to an array
String[] array3 = (String[])list.toArray(new String[0]);

Tech Tip #3:

The data types float and double are primarily designed for engineering and scientific calculations. They are not suited for
financial calculations of monetary values. Use BigDecimal instead. For non decimal values you could either use the
primitive values such as int, long etc or wrapper classes such as Integer, Long etc. Example If you are using hibernate
as your object to relational mapper and would like to map a monetary data field of “amount” with database data type
numeric (10,2) then prefer using BigDecimal as your object data type.

Enterprise Java

94

SECTION TWO

Enterprise Java – Interview questions & answers

 Specification Fundamentals SF
 Design Concepts DC
 Design Patterns DP
 Concurrency Issues CI
 Performance Issues PI
 Memory Issues MI
 Exception Handling EH
 Transactional Issues TI
 Security SE
 Scalability Issues SI
 Best Practices BP
 Coding1 CO

FAQ - Frequently Asked Questions

1 Unlike other key areas, the CO is not always shown against the question but shown above the actual content of relevance within a
question.

K
E
Y

A
R
E
A
S

Enterprise – J2EE Overview

95

Enterprise - J2EE Overview

Q 01: What is J2EE? What are J2EE components and services? SF FAQ
A 01: J2EE (Java 2 Enterprise Edition) is an environment for developing and deploying enterprise applications. The

J2EE platform consists of J2EE components, services, Application Programming Interfaces (APIs) and protocols
that provide the functionality for developing multi-tiered and distributed Web based applications.

Web
Server

HTML

CSS

J2EE Physical Tiers , Containers, Components , Services & APIs

Client Tier Application Tier (Middle Tier) Data (EIS) Tier

J2EE Application Server

RM
I /

 II
OP

(X)HTML,
XML

(Browser)

Applet

Client Application
(stand alone Java

program)

HTTP(S)

HTTP(S)

RMI/IIOP

RDBMS

Java
Application

Corba Server

Messaging

Directory
Service

JDBC

JavaMail

RMI

JMS

IIOP

JNDI

Client
Application Server Database Server

Firewall Firewall

Web Server

internet

DMZ

Other Services + APIs provided by server/container:
Security (SSL, ACL, JAAS,X.509)
transactions, threading, Resource pooling (Eg: Connection pooling) etc
,Fault Tolerance, Load Balancing, clustering
Monitoring, Auditing, Logging etc
more...............

Web Container

Servlets JSP

Tag
library

RM
I/I

IO
P

JN
DI

JT
A

JD
BC

JM
S

Ja
va

M
ail

JA
F

EJB Container

Session Beans Entity Beans Message Driven Beans

RM
I/I

IO
P

JN
DI

JT
A

JD
BC

JM
S

Ja
va

M
ail

JA
F

Enterprise – J2EE Overview

96

A J2EE component is a self-contained functional software unit that is assembled into a J2EE application with its
related classes and files and communicates with other components. The J2EE specification defines the following
J2EE components:

Component type Components Packaged as
Applet applets JAR (Java ARchive)

Application client Client side Java codes. JAR (Java ARchive)

Web component JSP, Servlet WAR (Web ARchive)

Enterprise JavaBeans Session beans, Entity beans, Message driven beans JAR (EJB Archive)

Enterprise application WAR, JAR, etc EAR (Enterprise ARchive)

Resource adapters Resource adapters RAR (Resource Adapter ARchive)

Q. So what is the difference between a component and a service?

A component is an application level software unit as shown in the table above. All the J2EE components depend
on the container for the system level support like transactions, security, pooling, life cycle management, threading
etc. A service is a component that can be used remotely through a remote interface either synchronously or
asynchronously (e.g. Web service, messaging system, sockets, RPC etc). A service is a step up from “distributed
objects”. A service is a function that has a clearly defined service contract (e.g. interface, XML contract) to their
consumers or clients, self contained and does not depend on the context or state of other services.

Q. What is a Service Oriented Architecture (SOA)?

SOA is an evolution of the fundamentals governing a component based development. Component based
development provides an opportunity for greater code reuse than what is possible with Object Oriented (OO)
development. SOA provides even greater code reuse by utilizing OO development, component based
development and also by identifying and organizing right services into a hierarchy of composite services. SOA
results in loosely coupled application components, in which code is not necessarily tied to a particular database.
SOAs are very popular and there is a huge demand exists for development and implementation of SOAs. Refer
Q14 in How would you go about…? section for a more detailed discussion on SOA and Web services.

Q. What are Web and EJB containers?

Containers (Web & EJB containers) are the interface between a J2EE component and the low level platform
specific functionality that supports J2EE components. Before a Web, enterprise bean (EJB), or application client
component can be executed, it must be assembled into a J2EE module (jar, war, and/or ear) and deployed into its
container.

Q. Why do you need a J2EE server? What services does a J2EE server provide?

A J2EE server provides system level support services such us security, transaction management, JNDI (Java
Naming and Directory Interface) lookups, remote access etc. J2EE architecture provides configurable and non-
configurable services. The configurable service enables the J2EE components within the same J2EE application
to behave differently based on where they are deployed. For example the security settings can be different for the
same J2EE application in two different production environments. The non-configurable services include enterprise
bean (EJB) and servlet life cycle management, resource pooling etc.

Server supports various protocols. Protocols are used for access to Internet services. J2EE platform supports
HTTP (HyperText Transfer Protocol), TCP/IP (Transmission Control Protocol / Internet Protocol), RMI (Remote
Method Invocation), SOAP (Simple Object Access Protocol) and SSL (Secured Socket Layer) protocol.

The J2EE API can be summarized as follows:

J2EE technology category API (Application Programming Interface)
Component model technology Java Servlet, JavaServer Pages(JSP), Enterprise JavaBeans(EJB).

Web Services technology

JAXP (Java API for XML Processing), JAXR (Java API for XML Registries), SAAJ (SOAP
with attachment API for Java), JAX-RPC (Java API for XML-based RPC), JAX-WS (Java
API for XML-based Web Services).

Enterprise – J2EE Overview

97

Other

JDBC (Java DataBase Connectivity), JNDI (Java Naming and Directory Interface), JMS
(Java Messaging Service), JCA (J2EE Connector Architecture), JTA (Java Transaction
API), JavaMail, JAF (JavaBeans Activation Framework – used by JavaMail), JAAS (Java
Authentication and Authorization Service), JMX (Java Management eXtensions).

Q 02: Explain the J2EE 3-tier or n-tier architecture? SF DC FAQ
A 02: This is a very commonly asked question. Be prepared to draw some diagrams on the board. The J2EE platform is

a multi-tiered system. A tier is a logical or functional partitioning of a system.

2 – tier system 3 – tier system

2-Tier (Client/Server)

UserInterface
/display Logic

Business
logic

Database
logic

UserInterface
/display Logic

Business
logic

Database
logic

Client M/C 1 Client M/C 2

Database

Business Logic
Database logic

Data

When the developers are not disciplined, the
display logic, business logic and database
logic are muddled up and/or duplicated in a 2-
tier client server system.

3-Tier (or n-tier)

UserInterface
/display logic

UserInterface
/display logic

Client M/C 1 Client M/C 2

Middle-tier server

Database

Data

Business Logic

Database Logic

The advantages of the multi-tier architecture are:

 Forced separation of user interface logic and business logic.
 Business logic sits on small number of centralized machines (may be

just one).
 Easy to maintain, to manage, to scale, loosely coupled etc.

Each tier is assigned a unique responsibility in a 3-tier system. Each tier is logically separated and loosely coupled
from each other, and may be distributed.

Client tier represents Web browser, a Java or other application, Applet, WAP phone etc. The client tier makes
requests to the Web server who will be serving the request by either returning static content if it is present in the
Web server or forwards the request to either Servlet or JSP in the application server for either static or dynamic
content.

Presentation tier encapsulates the presentation logic required to serve clients. A Servlet or JSP in the
presentation tier intercepts client requests, manages logons, sessions, accesses the business services, and finally
constructs a response, which gets delivered to client.

Business tier provides the business services. This tier contains the business logic and the business data. All the
business logic is centralized into this tier as opposed to 2-tier systems where the business logic is scattered
between the front end and the backend. The benefit of having a centralized business tier is that same business
logic can support different types of clients like browser, WAP (Wireless Application Protocol) client, other stand-
alone applications written in Java, C++, C# etc.

Integration tier is responsible for communicating with external resources such as databases, legacy systems,
ERP systems, messaging systems like MQSeries etc. The components in this tier use JDBC, JMS, J2EE
Connector Architecture (JCA) and some proprietary middleware to access the resource tier.

Resource tier is the external resource such as a database, ERP system, Mainframe system etc responsible for
storing the data. This tier is also known as Data Tier or EIS (Enterprise Information System) Tier.

Enterprise – J2EE Overview

98

Logical or
Functional T iers

H igh Level
T iers

C lien t

C lient T ier

W eb Server

A pp lica tion S erver

M iddle T ier

R D B M S
X M L

D ata T ier

C lient T ier
A pple ts , H TM L,W M L, JavaS crip t,

A pplication C lien ts e tc

Presentation T ier

R esource T ier

D atabases, ER P & C R M system s, Legacy
System s etc

B usiness T ier

EJB , Java C lasses, Bus iness O bjects e tc

H TM L, C SS , G IF F iles etc
(sta tic content)

JSPs, Serv le ts , Tags etc
(dynam ic content)

In tegration T ier

JM S, JD BC , C onnectors(JC A), e tc
J2

EE
 p

at
te

rn
s a

pp
ly

J2EE T iers

Note: On a high level J2EE can be construed as a 3-tier system consisting of Client Tier, Middle Tier (or
Application Tier) and Data Tier. But logically or functionally J2EE is a multi-tier (or n-tier) platform.

The advantages of a 3-tiered or n-tiered application: 3-tier or multi-tier architectures force separation among
presentation logic, business logic and database logic. Let us look at some of the key benefits:

 Manageability: Each tier can be monitored, tuned and upgraded independently and different people can have

clearly defined responsibilities.
 Scalability: More hardware can be added and allows clustering (i.e. horizontal scaling).
 Maintainability: Changes and upgrades can be performed without affecting other components.
 Availability: Clustering and load balancing can provide availability.
 Extensibility: Additional features can be easily added.

The following diagram gives you a bigger picture of the logical tiers and the components.

Enterprise – J2EE Overview

99

Integration Tier

Resource
TierBusiness TierPresentation Tier

CLIENT
TIER

Br
ow

se
r (

we
b

cl
ien

t)

9. response

3 4 5 6

Application Server

Web container EJB container

Database
(RDBMS etc)

Servlet
(front controller)1.request

Command
objects

JSPs

2
8.

Session
beans

Data Access
Objects
(DAOs)

Business
Objects

Bu
sin

es
sD

ele
ga

te

3 4

Message
Oriented

Middleware
(MOM)

B. Listens on a Topic or Queue for
 XML messages

5 6

J
D
B
C

J
M
S

Message
Driven Beans

7

D. Publish XML msg to
a topic or a queue

E.

C

8

Sw
in

g/
EJ

B/
Ja

va
 a

pp
lic

at
io

n
cl

ie
nt

Z. JNDI lookup for EJB +
 communicate via serializable DTO

Note: Presentation Tier should
only have web flow control,
presentation & display logic. If
you have business logic in this
tier it can be used only by web
clients like an internet browser
or an applet, but not by other
clients like a Swing thick client,
Wireless (WAP) application,
stand alone Java/C++
applications etc. So to avoid
duplication of business logic,
this tier should not have any
business logic.

Note: Business logic should be in this tier so that it can be
shared across by various clients like web applications,
Swing applications, wireless applications, stand alone
Java, C++ applications etc.

Data Transfer Objects (DTO)
(transfer information between tiers)

Note: Promotes code to interface not implementation. You code to interfaces
like JDBC, JMS, JCA etc. Even if the implementation changes e.g. you need to
use a different database driver or use a different message oriented
middleware(MOM), your existing code does not have to change. All you have
to do is change your database driver implementation library classes or the
message oriented middleware implementation library classes.

Note: Represents data. Databases (access using JDBC), XML messages in Topics/
Queues (access using JMS), and legacy systems (access using JCA) etc.

Note: thin
clients like
web clients

and thick GUI
clients like

Swing, Applet,
Stand alone
Java, C++

applications
etc. Thick
clients will

have
presentation

& display
logic.

Logical/Functional Tiers and J2EE components

Note: Steps 1-9 shows a web browser client that communicates via http protocol using the request/response paradigm.
Steps A-D shows asynchronous communication between heterogeneous & homogeneous applications (Java, C++ etc) using XML messages.
Step Z shows invocation of a business logic via session beans from a Swing/Java/EJB thick client by looking up the EJB via JNDI and exchange
information via serializable Data Transfer Objects (DTO). Step M,N shows that a Java application client or an Applet can interact with a Servlet using the
URLConnection (or HttpUrlConnection) classes and exchange information using serializable Data Transfer Objects (DTO).

Ap
pl

et

N.

C+
+

, J
av

a
cli

en
ts

Ja
va

ap
pl

ic
at

io
n

cli
en

t

M

A. disparate application clients like C++ client, a legacy system
etc or a Java client communicates via XML messages

J
C
A

Legacy
systems

Interact with legacy
systems

Ja
va

M
ail Mail

Server

Send mail

J
N
D
I

LDAP
Server

Access enterprise user access control

data for authentication/authorization etc

7

Q 03: Explain MVC architecture relating to J2EE? DC DP FAQ
A 03: This is also a very popular interview question. MVC stands for Model-View-Controller architecture. It divides the

functionality of displaying and maintaining of the data to minimize the degree of coupling (i.e. promotes loose
coupling) between components. It is often used by applications that need the ability to maintain multiple views like
HTML, WML, Swing, XML based Web service etc of the same data. Multiple views and controllers can interface
with the same model. Even new types of views and controllers can interface with a model without forcing a change
in the model design.

Enterprise – J2EE Overview

100

J2EE MVC (Model-View-Controller)

Model
(Entity/Session Beans (EJB),

 Plain Java Classes)
Encapsulates business logic and
application state.

View
(JSP, JavaBeans, Swing,

Custom Tags, etc)
Renders the model & has
only display logic.
Sends user actions to the
controller
Allows controller to select a
view.

Controller
(Servlet etc)

controls application behavior
Maps user actions to model.
selects view for response.
usually one for each
functionality.

ge
t D

ata
 to

 di
sp

lay

User Action(eg: submitting a
form, clicking a button etc)

View selection (eg: selecting the next
JSP page to display as a response)

state change

N ote: Typical M VC architecture is shown above. Variations are possible (e.g.: M odel 1 vs. M odel 2
M VC)

Browser

database

Controller
Servlet

View

JSP

Model
EJB or Plain Java

class

1. Request
2. instantiates

3. read/update
data6. Response

Client Tier Middle Tier (Application Tier) Data Tier

5

4.forward

A model represents the core business logic and state. A model commonly maps to data in the database and will
also contain core business logic.

A view renders the contents of a model. A view accesses the data from the model and adds display logic to
present the data.

A controller acts as the glue between a model and a view. A controller translates interactions with the view into
actions to be performed by the model. User interactions in a Web application appear as GET and POST HTTP
requests. The actions performed by a model include activating business processes or changing the state of the
model. Based on the user interactions and the outcome of the model actions, the controller responds by selecting
an appropriate view.

Q 04: How to package a module, which is, shared by both the Web and the EJB modules? SF
A 04: Package the modules shared by both Web and EJB modules as dependency jar files. Define the Class-Path:

property in the MANIFEST.MF file in the EJB jar and the Web war files to refer to the shared modules. [Refer Q7
in Enterprise section for diagram: J2EE deployment structure].

The MANIFEST.MF files in the EJB jar and Web war modules should look like:

Manifest-Version: 1.0
Created-By: Apache Ant 1.5
Class-Path: myAppsUtil.jar

Enterprise – J2EE Overview

101

Q 05: Why use design patterns in a J2EE application? DP
A 05:

 They have been proven. Patterns reflect the experience and knowledge of developers who have successfully
used these patterns in their own work. It lets you leverage the collective experience of the development
community.

Example Session facade and value object patterns evolved from performance problems experienced due to
multiple network calls to the EJB tier from the Web tier. Fast lane reader and Data Access Object patterns exist
for improving database access performance. The flyweight pattern improves application performance through
object reuse (which minimizes the overhead such as memory allocation, garbage collection etc).

 They provide common vocabulary. Patterns provide software designers with a common vocabulary. Ideas

can be conveyed to developers using this common vocabulary and format.

Example Should we use a Data Access Object (DAO)? How about using a Business Delegate? Should we
use Value Objects to reduce network overhead? Etc.

If you are applying for a senior developer or an architect level role, you should at least know the more common
design patterns like:

-- Factory - Q52 in Java section, Q11 in How would you go about… section.
-- Singleton - Q51 in Java section, Q11 in How would you go about… section.
-- Proxy - Q52, Q62 in Enterprise Java section, Q11 in How would you go about… section.
-- Command - Q58 in Java section, Q27, Q110, Q116 in Enterprise Java section, Q11 in How would you go about… section.
-- Template method - Q110, Q116 in Enterprise Java section, Q11 in How would you go about… section.
-- Decorator - Q24 in Java section, Q11 in How would you go about… section.
-- Strategy - Q64 in Java section, Q11 in How would you go about… section.
-- Adapter - Q110, Q116 in Enterprise Java section, Q11 in How would you go about… section.
-- Façade - Q84 in Enterprise Java section, Q11, Q12, Q15 (i.e. in SOA) in How would you go about… section.
-- Business delegate – Q83 in Enterprise Java section.
-- MVC - Q63 in Java section, Q3, Q27 in Enterprise Java sections.
-- DAO - Q41 in Enterprise Java section.

Q 06: What is the difference between a Web server and an application server? SF
A 06:

Web Server Application Server
Supports HTTP protocol. When the Web server receives
an HTTP request, it responds with an HTTP response,
such as sending back an HTML page (static content) or
delegates the dynamic response generation to some
other program such as CGI scripts or Servlets or JSPs in
the application server.

Exposes business logic and dynamic content to the client
through various protocols such as HTTP, TCP/IP, IIOP, JRMP etc.

Uses various scalability and fault-tolerance techniques. Uses various scalability and fault-tolerance techniques. In addition
provides resource pooling, component life cycle management,
transaction management, messaging, security etc.

Provides services for components like Web container for servlet
components and EJB container for EJB components.

Q 07: What are ear, war and jar files? What are J2EE Deployment Descriptors? SF FAQ
A 07: The ear, war and jar are standard application deployment archive files. Since they are a standard, any application

server (at least in theory) will know how to unpack and deploy them.

An EAR file is a standard JAR file with an “.ear” extension, named from Enterprise ARchive file. A J2EE
application with all of its modules is delivered in EAR file. JAR files can’t have other JAR files. But EAR and WAR
(Web ARchive) files can have JAR files.

An EAR file contains all the JARs and WARs belonging to an application. JAR files contain the EJB classes and
WAR files contain the Web components (JSPs, Servlets and static content like HTML, CSS, GIF etc). The J2EE
application client's class files are also stored in a JAR file. EARs, JARs, and WARs all contain one or more XML-
based deployment descriptor(s).

Enterprise – J2EE Overview

102

Deployment Descriptors

A deployment descriptor is an XML based text file with an “.xml” extension that describes a component's
deployment settings. A J2EE application and each of its modules has its own deployment descriptor. Pay attention
to elements marked in bold in the sample deployment descriptor files shown below.

MyApps.ear

log4j.jar (3rd party jars)

META-INF
application.xml

deployment descriptor

MANIFEST.MF
Manifest-Version: 1.0
Craeted-By: Apache Ant

MyAppsCommon.jar , MyAppsUtil.jar
(shared by both EJB and Web modules)

MyAppsEJB.jar

MyAppsWeb.war

MANIFEST.MF
class-path: log4j.jar MyAppsCommon.jar MyAppsUtil.jar

ejb-jar.xml
deployment descriptor

META-INF

class files, properties files,configuration files etc

class files, properties files,configuration files etc

ejb classes , non-ejb class etc

META-INF

WEB-INF

JSP, HTML, CSS, GIF (can have
sub-folders)

MANIFEST.MF
class-path: log4j.jar MyAppsCommon.jar MyAppsUtil.jar

web.xml
deployment descriptor

lib

classes

struts.jar, crimson.jar
3rd party jar files

class files

J2EE deployment structure (ear, war, jar)

public
directory
(document
root)

private
directory

 application.xml: is a standard J2EE deployment descriptor, which includes the following structural
information: EJB jar modules, Web war modules, <security-role> etc. Also since EJB jar modules are
packaged as jars the same way dependency libraries like log4j.jar, MyAppsUtil.jar etc are packaged. The
application.xml descriptor will distinguish between these two types of jar files by explicitly specifying the EJB
jar modules.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
 "http://java.sun.com/j2ee/dtds/application_1_2.dtd">
<application id="Application_ID">
 <display-name>MyApps</display-name>
 <module id="EjbModule_1">
 <ejb>MyAppsEJB.jar</ejb>
 </module>

 <module id="WebModule_1">
 <web>
 <web-uri>MyAppsWeb.war</web-uri>

Enterprise – J2EE Overview

103

 <context-root>myAppsWeb</context-root>
 </web>
 </module>

 <security-role id="SecurityRole_1">
 <description>Management position</description>
 <role-name>manager</role-name>
 </security-role>
</application>

 ejb-jar.xml: is a standard deployment descriptor for an EJB module.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
 "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">
<ejb-jar id="ejb-jar_ID">
 <display-name>MyAppsEJB</display-name>

 <enterprise-beans>
 <session id="ContentService">
 <ejb-name>ContentService</ejb-name>
 <home>ejb.ContentServiceHome</home>
 <remote>ejb.ContentService</remote>
 <ejb-class>ejb.ContentServiceBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>
 </session>

 <entity>
 <ejb-name>Bid</ejb-name>
 <home>ejb.BidHome</home>
 <remote>ejb.Bid</remote>
 <ejb-class>ejb.BidBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>ejb.BidPK</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>bid</field-name></cmp-field>
 <cmp-field><field-name>bidder</field-name></cmp-field>
 <cmp-field><field-name>bidDate</field-name></cmp-field>
 <cmp-field><field-name>id</field-name></cmp-field>
 </entity>
 </enterprise-beans>

 <!-- OPTIONAL -->

 <assembly-descriptor>

 <!-- OPTIONAL, can be many -->
 <security-role>
 <description>
 Employee is allowed to ...
 </description>
 <role-name>employee</role-name>
 </security-role>

 <!-- OPTIONAL. Can be many -->
 <method-permission>
 <!-- Define role name in "security-role" -->
 <!-- Must be one or more -->
 <role-name>employee</role-name>
 <!-- Must be one or more -->
 <method>
 <ejb-name>ContentService</ejb-name>
 <!-- * = all methods -->
 <method-name>*</method-name>
 </method>

 <method>
 <ejb-name>Bid</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 </method-permission>
 <!-- OPTIONAL, can be many. How the container is to manage -->
 <!-- transactions when calling an EJB's business methods -->

Enterprise – J2EE Overview

104

 <container-transaction>
 <!-- Can specify many methods at once here -->
 <method>
 <ejb-name>Bid</ejb-name>
 <method-name>*</method-name>
 </method>
 <!-- NotSupported|Supports|Required|RequiresNew|Mandatory|Never -->
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

</ejb-jar>

 web.xml: is a standard deployment descriptor for a Web module.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
 <display-name>myWebApplication</display-name>
 <context-param>
 <param-name>GlobalContext.ClassName</param-name>
 <param-value>web.GlobalContext</param-value>
 </context-param>

 <servlet>
 <servlet-name>MyWebController</servlet-name>
 <servlet-class>web.MyWebController</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/config/myConfig.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>MyWebController</servlet-name>
 <url-pattern>/execute/*</url-pattern>
 </servlet-mapping>

 <error-page>
 <error-code>400</error-code>
 <location>/WEB-INF/jsp/errors/myError.jsp</location>
 </error-page>

 <taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/lib/taglib/struts/struts-bean.tld</taglib-location>
 </taglib>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Employer</web-resource-name>
 <description></description>
 <url-pattern>/execute/employ</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 <http-method>PUT</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description></description>
 <role-name>advisor</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>FBA</realm-name>
 <form-login-config>
 <form-login-page>/execute/MyLogon</form-login-page>
 <form-error-page>/execute/MyError</form-error-page>
 </form-login-config>
 </login-config>

Enterprise – J2EE Overview

105

 <security-role>
 <description>Advisor</description>
 <role-name>advisor</role-name>
 </security-role>

</web-app>

Q 08: Explain J2EE class loaders? SF
A 08: J2EE application server sample class loader hierarchy is shown below. (Also refer to Q5 in Java section). As per

the diagram the J2EE application specific class loaders are children of the “System –classpath” class loader.
When the parent class loader is above the “System –classpath” class loader in the hierarchy as shown in the
diagram (i.e. bootstrap class loader or extensions class loader) then child class loaders implicitly have visibility to
the classes loaded by its parents. When a parent class loader is below a “System -classpath” class loader in the
hierarchy then the child class loaders will only have visibility into the classes loaded by its parents only if they
are explicitly specified in a manifest file (MANIFEST.MF) of the child class loader.

Example As per the diagram, if the EJB module MyAppsEJB.jar wants to refer to MyAppsCommon.jar and
MyAppsUtil.jar we need to add the following entry in the MyAppsEJB.jar’s manifest file MANIFEST.MF.

class-path: MyAppsCommon.jar MyAppsUtil.jar

Bootstrap(JVM)
(rt.jar, i18.jar)

Extensions(JVM)
(lib/ext)

System(JVM)
(-classpath)

Application class
loader (EAR)

Application class
loader (EAR)

EJB class loader EJB class loader

WAR class
loader

WAR class
loader

WAR class
loader

Each EAR gets its own
instance of class loader

All the EJB jars in a ear file share
the same EJB class loader.

Each WAR gets its own instance of
class loader. The WEB-INF/lib libraries
are specific to each WAR

Note: Application vendor's Server class loader hierarchy might slightly vary
.

J2EE application server sample class loader hierarchy

MyApps.ear

MyAppsUtil.jar

MyAppsCommon.jar

MyAppsEJB.jar

MyAppsWeb.war

This is because the application (EAR) class loader loads the MyAppsCommon.jar and MyAppsUtil.jar. The EJB
class loader loads the MyAppsEJB.jar, which is the child class loader of the application class loader. The WAR
class loader loads the MyAppsWeb.war.

Every J2EE application or EAR gets its own instance of the application class loader. This class loader is also
responsible for loading all the dependency jar files, which are shared by both Web and EJB modules. For
example third party libraries like log4j, utility (e.g. MyAppsUtility.jar) and common (e.g. MyAppsCommon.jar) jars
etc. Any application specific exception like MyApplicationException thrown by an EJB module should be caught by
a Web module. So the exception class MyApplicationException is shared by both Web and EJB modules.

The key difference between the EJB and WAR class loader is that all the EJB jars in the application share the
same EJB class loader whereas WAR files get their own class loader. This is because the EJBs have inherent
relationship between one another (i.e. EJB-EJB communication between EJBs in different applications but hosted
on the same JVM) but the Web modules do not. Every WAR file should be able to have its own WEB-INF/lib third

Enterprise – J2EE Overview

106

party libraries and need to be able to load its own version of converted logon.jsp servlet. So each Web module is
isolated in its own class loader.

So if two different Web modules want to use two different versions of the same EJB then we need to have two
different ear files. As was discussed in the Q5 in Java section the class loaders use a delegation model where
the child class loaders delegate the loading up the hierarchy to their parent before trying to load it itself only if the
parent can’t load it. But with regards to WAR class loaders, some application servers provide a setting to turn this
behavior off (DelegationMode=false). This delegation mode is recommended in the Servlet 2.3 specification.

As a general rule classes should not be deployed higher in the hierarchy than they are supposed to exist. This is because
if you move one class up the hierarchy then you will have to move other classes up the hierarchy as well. This is because
classes loaded by the parent class loader can’t see the classes loaded by its child class loaders (uni-directional bottom-up
visibility).

Tech Tip #4:

Q. What do the terms internationalization(i18n) and localization(l10n) mean, and how are they related? Localization
(aka l10n, where 10 is the number of letters between the letter ‘l’ and the letter ‘n’ in the word localization) refers to the adaptation of an
application or a component to meet the language, cultural and other requirements to a specific locale (i.e. a target market).
Internationalization (aka i18n, where 18 is the number of letters between the letter ‘i’ and the letter ‘n’ in the word internationalization)
refers to the process of designing a software so that it can be localized to various languages and regions cost-effectively and easily
without any engineering changes to the software. A useful website on i18n is http://www.i18nfaq.com.

Q. What are the characteristics of an internalized program?

-- The same executable can run worldwide without having to recompile for other or new languages.
-- Text messages and GUI component labels are not hard-coded in the program. Instead they are stored outside the
 source code in “.properties” files and retrieved dynamically based on the locale.
-- Culturally dependent data such as dates and currencies, appear in formats that conform to end user's region and
 language. (e.g. USA mm/dd/yyyy, AUS dd/mm/yyyy).

Q. What are the different types of data that vary with region or language?

Messages, dates, currencies, numbers, measurements, phone numbers, postal addresses, tax calculations, graphics,
icons, GUI labels, sounds, colors, online help etc.

Q. What is a Locale? A Locale has the form of xx_YY (xx – is a two character language code && YY is a two character country
code. E.g. en_US (English – United States), en_GB (English - Great Britain), fr_FR (french - France). The java.util.Locale class can be
used as follows:

Locale locale1 = new Locale(“en”, “US”);
Locale locale2 = Locale.US;
Locale locale3 = new Locale(“en”);
Locale locale4 = new Locale(“en”, “US”, “optional”); // to allow the possibility of more than one
 // locale per language/country combination.

locale2.getDefault().toString(); // en_US
locale2.getLanguage(); // “en”
locale2.getCountry(); // ”US”

Resource bundles can be created using the locale to externalize the locale-specific messages:

Message_en_US.properties
 Greetings = Hello

Message_fr_FR.properties
 Greetings = Bonjour

These resource bundles reside in classpath and gets read at runtime based on the locale.

Enterprise – J2EE Overview

107

Locale currentLoc = new Locale(“fr”, “FR”);
ResourceBundle messages = ResourceBundle.getBundle(“Message”, currentLoc);
System.out.println(messages.getString(“Greetings”)); //prints Bonjour

Note: When paired with a locale, the closest matching file will be selected. If no match is found then the default file will be the
Message.properties. In J2EE, locale is stored in HTTP session and resource bundles (stored as *.properties files under WEB-
INF/classes directory) are loaded from the web.xml deployment descriptor file. Locale specific messages can be accessed via tags (e.g.
Struts, JSTL etc).

The java.text package consists of classes and interfaces that are useful for writing internationalized programs. By default they use the
default locale, but this can be overridden. E.g. NumbeFormat, DateFormat, DecimalFormat, SimpleDateFormat, MessageFormat,
ChoiceFormat, Collator (compare strings according to the customary sorting order for a locale) etc.

DateFormat:
Date now = new Date();
Locale locale = Locale.US;

String s = DateFormat.getDateInstance(DateFormat.SHORT, locale).format(now);

NumberFormat:
NumberFormat usFormat = NumberFormat.getInstance(Locale.US);
String s1 = usFormat.format(1785.85); // s1 1,785.85

NumberFormat germanyFormat = NumberFormat.getInstance(Locale.GERMANY);
String s2 = germanyFormat.format(1785.85); // s2 1.785,85

To use default locale:
NumberFormat.getInstance();
NumberFormat.getPercentInstance();
NumberFormat.getCurrencyInstance();

To use specific locale:
NumberFormat.getInstance(Locale.US);
NumberFormat.getCurrencyInstance(myLocale);

Enterprise – Servlet

108

Enterprise - Servlet

Desktop applications (e.g. Swing) are presentation-centric, which means when you click a menu item you know which window would
be displayed and how it would look. Web applications are resource-centric as opposed to being presentation-centric. Web applications
should be thought of as follows: A browser should request from a server a resource (not a page) and depending on the availability of that
resource and the model state, server would generate different presentation like a regular “read-only” web page or a form with input
controls, or a “page-not-found” message for the requested resource. So think in terms of resources, not pages.

Servlets and JSPs are server-side presentation-tier components managed by the web container within an application server. Web
applications make use of http protocol, which is a stateless request-response based paradigm.

Q 09: What is the difference between CGI and Servlet? SF
A 09:

Traditional CGI
(Common Gateway Interface)

Java Servlet

Traditional CGI creates a heavy weight process to handle each
http request. N number of copies of the same traditional CGI
programs is copied into memory to serve N number of
requests.

Spawns a lightweight Java thread to handle each http
request. Single copy of a type of servlet but N number of
threads (thread sizes can be configured in an application
server).

Servlets (request/response paradigm)

Client Application Server
on host “localhost” port:8080

internet

Presentation
Tier

Servlets

Web Container

RM
I/I

IO
P

JN
DI

JT
A

JD
BC

JM
S

Ja
va

M
ail

JA
F

Web Browser-1
client-1 Deploment descriptor

WEB-INF/web.xml

Deploment descriptor
WEB-INF/jbossweb.xml

Web Browser-3
client-2

CRMServlet

single instance of CRMServlet handles requests from
multiple browser instances by assigning a thread

from the thread-pool for each request.

Client Tier
HTML, CSS,

JavaScript, images,
etc.

Web Browser-2
client-2

Http response

Http request

request - 2

request -1

request - 3

response - 1

response - 2

response - 3

<html>
 <h1>Output to Browser</h1>
 <body>Written as html from a Servlet<body>
</html>

http://myserver:8080/myWebCtxt/crm.do

package com.devx;

//import statements

public class CRMServlet extends HttpServlet {

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 ServletOutputStream out = resp.getOutputStream();
 out.setContentType(“text/html”);
 out.println("<html><h1>Output to Browser</h1>");
 out.println("<body>Written as html from a Servlet<body></html>");
 }

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 doPost(req, resp);
 }
 }

request

response

<?xml version="1.0" encoding="UTF-8"?>
<web-app >
 <servlet>
 <servlet-name>CRMServlet</servlet-name>
 <servlet-class>com.devx.CRMServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>CRMServlet</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
</web-app>

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web>
 <context-root>myWebCtxt</context-root>
</jboss-web>

Enterprise – Servlet

109

A Servlet is a Java class that runs within a web container in an application server, servicing multiple client requests
concurrently forwarded through the server and the web container. The web browser establishes a socket connection to
the host server in the URL , and sends the HTTP request. Servlets can forward requests to other servers and servlets
and can also be used to balance load among several servers.

Q. Which protocol is used to communicate between a browser and a servlet? A browser and a servlet communicate
using the HTTP protocol (a stateless request/response based protocol).

Q. What are the two objects a servlet receives when it accepts a call from its client? A “ServletRequest”, which
encapsulates client request from the client and the “ServletResponse”, which encapsulates the communication from the
servlet back to the client.

In addition to both HTTP request and response, HTTP headers are informational additions that convey both essential and
non-essential information. For example: HTTP headers are used to convey MIME (Multipurpose Internet Mail Extension)
type of an HTTP request and also to set and retrieve cookies etc.

Content-Type: text/html
Set-Cookie:AV+USERKEY=AVSe5678f6c1tgfd;expires=Monday, 4-Jul-2006 12:00:00; path=/;domain=.lulu.com;

response.setContentType(“text/html”);
response.addCookie(myCookie);

Q. How would you get the browser to request for an updated page in 10 seconds from the server?

response.setHeader(“Refresh”, 10);

Refresh does not stipulate continual updates. It just specifies in how many seconds the next update should take place.
So, you have to continue to supply “Refresh” in all subsequent responses. The “Refresh” header is very useful because it
lets the servlet display a partial list of items or an introductory image to be displayed while the complete results or real
page is displayed later (say in 10 seconds). You can also specify another page to be reloaded as follows:

respose.setHeader(“Refresh”, “10;URL=http://localhost:8080/myCtxt/crm.do”);

The above setting can be directly set in the <HEAD> section of the HTML page as shown below as opposed to setting it
in the servlet. This is useful for static HTML pages.

<META HTTP-EQUIV=”Refresh” CONTENT=”5; URL=http://localhost:8080/myCtxt/crm.do” />

Q. What can you do in your Servlet/JSP code to tell browser not to cache the pages? Another useful header is the
Cache-Control as shown below:

response.setHeader(“Cache-Control”,“no-cache”); //document should never be cached. HTTP 1.1
response.setHeader(“Pragma”, “no-cache”); //HTTP 1.0
response.setDateHeader(“Expires”, 0);

Q. What is the difference between request parameters and request attributes?

Request parameters Request attributes
Parameters are form data that are sent in the request
from the HTML page. These parameters are generally
form fields in an HTML form like:

<input type=”text” name=”param1” />
<input type=”text” name=”param2” />

Form data can be attached to the end of the
URL as shown below for GET requests

http://MyServer:8080/MyServlet?
param1=Peter¶m2=Smith

or sent to the sever in the request body for
POST requests. Sensitive form data should be
sent as a POST request.

Once a servlet gets a request, it can add additional attributes,
then forward the request off to other servlets or JSPs for
processing. Servlets and JSPs can communicate with each
other by setting and getting attributes.

request.setAttribute(“calc-value”, new Float(7.0));
request.getAttribute(“calc-value”);

You can get them but cannot set them.

request.getParameter("param1");
request.getParameterNames();

You can both set the attribute and get the attribute. You can
also get and set the attributes in session and application
scopes.

Enterprise – Servlet

110

Q. What are the different scopes or places where a servlet can save data for its processing? Data saved in a
request-scope goes out of scope once a response has been sent back to the client (i.e. when the request is completed).

//save and get request-scoped value
request.setAttribute(“calc-value”, new Float(7.0));
request.getAttribute(“calc-value”);

Data saved in a session-scope is available across multiple requests. Data saved in the session is destroyed when the
session is destroyed (not when a request completes but spans several requests).

//save and get session-scoped value
HttpSession session = request.getSession(false);
If(session != null) {
 session.setAttribute(“id”, “DX12345”);
 value = session.getAttribute(“id”);
}

Data saved in a ServletContext scope is shared by all servlets and JSPs in the context. The data stored in the servlet
context is destroyed when the servlet context is destroyed.

//save and get an application-scoped value
getServletContext().setAttribute(“application-value”, “shopping-app”);
value = getServletContext().getAttribute(“application-value”);

Q. Which code line should be set in a response object before using the PrintWriter or the OutputStream? You
need to set the content type using the setContentType(…) method.

//to return an html
response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
out.println(“…….”);

//to return an image
response.setContentType(“image/gif”);

How does a Servlet differ from an Applet?

Applet Servlet
Applets execute on a browser. Servlets execute within a web container in an Application Server.
Applets have a graphical user interface. Servlets do not have a graphical user interface.

Q 10: HTTP is a stateless protocol, so, how do you maintain state? How do you store user data between requests? SF

PI BP FAQ
A 10: This is a commonly asked interview question. The “http protocol” is a stateless request/response based protocol.

You can retain the state information between different page requests as follows:

HTTP Sessions are the recommended approach. A session identifies the requests that originate from the same
browser during the period of conversation. All the servlets can share the same session. The JSESSIONID is
generated by the server and can be passed to client through cookies, URL re-writing (if cookies are turned off) or
built-in SSL mechanism. Care should be taken to minimize size of objects stored in session and objects
stored in session should be serializable. In a Java servlet the session can be obtained as follows: CO

HttpSession session = request.getSession(true); //returns a current session or a new session

//To put/get a value in/from the session
Name name = new Name(“Peter”);
session.setAttribute(“Firstname”, name); //session.putValue(…) is deprecated as of 2.2

session.getAttribute(“Firstname”);//get a value. session.getValue(…) is deprecated

//If a session is no longer required e.g. user has logged out, etc then it can be invalidated.
session.invalidate();

//you can also set the session inactivity lease period on a per session basis
session.setMaxInactiveInterval(300);//resets inactivity period for this session as 5 minutes

Enterprise – Servlet

111

1. Initial Request[No session] JSESSIONID Name Value

xsder12345 Firstname Peter

xsder12345 LastName Smith

A new session is created on the Server
side with JSESSIONID where
state can be maintained as

name/value pair.

Client
(Browser)

Server

2. JSESSIONID is passed to client with
the response through

cookies or URL re-writing

3. Client uses the JSESSIONID
for subsequent requests

retrieve stored state information for the

supplied JSESSIONID

Session Management

Q. Session tracking uses cookies by default. What would you do if the cookies are turned off?

If cookies are turned off, you can still enable session tracking using URL rewriting. This involves including the
session ID within the link as the name/value pair as shown below.

http://localhost:8080/myWebCtxt/purchase.do;jsessionid=4FB61319542B5D310B243E4BDD6DC64B

Adding session ID to each and every link is cumbersome and hence is simplified by the following methods:
response.encodeURL(givenURL) to associate a session ID with a given URL and if you are using redirection
then response.encodeRedirectURL(givenURL).

//set a value in the session
public class CRMServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws
 ServletException, IOException {
 req.getSession().setAttribute("key", "ItemNo-1245");
 String url = resp.encodeURL("/myWebCtxt/purchase.do");

 PrintWriter pw = resp.getWriter();
 pw.println("<html>Sample encoded URL -->purchase</html>");
 }
}

//retrieve the previously set value from the session
public class PurchaseServlet extends HttpServlet {
 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws
 ServletException, IOException {
 String value = (String)req.getSession().getAttribute("key");

 PrintWriter pw = resp.getWriter();
 pw.println("<html>Item to purchase is --> " + value +"</html>");
 }
}

When you invoke the method encodeURL(givenURL) with the cookies turned on, then session ID is not appended
to the URL. Now turn the cookies off and restart the browser. If you invoke the encodeURL(givenURL) with the
cookies turned off, the session ID is automatically added to the URL as follows:

http://localhost:8080/myWebCtxt/purchase.do;jsessionid=4FB61319542B5D310B243E4BDD6DC64B

Q. What is the difference between using getSession(true) and getSession(false) methods?

getSession(true): This method will check whether there is already a session exists for the user. If a session
exists, it returns that session object. If a session does not already exist then it creates a new session for the user.

getSession(false): This method will check whether there is already a session exists for the user. If a session
exists, it returns that session object. If a session does not already exist then it returns null.

Enterprise – Servlet

112

Sessions can be timed out (configured in web.xml) or manually invalidated.

Hidden Fields on the pages can maintain state and they are not visible on the browser. The server treats both
hidden and non-hidden fields the same way.

<INPUT type=”hidden” name=”Firstname” value=”Peter”>
<INPUT type=”hidden” name=”Lastname” value=”Smith”>

The disadvantage of hidden fields is that they may expose sensitive or private information to others.

URL re-writing will append the state information as a query string to the URL. This should not be used to maintain
private or sensitive information.

Http://MyServer:8080/MyServlet?Firstname=Peter&Lastname=Smith

Cookies: A cookie is a piece of text that a Web server can store on a user’s hard disk. Cookies allow a website to
store information on a user’s machine and later retrieve it. These pieces of information are stored as name-value
pairs. The cookie data moves in the following manner:

 If you type the URL of a website into your browser, your browser sends the request to the Web server. When
the browser does this it looks on your machine for a cookie file that URL has set. If it finds it, your browser
will send all of the name-value pairs along with the URL. If it does not find a cookie file, it sends no cookie
data.

 The URL’s Web server receives the cookie data and requests for a page. If name-value pairs are received,

the server can use them. If no name-value pairs are received, the server can create a new ID and then sends
name-value pairs to your machine in the header for the Web page it sends. Your machine stores the name
value pairs on your hard disk.

Cookies can be used to determine how many visitors visit your site. It can also determine how many are new
versus repeated visitors. The way it does this is by using a database. The first time a visitor arrives; the site
creates a new ID in the database and sends the ID as a cookie. The next time the same user comes back, the site
can increment a counter associated with that ID in the database and know how many times that visitor returns.
The sites can also store user preferences so that site can look different for each visitor.

Q. How can you set a cookie and delete a cookie from within a Servlet?

//to add a cookie
Cookie myCookie = new Cookie(“aName”, “aValue”);
response.addCookie(myCookie);

//to delete a cookie
myCookie.setValue(“aName”, null);
myCookie.setMax(0);
myCookie.setPath(“/”);
response.addCookie(myCookie);

Q. Which mechanism to choose?

State
mechanism

Description

HttpSession There is no limit on the size of the session data kept.
 The performance is good.
 This is the preferred way of maintaining state. If we use the HTTP session with the application server’s

persistence mechanism (server converts the session object into BLOB type and stores it in the
Database) then the performance will be moderate to poor.

Note: When using HttpSession mechanism you need to take care of the following points:

 Remove session explicitly when you no longer require it.
 Set the session timeout value.
 Your application server may serialize session objects after crossing a certain memory limit. This is

expensive and affects performance. So decide carefully what you want to store in a session.

Hidden fields There is no limit on size of the session data.
 May expose sensitive or private information to others (So not good for sensitive information).
 The performance is moderate.

URL rewriting There is a limit on the size of the session data.

Enterprise – Servlet

113

 Should not be used for sensitive or private information.
 The performance is moderate.

Cookies There is a limit for cookie size.

 The browser may turn off cookies.
 The performance is moderate.

The benefit of the cookies is that state information can be stored regardless of which server the client talks to
and even if all servers go down. Also, if required, state information can be retained across sessions.

Q 11: Explain the life cycle methods of a servlet? SF FAQ
A 11: The Web container is responsible for managing the servlet’s life cycle. The Web container creates an instance of

the servlet and then the container calls the init() method. At the completion of the init() method the servlet is in
ready state to service requests from clients. The container calls the servlet’s service() method for handling each
request by spawning a new thread for each request from the Web container’s thread pool [It is also possible to
have a single threaded Servlet, refer Q16 in Enterprise section]. Before destroying the instance the container will
call the destroy() method. After destroy() the servlet becomes the potential candidate for garbage collection.

S e rv le t L ife C yc le

in it()

s e rv ic e ()

d e s tro y ()

ca lle d o n c e

c a lle d o n ce

in s ta n tia te
& c a ll in it()

re a d y to s e rve re q u e s ts

th re a d 1 : c lie n t re q u e s t
th re a d 2 : c lie n t re q u e s t
th re a d 3 : c lie n t re q u e s t

h a n d le m u ltip le
re q u e s ts a n d s e n d
re s p o n s e .

Q. What would be an effective use of the Servlet init() method? One effective use of the Servlet init() method
is the creation and caching of thread-safe resource acquisition mechanisms such, as JDBC DataSources, EJB
Homes, and Web Services SOAP Mapping Registry.

Q. How would you call a method in the EJB from a servlet?

…
MyBeanHome home = null;
…
public void init (ServletConfig config) throws ServletException {
 //1. JNDI lookup is hard coded for illustration purpose but should use a declarative
 //approach involving web.xml file and server specific deployment descriptor files because
 //if the server location changes, hardcoding may require reasonable amount of changes &
 //testing. Lookup for JBoss server is shown below:
 Properties jndiProps = new Properties();
 jndiProps.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 “org.jnp.interfaces.NamingContextFactory”);
 jndiProps.setProperty(Context.URL_PKG_PREFIXES,”org.jboss.naming:org.jnp.interfaces”);
 jndiProps.setProperty(Context.PROVIDER_URL, “jnp://localhost:1099”);
 Context ctx = new InitialContext(jndiProps);

 //2. lookup home(or localHome) interface. Shown for illustration. Should prefer using the
 //Service Locator pattern. Refer Q87 in Enterprise section.
 Object ref = ctx.lookup(“ejb/MyBean”);
 home = (MyBeanHome)PortableRemoteObject.narrow(ref, MyBeanHome.class);

}

Enterprise – Servlet

114

public void doGet(HttpServletRequest req, HttpServletResponse res)throws ServletException,
 IOException
{
 …
 //3. create a remote or a local interface
 MyBean bean = home.create();
 //4. Now you can call business method on remote interface
 bean.invokeBusinessMethod(…);
}

Q. Is it possible to share an HttpSession between a Servlet/JSP and EJB? You can pass an HttpSession as a
parameter to an EJB method only if all objects in session are serializable. This is because they are “passed-by-
value” and if any values in the HttpSession are altered inside the EJB then it won’t be reflected back to the
HttpSession in the Servlet.

Even though it is possible to pass an HttpSession object, it is a bad practice in terms of design because you are
unnecessarily coupling your presentation tier (i.e. Servlet/JSP) object with your business-tier (i.e. EJB) objects. So
rather than passing the whole, large HttpSession create a class (i.e. Plain Old Java Object) that acts as a value
object (aka Data Transfer Object – refer Q85 in Enterprise section) that holds all the data you need to pass back
and forth between your presentation tier and business tier. This approach would also be flexible enough to handle
a scenario where your EJBs in the business tier need to support a non-http based client like a stand alone Java
application or a WAP client.

Q. How does an HTTP Servlet handle client requests? All client requests are handled through the service()
method. The service method dispatches the request to an appropriate method like doGet(), doPost() etc to
handle that request.

Q 12: Explain the directory structure of a Web application? SF SE FAQ
A 12: Refer Q7 in Enterprise section for diagram: J2EE deployment structure and explanation in this section where

MyAppsWeb.war is depicting the Web application directory structure. The directory structure of a Web application
consists of two parts:

crm.war
(web archive)

META-INF

WEB-INF

*.jsp, *.html, *.css, *.gif
(can have sub-folders)

MANIFEST.MF
class-path: log4j.jar MyAppsCommon.jar MyAppsUtil.jar

web.xml
deployment descriptor

lib

classes

struts.jar, crimson.jar
3rd party jar files

class files
e.g. CRMServlet

public
directory
(document
root)

private
directory

Jboss-web.xml
application server specific deployment descriptor

Directory structure of a web application

 A public resource directory (document root): The document root is where JSP pages, client-side classes

and archives, and static Web resources are stored.

 A private directory called WEB-INF: which contains following files and directories:

 web.xml: Web application deployment descriptor.
 application server specific deployment descriptor e.g. jboss-web.xml etc.
 *.tld: Tag library descriptor files.
 classes: A directory that contains server side classes like servlets, utility classes, JavaBeans etc.
 lib: A directory where JAR (archive files of tag libraries, utility libraries used by the server side classes)

files are stored.

Enterprise – Servlet

115

Note: JSP resources usually reside directly or under subdirectories of the document root, which are directly
accessible to the user through the URL. If you want to protect your Web resources then hiding the JSP files
behind the WEB-INF directory can protect the JSP files from direct access. Refer Q35 in Enterprise section.

Q 13: What is the difference between doGet () and doPost () or GET and POST? SF SE FAQ
A 13: Prefer using doPost() because it is secured and it can send much more information to the server..

GET or doGet() POST or doPost()
The request parameters are transmitted as a query string
appended to the request. All the parameters get appended to
the URL in the address bar. Allows browser bookmarks but not
appropriate for transmitting private or sensitive information.

http://MyServer/MyServlet?name=paul

This is a security risk. In an HTML you can specify as follows:

<form name=”SSS” method=”GET” >

The request parameters are passed with the body of the
request.

More secured. In HTML you can specify as follows:

<form name=”SSS” method=”POST” >

GET was originally intended for static resource retrieval.

POST was intended for form submits where the state of the
model and database are expected to change.

GET is not appropriate when large amounts of input data are
being transferred. Limited to 1024 characters.

Since it sends information through a socket back to the
server and it won’t show up in the URL address bar, it can
send much more information to the server. Unlike doGet(), it
is not restricted to sending only textual data. It can also send
binary data such as serialized Java objects.

Q. If you want a servlet to take the same action for both GET and POST request, what would you do? You
should have doGet call doPost, or vice versa.

 protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException

 ServletOutputStream out = resp.getOutputStream();
 out.setContentType(“text/html”);
 out.println("<html><h1>Output to Browser</h1>");
 out.println("<body>Written as html from a Servlet<body></html>");
 }

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 doPost(req, resp); //call doPost() for flow control logic.
 }

Q 14: What are the ServletContext and ServletConfig objects? What are Servlet environment objects? SF
A 14: The Servlet Engine uses both interfaces. The servlet engine implements the ServletConfig interface in order to

pass configuration details from the deployment descriptor (web.xml) to a servlet via its init() method.

public class CRMServlet extends HttpServlet {
 //initializes the servlet
 public void init(ServletConfig config)throws ServletException {
 super.init(config);
 }
 …
}

ServletConfig ServletContext
The ServletConfig parameters are for a particular
Servlet. The parameters are specified in the web.xml
(i.e. deployment descriptor). It is created after a servlet
is instantiated and it is used to pass initialization
information to the servlet.

The ServletContext parameters are specified for the entire Web
application. The parameters are specified in the web.xml (i.e.
deployment descriptor). Servlet context is common to all Servlets. So
all Servlets share information through ServletContext.

Example:

Enterprise – Servlet

116

String strCfgPath = getServletConfig().getInitParameter("config");
String strServletName = getServletConfig().getServletName();

String strClassName = getServletContext().getAttribute("GlobalClassName");

Q. How can you invoke a JSP error page from a controller servlet? The following code demonstrates how an
exception from a servlet can be passed to an error JSP page.

 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws
 ServletException, IOException {
 try {
 //doSomething
 }
 catch(Exception ex) {
 req.setAttribute("javax.servlet.ex",ex);//store the exception as a request attribute.
 ServletConfig sConfig = getServletConfig();
 ServletContext sContext = sConfig.getServletContext();
 sContext.getRequestDispatcher("/jsp/ErrorPage.jsp").forward(req, resp);// forward the
 //request with the exception stored as an attribute to the “ErrorPage.jsp”.
 ex.printStackTrace();
 }
}

Q. What are servlet lifecycle events? Servlet lifecycle events work like the Swing events. Any listener interested
in observing the ServletContext lifecycle can implement the ServletContextListener interface and in the
ServletContext attribute lifecycle can implement the ServletContextAttributesListener interface. The session
listener model is similar to the ServletContext listener model (Refer Servlet spec 2.3 or later). ServletContext’s and
Session’s listener objects are notified when servlet contexts and sessions are initialized and destroyed, as well as
when attributes are added or removed from a context or session. For example: You can declare a listener in the
web.xml deployment descriptor as follows:

<listener>
 <listener-class>com.MyJDBCConnectionManager </listener-class>
</listener>

You can create the listener class as shown below:

public class MyJDBCConnectionManager implements ServletContextListener {

 public void contextInitialized(ServletContextEvent event) {
 Connection con = // create a connection
 event.getServletContext().setAttribute("con", con);
 }

 public void contextDestroyed(ServletContextEvent e) {
 Connection con = (Connection) e.getServletContext().getAttribute("con");
 try { con.close(); } catch (SQLException ignored) { } // close connection
 }
}

The server creates an instance of the listener class to receive events and uses introspection to determine what
listener interface (or interfaces) the class implements.

Q 15: What is the difference between HttpServlet and GenericServlet? SF
A 15: Both these classes are abstract but:

GenericServlet HttpServlet
A GenericServlet has a service() method to handle
requests.

The HttpServlet extends GenericServlet and adds support for HTTP
protocol based methods like doGet(), doPost(), doHead() etc. All
client requests are handled through the service() method.
The service method dispatches the request to an appropriate
method like doGet(), doPost() etc to handle that request.
HttpServlet also has methods like doHead(), doPut(), doOptions(),
doDelete(), and doTrace().

Protocol independent. GenericServlet is for servlets
that might not use HTTP (for example FTP service).

Protocol dependent (i.e. HTTP).

Enterprise – Servlet

117

Q 16: How do you make a Servlet thread safe? What do you need to be concerned about with storing data in Servlet

instance fields? CI PI BP FAQ
A 16: As shown in the figure Servlet Life Cycle in Q11 in Enterprise section, a typical (or default) Servlet life cycle

creates a single instance of each servlet and creates multiple threads to handle the service() method. The multi-
threading aids efficiency but the servlet code must be coded in a thread safe manner. The shared resources
(e.g. instance variables, utility or helper objects etc) should be appropriately synchronized or should only use
variables in a read-only manner. There are situations where synchronizing will not give you the expected results
as shown in the diagram below and to achieve the expected results you should store your values in a user session
or store them as a hidden field values. Having large chunks of code in synchronized blocks in your service or
doPost() methods can adversely affect performance and makes the code more complex.

H ow to m ake a S erv le t th read-safe?

use r 1 user 2 user 3

H eap

C R M S erv le t ins tance

p riva te in t x ;
C O N S TA N T = 5 ;

stack1

do
Po

st
()

s tack2

do
Po

st
()

s tack3

do
Po

st
()

request1
on th read1

request2
on th re ad2

request3
on th read3

pub lic c lass C R M S ervle t ex tends H ttpS e rvle t {

 p riva te sta tic fina l in t C O N S TA N T = 5 ; //im m u tab le , so th read sa fe

 //m u tab le ins tance va riab le
 p riva te in t x = 0 ; // no t th read sa fe

 p ro tected vo id doP ost(H ttpS erv le tR equest req , H ttpS erv le tR esponse resp)
 th row s S erv le tE xcep tion , IO E xcep tion {

 S e rv le tO u tpu tS tream ou t = resp .ge tO u tpu tS tream ();
 // lo ca l variab le y
 in t y = new In teger(request.ge tP aram ete r("supp liedV a lue")).in tV a lue ();

 in crem entV a lu e (y); // L in e A

 ou t.p rin tln ("<h tm l> <h1>O utpu t to B row ser< /h1>"); // L in e B
 ou t.p rin tln ("<body>X = " + g etX () + "< body>< /h tm l> "); // L in e C
 }

 p riva te vo id in crem entV a lue (in t va lue){
 x = x + va lue + C O N S TA N T ;
 }

 p riva te vo id g etX (){
 re tu rn x ;
 }
}

Lo
ca

l v
ar

iab
le

y

Lo
ca

l v
ar

iab
le

y

Lo
ca

l v
ar

iab
le

y

N o te: A s show n above , the m ethods doP ost(), in crem entV a lue () and ge tX () a re execu ted in the s tack m em ory and w ill have its ow n copy o f
loca l va riab le “y”. B u t the m em ber va riab le “x ” and im m utab le constan t “C O N S T A N T ” a re sto red in the heap m em ory. T he heap m em ory is
shared by a ll the th reads and hence the va riab le “x” is no t th read -sa fe and va riab le “C O N S T A N T” is th read sa fe because it is im m utab le (i.e
read on ly , canno t be m od ified).

W h y th e variab le “x” is n o t th read -safe? S ay the use r-1 subm its a request w ith a “supp liedV a lue ” pa ram ete r 1 and expects re tu rned a
va lue o f 6 (i.e . x + va lue + C O N S A T N T 0+1+ 5). T he user-2 subm its a request w ith a “supp liedV a lue ” pa ram ete r 2 and expects a
re tu rned va lue o f 7 (i.e . 2 + va lue + C O N S A T N T 0+2+ 5). If th read -1 from user-1 has execu ted “L ine A ” w h ich has increm ented the va lue
o f “x” to 6 and m oves to “L ine B ”. W h ile c lien t 1 is in “L ine B ” the th read-2 from user-2 is execu ting the “L ine A ” w he reby m od ify ing the va lue
o f x to 13 (i.e . x + va lue + C O N S T A N T 6 + 2 + 5) . N ow , w hen the th read-1 from use r-1 execu tes the “L ine C ”, it reads the va lue o f “x ”
inco rrectly as 13 (ins tead o f 6) because the th read-2 from clien t 2 has m od ified the va lue . E ven the th read -2 from the c lien t 2 reads the
inco rrect va lue o f 13 (instead o f 7). A lso the re a re o the r poss ib ilities such as if th read-2 w ins the race by execu ting the “L ine A ” firs t then the
user-2 m ay ge t the va lue o f e ithe r 7 and the use r-1 m ay ge t the va lue o f 13 .

H o w to p reven t th is? In th is scenario synchron iz ing the m ethods w ou ld no t a lso he lp . Y ou need to sto re the va lue “x” fo r each user
sepa ra te ly . The above th read-sa fe ty issue can be p reven ted by s to ring the va riab le “x ” in a session o r as a h idden fie ld w here each user w ill
have h is/he r ow n copy o f the va lue fo r “x” as opposed to sharing the sam e va lue from the heap m em ory.

If you jus t need a cum u la tive va lue fo r each use r like say use r-1 ge ts the va lue o f 6 (i.e 0+1+5) and the use r-2 ge ts the va lue o f 13 (i.e .
6+2+ 5) o r v ice -ve rsa i.e use r-2 ge ts the va lue o f 7 and the use r-1 ge ts the va lue 13 , th is can be ach ieved by s ligh tly m od ify ing the p rog ram
by rem oving ge tX () m e thod and chang ing the increm entV a lue (in t va lue) m e thod and m od ify ing the doP ost() m e thos as show n be low :

 p ro tected vo id doP ost(H ttpS erv le tR equest req , H ttpS e rvle tR esponse resp)
 th row s S erv le tE xcep tion , IO E xcep tion {
 … //sk ipp ing lines
 in t y = new In teger(request.ge tP a ram ete r("supp liedV a lue")).in tV a lue ();
 in t w = in crem en tV a lu e (y); // L in e A accessed in a th read safe m ann er and s to red in a lo ca l variab le “w ”. E ach
 // u ser w ill h ave h is o w n co py o f “w ”

 ou t.p rin tln ("< h tm l> <h1>O u tpu t to B row ser< /h1> "); // L ine B
 ou t.p rin tln ("< body>X = " + w + "< body> < /h tm l> "); // L ine C
 … //sk ipp ing lines
 }

 priva te synchro n ized in t increm entV a lue (in t va lue) { //s ince syn chro n ized , o n ly on e th read can access a t a tim e
 x = x + va lue + IM M U T A B LE _C O N S T A N T ;
 re tu rn x ;
 }

Enterprise – Servlet

118

Alternatively it is possible to have a single threaded model of a servlet by implementing the marker or null
interface javax.servlet.SingleThreadedModel. The container will use one of the following approaches to ensure
thread safety:

 Instance pooling where container maintains a pool of servlets.
 Sequential processing where new requests will wait while the current request is being processed.

Best practice: It is best practice to use multi-threading and stay away from the single threaded model of the
servlet unless otherwise there is a compelling reason for it. Shared resources can be synchronized, used in read-
only manner, or shared values can be stored in a session, as hidden fields or in database table. The single
threaded model can adversely affect performance and hence has been deprecated in the servlet specification 2.4.

As shown in the diagram above, threads share the heap and have their own stack space (i.e. each thread has
its own stack). This is how one thread’s invocation of a method (doGet(), doPost()) and its local variables (e.g. int y
) are kept thread safe from other threads. But the heap (e.g. int x) is not thread-safe and must be synchronized for
thread safety or stored in an HTTP session or stored as a hidden field. The variable “CONSTANT” is a read only
immutable field since it is marked as final and hence thread-safe.

Note: How do you make a Servlet thread safe? is a popular interview question.

Q. How do you get your servlet to stop timing out on a really long database query?

There are situations despite how much database tuning effort you put into a project, there might be complex
queries or a batch process initiated via a Servlet, which might take several minutes to execute. The issue is that if
you call a long query from a Servlet or JSP, the browser may time out before the call completes. When this
happens, the user will not see the results of their request. There are proprietary solutions to this problem like
asynchronous servlets in WebLogic, Async Beans in WebSphere etc but you need a solution that is portable. Let
us look at portable solutions to this issue.

Solution 1: Client-pull or client-refresh (aka server polling): You can use the <META> tag for polling the server.
This tag tells the client it must refresh the page after a number of seconds.

<META http-equiv=”Refresh” content=”10; url=”newPage.html” />

Refer Q9 in Enterprise section for question How would you get the browser to request for an updated page in
10 seconds? Once you can have the browser poll your Servlet on a regular basis to re-fetch a page, then your
servlet can check for a value of a variable say in a HttpSession to determine if the page returned will have the
results expected by the user or resend the <META> tag with a “Please wait …” message and retry fetching the
page again later.

Solution 2: J2EE Solution: Instead of spawning your own threads within your Servlet, you could use JMS (Java
Messaging Service). This involves following steps:

1. You need to have two servlets, a RequestingServlet and a DisplayingServlet. The initial client request is sent

to the RequestingServlet. Both the RequestingServlet and DisplayingServlet polled by the browser via
<META> tag discussed above or JavaScript. Both these Servlets should send the <META> tag with their
responses until final display of the query results.

2. RequestingServlet places the query on the “request” queue using JMS.

3. You need to have a MessageDrivenBean (aka MDB) say QueryProcessorMDB, which dequeues the query

from the “request” queue and performs the long-running database operation. On completion of processing
long-running database operation, the QueryProcessorMDB returns the query results to the “reply” queue (use
javax.jms.QueueSender & javax.jms.ObjectMessage). Note: MDBs are invoked asynchronously on arrival
of messages in the queue.

4. DisplayingServlet checks the “reply” queue for the query results using JMS (use javax.jms.QueueReceiver &

javax.jms.ObjectMessage) every few seconds via <META> tag described above or a JavaScript.

Advantages: Firstly implementing your long-running database operation to be invoked from onMessage() method
of your QueryProcessorMDB decouples your application whereby if a database failure occurs, the request query
message will be placed back in the “request” queue and retried again later. Secondly MDBs can be clustered
(with or without additional JVMs) to listen on the same “request” queue. This means cluster of MDBs will be
balancing the load of processing long running database operations. This can improve the throughput due to
increased processing power.

Enterprise – Servlet

119

Q 17: What is pre-initialization of a Servlet? LF
A 17: By default the container does not initialize the servlets as soon as it starts up. It initializes a servlet when it

receives a request for the first time for that servlet. This is called lazy loading. The servlet deployment descriptor
(web.xml) defines the <load-on-startup> element, which can be configured to make the servlet container load and
initialize the servlet as soon as it starts up. The process of loading a servlet before any request comes in is called
pre-loading or pre-initializing a servlet. We can also specify the order in which the servlets are initialized.

<load-on-startup>2</load-on-startup>

Q 18: What is a RequestDispatcher? What object do you use to forward a request? LF CO
A 18: A Servlet can obtain its RequestDispatcher object from its ServletContext.

//…inside the doGet() method
ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getRequestDispatcher(“/nextServlet”);//relative path of the resource

//forwards the control to another servlet or JSP to generate response. This method allows one
//servlet to do preliminary processing of a request and another resource to generate the
//response.

rd.forward(request,response);

// or includes the content of the resource such as Servlet, JSP, HTML, Images etc into the
// calling Servlet’s response.

rd.include(request, response);

What is the difference between the getRequestDispatcher(String path) method of “ServletRequest” interface and
ServletContext interface?

javax.servlet.ServletRequest
getRequestDispatcher(String path)

javax.servlet.ServletContext
getRequestDispatcher(String path)

Accepts path parameter of the servlet or JSP to be
included or forwarded relative to the request of the
calling servlet. If the path begins with a “/” then it is
interpreted as relative to current context root.

Does not accept relative paths and all path must start
with a “/” and are interpreted as relative to current context
root.

Q 19: What is the difference between forwarding a request and redirecting a request? LF DC FAQ
A 19: Both methods send you to a new resource like Servlet, JSP etc.

Client
(Browser)

Web Container

CRMServlet

CRMResultServlet

2.
forward/
include

1. request

3. response

Client
(Browser)

Web Container

CRMServlet

CRMResultServlet

1. request

3. response

new browser request

2. sendRedirect

forward() or include() sendRedirect()

Note: path supplied to RequestDispatcher will be
something like “/CRMResultServlet”

Note: path supplied to RequestDispatcher will be
something like “http://myserver:8080/myContext/
CRMResultServlet”.

forward() or include() vs sendRedirect()

Enterprise – Servlet

120

redirecting - sendRedirect() Forward
Sends a header back to the browser, which contains the name of
the resource to be redirected to. The browser will make a fresh
request from this header information. Need to provide absolute
URL path.

Forward action takes place within the server without
the knowledge of the browser. Accepts relative path
to the servlet or context root.

Has an overhead of extra remote trip but has the advantage of
being able to refer to any resource on the same or different domain
and also allows book marking of the page.

No extra network trip.

Q 20: What are the considerations for servlet clustering? DC SI
A 20: The clustering promotes high availability and scalability. The considerations for servlet clustering are:

 Objects stored in a session should be serializable to support in-memory replication of sessions. Also
consider the overhead of serializing very large objects. Test the performance to make sure it is acceptable.

 Design for idempotence. Failure of a request or impatient users clicking again can result in duplicate
requests being submitted. So the Servlets should be able to tolerate duplicate requests.

 Avoid using instance and static variables in read and write mode because different instances may exist
on different JVMs. Any state should be held in an external resource such as a database.

 Avoid storing values in a ServletContext. A ServletContext is not serializable and also the different
instances may exist in different JVMs.

 Avoid using java.io.* because the files may not exist on all backend machines. Instead use
getResourceAsStream().

Q. How to perform I/O operations in a Servlet/JSP?

Problem: Since web applications are deployed as WAR files on the application server’s web container, the full
path and relative paths to these files vary for each server.

Solution -1: You can configure the file paths in web.xml using <init-param> tags and retrieve file paths in your
Servlets/JSPs. But this technique requires changes to the web.xml deployment descriptor file, to point to the
correct path.

Solution -2: You can overcome these configuration issues by using the features of java.lang.ClassLoader and
javax.servlet.ServletContext classes. There are various ways of reading a file using the ServletContext API
methods such as getResource(String resource),getResourceAsStream(String resource), getResourcePaths(String
path) and getRealPath(String path). The getRealPath(String path) method translates virtual URL into real path
refer Q26 in Enterprise section.

//Get the file “products.xml” under the WEB-INF folder of your application as inputstream
InputStream is = config.getServletContext().getResourceAsStream(“/products.xml”);

Alternatively you can use the APIs from ClassLoader as follows. The file “products.xml” should be placed under
WEB-INF/classes directory where all web application classes reside.

//Get the URL for the file and create a stream explicitly
URL url = config.getServletContext().getResource(“/products.xml”);
BufferedReader br = new BufferedReader(new InputStreamReader(url.openStream));
 OR
//use the context class loader
URL url = Thread.currentThread().getContextClassLoader().getResource(“products-out.xml”);
BufferedWriter bw = new BufferedWriter(new FileWriter(url.getFile());

Q. How do you send a file to a browser from your web application? I.e. how do you download a file from
your web application? Files can be downloaded from a web application by using the right combination of
headers.

//set the header to a non-standard value for attachments to be saved by the browser with the
//Save-As dialog so that it is unrecognized by the browsers because often browsers try to do
//something special when they recognize the content-type.
response.setContentType(“application/x-download”);
//use Content-Disposition “attachment” to invoke “Save As” dialog and “inline” for displaying
//the file content on the browser without invoking the “Save As” dialog.
response.setHeader(“Content-disposition”, “attachment;filename=” + fileName);

Enterprise – Servlet

121

Q. How do you send a file from a browser to your web application? i.e. How do you upload a file to your
web application?

There are better and more secured ways to upload your files instead of using using web. For example FTP,
secure FTP etc. But if you need to do it via your web application then your default encoding and GET methods are
not suitable for file upload and a form containing file input fields must specify the encoding type “multipart/form-
data” and the POST method in the <form ..> tag as shown below:

<form enctype=”multipart/form-data” method=”POST” action=”/MyServlet”>
 <input type=”file” name=”products” />
 <input type=”submit” name=”Upload” value=”upload” />
</form>

When the user clicks the “Upload” button, the client browser locates the local file and sends it to the server using
HTTP POST. When it reaches your server, your implementing servlet should process the POST data in order to
extract the encoded file. Unfortunately, application servers implementing the Servlet and JSP specifications are
not required to handle the multipart/form-data encoding. Fortunately there are number of libraries available such
as Apache Commons File Upload, which is a small Java package that lets you obtain the content of the uploaded
file from the encoded form data. The API of this package is flexible enough to keep small files in memory while
large files are stored on disk in a “temp” directory. You can specify a size threshold to determine when to keep in
memory and when to write to disk.

Q 21: If an object is stored in a session and subsequently you change the state of the object, will this state change

replicated to all the other distributed sessions in the cluster? DC SI
A 21: No. Session replication is the term that is used when your current service state is being replicated across multiple

application instances. Session replication occurs when we replicate the information (i.e. session attributes) that
are stored in your HttpSession. The container propagates the changes only when you call the setAttribute(……)
method. So mutating the objects in a session and then by-passing the setAttribute(………..) will not replicate the
state change. CO

Example If you have an ArrayList in the session representing shopping cart objects and if you just call
getAttribute(…) to retrieve the ArrayList and then add or change something without calling the setAttribute(…)
then the container may not know that you have added or changed something in the ArrayList. So the session will
not be replicated.

Q 22: What is a filter, and how does it work? LF DP FAQ
A 22: A filter dynamically intercepts requests and responses to transform or use the information contained in the

requests or responses but typically do not themselves create responses. Filters can also be used to transform the
response from the Servlet or JSP before sending it back to client. Filters improve reusability by placing recurring
tasks in the filter as a reusable unit.

W e b C o n ta in e r
S e rv le t , J S P , H T M L

F il te r 2

F il te r 3

F il te r 1R
e

q
u

e
s

t

R
e

s
p

o
n

s
e

C l ie n t

F ilte r

A good way to think of Servlet filters is as a chain of steps that a request and response must go through before
reaching a Servlet, JSP, or static resource such as an HTML page in a Web application.

Enterprise – Servlet

122

The filters can be used for caching and compressing content, logging and auditing, image conversions (scaling up
or down etc), authenticating incoming requests, XSL transformation of XML content, localization of the request and
the response, site hit count etc. The filters are configured through the web.xml file as follows:

<web-app>
 <filter>
 <filter-name>HitCounterFilter</filter-name>
 <filter-class>myPkg.HitCounterFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>HitCounterFilter</filter-name>
 <url-pattern>/usersection/*</url-pattern>
 </filter-mapping>
 ...
</web-app>

The HitCounterFilter will intercept the requests from the URL pattern /usersection followed by any resource name.

Design Pattern: Servlet filters use the slightly modified version of the chain of responsibility design pattern.
Unlike the classic (only one object in the chain handle the request) chain of responsibility where filters allow
multiple objects (filters) in a chain to handle the request. If you want to modify the request or the response in the
chain you can use the decorator pattern (Refer Q11 in How would you go about… section).

Q 23: Explain declarative security for Web applications? SE
A 23: Servlet containers implement declarative security. The administration is done through the deployment descriptor

web.xml file. With declarative security the Servlets and JSP pages will be free from any security aware code.
You can protect your URLs through web.xml as shown below:

web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>PrivateAndSensitive</web-resource-name>
 <url-pattern>/private/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>executive</role-name>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- form based authorization -->
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

The user will be prompted for the configured login.jsp when restricted resources are accessed. The container also
keeps track of which users have been previously authenticated.

Benefits: Very little coding is required and developers can concentrate on the application they are building and
system administrators can administer the security settings without or with minimal developer intervention. Let’s
look at a sample programmatic security in a Web module like a servlet: CO

User user = new User();
Principal principal = request.getUserPrincipal();
if (request.isUserInRole("boss"))
 user.setRole(user.BOSS_ROLE);

Q 24: Explain the Front Controller design pattern or explain J2EE design patterns? DP FAQ
A 24: Problem: A J2EE system requires a centralized access point for HTTP request handling to support the integration

of system services like security, data validation etc, content retrieval, view management, and dispatching. When
the user accesses the view directly without going through a centralized mechanism, two problems may occur:

Enterprise – Servlet

123

 Each view is required to provide its own system services often resulting in duplicate code.
 View navigation is left to the views. This may result in shared code for view content and view navigation.
 Distributed control is more difficult to maintain, since changes will often need to be made in numerous

places.

Solution: Generally you write specific servlets for specific request handling. These servlets are responsible for
data validation, error handling, invoking business services and finally forwarding the request to a specific JSP view
to display the results to the user.

J2EE Front Controller Pattern

Client FrontController ApplicationFlowController

View

Command
(eg: Struts Action)

<<servlet>>
FrontControllerServlet

<<JSP>>
FrontControllerJSP

client
request delegates

dispatches

invokes

The Front Controller suggests that we only have one Servlet (instead of having specific Servlet for each specific
request) centralizing the handling of all the requests and delegating the functions like validation, invoking business
services etc to a command or a helper component. For example Struts framework uses the command design
pattern to delegate the business services to an action class.

Benefits

 Avoid duplicating the control logic like security check, flow control etc.
 Apply the common logic, which is shared by multiple requests in the Front controller.
 Separate the system processing logic from the view processing logic.
 Provides a controlled and centralized access point for your system.

Q 25: Briefly discuss the following patterns Composite view, View helper, Dispatcher view and Service to worker? Or

explain J2EE design patterns? DP FAQ
A 25:

 Composite View: Creates an aggregate view from atomic sub-views. The Composite view entirely focuses
on the view. The view is typically a JSP page, which has the HTML, JSP Tags etc. The JSP display pages
mostly have a side bar, header, footer and main content area. These are the sub-views of the view. The sub-
views can be either static or dynamic. The best practice is to have these sub-views as separate JSP pages
and include them in the whole view. This will enable reuse of JSP sub-views and improves maintainability
by having to change them at one place only.

Composite View

BasicView

View CompositeView

1

Enterprise – Servlet

124

 View Helper: When processing logic is embedded inside the controller or view it causes code duplication in
all the pages. This causes maintenance problems, as any change to piece of logic has to be done in all the
views. In the view helper pattern the view delegates its processing responsibilities to its helper classes. The
helper classes JavaBeans: used to compute and store the presentation data and Custom Tags: used for
computation of logic and displaying them iteratively complement each other.

Benefits Avoids embedding programming logic in the views and facilitates division of labor between Java
developers and Web page designers.

View Helper Pattern

Logic 3

With View Helpers like JavaBeans, CustomTags etc code for Logic-1
and Logic-2 are not duplicated hence more maintainable and reusable.

Servlet 1/JSP 1Servlet 1/JSP 1

Logic 1 Logic 2

Logic 3

Servlet 2/JSP 2

Logic 1 Logic 2

Without View Helpers code for Logic-1 and Logic-
2 are duplicated within different servlets/JSPs

Logic 1

JavaBeans (Servlets,JSPs)
CustomTags (JSPs only)

Logic 2

JavaBeans (Servlets,JSPs)
CustomTags (JSPs only)

Servlet 1/JSP 1

Logic 3

 Service to Worker and Dispatcher View: These two patterns are a combination of Front Controller and View
Helper patterns with a dispatcher component. One of the responsibilities of a Front Controller is choosing a
view and dispatching the request to an appropriate view. This behavior can be partitioned into a separate
component known as a dispatcher. But these two patterns differ in the way they suggest different division of
responsibility among the components.

Service to Worker Dispatcher View
Combines the front controller (Refer Q24 in Enterprise
section) and dispatcher, with views and view helpers (refer
Q25 in Enterprise section) to handle client requests and
dynamically prepares the response.

 Controllers delegate the content retrieval to the view

helpers, which populates the intermediate model
content for the view.

 Dispatcher is responsible for the view management

and view navigation.

This pattern is structurally similar to the service to worker
but the emphasis is on a different usage pattern. This
combines the Front controller and the dispatcher with the
view helpers but

 Controller does not delegate content retrieval to

view helpers because this activity is deferred to
view processing.

 Dispatcher is responsible for the view management

and view navigation

Promotes more up-front work by the front controller
and dispatcher for the authentication, authorization,
content retrieval, validation, view management and
navigation.

Relatively has a lightweight front controller and
dispatcher with minimum functionality and most of the
work is done by the view.

Enterprise – Servlet

125

Q 26: Explain Servlet URL mapping? SF
Q 26: The “URL” denotes a virtual path and “File” denotes a real path of the resource.

Servlet URL m apping

http://<hostnam e:port>/<webapp nam e>/servlet /<pathnam e>/<resourcenam e>

http://localhost:8080/m yApps/servlet/m yPath/M yServlet

URL

URL eg

SERVER_HO M E\W ebApps\m yApps\W EB-INF\C lasses\m yPath\M yServletFile

Server Root

Docum ent root

W e can define the servlet m apping in the w eb.xm l deploym net descriptor file as shown below:
<web-app>
 <servlet>
 <servlet-nam e>M yServlet</servlet-nam e>
 <servlet-class>m yPath.M yServlet</servlet-class>
 </servlet>

 <servlet-m apping>
 <servlet-nam e>M yServlet</servlet-nam e>
 <url-pattern>m ine/*.do</url-pattern>
 </servlet-m apping>
<web-app>

http://localhost:8080/m yApps/m ine/test.doURL after m apping

Note: W hich m eans every request which has a pattern of http://localhost:8080/m yApps/ m ine/*.do will be handled by
the m yPath.M yServlet class. (* denotes w ild character for any alphanum eric nam e). A lso possib le to m ap M yServlet to
the pattern of /m ine/* , the * indicates any resource nam e fo llowed by /m ine.

The webapp nam e is defined in the application.xm l deploym ent descriptor file . The <context-root > denotes the web
app nam eas shown below

<application>

 <m odule id="W ebM odule_1">
 <web>
 <web-uri>m yAppsW eb.war</web-uri>
 <context-root>m yApps</context-root>
 </web>
 < /m odule>

 <m odule id="E jbM odule_1">
 <ejb>m yEJB.jar</ejb>
 < /m odule>

</application>

How do w e get the webapp nam e "m yApps"

W ithout M apping in web.xm l

W ith M apping in w eb.xm l deploym ent descriptor file

In the Model 2 MVC architecture, servlets process requests and select JSPs (discussed in next section) for views. So
servlets act as controllers. Servlets intercept the incoming HTTP requests from the client (browser) and then dispatch the
request to the business logic model (e.g. EJB, POJO - Plain Old Java Object, JavaBeans etc). Then select the next JSP
view for display and deliver the view as HTML to client as the presentation (response). It is the best practice to use Web
tier UI frameworks like Struts, Spring MVC, JavaServer Faces (JSF), Tapestry etc, which uses proven and tested design
patterns for medium to large scale applications. Before you learn these frameworks, you should understand the web
fundamentals relating to servlets, JSPs, HTTP request/response paradigm, state management, deployment structure,
web container/application server services etc.

Enterprise – JSP

126

Enterprise - JSP

Desktop applications (e.g. Swing) are presentation-centric, which means when you click a menu item you know which window would
be displayed and how it would look. Web applications are resource-centric as opposed to being presentation-centric. Web
applications should be thought of as follows: A browser should request from a server a resource (not a page) and depending on the
availability of that resource and the model state, server would generate different presentation like a regular “read-only” web page or a
form with input controls, or a “page-not-found” message for the requested resource. So think in terms of resources, not pages.

Servlets and JSPs are server-side presentation-tier components managed by the web container within an application server. Web
applications make use of http protocol, which is a stateless request-response based paradigm. JSP technology extends the servlet
technology, which means anything you can do with a servlet you can do with a JSP as well.

Q 27: What’s wrong with Servlets? What is a JSP? What is it used for? What do you know about model 0, model 1 and

model 2 patterns? In “model 2” architecture, if you set a request attribute in your JSP, would you be able to access
it in your subsequent request within your servlet code? How do you prevent multiple submits due to repeated
“refresh button” clicks? What do you understand by the term JSP translation phase or compilation phase? SF
FAQ

A 27: As shown in Q9 in Enterprise section, writing out.println (…) statements using servlet is cumbersome and hard to
maintain, especially if you need to send a long HTML page with little dynamic code content. Worse still, every
single change requires recompilation of your servlet.

JSP (request/response paradigm)

Client
Application Server

on host “localhost” port:8080

internet

Presentation

Tier

JSP, HTML,

Images etc

Web Container

RM
I/I

IO
P

JN
DI

JT
A

JD
BC

JM
S

Ja
va

M
ail

JA
F

Web Browser-1
client-1

Web Browser-3
client-2

crm.jsp

single instance of converted servlet from the jsp
code you wrote handles requests from multiple
browser instances by assigning a thread from

the thread-pool for each request.

Client Tier
HTML, CSS,

JavaScript, Images etc

Web Browser-2
client-2

Http response

Http request

request - 2

request -1

request - 3

response - 1

response - 2

response - 3

<!-- simple JSP Page -->
<html>
 <title>Simple JSP Page</title>
 <h1>Output to Browser</h1>
 <body>
 Written as html from a JSP Servlet
 </body>
</html>

http://myserver:8080/myWebCtxt/crm.jsp <%@page contentType="text/html" %>

<!-- simple JSP Page -->
<html>
<title>Simple JSP Page</title>
<h1>Output to Browser</h1>
<body>

 Written as html from a JSP Servlet
</body>

</html>

request

response

crm_jsp.class

crm.jsp file you write is
translated into a servlet class
by the jsp engine.

translate

Note: The converted servlet crm_jsp.class will contain all the required
out.println(...) constructs, so that you do not have to write them.

Enterprise – JSP

127

Q. Did JSPs make servlets obsolete? No. JSPs did not make Servlets obsolete. Both Servlets and JSPs are
complementary technologies. You can look at the JSP technology from an HTML designer’s perspective as an
extension to HTML with embedded dynamic content and from a Java developer’s as an extension of the Java
Servlet technology. JSP is commonly used as the presentation layer for combining HTML and Java code. While
Java Servlet technology is capable of generating HTML with out.println(“<html>….. </html>”) statements, where
“out” is a PrintWriter. This process of embedding HTML code with escape characters is cumbersome and
hard to maintain. The JSP technology solves this by providing a level of abstraction so that the developer can
use custom tags and action elements, which can speed up Web development and are easier to maintain.

Q. What is a model 0 pattern (i.e. model-less pattern) and why is it not recommended? What is a model-2
 or MVC architecture?

Problem: The example shown above is based on a “model 0” (i.e. embedding business logic within JSP) pattern.
The model 0 pattern is fine for a very basic JSP page as shown above. But real web applications would have
business logic, data access logic etc, which would make the above code hard to read, difficult to maintain, difficult
to refactor, and untestable. It is also not recommended to embed business logic and data access logic in a JSP
page since it is protocol dependent (i.e. HTTP protocol) and makes it unable to be reused elsewhere like a
wireless application using a WAP protocol, a standalone XML based messaging application etc.

Solution: You can refactor the processing code containing business logic and data access logic into Java
classes, which adhered to certain standards. This approach provides better testability, reuse and reduced the
size of the JSP pages. This is known as the “model 1” pattern where JSPs retain the responsibility of a controller,
and view renderer with display logic but delegates the business processing to java classes known as Java Beans.
The Java Beans are Java classes, which adhere to following items:

 Implement java.io.Serializable or java.io.Externalizable interface.
 Provide a no-arguments constructor.
 Private properties must have corresponding getXXX/setXXX methods.

JSP page
e.g. crm.jsp with

control and display
logic

Java Beans
e.g. crm.class with
processing logic

user

internet Web Container

Database
32

1. request

4. response

Model-1 pattern

The above model provides a great improvement from the model 0 or model-less pattern, but there are still some
problems and limitations.

Problem: In the model 1 architecture the JSP page is alone responsible for processing the incoming request and
replying back to the user. This architecture may be suitable for simple applications, but complex applications will
end up with significant amount of Java code embedded within your JSP page, especially when there is significant
amount of data processing to be performed. This is a problem not only for java developers due to design ugliness
but also a problem for web designers when you have large amount of Java code in your JSP pages. In many
cases, the page receiving the request is not the page, which renders the response as an HTML output because
decisions need to be made based on the submitted data to determine the most appropriate page to be displayed.
This would require your pages to be redirected (i.e. sendRedirect (…)) or forwarded to each other resulting in a
messy flow of control and design ugliness for the application. So, why should you use a JSP page as a
controller, which is mainly designed to be used as a template?

Solution: You can use the Model 2 architecture (MVC – Model, View, Controller architecture), which is a hybrid
approach for serving dynamic content, since it combines the use of both Servlets and JSPs. It takes advantage of
the predominant strengths of both technologies where a Servlet is the target for submitting a request and
performing flow-control tasks and using JSPs to generate the presentation layer. As shown in the diagram below,
the servlet acts as the controller and is responsible for request processing and the creation of any beans or

Enterprise – JSP

128

objects used by the JSP as well as deciding, which JSP page to forward or redirect the request to (i.e. flow
control) depending on the data submitted by the user. The JSP page is responsible for retrieving any objects or
beans that may have been previously created by the servlet, and as a template for rendering the view as a
response to be sent to the user as an HTML.

JSP page
(View)

e.g. crm.jsp with
display logic

Java Beans
(Model)

e.g. crm.class with
processing logic

user

internet
Web Container

Database3

Model-2 pattern (Model, View, Controller architecture)

Servlet
(Controller)

e.g. CRMServlet with
control logic

2. instantiate

6. response
4

1. request

5

Q. If you set a request attribute in your JSP, would you be able to access it in your subsequent request
 within your servlet code? [This question can be asked to determine if you understand the request/response paradigm]

The answer is no because your request goes out of scope, but if you set a request attribute in your servlet then
you would be able to access it in your JSP.

internet

Understanding the request/response paradigm

<!D O CTYPE htm l PU BLIC "-//W 3C //D TD XHTM L
 1.0 T ransitional//EN" "http://w w w.w 3.org/TR /
 xhtm l1/D TD/xhtm l1-transitional.dtd">
<!-- sim ple JSP Page -->

<htm l>

 < title>S im ple JSP Page</title>
 <h1>O utput to B row ser</h1>

 <body>
 W ritten as htm l from a JSP. A ttribute set by
 servlet:
 < !-- retrieve attribute set by Servlet-->

request attribute set by servlet

 < /body>

</htm l>

http://localhost:8080/m yW ebCtxt/crm .do

Client
A pplication Server

on host “localhost” port:8080
H ttp response

H ttp request

...
public class C RM Servlet extends H ttpServlet {
 ...
 protected vo id doPost(H ttpServle tRequest req, H ttpServle tResponse resp)
 throws Servle tException, IO Exception {

 S tring nam e = "ServletText";

 S tring value = "request attribute set by servlet";
 req.setA ttribute(nam e, value);
 //forw ard the request to JSP
 req.getRequestD ispatcher("/crm .jsp").forw ard(req, resp);
 }
 ...
}

<% @ page contentType="text/h tm l" % >
<!D O C TYPE htm l PU BLIC "-//W 3C //DTD XHTM L 1.0
 Transitional//EN" "http ://w ww .w3.org/TR /xhtm l1/D TD/xhtm l1-transitional.dtd">
<!-- sim ple JSP Page -->
<htm l>
 <title>Sim ple JSP Page</title>
 <h1>O utput to Brow ser</h1>
 <body>
 W ritten as htm l from a JSP. A ttribute set by servle t:
 < !-- retrieve attribute set by Servlet-->
 <% = request.getA ttribute("ServletText") % >

 <% -- if you set a request attribute, it goes out of scope after response has
 been sent and a new request object w ill be created. --% >

 <% request.setA ttribute("JSPText", "A ttribute set by JSP");% >
 </body>
</htm l>

1. request

2.
forw ard

3. response

Client
Tier

Presentation
Tier

C RM Servlet.class

crm .jsp
htm l sent from JSP to the brow ser

Enterprise – JSP

129

Important: Servlets and JSPs are server side technologies and it is essential to understand the HTTP
request/response paradigm. A common misconception is that the Java code embedded in the HTML page is
transmitted to the browser with the HTML and executed in the browser. As shown in the diagram above, this is not
true. A JSP is a server side component where the page is translated into a Java servlet and executed on the
server. The generated servlet (from the JSP) outputs only HTML code to the browser.

As shown above in the diagram, if you set a request attribute in your servlet code, it can be retrieved in your JSP
code, since it is still in scope. Once the response has been sent back to the user (i.e. the browser) the current
request goes out of scope. When the user makes another request, a new request is created and the request
attribute set by the JSP code in your previous request is not available to the new request object. If you set a
session attribute in your JSP, then it will be available in your subsequent request because it is still in scope. You
can access it by calling session.getAttribute(“JSPText”).

Q. How to get a pop-up window when clicking on a button?

By using Java Script in your HTML code. The following Java Script is executed in the client side within your web
browser.

<SCRIPT type="text/javascript">
<!--
function displayWarningMessage() {

 var answer = confirm("This process may take a while, please click 'OK' to continue.");
 if (!answer){
 return false;
 }
 else{
 return disableSendBtton();
 }
}
// --></SCRIPT>

Q. What is client-side vs. server-side validation?

client-side validation (client-tier) server-side validation (presentation-tier)
Java Script is used for client-side validation.
Validation takes place in client-side within your
browser. Java Script can be used to submit your
form data after successful validation.

Form data is submitted to the server and validation is
carried out in the server.

No extra network trip is required when there are
validation errors because form does not have to
be submitted.

Extra network round trip is required when there are
validation errors because validation errors need to be
reported back to the client and the form data has to be
resubmitted.

Q. How do you prevent multiple submits due to repeated “refresh button” clicks?

Problem: Very often a user is completely unaware that a browser resends information to the server when a
“refresh button” in Microsoft Internet Explorer or a “reload button” in Netscape/Mozilla is clicked. Even if a browser
warns user, a user cannot often understand the technical meaning of the warning. This action can cause form data
to be resubmitted, possibly with unexpected results such as duplicate/multiple purchases of a same item,
attempting to delete the previously deleted item from the database resulting in a SQLException being thrown.
Non-idempotent methods are methods that cause the state to change. But some operations like reading a list of
products or customer details etc are safe because they do not alter the state of the model and the database.
These methods are known as idempotent methods.

Solution-1: You can use a Post/Redirect/Get (aka PRG) pattern. This pattern involves the following steps:

Step-1: First a user filled form is submitted to the server (i.e. a Servlet) using a “POST” (also a “GET” method).
Servlet performs a business operation by updating the state in the database and the business model.

Step-2: Servlet replies with redirect response (i.e. sendRedirect() operation as opposed to the forward() operation)
for a view page.

Step-3: Browser loads a view using a “GET” where no user data is sent. This is usually a separate JSP page,
which is safe from “multiple submits”. For e.g. reading data from a database, a confirmation page etc.

Enterprise – JSP

130

internet

Post/Redirect/Get pattern to prevent multiple submits due to clicking “refresh button”

<!-- simple JSP Page -->
<html>
 <title>Thanks for your purchase</title>
 <h1>Thanks for your purchase</h1>
 <body> </body>
</html>

Client Application Server
on host “localhost” port:8080

Http response

Http request

public class PurchaseServlet extends HttpServlet {

 protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 //code to update database and model through a business delegate
 // & data acess logic classes. Not safe to be repeated unintentionally .

 //note that sendRedirect requires an absolute path
 resp.sendRedirect("http://localhost:8080/myWebCtxt/display.jsp");
 }
}

<%@page contentType="text/html" %>
<!-- simple JSP Page -->
<html>
 <title>Thanks for your purchase</title>
 <h1>Thanks for your purchase</h1>
 <body></body>
</html>

4. response

Client
tier

Presentation
Tier

Address bar: http://localhost:8080/
myWebCtxt/display.jsp

2. redirect

Above URL is displayed on the address bar. So
repeated “refresh button” clicks calls the
display.jsp page, which is safe to do so since it
does not change any state. If you forward to
display.jsp instead of redirect then URL “http://
localhost:8080/myWebCtxt/purchase.do” is
displayed on the address bar and repeated
“refresh button” clicks can result in duplicate
purchase of the same item.

3. new (GET)request

Note: If you forward the request from the “PurchaseServlet” to the “display.jsp” instead of the redirect as shown in this diagram, then
the URL “http://localhost:8080/myWebCtxt/purchase.do” is displayed on the address bar and repeated “refresh button” clicks
can result in duplicate purchase of the same item.

PurchaseServlet.class

Display.jsp
html sent to browser from JSP

A link is clicked using the above URL
to request for a purchase order form.

Address bar: http://localhost:8080/myWebCtxt/
requestForAPurchaseForm.do public class RequestForAPurchaseFormServlet extends HttpServlet {

 //...
 protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 req.getRequestDispatcher("/requestForAPurchaseForm.jsp").forward(req, resp);
 }
}

RequestForAPurchaseFormServlet.class

<%@page contentType="text/html" %>
<html>
 <h1>Output to Browser</h1>
 <body>
 <form action="/myWebCtxt/purchase.do" method="POST">
 <input type="text" value="" />
 <input type="submit" value="submit" />
 </form>
 </body>
</html>

2.forward()requestForAPurchaseForm.jsp
<html>
 <title>Simple JSP Page</title>
 <h1>Output to Browser</h1>
 <body>
 <form action="/myWebCtxt/purchase.do" method="POST">
 <input type="text" value="" />
 <input type="submit" value="submit"/>
 </form>
 </body>
</html>

html sent to browser from JSP

1. request
(GET)

3. response

1. request (POST)

(form submit)

Address bar: http://localhost:8080/myWebCtxt/
requestForAPurchaseForm.do

Advantages: Separates the view from model updates and URLs can be bookmarked.
Disadvantage: Extra network round trip.

Solution-2: The solution-1 has to make an extra network round trip. The synchronizer token pattern can be
applied in conjunction with request forward (i.e. instead of redirect) to prevent multiple form submits with
unexpected side effects without the extra round trip.

Enterprise – JSP

131

Since this request is for a transactional page, which changes the state of your model and the
database, you should generate a use once only token.
Generate a token: 123 (e.g. jsessionid + timestamp is more secured).
Save the token: session.setAttribute(TRANSACTION_TOKEN, “123");

internet

Synchronizer Token Pattern

Client Application Server
on host “localhost” port:8080

Http response

Http request

If (tokenExistInRequest && tokenExistInSession &&
 tokenStoredInRequest == tokenStoredInSession) { //123=123 so ok
 //1. reset the token. (i.e. set it to null or increment it to 124)
 // 2. proceed with database & model update
 // 3. forward user to the “display.jsp” page.
} else {
 // 1. duplicate submit, not okay to proceed.
 // 2. forward user to the “error.jsp” page.
}

Client Tier
HTML, CSS,

JavaScript and
images

Presentation
Tier

Servlet, JSP, CSS,
Javascript and

images

Address bar: http://localhost:8080/myWebCtxt/
requestForAPurchaseForm.do
A link is clicked using the above URL to
request for a purchase order form.

Include the token “123" as a hidden field in the requested form and
send it to client.

 <form action="/myWebCtxt/purchase.do" method="POST">
 <input type=”hidden” name=”token” value=”123”>
 <input type="text" value="" />
 <input type="submit" value="submit"/>
 </form>

1. request
(GET)

3. response

PurchaseServlet.class

Address bar: http://localhost:8080/
myWebCtxt/requestForAPurchaseForm.do

RequestForAPurchaseFormServlet.class

2.
forward

requestForAPurchaseForm.jsp

1. requestSubmit the form(POST)

Display or an error page is sent to the user.

display.jsp or error.jsp

2.
forward

<html>
 <title>Thanks for your purchase</title>
 <h1>Thanks for your purchase</h1>
 <body> </body>
</html>

Address bar: http://localhost:8080/
myWebCtxt/purchase.do

3. response

123

123

123 (gets reset to null or
increment to 124)

Important: If the “refresh” button is clicked, then the form is resubmitted(duplicate submit) with the same form data to the “PurchaseServlet”.
The “if” condition will be evaluated as false since the token in the request is “123” but the token in the session would be null or 124. So the
“else” condition is evaluated and the request is forwarded to the error.jsp page. The URL address will still be “http://localhost:8080/
myWebCtxt/purchase.do” but any number of resubmits will result in “error.jsp” page. If you need to intentionally purchase the same item
again, then you need to enter via the right flow of control i.e “http://localhost:8080/myWebCtxt/requestForAPurchaseForm.do” where a new
token will be generated and same sequence of processing will occur but this time with a different session token.

The basic idea of this pattern is to set a use once only token in a “session”, when a form is requested and the
token is stored in the form as a hidden field. When you submit the form the token in the request (i.e. due to hidden
field) is compared with the token in the session. If tokens match, then reset the token in the session to null or
increment it to a different value and proceed with the model & database update. If you inadvertently resubmit the
form by clicking the refresh button, the request processing servlet (i.e. PurchaseServlet) first tests for the
presence of a valid token in the request parameter by comparing it with the one stored in the session. Since the
token was reset in the first submit, the token in the request (i.e 123) would not match with the token in the session
(i.e. null or 124). Since the tokens do not match, an alternate course of action is taken like forwarding to an
error.jsp page.

Note: Prohibit caching of application pages by inserting the following lines in your pages:
 <meta HTTP-EQUIV=”pragma” content=”no-cache” />
 <meta HTTP-EQUIV=”Expires” content=”-1” />

Enterprise – JSP

132

Q. What is a Front Controller pattern with command objects uses the command design pattern?

The model-2 MVC pattern can be further improved and simplified by using the Front Controller pattern with
command objects. In a complex Web site there are many similar input control operations like security,
internationalization, controlling and logging user’s progress through the site etc you need to perform while handling
a request. If these input control operations are scattered across multiple objects, much of these behaviors can end
up duplicated resulting in maintenance issues. The Front Controller pattern uses a single servlet, which acts as
initial point of contact for handling all the requests, including invoking services such as security (authentication and
authorization), logging, gathering user input data from the request, gathering data required by the view etc by
delegating to the helper classes, and managing the choice of an appropriate view with the dispatcher classes.
These helper and dispatcher classes are generally instances of a command design pattern (Refer Q11 in How
would you about… section) and therefore usually termed as command objects.

The Front Controller pattern centralizes services like security, internationalization, auditing, logging etc to
improve manageability, and improves reusability by moving common behavior among command objects into the
centralized controller or controller managed helper classes.

User
(Browser)

W eb Container

Database
3

Model-2 Front Controller Pattern

Front Controller

2

1. request

JSP pages
(.jsp)

Com mand
Objects

4

Java Beans
(Model)

e.g. Crm .class w ith
processing logic3

6. response

5

As was discussed briefly in Q24 in Enterprise Section, the Front Controller uses a single servlet to process all
requests, which means only one servlet controller will be declared (i.e. servlet declaration and servlet mapping) in
the web.xml and hence eliminates the need to have more than one servlet and consequently the need to have to
declare more than one servlet in the web.xml deployment descriptor.

Without the Front Controller pattern With the Front Controller pattern
Without the “Front Controller” pattern, the web.xml
would have the following set of entries for each
servlet in your application.

<servlet>
 <servlet-name>CRMServlet</servlet-name>
 <servlet-class>com.CRMServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>CRMServlet</servlet-name>
 <url-pattern>crm.do</url-pattern>
 </servlet-mapping>

So, if you say you have 50 servlets in your web
application, then you would have the above
declarations 50 times in your web.xml file. This
would make your web.xml file to be large and hard
to maintain.

<servlet>
 <servlet-name>MyControllerServlet</servlet-name>
 <servlet-class>com. MyControllerServlet </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name> MyControllerServlet </servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

There will be only one central controller servlet
configured in the web.xml file.

Example of front controller pattern: The popular request based web framework Struts uses the Front
Controller pattern, where a centralized single servlet is used for channeling all requests and creating instances of
“Action” classes for processing user requests. The Struts “Action” classes are command objects.

Enterprise – JSP

133

Q. What do you understand by the term JSP translation phase or compilation phase?

As shown below in the figure the JSPs have a translation or a compilation process where the JSP engine
translates and compiles a JSP file into a JSP Servlet. The translated and compiled JSP Servlet moves to the
execution phase (run time) where they can handle requests and send responses.

Unless explicitly compiled ahead of time, JSP files are compiled the first time they are accessed. On large
production sites, or in situations involving complicated JSP files, compilation may cause unacceptable delays to
users first accessing the JSP page. The JSPs can be compiled ahead of time (i.e. precompiled) using application
server tools/settings or by writing your own script.

Application Server

C
LIEN

T (B
row

ser)

W
eb Server

W eb Container

static docs
 (HTM L,CSS etc)

Servlet Engine

JSP Engine

Servlets

JSP Servlets

JSPs

HTTP
request

HTTP
response

JSP m oving parts

Q 28: Explain the life cycle methods of a JSP? SF FAQ
A 28:

 Pre-translated: Before the JSP file has been translated and compiled into the Servlet.
 Translated: The JSP file has been translated and compiled as a Servlet.
 Initialized: Prior to handling the requests in the service method the container calls the jspInit() to initialize the

Servlet. Called only once per Servlet instance.
 Servicing: Services the client requests. Container calls the _jspService() method for each request.
 Out of service: The Servlet instance is out of service. The container calls the jspDestroy() method.

Q. Can you have your JSP-generated servlet subclass your own servlet instead of the default HttpServlet?

Your JSP generated servlet can extend your own servlet with the directive:

<%@ page extends=”com.CRMServlet”%>

But, you should be very careful when having your JSP pages extend your own servlet class. By doing so you may
lose any advanced optimization that may be provided by your JSP engine. If you do have a compelling reason to
do so then your own superclass servlet has to fulfill the contract with the JSP engine by:

1. Implementing the HttpJspPage interface for HTTP protocol or JspPage interface. If you do not then you will

have to make sure that all your super-class servlet methods are declared as final.

2. Implementing your super-class servlet methods as follows:

• The service() method has to invoke the _jspService() method.
• The init() method has to invoke the jspInit() method.
• The destroy() method has invoke jspDestroy() method.

If the above conditions are not met, then a translation error may be thrown by your JSP engine.

Enterprise – JSP

134

Q 29: What are the main elements of JSP? What are scriptlets? What are expressions? SF
A 29: There are two types of data in a JSP page.

 Static part (i.e. HTML, CSS etc), which gets copied directly to the response by the JSP Engine.
 Dynamic part, which contains anything that can be translated and compiled by the JSP Engine.

There are three types of dynamic elements. (TIP: remember SAD as an abbreviation for Scripting, Action and
Directive elements).

Scripting Elements: A JSP element that provides embedded Java statements. There are three types of
scripting elements. They are Declaration, Expression and Scriplet elements.

1. Declaration Element: is the embedded Java declaration statement, which gets inserted at the Servlet

class level.

<%! Calendar c = Calendar.getInstance(); %>

Important: declaring variables via this element is not thread-safe, because this variable ends up in the generated Servlet
as an instance variable, not within the body of the _jspService() method. Ensure their access is either read-only or
synchronized. You can make your JSP generated servlets implement the SingleThreadModel with the directive
<%@ page isThreadSafe=”false” %> but not recommended as was discussed in Q16 in Enterprise section.

Q. Can you declare a method within your JSP page?

You can declare methods within your JSP pages as declarations, and your methods can be invoked from
within your other methods you declare, expression elements or scriptlets. These declared methods do not
have direct access to the JSP implicit objects (Refer Q32 in Enterprise section) like session, request,
response etc but you can pass them to your methods you declare as parameters. Example:

<%!
 //JSP method where implicit session object as method argument
 public String myJspMethod(HttpSession session) {
 String str = (String)session.getAttribute("someAttrName");
 return str.substring(0,3);
 }
%>

Note: Declaring methods within a JSP page is a bad practice because it will make your JSP page hard to
read, reuse and maintain.

Q. If it is not a good practice to implement methods within your JSPs then can a JSP page process
HTML form data?

Yes. Unlike servlets you do not have to implement HTTP specific methods like doGet(), doPost() etc in your
JSPs. In JSPs you can obtain the form data via the “request” implicit object within a scriptlet or expression
as follows:

<%
 String firstName = request.getParameter(“param1”);
 int units = new Integer(request.getParameter(“param2”)).intValue();
%>

2. Expression Element: is the embedded Java expression, which gets evaluated by the service method.

<%= new Date() %>

3. Scriptlet Element: are the embedded Java statements, which get executed as part of the service method.

<%
 String username = null;
 username = request.getParameter("userName"); //”request” is a JSP implicit object
%>

Important: Not recommended to use Scriptlet elements because they don’t provide reusability and
maintainability. Use custom tags like JSTL, JSF tags, etc or beans instead.

Enterprise – JSP

135

Q. How will you perform a browser redirection from a JSP page?

<% response.sendRedirect(“http://www.someAbsoluteAddess.com”); %>

or you can alter the location HTTP header attribute as follows:

<%
 response.setStatus(HttpServletResponse.SC_MOVED_PERMANENTLY);
 response.setHeader(“Location”, “/someNewPath/index.html”);
%>

Q. How do you prevent the HTML output of your JSP page being cached?

<%
 response.setHeader(“Cache-Control”, “no=store”); //HTTP 1.1
 response.setDateHeader(“Expires”, 0);
%>

Action Elements: A JSP element that provides information for execution phase.

<jsp:useBean id="object_name" class="class_name"/>
<jsp:include page="scripts/login.jsp" />

Q. How would you invoke a Servlet from a JSP? Or invoke a JSP form another JSP?

You can invoke a Servlet from a JSP through the jsp:include and jsp:forward action tags.

<jsp:include page=”/servlet/MyServlet” flush=”true” />

Refer Q31 in Enterprise section for the difference between static include (using directive element <% @ include
%>) and dynamic include (using action element <jsp:include …>).

Q. Generally you would be invoking a JSP page from a Servlet. Why would you want to invoke a Servlet
from a JSP?

JSP technology is intended to simplify the programming of dynamic textual content. If you want to output any
binary data (e.g. pdfs, gifs etc) then JSP pages are poor choice for the following reasons and should use Servlets
instead:

• There are no methods for writing raw bytes in the JspWriter object.
• During execution, the JSP engine preserves whitespace. Whitespace is sometimes unwanted (a .gif file, for

example), making JSP pages a poor choice for generating binary data. In the following example, the browser
receives unnecessary newline characters in the middle or at the end of the binary data depending on the
buffering of your output. “out” is a JspWriter implicit object.

<% out.getOutputStream().write(...some binary data...) %>
<% out.getOutputStream().write(...some more binary data...) %>

 Q. How do you forward a request to another resource (e.g. another Servlet) from within your JSP?

//Without passing any parameters
<jsp:forward page=”/anotherPage.jsp” />

Q. How does an include/forward from a JSP differ from forward/include from a servlet? How would you
pass parameters between resources?

forward / include from a JSP to another
JSP or a Servlet

forward / include from a Servlet to another
Servlet or a JSP

<%-- forward with parameters passed --%>
<jsp:forward page=”/servlet/crm.do”>
 <jsp:param name=”userName” value=”Peter” />
</jsp:forward>

Refer Q18 in Enterprise section.

Get a ServletContext object and then the RequestDispatcher
object. You can append a query string using “?” syntax with
name=value pairs separated by “&” as shown in bold.

Enterprise – JSP

136

<%-- include with parameters passed --%>
<jsp:include page=”/servlet/MyServlet” flush=”true” >
 <jsp:param name=”userName” value=”Peter” />
</jsp:include>

Alternatively you can send an appropriately scoped
(request, session or application) JavaBean or
instead of using <jsp:param > you could set
attributes via the HTTP request/session objects.

<% request.setAttribute(“userName”, ”Peter”); %>
<% session.setAttribute (“userName”, “Peter”); %>

You can retrieve the data passed as parameters
with <jsp:param …> in a servlet as follows:

request.getParameter(“userName”);

You can retrieve the data passed as HTTP request
/session attribute as follows:

request.getAttribute(“userName”);
session.getAttribute(“userName”);

ServletContext sc = this.getServletContext()
RequestDispatcher rd =
 sc.getRequestDispatcher(“/myPage?userName=Smith”);

Invoke the include() or forward() method of the request
dispatcher.

rd.include(request, response);

 or

rd.forward(request,response);

In the target Servlet or JSP, you can use the
request.getParameter(“userName”) method to retrieve the
parameter sent vai appended query string.

You can also use the setAttribute() method of the HTTP request
object.

request.setAttribute(“userName”, “Peter”);
RequestDispatcher rd =
 sc.getRequestDispatcher(“/myPage?userName=Smith”);

In the target JSP page you can use:

<% request.getAttribute(“userName”); %>

It differs from forwarding it from a Servlet in its syntax. Servlets make use of a RequestDispatcher object. Refer
Q18 in Enterprise section.

Directive Elements: A JSP element that provides global information for the translation phase. There are
three types of directive elements. They are page, include and taglib.

<%-- page directives examples: --%>
<%@ page import=”java.util.Date” %> //to import
<%@ page contentType=”text/html” %> //set content type

<%-- include directive example: --%>
<%@ include file=”myJSP” %> // to include another file

<%-- taglib directive example: --%>
<%@ taglib uri=”tagliburi” prefix=”myTag”%>

Q. How does JSP handle run-time exceptions?

You can use the attribute “errorPage” of the “page” directive to have your uncaught RuntimeExceptions
automatically forwarded to an error processing page. Example:

<%@ page errorPage=”error.jsp” %>

Note: You must always use a relative URL as the “errorPage” attribute value.

The above code redirects the browser client to the error.jsp page. Within your error.jsp page, you need to indicate
that it is an error processing page with the “isErrorPage” attribute of the “page” directive as shown below.
“exception” is an implicit object accessible only within error pages (i.e. pages with directive <%@ page
isErrorPage=”true” %>

<%@ page isErrorPage=”true” %>
<body>
 <%= exception.gerMessage() %>
</body>

Q. How will you specify a global error page as opposed to using “errorPage” and “isErrorPage”
attributes?

You could specify your error page in the web.xml deployment descriptor as shown below:

Enterprise – JSP

137

// by exception type
<error-page>
 <exception-type>java.lang.Throwable</exception-type>
 <location>/error.jsp</location>
</error-page>

//or by HTTP error codes
<error-page>
 <error-code>404</error-code>
 <location>/error404.html</location>
</error-page>

You could retrieve the java.lang.Throwable object within your error.jsp page as follows:

<%= request.getAttribute("javax.servlet.error.exception") %>

Note: You cannot use the “exception” implicit object for the global error pages. This is because of mismatch in the way servlet
(uses javax.servlet.error.exception) and JSP (uses javax.servlet.jsp.jspException) let you get the java.lang.Throwable.

Q. How can you prevent the automatic creation of a session in a JSP page?

Sessions consume resources and if it is not necessary, it should not be created. By default, a JSP page will
automatically create a session for the request if one does not exist. You can prevent the creation of useless
sessions with the attribute “session” of the page directive.

<%@ page session=”false” %>

Q 30: What are the different scope values or what are the different scope values for <jsp:usebean> ? SF FAQ
A 30:

Scope Object Comment
Page PageContext Available to the handling JSP page only.
Request Request Available to the handling JSP page or Servlet and forwarded JSP page or Servlet.
Session Session Available to any JSP Page or Servlet within the same session.
Application Application Available to all the JSP pages and Servlets within the same Web Application.

Q 31: What are the differences between static and a dynamic include? SF DC FAQ
A 31:

Static include <%@ include %> Dynamic include <jsp:include …..>
During the translation or compilation phase all the
included JSP pages are compiled into a single Servlet.

The dynamically included JSP is compiled into a separate Servlet.
It is a separate resource, which gets to process the request, and
the content generated by this resource is included in the JSP
response.

No run time performance overhead. Has run time performance overhead.

Which one to use: Use “static includes” when a JSP page does not change very often. For the pages, which change frequently,
use dynamic includes. JVM has a 64kb limit on the size of the method and the entire JSP page is rendered as a single method
(i.e. _jspService (..)). If a JSP page is greater than 64kb, this probably indicates poor implementation. When this method
reaches its JVM limit of 64kb, the JVM throws an error. This error can be overcome by splitting the JSP files and including
them dynamically (i.e. using <jsp:include…….>) because the dynamic includes generate a separate JSP Servlet for each
included file.

Note: The “dynamic include” (jsp:include) has a flush attribute. This attribute indicates whether the buffer should be flushed
before including the new content. In JSP 1.1 you will get an error if you omit this attribute. In JSP 1.2 you can omit this attribute
because the flush attribute defaults to false.

Q 32: What are implicit objects and list them? SF FAQ
A 32: Implicit objects are the objects that are available for the use in JSP documents without being declared first. These

objects are parsed by the JSP engine and inserted into the generated Servlet. The implicit objects are:

Implicit object Scope comment
request Request Refers to the current request from the client.
response Page Refers to the current response to the client.
pageContext Page Refers to the page’s environment.

Enterprise – JSP

138

session Session Refers to the user’s session.
application Application Same as ServletContext. Refers to the web application’s environment.
out Page Refers to the outputstream.
config Page same as ServletConfig. Refers to the servlet’s configuration.
page Page Refers to the page’s Servlet instance.
exception Page exception created on this page. Used for error handling. Only available if it is an

errorPage with the following directive:

<%@ page isErrorPage="true" %>

The “exception” implicit object is not available for global error pages declared through
web.xml. You can retrieve the java.lang.Throwable object as follows:

<%= request.getAttribute("javax.servlet.error.exception") %>

<%
 String username = null;
 username = request.getParameter("userName"); //”request” is an implicit object
 out.print(username); //”out” is an implicit object
%>

Note: Care should be taken not to name your objects the same name as the implicit objects. If you have your own object with
the same name, then the implicit objects take precedence over your own object.

Q. What is JSP EL (Expression Language)?

One major component of JSP 2.0 is the new expression language named EL. EL is used extensively in JSTL
(Java Standard Tag Library). However EL is a feature of JSP and not of JSTL. The EL is a language for
accessing runtime data from various sources. JSP EL variables come from one of 2 ways:

1. Implicit variables as shown below:

Implicit variable Description Example
param A collection of all

request parameters as a
single string value for
each parameter.

paramValues A collection of all
request parameters as a
string array value for
each parameter.

<c:if test=”${param.name==’peter’} “ >
 Welcome Peter !!
</c:if>

header A collection of all
request headers as a
single string value for
each header.

headerValues A collection of all
request headers as a
string array value for
each header.

${header['User-Agent']}

you must use the array syntax for the header, because the
name includes a dash. otherwise it would be interpreted as
the value of the variable expression “header.User” minus
the value of the variable named “Agent”.

Parameter values,
headers and cookies
for the current request.

cookie A collection of all
request cookies as a
single
javax.servlet.http.Cookie
instance value for each
cookie.

<c:if test=”${ ! empty cookie.userName}”>
 Welcome back
 <c:out value=”${cookie.userName.value}”>
</c:if>

Defined in web.xml initParam A collection of all
application init
parameters as a single
string value for each
parameter.

${initParam.dataSource}

Access to the JSP
objects that represent
request, response,
session, application
etc.

pageContext An instance of the
javax.servlet.jspPageCo
ntext class.

PageContext.getRequest () ${pageContext.request}
PageContext.getResponse () ${pageContext.response}
PageContext.getSession() ${pageContext.session}
PageContext.getServletContext()
 ${pageContext.servletContext}

<c:if test=”${pageContext.request.method=’POST’}”>
 ….
</c:if>

Enterprise – JSP

139

pageScope A collection of all page
scope objects.

requestScope A collection of all
request scope objects.

sessionScope A collection of all
session scope objects.

collections containing
all objects in each
specific scope. You
can use these to limit
the search for an
object to just one
scope instead of
searching all scopes,
which is the default if
no scope is specified

applicationScope A collection of all
application scope
objects.

<c:out value=”${requestScope.city}” />

<c:out value=”${sessionScope.city}” />

2. Find the first of using: pageContext.findAttribute (varname) which is like getting the first of:

 page.getAttribute(varname);
 request.getAttribute(varname);
 session.getAttribute(varname);
 application.getAttribute(varname);

<c:out value=”${city}” />

Q. What is the difference between a JspWriter denoted by the “out” implicit object and the PrintWriter
object obtained from response.getWriter() method?

JSPs should use the JspWriter denoted by the “out” implicit object for sending output back to the client. A
JspWriter is a buffered version of the PrintWriter. Refer JspWriter API for details. JspWriter also differs from a
PrintWriter by throwing java.io.IOException, which a PrintWriter does not. The advantage of throwing an exception
is that if your HTTP connection is broken for some reason, your JSP won’t sit there trying to send characters to a
broken connection.

Q 33: Explain hidden and output comments? SF
A 33: An output comment is a comment that is sent to the client where it is viewable in the browser’s source. CO

<!-- This is a comment which is sent to the client -->

A hidden comment documents a JSP page but does not get sent to the client. The JSP engine ignores a hidden
comment, and does not process any code within hidden comment tags.

<%-- This comment will not be visible to the client --%>

Q 34: Is JSP variable declaration thread safe? CI FAQ
A 34: No. The declaration of variables in JSP is not thread-safe, because the declared variables end up in the generated

Servlet as an instance variable, not within the body of the _jspService() method.

The following declaration is not thread safe: because these declarations end up in the generated servlet as
instance variables.

<%! int a = 5 %>

The following declaration is thread safe: because the variables declared inside the scriplets end up in the
generated servlet within the body of the _jspService() method as local variables.

<% int a = 5 %>

Q 35: Explain JSP URL mapping? What is URL hiding or protecting the JSP page? SF SE FAQ
A 35: As shown in the figure, the JSP resources usually reside directly or under subdirectories (e.g. myPath) of the

document root, which are directly accessible to the user through the URL. If you want to protect your Web
resources then hiding the JSP files behind the WEB-INF directory can protect the JSP files, css (cascading style
sheets) files, Java Script files, pdf files, image files, html files etc from direct access. The request should be made
to a servlet who is responsible for authenticating and authorizing the user before returning the protected JSP page
or its resources.

Enterprise – JSP

140

http://<hostname:port>/<webapp name><pathname>/<resourcename>

http://localhost:8080/myApps/myPath/myPage.jsp

URL

URL eg

SERVER_HOME\WebApps\myApps\myPath\myPage.jspFile

Server Root

Document root

JSP URL Mapping

myPage.jsp is hidden or protected. cannot be
directly accessed through URL

Hidden URL

MyApps

myPage.jsp

WEB-INF

lib

classes

myPath

myPage.jsp is directly accessible through URL
MyApps

myPath myPage.jsp

WEB-INF
lib

classes

Unhidden URL

Q 36: What is JSTL? What are custom tags? Explain how to build custom tags? SF FAQ
A 36: JSTL stands for Java Standard Tag Library and is nothing more than a set of simple and standard tag libraries that

encapsulates the core functionality commonly needed when writing dynamic JSP pages. JSTL was introduced to
allow JSP programmers to code with tags rather than embedding Java code as scriptlets.

Using scriptlets Using JSTL tags
<html>
 <head>
 <title>simple example<title>
 </head>
 <body>
 <%
 for(int i=0; i<5; i++) {
 %>
 <%= i %>

 <% } %>
 </body>
</html>

The above JSP code is hard to read and maintain.

<%@ taglib prefix=”c”
 uri=”http//java.sun.com/jstl/core”>

<html>
 <head><title>simple example<title></head>
 <body>
 <c:forEach var=”i” begin=”1” end=”5” step=”1”>
 <c:out value=”${i}”>

 </c:forEach>
 </body>
</html>

The above JSP code consists entirely of HTML & JSTL tags (in bold).

JSTL consists of 4 tag libraries:

Description Tag Prefix
(recommended)

Example

Core Tag Library – looping,
condition evaluation, basic input,
output etc.

c <c:out value=”${hello}” />
<c:if test=”${param.name=’Peter’}”> …
<c:forEach items=”${addresses}” var=”address”> …

Formatting/Internationalization
Tag Library – parse data such
as number, date, currency etc

fmt <fmt:formatNumber value=”${now.time}” />

XML Tag Library – tags to
access XML elements.

x <x:forEach select="$doc/books/book" var="n">
 <x:out select="$n/title" />
</x:forEach>

Database Tag Library – tags to sql <sql:query var=”emps” sql=”SELECT * FROM Employee”>

Enterprise – JSP

141

access SQL databases and
should be used only to create
prototype programs.

Q. What are JSP custom tags?

Custom JSP tag is a tag you define. You define how a tag, its attributes and its body are interpreted, and then
group your tags into collections called tag libraries that can be used in any number of JSP files. So basically it is a
reusable and extensible JSP only solution. The pre-built tags also can speed up Web development. CO

STEP: 1
Construct the Tag handler class that defines the behavior.

Call setXXX() methods on the Tag

doStartTag()

evaluate body of the Tag

doAfterBody()

doEndTag()

start

release()

loop

Tag Evaluation Process

Sample code using only doStartTag()

package myTagPkg;

public class MyTag extends TagSupport
{
 int attr = null;
 public int setAttr(int attr){this.attr = attr}
 public int getAttr(){return attr;}

 public int doStartTag() throws JspException {

 return SKIP_BODY;
 }

 public void release(){.....}
}

STEP: 2
The Tag library descriptor file (*.tld) maps the XML element names to the tag implementations. The code sample
MyTagDesc.tld is shown below:

<taglib>
 <tag>
 <name>tag1</name>
 <tagclass>myTagPkg.MyTag</tagclass>
 <bodycontent>empty</bodycontent>
 <attribute>
 <name>attr</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
</taglib>

STEP: 3
The web.xml deployment descriptor maps the URI to the location of the *.tld (Tag Library Descriptor) file. The code
sample web.xml file is shown below:

<web-app>
 <taglib>
 <taglib-uri>/WEB-INF/MyTagURI</taglib-uri>
 <taglib-location>/WEB-INF/tags/MyTagDesc.tld</taglib-location>

Enterprise – JSP

142

 </taglib>
</web-app>

STEP: 4
The JSP file declares and then uses the tag library as shown below:

<%@ taglib uri="/WEB-INF/MyTagURI" prefix="myTag" %>

<myTag:tag1 attr=”abc”></myTag:tag1> or < myTag:tag1 attr=”abc” />

Q 37: What is a TagExtraInfo class? SF
A 37: A TagExtraInfo class provides extra information about tag attributes to the JSP container at translation time.

 Returns information about the scripting variables that the tag makes available to the rest of the JSP page
to use. The method used is:

VariableInfo[] getVariableInfo(TagData td)

Example

<html>
 <myTag:addObjectsToArray name=”myArray” />
 <myTag:displayArray name=”myArray” />
</html>

Without the use of TagExtraInfo, if you want to manipulate the attribute “myArray” in the above code in a
scriptlet, it will not be possible. This is because it does not place the “myArray” object on the page. You can
still use pageContext.getAttribute() but that may not be a cleaner approach because it relies on the page
designer to correctly cast to object type. The TagExtraInfo can be used to make items stored in the
pageContext via setAttribute() method available to the scriptlet as shown below.

<html>
 <myTag:addObjectsToArray name=”myArray” />
 <%-- scriptlet code %>
 <%
 for(int i=0; i<myArray.length;i++){
 html += + myArray[i] + ;
 }

%>
</html>

 Validates the attributes passed to the Tag at translation time.

Example It can validate the array “myArray” to have not more than 100 objects. The method used is:

boolean isValid(TagData data)

Q 38: What is the difference between custom JSP tags and JavaBeans? SF
A 38: In the context of a JSP page, both accomplish similar goals but the differences are:

Custom Tags JavaBeans
Can manipulate JSP content. Can’t manipulate JSP content.
Custom tags can simplify the complex operations much
better than the bean can. But require a bit more work to
set up.

Easier to set up.

Used only in JSPs in a relatively self-contained manner. Can be used in both Servlets and JSPs. You can define a bean in
one Servlet and use them in another Servlet or a JSP page.

JavaBeans declaration and usage example: CO

<jsp:useBean id="identifier" class="packageName.className"/>
<jsp:setProperty name="identifier" property="classField" value="someValue" />
<jsp:getProperty name="identifier" property="classField" /> <%=identifier.getclassField() %>

Enterprise – JSP

143

Q 39: Tell me about JSP best practices? BP FAQ
A 39:

 Separate HTML code from the Java code: Combining HTML and Java code in the same source code can
make the code less readable. Mixing HTML and scriptlet will make the code extremely difficult to read and
maintain. The display or behavior logic can be implemented as a custom tags by the Java developers and
Web designers can use these tags as the ordinary XHTML tags. Refer Q36 in Enterprise section.

 Place data access logic in JavaBeans: The code within the JavaBean is readily accessible to other JSPs
and Servlets.

 Factor shared behavior out of Custom Tags into common JavaBeans classes: The custom tags are not
used outside JSPs. To avoid duplication of behavior or business logic, move the logic into JavaBeans and get
the custom tags to utilize the beans.

 Choose the right “include” mechanism: What are the differences between static and a dynamic include?
Using includes will improve code reuse and maintenance through modular design. Which one to use? Refer
Q31 in Enterprise section.

 Use style sheets (e.g. css), template mechanism (e.g. struts tiles etc) and appropriate comments (both
hidden and output comments).

Q. Why use style sheets? The traditional HTML approach was to "hardcode" all of the appearance
information about a page. Say you want all your headings in Arial, and you have hard coded that in more
than 50 pages? That is a lot of editing, and a lot of re-editing if you decide to modify the headings to courier.
With all of that editing there are plenty of possibility for introducing errors. With CSS, you can decide how
headings should appear, and enter that information once. Every heading in every page that is linked to this
style sheet now has that appearance. Example:

h1
{
 font-family : arial;
 font-weight : normal;
}

 Use pagination for large resultsets: If you display long lists (i.e. resultsets) in the browser, it is difficult for

the user to find what he or she wants and also can prove impractical due to memory limitation, response-time
limitation, page design limitation (i.e long scrollable pages are not desirable) etc. Pagination is the most
common way to break up large amount of data into manageable chunks.

Q. How do you paginate your results?

1. Results can be read at once from the database and cached in middle-tier (e.g. HTTP session or home

grown cache) for fast access in subsequent pages. This approach is memory intensive and suitable only
for small-to-medium sized recurring queries.

2. Results are fetched from the database on demand as the user pages. This divide and conquer approach

is suitable for medium-to-large resultsets where it delivers pages on demand, direct from the database.
Limiting the size of the resultsets is SQL specific. For example in MySQL/Oracle you could limit your
resultsets as follows:

//can be user selected values or constant values
String strPageNum = request.getParameter(“pageNum”);
int pageNum = 0;
if(strPageNum != null){
 pageNum = new Integer(strPageNum).intValue();
}
int maxRowsPerPage = new Integer(request.getParameter(“rowsPerPage”)).intValue();

//calculate
int rowEnd = pageNum * maxRowsPerPage;
int rowStart = (rowEnd - maxRowsPerPage) + 1;

In MySQL:

Enterprise – JSP

144

“SELECT * FROM Products p where p.category=’Consumables’ LIMIT ” + rowStart + “,” +
rowEnd

In Oracle:
“SELECT p.*, rownum as rowcount FROM Products p where p.category=’Consumables’ order
by p.productNo where rowcount >= “ + rowStart + “ and rowcount < ” + rowEnd ” ;

Q 40: How will you avoid scriptlet code in JSP? BP FAQ
A 40: Use JavaBeans or custom tags instead.

Q. If you have to develop a web site, which has say more than 200 static & dynamic pages, how would you make
sure that in future if there is any requirement for a layout change, you have to change the layout in one page not
200 or more pages?

You could use the JSP include directives for page reuse but better approach to reduce redundant code is to use
frameworks like Tiles for page composition using template mechanism or SiteMesh for page decoration. SiteMesh can
be used by any Java Web framework since it is a Servlet filter. SiteMesh uses the decorator design pattern.

Q. How do you connect to the database from JSP/Servlet?

A. A connection can be established to a database as shown below via scriptlet. It is not the best practice to embed data
access logic in your JSP/Servlet and is shown only for illustration purpose and to create a lead up to the next section.
The best practice should make use of a separate “Data Access Object (using DAO pattern)” , which gets invoked by JSP,
Servlet, plain Java class, EJBs etc. The next section discusses basics and best practices relating to data access.

<%@ page language="java" contentTpe="text/html"
 import="java.sql.*"%>

<html>
 <title>Simple JSP Page</title>
 <h1>Output to Browser</h1>
 <body>
 <%
 //1. load the driver from specific vendor
 Class.forName("oracle.jdbc.driver.OracleDriver");

 //2. open connection to the databse by passing the URL to the database
 Connection con = DriverManager.getConnection("jdbc:oracle:thin:@hostname:1526:myDB");

 //3. create a statement object
 Statement stmt = con.createStatement();

 //4. Create a ResultSet
 ResultSet rs = stmt.executeQuery("SELECT * FROM Employees");

 //5. you can use the ResultSet Object to read data
 while(rs.next()){
 rs.getString("firstname");
 }
 %>
 </body>
</html>

General Tip #4:

Every body is nervous for interviews and being a little nervous is natural. But if you are too nervous then you can
overcome this by preparing for your interviews and by treating each interview as a free technical/behavioral training
course. Have an attitude that even if you are not going to get the job, you are going to learn something good out of it. If
you go with this attitude you will put yourself in a win/win situation and you might really get the offer. If you take this
attitude you can learn a lot from your interviews. Also never think that you have to answer all the questions correctly. Do
not get put off by a tricky or a difficult question. What really earns you a job is the combination of your knowledge +
experience + attitude.

Enterprise – JDBC & JTA

145

Enterprise – JDBC & JTA

Q 41: What is JDBC? How do you connect to a database? Have you used a Data Access Object (i.e. DAO) pattern? SF

DP BP FAQ
A 41: JDBC stands for Java Database Connectivity. It is an API which provides easy connection to a wide range of

databases. To connect to a database we need to load the appropriate driver and then request for a connection
object. The Class.forName(….) will load the driver and register it with the DriverManager (Refer Q5 in Java section
for dynamic class loading).

Class.forName(“oracle.jdbc.driver.OracleDriver”); //dynamic class loading
String url = jdbc:oracle:thin:@hostname:1526:myDB;
Connection myConnection = DriverManager.getConnection(url, “username”, “password”);

The DataSource interface provides an alternative to the DriverManager for making a connection. DataSource
makes the code more portable than DriverManager because it works with JNDI and it is created, deployed and
managed separately from the application that uses it. If the DataSource location changes, then there is no need to
change the code but change the configuration properties in the server. This makes your application code easier to
maintain. DataSource allows the use of connection pooling and support for distributed transactions. A DataSource
is not only a database but also can be a file or a spreadsheet. A DataSource object can be bound to JNDI and an
application can retrieve and use it to make a connection to the database. J2EE application servers provide tools to
define your DataSource with a JNDI name. When the server starts it loads all the DataSources into the application
server’s JNDI service.

DataSource configuration properties are shown below:
 JNDI Name jdbc/myDataSource
 URL jdbc:oracle:thin:@hostname:1526:myDB
 UserName, Password
 Implementation classname oracle.jdbc.pool.OracleConnectionPoolDataSource
 Classpath ora_jdbc.jar
 Connection pooling settings like minimum pool size, maximum pool size, connection timeout, statement cache size etc.

Once the DataSource has been set up, then you can get the connection object as follows:
Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/myDataSource");
Connection myConnection = ds.getConnection(“username”,”password”);

Q. Why should you prefer using DataSource?

Best practice: In a basic implementation a Connection obtained from a DataSource and a DriverManager are
identical. But the J2EE best practice is to use DataSource because of its portability, better performance due to
pooling of valuable resources and the J2EE standard requires that applications use the container’s resource
management facilities to obtain connections to resources. Every major web application container provides pooled
database connection management as part of its resource management framework.

Design Pattern: JDBC architecture decouples an abstraction from its implementation so that the implementation
can vary independent of the abstraction. This is an example of the bridge design pattern. The JDBC API
provides the abstraction and the JDBC drivers provide the implementation. New drivers can be plugged-in to the
JDBC API without changing the client code.

Q. Have you used a Data Access Object (DAO) pattern? Why is it a best practice to use a DAO pattern
Design Pattern?

• A DAO class provides access to a particular data resource in the data tier (e.g. relational database, XML ,

mainframe etc) without coupling the resource’s API to the business logic in the business tier. For example
you may have a EmployeeBO business object class access all of its employees in the database using a DAO
interface EmployeeDAO. If your data resource change from a database to a Mainframe system, then
reimplementing EmployeeDAO for a different data access mechanism (to use a mainframe Connector) would
have little or no impact on any classes like EmployeeBO that uses EmployeeDAO because only the
implementation (e.g. EmployeeDAOImpl) would change but the interface remains the same. All the classes
that use the DAO should code to interface not implementation. If you happen to use the popular Spring
framework, then you can inject your DAO classes into your Business Object classes. Spring framework
promotes the design principle of “code to interface not to implementation”.

Enterprise – JDBC & JTA

146

Integration Tier

Resource
TierBusiness Tier

Presentation
Tier

CLIENT
TIER

Br
ow

se
r (

we
b

cli
en

t)

Application Server

Web container EJB container

Database
(RDBMS etc)

Session
beans

Data Access
Objects
(DAOs)

Business
Objects

J
D
B
C

Message
Driven Beans

Data Transfer Objects (DTO) or Domain Objects (e.g Hibernate)
(transfer information between layers

Data Access Objects (DAO)

J
C
A

Legacy
systems

Web
Application

Ja
va

cli
en

ts

int
er

ne
t

Sp
rin

g
fra

m
ew

or
k

(fo
r d

ep
en

de
nc

y i
nj

ec
tio

n
/ A

sp
ec

t
Or

ien
te

d
Pr

og
ra

m
m

ing
 A

OP
)

EJB layer provides
remote access Business Logic layer Data access logic

layer

DataSource
(pools

connections)

Note: Spring framework is optional. If you use it, you could take advantage of its dependency
injection (aka IoC) and AOP features. Your DAO classes may use O-R-M frameworks like

Hibernate etc and/or JDBC API.

Hibernate
/ IBatis etc

Business Objects represent the data client. They are the objects that require access to the datasource to obtain and
store data. Data Access Objects abstract the underlying data access implementation for the business objects to enable
transparent access to the datasource. The business objects also delegate data load and store operations to the Data
Access Objects. A DataSource represents a database such as a relational database, XML repository, flat file, mainframe
system etc. Data Transfer Objects or Domain Objects transfer data between client and data access objects.

DAO design pattern

BusinessObject DataAccessObject DataSource

DataTransferObject / DomainObject

uses encapsulates

creates/uses

obtains/modifies

+getAccountDAO()
+getCustomerDAO()
+getXmlLoanDAO()

DAOFactory

RdbmsDAOFactory XmlDAOFactory

AccountsDAOImpl CustomerDAOImpl

«interface»
AccountsDAO

«interface»
CustomerDAO

creates creates

XmlLoanDAOImpl

«interface»
XmlLoanDAO

creates

Class diagram of DAO pattern relationships
DAO pattern made more flexible with Abstract factory &
factory method design patterns.

A typical DAO implementation has the following components:

• A DAO factory class (e.g. EmployeeDAOFactory) or Spring framework to inject a DAO class.
• A DAO interface (e.g. EmployeeDAO)

Enterprise – JDBC & JTA

147

• A concrete class (e.g. EmployeeDAOImpl) that implements the DAO interface. Your concrete class will make
use of JDBC API or open source framework API like Hibernate, IBatis etc.

• Data transfer objects (e.g. EmployeeDTO) transfer data between business objects and data access objects or
Domain Objects if you are using any Object-to-Relational Mapping (aka ORM) tools like Hibernate.

Q. What are the best practices relating to exception handling to make your DAOs more robust and maintainable?

• If you catch an exception in your DAO code, never ignore it or swallow it because ignored exceptions are hard to
troubleshoot. DAO class methods should throw checked exceptions only if the caller can reasonably recover from
the exception or reasonably handle it (e.g. retry operations in optimistic concurrency control - Refer Q 78 in
Enterprise section etc). If the caller cannot handle the exception in a meaningful way, consider throwing a runtime
(i.e. unchecked) exception. For example Hibernate 3 exceptions are all runtime exceptions.

• DAO methods should not throw low level JDBC exceptions like java.sql.SQLException. A DAO should

encapsulate JDBC rather than expose it to rest of the application. Use chained exceptions to translate low-level
exceptions into high-level checked exceptions or runtime exceptions. DAO methods should not throw
java.lang.Exception because it is too generic and does not convey any underlying problem.

• Log your exceptions, configuration information, query parameters etc.

Q 42: What are JDBC Statements? What are different types of statements? How can you create them? SF FAQ
A 42: A statement object is responsible for sending the SQL statements to the Database. Statement objects are created

from the connection object and then executed. CO

Statement stmt = myConnection.createStatement();
ResultSet rs = stmt.executeQuery(“SELECT id, name FROM myTable where id =1245”); //to read
 or
stmt.executeUpdate(“INSERT INTO (field1,field2) values (1,3)”);//to insert/update/delete/create

The types of statements are:

 Statement (regular statement as shown above)
 PreparedStatement (more efficient than statement due to pre-compilation of SQL)
 CallableStatement (to call stored procedures on the database)

To use prepared statement:

PreparedStatement prepStmt =
 myConnection.prepareStatement("SELECT id, name FROM myTable where id = ? ");
prepStmt.setInt(1, 1245);

Callable statements are used for calling stored procedures.

CallableStatement calStmt = myConnection.prepareCall("{call PROC_SHOWMYBOOKS}");
ResultSet rs = cs.executeQuery();

Q 43: What is a Transaction? What does setAutoCommit do? TI PI FAQ
A 43: A transaction is a set of operations that should be completed as a unit. If one operation fails then all the other

operations fail as well. For example if you transfer funds between two accounts there will be two operations in the
set

1. Withdraw money from one account.
2. Deposit money into other account.

These two operations should be completed as a single unit. Otherwise your money will get lost if the withdrawal is
successful and the deposit fails. There are four characteristics (ACID properties) for a Transaction.

Atomicity Consistency Isolation Durability
All the individual
operations should
either complete or fail.

The design of the
transaction should
update the database
correctly.

Prevents data being corrupted by concurrent
access by two different sources. It keeps
transactions isolated or separated from each
other until they are finished.

Ensures that the database
is definitely updated once
the Transaction is
completed.

Enterprise – JDBC & JTA

148

Transactions maintain data integrity. A transaction has a beginning and an end like everything else in life. The
setAutocommit(….), commit() and rollback() are used for marking the transactions (known as transaction
demarcation). When a connection is created, it is in auto-commit mode. This means that each individual SQL
statement is treated as a transaction and will be automatically committed immediately after it is executed. The way
to allow two or more statements to be grouped into a transaction is to disable auto-commit mode: CO

try{
 Connection myConnection = dataSource.getConnection();

 // set autoCommit to false
 myConnection.setAutoCommit(false);

 withdrawMoneyFromFirstAccount(.............); //operation 1
 depositMoneyIntoSecondAccount(.............); //operation 2

 myConnection .commit();
}
catch(Exception sqle){
 try{
 myConnection .rollback();
 }catch(Exception e){}
}
finally{
 try{if(conn != null) {conn.close();}} catch(Exception e) {}
}

The above code ensures that both operation 1 and operation 2 succeed or fail as an atomic unit and consequently
leaves the database in a consistent state. Also turning auto-commit off will provide better performance.

Q. What is transaction demarcation? What are the different ways of defining transactional boundaries?

Data Access Objects (DAO) are transactional objects. Each operation associated with CRUD operations like
Create, Update and/or Delete operations should be associated with transactions. Transaction demarcation is the
manner in which transaction boundaries are defined. There are two approaches for transaction demarcation.

Declarative transaction demarcation Programmatic transaction demarcation
The programmer declaratively specifies the transaction
boundaries using transaction attributes for an EJB via ejb-
jar.xml deployment descriptor.

Note: Spring framework has support for declarative
transaction demarcation by specifying transaction attributes via
Spring config files. If you choose Spring framework to mark the
transaction boundaries then you need to turn off transaction
demarcation in your EJB by:

<trans-attribute>NotSupported</trans-attribute>

Q. How are these declarative transactions know when to
rollback?

EJBs: When the EJB container manages the transaction, it is
automatically rolled back when a System Exception occurs.
This is possible because the container can intercept
“SystemException”. However when an Application Exception
occurs, the container does not intercept it and therefore leaves
it to the code to roll back using ctx.setRollbackOnly().

Refer Q76, Q77 in Enterprise section to learn more about EJB
exceptions and when an EJB managed transaction is rolled
back.

Spring Framework: Transaction declaration format is:

PROPAGATION_NAME,ISOLATION_NAME,readOnly,timeout_NNN
N,+CheckedException1,-CheckedException2

The programmer is responsible for coding
transaction logic as shown above. The
application controls the transaction via an API
like JDBC API, JTA API, Hibernate API etc.
JDBC transactions are controlled using the
java.sql.Connection object. There are two
modes: auto-commit and manual commit.
Following methods are provided in the JDBC
API via non-XA java.sql.Connection class for
programmatically controlling transactions:

public void setAutoCommit(boolean
mode);
public boolean getAutoCommit();
public void commit();
public void rollback();

For XA-Connections use the following methods
on javax.transaction.UserTransaction.

public void begin();
public void commit();
public void rollback();
public int getStatus();
public void setRollbackOnly();
public void setTransactionTimeOut(int)

Enterprise – JDBC & JTA

149

By default transactions are rolled-back on
java.lang.RuntimeException. You can control when
transactions are committed and rolled back with the “+” or “-“
prefixes in the exception declaration. “+” means commit on
exception (You can even force it on RuntimeException) and “-”
means rollback on exception. You can specify multiple rules
for rollback as “,” separated.

For example: Following declaration will rollback transactions
on RunTime exceptions and MyCheckedException, which is a
checked exception.

PROPAGATION_REQUIRED,-MyCheckedException

Q. What is a distributed (aka JTA/XA) transaction? How does it differ from a local transaction? There are
two types of transactions:

• Local transaction: Transaction is within the same database. As we have seen above, with JDBC transaction

demarcation, you can combine multiple SQL statements into a single transaction, but the transactional scope
is limited to a single database connection. A JDBC transaction cannot span multiple databases.

• Distributed Transaction (aka Global Transaction, JTA/XA transaction): The transactions that constitute

a distributed transaction might be in the same database, but more typically are in different databases and
often in different locations. For example A distributed transaction might consist of money being transferred
from an account in one bank to an account in another bank. You would not want either transaction committed
without assurance that both will complete successfully. The Java Transaction API (JTA) and its sibling Java
Transaction Service (JTS), provide distributed transaction services for the J2EE platform. A distributed
transaction (aka JTA/XA transaction) involves a transaction manager and one or more resource managers. A
resource manager represents any kind of data store. The transaction manager is responsible for coordinating
communication between your application and all the resource managers. A transaction manager decides
whether to commit or rollback at the end of the transaction in a distributed system. A resource manager is
responsible for controlling of accessing the common resources in the distributed system.

Q. What is two-phase commit?

A two-phase commit is an approach for committing a distributed transaction in 2 phases. Refer Q73 in
Enterprise section for two-phase commit.

Q. What do you understand by JTA and JTS?

JTA is a high level transaction interface which allows transaction demarcation in a manner that is
independent of the transaction manager implementation. JTS specifies the implementation of a Transaction
Manager which supports the JTA. The code developed by developers does not call the JTS methods directly,
but only invokes the JTA methods. The JTA internally invokes the JTS routines.

Q. What is a XA resource?

The XA specification defines how an application program uses a transaction manager to coordinate
distributed transactions across multiple resource managers. Any resource manager that adheres to XA
specification can participate in a transaction coordinated by an XA-compliant transaction manager.

JTA transaction demarcation requires a JDBC driver that implements XA interfaces like javax.sql.-
XADatasource, javax.sql.XAConnection and javax.sql.XAResource. A driver that implements these
interfaces will be able to participate in JTA transactions. You will also require to set up the XADatasource
using your application server specific configuration files, but once you get a handle on the DataSource via
JNDI lookup, you can get a XA connection via javax.sql.DataSource.getConnection() in a similar manner
you get a non-XA connections. XA connections are different from non-XA connections and do not support
JDBC’s auto-commit feature. You cannot also use the commit(), rollback() methods on the
java.sql.Connection class for the XA connections. A J2EE component can begin a transaction
programmatically using javax.transaction.UserTransaction interface or it can also be started declaratively
by the EJB container if an EJB bean uses container managed transaction. For explicit (i.e. programmatic)
JTA/XA transaction you should use the UserTransaction.begin(), UserTransaction.commit() and
UserTransaction.rollback() methods. For example:
// programmatic JTA transaction

Enterprise – JDBC & JTA

150

InitialContext ctx = new InitialContext();
UserTransaction utx = (UserTransaction)ctx.lookup(“java:comp/UserTransaction”);

try {
 //…
 utx.begin();
 //….
 DataSource ds = getXADatasource();
 Connection con = ds.getConnection(); // get a XAconnection.
 PreparedStatement pstmt = con.prepareStatement(“UPDATE Employee emp where emp.id =?”);
 pstmt.setInt(1, 12456);
 pstmt.executeUpdate();

 utx.commit();//transaction manager uses two-phase commit protocol to end transaction
}
catch(SQLException sqle){
 utx.rollback();
 throw new RuntimeException(sqle);
}

// for bean-managed EJB transaction demarcation
UserTransaction ut = ejbContext.getUserTransaction();

Q. Why JTA transactions are more powerful than JDBC transactions?

JTA transactions are more powerful than JDBC transaction because a JDBC transaction is limited to a single
database whereas a JTA transaction can have multiple participants like:

• JDBC connections.
• JMS queues/topics.
• Enterprise JavaBeans (EJBs).
• Resource adapters that comply with J2EE Connector Architecture (JCA) specification.

JTA/XA (distributed) transactions

Application Server Container
J2EE

component

Transaction
Manager

Resource
Manager

Resource
Manager

RDBMS
(database)

JMS
Queue/
Topic

Mainframe
System

Resource
Manager

Q. What is J2EE Connector architecture (JCA)? How does it differ from JDBC?

JCA is a Java based technology solution for connecting application servers and Enterprise Information Systems
(EIS) like Enterprise Resource Planning (ERP) systems, Customer Relationship Management) (CRM) systems etc
as part of Enterprise Application Integration (EAI). The JCA API is used by J2EE tool developers and system
integrators to create resource adapters

While JDBC is specifically used to connect J2EE applications to databases, JCA is a more generic architecture for
connecting to legacy systems (including databases).

Q. How would you send a JMS message to a JMS queue/topic and update a database table within the
same transaction?

Enterprise – JDBC & JTA

151

Using JTA/XA transaction. A J2EE application using EJB containers can send or receive messages from one or
more JMS destinations and update data in one or more databases in a single transaction. The J2EE architecture
allows updates of data at multiple sites (i.e. more than one application servers) to be performed in a single
transaction.

Same Application server: A web client invokes a method on EJB-1, which in turn sends a message to JMS Queue-1 and
updates data in database-1. After that EJB-1 calls EJB-2, which updates data in database-2. The application server with its EJB
container and built-in transaction manager ensures that operations A, B and C are either all committed or rolled back. If operation-B
fails to update database-1 due to some error condition then operations A & B are rolled back, which means the JMS message would
not be delivered to JMS Queue-1 and database-2 would not be updated.

JMS messages and database updates in a single JTA/XA transaction

Application Server 2Application Server 1

Web client EJB-1 EJB-2

operation-B

Database-1 Database-2

operation-C

JMS
message
Queue-1

operation-A

Web client

Application Server

EJB-1 EJB-2

operation-B

Database-1 Database-2

operation-C

JMS
message
Queue-1

operation-A

Multiple Application servers: Both application servers with its EJB containers and built-in transaction manager ensure that
opeations A, B and C are either all committed or rolled back.

Q. What are the considerations for a programmatic transaction control within a Servlet/JSP? Can a transaction
span across multiple web requests?

Web components like Servlets/JSPs may only start a transaction in its service() method and a transaction started in its
service method must be completed before the service() method completes. A transaction cannot span across multiple
web requests. Some of the considerations are as follows:

• JTA transactions should start and complete within the thread in which service() method is called and any additional

threads created in the servlet should not try to start any JTA transaction.

• JDBC connection objects should not be stored in static fields or instance fields (for multi-threaded model). JDBC

connection objects should be acquired and released within the same invocation of the service() method.

Enterprise – JDBC & JTA

152

Q. How will you control two concurrent transactions accessing a database?

 You can use isolation levels. An isolation level defines how concurrent transactions accessing a relational database are
isolated from each other for read purpose. Refer Q72 in Enterprise section. These isolation levels can prevent one or
more of the phenomena that happen during concurrent transactions:

• Dirty reads: A transaction reads uncommitted changes from another transaction.
• Nonrepeatable reads: A transaction reads a row in a database table, a second transaction changes the same row

and the first transaction re-reads the row and gets a different value.
• Phantom reads: A transaction executes a query, returning a set of rows that satisfies a search condition and a

second transaction inserts another row and the first re-executes the same query and get an additional record
returned.

Isolation Level (in ascending order of
data integrity)

Dirty read Nonrepeatable read Phantom read

TRANSACTION_READ_UNCOMMITED Possible Possible Possible
TRANSACTION_READ_COMMITED Not possible Possible Possible
TRANSACTION_REPEATABLE_READ Not possible Not possible Possible
TRANSACTION_SERIALIZABLE Not possible Not possible Not possible

You should use a highest possible isolation level that gives acceptable performance. It is basically a tradeoff between
data integrity and performance. For example the isolation level “TRANSACTION_SERIALIZABLE” attribute guarantees
the highest level of data integrity but adversely affects performance because even simple reads must wait in line.

Q 44: What is the difference between JDBC-1.0 and JDBC-2.0? What are Scrollable ResultSets, Updateable ResultSets,

RowSets, and Batch updates? SF
A 44: JDBC2.0 has the following additional features or functionality:

JDBC 1.0 JDBC 2.0
With JDBC-1.0 the
ResultSet functionality
was limited. There was no
support for updates of any
kind and scrolling through
the ResultSets was
forward only (no going
back)

With JDBC 2.0 ResultSets are updateable and also you can move forward and backward.

Example This example creates an updateable and scroll-sensitive ResultSet

Statement stmt = myConnection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATEABLE)

With JDBC-1.0 the
statement objects submits
updates to the database
individually within same or
separate transactions.
This is very inefficient
when large amounts of
data need to be updated.

With JDBC-2.0 statement objects can be grouped into a batch and executed at once. You call
addBatch() multiple times to create your batch and then you call executeBatch() to send the SQL
statements off to database to be executed as a batch (this minimizes the network overhead).

Example

Statement stmt = myConnection.createStatement();
stmt.addBatch(“INSERT INTO myTable1 VALUES (1,”ABC”)”);
stmt.addBatch(“INSERT INTO myTable1 VALUES (2,”DEF”)”);
stmt.addBatch(“INSERT INTO myTable1 VALUES (3,”XYZ”)”);
…
int[] countInserts = stmt.executeBatch();

- The JDBC-2.0 optional package provides a RowSet interface, which extends the ResultSet. One
of the implementations of the RowSet is the CachedRowSet, which can be considered as a
disconnected ResultSet.

Q 45: How to avoid the “running out of cursors” problem? DC PI MI FAQ
A 45: A database can run out of cursors if the connection is not closed properly or the DBA has not allocated enough

cursors. In a Java code it is essential that we close all the valuable resources in a try{} and finally{} block. The
finally{} block is always executed even if there is an exception thrown from the catch {} block. So the resources like
connections and statements should be closed in a finally {} block. CO

Enterprise – JDBC & JTA

153

Wrong Approach -

Connections and statements will not be closed if there
is an exception:

 public void executeSQL() throws SQLException{

 Connection con = DriverManager.getConnection(........);

 Statement stmt = con.createStatement();

 //line 20 where exception is thrown
 ResultSet rs = stmt.executeQuery("SELECT * from myTable");

 rs.close();
 stmt.close();
 con.close();
 }

Note: if an exception is thrown at line 20 then the
close() statements are never reached.

Right Approach -

 public void executeSQL() throws SQLException{
 try{
 Connection con = DriverManager.getConnection(........);

 Statement stmt = con.createStatement();

 //line 20 where exception is thrown
 ResultSet rs = stmt.executeQuery("SELECT * from myTable");

 }
 finally{
 try {
 if(rs != null) rs.close();
 if(stmt != null) stmt.close();
 if(con != null) con.close();
 }
 catch(Exception e){}
 }
 }

Note: if an exception is thrown at line 20 then the
finally clause is called before the exception is thrown
from the method.

Try{} Finally {} blocks to close Exceptions

Q 46: What is the difference between statements and prepared statements? SF PI SE BP FAQ
A 46:

 Prepared statements offer better performance, as they are pre-compiled. Prepared statements reuse the
same execution plan for different arguments rather than creating a new execution plan every time. Prepared
statements use bind arguments, which are sent to the database engine. This allows mapping different
requests with same prepared statement but different arguments to execute the same execution plan.

 Prepared statements are more secure because they use bind variables, which can prevent SQL injection

attack.

The most common type of SQL injection attack is SQL manipulation. The attacker attempts to modify the
SQL statement by adding elements to the WHERE clause or extending the SQL with the set operators like
UNION, INTERSECT etc.

Example Let us look at the following SQL:

SELECT * FROM users where username=’bob’ AND password=’xyfdsw’;

The attacker can manipulate the SQL as follows

SELECT * FROM users where username=’bob’ AND password=’xyfdsw’ OR ‘a’ = ‘a’ ;

The above “WHERE” clause is always true because of the operator precedence. The PreparedStatement
can prevent this by using bind variables:

String strSQL = SELECT * FROM users where username=? AND password=?);
PreparedStatement pstmt = myConnection.prepareStatement(strSQL);
pstmt.setString(1,”bob”);
pstmt.setString(2, “xyfdsw”);
pstmt.execute();

Q 47: Explain differences among java.util.Date, java.sql.Date, java.sql.Time, and java.sql.Timestamp? SF
A 47: As shown below all the sql Date classes extend the util Date class.

Enterprise – JDBC & JTA

154

java.util.Date

java.sql.Date java.sql.Time java.sql.TimeStamp

Java Date classes

java.util.Date - class supports both the Date (i.e. year/month/date etc) and the Time (hour, minute, second, and
millisecond) components.

java.sql.Date - class supports only the Date (i.e. year/month/date etc) component. The hours, minutes, seconds
and milliseconds of the Time component will be set to zero in the particular time zone with which the instance is
associated.

java.sql.Time - class supports only Time (i.e. hour, minute, second, and millisecond) component. The date
components should be set to the "zero epoch" value of January 1, 1970 and should not be accessed.

java.sql.TimeStamp – class supports both Date (i.e. year/month/date etc) and the Time (hour, minute, second,
millisecond and nanosecond) components.

Note: the subtle difference between java.util.Date and java.sql.Date. The java.sql.Date does not have a time
component. If you need both date and time, then should use either java.util.Date or java.sql.TimeStamp.

To keep track of time Java counts the number of milliseconds from January 1, 1970 and stores it as a long value in
java.util.Date class. The GregorianCalendar class provides us a way to represent an arbitrary date. The
GregorianCalendar class also provides methods for manipulating dates (date arithmetic, date comparisons etc).

General Tip #5:

Software developers should have and demonstrate following qualities to succeed in interviews and after
interviews :

Q. Tell me about yourself or about some of the recent projects you have worked with? What do you consider your most significant
achievement? Why do you think you are qualified for this position? These interview questions are very common and the interviewer will
be mainly looking for following qualities:

1. Passion: How passionate you are about your past experience and how much pride you take in your past achievements.

2. Ability to understand potential failures: How well you understand the key areas like concurrency issues, transactional issues,

performance issues etc relating to software development and tend to avoid or know where to look for the root cause and how to go
about solving it when an issue arises.

3. Ability to see things at a high level as well as drill down when required: Also is imperative that during your briefing, you

demonstrate on a high level (as if you would be explaining it to a business user), how you applied your skills and knowledge. Also be
prepared to drill down into detail if asked.

4. Ability to think dynamically to deliver solutions to complex problems and ability to analyze “what if ” scenarios: What if I

need to support another type of product in the future, will the current design allow me to extend? What if concurrent users access my
object, will it be thread-safe? What if an exception is thrown, will my transaction get rolled back to leave the database in a consistent
state? Etc.

Q. What was the last Java related technical book or article you read? Which Java related website(s) or resource(s) do you use to keep
your knowledge up to date beyond Google? What do you think of some of the emerging technologies/frameworks like AOP, IoC, Spring,
Tapestry etc? What recent technology trends are important to enterprise development? Hint: Service Oriented Architecture, component
based Web frameworks, IoC, AOP (refer Emerging Technologies/Frameworks section) etc. The interviewer will be looking for your
curiosity and eagerness to learn.

5. Curiosity to learn: How eager you are to learn new things and keep up to date with the technology.

Enterprise – JNDI & LDAP

155

Enterprise – JNDI & LDAP

Q 48: What is JNDI? And what are the typical uses within a J2EE application? SF FAQ
A 48: JNDI stands for Java Naming and Directory Interface. It provides a generic interface to LDAP (Lightweight

Directory Access Protocol) and other directory services like NDS, DNS (Domain Name System) etc. It provides a
means for an application to locate components that exist in a name space according to certain attributes. A J2EE
application component uses JNDI interfaces to look up and reference system-provided and user-defined objects in
a component environment. JNDI is not specific to a particular naming or directory service. It can be used to access
many different kinds of systems including file systems.

The JNDI API enables applications to look up objects such as DataSources, EJBs, MailSessions, JMS connection
factories and destinations (Topics/Queues) by name. The Objects can be loaded into the JNDI tree using a J2EE
application server’s administration console. To load an object in a JNDI tree, choose a name under which you
want the object to appear in a JNDI tree. J2EE deployment descriptors indicate the placement of J2EE
components in a JNDI tree.

 O b je c ts a n d /o r S e rv ic e

In it ia lC o n te x t

s u b -c o n te x t

n a m e d o b je c t /s e rv ic e
re fe re n c e

n a m e d o b je c t /s e rv ic e
re fe re n c e

J N D I T re e

N o te : J N D I tre e liv e s in th e s e rv e r a s a c o lle c tio n o f n a m e d o b je c t o r s e rv ic e re fe re n c e s .

The parameters you have to define for JNDI service are as follows:

 The name service provider class name (WsnInitialContext for WebSphere application server).

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.ibm.websphere.naming.WsnInitialContextFactory");

 The provider URL :

 The name service hostname.
 The name service port number.

env.put(Context.PROVIDER_URL, " iiop://localhost:1050");
Context ctx = new InitialContext(env);

JNDI is like a file system or a Database.

File System JNDI Database
File system starts with a
mounted drive like c:\

JNDI starts with an InitialContext.
 i.e. new InitialContext().

Database instance

Uses a subdirectory.
C:\subdir1

Navigate to a sub-context. e.g. Subcontext1 Tablespace

Access a subdirectory
c:\subdir1\subdir2

Drill down through other sub-contexts. e.g.
subcontext1/subcontext2

Table

Access a file. Access an object or a service. Data

Enterprise – JNDI & LDAP

156

C:\subdir1\subdir2\myFile new InitialContext().lookup(“objectName”);
Example:

c:\subdir1\subdir2\myFile

Example:

iiop://myserver:2578/subcontext1.subcontext2.objectName

Example:

Select * from demo.myTable

Q 49: Explain the difference between the look up of “java:comp/env/ejb/MyBean” and “ejb/MyBean”? SF FAQ
A 49:

java:comp/env/ejb/MyBean ejb/MyBean
This is a logical reference, which will be used in your code.

This is a physical reference where an object will be mapped to in
a JNDI tree.

The logical reference (or alias) java:comp/env/ejb/MyBean is the recommended approach because you cannot
guarantee that the physical JNDI location ejb/MyBean you specify in your code will be available. Your code will
break if the physical location is changed. The deployer will not be able to modify your code. Logical references
solve this problem by binding the logical name to the physical name in the application server. The logical names
will be declared in the deployment descriptors (web.xml and/or ejb-jar.xml) as follows and these will be mapped to
physical JNDI locations in the application server specific deployment descriptors.

To look up a JDBC resource from either Web (web.xml) or EJB (ejb-jar.xml) tier, the deployment descriptor should
have the following entry:

<resource-ref>
 <description>The DataSource</description>
 <res-ref-name>jdbc/MyDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

To use it:

Context ctx = new InitialContext();
Object ref = ctx.lookup(java:comp/env/jdbc/MyDataSource);

To look up EJBs from another EJB or a Web module, the deployment descriptor should have the following entry:

<ejb-ref>
 <description>myBean</description>
 <ejb-ref-name>ejb/MyBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <ejb-link>Region</ejb-link>
 <home>com.MyBeanHome</home>
 <remote>com.MyBean</remote>
</ejb-ref>

To use it:

Context ctx = new InitialContext();
Object ref = ctx.lookup(java:comp/env/ejb/MyBean);

Q 50: What is a JNDI InitialContext? SF FAQ
A 50: All naming operations are relative to a context. The InitalContext implements the Context interface and provides

an entry point for the resolution of names.

Q 51: What is an LDAP server? And what is it used for in an enterprise environment? SF SE
A 51: LDAP stands for Lightweight Directory Access Protocol. This is an extensible open network protocol standard that

provides access to distributed directory services. LDAP is an Internet standard for directory services that run on
TCP/IP. Under OpenLDAP and related servers, there are two servers – slapd, the LDAP daemon where the
queries are sent to and slurpd, the replication daemon where data from one server is pushed to one or more
slave servers. By having multiple servers hosting the same data, you can increase reliability, scalability, and
availability.

 It defines the operations one may perform like search, add, delete, modify, change name
 It defines how operations and data are conveyed.

This will make full logical path to the bean
as:
java:comp/env/jdbc/MyDataSource

This will make full logical path to the bean
as:
java:comp/env/ejb/MyBean

Enterprise – JNDI & LDAP

157

LDAP has the potential to consolidate all the existing application specific information like user, company phone
and e-mail lists. This means that the change made on an LDAP server will take effect on every directory service
based application that uses this piece of user information. The variety of information about a new user can be
added through a single interface which will be made available to Unix account, NT account, e-mail server, Web
Server, Job specific news groups etc. When the user leaves his account can be disabled to all the services in a
single operation.

So LDAP is most useful to provide “white pages” (e.g. names, phone numbers, roles etc) and “yellow pages” (e.g.
location of printers, application servers etc) like services. Typically in a J2EE application environment it will be
used to authenticate and authorize users.

Q. Why use LDAP when you can do the same with relational database (RDBMS)?

In general LDAP servers and RDBMS are designed to provide different types of services. LDAP is an open
standard access mechanism, so an RDBMS can talk LDAP. However the servers, which are built on LDAP, are
optimized for read access so likely to be much faster than RDBMS in providing read access. So in a nutshell,
LDAP is more useful when the information is often searched but rarely modified. (Another difference is that
RDBMS systems store information in rows of tables whereas LDAP uses object oriented hierarchies of entries.) .

Key LDAP Terms:

DIT: Directory Information Tree. Hierarchical structure of entries, those make up a directory.

DN: Distinguished Name. This uniquely identifies an entry in the directory. A DN is made up of relative DNs of
the entry and each of entry’s parent entries up to the root of the tree. DN is read from right to left and commas
separate these names. For example ‘cn=Peter Smith, o=ACME, c=AUS’.

objectClass: An objectClass is a formal definition of a specific kind of objects that can be stored in the directory.
An ObjectClass is a distinct, named set of attributes that represent something concrete such as a user, a
computer, or an application.

LDAP URL: This is a string that specifies the location of an LDAP resource. An LDAP URL consists of a server
host and a port, search scope, baseDN, filter, attributes and extensions. Refer to diagram below:

objectC lassFactory=country

objectC lassFactory=organ ization

ob jectC lassFactory=user

LD A P D irectory structure

root

c=A U S c=U K

o=A C M E o=XYZR etail o=Q uickC orp

cn=Peter Sm ith

m ail=PSm ith@ N A B .com
phone=88888888

So the complete distinguished name for bottom left entry (i.e. Peter Smith) is cn=Peter Smith, o=ACME, c=AUS.
Each entry must have at least one attribute that is used to name the entry. To manage the part of the LDAP
directory you should specify the highest level parent’s distinguished names in the server configuration. These
distinguished names are called suffixes. The server can access all the objects that are below the specified suffix

Enterprise – JNDI & LDAP

158

in the hierarchy. For example in the above diagram, to answer queries about ‘Peter Smith’ the server should have
the suffix of ‘o=ACME, c=AUS’. So we can look for “Peter Smith” by using the following distinguished name:

cn=Peter Smith, o=ACME, c=AUS // where o=ACME, c=AUS is the suffix

LDAP schema: defines rules that specify the types of objects that a directory may contain and the required
optional attributes that entries of different types should have.

Filters: In LDAP the basic way to retrieve data is done with filters. There is a wide variety of operators that can be
used as follows: & (and), | (or), ! (not), ~= (approx equal), >= (greater than or equal), <= (less than or equal), *
(any) etc.

(& (uid=a*) (uid=*l))

Q. So where does JNDI fit into this LDAP? JNDI provides a standard API for interacting with naming and
directory services using a service provider interface (SPI), which is analogous to JDBC driver. To connect to an
LDAP server, you must obtain a reference to an object that implements the DirContext. In most applications, this
is done by using an InitialDirContext object that takes a Hashtable as an argument:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, “com.sun.jndi.ldap.LdapCtxFactory”);
env.put(Context.PROVIDER_URL, “ldap://localhost:387”);
env.put(Context.SECURITY_AUTHENTICATION, “simple”);
env.put(Context.SECURITY_PRINCIPAL, “cn=Directory Manager”);
env.put(Context.SECURITY_CREDENTIALS, “myPassword”);
DirContext ctx = new InitialDirContext(env);

General Tip #6:

Experience, knowledge and attitude are necessary for your career advancement. Developers with the ability to master
more knowledge in a short period of time are better skilled people too. If you solely rely on your work experience to
acquire your knowledge, it may take you quite some time. I took the approach of acquiring the knowledge by pro-actively
reading (mainly articles and sometimes books), having a technical chat with my senior colleagues or mentors, and
networking with the fellow professionals via Java forums and keeping in touch with some skilled and experienced
developers I had worked with. Once I have acquired the knowledge then I pro-actively look for an opportunity to put my
knowledge to practice to gain experience and acquire skills. This is important because not only the experiences and skills
I have gained is going to stay with me for a longer period of time than just having the knowledge alone but also it is going
to help me acquire more knowledge quicker. As I repeat this cycle, I enhance my skill to acquire more knowledge in a
short period. This strategy helped me to fast track my career progress. You may have a different strategy, but no matter
what strategy you have, you have to eventually know and master the core concepts (aka fundamentals) and the key
areas.

Enterprise – RMI

159

Enterprise - RMI

Q 52: Explain the RMI architecture? SF FAQ
A 52: Java Remote Method Invocation (RMI) provides a way for a Java program on one machine to communicate with

objects residing in different JVMs (i.e. different processes or address spaces). The important parts of the RMI
architecture are the stub class, object serialization and the skeleton class. RMI uses a layered architecture where
each of the layers can be enhanced without affecting the other layers. The layers can be summarized as follows:

 Application Layer: The client and server program
 Stub & Skeleton Layer: Intercepts method calls made by the client. Redirects these calls to a remote RMI

service.
 Remote Reference Layer: Sets up connections to remote address spaces, manages connections, and

understands how to interpret and manage references made from clients to the remote service objects.
 Transport layer: Based on TCP/IP connections between machines in a network. It provides basic connectivity,

as well as some firewall penetration strategies.

Design pattern: RMI stub classes provide a reference to a skeleton object located in a different address space on
the same or different machine. This is a typical example of a proxy design pattern (i.e. remote proxy), which
makes an object executing in another JVM appear like a local object. In JDK 5.0 and later, the RMI facility uses
dynamic proxies instead of generated stubs, which makes RMI easier to use. Refer Q11 in “How would you
about…” section for a more detailed discussion on proxy design pattern and dynamic proxies.

ServerC lient

RMI Transport Layer

C lient Process Server P rocess

RMI Transport Layer

C lient
O bjects

R em ote R eference
M anager

Stub

R em ote
O bjects

Skeleton

R em ote R eference
M anager

R M I R egistry
(or JNDI Server)

2 . look up S tub

4. M ethod call on rem ote server O bjects5. Send results or Exception

3. R eturn S tub Stub 1. Load Stubs

N ote: Steps 4 & 5 are logica l exp lanation on ly. N either the S tubs nor Skeletons
use sockets d irectly . The actua l ca lls are m ade through the R em ote R eference
M anager. The R em ote R eference M anager handles the actua l deta ils o f
com m unicating w ith the rem ote process. This extra layer m anages netw ork
com m unication and conserves scarce resources like sockets.

R M I A rchitecture

Program 1 stub

skeleton

Program 2stub

skeleton

E xam ple

Enterprise – RMI

160

RMI runtime steps (as shown in the diagram above) involved are:

Step 1: Start RMI registry and then the RMI server. Bind the remote objects to the RMI registry.
Step 2: The client process will look up the remote object from the RMI registry.
Step 3: The lookup will return the stub to the client process from the server process.
Step 4: The client process will invoke method calls on the stub. The stub calls the skeleton on the server process
through the RMI reference manager.
Step 5: The skeleton will execute the actual method call on the remote object and return the result or an exception
to the client process via the RMI reference manager and the stub.

Q 53: What is a remote object? Why should we extend UnicastRemoteObject? SF FAQ
A 53: A remote object is one whose methods can be invoked from another JVM (i.e. another process). A remote object

class must implement the Remote interface. A RMI Server is an application that creates a number of remote
objects.

An RMI Server is responsible for

 Creating an instance of the remote object (e.g. CarImpl instance = new CarImpl()).
 Exporting the remote object.
 Binding the instance of the remote object to the RMI registry.

By exporting a remote object you make it available to accept incoming calls from the client. You can export the
remote object by either extending the java.rmi.server.UnicastRemoteObject or if your class is already extending
another class then you can use the static method

UnicastRemoteObject.exportObject (this);

If the UnicastRemoteObject is not extended (i.e. if you use UnicastRemoteObject.exportObject(…) then the
implementation class is responsible for the correct implementations of the hashCode(), equals() and toString()
methods. A remote object is registered in the RMI registry using:

Naming.rebind(String serviceName, Remote remoteObj);

Remote interface
eg: public interface Car extends Remote{}

Implementation of Remote interface
eg: public class CarImpl extends UnicastRemoteObject implements Car{}

Compile Car &
CarImpl

use rmic to generate stubs & skeletons
rmic -d /classes CarImpl

stub class skeleton class

Client Object
instances

stub Object
instances

skeleton Object
instances

remote Object
instances

generated generated
instantiated

instantiated
instantiated

Remote Objects

java.rmi.server.RemoteServer

java.rmi.server.UnicastRemoteObject

java.rmi.Remote

Enterprise – RMI

161

Q 54: What is the difference between RMI and CORBA? SF
A 54:

RMI CORBA
Java only solution. The interfaces,
implementations and the clients are all written
in Java.

CORBA was made specifically for interoperability among various
languages. For example the server could be written in C++ and the
business logic can be in Java and the client can be written in COBOL.

RMI allows dynamic loading of classes at
runtime.

In a CORBA environment with multi-language support it is not possible to
have dynamic loading.

Q 55: What are the services provided by the RMI Object? SF
A 55: In addition to its remote object architecture, RMI provides some basic object services, which can be used in a

distributed application. These services are

 Object naming/registry service: RMI servers can provide services to clients by registering one or more
remote objects with its local RMI registry.

 Object activation service: It provides a way for server (i.e. remote) objects to be started on an as-needed

basis. Without the remote activation service, a server object has to be registered with the RMI registry service.

 Distributed garbage collection: It is an automatic process where an object, which has no further remote
references, becomes a candidate for garbage collection.

Q 56: What are the differences between RMI and a socket? SF
A 56:

Socket RMI
A socket is a transport mechanism. Sockets are like
applying procedural networking to object oriented
environment.

RMI uses sockets. RMI is object oriented. Methods can be
invoked on the remote objects running on a separate JVM.

Sockets-based network programming can be laborious. RMI provides a convenient abstraction over raw sockets. Can
send and receive any valid Java object utilizing underlying
object serialization without having to worry about using data
streams.

Q 57: How will you pass parameters in RMI? SF
A 57:

 Primitive types are passed by value (e.g. int, char, boolean etc).

 References to remote objects (i.e. objects which implement the Remote interface) are passed as remote
references that allow the client process to invoke methods on the remote objects.

 Non-remote objects are passed by value using object serialization. These objects should allow them to be

serialized by implementing the java.io.Serializable interface.

Note: The client process initiates the invocation of the remote method by calling the method on the stub. The stub
(client side proxy of the remote object) has a reference to the remote object and forwards the call to the skeleton
(server side proxy of the remote object) through the reference manager by marshaling the method arguments.
During Marshaling each object is checked to determine whether it implements java.rmi.Remote interface. If it does
then the remote reference is used as the Marshaled data otherwise the object is serialized into byte streams and
sent to the remote process where it is deserialized into a copy of the local object. The skeleton converts this
request from the stub into the appropriate method call on the actual remote object by unmarshaling the method
arguments into local stubs on the server (if they are remote reference) or into local copy (if they are sent as
serialized objects).

Q 58: What is HTTP tunneling or how do you make RMI calls across firewalls? SF SE
A 58: RMI transport layer generally opens direct sockets to the server. Many Intranets have firewalls that do not allow

this. To get through the firewall an RMI call can be embedded within the firewall-trusted HTTP protocol. To get
across firewalls, RMI makes use of HTTP tunneling by encapsulating RMI calls within an HTTP POST request.

Enterprise – RMI

162

Proxy Server

RMI Client

Web Server
on port 80

RMI Server

H
TT

P
en

ca
ps

ul
at

ed
R

M
I c

al
l

ca
ll

fo
rw

ar
de

d
by

C
G

I s
cr

ip
t

Firewall Firewall

HTTP tunnelling

When a firewall proxy server can forward HTTP requests only to a well-known HTTP port: The firewall proxy
server will forward the request to a HTTP server listening on port 80, and a CGI script will be executed to forward
the call to the target RMI server port on the same machine.

company
network

HTTP tunneling

Client
applets
servlets

JMS client

FirewallI
n
t
e
r
n
e
t

Web
Server

Servlet Container

Servlet

Business Service
RMI
EJB

Corba

The disadvantages of HTTP tunneling are performance degradation, prevents RMI applications from using call-
backs, CGI script will redirect any incoming request to any port, which is a security loophole, RMI calls cannot be
multiplexed through a single connection since HTTP tunneling follows a request/response protocol etc.

Q 59: Why use RMI when we can achieve the same benefits from EJB? SF
A 59: EJBs are distributed components, which use the RMI framework for object distribution. An EJB application server

provides more services like transaction management, object pooling, database connection-pooling etc, which RMI
does not provide. These extra services that are provided by the EJB server simplify the programming effort at the
cost of performance overhead compared to plain RMI. So if performance is important then pure RMI may be a
better solution (or under extreme situations Sockets can offer better performance than RMI).

Note: The decision to go for RMI or EJB or Sockets should be based on requirements such as maintainability, ease of coding,
extensibility, performance, scalability, availability of application servers, business requirements etc.

Tech Tip #5:

Q. How do you pass a parameter to your JVM?

As JVM arguments:
$> java MyProgram -DallowCache=true

alternatively in your code:
System.setProperty(“allowCache”, Boolean.TRUE); // to set the value
System.getProperty(“allowCache”); // to get the value

Enterprise – EJB 2.x

163

Enterprise – EJB 2.x

There are various persistence mechanisms available like EJB 2.x, Object-to-Relational (O/R) mapping tools like Hibernate, JDBC and
EJB 3.0 (new kid on the block) etc. You will have to evaluate the products based on the application you are building because each
product has its strengths and weaknesses. You will find yourself trading ease of use for scalability, standards with support for special
features like stored procedures, etc. Some factors will be more important to you than for others. There is no one size fits all solution.
Let’s compare some of the persistence products:

EJB 2.x EJB 3.0 Hibernate JDBC
PROS:
 Security is provided for free
for accessing the EJB.

 Provides declarative
transactions.

 EJBs are pooled and
cached. EJB life cycles are
managed by the container.

 Has remote access
capabilities and can be
clustered for scalability.

PROS:
 A lot less artifacts than EJB
2.x. Makes use of annotations
or attributes based
programming.

 Narrows the gap between EJB
2.x and O/R mapping.

 Do support OO concepts like
inheritance.

PROS:
 Simple to write CRUD
(create, retrieve, update,
delete) operations.

 No container or application
server is required and can be
plugged into an existing
container.

 Tools are available to simplify
mapping relational data to
objects and quick to develop.

PROS:
 You have complete control
over the persistence
because this is the building
blocks of nearly all other
persistence technologies in
Java.

 Can call Stored Procedures.

 Can manipulate relatively
large data sets.

Cons:
 Need to understand the

intricacies like rolling back
a transaction, granularity
etc, infrastructures like
session facades, business
delegates, value objects etc
and strategies like lazy
loading, dirty marker etc.

 EJBs use lots of resources

and have lots of artifacts.

 Does not support OO

concepts like inheritance.

Cons:

 As of writing, It is still evolving.

Cons:
 Little or no capabilities for
remote access and
distributability.

 Mapping schemas can be
tedious and O/R mapping
has its tricks like using lazy
initialization, eager loading
etc. What works for one may
not work for another.

 Limited clustering
capabilities.

 Large data sets can still
cause memory issues.

 Support for security at a
database level only and no
support for role based
security without any add on
APIs like Aspect Oriented
Programming etc.

Cons:
 You will have to write a lot
of code to perform a little.
Easy to make mistakes in
properly managing
connections and can cause
out of cursors issues.

 Harder to maintain because
changes in schemas can
cause lot of changes to your
code.

 Records need to be locked
manually (e.g. select for
update).

As a rule of thumb, suitable
for distributed and clustered
applications, which is heavily
transaction based. Records
in use say between 1 and 50.

As a rule of thumb, suitable for
distributed and clustered
applications, which is heavily
transaction based. Records in
use say between 1 and 100.

Suitable for records in use
between 100 and 5000. Watch
out for memory issues, when
using large data sets.

Where possible stay away
from using JDBC unless you
have compelling reason to
use it for batch jobs where
large amount of data need to
be transferred, records in use
greater than 5000, required
to use Stored Procedures
etc.

The stateless session beans and message driven beans have wider acceptance in EJB 2.x compared to stateful session
beans and entity beans. Refer Emerging Technologies/Frameworks section for Hibernate and EJB 3.0.

Q 60: What is the role of EJB 2.x in J2EE? SF
A 60: EJB 2.x (Enterprise JavaBeans) is widely adopted server side component architecture for J2EE.

 EJB is a remote, distributed multi-tier system and supports protocols like JRMP, IIOP, and HTTP etc.
 It enables rapid development of reusable, versatile, and portable business components (i.e. across

middleware), which are transactional and scalable.

Enterprise – EJB 2.x

164

 EJB is a specification for J2EE servers. EJB components contain only business logic and system level
programming and services like transactions, security, instance pooling, multi-threading, persistence etc are
managed by the EJB Container and hence simplify the programming effort.

 Message driven EJBs have support for asynchronous communication.

Note: Having said that EJB 2.x is a widely adopted server side component, EJB 3.0 is taking ease of
development very seriously and has adjusted its model to offer the POJO (Plain Old Java Object) persistence and
the new O/R mapping model based on Hibernate. In EJB 3.0, all kinds of enterprise beans are just POJOs.
EJB 3.0 extensively uses Java annotations, which replaces excessive XML based configuration files and
eliminates the need for the rigid component model used in EJB 1.x, 2.x. Annotations can be used to define the
bean’s business interface, O/R mapping information, resource references etc. Refer Q18 in Emerging
Technologies/Frameworks section. So, for future developments look out for EJB 3.0 and/or Hibernate framework.
Refer Q14 – Q16 in Emerging Technologies/Frameworks section for discussion on Hibernate framework.

J2EE Server

C++ application

Firewall

HTTP Client
(eg: Browser, Wireless etc)

Java Applet,
Java stand-alone application

Other J2EE
Systems

Servlets
(use JavaBeans)

JSP
(use JavaBeans)

 EJB Container (Enterprise Java Beans are deployed)

Connectors (JCA)

Database

Legacy System,
ERP System etc

Servlets
(use JavaBeans)

Web Services
(SOAP, UDDI, WSDL, ebXML)

IIOP RMI/IIOP

HTTP

proprietary protocol

SQL

Messaging
Client

messaging

EJB Session Bean EJB Message Driven Bean EJB Session Bean

EJB Session BeanEJB Entity Bean EJB Session Bean

Message Oriented
Middleware Topic

SQL (fast Lane Reader)

EJB - Big Picture

Bu
sin

es
s L

og
ic

pr
ov

ide
d

by
th

e
de

ve
lop

er
 th

ro
ug

h
EJ

B

Sy
ste

m
 L

ev
el

Se
rv

ice
s l

ike
tra

ns
ac

tio
n,

 S
ec

ur
ity

 e
tc

ar
e

pr
ov

ide
d

by
 th

e
co

nt
ain

er

Business Delegate
(use JavaBeans)

Other J2EE
Systems

Web Services
(SOAP, UDDI, WSDL, ebXML)

Q 61: What is the difference between EJB and JavaBeans? SF FAQ
A 61: Both EJBs and JavaBeans have very similar names but this is where the similarities end.

JavaBeans Enterprise JavaBeans (EJB)
The components built based on JavaBeans live in a single
local JVM (i.e. address space) and can be either visual
(e.g. GUI components like Button, List etc) or non-visual at
runtime.

The Enterprise JavaBeans are non-visual distributable
components, which can live across multiple JVMs (i.e. address
spaces).

No explicit support exists for services like transactions etc. EJBs can be transactional and the EJB servers provide
transactional support.

JavaBeans are fine-grained components, which can be
used to assemble coarse-grained components or an
application.

EJBs are coarse-grained components that can be deployed as
is or assembled with other components into larger
applications. EJBs must be deployed in a container that
provides services like instance pooling, multi-threading,
security, life-cycle management, transactions etc

Must conform to JavaBeans specification. Must conform to EJB specification.

Enterprise – EJB 2.x

165

Q 62: Explain EJB architecture? SF
A 62:

EJ
B

Cl
ie

nt
(e

g
Se

rv
let

, J
SP

, S
ta

nd
 a

lon
e

ap
pli

ca
tio

n,
 A

pp
let

 e
tc)

E J B S e rv e r

E J B C o n ta in e r
E n te rp r is e Ja v a B e a n s

S e s s io n B e a n s
s ta te fu l / s ta te le ss

E n tity B e a n s
C M P / B M P

H o m e /L o c a lH o m e
In te r fa c e

R e m o te /L o c a l
In te r fa c e

H o m e O b je c t /
L o c a l H o m e O b je c t

E J B O b je c t /
E J B L o c a lO b je c t

sy n c h ro n o u s

sy n c h ro n o u s

E n te rp ris e S e rv ic e s a n d A P I

JN D I JM S T ra n s a c tio n s S e c u r ity

D a ta b a s e S e rv e r

J M S
M e s s a g e
P ro d u c e r

(e .g .
p u b lis h to
a T o p ic o r
se n d to a
Q u e u e)

J M S M e s s a g e
L is te n e r In te rfa c eA sy n c h ro n o u s

E n te rp r is e Ja v a B e a n s

M e s s a g e -D riv e n
B e a n s

E J B C o n ta in e r

C lie n t

J N D I

H o m e O b je c t

E J B O B je c t

D e p lo ym e n t d e sc rip to r
 - B e a n d e fin itio n
 - T ra n s a c tio n
 - S e c u rity e tc

E JB C o n te x t

e n te rp ris e
b e a n in s ta n c e

1 . Lookup

2 . get STUB

H o m e In te r fa c e

R e m o te In te r fa c e

3 . Invoke

crea te ()

find ()

rem o ve ()

on the s tub

4 . in tercept & apply

5.
ne

w
ins

ta
nc

e

7 . R e fe r

6.
int

er
ce

pt
&

ap
ply

 se
rvi

ce
s

8 . b e a n life -cy c le m e th o d se jb C re a te ()o re jb F in d ()

9 . in vokeen te rp rise bean
m e thods like

ge tH orseP ow er()

1 0 . b e an b u s in e ss m e th o d s

g e tH o rse P o w e r() e tc

S a m p le C o d e :
 C o n te x t in itia lC tx = n e w In itia lC o n te x t(); //In itia lize th e J N D I c o n te x t. i.e . e n try p o in t.
 C a rH o m e h o m e O b je c t = (C a rH o m e) in itia lC tx .lo o k u p (e jb /M yE jb); // S te p s 1 & 2 in th e a b o ve d ia g ra m
 C a r c a rO b je c t = h o m e O b je c t.c re a te (); // S te p s 3 - 8
 c a rO b je c t .g e tH o rse P o w e r(); // S te p s 9 - 1 0

N o te : A n E J B c lie n t s h o u ld n e v e r a c c e s s a n e n te rp r is e b e a n in s ta n c e d ire c tly . A n y a c c e s s is d o n e th ro u g h th e
c o n ta in e r g e n e ra te d c la s s e s , w h ic h in tu rn in v o k e e n te rp ris e b e a n in s ta n c e ’s m e th o d s . T h e c o n ta in e r g e n e ra te d
c la s s e s in te rc e p t th e re q u e s t a n d a p p ly s e rv ic e s lik e tra n s a c tio n , s e c u rity e tc p rio r to in v o k in g th e a c tu a l m e th o d o n
th e e n te rp ris e b e a n in s ta n c e .

E J B A rc h ite c tu re

P e rs is te n c e

EJB Container: EJBs are software components, which run in an environment called an EJB container. An EJB
cannot function outside an EJB Container. The EJB container hosts and manages an Enterprise JavaBean in a
similar manner that a Web container hosts a servlet or a Web browser hosts a Java Applet. The EJB container
manages the following services so that the developer can concentrate on writing the business logic:

 Transactions (refer Q71 – Q75 in Enterprise section)
 Persistence
 EJB instance pooling
 Security (refer Q81 in Enterprise section)
 Concurrent access (or multi-threading)
 Remote access

Design pattern: EJBs use the proxy design pattern to make remote invocation (i.e. remote proxy) and to add
container managed services like security and transaction demarcation. Refer Q11 in “How would you about…”
section for a more detailed discussion on proxy design pattern and dynamic proxies.

EJBContext: Every bean obtains an EJBContext object, which is a reference directly to the container. The EJB
can request information about its environment like the status of a transaction, a remote reference to itself (an EJB
cannot use ‘this’ to reference itself) etc.

Enterprise – EJB 2.x

166

Deployment Descriptor: The container handles all the above mentioned services declaratively for an EJB based
on the XML deployment descriptor (ejb-jar.xml). When an EJB is deployed into a container the deployment
descriptor is read to find out how these services are handled. Refer to the J2EE deployment structure diagram in
Q6 in Enterprise section.

EJB: The EJB architecture defines 3 distinct types of Enterprise JavaBeans.

 Session beans.
 Entity beans.
 Message-driven beans.

The session and entity beans are invoked synchronously by the client and message driven beans are invoked
asynchronously by a message container such as a Queue or a Topic. Let’s look at some of the EJB container
services in a bit more detail:

Instance pooling

EJB instance pooling

EJB Server

Note:
1 The client looks up the stub from the jndi and invokes the create() method on the EJBHome object.
 CarHome homeObject = (CarHome) initialCtx.lookup(ejb/MyEjb);
 Car carObject = homeObject.create()
2-3 The EJBHome creates an EJBObject by invoking newInstance() and assigns a bean instance from the pool to the
 EJBObject. Now the assigned bean instance becomes in ready state from the pooled state.
4 Now the EJBObject can service client requests and reference is returned to the client.
 carObject .getHorsePower();
Finally once the client is finshed with EJBObject reference the bean instance is returned back to the pool to serve other clients

Client Application

EJB
Home

EJB
Object

bean instance pool

home
stub 1. create() 2. newInstance()

3. assign an instance
 to EJB Object

4. return EJB Object reference
to client

The above diagram shows how the EJB instances are pooled and assigned to EJB Object and then returned to
the pool. Let’s look at in detail for different types of EJBs.

EJB Server

stateless session & entity bean pooling

Notes:
The diagram on the left shows that since the
stateless session beans and entity beans
do not maintain any client state the bean
instance A was firstly allocated to client stub
1 and later on allocated to client stub 2. So if
there are 1000 concurrent clients then 30
instances of bean can serve them by taking
turns.

This behavior is not possible with regards to
stateful session beans which maintain the
client state. So there will be a dedicated
instance of the bean for each client stub. So
if there are 1000 clients then there will be
1000 instances of beans. So how do we
conserve memory. This is done by activation
and passivation. Passivation is the process
where the bean instance is serialized into a
persistent store when not used to conserve
memory and Activation is the process where
the serialized bean instance is de-serialized
back into memory to serve client request.
This process affects performance.

EJB Server

B

A

bean instance pool

C D

EJB
Object

EJB
Object

Client stub 1

Client stub 2

Client stub 1
A

B

bean instance pool

C D

EJB
Object

EJB
ObjectClient stub 2

Enterprise – EJB 2.x

167

From the diagrams it is clear that bean instances can be reused for all the bean types except for the stateful
session bean where the client state is maintained. So we need a dedicated stateful session bean for each client.

EJB Server

MDB-2 bean instance pool
for queue Q2

C

EJB
Object

EJB
Object

JMS Client 1

JMS Client 2

MDB-1 bean instance pool
for queue Q1

B C
A

AJMS Client 3

msg X for Q1

msg y for Q2

msg Z for Q2 EJB
Object B

Note: MDBs are like stateless session beans,
The instance pools are created for each MDB and within each pool multiple instances are created. In terms of
number of instances created in each pool are very similar to stateless session beans or entity beans (i.e. 3
instances of MDB-1 for queue Q1 instance pool can serve 10 JMS clients for queue Q1).

Message Driven Bean (MDB) pooling

Concurrent access

The session beans do not support concurrent access. The stateful session beans are exclusively for a client so
there is no concurrent access. The stateless session beans do not maintain any state. It does not make any sense
to have concurrent access. The entity beans represent data that is in the database table, which is shared between
the clients. So to make concurrent access possible the EJB container need to protect the data while allowing many
clients simultaneous access. When you try to share distributed objects you may have the following problem:

If 2 clients are using the same EJBObject, how do you keep one client from writing over the changes of the other?
Say for example

Client-1 reads a value x= 5
Client-2 modifies the value to x=7
Now the client-1’s value is invalid.

The entity bean addresses this by prohibiting concurrent access to bean instances. Which means several clients
can be connected to one EJBObject but only one client can access the EJB instance at a time.

Persistence

Entity beans basically represent the data in a relational database. An Entity Bean is responsible for keeping its
state in sync with the database.

Entity beans representing data in the database

AccountBean
id = 1001 (primary-key)
bsb = 1234
account_number = 98765432

instance for id = 1001

AccountBean
id = 1002 (primary-key)
bsb = 1234
account_number = 12345678

instance for id = 1002

database

id bsb account_num

1001 1234 98765432

1002 1234 12345678

Account Table

Enterprise – EJB 2.x

168

 Container-managed persistence (CMP) - The container is responsible for saving the bean’s state with the help
of object-relational mapping tools.

 Bean-managed persistence (BMP) – The entity bean is responsible for saving its own state.

If entity beans performance is of concern then there are other persistence technologies and frameworks like
JDBC, JDO, Hibernate, OJB and Oracle TopLink (commercial product).

Q 63: What are the different kinds of enterprise beans? SF FAQ
A 63:

Session Bean: is a non-persistent object that implements some business logic running on the server. Session
beans do not survive system shut down. There are two types of session beans

 Stateless session beans (i.e. each session bean can be reused by multiple EJB clients).
 Stateful session beans (i.e. each session bean is associated with one EJB client).

Entity Bean: is a persistent object that represents object views of the data, usually a row in a database. They
have the primary key as a unique identifier. Multiple EJB clients can share each entity bean. Entity beans can
survive system shutdowns. Entity beans can have two types of persistence

 Container-Managed Persistence (CMP) - The container is responsible for saving the bean’s state.
 Bean-Managed Persistence (BMP) – The entity bean is responsible for saving its own state.

Message-driven Bean: is integrated with the Java Message Service (JMS) to provide the ability to act as a
message consumer and perform asynchronous processing between the server and the message producer.

Q 64: What is the difference between session and entity beans? SF
A 64:

Session Beans Entity Beans
Use session beans for application logic. Use entity beans to develop persistent object model.
Expect little reuse of session beans. Insist on reuse of entity beans.
Session beans control the workflow and transactions of a
group of entity beans.

Domain objects with a unique identity (i.e.-primary key) shared
by multiple clients.

Life is limited to the life of a particular client. Handle
database access for a particular client.

Persist across multiple invocations. Handles database access
for multiple clients.

Do not survive system shut downs or server crashes.

Do survive system shut downs or server crashes.

Q 65: What is the difference between stateful and stateless session beans? SF FAQ
A 65:

Stateless Session Beans Stateful Session Bean
Do not have an internal state. Can be reused by different
clients.

Do have an internal state. Reused by the same client.

Need not be activated or passivated since the beans are
pooled and reused.

Need to handle activation and passivation to conserve system
memory since one session bean object per client.

Q 66: What is the difference between Container Managed Persistence (CMP) and Bean Managed Persistence (BMP)

entity beans? SF FAQ
A 66:

Container Managed Persistence (CMP) Bean Managed Persistence (BMP)
The container is responsible for persisting state of the bean. The bean is responsible for persisting its own state.
Container needs to generate database (SQL) calls. The bean needs to code its own database (SQL) calls.
The bean persistence is independent of its database (e.g.
DB2, Oracle, Sybase etc). So it is portable from one data
source to another.

The bean persistence is hard coded and hence may not be
portable between different databases (e.g. DB2, Oracle etc).

Q 67: Can an EJB client invoke a method on a bean directly? SF
A 67: An EJB client should never access an EJB directly. Any access is done through the container. The container will

intercept the client call and apply services like transaction, security etc prior to invoking the actual EJB.

Enterprise – EJB 2.x

169

Q 68: How does an EJB interact with its container and what are the call-back methods in entity beans? SF
A 68: EJB interacts with its container through the following mechanisms

 Call-back Methods: Every EJB implements an interface (extends EnterpriseBean) which defines several
methods which alert the bean to various events in its lifecycle. A container is responsible for invoking these
methods. These methods notify the bean when it is about to be activated, to be persisted to the database, to
end a transaction, to remove the bean from the memory, etc. For example the entity bean has the following
call-back methods:

public interface javax.ejb.EntityBean {

 public void setEntityContext(javax.ejb.EntityContext c);
 public void unsetEntityContext();
 public void ejbLoad();
 public void ejbStore();
 public void ejbActivate();
 public void ejbPassivate();
 public void ejbRemove();
}

 EJBContext: provides methods for interacting with the container so that the bean can request information

about its environment like the identity of the caller, security, status of a transaction, obtains remote reference
to itself etc. e.g. isUserInRole(), getUserPrincipal(), isRollbackOnly(), etc

 JNDI (Java Naming and Directory Interface): allows EJB to access resources like JDBC connections, JMS

topics and queues, other EJBs etc.

Q 69: What is the difference between EJB 1.1 and EJB 2.0? What is the difference between EJB 2.x and EJB 3.0? SF

FAQ
A 69: EJB 2.0 has the following additional advantages over the EJB 1.1

 Local interfaces: These are beans that can be used locally, that means by the same Java Virtual Machine,
so they do not required to be wrapped like remote beans, and arguments between those interfaces are
passed directly by reference instead of by value. This improves performance.

 ejbHome methods: Entity beans can declare ejbHomeXXX(…) methods that perform operations related to

the EJB component but that are not specific to a bean instance. The ejbHomeXXX(…) method declared in the
bean class must have a matching home method XXXX(…) in the home interface.

 Message Driven Beans (MDB): is a completely new enterprise bean type, which is designed specifically to

handle incoming JMS messages.

 New CMP Model. It is based on a new contract called the abstract persistence schema, which will allow the

container to handle the persistence automatically at runtime.

 EJB Query Language (EJB QL): It is a SQL-based language that will allow the new persistence schema to

implement and execute finder methods. EJB QL also used in new query methods ejbSelectXXX(…), which is
similar to ejbFindXXXX(…) methods except that it is only for the bean class to use and not exposed to the
client (i.e. it is not declared in the home interface)

Let’s look at some of the new features on EJB 2.1

 Container-managed timer service: The timer service provides coarse-grained, transactional, time-based

event notifications to enable enterprise beans to model and manage higher-level business processes.

 Web Service support: EJB 2.1 adds the ability of stateless session beans to implement a Web Service
endpoint via a Web Service endpoint interface.

 EJB-QL: Enhanced EJB-QL includes support for aggregate functions and ordering of results.

Current EJB 2.x model is complex for a variety of reasons:

 You need to create several component interfaces and implement several unnecessary call-back methods.

 EJB deployment descriptors are complex and error prone.

Enterprise – EJB 2.x

170

 EJB components are not truly object oriented, as they have restrictions for using inheritance and

polymorphism.

 EJB modules cannot be tested outside an EJB container and debugging an EJB inside a container is very
difficult.

Note: EJB 3.0 is taking ease of development very seriously and has adjusted its model to offer the POJO (Plain Old Java
Object) persistence and the new O/R mapping model based on Hibernate. In EJB 3.0, all kinds of enterprise beans are just
POJOs. EJB 3.0 extensively uses Java annotations, which replaces excessive XML based configuration files and eliminate
the need for rigid component model used in EJB 1.x, 2.x. Annotations can be used to define the bean’s business interface, O/R
mapping information, resource references etc. Refer Q18 in Emerging Technologies/Frameworks section.

Q 70: What are the implicit services provided by an EJB container? SF FAQ
A 70:

 Lifecycle Management: Individual enterprise beans do not need to explicitly manage process allocation,
thread management, object activation, or object destruction. The EJB container automatically manages the
object lifecycle on behalf of the enterprise bean.

 State Management: Individual enterprise beans do not need to explicitly save or restore conversational

object state between method calls. The EJB container automatically manages object state on behalf of the
enterprise bean.

 Security: Individual enterprise beans do not need to explicitly authenticate users or check authorization

levels. The EJB container automatically performs all security checking on behalf of the enterprise bean.

 Transactions: Individual enterprise beans do not need to explicitly specify transaction demarcation code to
participate in distributed transactions. The EJB container can automatically manage the start, enrolment,
commitment, and rollback of transactions on behalf of the enterprise bean.

 Persistence: Individual enterprise beans do not need to explicitly retrieve or store persistent object data from

a database. The EJB container can automatically manage persistent data on behalf of the enterprise bean.

Q 71: What are transactional attributes? SF TI FAQ
A 71: EJB transactions are a set of mechanisms and concepts, which insures the integrity and consistency of the

database when multiple clients try to read/update the database simultaneously.

Transaction attributes are defined at different levels like EJB class, a method within a class or segment of a
code within a method. The attributes specified for a particular method take precedence over the attributes
specified for a particular EJB class. Transaction attributes are specified declaratively through EJB deployment
descriptors. Unless there is any compelling reason, the declarative approach is recommended over programmatic
approach where all the transactions are handled programmatically. With the declarative approach, the EJB
container will handle the transactions.

Transaction
Attributes

Description

Required Methods executed within a transaction. If client provides a transaction, it is used. If not, a new transaction is
generated. Commit at end of method that started the transaction. Which means a method that has Required
attribute set, but was called when the transaction has already started will not commit at the method
completion. Well suited for EJB session beans.

Mandatory Client of this EJB must create a transaction in which this method operates, otherwise an error will be
reported. Well-suited for entity beans.

RequiresNew Methods executed within a transaction. If client provides a transaction, it is suspended. If not a new
transaction is generated, regardless. Commit at end of method.

Supports Transactions are optional.
NotSupported Transactions are not supported. If provided, ignored.
Never Code in the EJB is responsible for explicit transaction control.

Q 72: What are isolation levels? SF TI PI FAQ
A 72: Isolation levels provide a degree of control of the effects one transaction can have on another concurrent

transaction. Since concurrent effects are determined by the precise ways in which, a particular relational database

Enterprise – EJB 2.x

171

handles locks and its drivers may handle these locks differently. The semantics of isolation mechanisms based on
these are not well defined. Nevertheless, certain defined or approximate properties can be specified as follows:

Isolation level Description
TRANSACTION_SERIALIZABLE Strongest level of isolation. Places a range lock on the data set, preventing other

users from updating or inserting rows into the data set until the transaction is
complete. Can produce deadlocks.

TRANSACTION_REPEATABLE_READ Locks are placed on all data that is used in a query, preventing other users from
updating the data, but new phantom records can be inserted into the data set
by another user and are included in later reads in the current transaction.

TRANSACTION_READ_COMMITTED Can't read uncommitted data by another transaction. Shared locks are held while
the data is being read to avoid dirty reads, but the data can be changed before
the end of the transaction resulting in non-repeatable reads and phantom
records.

TRANSACTION_READ_UNCOMMITTED Can read uncommitted data (dirty read) by another transaction, and non-
repeatable reads and phantom records are possible. Least restrictive of all
isolation levels. No shared locks are issued and no exclusive locks are honored.

Isolation levels are not part of the EJB specification. They can only be set on the resource manager either
explicitly on the Connection (for bean managed persistence) or via the application server specific configuration.
The EJB specification indicates that isolation level is part of the Resource Manager.

As the transaction isolation level increases, likely performance degradation follows, as additional locks are
required to protect data integrity. If the underlying data does not require such a high degree of integrity, the
isolation level can be lowered to improve performance.

Q 73: What is a distributed transaction? What is a 2-phase commit? SF TI FAQ
A 73: A Transaction (Refer Q43 in Enterprise section) is a series of actions performed as a single unit of work in which

either all of the actions performed as a logical unit of work in which, either all of the actions are performed or none
of the actions. A transaction is often described by ACID properties (Atomic, Consistent, Isolated and Durable). A
distributed transaction is an ACID transaction between two or more independent transactional resources like
two separate databases. For the transaction to commit successfully, all of the individual resources must commit
successfully. If any of them are unsuccessful, the transaction must rollback in all of the resources. A 2-phase
commit is an approach for committing a distributed transaction in 2 phases.

Phase 1 is prepare: Each of the resources votes on whether it’s ready to commit – usually by going ahead and
persisting the new data but not yet deleting the old data.

Phase 2 is committing: If all the resources are ready, they all commit – after which old data is deleted and
transaction can no longer roll back. 2-phase commit ensures that a distributed transaction can always be
committed or always rolled back if one of the databases crashes. The XA specification defines how an application
program uses a transaction manager to coordinate distributed transactions across multiple resource managers.
Any resource manager that adheres to XA specification can participate in a transaction coordinated by an XA-
compliant transaction manager.

Q 74: What is dooming a transaction? TI
A 74: A transaction can be doomed by the following method call CO

ejbContext.setRollbackOnly();

The above call will force transaction to rollback. The doomed transactions decrease scalability and if a transaction
is doomed why perform compute intensive operations? So you can detect a doomed transaction as shown below:
CO

public void doComputeIntensiveOperation() throws Exception {

 if (ejbContext.getRollbackOnly()) {
 return; // transaction is doomed so return (why unnecessarily perform compute intensive
 // operation)
 }
 else {
 performComplexOperation();
 }
}

Enterprise – EJB 2.x

172

Q 75: How to design transactional conversations with session beans? SF TI
A 75: A stateful session bean is a resource which has an in memory state which can be rolled back in case of any

failure. It can participate in transactions by implementing SessionSynchronization. CO

The uses of SessionSynchronization are:

 Enables the bean to act as a transactional resource and undo state changes on failure.
 Enables you to cache database data to improve performance.

Q 76: Explain exception handling in EJB? SF EH CO FAQ
A 76: Java has two types of exceptions:

 Checked exception: derived from java.lang.Exception but not java.lang.RuntimeException.
 Unchecked exception: derived from java.lang.RuntimeException thrown by JVM.

public void depositAmount() throws InsufficientFundException {
 if(this.amount <= 0) {

 throw new InsufficientFundException ("Balance is <= 0");
}
try {
 depositAmount();
} catch (SQLException e) {
 throw new EJBException(e);
} catch (Exception e) {
 throw new EJBException(e);
}

}

Application Exception

System Exception

System vs Application Exception

EJB has two types of exceptions:

 System Exception: is an unchecked exception derived from java.lang.RuntimeException. An

EJBException is an unchecked exception, which is derived from java.lang.RuntimeException.

 Application Exception: is specific to an application and thrown because of violation of business rules (e.g.

InsufficierntFundException etc). An Application Exception is a checked exception that is either defined by the
bean developer and does not extend java.rmi.RemoteException, or is predefined in the javax.ejb package
(i.e. CreateException, RemoveException, ObjectNotFoundException etc).

A System Exception is thrown by the system and is not recoverable. For example EJB container losing
connection to the database server, failed remote method objects call etc. Because the System Exceptions are
unpredictable, the EJB container is the only one responsible for trapping the System Exceptions. The container

SessionSynchronization

public class MyBean implements SessionBean, SessionSynchronization{
public int oldVal ; public int val ;

public void ejbCreate(int val) throws CreateException {
this.val=val;
this.oldVal=val;

}

public void afterBegin() { this.oldVal = this.val ;}
public void beforeCompletion(){};
public void afterCompletion(boolean b) { if (b == false) this.val = this.oldVal ; }

}

public interface javax.ejb.SessionSynchronization {
 public void afterBegin();
 public void beforeCompletion();
 public void afterCompletion(boolean b);
}

Enterprise – EJB 2.x

173

automatically wraps any RuntimeException in RemoteException, which subsequently gets thrown to the caller (i.e.
client). In addition to intercepting System Exception the container may log the errors.

An Application Exception is specific to an application and is thrown because of violation of business rules. The
client should be able to determine how to handle an Application Exception. If the account balance is zero then an
Application Exception like InsufficientFundException can be thrown. If an Application Exception should be
treated as a System Exception then it needs to be wrapped in an EJBException, which extends java.lang.
RuntimeException so that it can be managed properly (e.g. rolling back transactions) and propagated to the client.

Q 77: How do you rollback a container managed transaction in EJB? SF TI EH FAQ
A 77: The way the exceptions are handled affects the way the transactions are managed. CO

When the container manages the transaction, it is automatically rolled back when a System Exception occurs.
This is possible because the container can intercept System Exception. However when an Application Exception
occurs, the container does not intercept it and therefore leaves it to the code to roll back using
ctx.setRollbackOnly().

Be aware that handling exceptions in EJB is different from handling exceptions in Java. The Exception handling
best practice tips are:

 If you cannot recover from System Exception let the container handle it.
 If a business rule is violated then throw an application exception.
 If you want to rollback a transaction on an application exception then catch the application exception and

throw an EJBException or use ctx.setRollbackOnly();

Q 78: What is the difference between optimistic and pessimistic concurrency control? TI CI
A 78:

Pessimistic Concurrency Optimistic Concurrency
A pessimistic design assumes conflicts will occur in the
database tables and avoids them through exclusive
locks etc.

An optimistic approach assumes conflicts won’t occur, and deal with
them when they do occur.

EJB (also non-EJB) locks the source data until it
completes its transaction.

 Provides reliable access to data.
 Suitable for short transactions.
 Suitable for systems where concurrent access is

rare.

EJB (also non-EJB) implements a strategy to detect whether a
change has occurred. Locks are placed on the database only for a
small portion of the time.

 Suitable for long transactions.
 Suitable for systems requiring frequent concurrent accesses.

The pessimistic locking imposes high locking
overheads on the server and lower concurrency.

The optimistic locking is used in the context of cursors. The
optimistic locking works as follows:

 No locks are acquired as rows are read.
 No locks are acquired while values in the current row are
changed.

 When changes are saved, a copy of the row in the database is
read in the locked mode.

 If the data was changed after it was read into the cursor, an error

Rolling back Container Managed Transactions

public void depositAmount() throws InsufficientFundExceptiion {
try {
 depositAmount();
}catch (InsufficientFundException e)
 ctx.setRollbackOnly();
 throw new InsufficientFundExceptiion(e.getMessage());
} catch (SQLException e) {
 throw new EJBException(e);
} catch (Exception e) {
 throw new EJBException(e);
}

}

Application Exception is thrown so
the transaction should be rolled back
in the code ctx.setRollbackOnly().

EJBException is a System
Exception so the container will
automatically roll back the
transaction.

Enterprise – EJB 2.x

174

is raised so that the transaction can be rolled back and retried.
Note: The testing for changes can be done by comparing the
values, timestamp or version numbers.

Q 79: How can we determine if the data is stale (for example when using optimistic locking)? TI
A 79: We can use the following strategy to determine if the data is stale:

 Adding version numbers

1. Add a version number (Integer) to the underlying table.
2. Carry the version number along with any data read into memory (through value object, entity bean etc).
3. Before performing any update compare the current version number with the database version number.
4. If the version numbers are equal update the data and increment the version number.
5. If the value object or entity bean is carrying an older version number, reject the update and throw an

exception.

Note: You can also do the version number check as part of the update by including the version column in the
where clause of the update without doing a prior select.

 Adding a timestamp to the underlying database table.
 Comparing the data values.

These techniques are also quite useful when implementing data caching to improve performance. Data caches
should regularly keep track of stale data to refresh the cache. These strategies are valid whether you use EJB or
other persistence mechanisms like JDBC, Hibernate etc.

Q 80: What are not allowed within the EJB container? SF
A 80: In order to develop reliable and portable EJB components, the following restrictions apply to EJB code

implementation:

 Avoid using static non-final fields. Declaring all static fields in EJB component as final is recommended. This
enables the EJB container to distribute instances across multiple JVMs.

 Avoid starting a new thread (conflicts with EJB container) or using thread synchronization (allow the EJB
container to distribute instances across multiple JVMs).

 Avoid using AWT or Swing functionality. EJBs are server side business components.

 Avoid using file access or java.io operations. EJB business components are meant to use resource managers
such as JDBC to store and retrieve application data. But deployment descriptors can be used to store <env-
entry>.

 Avoid accepting or listening to socket connections. EJB components are not meant to provide network socket
functionality. However the specification lets EJB components act as socket clients or RMI clients.

 Avoid using the reflection API. This restriction enforces Java security.

 Can’t use custom class loaders.

Q 81: Discuss EJB container security? SF SE
A 81: EJB components operate inside a container environment and rely heavily on the container to provide security. The

four key services required for the security are:

 Identification: In Java security APIs this identifier is known as a principal.

 Authentication: To prove the identity one must present the credentials in the form of password, swipe card,
digital certificate, finger prints etc.

 Authorization (Access Control): Every secure system should limit access to particular users. The common

way to enforce access control is by maintaining security roles and privileges.

Enterprise – EJB 2.x

175

 Data Confidentiality: This is maintained by encryption of some sort. It is no good to protect your data by
authentication if someone can read the password.

The EJB specification concerns itself exclusively with authorization (access control). An application using EJB
can specify in an abstract (declarative) and portable way that is allowed to access business methods. The EJB
container handles the following actions:

 Find out the Identity of the caller of a business method.

 Check the EJB deployment descriptor to see if the identity is a member of a security role that has been

granted the right to call this business method.

 Throw java.rmi.RemoteException if the access is illegal.

 Make the identity and the security role information available for a fine grained programmatic security check.

public void closeAccount() {
 if (ejbContext.getCallerPrincipal().getName().equals(“SMITH”)) {
 //…
 }

 if (!ejbContext.isCallerInRole(CORPORATE_ACCOUNT_MANAGER)) {
 throw new SecurityException(“Not authorized to close this account”);
 }
}

 Optionally log any illegal access.

There are two types of information the EJB developer has to provide through the deployment descriptor.

 Security roles
 Method permissions

Example:

<security-role>
 <description>
 Allowed to open and close accounts
 </description>
 <role-name>account_manager</role-name>
</security-role>
<security-role>
 <description>
 Allowed to read only
 </description>
 <role-name>teller</role-name>
</security-role>

There is a many-to-many relationship between the security roles and the method permissions.

<method-permission>
 <role-name>teller</role-name>
 <method>
 <ejb-name>AccountProcessor</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
</method-permission>

Just as we must declare the resources accessed in our code for other EJBs that we reference in our code we
should also declare the security role we access programmatically to have a fine grained control as shown below.

<security-role-ref>
 <description>
 Allowed to open and close accounts
 </description>
 <role-name>account_manager</role-name>
 <role-link>executive</role-link>
</security-role-ref>

Enterprise – EJB 2.x

176

There is also many-to-many relationship between the EJB specific security roles that are in the deployment
descriptor and the application based target security system like LDAP etc. For example there might be more than
one group users and individual users that need to be mapped to a particular EJB security role ‘account_manager’.

Q 82: What are EJB best practices? BP FAQ
A 82:

 Use local interfaces that are available in EJB2.0 if you deploy both the EJB client and the EJB in the same
server. Use vendor specific pass-by-reference implementation to make EJB1.1 remote EJBs operate as local.
[Extreme care should be taken not to affect the functionality by switching the application, which was written
and tested in pass-by-reference mode to pass-by-value without analyzing the implications and re-testing the
functionality.

 Wrap entity beans with session beans to reduce network calls (refer Q84 in Enterprise section) and promote
declarative transactions. Where possible use local entity beans and session beans can be either local or
remote. Apply the appropriate EJB design patterns as described in Q83 – Q87 in Enterprise section.

 Cache ejbHome references to avoid JNDI look-up overhead using service locator pattern.

 Handle exceptions appropriately (refer Q76, Q77 in Enterprise section).

 Avoid transaction overhead for non-transactional methods of session beans by declaring transactional
attribute as “Supports”.

 Choose plain Java object over EJB if you do not want services like RMI/IIOP, transactions, security,

persistence, thread safety etc. There are alternative frameworks such as Hibernate, Spring etc.

 Choose Servlet’s HttpSession object rather than stateful session bean to maintain client state if you do not
require component architecture of a stateful bean.

 Apply Lazy loading and Dirty marker strategies as described in Q88 in Enterprise section.

Session Bean
(stateless)

Session Bean (stateful) Entity Bean

 Tune the pool size to
avoid overhead of
creation and destruction.

 Use setSessionContext(..)

or ejbCreate(..) method to
cache any bean specific
resources.

 Release any acquired

resources like Database
connection etc in
ejbRemove() method

 Tune the pool size to avoid
overhead of creation and
destruction.

 Set proper time out to avoid
resource congestion.

 Remove it explicitly from
client using remove()
method.

 Use ‘transient’ variable
where possible to avoid
serialization overhead.

 Tune the pool size to avoid overhead of creation and
destruction.

 Use setEntityContext(..) method to cache any bean

specific resources and unsetEntityContext() method to
release acquired resources.

 Use lazy-loading to avoid any unnecessary loading of

dependent data. Use dirty marker to avoid unchanged
data update.

 Commit the data after a transaction completes to reduce

any database calls in between.

 Where possible perform bulk updates, use CMP rather

than BMP, Use direct JDBC (Fast-lane-reader) instead
of entity beans, use of read-only entity beans etc.

Q 83: What is a business delegate? Why should you use a business delegate? DP PI FAQ
A 83: Questions Q83 – Q88 are very popular EJB questions.

Problem: When presentation tier components interact directly with the business services components like EJB,
the presentation components are vulnerable to changes in the implementation of business services components.

Solution: Use a Business Delegate to reduce the coupling between the presentation tier components and the
business services tier components. Business Delegate hides the underlying implementation details of the business
service, such as look-up and access details of the EJB architecture.

Business delegate is responsible for:

 Invoking session beans in Session Facade.

Enterprise – EJB 2.x

177

 Acting as a service locator and cache home stubs to improve performance.
 Handling exceptions from the server side. (Unchecked exceptions get wrapped into the remote exception,

checked exceptions can be thrown as an application exception or wrapped in the remote exception.
unchecked exceptions do not have to be caught but can be caught and should not be used in the method
signature.)

 Re-trying services for the client (For example when using optimistic locking business delegate will retry the
method call when there is a concurrent access.).

Business Delegate

Client BusinessDelegate

EJBLookupService

BusinessServiceEJB

3. lookup/create

1.uses

2.uses

4.uses

Q 84: What is a session façade? DP PI FAQ
A 84: Problem: Too many method invocations between the client and the server will lead to network overhead, tight

coupling due to dependencies between the client and the server, misuse of server business methods due to fine
grained access etc.

Solution: Use a session bean as a façade to encapsulate the complexities between the client and the server
interactions. The Session Facade manages the business objects, and provides a uniform coarse-grained service
access layer to clients.

Session Facade

Without Session Facade With Session Facade

Servlet
(client)

network

Entitity Bean 1

Entitity Bean 2

Entitity Bean 3

remote call 1

remote call 2

remote call 3

Servlet
(client)

network

Entitity Bean 1

Entitity Bean 2

Entitity Bean 3

remote call 1

Session Bean
(Stateless)
Session
Facade

loca
l ca

ll 1

local call 2

local call 3

Session façade is responsible for

 Improving performance by minimizing fine-grained method calls over the network.
 Improving manageability by reducing coupling, exposing uniform interface and exposing fewer methods to

clients.
 Managing transaction and security in a centralized manner.

Q 85: What is a value object pattern? DP PI FAQ
A 85: Problem: When a client makes a remote call to the server, there will be a process of network call and serialization

of data involved for the remote invocation. If you make fine grained calls there will be performance degradation.

Enterprise – EJB 2.x

178

Solution: Avoid fine-grained method calls by creating a value object, which will help the client, make a coarse-
grained call.

Value Object pattern

Without Value Object

Without value object 4 remote calls are
made to get all the relevant info

Servlet
(client)

Session Bean

getFirstName()

getSurname()
getGender()getAge()

With Value Object

ge
tG

en
de

r()

ge
tA

ge
()

With value object 1 remote call and 4 local
calls are made to get all the relevant info.

S
e
r
v
l
e
t
(
c
l
i
e
n
t
)

Session
Bean

getPersonInfo()
Person
Value
Object

getSurname()

getFirst
Name()

Q 86: What is a fast-lane reader? DP PI FAQ
A 86: Problem: Using Entity beans to represent persistent, read only tabular data incurs performance cost at no benefit

(especially when large amount of data to be read).

Solution: Access the persistent data directly from the database using the DAO (Data Access Object) pattern
instead of using Entity beans. The Fast lane readers commonly use JDBC, Connectors etc to access the read-only
data from the data source. The main benefit of this pattern is the faster data retrieval.

Fast Lane Reader

J2EE Server

EJB Container
Web Container

Data Access Object
JDBC

Session Bean Entity Bean

DataSource

Servlet
(client)

normal lane
normal lane

Fast Lane Reader Fast L
ane

Use Fast Lane Reader for read only access and the normal lane for read/write access to the DataSource.

Q 87: What is a Service Locator? DP PI FAQ
A 87: Problem: J2EE makes use of the JNDI interface to access different resources like JDBC, JMS, EJB etc. The client

looks up for these resources through the JNDI look-up. The JNDI look-up is expensive because the client needs to
get a network connection to the server first. So this look-up process is expensive and redundant.

Solution: To avoid this expensive and redundant process, service objects can be cached when a client performs
the JNDI look-up for the first time and reuse that service object from the cache for the subsequent look-ups. The
service locator pattern implements this technique. Refer to diagram below:

Enterprise – EJB 2.x

179

Service Locator

Without Service Locator

Servlet
(client -1)

Servlet
(client - 2)

Servlet
(client - 3)

JNDI

look up

lookup

lookup

Without service locator look up every time
from the JNDI

With Service Locator

Servlet
(client -1)

Servlet
(client - 2)

Servlet
(client - 3)

JNDI

Service
Locator

lookup

lookup

loo
ku

p

lookup first time only

With service locator look up first time from
the JNDI and second time onwards lookup
from the cache in the service locator.

Q 88: Explain lazy loading and dirty marker strategies? DP PI
A 88: Lazy Loading: Lazy loading means not creating an object until the first time it is accessed. This technique is

useful when you have large hierarchies of objects. You can lazy load some of the dependent objects. You only
create the dependent (subordinate) objects only when you need them.

if (this.data == null) {
 //lazy load data
}

For a CMP bean the default scenario is set to no lazy loading and the finder method will execute a single SQL
select statement against the database. So, for example, with the findAllCustomers() method will retrieve all
customer objects with all the CMP fields in each customer object.

If you turn on lazy loading then only the primary keys of the objects within the finder are returned. Only when you
access the object, the container uploads the actual object based on the primary key. You may want to turn on the
lazy loading feature if the number of objects that you are retrieving is so large that loading them all into local cache
would adversely affect the performance. (Note: The implementation of lazy loading strategy may vary from
container vendor to vendor).

Dirty Marker (Store optimization): This strategy allows us to persist only the entity beans that have been
modified. The dependent objects need not be persisted if they have not been modified. This is achieved by using a
dirty flag to mark an object whose contents have been modified. The container will check every dependent object
and will persist only those objects that are dirty. Once it is persisted its dirty flag will be cleared. (Note: The
implementation of dirty marker strategy may vary from container vendor to vendor).

Note: If your job requires a very good understanding of EJB 2.x then following books are recommended:
 Mastering Enterprise JavaBeans – by Ed Roman
 EJB Design Patterns – by Floyd Marinescu

Enterprise – JMS

180

Enterprise - JMS

Q 89: What is Message Oriented Middleware (MOM)? What is JMS? SF
A 89: Message Oriented Middleware (MOM) is generally defined as a software infrastructure that asynchronously

communicates with other disparate systems (e.g. Mainframe system, C++ System, etc) through the production
and consumption of messages. A message may be a request, a report, or an event sent from one part of an
enterprise application to another.

Q. Why use a messaging system as opposed to using Data Transfer Objects (aka DTOs, Value Objects) ?

• Firstly, messaging enables loosely coupled distributed communication. A component sends a message to a

destination, and the recipient can retrieve the message from the destination. However, the sender and the
receiver do not have to be available at the same time in order to communicate and also they are not aware of
each other. In fact, the sender does not need to know anything about the receiver; nor does the receiver need
to know anything about the sender. The sender and the receiver need to know only what message format and
what destination to use. In this respect, messaging differs from tightly coupled technologies, such as Remote
Method Invocation (RMI), which requires an application to know a remote application's methods.

• Secondly, messaging can communicate with disparate systems (e.g. Mainframe, C++ etc) via XML etc.

Q. How MOM is different from RPC?

Remote Procedure Call (e.g. RMI) MOM
Remote Procedure Call (RPC) technologies like RMI
attempt to mimic the behavior of system that runs in
one process. When a remote procedure is invoked the
caller is blocked until the procedure completes and
returns control to the caller. This is a synchronous
model where process is performed sequentially
ensuring that tasks are completed in a predefined
order. The synchronized nature of RPC tightly couples
the client (the software making the call) to the server
(the software servicing the call). The client can not
proceed (its blocked) until the server responds. The
tightly coupled nature of RPC creates highly
interdependent systems where a failure on one system
has an immediate impact on other systems.

With the use of Message Oriented Middleware (MOM), problems
with the availability of subsystems are less of an issue. A
fundamental concept of MOM is that communications between
components is intended to be asynchronous in nature. Code that is
written to connect the pieces together assumes that there is a one-
way message that requires no immediate response. In other words,
there is no blocking. Once a message is sent the sender can move
on to other tasks; it doesn't have to wait for a response. This is the
major difference between RPC and asynchronous messaging and is
critical to understanding the advantages offered by MOM systems.

In an asynchronous messaging system each subsystem (Customer,
Account etc) is decoupled from the other systems. They
communicate through the messaging server, so that a failure in one
does not impact the operation of the others.

Client is blocked while it is being processed. Asynchronous messages also allows for parallel processing i.e.

client can continue processing while the previous request is being
satisfied.

Q. Why use JMS? FAQ Message Oriented Middleware (MOM) systems like MQSeries, SonicMQ, etc are
proprietary systems. Java Message Service (JMS) is a Java API that allows applications to create, send, receive,
and read messages in a standard way. Designed by Sun and several partner companies, the JMS API defines a
common set of interfaces and associated semantics that allow programs written in the Java programming
language to communicate with other messaging implementations (e.g. SonicMQ, TIBCO etc). The JMS API
minimizes the set of concepts a programmer must learn to use messaging products but provides enough features
to support sophisticated messaging applications. It also strives to maximize the portability of JMS applications
across JMS providers.

Many companies have spent decades developing their legacy systems. So, XML can be used in a non-proprietary
way to move data from legacy systems to distributed systems like J2EE over the wire using MOM (i.e.
Implementation) and JMS (i.e. Interface).

Q. What are the components of the JMS architecture?

• Message producers: A component that is responsible for creating a message. E.g. QueueSender, and

TopicPublisher. An application can have several message producers. Each producer might be responsible for
creating different types of messages and sending them to different destinations (i.e. Topic or Queue). A
message producer will send messages to a destination regardless of whether or not a consumer is there to
consume it.

Enterprise – JMS

181

Integration Tier

Resource
TierBusiness Tier

Application 2

EJB container

Business
Objects

J
M
S

Message
Consumer

Message
Driven Beans

Data Transfer Objects (DTO) or Domain Objects (e.g Hibernate)
(transfer information between layers

Java Messaging using JMS & MOM
(high level diagram)

EJB layer provides
remote access Business Logic layer Data access logic

layer

Administered
objects

Message
Oriented

Middleware
(MOM e.g
MQSeries,
SonicMQ

etc)

Message
Destination

In-Topic

Message
Producer

Application 1

similar setup as
Application 2, but

not shown for
brevity.

1. Application 1 publishes the “input.xml” text message using JMS to the destination “In-Topic”

2. Application 2 MDB listens on (i.e subscribes to) destination
“In-Topic” and consumes the text message “input.xml” produced

and published by Application 1.

lookup

uses

Message
Destination
Out-Topic

Message
Producer

Message
Consumer

Message
Driven Beans

3. publish the text message “out.xml”
as a response to “input.xml”
to the destination “Out-Topic”

4. Application 1 MDB listens on (i.e. subscribes to) Out-Topic
and receives the out.xml published by Application 2

Note: Application 1 and Application 2 are loosely coupled (which means when Application 1 publishes the text message the Application 2 can be inactive and will pickup the message from
the destination when it becomes active) and communicates asynchronously via Message Oriented Middleware (MOM) like MQSeries, SonicMQ etc using Java Messaging Service (i.e JMS)
API and Message Driven Beans (i.e. MDBs - are asynchronous). A MDB cannot be called directly and only interface to it is by sending a JMS message to the destination like “In-Topic” of

which the MDB is listening.

input.xml out.xml

Message
input.xml

Message
out.xml

Message
input.xml

Message

• Message consumers: A component which resides on the receiving end of a messaging application. Its

responsibility is to listen for messages on a destination (i.e. Topic or Queue). E.g. QueueReceiver,
TopicSubscriber, MessageDrivenBean (MDB). A MDB is simply a JMS message consumer. A client cannot
access a MDB directly as you would do with Session or Entity beans. You can only interface with a MDB by
sending a JMS message to a destination (i.e. Topic or Queue) on which the MDB is listening.

• Message destinations: A component which a client uses to specify the target of messages it sends/receives.

E.g. Topic (publish/Subscribe domain) and Queue (Point-to-Point domain). Message destinations typically live
on a MOM, which is remote to the clients. Message destinations are administered objects that need to be
configured.

• JMS messages: A message is a component that contains the information (aka payload) that must be

communicated to another application or component. E.g. TextMessage (e.g. XML message), ObjectMessage
(e.g. serialized object) etc.

• JMS Administered objects: JMS administered objects are objects containing configuration information that

are set up during application deployment or configuration and later used by JMS clients. They make it practical
to administer the JMS API in the enterprise. These administered objects are initialized when the application
server starts. When a producer or a consumer needs to get a connection to receive or send a JMS message,
then you need to locate the configured administered objects QueueConnectionFactory or
TopicConnectionFactory. Message destinations are administered objects that need to be configured as well.
These administered objects hide provider-specific details from JMS clients.

• JNDI naming service: For a producer and consumer to be able to use the administered objects to send and

receive messages, they must know how to locate things such as the destination and connection factories.

Enterprise – JMS

182

Example: To publish a message to a topic: (Note: exception handling etc are omitted for brevity)

 String factoryJndiName = "WSMQTopicConnectionFactory";
 String destinationJndiName = "wsmq/topic/ProductManagerTopic";

 //JNDI lookup of administered ConnectionFactory object
 Context iniCtx = new InitialContext();
 TopicConnectionFactory topicCF = (TopicConnectionFactory) iniCtx.lookup(factoryJndiName);

 //JNDI lookup of administered destination (i.e. Topic)
 Topic topicDestination = (Topic) iniCtx.lookup(destinationJndiName);

 //get a connection from the TopicConnectionFactory
 TopicConnection publishConnection = topicCF.createTopicConnection();

 //get a session from the connection. Session should be accessed by only one thread.
 TopicSession publishSession =
 publishConnection.createTopicSession(false,TopicSession.AUTO_ACKNOWLEDGE);

 //create a publisher from the session
 TopicPublisher publisher = publishSession.createPublisher(topicDestination);

 //create a JMS message to send
 TextMessage message = publishSession.createTextMessage();
 message.setText("JMS test message");

 //send the message
 publisher.publish(message, DeliveryMode.NON_PERSISTENT, 4, 0);

To consume a message, a MDB listening on a Topic executes the onMessage(…) method asynchronously on
consumption of the message. A MDB needs to be configured via its J2EE specific deployment descriptor ejb-
jar.xml and server specific deployment descriptor like jboss.xml.

public void onMessage(Message message) {

 String text = null;
 if (message instanceof TextMessage) {
 text = ((TextMessage)message).getText();
 }

 log.info(text);
}

You could also use the following code to consume messages:

String factoryJndiName = "WSMQTopicConnectionFactory";
String destinationJndiName = "wsmq/topic/ProductManagerTopic";

//JNDI lookup of administered ConnectionFactory object
Context iniCtx = new InitialContext();
TopicConnectionFactory topicCF = (TopicConnectionFactory) iniCtx.lookup(factoryJndiName);

//JNDI lookup of administered destination (i.e. Topic)
Topic topicDestination = (Topic) iniCtx.lookup(destinationJndiName);

//get a connection from the TopicConnectionFactory
TopicConnection subscribeConnection = topicCF.createTopicConnection();

//get a session from the connection
TopicSession subscribeSession =
 subscribeConnection.createTopicSession(false,TopicSession.AUTO_ACKNOWLEDGE);

//create a subscriber from the session
TopicSubscriber subscriber = subscribeSession.createsubscriber(topicDestination);

//look for messages every 1 second
while (true) {
 Message response = subscriber.receive();

 if (response != null && response instanceof TextMessage) {
 System.out.println (((TextMessage) response).getText());
 }

Enterprise – JMS

183

 Thread.sleep(1000);
}

Q. Are messaging applications slow? While there is some overhead in all messaging systems, but this does not
mean that the applications that are using messaging are necessarily slow. Messaging systems can achieve a
throughput of 70-100 messages per second depending on the installation, messaging modes (synchronous versus
asynchronous, persistent versus non-persistent), and acknowledgement options such as auto mode, duplicates
okay mode, and client mode etc. The asynchronous mode can significantly boost performance by multi-tasking.
For example: In an Internet based shopping cart application, while a customer is adding items to his/her shopping
cart, your application can trigger an inventory checking component, and a customer data retrieval component to
execute concurrently. Performance tuning comes at a cost of reliability and flexibility. Some tips on performance:

• Choose proper acknowledgement mode - AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE give

better performance than CLIENT_ACKNOWLEDGE.

• Choose non-durable (i.e. non-persistent) messages where appropriate.

• Process messages concurrently by using the server session pool. Each session in the pool can execute
separate message concurrently. The JMS specification states that multi-threading a session, producer, or
message method can results in non-deterministic behavior. So if your application has limited number of
threads then try increasing the number of sessions. Open a connection only when required to and close it
immediately after you have finished with it.

• Transactional messages are accumulated at MOM server until the transaction is committed or rolled back. This

imposes significant overhead on JMS server. So divide transactional messages and non-transactional
messages separately.

• Carefully set some of the configuration settings on message destinations, producer/consumer etc. This is

usually a trade-off between performance and reliability. So increasing “Redelivery delay”, reducing “Destination
size” and “Maximum number of messages” can improve performance. The parameters “TimeToLive” and
“DeliveryMode” are important from the performance and reliability perspective. Also for example:

receive(); blocks the call until it receives the next message.
receive(long timeout); blocks till a timeout occurs.
receiveNoWait(); never blocks.

• Choose the message type carefully and compress large messages (e.g. larger than 1 MB) in a JMS application

in order to reduce the amount of time required to transfer messages across the network and memory used by
the JMS server at the expense of an increase in CPU usage (i.e. to compress and uncompress) of the client.
Less size gives a better performance. A ByteMessage takes less memory than a TextMessage.
ObjectMessage carries a serialized Java object and hence network overhead can be reduced by marking the
variables that need not be sent across the network as transient.

• Favor using JMS message header fields (e.g. JMSCorrelationID, JMSMessageID, JMSReplyTo, JMSPriority,

JMSTimestamp, JMSType etc) and/or the message body (carries main information i.e. payload as XML,
Object, Stream etc) as opposed to using user-defined message properties which incur an extra cost in
serialization, and are more expensive to access than standard JMS message header fields. For example:

message.setStringProperty(“AccountType”, “Credit”);//user-defined message property

Also, avoid storing large amount of data in user-defined properties or the JMS header fields because only
message bodies can be compressed or paged out (i.e. freeing up virtual memory by writing it out to disk when
paging is supported and enabled).

• Using a selector is expensive and it is important to consider when you are deciding where in the message to

store application data that is accessed via JMS selectors. By default, a message consumer will process every
message that is sent to its destination. You can modify this behavior to allow message consumers to process
only the message they are interested in using message selection and filtering. There two steps involved in
setting up a message filter:

• Initialize message header fields and/or user-defined message properties.

• Message consumers specify a query string to select certain messages based on the message header

fields and user defined message properties. A message selector cannot reference the message body.

Enterprise – JMS

184

String selector = “salary > 30000 and age < 30”;
subscribeSession.createSubscriber(responseTopic,selector, false);

Q. Are messaging applications reliable? What is a durable message delivery? FAQ This is basically a trade-
off between performance and reliability. If reliability is more important then the:

 Acknowledgement mode should be set to AUTO where once-and-only once delivery is guaranteed.

 Message delivery mode should be set to durable (aka persistent) where the MOM writes the messages to a
secure storage like a database or a file system to insure that the message is not lost in transit due to a
system failure.

Durable (aka Persistent) vs Non-durable(aka Non-persistent) messages

Persistent
storage

Database/File
System

Message
Producer

Message
Consumer

Message
Oriented

Middleware (MOM)
(MQSeries, SonicMQ etc)

1.
 S

en
d

m
es

sa
ge

2.
 a

ck
no

wl
ed

ge
m

es
sa

ge

3.
 re

ce
iv

e
m

es
sa

ge

4.
 A

ck
no

wl
ed

ge
m

es
sa

ge

Non-durable (aka Non-persistent) Durable (aka Persistent)

Message
Producer

Message
Consumer

Message
Oriented

Middleware (MOM)
(MQSeries, SonicMQ etc)

1.
Se

nd
m

es
sa

ge

3.
 a

ck
no

wl
ed

ge
m

es
sa

ge

4.
 re

ce
ive

m
es

sa
ge

5.
 A

ck
no

wl
ed

ge
m

es
sa

ge

2. persist
message
6. remove
message

Q.What are some of the key message characteristics defined in a message header?

Characteristic Explanation
JMSCorrelationID Used in request/response situations where a JMS client can use the JMSCorrelationID header to

associate one message with another. For example: a client request can be matched with a response
from a server based on the JMSCorrelationID.

JMSMessageID Uniquely identifies a message in the MOM environment.
JMSDeliveryMode This header field contains the delivery modes: PERSISTENT or NON_PERSISTENT.
JMSExpiration This contains the time-to-live value for a message. If it is set to zero, then a message will never expire.
JMSPriority Sets the message priority but the actual meaning of prioritization is MOM vendor dependent.

Q. What are the different body types (aka payload types) supported for messages? All JMS messages are
read-only once posted to a queue or a topic.

 Text message: body consists of java.lang.String (e.g. XML).
 Map message: body consists of key-value pairs.
 Stream message: body consists of streams of Java primitive values, which are accessed sequentially.
 Object message: body consists of a Serializable Java object.
 Byte message: body consists of arbitrary stream of bytes.

Enterprise – JMS

185

What is a message broker? A message broker acts as a server in a MOM. A message broker performs the
following operations on a message it receives:

 Processes message header information.
 Performs security checks and encryption/decryption of a received message.
 Handles errors and exceptions.
 Routes message header and the payload (aka message body).
 Invokes a method with the payload contained in the incoming message (e.g. calling onMessage(..) method

on a Message Driven Bean (MDB)).
 Transforms the message to some other format. For example XML payload can be converted to other

formats like HTML etc with XSLT.

Q 90: What type of messaging is provided by JMS? SF FAQ
A 90: Point-to-Point: provides a traditional queue based mechanism where the client application sends a message

through a queue to typically one receiving client that receives messages sequentially. A JMS message queue is
an administered object that represents the message destination for the sender and the message source for the
receiver. A Point-to-Point application has the following characteristics:

• A Point-to-Point producer is a sender (i.e. QueueSender).
• A Point-to-Point consumer is a receiver (i.e. QueueReceiver).
• A Point-to-Point destination is a queue (i.e. Queue).
• A message can only be consumed by one receiver.

Example: A call center application may use a queue based Point-to-Point domain to process all the calls where
all the phone calls do not go to all the operators, but only one.

Point-to-Point (Queue) vs Publish/Subscribe (Topic)

Message Producer
Sender

Message
Consumer
Receiver-1

Message
Consumer
Receiver-2

Message
Consumer
Receiver-3

MOM

Queue

message

message

Point-to-Point using queue

There are 3 receivers but the message
can be consumed by only one receiver

(e.g. Receiver-1)

Message Producer
Publisher

Message
Consumer

Subscriber-1

Message
Consumer

Subscriber-2

Message
Consumer

Subscriber-3

MOM

message

message

Publish/Subscribe using topic

Unlike Point-to-Point there are 3
subscribers and all 3 consume the

same message...

Topic

message message

Enterprise – JMS

186

Publish/Subscribe: is a one-to-many publishing model where client applications publish messages to topics,
which are in turn subscribed by other interested clients. All subscribed clients will receive each message. A
Publish/Subscribe application has the following characteristics:

• A Publish/Subscribe producer is a publisher (i.e. TopicPublisher).
• A Publish/Subscribe consumer is a subscriber (i.e. TopicSubscriber).
• A Publish/Subscribe destination is a topic (i.e. Topic).
• A message can be consumed by multiple subscribers.

If a message publisher is also a subscriber, then a publisher can receive its own message sent to the destination.
This behavior is only applicable to publish/subscribe model. This behavior can be controlled by setting the
“noLocal” attribute to true when creating the publisher or the subscriber.

Example: A bulletin board application may use a topic based publish/subscribe model where everyone who is
interested in particular news becomes a subscriber and when a message is published, it is sent to all its
subscribers.

Q. How do you determine whether it would be better to use a Topic or Queue?

You must choose to use a Topic if one of the following conditions applies:

• Same message must be replicated to multiple consumers (With Queue a message can only be consumed by

one receiver).

• A message should be dropped if there are no active consumers that would select it.

• There are many subscribers each with a unique selector.

Q 91: Discuss some of the design decisions you need to make regarding your message delivery? SF DC FAQ
A 91:

During your design phase, you should carefully consider various options or modes like message
acknowledgement modes, transaction modes and delivery modes. For example: for a simple approach you would
not be using transactions and instead you would be using acknowledgement modes. If you need reliability then the
delivery mode should be set to persistent. This can adversely affect performance but reliability is increased. If your
message needs to be consumed only once then you need to use a queue (Refer Q90 in Enterprise section).

Design
decision

Explanation

Message
acknowledge
ment options
or modes.

Acknowledgement mode and transaction modes are used to determine if a message will be lost or re-
delivered on failure during message processing by the target application. Acknowledgement modes are
set when creating a JMS session.

InitialContext ic = new InitialContext(…);
QueueConnectionFactory qcf =
 (QueueConnectionFactory)ic.lookup(“AccountConnectionFactory”);
QueueConnection qc = qcf.createQueueConnection();
QueueSession session = qc.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

 In the above code sample, the transaction mode is set to false and acknowledgement mode is set to auto
mode. Let us look at acknowledgement modes:

AUTO_ACKNOWLEDGE: The messages sent or received from the session are automatically
acknowledged. This mode also guarantees once only delivery. If a failure occurs while executing
onMessage() method of the destination MDB, then the message is re-delivered. A message is
automatically acknowledged when it successfully returns from the onMessage(…) method.

DUPS_OK_ACKNOWLEDGE: This is just like AUTO_ACKNOWLEDGE mode, but under rare
circumstances like during failure recovery messages might be delivered more than once. If a failure occurs
then the message is re-delivered. This mode has fewer overheads than AUTO_ACKNOWLEDGE mode.

CLIENT_ACKNOWLEDGE: The messages sent or received from sessions are not automatically
acknowledged. The destination application must acknowledge the message receipt. This mode gives an
application full control over message acknowledgement at the cost of increased complexity. This can be
acknowledged by invoking the acknowledge() method on javax.jms.Message class.

Enterprise – JMS

187

Transactional
behavior

Transactional behavior is controlled at the session level. When a session is transacted, the message
oriented middleware (MOM) stages the message until the client either commits or rolls back the
transaction. The completion of a session’s current transaction automatically begins a new transaction.

The use of transactions in messaging affects both the producers and consumers of the messages as
shown below:

MOM
(aka Broker)

Message
Producer

Message
Consumer

1. commit
1. send

2. roll back

2.
 d

isp
os

e o
f

th
e

m
es

sa
ge

3. commit

3.
di

sp
os

e
of

th
e

m
es

sa
ge

4. roll back
4. resend

Messaging - Transactional behavior

Producers [As per the above diagram]:

1’s Commit: The MOM send the group of messages that have been staged.
2’s Rollback: The MOM disposes of the group of messages that have been staged.

Consumers [As per the above diagram] :

3’s Commit: The MOM disposes of the group of messages that have been staged.
4’s Rollback: The MOM resends the group of messages that have been staged.

Transaction
modes

In JMS, a transaction organizes a message or a group of messages into an atomic processing unit. So, if a
message delivery is failed, then the failed message may be re-delivered. Calling the commit() method
commits all the messages the session receives and calling the rollback method rejects all the messages.

InitialContext ic = new InitialContext(…);
QueueConnectionFactory qcf =
 (QueueConnectionFactory)ic.lookup(“AccountConnectionFactory”);
QueueConnection qc = qcf.createQueueConnection();
QueueSession session = qc.createQueueSession(true, -1);

In the above code sample, the transaction mode is set to true and acknowledgement mode is set to -1,
which means acknowledgement mode has no use in this mode. Let us look at transaction modes:

Message Driven Bean (MDB) with container managed transaction demarcation: A MDB participates in
a container transaction by specifying the transaction attributes in its deployment descriptor. A transaction
automatically starts when the JMS provider removes the message from the destination and delivers it to
the MDB’s onMessage(…) method. Transaction is committed on successful completion of the onMessage()
method. A MDB can notify the container that a transaction should be rolled back by setting the
MessageDrivenContext to setRollBackOnly(). When a transaction is rolled back, the message is re-
delivered.

public void onMessage(Message aMessage) {
 …
 if(someCondtionIsTrue) {
 mdbContext.setRollbackOnly();
 }
 else{
 //everything is good. Transaction will be committed automatically on
 //completion of onMessage(..) method.
 }
}

Message Driven Bean (MDB) with bean managed transaction demarcation: If a MDB chooses not to
participate in a container managed transaction then the MDB programmer has to design and code
programmatic transactions. This is achieved by creating a UserTransaction object from the MDB’s
MessageDrivenContext as shown below and then invoking the commit() and rollback() methods on this
UserTransaction object.

public void onMessage(Message aMessage) {

 UserTransaction uT = mdbContext.getUserTransaction();

Enterprise – JMS

188

 uT.begin();
 ….
 if(someCondtionIsTrue) {
 uT.rollback();
 }
 else{
 uT.commit();
 }
}

Transacted session: An application completely controls the message delivery by either committing or
rolling back the session. An application indicates successful message processing by invoking Session
class’s commit() method. Also it can reject a message by invoking Session class’s rollback() method. This
committing or rollback is applicable to all the messages received by the session.

public void process(Message aMessage, QueueSession qs) {
 ….
 if(someCondtionIsTrue) {
 qs.rollback();
 }
 else{
 qs.commit();
 }
…
}

What happens to rolled-back messages?

Rolled back messages are re-delivered based on the re-delivery count parameter set on the JMS
provider. The re-delivery count parameter is very important because some messages can never be
successful and this can eventually crash the system. When a message reaches its re-delivery count, the
JMS provider can either log the message or forward the message to an error destination. Usually it is not
advisable to retry delivering the message soon after it has been rolled-back because the target application
might still not be ready. So we can specify a time to re-deliver parameter to delay the re-delivery process
by certain amount of time. This time delay allows the JMS provider and the target application to recover to
a stable operational condition.

Care should be taken not to make use of a single transaction when using the JMS request/response
paradigm where a JMS message is sent, followed by the synchronous receipt of a reply to that message.
This is because a JMS message is not delivered to its destination until the transaction commits, and the
receipt of the reply will never take place within the same transaction.

Note: when you perform a JNDI lookup for administered objects like connection factories, topics and/or
queues, you should use the logical reference java:comp/env/jms as the environment subcontext. It is also
vital to release the JMS resources like connection factories, sessions, queues, topics etc when they are no
longer required in a try{} and finally{} block.

Message
delivery
options

Q. What happens, when the messages are with the JMS provider (i.e. MOM) and a catastrophic
failure occurs prior to delivering the messages to the destination application?

The messages will be lost if they are non-durable. The message’s state whether they are lost or not does
not depend on acknowledgement modes or transaction modes discussed above. It depends on the
delivery mode, which defines whether the message can be durable (aka persistent) or non-durable (aka
non-persistent). If you choose the durable delivery mode then the message is stored into a database or a
file system by the JMS server before delivering it to the consumer. Durable messages have an adverse
effect on performance, but ensure that message delivery is guaranteed. Durability can only be established
for the publish/subscribe model.

Q. What are the values need to be set to register subscription and establish durability?

• SubscriptionID: Subscribers should be registered with a unique ID that is retained by the JMS server.

• ClientID: is a unique id by which the JMS server knows how to deliver durable messages to the

registered subscribers when they become available.

subscribeConnection.setClientID("id-123");
subscribeConnection.start();

subscribeSession = subscribeConnection.createTopicSession(false,
 TopicSession.AUTO_ACKNOWLEDGE);
subscriber = subscribeSession.createDurableSubscriber(resDestination,

"subscription-id-123");

Enterprise – JMS

189

Q 92: How does XML over HTTP compare with XML using JMS? Why use XML with JMS? SF SE
A 92: XML itself does not specify a communications infrastructure. If you do not need reliable and scalable messaging

then use XML over HTTP. This approach is sufficient for rudimentary applications but does not scale for
distributed applications across multiple systems.

XML over HTTP XML over JMS
Simple to implement, widely compatible and has less
performance overhead but HTTP does not provide
reliability in terms of guaranteed delivery because there is
no message persistence, no inherent reporting facility for
failed message delivery and no guaranteed once only
delivery. The application programmer must build these
services into the application logic to provide reliability &
persistence, which is not an easy task.

This is an easy to implement, reliable, scalable and robust
solution. The main disadvantage of this approach is that the
JMS providers (i.e. Message Oriented Middleware) use a
proprietary protocol between producer and consumer. So to
communicate, you and your partners need to have the same
MOM software (E.g. MQSeries). JMS allows you to toss one
MOM software and plug-in another but you cannot mix
providers without having to buy or build some sort of bridge.

Q. Why use XML with JMS?

• Organizations can leverage years or even decades of investment in Business-to-Business (B2B) Electronic Data

Interchange (EDI) by using JMS with XML. XML is an open standard and it represents the data in a non-proprietary
way.

• Sending XML messages as text reduces coupling even more compared to sending serializable objects. XML also

solves the data representation differences with XML based technologies such as XSLT . For example, the way
“Enterprise X” defines a purchase order will be different from the way “Enterprise Y” defines it. So the representation
of XML message by “Enterprise X” can be transformed into the format understood by “Enterprise Y” using XSLT
(see next section).

• Both enterprises may be using different applications to run their business. For example Enterprise “X” may be using

Java/J2EE, while “Enterprise Y” may be using SAP. XML can solve the data formatting problems since it is an open
standard with a self describing data format, which allows the design of business specific markup languages and
standards like FIXML (Financial Information eXchange Markup Language), FpML (Financial products Markup
Language – derivative products), WML (Wireles Markup Language – for wireless devices), SAML (Security Assertion
Markup Language) etc. The structure of an XML document is similar to that of business objects with various attributes.
This allows for the natural conversion of application-specific objects to XML documents and vice versa.

Q. What are the security related issues you need to consider?

• Authentication: Only valid applications and users are allowed to send and receive messages.

• Data integrity: Data should not be tampered with while in transit.

• Encryption: sensitive data should be encrypted while in transit to maintain confidentiality and privacy.

XML digital signature technology can be used to provide authentication, data integrity (tamper proofing) and non-
repudiation. Unlike SSL, XML encryption can be used to encrypt and decrypt a section of a data. For example encrypt
only the credit card information in a purchase order XML document.

You also need to consider sending messages across each organization’s corporate firewall. Not every organization will
open a port in the firewall other than the well-known port 80 for HTTP traffic. The solution is to make use of HTTP
tunneling, which involves sending the data as HTTP traffic through well-known port number 80 for HTTP and then, once
inside the firewall, convert this data into messages. For example JProxy is a J2EE based HTTP tunnel with SSL and
JAAS with support for EJB, RMI, JNDI, JMS and CORBA.

Enterprise – XML

190

Enterprise - XML

Q. What is XML? XML stands for eXtensible Markup Language. XML is a grammatical system for constructing custom
markup languages for describing business data, mathematical data, chemical data etc. XML loosely couples disparate
applications or systems utilizing JMS, Web services etc. XML uses the same building blocks that HTML does:
elements, attributes and values.

Q. Why is XML important?

• Scalable: Since XML is not in a binary format you can create and edit files with anything and it’s also easy to debug.

XML can be used to efficiently store small amounts of data like configuration files (web.xml, application.xml, struts-
config.xml etc) to large company wide data with the help of XML stored in the database.

• Fast Access: XML documents benefit from their hierarchical structure. Hierarchical structures are generally faster to

access because you can drill down to the section you are interested in.

• Easy to identify and use: XML not only displays the data but also tells you what kind of data you have. The mark up

tags identifies and groups the information so that different information can be identified by different application.

• Stylability: XML is style-free and whenever different styles of output are required the same XML can be used with

different style-sheets (XSL) to produce output in XHTML, PDF, TEXT, another XML format etc.

• Linkability, in-line usability, universally accepted standard with free/inexpensive tools etc

Q. When would you not use an XML?

XML is verbose and it can be 4-6 times larger in size compared to a csv or a tab delimited file. If your network lacked
bandwidth and/or your content is too large and network throughput is vital to the application then you may consider using
a csv or tab delimited format instead of an XML.

Q 93: What is the difference between a SAX parser and a DOM parser? SF PI MI FAQ
A 93:

SAX parser DOM parser
A SAX (Simple API for XML) parser does not create any
internal structure. Instead, it takes the occurrences of
components of an input document as events (i.e., event
driven), and tells the client what it reads as it reads through
the input document.

A DOM (Document Object Model) parser creates a tree
structure in memory from an input document and then
waits for requests from client.

A SAX parser serves the client application always only with
pieces of the document at any given time.

A DOM parser always serves the client application with the
entire document no matter how much is actually needed by
the client.

A SAX parser, however, is much more space efficient in
case of a big input document (because it creates no internal
structure). What's more, it runs faster and is easier to learn
than DOM parser because its API is really simple. But from
the functionality point of view, it provides a fewer functions,
which means that the users themselves have to take care of
more, such as creating their own data structures.

A DOM parser is rich in functionality. It creates a DOM tree
in memory and allows you to access any part of the
document repeatedly and allows you to modify the DOM
tree. But it is space inefficient when the document is huge,
and it takes a little bit longer to learn how to work with it.

Use SAX parser when

 Input document is too big for available memory.

 When only a part of the document is to be read and we

create the data structures of our own.

 If you use SAX, you are using much less memory and

performing much less dynamic memory allocation.

Use DOM when

 Your application has to access various parts of the

document and using your own structure is just as
complicated as the DOM tree.

 Your application has to change the tree very frequently

and data has to be stored for a significant amount of
time.

Enterprise – XML

191

SAX Parser example: Xerces, Crimson etc

Use JAXP (Java API for XML Parsing) which enables
applications to parse and transform XML documents
independent of the particular XML parser. Code can be
developed with one SAX parser in mind and later on can be
changed to another SAX parser without changing the
application code.

DOM Parser example: XercesDOM, SunDOM, OracleDOM
etc.

Use JAXP (Java API for XML Parsing) which enables
applications to parse and transform XML documents
independent of the particular XML parser. Code can be
developed with one DOM parser in mind and later on can be
changed to another DOM parser without changing the
application code.

Q 94: Which is better to store data as elements or as attributes? DC
A 94: A question arising in the mind of XML/DTD designers is whether to model and encode certain information using an

element, or alternatively, using an attribute. The answer to the above question is not clear-cut. But the general
guideline is:

 Using an element: <book><title>Lord of the Rings</title>...</book>: If you consider the information in

question to be part of the essential material that is being expressed or communicated in the XML, put it in an
element

 Using an attribute: <book title=" Lord of the Rings "/>: If you consider the information to be peripheral or

incidental to the main communication, or purely intended to help applications process the main
communication, use attributes.

The principle is data goes in elements and metadata goes in attributes. Elements are also useful when they
contain special characters like “<”, “>”, etc which are harder to use in attributes. The most important reason to use
element is its extensibility. It is far easier to create child elements to reflect complex content than to break an
attribute into pieces. You can use attributes along with elements to refine your understanding of that element with
extra information. Attributes are less verbose but using attributes instead of child elements with the view of
optimizing document size is a short term strategy, which can have long term consequences.

Q 95: What is XPATH? What is XSLT/XSL/XSL-FO/XSD/DTD etc? What is JAXB? What is JAXP? SF FAQ
A 95:
What
is

Explanation Example

XML XML stands for eXtensible Markup Language Sample.xml

<?xml version="1.0"?>
<note>
 <to>Peter</to>
 <from>Paul</from>
 <title>Invite</title>
 <content language=”English”>Not Much</content>
 < content language=”Spanish”>No Mucho</content >
</note>

DTD DTD stands for Document Type Definition. XML provides
an application independent way of sharing data. With a
DTD, independent groups of people can agree to use a
common DTD for interchanging data. Your application can
use a standard DTD to verify that data that you receive
from the outside world is valid. You can also use a DTD to
verify your own data. So the DTD is the building blocks or
schema definition of the XML document.

Sample.dtd

<!ELEMENT note (to, from, title, content)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT content (#PCDATA)>
<!ATTLIST content language CDATA #Required>

XSD XSD stands for Xml Schema Definition, which is a
successor of DTD. So XSD is a building block of an XML
document.

If you have DTD then why use XSD you may ask?

XSD is more powerful and extensible than DTD. XSD has:

• Support for simple and complex data types.
• Uses XML syntax. So XSD are extensible just like

Sample.xsd

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.w3schools.com"
xmlns="http://www.w3schools.com"
elementFormDefault="qualified">

<xs:element name="note">
 <xs:complexType>

Enterprise – XML

192

XML because they are written in XML.
• Better data communication with the help of data

types. For example a date like 03-04-2005 will be
interpreted in some countries as 3rd of April 2005 and
in some other countries as 04th March 2005.

 <xs:sequence>
 <xs:element name="to" type="xs:string"/>
 <xs:element name="from" type="xs:string"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="content" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:attribute name="language" type=”xs:string”
 use=”Required” />
</xs:element>

</xs:schema>

XSL XSL stands for eXtensible Stylesheet Language. The XSL
consists of 3 parts:

• XSLT: Language for transforming XML documents

from one to another.

• XPath: Language for defining the parts of an XML

document.

• XSL-FO: Language for formatting XML documents.

For example to convert an XML document to a PDF
document etc.

XSL can be thought of as a set of languages that can :

• Define parts of an XML.
• Transform an XML document to XHTML (eXtensible

Hyper Text Markup Language) document.
• Convert an XML document to a PDF document.
• Filter and sort XML data.

XSLT processor example: Xalan (from Apache).

PDF Processor example: FOP (Formatting Objects
Processor from Apache)

To convert the Sample.xml file to a XHTML file let us apply the
following Sample.xsl through XALAN parser.

Sample.xsl

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <xsl:apply-templates select="note " />
 </xsl:template>

 <xsl:template match="note">
 <html>
 <head>
 <title><xsl:value-of
 select="content/@language">
 </title>
 </head>
 </html>
 </xsl:template>
</xsl:stylesheet>

You get the following output XHTML file:

Sample.xhtml

<html>
 <head>
 <title>English</title>
 </head>
</html>

Now to convert the Sample.xml into a PDF file apply the
following FO (Formatting Objects) file Through the FOP
processor.

Sample.fo

<?xml version="1.0" encoding="ISO-8859-1"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
 <fo:simple-page-master master-name="A4">
 </fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference="A4">
 <fo:flow flow-name="xsl-region-body">
 <fo:block>
 <xsl:value-of select="content[@language='English']">
 </fo:block>
 </fo:flow>
</fo:page-sequence>
</fo:root>

which gives a basic Sample.pdf which has the following line

Not Much

XPath Xml Path Language, a language for addressing parts of an As per Sample.xsl

Enterprise – XML

193

XML document, designed to be used by both XSLT and
XPointer. We can write both the patterns (context-free) and
expressions using the XPATH Syntax. XPATH is also used
in XQuery.

<xsl:template match=”content[@language=’English’]”>
………
<td><xsl:value-of select=”content/@language” /></td>

JAXP Stands for Java API for XML Processing. This provides a
common interface for creating and using SAX, DOM, and
XSLT APIs in Java regardless of which vendor’s
implementation is actually being used (just like the JDBC,
JNDI interfaces). JAXP has the following packages:

JAXP

SAXParser
Factory

SAXParser

XML
Sample.

xml

SA
XR

ea
de

r
SA

XE
xa

m
pl

e
Content
Handler

Error
Handler

DTD
Handler
Entity

Resolver

implements

XML
Sample.

xml

DocumentBuilder
Factory

Document
Builder

Document
(DOM)

note

to from

Source
sample.

xml

Transformer
Factory

Transformer
Result
sample.
xhtml

Transformation
instructions
sample.xsl

• javax.xml.parsers common interface for different

vendors of SAX, DOM parsers).
• org.xml.sax Defines basic SAX API.
• org.w3c.dom Defines Document Object Model and

its componenets.
• javax.xml.transform Defines the XSLT API which

allows you to transform XML into other forms like
PDF, XHTML etc.

Required JAR files are jaxp.jar, dom.jar, xalan.jar,
xercesImpl.jar.

DOM example using JAXP:

DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc =
 db.parse(new File("xml/Test.xml"));
NodeList nl = doc.getElementsByTagName("to");
Node n = nl.item(0);
System.out.println(n.getFirstChild().getNodeValue());

SAX example using JAXP:

SAXParserFactory spf =
 SAXParserFactory.newInstance();
SAXParser sp = spf.newSAXParser();
SAXExample se = new SAXExample();
sp.parse(new File("xml/Sample.xml"),se);

where SAXExample.Java code snippet

public class SAXExample extends DefaultHandler {

 public void startElement(
 String uri,
 String localName,
 String qName,
 Attributes attr)
 throws SAXException {

 System.out.println("--->" + qName);
 }
 ...

}

The DefaultHandler implements ContentHandler,
DTDHandler, EntityResolver, ErrorHandler

XSLT example using JAXP:

StreamSource xml =
 new StreamSource(new File("/xml/Sample.xml"));
StreamSource xsl = new StreamSource(
 new File("xml/Sample.xsl"));
StreamResult result =
 new StreamResult(new File("xml/Sample.xhtml"));

TransformerFactory tf =
 TransformerFactory.newInstance();
Transformer t = tf.newTransformer(xsl);
t.transform(xml, result);

This gives you Sample.xhtml

<html>
 <head>
 <title>English</title>
 </head>
</html>

JAXB Stands for Java API for XML Binding. This standard
defines a mechanism for writing out Java objects as XML
(Marshaling) and for creating Java objects from XML
structures (unMarshaling). (You compile a class
description to create the Java classes, and use those
classes in your application.)

Let’s look at some code:

For binding:

xjc.sh –p com.binding sample.xsd –d work

Enterprise – XML

194

JAXB

XML
schema

Sample.xsd

Java files
(*.java interfaces

&
implementations)

Java
class files

*.class

Application

JAXB
API

XML
Sample.

xml

Java content
Objects
note

to from

us
e

ja
va

c
xj

c
bi

nd
in

g
co

m
pi

le
r

marshall

unmarshall

-p identifies the package for the generated Java files (i.e.
*.Java)

-d option identifies the target.

UnMarshaling the XML document:

JAXBContext jc = JAXBContext.newInstance(
 “com.binding”);
Unmarshaller um = jc.createUnmarshaller();
Object o = um.unMarshall(
 new File(“/xml/”));
Note n = (Note) n;
System.out.println(n.getFrom().getContent().get(0));
System.out.println(n.getTo().getContent().get(0));

Now to modify the in memory object content:

n. getFrom().getContent().set(0, “newValue”);

Marshaling the change back to different XML file:

Marshaller m = jc.createMarshaller();

FileOutputStream fos = new FileOutputStream(
 new File(“/xml/SampleNew.xml”));

m.marshall(n, fos);

Refer Q14 in How would you go about section for XML based standards/protocols like SOAP, WSDL, and UDDI relating to Web
services, which enable interoperability between disparate systems (e.g. Between .Net and J2EE etc). These standards provide a
common and interoperable approach for defining (i.e. WSDL), publishing (i.e. UDDI) and using (i.e. SOAP) Web services. The J2EE
1.4 platform provides comprehensive support for Web services through the JAX-RPC (Java API for XML based RPC (Remote
Procedure Call)) and JAXR (Java API for XML Registries).

Q. What is version information in XML?
A. Version information in an XML is a processing instruction.

 <?xml version=”1.0” ?>

Tags that begin with <? and end with ?> are called processing instructions. The processing instructions can also be
used to call a style sheet for an XML as shown below:

<?xml-stylesheet type=”text/css” href=”MyStyle.css” ?>

Q. What is a CDATA section in an XML?
A. If you want to write about elements and attributes in your XML document then you will have to prevent your parser

from interpreting them and just display them as a regular text. To do this, you must enclose such information in a
CDATA section.

<![CDATA[<customername id=”123” > John </customername>]]>

Enterprise – XML

195

Q. How will you embed an XML content within an XML document?
A. By using a CDATA section.

<message>
 <from>LoansSystem</from>
 <to>DocumentSystem</to>
 <body>
 <![CDATA[
 <application>
 <number>456</number>
 <name>Peter</name>
 <detail>blah blah</detail>
 </application>
]]>
 </body>
</message>

Q. How do you write comments in an XML document?
A. <!-- This is an XML comment -->

Q. How do you write an attribute value with single quotes? How do you write an element value of “> 500.00”?
A. You need to use an internal entity reference like < for <, > for >, & for &, " for “, ' for ‘.

<customer name=”"Mr. Smith"” />
<cost> > 500.00</cost>

Q. What is a well-formed XML document?
A. A well formed document adheres to the following rules for writing an XML.

• A root element is required. A root element is an element, which completely contains all the other elements.
• Closing tags are required. <cust>abc</cust> or <cust/>
• Elements must be properly nested.
• XML is case sensitive. <CUSTOMER> and <Customer> elements are considered completely separate.
• An attribute’s value must always be enclosed in either single or double quotes.
• Entity references must be declared in a DTD before being used except for the 5 built-in (<, > etc)

discussed in the previous question.

Q. What is a valid XML document?
A. For an XML document to be valid, it must conform to the rules of the corresponding DTD (Document Type Definition –
internal or external) or XSD (XML Schema Definition).

Q. How will you write an empty element?
A.

<name age=”25”></name>
 or
<name age=”25” />

Q. What is a namespace in an XML document?
A. Namespaces are used in XML documents to distinguish one similarly titled element from another. A namespace must
have an absolutely unique and permanent name. In an XML, name space names are in the form of a URL. A default
namespace for an element and all its children can be declared as follows:

<accounts xmlns=”http://www.bank1.com/ns/account”>
 …
</accounts>

Individual elements can be labeled as follows:

<accounts xmlns=”http://www.bank1.com/ns/account” xmlns:bank2=”http://www.bank2.com/ns/account”>
 <name>FlexiDirect</name> <!-- uses the default name space -->
 <bank2:name>Loan</bank2:name> <!-- >
 …
</accounts>

Enterprise – XML

196

Q. Why use an XML document as opposed to other types of documents like a text file etc?
A.

• It is a universally accepted standard.
• Free and easy to use tools are available. Also can be stored in a database.
• Fast access due to its hierarchical structure.
• Easy to identify and use due to its markup tags.

Q. What is your favorite XML framework or a tool?
A. My favorite XML framework is JiBX, which unmarshals an XML document to graph of Java objects and marshals a
graph of Java objects back to an XML document. It is simple to use, very flexible and fast. It can be used with existing
Java classes.

Q. Explain where your project needed XML documents?
A. It is hard to find a project, which does not use XML documents.

• XML is used to communicate with disparate systems via messaging or Web Services.
• XML based protocols and standards like SOAP, ebXML, WSDL etc are used in Web Services.
• XML based deployment descriptors like web.xml, ejb-jar.xml, etc are used to configure the J2EE containers.
• XML based configuration files are used by open-source frameworks like Hibernate, Spring, Struts, and Tapestry

etc.

Enterprise – SQL, Database, and O/R mapping

197

Enterprise – SQL, Database, and O/R mapping

Q 96: Explain inner and outer joins? SF FAQ
A 96: Joins allow database users to combine data from one table with data from one or more other tables (or views, or

synonyms). Tables are joined two at a time making a new table containing all possible combinations of rows from
the original two tables. Lets take an example (syntax vary among RDBMS):

Joins and Set operations in Relational Databases

Inner join Left outer join Right outer join Full outer join

Employees table

Id Firstname Surname State
1001 John Darcy NSW
1002 Peter Smith NSW
1003 Paul Gregor NSW
1004 Sam Darcy VIC

Executives table

Id Firstname Surname State
1001 John Darcy NSW
1002 Peter Smith NSW
1005 John Gregor WA

Inner joins: Chooses the join criteria using any column names that happen to match between the two tables. The
example below displays only the employees who are executives as well.

SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 WHERE emp.id = exec.id;

The output is:

Firstname Surname
John Darcy
Peter Smith

Left Outer joins: A problem with the inner join is that only rows that match between tables are returned. The
example below will show all the employees and fill the null data for the executives.

SELECT emp.firstname, exec.surname FROM employees emp left join executives exec
 ON emp.id = exec.id;

On oracle
SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 WHERE emp.id = exec.id(+);

The output is:

Firstname Surname
John Darcy
Peter Smith
Paul
Sam

Enterprise – SQL, Database, and O/R mapping

198

Right Outer join: A problem with the inner join is that only rows that match between tables are returned. The
example below will show all the executives and fill the null data for the employees.

SELECT emp.firstname, exec.surname FROM employees emp right join executives exec
 ON emp.id = exec.id;

On oracle
SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 WHERE emp.id(+) = exec.id;

The output is:

Firstname Surname
John Darcy
Peter Smith
 Gregor

Full outer join: To cause SQL to create both sides of the join

SELECT emp.firstname, exec.surname FROM employees emp full join executives exec
 ON emp.id = exec.id;

On oracle
SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 WHERE emp.id = exec.id (+)

UNION

SELECT emp.firstname, exec.surname FROM employees emp, executives exec
 WHERE emp.id(+) = exec.id

Note: Oracle9i introduced the ANSI compliant join syntax. This new join syntax uses the new keywords inner join, left outer join,
right outer join, and full outer join, instead of the (+) operator.

The output is:

Firstname Surname
John Darcy
Paul
Peter Smith
Sam
 Gregor

Self join: A self-join is a join of a table to itself. If you want to find out all the employees who live in the same city
as employees whose first name starts with “Peter”, then one way is to use a sub-query as shown below:

SELECT emp.firstname, emp.surname FROM employees emp WHERE
 city IN (SELECT city FROM employees where firstname like ‘Peter’)

The sub-queries can degrade performance. So alternatively we can use a self-join to achieve the same results.

On oracle
SELECT emp.firstname, emp.surname FROM employees emp, employees emp2
 WHERE emp.city = emp2.city
 AND emp2.firstname LIKE 'Peter'

The output is:

Firstname Surname
John Darcy
Peter Smith
Paul Gregor

Q 97: Explain a sub-query? How does a sub-query impact on performance? SF PI FAQ
A 97: It is possible to embed a SQL statement within another. When this is done on the WHERE or the HAVING

statements, we have a subquery construct. What is subquery useful for? It is used to join tables and there are
cases where the only way to correlate two tables is through a subquery.

SELECT emp.firstname, emp.surname FROM employees emp WHERE

Enterprise – SQL, Database, and O/R mapping

199

emp.id NOT IN (SELECT id FROM executives);

There are performance problems with sub-queries, which may return NULL values. The above sub-query can be
re-written as shown below by invoking a correlated sub-query:

SELECT emp.firstname, emp.surname FROM employees emp WHERE
emp.id NOT EXISTS (SELECT id FROM executives);

The above query can be re-written as an outer join for a faster performance as shown below:

SELECT emp.firstname, exec.surname FROM employees emp left join executives exec
on emp.id = exec.id AND exec.id IS NULL;

The above execution plan will be faster by eliminating the sub-query.

Q 98: What is normalization? When to denormalize? DC PI FAQ
A 98: Normalization is a design technique that is widely used as a guide in designing relational databases. Normalization

is essentially a two step process that puts data into tabular form by removing repeating groups and then removes
duplicated data from the relational tables (Additional reading recommended).

Redundant data wastes disk space and creates maintenance problems. If data that exists in more than one place
must be changed, the data must be changed in exactly the same way in all locations which is time consuming and
prone to errors. A change to a customer address is much easier to do if that data is stored only in the Customers
table and nowhere else in the database.

Inconsistent dependency is a database design that makes certain assumptions about the location of data. For
example, while it is intuitive for a user to look in the Customers table for the address of a particular customer, it
may not make sense to look there for the salary of the employee who calls on that customer. The employee's
salary is related to, or dependent on, the employee and thus should be moved to the Employees table.
Inconsistent dependencies can make data difficult to access because the path to find the data may not be logical,
or may be missing or broken.

First Normal Form Second Normal Form Third Normal Form
A database is said to be in First
Normal Form when all entities
have a unique identifier or key,
and when every column in every
table contains only a single value
and doesn't contain a repeating
group or composite field.

A database is in Second Normal Form
when it is in First Normal Form plus
every non-primary key column in the
table must depend on the entire primary
key, not just part of it, assuming that the
primary key is made up of composite
columns.

A database is in Third Normal Form when
it is in Second Normal Form and each
column that isn't part of the primary key
doesn't depend on another column that
isn't part of the primary key.

When to denormalize? Normalize for accuracy and denormalize for performance.

Typically, transactional databases are highly normalized. This means that redundant data is eliminated and
replaced with keys in a one-to-many relationship. Data that is highly normalized is constrained by the primary
key/foreign key relationship, and thus has a high degree of data integrity. Denormalized data, on the other hand,
creates redundancies; this means that it's possible for denormalized data to lose track of some of the relationships
between atomic data items. However, since all the data for a query is (usually) stored in a single row in the table, it
is much faster to retrieve.

Q 99: How do you implement one-to-one, one-to-many and many-to-many relationships while designing tables? SF
A 99: One-to-One relationship can be implemented as a single table and rarely as two tables with primary and foreign

key relationships.

One-to-Many relationships are implemented by splitting the data into two tables with primary key and foreign key
relationships.

Many-to-Many relationships are implemented using join table with the keys from both the tables forming the
composite primary key of the junction table.

Q 100: How can you performance tune your database? PI FAQ

Enterprise – SQL, Database, and O/R mapping

200

A 100:
 Denormalize your tables where appropriate.
 Proper use of index columns: An index based on numeric fields is more efficient than an index based on

character columns.
 Reduce the number of columns that make up a composite key.
 Proper partitioning of tablespaces and create a special tablespace for special data types like CLOB,

BLOB etc.
 Data access performance can be tuned by using stored procedures to crunch data in the database server

to reduce the network overhead and also caching data within your application to reduce the number of
accesses.

Q 101: How will you map objects to a relational database? How will you map class inheritance to relational data model?

DC FAQ
A 101: Due to impedance mismatch between object and relational technology you need to understand the process of

mapping classes (objects) and their relationships to tables and relationships between them in a database.
Classes represent both behavior and data whereas relational database tables just implement data. Database
schemas have keys (primary keys to uniquely identify rows and foreign keys to maintain relationships between
rows) whereas object schema does not have keys and instead use references to implement relationships to
other objects. Let us look at some basic points on mapping:

-EmployeeId (PK)
-EmployeeType
-Name
-Salary
-Rate
-Period

Employee
-EmployeeId (PK)
-IsPermanent
-IsContractor
-IsSubContractor
-Name
-Salary
-Rate
-Period

Employee

-EmployeeId (PK)
-Name

Employee

-EmployeeId (PK)
-Salary

Permanent
-EmployeeId (PK)
-Contract

Contractor

-EmployeeId (PK)
-Period

SubContractor

-EmployeeId (PK)
-Name
-Salary

Permanent
-EmployeeId (PK)
-Name
-Contract

Contractor

-EmployeeId (PK)
-Name
-Period

SubContractor

Object to Relational (O/R) mapping of class inheritance structure

+getRate()
-rate

Contractor

+getName()

-name
-address

Employee

+getSalary()
-salary

Permanent

+calculateTotal()
-period
SubContractor

-streetname
Address

1*

Class diagram

Map class hierarchy to a single database table

Refactored

Map each class to its own table

Map each concrete class to its own table

 Classes map to tables in a way but not always directly.
 An attribute of a class can be mapped to zero or more columns in a database. Not all attributes are

persistent.
 Some attributes of an object are objects itself. For example an Employee object has an Address object as

an attribute. This is basically an association relationship between two objects (i.e. Employee and

Enterprise – SQL, Database, and O/R mapping

201

Address). This is a recursive relationship where at some point the attribute will be mapped to zero or
more columns. In this example attributes of the Address class will be mapped zero or more columns.

 In its simple form an attribute maps to a single column whereas each has same type (i.e. attribute is a

string and column is a char, or both are dates etc). When you implement mapping with different types
(attribute is a currency and column is a float) then you will need to be able to convert them back and forth.

Q. How do you map inheritance class structure to relational data model? Relational databases do not
support inheritance. Class inheritance can be mapped to relational tables as follows:

Map class hierarchy to single database table (aka union mapping): The whole class hierarchy can be stored
in a single table by adding an additional column named “EmployeeType”. The column “EmployeeType” will hold
the values “Permanent”, “Contract” and “SubContract”. New employee types can be added as required. Although
this approach is straightforward it tends to break when you have combinations like an employee is of type both
“Contractor” and “SubContractor”. So when you have combinations, you can use refactored table by replacing
type code column “EmployeeType” with boolean values such as isPermanent, isContractor and isSubContractor.

Map each class to its own table (aka vertical mapping): You create one table per class (even those that are
abstract). The data for a permanent employee is stored in two tables (Employee and Permanent), therefore to
retrieve this data you need to join these two tables. To support additional employee type say a Contractor, add a
new table.

Map each concrete class to its own table (aka horizontal mapping): You create one table per concrete
class. There are tables corresponding to each class like Permanent, Contractor and SubContractor. So join is
not required. To support additional employee type, add a new table.

So which approach to use? No approach is ideal for all situations. Each approach has its own pros & cons.

Map class hierarchy to single database table: Advantages are: no table joins are necessary to query objects
in the same hierarchy and adding a new class to the hierarchy has very little overhead. Disadvantages are:
Database constraints have to be relaxed to accommodate all attributes in the class hierarchy and also it is not
easy to identify from the table schema which attributes belong to which class.

Map each class to its own table: Advantages are: Table schemas are separated cleanly and database
constraints can be applied. Disadvantages are: Suffers from performance problems. If you need to query all
employees then all 4 tables (i.e. Employee, Permanent, Contractor & SubContractor) need to be queried.

Map each concrete class to its own table: Advantage is: simplest approach. Disadvantage is: duplicated base
class columns in each subclass table making adding an attribute to the baseclass more difficult.

Finally, No approach is ideal for all situations. The most efficient way is to “map class hierarchy to single
database table” (i.e. union mapping). For dealing with complex legacy data “use map each class to its own table”
(i.e. vertical mapping) which gives you more flexibility but this flexibility comes at a price of performance. The
simplest way to map is to use “map each concrete class to its own table” (i.e. horizontal mapping) but this
simplicity comes at a price of creating a very unnatural object model.

Note: Another option for mapping inheritance into relational database is to take a generic meta-data driven
approach. This approach supports all forms of mapping. In this approach, value of a single attribute will be
stored as a row in a table called “Value”. So, to store 5 attributes you need 5 rows in “Value” table. You will have
a table called “Class” where class names are stored, a table called “Inheritance” where subclass and superclass
information is stored, a table called “Attributes” where class attributes are stored and an “AttributeType” lookup
table.

Q 102: What is a view? Why will you use a view? What is an aggregate function? Etc. SF PI FAQ
A 102:

Question Explanation
What is view? Why use a view? View is a precompiled SQL query, which is used to select data from one or more tables.

A view is like a table but it doesn’t physically take any space (i.e. not materialized).
Views are used for

 Providing inherent security by exposing only the data that is needed to be shown to

the end user.
 Enabling re-use of SQL statements.
 Allows changes to the underlying tables to be hidden from clients, aiding

Enterprise – SQL, Database, and O/R mapping

202

maintenance of the database schema (i.e. encapsulation).

Views with multiple joins and filters can dramatically degrade performance because
views contain no data and any retrieval needs to be processed. The solution for this is to
use materialized views or create de-normalized tables to store data. This technique is
quite handy in overnight batch processes where a large chunk of data needs to be
processed. Normalized data can be read and inserted into some temporary de-
normalized table and processed with efficiency.

What is a database trigger?

A trigger is a fragment of code that you tell to run before or after a table is modified.
There are typically three triggering EVENTS that cause trigger to 'fire':

• INSERT event (as a new record is being inserted into the database).
• UPDATE event (as a record is being changed).
• DELETE event (as a record is being deleted).
Triggers can restrict access to specific data, perform logging, or audit access to data.

Q. How can you keep track of all your database changes?

If you want to keep track of all changes to a particular record, such as who modified the
record, what kind of modification took place, and when the record modification occurred
then you can use triggers because you can capture every action that occurred on a
particular table. For example, an INSERT trigger would fire when a particular database
table has a record inserted.

Q. How will you communicate between two applications sharing the same
database to update one of the applications’ object cache?

As shown in the diagram below, 1. when application 1 updates/inserts a product in the
“product” table, 2. a trigger is fired to modify the status of the “product_polling” table to
“pending” from “complete” for updates and creates a new record with a pending status
for inserts. 3. Application 2 polls the “product_polling” table say every 5 minutes. If the
status=”pending” then application 2 reads the updated data from the product table and
refreshes the cache. If the status is “complete” then the application 2 retries after 5
minutes.

Database

Tw o applications sharing the sam e database - m aking use of triggers to notify change

Application 1

Application 2

cache

cache cache

cache

product table
id productno category nam e

123 345456 electrical cable

124 234213 plum bing pipe

product cache

Product_polling table
tablenam e status lastm odified

product pending 25 June 2006

1 . update/insert product

2. trig
ger fir

es on insert/

update and set status

from complete to pending
3. polls polling_table every 5

minutes. If status=pending

refresh cache.

Explain aggregate SQL functions? SQL provides aggregate functions to assist with the summarization of large volumes of

data.

We’ll look at functions that allow us to add and average data, count records meeting
specific criteria and find the largest and smallest values in a table.

ORDERID FIRSTNAME SURNAME QTY UNITPRICE
1001 John Darcy 25 10.5
1002 Peter Smith 25 10.5
1003 Sam Gregory 25 10.5

SELECT SUM(QTY) AS Total FROM Orders;

The output is: Total = 75

SELECT AVG(UnitPrice * QTY) As AveragePrice FROM Orders;

Enterprise – SQL, Database, and O/R mapping

203

The output is: AveragePrice = 262.50

If we inserted another row to the above table:

ORDERID FIRSTNAME SURNAME QTY UNITPRICE
1004 John Darcy 20 10.50

SELECT FIRSTNAME,SUM(QTY) FROM orders
 GROUP BY FIRSTNAME
 HAVING SUM(QTY)>25;

The output is: John 45

Explain INSERT, UPDATE, and
DELETE statements?

INSERT statements can be carried out several ways:

INSERT INTO ORDERS values (1004, 'John', 'Darcy', 20, 10.50);

The above statement is fine but the one below is recommended since it is less
ambiguous and less prone to errors.

INSERT INTO ORDERS (orderid, firstname, surname, qty, unitprice)
 values (1005, 'John', 'Darcy',
20, 10.50);

We can also use INSERT with the SELECT statements as shown below

INSERT into NEW_ORDERS (orderid, firstname, surname, qty,
 unitprice)
 SELECT orderid, firstname, surname, qty, unitprice
 FROM orders WHERE orderid = 1004;

UPDATE statement allows you to update a single or multiple statements.

UPDATE ORDERS set firstname='Peter', surname='Piper'
 WHERE orderid=1004;

Also can have more complex updates like

UPDATE supplier
SET supplier_name = (SELECT customer.name
 FROM customers
 WHERE customers.customer_id = supplier.supplier_id)
WHERE EXISTS
 (SELECT customer.name
 FROM customers
 WHERE customers.customer_id = supplier.supplier_id);

DELETE statements allow you to remove records from the database.

DELETE FROM ORDERS WHERE orderid=1004;

We can clear the entire table using

TRUNCATE TABLE employees;

When running UPDATE/DELETE care should be taken to include WHERE clause
otherwise you can inadvertently modify or delete records which you do not intend to
UPDATE/DELETE.

How can you compare a part of
the name rather than the entire
name?

You can use wild card characters like:

• * (% in oracle) Match any number of characters.
• ? (_ in oracle) Match a single character.

To find all the employees who has “au”:
SELECT * FROM employees emp
 WHERE emp.firstname LIKE ‘%au%’;

How do you get distinct entries
from a table?

The SELECT statement in conjunction with DISTINCT lets you select a set of distinct
values from a table in a database.

SELECT DISTINCT empname FROM emptable

Enterprise – SQL, Database, and O/R mapping

204

How can you find the total number
of records in a table?

Use the COUNT key word:

SELECT COUNT(*) FROM emp WHERE age>25

What's the difference between a
primary key and a unique key?

Both primary key and unique key enforce uniqueness of the column on which they are
defined. But by default primary key creates a clustered index on the column, whereas
unique creates a non-clustered index by default. Another major difference is that,
primary key doesn't allow NULLs, but unique key allows one NULL only.

Q. What is the best practice relating to primary key generation?

• A best practice in database design is to use an internally generated primary key.

The database management system can normally generate a unique identifier that
has no meaning outside of the database system. For example “Sequences” in
Oracle, “Identity” columns in Sybase etc.

• It is bad practice to use timestamps as a primary key or using it as part of your

composite primary key because you can get a primary key collision when two
concurrent users access the table within milliseconds.

• For better performance minimize use of composite keys or use fewer columns in

your composite keys.

• Where possible avoid using columns with business meaning as your primary key.

For example Avoid using taxfilenumber, zipcode etc as your primary key because
more than one town may have the same zipcode, taxfilenumber is private and
should be encrypted and stored, some people may not have a taxfile number, you
may want to reuse the same taxfilenumber after an individual’s death, an individual
may have more than one taxfilenumber etc.

Remember to choose carefully, as it is difficult to change the primary key in a production
table.

Q. What is the best practice to generate more portable primary keys?

The approach of using database specific unique id generator like a sequence in
ORACLE, identity in Sybase etc is not portable because it is database dependent. You
can use an “ID table” strategy to make your unique id generation more portable. This
strategy uses a separate ID table to generate unique numbers for all your tables in the
database. For example, ID table may look like:

ID table

name value minValue maxValue
AddressID 245 0 -1
AccountID 123 0 -1

maxValue of -1 means no max limit. You could write a EJB stateless session bean,
which returns a unique id for the “name” passed in as an argument. You could use an
entity bean or a stored proc to access the ID table. The ID table should be adequately
isolated to prevent any dirty reads and non-repeatable reads occurring due to concurrent
access to the ID table.

What are constraints? Explain
different types of constraints.

Constraints enable the RDBMS enforce the integrity of the database automatically,
without needing you to create triggers, rule or defaults.

Types of constraints: NOT NULL, CHECK, UNIQUE, PRIMARY KEY, FOREIGN KEY

Q. What are the best practices relating to constraints?

• Always define referential constraints to improve referential integrity of your data. For

example A “BankDetail” table can have BSB number and accountnumber as part of
unique key constraint (to prevent duplicate account details), while having a generated
unique identifier as the primary key.

• Perform all your referential integrity checks and data validations using constraints

(foreign key and constraints) instead of triggers, as constraints are faster. Limit the use
of triggers only for auditing, custom tasks and validations that can not be performed
using constraints. Constraints save you time as well, as you don't have to write code
for these validations, allowing the RDBMS to do all the work for you.

What is an index? What are the
types of indexes? How many

The books you read have indexes, which help you to go to a specific key word faster.
The database indexes are similar.

Enterprise – SQL, Database, and O/R mapping

205

clustered indexes can be created
on a table? What are the
advantages and disadvantages of
creating separate index on each
column of a table?

Indexes are of two types. Clustered indexes and non-clustered indexes. When you
create a clustered index on a table, all the rows in the table are stored in the order of the
clustered index key. So, there can be only one clustered index per table. Non-clustered
indexes have their own storage separate from the table data storage. The row located
could be the RowID or the clustered index key, depending up on the absence or
presence of clustered index on the table.

If you create an index on each column of a table, it improves the query (i.e. SELECT)
performance, as the query optimizer can choose from all the existing indexes to come up
with an efficient execution plan. At the same time, data modification operations (such as
INSERT, UPDATE, and DELETE) will become slow, as every time data changes in the
table, all the indexes need to be updated. Another disadvantage is that, indexes need
disk space, the more indexes you have, more disk space is used.

Technical Tip #6

Q. How would you build a regex (regular expression) to filter out email addresses? The reason for asking this question,
is that even if you cannot answer it straight away (because regular expressions actually form a miniature language in their own right), if
you know what regular expressions are, know where to and when to use them and comfortable with it then you can write any pattern with
a help of a reference guide, examples (http://www.regexlib.com) and the Java regex API. You can think of regular expressions as a kind
of SQL query for free flowing text.

[Hint] String emailRegex = “(\\w+)@(\\w+\\.)(\\w+)(\\.\\w+)*”;

The above pattern will satisfy: peter@company.com , peter@company.net.au , peter@company.inet.net.au

\w a word character, . any character, + occurring 1 or more times, * occurring 0 or more
times, ? occurring 0 or 1 time, \. use \ to escape special meaning of . (which is any
character), \\ \ to escape \ in Java because \ has a special meaning in Java.

Important: ?, *, + are not wild characters. They denote occurrence of a pattern (o or 1 time etc) and also denote quantifiers like greedy
(X? search greedily for 0 or 1 occurrence), reluctant (X?? search reluctantly for 0 or 1 occurrence) and possessive (X?+ search
possessively for 0 or 1 occurrence). If you say that they are wild characters then you have not used regex before.

In Java platform (J2SE 1.4 onwards) a package called java.util.regex enable you to use regular expressions. E.g.

public static void main(String[] args) {

 Pattern p = Pattern.compile("j",Pattern.CASE_INSENSITIVE); // look for letter ‘j’
 Matcher m = p.matcher("java Q&A, java/j2EE Q&A, j2EE Q&A ");

 boolean result = m.find();
 StringBuffer out = new StringBuffer();

 while(result) {
 m.appendReplacement(out,"J"); // replace with uppercase letter “J”
 result = m.find();
 }

 m.appendTail(out);
 System.out.println(out.toString());

 p = Pattern.compile(","); // pattern to split on comma delimited
 String[] outArray = p.split(out); // Split based on the pattern

 for (int i = 0; i < outArray.length; i++) {
 System.out.println(i+1 + " - " + outArray[i].trim());
 }
}

Output is:
Java Q&A, Java/J2EE Q&A, J2EE Q&A
1 - Java Q&A
2 - Java/J2EE Q&A
3 - J2EE Q&A
[Java Q&A, Java/J2EE Q&A, J2EE Q&A]

Enterprise – RUP & UML

206

Enterprise - RUP & UML

Q 103: What is RUP? SD
A 103: Rational Unified Process (RUP) is a general framework that can be used to describe a development process.

The software development cycle has got 4 phases in the following order Inception, Elaboration, Construction,
and Transition.

Rational Unified Process

PHASES

Inception elaboration construction transition

ITERATIONS

Inception # 1 Elab #1 Elab #2 Con
#1

Con
#2

Con
#3

Transition #1

Business M odelling

Requirem ents
Analysis & Design

Im plem entation Test

Deploym ent

Config & Change m gm t
Project m gm t

Environm ent

D
is

ci
pl

in
es

 (
ve

rt
ic

al
 a

xi
s)

PHASES / ITERATIONS (Horizontal axis)

The core of the phases is state-based, and the state is determined by what fundamental questions you are trying
to answer:

 Inception - do you and the customer have a shared understanding of the system?
 Elaboration - do you have baseline architecture to be able to build the system?
 Construction - are you developing a product?
 Transition - are you trying to get the customer to take ownership of the system?

RUP is based on a few important philosophies and principles:

 A software project team should plan ahead.
 It should know where it is going.
 It should capture project knowledge in a storable and extensible form.

The best practices of RUP involve the following major 5 properties:

Best practice property Description
Use case driven Interaction between the users and the system.

Architecture centric Based on architecture with clear relationships between architectural components.
Iterative The problem and the solution are divided into more manageable smaller pieces, where each

iteration will be addressing one of those pieces.

Incremental Each iteration builds incrementally on the foundation built in the previous iteration.

Controlled Control with respect to process means you always know what to do next; control with respect to
management means that all deliverables, artifacts, and code are under configuration
management.

Q 104: Explain the 4 phases of RUP? SD
A 104:

Enterprise – RUP & UML

207

RUP Phases

INCEPTION ELABORATION TRANSITION
Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6

Construction

 Inception: During the inception phase, you work out the business case for the project. You also will be

making a rough cost estimate and return on investment. You should also outline the scope and size of the
project.

The fundamental question you ask at the end of this phase: do you and the customer have a shared
understanding of the system?

 Elaboration: At this stage you have the go ahead of the project however only have vague requirements. So

at this stage you need to get a better understanding of the problem. Some of the steps involved are:

 What is it you are actually going to build?
 How are you going to build it?
 What technology are you going to use?
 Analyzing and dealing with requirement risks, technological risks, skill risks, political risks etc.
 Develop a domain model, use case model and a design model. The UML techniques can be used for

the model diagrams (e.g. class diagrams, sequence diagrams etc).

An important result of the elaboration phase is that you have a baseline architecture. This architecture
consists of:

 A list of use cases depicting the requirements.
 The domain model, which captures your understanding of the domain with the help of UML class

diagrams.
 Selection of key implementation technology and how they fit together. For example: Java/J2EE with

JSP, Struts, EJB, XML, etc.

The fundamental question you ask at the end of this phase: do you have a baseline architecture to be
able to build the system?

 Construction: In this phase you will be building the system in a series of iterations. Each iteration is a mini
project. You will be performing analysis, design, unit testing, coding, system testing, and integration testing for
the use cases assigned to each iteration. The iterations within the construction phase are incremental and
iterative. Each iteration builds on the use cases developed in the previous iterations. The each iteration will
involve code rewrite, refactoring, use of design patterns etc.

The basic documentation required during the construction phase is:

 A class diagram and a sequence diagram.
 Some text to pull the diagrams together.
 If a class has complex life cycle behavior then a state diagram is required.
 If a class has a complex computation then an activity diagram is required.

The fundamental question you ask at the end of this phase: do you have a developed product?

 Transition: During this phase you will be delivering the finished code regularly. During this phase there is no
coding to add functionality unless it is small and essential. There will be bug fixes, code optimization etc
during this phase. An example of a transition phase is that the time between the beta release and the final
release of a product.

The fundamental question you ask at the end of this phase: are you trying to get the customer to take
ownership of the developed product or system?

Enterprise – RUP & UML

208

Q 105: What are the characteristics of RUP? Where can you use RUP? SD
A 105:

1. RUP is based on a few important philosophies and principles like planning ahead, knowing where the process
is heading and capturing the project in storable and extensible manner.

2. It is largely based on OO analysis and design, and use case driven.
3. Iterative and incremental development as opposed to waterfall approach, which hides problems.
4. Architecture centric approach.

RUP is more suited for larger teams of 50-100 people. RUP can also be used as an agile (i.e. lightweight)
process for smaller teams of 20-30 people, or as a heavy weight process for larger teams of 50-100 people.
Extreme Programming (XP) can be considered as a subset of RUP. At the time of writing, the agile (i.e
lightweight) software development process is gaining popularity and momentum across organizations.
Several methodologies fit under this agile development methodology banner. All these methodologies share
many characteristics like iterative and incremental development, test driven development, stand up
meetings to improve communication, automatic testing, build and continuous integration of code etc.
Refer Q136 in Enterprise Java section.

Q 106: Why is UML important? SD DC
A 106: The more complicated the underlying system, the more critical the communication among everyone involved in

developing and deploying the software. UML is a software blueprint language for analysts, designers and
developers. UML provides a common vocabulary for the business analysts, architects, developers etc.

UML is applicable to the Object Oriented problem solving. UML begins with a model; A model is an abstraction
of the underlying problem. The domain is the actual world from which the problem comes. The model consists of
objects. The objects interact with each other by sending and receiving messages. The objects are
characterized by attributes and operations (behaviors). The values of an object’s attributes determine its state.
The classes are the blueprints (or like templates) for objects. A class wraps attributes and methods into a
single distinct entity. The objects are the instances of classes.

Q 107: What are the different types of UML diagrams? SD DC FAQ
A 107: Use case diagrams: Depicts the typical interaction between external users (i.e. actors) and the system. The

emphasis is on what a system does rather than how it does it. A use case is a summary of scenarios for a
single task or goal. An actor is responsible for initiating a task. The connection between actor and use case is a
communication association.

U s e c a s e d ia g r a m

p e r f o r m s e c u r i t y
c h e c k

In t e r n a t io n a l S t u d e n t

R e g is t r a r

S t u d e n t

E n r o l l in U n iv e r s i
t y E n r o l l in s e m in a r

E n r o l l f a m i ly
m e m b e r s

*
*

a s s o c ia t io n

a s s o c ia t io n

a s s o c ia t io n

in h e r i t a n c e

< < in c lu d e > >

in h e r i t a n c e

< < e x t e n d > >

N o t e :

< < e x t e n d > > r e la t io n s h ip is c o n d i t io n a l . Y o u d o n o t
k n o w i f o r w h e n e x te n d in g u s e c a s e w i l l b e in v o k e d .

< < in c lu d e > > r e la t io n s h ip is s im i la r to a p r o c e d u r e
c a l l .

In h e r i t a n c e : e x te n d s th e b e h a v io r o f th e p a r e n t u s e
c a s e o r a c to r .

Enterprise – RUP & UML

209

Capturing use cases is one of the primary tasks of the elaboration phase of RUP. In its simplest usage, you
capture a use case by talking to your users and discussing the various things they might want to do with the
system.

When to use ‘use case’ diagrams?

 Determining user requirements. New use cases often generate new requirements.
 Communicating with clients. The simplicity of the diagram makes use case diagrams a good way for

designers and developers to communicate with clients.
 Generating test cases. Each scenario for the use case may suggest a suite of test cases.

Class diagrams: Class diagram technique is vital within Object Oriented methods. Class diagrams describe the
types of objects in the system and the various static relationships among them. Class diagrams also show the
attributes and the methods. Class diagrams have the following possible relationships:

 Association: A relationship between instances of 2 classes.

 Aggregation: An association in which one class belongs to a collection (does not always have to be a

collection. You can also have cardinality of “1”). This is a part of a whole relationship where the part can
exist without the whole. For example: A line item is whole and the products are the parts. If a line item is
deleted then the products need not be deleted.

 Composition: An association in which one class belongs to a collection (does not always have to be a

collection. You can also have cardinality of “1”). This is a part of a whole relationship where the part cannot
exist without the whole. If the whole is deleted then the parts are deleted. For example: An Order is a whole
and the line items are the parts. If an order is deleted then all the line items should be deleted as well (i.e.
cascade deletes).

 Generalization: An inheritance link indicating that one class is a superclass of the other. The Generalization

expresses the “is a” relationship whereas the association, aggregation and composition express the “has a”
relationship.

 Realization: Implementation of an interface.

 Dependency: A dependency is a weak relationship where one class requires another class. The dependency

expresses the “uses” relationship. For example: A domain model class uses a utility class like Formatter etc.

Class Diagram

association composition dependency

aggregation

generalization

realization

+operation1()
-lineItems : List

Order
-order : Order

Customer

1 *
-LineId
-product : Product
-comments

OrderDetail

1 1..*

StandardOrder
-specialDetails
CustomOrder

+formatDecimal()
+formatCurrency()

«utility»
Formatter

-productCode
-productDesc
-unitPrice

Product

1

*

«interface»
ServiceIF

When to use class diagrams?

 Class diagrams are the backbone of Object Oriented methods. So they are used frequently.

Enterprise – RUP & UML

210

 Class diagrams can have a conceptual perspective and an implementation perspective. During the analysis
draw the conceptual model and during implementation draw the implementation model.

Package diagrams: To simplify complex class diagrams you can group classes into packages.

Package Diagram

Accounting Ordering

Customer

dependency

dependency

When to use package diagrams?

 Package diagrams are vital for large projects.

Object diagrams: Object diagrams show instances instead of classes. They are useful for explaining some
complicated objects in detail about their recursive relationships etc.

Object Diagram

Department

1

0..*

Recursive class
diagram difficult to fully
understand

physicsMaths : Department

physics : Department math : Department

pureMath : Department appliedMath : Department

Object Diagram

Class Diagram

improve clarity

Shows the details of the recursive object relationship

Class name

object name

When to use object diagrams?

 Object diagrams are a vital for large projects.
 They are useful for explaining structural relationships in detail for complex objects.

Sequence diagrams: Sequence diagrams are interaction diagrams which detail what messages are sent and
when. The sequence diagrams are organized according to time. The time progresses as you move from top to
bottom of the diagram. The objects involved in the diagram are shown from left to right according to when they
take part.

Enterprise – RUP & UML

211

anOrder : Order anEntry : OrderEntry

makeAnOrder() makeAnOrder()

iteration [for each ...]()

confirm : Confirmation
hasSufficientDetails()

printConfirmation()

check if sufficient details
are available

for each lineItem

client

Sequence Diagram

Note: Each vertical dotted line is a life line. Each arrow is a message. The rectangular boxes on the life
line are called the activation bar which represents the duration of execution of message.

Collaboration diagrams: Collaboration diagrams are also interaction diagrams. Collaboration diagrams convey
the same message as the sequence diagrams. But the collaboration diagrams focus on the object roles instead
of the times at which the messages are sent.

The collaboration diagrams use the decimal sequence numbers as shown in the diagram below to make it clear
which operation is calling which other operation, although it can be harder to see the overall sequence. The top-
level message is numbered 1. The messages at the same level have the same decimal prefix but different suffixes
of 1, 2 etc according to when they occur.

Collaboration Diagram

client

anOrder : Order

1.
1

: m
ak

eA
nO

rd
er

()

anEntry : OrderEntry

1

*

confirm : Confirmation

1.1.1: makeAnOrder() 1.1.1.2 : hasSufficientDetails()

1.1.1.1: for each (iteration)

object

message sequence
number

self-link

When to use interaction diagrams?

 When you want to look at behavior of several objects within a single use case. If you want to look at a single

object across multiple use cases then use statechart diagram as described below.

State chart diagrams: Objects have behavior and state. The state of an object depends on its current activity or
condition. This diagram shows the possible states of the object and the transitions that cause a change in its state.

Enterprise – RUP & UML

212

C h e ck in g s ta te D isp a tch in g s ta te

w a itin g s ta te D e live re d s ta te

/ g e t a n ite m

/ so m e ite m s n o t in s to ck

/ a ll ite m s a va ila b le

/ ite m s re c e ive d

/ d e live r

S ta te c h a rt D ia g ra m

When to use statechart diagram?

 Statechart diagrams are good at describing the behavior of an object across several use cases. But they are

not good at describing the interaction or collaboration between many objects. Use interaction and/or activity
diagrams in conjunction with a statechart diagram.

 Use it only for classes that have complex state changes and behavior. For example: the User Interface (UI)

control objects, Objects shared by multi-threaded programs etc.

Activity diagram: This is really a fancy flow chart. The activity diagram and statechart diagrams are related in a
sense that statechart diagram focuses on object undergoing a transition process and an activity diagram focuses
on the flow of activities involved in a single transition process.

Activity Diagram

get first itemcheck next item

W ait for items to arrive in stock

dispatch all items

/ som e item s not in stock

/ All item s in stock

place an order with the supplier receive the order and enter into stock

Order placement department dispatch department
swim lane

start

activity

join

Enterprise – RUP & UML

213

In domain modeling it is imperative that the diagram conveys which object (or class) is responsible for each
activity. Activity diagrams can be divided into object swimlanes that determine which object is responsible for
which activity. The swimlanes are quite useful because they combine the activity diagram’s depiction of logic with
the interaction diagram’s depiction of responsibility. A single transition comes out of each activity, connecting to
the next activity. A transition may join or fork.

When to use activity diagrams?

The activity and statechart diagrams are generally useful to express complex operations. The great strength of
activity diagrams is that they support and encourage parallel behavior. The activity and statechart diagrams are
beneficial for workflow modeling with multi-threaded programming.

Component and Deployment diagrams: A component is a code module. Component diagrams are physical
diagrams analogous to a class diagram. The deployment diagrams show the physical configuration of software
and hardware components. The physical hardware is made up of nodes. Each component belongs to a node.

Component and Deployment Diagram

Wholesaler J2EE application serverRatailer J2EE Server

Order Component Dispatch Component

DispathIFOrderIF

Order Component

OrderIF

Q 108: What is the difference between aggregation and composition? SD DC FAQ
A 108:

Aggregation Composition
Aggregation: An association in which one class
belongs to another class or a collection. This is a part
of a whole relationship where the part can exist
without the whole. For example: A line item is whole
and the products are the parts. If a line item is deleted
then the products need not be deleted. (no cascade
delete in database terms)

Composition: An association in which one class belongs to
another class or a collection. This is a part of a whole relationship
where the part cannot exist without the whole. If the whole is
deleted then the parts are deleted. For example: An Order is a
whole and the line items are the parts. If an order is deleted then all
the line items should be deleted as well (i.e. cascade deletes in
database terms).

Aggregations are not allowed to be circular. In a garbage-collected language like Java, The whole has the
responsibility of preventing the garbage collector to prematurely
collect the part by holding reference to it.

Q 109: What is the difference between a collaboration diagram and a sequence diagram? SD DC
A 109: You can automatically generate one from the other.

Sequence Diagram Collaboration Diagram
The emphasis is on the sequence. The emphasis is on the object roles

Reference: The above section on RUP & UML is based on the book UML Distilled by Martin Fowler and Kendall Scott. If you would like
to have a good understanding of UML & RUP, then this book is recommended.

Enterprise – Struts

214

Enterprise - Struts

Struts is a Web-based user interface framework, which has been around for a few years. It is a matured and proven framework, which
has been used in many J2EE projects. While Struts has been demonstrating its popularity, there are emerging component based
frameworks like JavaServer Faces (JSF) and Tapestry gaining lots of momentum and popularity. Like Struts, JSF and Tapestry provide
Web application life cycle management through a controller servlet, and like Swing, JSF and Tapestry provide a rich component model
complete with event handling (via listeners) and component rendering. So JSF and Tapestry can be considered as a combination of
Struts frame work and Java Swing user interface framework. Refer Q19 – Q20 in Emerging Technologies/Frameworks section for JSF.

Q 110: Give an overview of Struts? What is an ActionServlet? What is an Action class? What is an ActionForm? What is

a Struts Validator Framework? SF DP FAQ
A 110: Struts is a framework with set of cooperating classes, servlets and JSP tags that make up a reusable MVC 2

design.

STRUTS Overview

Client
(BROWSER)

View
(JSP)

Action
(calls business logic)

M odel
(Form beans)

1. H
TTP re

quest
2. Dispatch

3.
 I

ns
ta

nt
ia

te
/ S

et

5. get through Tag

6. HTTP response

4.
 F

op
rw

ar
d

Front
Controller
(Servlet)

struts-
config.xm l

 Client (Browser): A request from the client browser creates an HTTP request. The Web container will
respond to the request with an HTTP response, which gets displayed on the browser.

 Controller (ActionServlet class and RequestProcessor class): The controller receives the request from
the browser, and makes the decision where to send the request based on the struts-config.xml. Design
pattern: Struts controller uses the command design pattern by calling the Action classes based on the
configuration file struts-config.xml and the RequestProcessor class’s process() method uses template
method design pattern (Refer Q11 in How would you go about … section) by calling a sequence of methods
like:

• processPath(request, response) read the request URI to determine path element.

• processMapping(request,response) use the path information to get the action mapping

• processRoles(request,respose,mapping) Struts Web application security which provides an

authorization scheme. By default calls request.isUserInRole(). For example allow “/addCustomer” action
if the role is executive.

<action path=”/addCustomer” roles=”executive”>

• processValidate(request,response,form,mapping) calls the validate() method of the ActionForm.

• processActionCreate(request,response,mapping) gets the name of the action class from the “type”

attribute of the <action> element.

Enterprise – Struts

215

• processActionPerform(req,res,action,form,mapping) This method calls the execute method of the
Action class which is where business logic is written.

ActionServlet class is the controller part of the MVC implementation and is the core of the framework. It
processes user requests, determines what the user is trying to achieve according to the request, pulls data
from the model (if necessary) to be given to the appropriate view, and selects the proper view to respond to
the user. As discussed above ActionServlet class delegates the grunt of the work to the RequestProcessor
and Action classes.

 Workflow Logic (Action class): The Servlet dispatches the request to Action classes, which act as a thin

wrapper to the business logic (the actual business logic is carried out by either EJB session beans and/or
plain Java classes). The action class helps control the workflow of the application. (Note: The Action class
should only control the workflow and not the business logic of the application). The Action class uses the
Adapter design pattern (Refer Q11 in How would you go about … section). The Action class is a wrapper
around the business logic. The purpose of the Action class is to translate the HttpServletRequest to the
business logic. To use the Action class, subclass and overwrite the execute() method. The actual business
logic should be in a separate package or EJB to allow reuse of business logic in a protocol independent
manner (i.e. the business logic should be used not only by HTTP clients but also by WAP clients, EJB
clients, Applet clients etc).

 ActionForm class: Java representation of HTTP input data. They can carry data over from one request to

another, but actually represent the data submitted with the request. The ActionForm class maintains the
state for the Web application. ActionForm is an abstract class, which is subclassed for every input form
model. The struts-config.xml file controls, which HTML form request maps to which ActionForm.

 View (JSP): The view is a JSP file. There is no business or flow logic and no state information. The JSP

should just have tags to represent the data on the browser.

The ExceptionHandler can be defined to execute when the Action class’s execute() method throws an Exception.
For example

<global-exceptions>
 <exception key="my.key" type="java.io.IOException" handler="my.ExceptionHandler"/>
</global-exceptions>

When an IOException is thrown then it will be handled by the execute() method of the my.ExceptionHandler class.

The struts-config.xml configuration information is translated into ActionMapping, which are put into the
ActionMappings collection. Further reading is recommended for a more detailed understanding.

Q. What is Struts Validator Framework?
A. Form data can be validated on the client side as well as on the server side using the Validator Framework,
which was developed as a third-party add on to Struts. This framework generates the java script and it can be
used to validate the form data on the client browser. Server side validation of your form can be carried out by
subclassing your form class with DynaValidatorForm class. The Validator Framework uses 2 xml configuration
files validator-rules.xml (defines reusable standard validation routines, which are usable in validator.xml) and
validator.xml (defines validation applicable to a form bean).

Q. How will you display failed validation errors on JSP page?
A. Use the <html:/errors> tag.

Q. How will you turn on the client side validation based on validation.xml file?
A. Use the <html:javascript /> tag.

Q 111: What is a synchronizer token pattern in Struts or how will you protect your Web against multiple submissions?

DC DP
A 111: Web designers often face the situation where a form submission must be protected against duplicate or multiple

submissions, which breaks the normal control flow sequence. This situation typically occurs when the user
clicks on submit button more than once before the response is sent back or client access a page by returning to
the previously book marked page or client resubmits the page by clicking the back button/refresh button .

Enterprise – Struts

216

 The simplest solution that some sites use is that displaying a warning message “Wait for a response after
submitting and do not submit twice.

 In the client only strategy, a flag is set on the first submission and from then onwards the submit button is

disabled based on this flag. Useful in some situations but this strategy is coupled to the browser type and
version.

 For a server-based solution the J2EE pattern synchronizer token pattern can be applied. The basic

idea is to:

1. Set a token in a session variable on the server side before sending the transactional page back to
the client.

2. The token is set on the page as a hidden field. On submission of the page first check for the

presence of a valid token by comparing the request parameter in the hidden field to the token stored
in the session. If the token is valid continue processing otherwise take other alternative action. After
testing the token must be reset to null.

Refer Q 27 in Enterprise - JSP section under “Synchronizer token pattern”. The synchronizer token pattern is
implemented in Struts using the following methods:

ActionServlet.saveToken(HttpRequest) and ActionServlet.isTokenValid(HttpRequest) etc

Q 112: How do you upload a file in Struts? SF
A 112: In JSP page set the code as shown below: CO

<html:form action="upload.do" enctype="multipart/form-data" name="fileForm" type="FileForm"
 scope="session">

 Please select the file that you would like to upload:
 <html:file property="file" />
 <html:submit />

</html:form>

In the FormBean set the code as shown below:

public class FileForm extends ActionForm {
 private FormFile file;

 public void setFile(FormFile file){
 this.file = file;
 }

 public FormFile getFile(){
 return file;
 }
}

Q 113: Are Struts action classes thread-safe? SF CI FAQ
A 113: No. Struts action classes are not thread-safe. Struts action classes are cached and reused for performance

optimization at the cost of having to implement the action classes in a thread-safe manner.

Q 114: How do you implement internationalization in Struts? SF
A 114: Internationalization is built into Struts framework. In the JSP page set the code as shown below: CO

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<html:html locale="true">
<head>
 <title>i18n</title>
</head>

Enterprise – Struts

217

<body>
 <h2><bean:message key="page.title"/></h2>
</body>
</html:html>

Now we need to create an application resource file named ApplicationResource.properties.

page.title=Thank you for visiting!

Now in Italian, create an application resource file named ApplicationResource_it.properties.

page.title=Grazie per la vostra visita!

Finally, add reference to the appropriate resource file in the struts-config.xml.

Q 115: What is an action mapping in Struts? How will you extend Struts? SF
A 115: An action mapping is a configuration file (struts-config.xml) entry that, in general, associates an action name

with an action. An action mapping can contain a reference to a form bean that the action can use, and can
additionally define a list of local forwards that is visible only to this action.

Q. How will you extend Struts?

Struts is not only a powerful framework but also very extensible. You can extend Struts in one or more of the
following ways:

Plug-In: Define your own Plug-In class if you want to execute some init() and destroy() methods during the
application startup and shutdown respectively. Some services like loading configuration files, initializing
applications like logging, auditing, etc can be carried out in the init() method.

RequestProcessor: You can create your own RequestProcessor by extending the Struts RequestProcessor.
For example you can override the processRoles(req, res, mapping) in your extended class if you want to query
the LDAP server for the security authorization etc.

ActionServlet: You can extend the ActionServlet class if you want to execute your business logic at the
application startup or shutdown or during individual request processing. You should take this approach only
when the above mentioned approaches are not feasible.

Q 116: What design patterns are used in Struts? DP FAQ
A 116: Struts is based on model 2 MVC (Model-View-Controller) architecture. Struts controller uses the command

design pattern (Refer Q11 in How would you go about section) and the action classes use the adapter design
pattern. The process() method of the RequestProcessor uses the template method design pattern (Refer Q11
in How would you go about section). Struts also implement the following J2EE design patterns

 Service to Worker (Refer Q25 in Enterprise section).
 Dispatcher View (Refer Q25 in Enterprise section).
 Composite View (Struts Tiles) (Refer Q25 in Enterprise section)
 Front Controller (Refer Q24 in Enterprise section).
 View Helper (Refer Q25 in Enterprise section).
 Synchronizer Token (Refer Q111 in Enterprise section).

Enterprise – Web and Application servers

218

Enterprise - Web and Application servers

Q 117: What application servers, Web servers, LDAP servers, and Database servers have you used?
A 117:

Web Servers Apache, Microsoft IIS, Netscape, Domino etc

Application Servers IBM WebSphere, BEA WebLogic, Apache Tomcat, Borland Enterprise Server, Fujitsu
Interstage, JBoss, ATG Dynamo etc

Portal servers

Websphere Portal Server, JBoss Portal Server, etc

LDAP Servers IPlanet’s directory server, SiemensDirX etc

Database Servers IBM DB2, Oracle, SQL Server, Sybase, Informix

Q 118: What is the difference between a Web server and an application server? SF FAQ
A 118: In general, an application server prepares data for a Web server -- for example, gathering data from databases,

applying relevant business rules, processing security checks, and/or storing the state of a user’s session. The
term application server may be misleading since the functionality isn’t limited to applications. Its role is more as
retriever and manager of data and processes used by anything running on a Web server. In the coming age of
Web services, application servers will probably have an even more important role in managing service oriented
components. One of the reasons for using an application server is to improve performance by off-loading tasks
from a Web server. When heavy traffic has more users, more transactions, more data, and more security checks
then more likely a Web server becomes a bottleneck.

Web Server Application Server
Supports HTTP protocol. When a Web server receives an
HTTP request, it responds with an HTTP response, such
as sending back an HTML page (static content) or
delegates the dynamic response generation to some other
program such as CGI scripts or Servlets or JSPs in an
application server.

Exposes business logic and dynamic content to a client
through various protocols such as HTTP, TCP/IP, IIOP, JRMP
etc.

Uses various scalability and fault-tolerance techniques. Uses various scalability and fault-tolerance techniques. In
addition provides resource pooling, component life cycle
management, transaction management, messaging, security
etc.

Q 119: What is a virtual host? SF
A 119: The term virtual host refers to the practice of maintaining more than one server on one machine. They are

differentiated by their host names. You can have name based virtual hosts and IP address based virtual hosts.
For example

A name-based "virtual host" has a unique domain name, but the same IP address. For example,
www.company1.com and www.company2.com can have the same IP address 192.168.0.10 and share the same
Web server. We can configure the Web server as follows:

NameVirtualHost 192.168.0.10

<VirtualHost 192.168.0.10>
 ServerName www.company1.com
 DocumentRoot /web/company1
</VirtualHost>

<VirtualHost 192.168.0.10>
 ServerName www.company2.com
 DocumentRoot /web/company2
</VirtualHost>

Enterprise – Web and Application servers

219

In this scenario, both www.company1.com and www.company2.com are registered with the standard domain
name service (DNS) registry as having the IP address 192.168.0.10. A user types in the URL
http://www.company1.com/hello.jsp in their browser. The user's computer resolves the name
www.company1.com to the IP address 192.168.0.10. The Web server on the machine that has the IP address
192.168.0.10, so it receives the request. The Web server determines which virtual host to use by matching the
request URL It gets from an HTTP header submitted by the browser with the “ServerName” parameter in the
configuration file shown above.

Name-based virtual hosting is usually easier, since you have to only configure your DNS server to map each
hostname to a single IP address and then configure the Web server to recognize the different hostnames as
discussed in the previous paragraph. Name-based virtual hosting also eases the demand for scarce IP
addresses limited by physical network connections [but modern operation systems support use of virtual
interfaces, which are also known as IP aliases]. Therefore you should use name-based virtual hosting unless
there is a specific reason to choose IP-based virtual hosting. Some reasons why you might consider using IP-
based virtual hosting:

 Name-based virtual hosting cannot be used with SSL based secure servers because of the nature of the

SSL protocol.

 Some operating systems and network equipment implement bandwidth management techniques that cannot
differentiate between hosts unless they are on separate IP addresses.

 IP based virtual hosts are useful, when you want to manage more than one site (like live, demo, staging etc)
on the same server where hosts inherit the characteristics defined by your main host. But when using SSL
for example, a unique IP address is necessary.

For example in development environment when using the test client and the server on the same machine we can
define the host file as shown below:

UNIX user: /etc/hosts
Windows user: C:\WINDOWS\SYSTEM32\DRIVERS\ETC\HOSTS

127.0.0.1 localhost
127.0.0.1 www.company1.com
127.0.0.1 www.company2.com

[Reference: http://httpd.apache.org/docs/1.3/vhosts/]

Q 120: What is application server clustering? SI
A 120: An application server cluster consists of a number of application servers loosely coupled on a network. The

server cluster or server group is generally distributed over a number of machines or nodes. The important point
to note is that the cluster appears as a single server to its clients.

The goals of application server clustering are:

 Scalability: should be able to add new servers on the existing node or add new additional nodes to
enable the server to handle increasing loads without performance degradation, and in a manner
transparent to the end users.

 Load balancing: Each server in the cluster should process a fair share of client load, in proportion to its

processing power, to avoid overloading of some and under utilization of other server resources. Load
distribution should remain balanced even as load changes with time.

 High availability: Clients should be able to access the server at almost all times. Server usage should be

transparent to hardware and software failures. If a server or node fails, its workload should be moved
over to other servers, automatically as fast as possible and the application should continue to run
uninterrupted. This method provides a fair degree of application system fault-tolerance. After failure, the
entire load should be redistributed equally among working servers of the system.

[Good read: Uncover the hood of J2EE clustering by Wang Yu on http://www.theserverside.com]

Q 121: Explain Java Management Extensions (JMX)? SF
A 121: JMX framework can improve the manageability of your application by

Enterprise – Web and Application servers

220

 Monitoring your application for performance problems, critical events, error condition statistics, etc. For

example you can be notified if there is a sudden increase in traffic or sudden drop in performance of your
website.

 Making your application more controllable and configurable at runtime by directly exposing application API
and parameters. For example you could switch your database connection to an alternate server. You can
also change the level of debugging and logging within the application without stopping the server. You
could write a poller, which polls your database at a regular interval as a JMX sevice, so that you can alter
the polling interval, stop and start the poller through your server console without having to stop the server.

 By interfacing JMX to your hardware, database server and application server, health checks can be
performed of your infrastructure.

Q 122: Explain some of the portability issues between different application servers? SI
A 122: Transaction isolation levels, lazy loading and dirty marker strategies for EJB, class loading visibility etc.

If your job specification requires a basic understanding of Portals, Portlets etc or keen to learn the basics then
read the following questions and answers.

Q. What is a portal?

A portal is a Web site or service that offers broad range of resources and services like e-mail, forums, search engines,
on-line shopping, news, weather information, stock quotes, etc. Portal is a term generally synonymous with the terms
gateway or grand entrance into the Internet for many users. E.g. www.yahoo.com, www.aol.com, www.msn.com etc. A
Web portal software allows aggregation of several back-end systems, processes, sites etc brought together through a
single portal page. Portals also provide additional services such as single sign-on security, customization (i.e.
personalization) etc.

Q. What are the logical components to consider when building a portal to the Java Portlet specification (JSR
168)?

Logical components of a Portal

WeatherPortlet

StockQuotePortlet

NewsPortlet

Portlets: are like Servlets but a single
portlet generates only a fragment of the
html markup a user sees from his/her
browser. Portlets are not allowed to
generate HTML tags such as <body>,
<title>, <head>, <iframe>, <frame>,
<base>

Po
rta

l c
on

ta
in

er
(c

on
ta

ine
r i

nv
ok

es
 lif

ec
yc

le
m

et
ho

ds
 &

 p
or

tle
ts

re
tu

rn
 g

en
er

at
ed

 fr
ag

m
en

t o
f m

ar
ku

p)

Po
rta

l S
er

ve
r

(p
or

ta
l s

er
ve

r a
gg

re
ga

te
s p

or
ta

l
m

ar
ku

ps
 fo

r d
isp

lay
)

Note: The distinction between
the portal server and the
container is a logical one. These
may be one physical component.

<NewsPortlet content>

News

<StockQuotePortlet content>

Stock Quote

<WeatherPortlet content>

Weather

Portal
page Portlet

window:
minimized
state,
maximized
state etc.

Title

Decorations &
controls

Portlet
fragment

Portal server: is an application, which aggregates portlet applications together in a presentable format to the user. In
addition to being a presentation layer, it allows users to customize their views including what portlet applications to show,
colors, images etc. Also provides additional services like single sign-on security etc.

Enterprise – Web and Application servers

221

Portlet Container: Provides a run-time environment to portlets, much in the same way a servlet container provides the
environment for servlets. The portlet container manages portlets by invoking their lifecycle methods (init(..),
processAction(..), render(..), destroy() etc). The container forwards requests to an appropriate portlet.
When a portlet generates a response, the container sends it to the portal server to be rendered to the user.

Portlet: provides content to its calling portal container for the purpose of being displayed on a portal page. Portlets are
like servlets but portlets do not generate complete HTML documents. They only generate fragments that are included on
the final portal page. Portlet applications are essentially extended Web applications (i.e. a layer on top of servlets).
Portlets also share the application context with servlets and JSPs and can even include the output of another servlet or
JSP as part of their content. User’s actions are received within a portlet in the form of both action (to respond to user’s
interactions like search etc) and render methods (to paint the output of the portlet).

Note: Under the covers the GUI windows News, Stock Quote and Weather shown in the diagram are different
applications, developed independently of each other and deployed as individual .war in the portal server.

Q. How do portlets differ from servlets?

The Portlet API is capable of using the existing application server infrastructure. You can call an EJB from your portlet, or
you can start and participate in a global transaction controlled by your application server. In other words, portlets are Web
components like servlets and can do pretty much every thing that a servlet can do except for a few important differences:

• Portlets do not generate complete HTML documents. Portlets only generate fragments of HTML that are to be

included as part of the final portal page. Portlets are not allowed to generate HTML tags like <title>, <head>, <body>,
<frame>, <iframe>, <base>, etc. The portal server decides where these tags should go and provides additional
<table>, <tr> and <td> tags for each portlet. Portlets can access either servlets or independent JSPs by directly
including their output within a portlet’s rendered output, but only without these offending HTML tags.

• Portlets are not directly tied to a URL and they use methods such as createActionURL(..) or createRenderURL(..) to

construct a URL that allows a user to fire actions to render currently executing portlet. You cannot send somebody
URL of a portlet but you can send him/her the URL of the portal page containing a portlet.

• A Portlet can exist multiple times on the same page and the user is given the ability to control what portlets are

displayed on his/her page (i.e. known as personalization). Also the user can minimize or maximize each portlet
window.

Q. What are portlet window states and portlet modes?

Window states: To offer the user the ability to customize portlets, there are special window states like normal, minimized
and maximized. A window state determines how much content should appear in a portlet. Normal will display the portlet’s
data in the amount of space defined by the portal application, maximized will display only that portlet in the whole window,
and minimized may display only one or two lines of text.

Portal modes: determine what actions should be performed on a portlet. There are three standard modes like View, Edit
and Help. Optional modes are possible. The GenericPortlet class defines three empty methods doEdit(..), doView(..) and
doHelp(..). Your subclasses can implement any of these methods.

Furthermore, the portlet can use these states and modes to determine what content it needs to show the user at any
given point.

Q. How do portlets provide customization in addition to window states and portlet modes?

To provide customization portlets support preferences, which are name/value pairs that can be assigned an initial value
and later tailored to other values based on user preference. Preferences are initially defined within the portlet’s
deployment descriptor file portlet.xml and accessed through the PortletPreferences object, which provides methods to
retrieve, change or store preferences. Preferences can also be read-only and also can be verified with validators.

Q. How would you achieve design flexibility in a portal to cater for different look and feel? normal Website
designers know the type and amount of the initial content but portal designers have to design the portal to be flexible
enough to meet diverse clients’ and users’ needs. Design flexibility can be achieved by using CSS (Cascading Style
Sheets) to avoid hard coding colors and images into the portal so that customers can easily customize (i.e. modify) the
look of their portal.

Enterprise – Best practices and performance considerations

222

Enterprise - Best practices and performance considerations

Q 123: Give some tips on J2EE application server performance tuning? PI FAQ
A 123:

 Set the Web container threads, which will be used to process incoming HTTP requests. The minimum
size should be tuned to handle the average load of the container and maximum should be tuned to
handle the peak load. The maximum size should be less than or equal to the number of threads in your
Web server.

 Application servers maintain a pool of JDBC resources so that a new connection does not need to be

created for each transaction. Application servers can also cache your prepared statements to improve
performance. So you can tune the minimum and maximum size of these pools.

 Tune your initial heap size for the JVM so that the garbage collector runs at a suitable interval so that it

does not cause any unnecessary overhead. Adjust the value as required to improve performance.

 Set the session manager settings appropriately based on following guidelines:

 Set the appropriate value for in memory session count.
 Reduce the session size.
 Don’t enable session persistence unless required by your application.
 Invalidate your sessions when you are finished with them by setting appropriate session timeout.

 Calls to EJB from a separate JVM are handled by ORB (Object Request Broker). ORB uses a pool of

threads to handle these requests. The thread pool size should be set appropriately to handle average and
peak loads.

 If a servlet or JSP file is called frequently with identical URL parameters then they can be dynamically

cached to improve performance.

 Turn the application server tracing off unless required for debugging.

 Some application servers support lazy loading and dirty marker strategies with EJB to improve
performance.

Q 124: Explain some of the J2EE best practices? BP FAQ
A 124:

 Recycle your valuable resources by either pooling or caching. You should create a limited number of
resources and share them from a common pool (e.g. pool of threads, pool of database connections, pool of
objects etc). Caching is simply another type of pooling where instead of pooling a connection or object, you
are pooling remote data (database data) and placing it in the memory (using Hashtable etc).

 Avoid embedding business logic in a protocol dependent manner like in JSPs, HttpServlets, Struts

action classes etc. This is because your business logic should be not only executed by your Web clients but
also required to be shared by various GUI clients like Swing based stand alone application, WAP clients etc.

 Automate the build process with tools like Ant, CruiseControl, and Maven etc. In an enterprise application
the build process can become quite complex and confusing.

 Build test cases first (i.e. Test Driven Development (TDD), refer section Emerging Technologies) using
tools like JUnit. Automate the testing process and integrate it with build process.

 Separate HTML code from the Java code: Combining HTML and Java code in the same source code can

make the code less readable. Mixing HTML and scriptlet will make the code extremely difficult to read and
maintain. The display or behavior logic can be implemented as a custom tags by the Java developers and
Web designers can use these Tags as the ordinary XHTML tags.

 It is best practice to use multi-threading and stay away from single threaded model of the servlet unless

otherwise there is a compelling reason for it. Shared resources can be synchronized or used in read-only

Enterprise – Best practices and performance considerations

223

manner or shared values can be stored in a database table. Single threaded model can adversely affect
performance.

 Apply the following JSP best practices:

 Place data access logic in JavaBeans: The code within the JavaBean is readily accessible to other

JSPs and Servlets.

 Factor shared behavior out of Custom Tags into common JavaBeans classes: The custom tags
are not used outside JSPs. To avoid duplication of behavior or business logic, move the logic into
JavaBeans and get the custom tags to utilize the beans.

 Choose the right “include” mechanism: What are the differences between static and a dynamic
include? Using includes will improve code reuse and maintenance through modular design. Which one
to use? Refer Q31 in Enterprise section.

 Use style sheets (e.g. css), template mechanism (e.g. struts tiles etc) and appropriate comments
(both hidden and output comments).

 If you are using EJBs apply the EJB best practices as described in Q82 in Enterprise section.

 Use the J2EE standard packaging specification to improve portability across Application Servers.

 Use proven frameworks like Struts, Spring, Hibernate, JSF etc.

 Apply appropriate proven J2EE design patterns to improve performance and minimize network

communications cost (Session façade pattern, Value Object pattern etc).

 Batch database requests to improve performance. For example

Connection con = DriverManager.getConnection(……).
Statement stmt = con.createStatement().
stmt.addBatch(“INSERT INTO Address…………”);
stmt.addBatch(“INSERT INTO Contact…………”);
stmt.addBatch(“INSERT INTO Personal”);
int[] countUpdates = stmt.executeBatch();

Use “PreparedStatements” instead of ordinary “Statements” for repeated reads.

 Avoid resource leaks by

 Closing all database connections after you have used them.
 Cleaning up the objects after you have finished with them especially when an object having a long life

cycle refers to a number of objects with short life cycles, then you have the potential for memory leak.
 Having the resource (i.e. database connections, statements, etc) clean up code in a finally {} block,

which is always executed, even if an exception is thrown.

 Handle and propagate exceptions correctly. Decide between checked and unchecked (i.e. RunTime)

exceptions.

Q 125: Explain some of the J2EE best practices to improve performance? BP PI FAQ
A 125: In short, manage valuable resources wisely and recycle them where possible, minimize network overheads and

serialization cost, and optimize all your database operations.

 Manage and recycle your valuable resources by either pooling or caching. You should create a limited
number of resources and share them from a common pool (e.g. pool of threads, pool of database
connections, pool of objects etc). Caching is simply another type of pooling where instead of pooling a
connection or object, you are pooling remote data (database data), and placing it in memory (using
Hashtable etc). Unused stateful session beans must be removed explicitly and appropriate idle timeout
should be set to control stateful session bean life cycle.

 Use effective design patterns to minimize network overheads (Session facade, Value Object etc Refer

Q84, Q85 in Enterprise section), use of fast-lane reader pattern for database access (Refer Q86 in
Enterprise section). Caching of retrieved JNDI InitialContexts, factory objects (e.g. EJB homes) etc. using

Enterprise – Best practices and performance considerations

224

the service locator design pattern, which reduces expensive JNDI access with the help of caching
strategies.

 Minimize serialization costs by marking references (like file handles, database connections etc), which do

not require serialization by declaring them ‘transient’ (Refer Q19 in Java section). Use pass-by-reference
where possible as opposed to pass by value.

 Set appropriate timeouts: for the HttpSession objects, after which the session expires, set idle timeout for

stateful session beans etc.

 Improve the performance of database operations with the following tips:

 Database connections should be released when not needed anymore, otherwise there will be potential
resource leakage problems.

 Apply least restrictive but valid transaction isolation level.

 Use JDBC prepared statements for overall database efficiency and for batching repetitive inserts and
updates. Also batch database requests to improve performance.

 When you first establish a connection with a database by default it is in auto-commit mode. For better
performance turn auto-commit off by calling the connection.setAutoCommit(false) method.

 Where appropriate (you are loading 100 objects into memory but use only 5 objects) lazy load your

data to avoid loading the whole database into memory using the virtual proxy pattern. Virtual proxy is
an object, which looks like an object but actually contain no fields until when one of its methods is
called does it load the correct object from the database.

 Where appropriate eager load your data to avoid frequently accessing the database every time over

the network.

Tech Tip #7:

Q. How do you identify a Java process id in a UNIX machine?

$> ps –def | grep java

Q. How do you get a thread dump of a Java process in a UNIX machine?

$> kill -3 <process-id>

Q. If you have multiple java processes running in a UNIX machine, how would you identify a particular process?

$> /usr/ucb/bin/ps auxwww | grep java | grep <specific-process-description>

Q. What tools/commands do you use to help you identify an out of control Java process in a UNIX machine?

 UNIX stat tools/commands like jvmstat, vmstat, iostat etc.

Q. How would you display the number of active established connections to localhost in a UNIX machine?

$> netstat –a | grep EST

 Q. How do you find out drive statistics in a UNIX machine?

$> iostat -E

Enterprise – Logging, testing and deployment

225

Enterprise – Logging, testing and deployment

Q 126: Give an overview of Log4J? SF FAQ
A 126: Log4j is a logging framework for Java. Log4J is designed to be fast and flexible. Log4J has 3 main components

which work together to enable developers to log messages:

 Loggers [was called Category prior to version 1.2]
 Appenders
 Layout

Logger: The foremost advantage of any logging API like Log4J over plain System.out.println is its ability to
disable certain log statements while allowing others to print unhindered. Loggers are hierarchical. The root
logger exists at the top of the hierarchy. The root logger always exists and it cannot be retrieved by name. The
hierarchical nature of the logger is denoted by “.” notation. For example the logger “java.util” is the parent of child
logger “java.util.Vector” and so on. Loggers may be assigned priorities such as DEBUG, INFO, WARN, ERROR
and FATAL. If a given logger is not assigned a priority, then it inherits the priority from its closest ancestor. The
logging requests are made by invoking one of the following printing methods of the logger instance: debug(),
info(), warn(), error(), and fatal().

Appenders and Layouts: In addition to selectively enabling and disabling logging requests based on the logger,
the Log4J allows logging requests to multiple destinations. In Log4J terms the output destination is an appender.
There are appenders for console, files, remote sockets, JMS, etc. One logger can have more than one
appender. A logging request for a given logger will be forwarded to all the appenders in that logger plus the other
appenders higher in the hierarchy. In addition to the output destination the output format can be categorized as
well. This is accomplished by associating layout with an appender. The layout is responsible for formatting the
logging request according to user’s settings.

Sample configuration file:

#set the root logger priority to DEBUG and its appender to App1
log4j.rootLogger=DEBUG, App1

#App1 is set to a console appender
log4j.appender.App1=org.apache.log4j.ConsoleAppender

#appender App1 uses a pattern layout
log4j.appender.App1.layout=org.apache.log4j.PatternLayout.
log4j.appender.App1.layout.ConversionPattern=%-4r [%t] %-5p %c %x -%m%n

Print only messages of priority WARN or above in the package com.myapp
log4j.Logger.com.myapp=WARN

XML configuration for Log4j is available, and is usually the best practice. If you have both the log4j.xml and
log4j.properties, then log4j.xml takes precedence.

Q 127: How do you initialize and use Log4J? SF CO
A 127:

public class MyApp {
 //Logger is a utility wrapper class to be written with appropriate printing methods
 static Logger log = Logger.getLogger (MyApp.class.getName());

 public void my method() {
 if(log.isDebugEnabled())
 log.debug(“This line is reached………………………..” + var1 + “-” + var2);
)
 }

}

Q 128: What is the hidden cost of parameter construction when using Log4J? SF PI
A 128:

Enterprise – Logging, testing and deployment

226

Do not use in frequently accessed methods or loops: CO

log.debug (“Line number” + intVal + “ is less than ” + String.valueOf(array[i]));

The above construction has a performance cost in frequently accessed methods and loops in constructing
the message parameter, concatenating the String etc regardless of whether the message will be logged or not.

Do use in frequently accessed methods or loops: CO

if (log.isDebugEnabled()) {
 log.debug (“Line number” + intVal + “ is less than ” + String.valueOf(array[i]));
}

The above construction will avoid the parameter construction cost by only constructing the message parameter
when you are in debug mode. But it is not a best practice to place log.isDebugEnabled() around all debug code.

Q 129: What is the test phases and cycles? SD FAQ
A 129:

 Unit tests (e.g. JUnit etc, carried out by developers).
There are two popular approaches to testing server-side classes: mock objects, which test classes by
simulating the server container, and in-container testing, which tests classes running in the actual server
container. If you are using Struts framework, StrutsTestCase for JUnit allows you to use either approach,
with very minimal impact on your actual unit test code.

 System tests or functional tests (carried out by business analysts and/or testers).
 Integration tests (carried out by business analysts, testers, developers etc).
 Regression tests (carried out by business analysts and testers).
 Stress volume tests or load tests (carried out by technical staff).
 User acceptance tests (UAT – carried out by end users).

Each of the above test phases will be carried out in cycles. Refer Q14 in How would you go about… section for
JUnit, which is an open source unit-testing framework.

Q 130: Brief on deployment environments you are familiar with? FAQ
A 130: Differ from project team to project team [Hint] :

Application environments where “ear” files get deployed.

Development box: can have the following instances of environments in the same machine (need not be
clustered).

 Development environment used by developers.
 System testing environment used by business analysts.

Staging box: can have the following instances of environments in the same machine (preferably clustered
servers with load balancing)

 Integration testing environment used for integration testing, user acceptance testing etc.
 Pre-prod environment used for user acceptance testing, regression testing, and load testing or stress

volume testing (SVT). [This environment should be exactly same as the production environment].

Production box:

 Production environment live site used by actual users.

Data environments (Database)

Note: Separate boxes [not the same boxes as where applications (i.e. ear files) are deployed]

 Development box (database).

Used by applications on development and system testing environments. Separate instances can be
created on the same box for separate environments like development and system testing.

Enterprise – Logging, testing and deployment

227

 Staging Box (database)

Used by applications on integration testing and user acceptance testing environments. Separate
instances can be created on the same box for separate environments.

 Production Box (database)

Live data used by actual users of the system.

General Tip #7:

Some interviewers would like to purposely disagree with your answer or confuse you even if you are sure that you are
right. If you are confident then you should not give in. You should try to persuade your interviewer that you are right. If you
cannot persuade your interviewer then how are you going to persuade your business users or fellow developers? Once I
was asked When would you use a “const” keyword in Java?. My answer was that even though it is a reserved word in
Java, it is not yet in use in Java (as of version Java 5.0, may be added to the language in the future). The interviewer
quizzed me further by saying, Are you sure? My answer was yes, and then went on to say that in Java you declare a
constant with a “final” keyword.

Enterprise – Personal and Behavioral/Situational

228

Enterprise – Personal and Behavioral/Situational

Q 131: Tell me about yourself or about some of the recent projects you have worked with? What do you consider your

most significant achievement? Why do you think you are qualified for this position? Why should we hire you and
what kind of contributions will you make? FAQ

A 131: [Hint:] Pick your recent projects and enthusiastically brief on it. Interviewer will be looking for how passionate
you are about your past experience and achievements. Also is imperative that during your briefing, you
demonstrate on a high level(without getting too technical) how you applied your skills and knowledge in some of
the following key areas:

 Design Concepts: Refer Q02, Q03, Q19, Q20, Q21, Q91, Q98, and Q101.
 Design Patterns: Refer Q03, Q24, Q25, Q83, Q84, Q85, Q86, Q87, Q88 and Q111.
 Performance issues: Refer Q10, Q16, Q45, Q46, Q97, Q98, Q100, Q123, and Q125.
 Memory issues: Refer Q45 and Q93
 Multi-threading (Concurrency issues): Refer Q16, Q34, and Q113
 Exception Handling: Refer Q76 and Q77
 Transactional issues: Refer Q43, Q71, Q72, Q73, Q74, Q75 and Q77.
 Security issues: Refer Q23, Q58, and Q81
 Scalability issues: Refer Q20, Q21, Q120 and Q122.
 Best practices: Refer Q10, Q16, Q39, Q40, Q46, Q82, Q124, and Q125

Refer Q75 – Q89 in Java section for frequently asked non-technical questions.

Q. Give me a high level description of your experience with the Java platform? What APIs do you have
experience with?

[Hint:] Servlet, JSP, JDBC, JNDI, EJB, JMS, Swing, Applet, etc.

Q 132: Have you used any load testing tools? What source control systems have you used? What operating systems

are you comfortable with? Which on-line technical resources do you use to resolve any design and/or
development issues or to keep your knowledge up to date apart from Google? SD

A 132:
Load testing tools: Rational Robot, JMeter, LoadRunner, etc.

Source control systems: CVS, Subversion, VSS (Visual Source Safe), Rational clear case etc. Refer Q14 in
How would you go about section…. for CVS.

Operating systems: NT, Unix, Linux, Solaris etc

Online technical resources : http://www.javaranch.com, http://www.theserverside.com, http://java.sun.com/
etc.

Q 133: Tell me a time where you had to deal with a difficult person? Why was this person difficult? How did you handle

that person? FAQ
A 133:

Situation: When you had started a new job as a technical lead with an insurance company, where you had to
manage a small team of 4-5 developers. All your team members were quite co-operative and friendly except for
one member whom you would like to call Mr. X. Every time you had to talk to Mr. X you could sense some
resistance to co-operate and disclose any work related information. Mr. X is also in disagreement with your
views, opinion etc. Why was this person difficult? The root cause for this behavior was due to Mr. X was
overlooked for the position of technical lead after having worked on the system for about 3 years.

Action: How did you handle that person? You had decided to be patient and tactful with Mr. X to earn his
respect. After talking to a few members of the team and with your own observation you had determined that Mr.
X was very technically talented but was not too popular with the business users because he always looked at
things only from the technology perspective and failed to look at things from the business perspective and
consequently turned a deaf year to some of the business requirements and also did not build a good rapport with
the business. You always believed that having a good rapport and effective communication with the business is
vital for the success of a project. So you decided to organize a two day workshop for your team and key

Enterprise – Personal and Behavioral/Situational

229

business users on agile development methodology with the focus on building a better communication with the
business. You had organized an external off-site workshop with the help of an external facilitator. You could feel
during and after the workshop that Mr.X started to realize the importance of building a good rapport with the
business. At early stages you minimized any contacts with Mr.X to avoid any confrontational situations and with
time and patience you managed to earn his respect by being flexible and tactful, being genuinely appreciative of
Mr. X’s technical skills and contribution, being able to get Mr. X to realize the importance of building a good
rapport with the business, giving Mr. X more responsibility and making him feel important.

Results: Mr. X became more co-operative and also endeavored to build a better rapport with the business.

Note: Some times you would be put in a difficult situation with the question, what would you do if no matter
what you do, you cannot get along with a person say Mr Y? You could say that you would try to be patient and
minimize or if possible avoid any contacts with Mr. Y to prevent any unpleasant situations. If that is not possible
then you would have a discussion with your manager to see if he/she could improve the situation by mediating
between you and Mr. Y. If none of the above approaches work then you would either move to a different team
within the same organization or to another organization in the best interest of you and your organization.

Q 134: What did you like best and least about your previous company? FAQ
A 134: The above question reveals a lot about you. You need to make sure that what you like about your last job should

be appealing to the job you are being interviewed for and what you liked least is not much importance.

Liked best: You could say that you were able to enhance your skills in problem solving, coping with stressful
situations, ability to meet deadlines etc. Also can say that you acquired new technical skills and experience by
learning new frameworks like Spring, Hibernate, Tapestry etc.

Liked least: You could say that you were self-motivated and worked hard to achieve your deadlines but some of
your team mates slacked off from time to time and you had to pick up the extra work to achieve the team goal.
Note: The above answer discusses a negative aspect with a positive spin. You could also say that it was not
challenging enough for you, but be prepared to explain, why it was not challenging enough for you.

Q 135: Describe a situation when working as a team produced more successful results than if you had completed the

project on your own? FAQ
A 135:

Situation: You could say that you have enjoyed working independently and as a member of the team,
throughout your career and you could do both equally well. You could then say that you were involved in a
project, which had a very tight deadline because it had to be completed before the end of financial year. You had
to work in a team of 5 developers.

Action: You tried to get everyone involved coming up with an effective solution to meet the deadline without
compromising on quality by making time for brain-storming sessions with your team members where there are
no right or wrong ideas. The creativity, collective experiences and skills of a group of people were going to be
greater than that of one person and this can achieve better results through co-operation and motivation.

Results: Team involvement motivated team members work smart and at times work long hours. You were able
to meet the tight dead-line as a team without compromising on quality.

General Tip #8:

Some interviewers would like to ask questions that are impossible to answer to evaluate your problem solving skills. I was
once asked How many gas stations are there in Sydney? Do not get upset. Try to solve it creatively because the
interviewer is not looking for an exact answer but how well you go about solving it. My answer to the above question was
looking up a Sydney street directory or ringing up Roads and Transport Authority (RTA) for number of major intersections
in Sydney and multiply that by 2 (i.e. on average 2 gas stations per intersection). Alternatively you could say that there
are 3 million people in Sydney of which 60% are above 18 years (i.e. 3,000,000 * 0.60 = 1.8 million) and hence hold a
license. Say every 5 minutes a car pull up at a gas station (i.e. Say in 20 hours 240 cars will be serviced). So to serve 1.8
million cars you would require 1,800,000/240 = 7500 gas stations. Another possible question might be, How many hair
dressers are there in Sydney? How many liters of paint is required to paint the Sydney harbor? [Hint: Make a
replica to a reduced scale say 1:100,000 (i.e. replica:actual) and evaluate the liters of paint required by painting the
replica first and then multiply the result by 100,000.]

Enterprise – Software development process

230

Enterprise – Software development process

Q 136: What software development processes/principles are you familiar with? Which one have you liked the most and

which one have you liked the least? SD FAQ
A 136: Agile (i.e. lightweight) software development process is gaining popularity and momentum across

organizations.

Agile software development manifesto [Good read: http://www.agilemanifesto.org/principles.html].

 Highest priority is to satisfy the customer.

 Welcome requirement changes even late in development life cycle.

 Business people and developers should work collaboratively.

 Form teams with motivated individuals who produce best designs and architectures.

 Teams should be pro-active on how to become more effective without becoming complacent.

 Quality working software is the primary measure of progress.

Why is iterative development with vertical slicing used in agile development? Your overall software quality
can be improved through iterative development, which provides you with constant feedback.

Traditional Vs Agile approach

project time

te
ch

ni
ca

l s
co

pe

m
ile

sto
ne

 1

m
ile

sto
ne

 2

Data Layer

Business Layer

Data Layer

Business Layer

Data Layer m
ile

sto
ne

 3

Presentation Layer

Traditional approach

With the tradional approach, Say for
example we have a fundamental flaw in the
data layer, if this flaw gets only picked up
after the milestone 3, then there will be lot
of rework to be done to the business and
the presentation layer. This is the major
drawback with the traditional development
approach where there is no vertical slicing.

Agile (light weight)approach

te
ch

ni
ca

l s
co

pe

ite
ra

tio
n

1

ite
ra

tio
n

2

Data Layer

Business Layer

Data
Layer

ite
ra

tio
n

3

Presentation Layer

Busine
ss

layesr

Presen
tation
Layer

project time

Data Layer

Business layer

Presentation
Layer As you can see with the agile iterative

approach, a vertical slice is built for each
iteration. So any fundamental flaw in
design or coding can be picked up early
and rectified. Even deployment and testing
will be carried out in vertical slices.

Several methodologies fit under this agile development methodology banner. All these methodologies share
many characteristics like iterative and incremental development, test driven development, stand up
meetings to improve communication, automatic testing, build and continuous integration of code etc.
Among all the agile methodologies XP is the one which has got the most attention. Different companies use
different flavors of agile methodologies by using different combinations of methodologies.

How does vertical slicing influence customer perception? With the iterative and incremental approach,
customer will be comfortable with the progress of the development as opposed to traditional big bang approach.

Enterprise – Software development process

231

Traditional Vs Agile perceived functionality

As far as the developer is concerned
65% of coding has been completed but
from the customer's view only 20% of
the functionality has been completed

Data Layer

Business Layer

Presentation Layer

Traditional Agile

As far as the developer is concerned
65% of coding has been completed and
from the customer's view 65% of the
functionality has been completed. So
the customer is happy.

Data Layer

Business Layer

Presentation Layer

 EXtreme Programming [XP] simple design, pair programming, unit testing, refactoring, collective code

ownership, coding standards, etc. Refer Q10 in “How would you go about…” section. XP has four key
values: Communication, Feedback, Simplicity and Courage. It then builds up some tried and tested
practices and techniques. XP has a strong emphasis on testing where tests are integrated into continuous
integration and build process, which yields a highly stable platform. XP is designed for smaller teams of 20
– 30 people.

 RUP (Rational Unified Process) Model driven architecture, design and development; customizable

frameworks for scalable process; iterative development methodology; Re-use of architecture, code,
component, framework, patterns etc. RUP can be used as an agile process for smaller teams of 20-30
people, or as a heavy weight process for larger teams of 50-100 people. Refer Q103 – Q105 in Enterprise
section.

 Feature Driven Development [FDD] Jeff De Luca and long time OO guru Peter Coad developed feature

Driven Development (FDD). Like the other adaptive methodologies, it focuses on short iterations that
deliver tangible functionality. FDD was originally designed for larger project teams of around 50 people. In
FDD's case the iterations are two weeks long. FDD has five processes. The first three are done at the
beginning of the project. The last two are done within each iteration.

Develop an Overall Model Build a Features List Plan by Feature Design by Feature Build
by Feature

The developers come in two kinds: class owners and chief programmers. The chief programmers are the
most experienced developers. They are assigned features to be built. However they don't build them alone.
Instead the chief programmer identifies which classes are involved in implementing the feature and gathers
their class owners together to form a feature team for developing that feature. The chief programmer acts
as the coordinator, lead designer, and mentor while the class owners do much of the coding of the feature.

 Test Driven Development [TDD] TDD is an iterative software development process where you first write

the test with the idea that it must fail. Refer Q1 in Emerging Technologies/Frameworks section…

 Scrum Scrum divides a project into sprints (aka iterations) of 30 days. Before you begin a sprint you
define the functionality required for that sprint and leave the team to deliver it. But every day the team holds
a short (10 – 15 minute) meeting, called a scrum where the team runs through what it will achieve in the
next day. Some of the questions asked in the scrum meetings are:

 What did you do since the last scrum meetings?
 Do you have any obstacles?
 What will you do before next meeting?

This is very similar to stand-up meetings in XP and iterative development process in RUP.

Q. Which one have you liked the most and which one have you liked the least? You could say that liked the
most is “agile” methodology and the least is the traditional “waterfall”. Many agile methodologies tend to go
hand-in-hand (i.e. complementary). Easiest agile process to understand is Scrum. XP seems to be more popular

Enterprise – Software development process

232

since it is a bit more involved than Scrum. You could become agile by introducing Scrum first from Waterfall and
then add XP practices one at a time. You could also say that you like the “agile” methodology due to its iterative
nature as opposed to the big bang approach in “waterfall” and it promotes a more collaborative approach
compared to the waterfall methodology.

Enterprise – Key Points

233

Enterprise – Key Points

 J2EE is a 3-tier (or n-tier) system. Each tier is logically separated and loosely coupled from each other, and may be

distributed.

 J2EE applications are developed using MVC architecture, which divides the functionality of displaying and

maintaining of the data to minimize the degree of coupling between enterprise components.

 J2EE modules are deployed as ear, war and jar files, which are standard application deployment archive files.

 HTTP is a stateless protocol and state can be maintained between client requests using HttpSession, URL rewriting,

hidden fields and cookies. HttpSession is the recommended approach.

 Servlets and JSPs are by default multi-threaded, and care should be taken in declaring instance variables and

accessing shared resources. It is possible to have a single threaded model of a servlet or a JSP but this can
adversely affect performance.

 Clustering promotes high availability and scalability. The considerations for servlet clustering are:

 Objects stored in the session should be serializable.
 Design for idempotence.
 Avoid using instance and static variables in read and write mode.
 Avoid storing values in the ServletContext.
 Avoid using java.io.* and use getResourceAsStream() instead.

 JSPs have a translation or a compilation process where the JSP engine translates and compiles a JSP file into a JSP

servlet.

 JSPs have 4 different scope values: page, request, session and application. JSPs can be included statically, where

all the included JSP pages are compiled into a single servlet during the translation or compilation phase or included
dynamically, where included JSPs are compiled into separate servlets and the content generated by these servlets
are included at runtime in the JSP response.

 Avoid scriptlet code in your JSPs and use JavaBeans or custom tags (e.g. Struts tags, JSTL tags, JSF tags etc)

instead.

 Databases can run out of cursors if the connections are not closed properly. The valuable resources like connections

and statements should be enclosed in a try{} and finally{} block.

 Prepared statements offer better performance as opposed to statements, as they are precompiled and reuse the

same execution plan with different arguments. Prepared statements are also more secure because they use bind
variables, which can prevent SQL injection attacks.

 JNDI provides a generic interface to LDAP and other directory services like NDS, DNS etc.

 In your code always make use of a logical JNDI reference (java:comp/env/ejb/MyBean) as opposed to physical

JNDI reference (ejb/MyBean) because you cannot guarantee that the physical JNDI location you specify in your
code will be available. Your code will break if the physical location is changed.

 LDAP servers are typically used in J2EE applications to authenticate and authorize users. LDAP servers are

hierarchical and are optimized for read access, so likely to be faster than database in providing read access.

 RMI facilitates object method calls between JVMs. JVMs can be located on separate host machines, still one JVM

can invoke methods belonging to an object residing in another JVM (i.e. address space). RMI uses object
serialization to marshal and unmarshal parameters. The remote objects should extend the UnicastRemoteObject.

 To go through a firewall, the RMI protocol can be embedded within the firewall trusted HTTP protocol, which is called

HTTP tunneling.

 EJB (i.e. 2.x) is a remote, distributed multi-tier system, which supports protocols like JRMP, IIOP, and HTTP etc. EJB

components contain business logic and system level supports like security, transaction, instance pooling, multi-

Enterprise – Key Points

234

threading, object life-cycles etc are managed by the EJB container and hence simplify the programming effort.
Having said this, there are emerging technologies like:

 Hibernate, which is an open source object-to-relational (O/R) mapping framework.
 EJB 3.0, which is taking ease of development very seriously and has adjusted its model to offer the plain old

Java objects (i.e. POJOs) based persistence and the new O/R mapping model based on hibernate.

Refer Q14 – Q18 in Emerging technologies / Frameworks section for brief discussion on hibernate and EJB 3.0.

 EJB transaction attributes (like Required, Mandatory, RequiresNew, Supports etc) are specified declaratively through
EJB deployment descriptors. Isolation levels are not part of the EJB 2.x specification. So the isolation levels can be
set on the resource manager either explicitly on the Connection or via the application server specific configuration.

 A transaction is often described by ACID (Atomic, Consistent, Isolated and Durable) properties. A distributed

transaction is an ACID transaction between two or more independent transactional resources like two separate
databases. A 2-phase commit is an approach for committing a distributed transaction in 2 phases.

 EJB 2.x has two types of exceptions:

 System exception: is an unchecked exception derived from java.lang.RuntimeException. It is thrown by the

system and is not recoverable.
 Application exception: is specific to an application and is thrown because of violation of business rules.

 EJB container managed transactions are automatically rolled back when a system exception occurs. This is possible

because the container can intercept system exceptions. However when an application exception occurs, the
container does not intercept and leaves it to the code to roll back using ctx.setRollbackOnly() method.

 EJB containers can make use of lazy loading (i.e. not creating an object until it is accessed) and dirty marker (i.e.

persist only the entity beans that have bean modified) strategies to improve entity beans performance.

 Message Oriented Middleware (MOM) is a software infrastructure that asynchronously communicates with other

disparate systems through the production and consumption of messages. Messaging enables loosely coupled
distributed communication. Java Messaging Service (JMS) is a Java API that allows applications to create, send,
receive read messages in a standard way, hence improves portability.

 Some of the design decisions you need to make in JMS are message acknowledgement modes, transaction modes,

delivery modes etc, synchronous vs. asynchronous paradigm, message body types, setting appropriate timeouts etc.

 XML documents can be processed in your Java/J2EE application either using a SAX parser, which is event driven or

a DOM parser, which creates a tree structure in memory. The other XML related technologies are DTD, XSD, XSL,
XPath, etc and Java and XML based technologies are JAXP, JAXB etc.

 There is an impedance mismatch between object and relational technology. Classes represent both data and

behavior whereas relational database tables just implement data. Inheritance class structure can be mapped to
relational data model in one of the following ways:

 Map class hierarchy to single database table.
 Map each class to its own table.
 Map each concrete class to its own table
 Generic meta-data driven approach.

 Normalize data in your database for accuracy and denormalize data in your database for performance.

 RUP (Rational Unified Process) has 4 phases in the following order Inception, Elaboration, Construction, and

Transition. Agile (i.e. lightweight) software development process is gaining popularity and momentum across
organizations. Several methodologies like XP, RUP, Scrum, FDD, TDD etc fit under this agile development
methodology banner. All these methodologies share many characteristics like iterative and incremental development,
stand-up meetings to improve communication, automatic build, testing and continuous integration etc.

 UML is applicable to the object oriented (OO) problem solving. There are different types of UML diagrams like use

case diagrams, class diagrams, sequence diagrams, collaboration diagrams, state chart diagrams, activity diagrams,
component diagrams, deployment diagrams etc.

 Class diagrams are vital within OO methods. Class diagrams have the following possible relationships: association,

aggregation, composition, generalization, realization and dependency.

Enterprise – Key Points

235

 Struts is an MVC framework. Struts action classes are not thread-safe and care should be taken in declaring instance

variables or accessing other shared resources. JSF is another Web UI framework like Struts gaining popularity and
momentum.

 Log4j has three main components: loggers, appenders and layouts. Logger is a utility wrapper class. JUnit is an open

source unit-testing framework.

 You can improve the performance of a J2EE application as follows :

1. Manage and recycle your valuable resources like connections, threads etc by either pooling or caching.
2. Use effective design patterns like session façade, value object, and fast lane reader etc to minimize network

overheads.
3. Set appropriate time-outs for HttpSession objects.
4. Use JDBC prepared statements as opposed to statements.
5. Release database connections in a finally {} block when finished.
6. Apply least restrictive but valid transaction isolation level.
7. Batch database requests.
8. Minimize serialization costs by marking references like file handles, database connections, etc which do not

require serialization by declaring them transient.

 Some of the J2EE best practices are:

1. Recycle your valuable resources by either pooling or caching.
2. Automate your build process with tools like Ant, CruiseControl, and Maven etc, and continuously integrate your

code into your build process.
3. Build test cases first using tools like JUnit.
4. Use standard J2EE packaging to improve portability.
5. Apply appropriate proven design patterns.
6. Use proven frameworks like Struts, Spring, Hibernate, JSF, JUnit, Log4J, etc.
7. Handle and propagate exceptions correctly.
8. Avoid resource leaks by closing all database connections after you have used them.

 The goals of application server clustering are to achieve scalability, load balancing, and high availability.

 Java Management Extension (JMX) framework can improve the manageability of your application, for performance

problems, critical events, error conditions etc and perform health checks on your hardware, database server etc.
You can also configure and control your application at runtime.

 Finally get familiarized with some of the key Java & J2EE design patterns like:

1. MVC design pattern: J2EE uses this design pattern or architecture.

2. Chain of responsibility design pattern: Servlet filters use a slightly modified version of chain of responsibility

design pattern.

3. Front controller J2EE design pattern: provides a centralized access point for HTTP request handling to
support the integration system services like security, data validation etc. This is a popular J2EE design pattern.

4. Composite view J2EE design pattern: creates an aggregate view from atomic sub-views.

5. View helper J2EE design pattern: avoids duplication of code. The helper classes are JavaBeans and custom

tags (e.g. Struts tags, JSF tags, JSTL tags etc).

6. Service to worker and dispatcher view J2EE design pattern: These two patterns are a combination of front
controller and view helper patterns with a dispatcher component. These two patterns differ in the way they
suggest different division of responsibility among components.

7. Bridge design pattern: Java Data Base Connectivity (JDBC) uses the bridge design pattern. The JDBC API

provides an abstraction and the JDBC drivers provide the implementation.

8. Proxy design pattern: RMI & EJB uses the proxy design pattern. A popular design pattern.

9. Business delegate J2EE design pattern: used to reduce the coupling between the presentation tier and the
business services tier components.

Enterprise – Key Points

236

10. Session façade J2EE design pattern: too many fine-grained method calls between the client and the server

will lead to network overhead and tight coupling. Use a session bean as a façade to provide a coarse-grained
service access layer to clients.

11. Value object J2EE design pattern: avoid fine-grained method calls by creating a value object, which will help

the client, make a coarse-grained call.

12. Fast-lane reader J2EE design pattern: access the persistence layer directly using a DAO (Data Access

Object) pattern instead of using entity beans.

13. Service locator J2EE design pattern: expensive and redundant JNDI lookups can be avoided by caching

and reusing the already looked up service objects.

Recommended reading on J2EE design patterns:
 Core J2EE Patterns: Best Practices and Design Strategies, Second Edition (Hardcover) by Deepak Alur, Dan Malks,

John Crupi.

Tech Tip #8:

Q. How do you list the files in current directory sorted by size in a UNIX machine?

$> ls –l | grep ^- | sort -nr

Q. How do you delete blank lines in a file in a UNIX machine ?

$> cat file1.txt | grep –v ‘^$’ > file2.txt

Q. How would you display all the files recursively under current directory in a UNIX machine?

$> find . –depth -print

Q. How would you display disk usage in kilobytes in a UNIX machine?

$> du –k

Enterprise – How would you go about…?

237

LF DC

DP SF

CI PI

MI SI

SE EH

TI BP

SD

CO

Let us put all together in
the next section

How would you go about …?

238

SECTION THREE

How would you go about…?

 This section basically assesses your knowledge of how to perform certain
tasks like documenting your project, identifying any potential performance,
memory, transactional, and/or design issues etc.

 It also assesses if you have performed any of these tasks before. If you have

not done a particular task, you can demonstrate that you know how to go about
it if the task is assigned to you.

 This section also recaps some of the key considerations discussed in the Java

and Enterprise sections. Question numbers are used for cross-referencing
with Java and Enterprise sections.

 Q11 & Q14 are discussed in more detail and can be used as a quick reference

guide in a software project. All the other questions excluding Q11 & Q14 can
be read just before an interview.

How would you go about …?

239

Q 01: How would you go about documenting your Java/J2EE application? FAQ
A 01: To be successful with a Java/J2EE project, proper documentation is vital.

 Before embarking on coding get the business requirements down. Build a complete list of requested features,
sample screen shots (if available), use case diagrams, business rules etc as a functional specification
document. This is the phase where business analysts and developers will be asking questions about user
interface requirements, data tier integration requirements, use cases etc. Also prioritize the features based on
the business goals, lead-times and iterations required for implementation.

 Prepare a technical specification document based on the functional specification. The technical
specification document should cover:

 Purpose of the document: e.g. This document will emphasize the customer service functionality.

 Overview: This section basically covers background information, scope, any inclusions and/or
exclusions, referenced documents etc.

 Basic architecture: discusses or references baseline architecture document. Answers questions like
Will it scale? Can this performance be improved? Is it extendable and/or maintainable? Are there any
security issues? Describe the vertical slices to be used in the early iterations, and the concepts to be
proved by each slice. Etc. For example which MVC [model-1, model-2 etc] paradigms (Refer Q3 in
Enterprise section for MVC) should we use? Should we use Struts, JSF, and Spring MVC etc or build
our own framework? Should we use a business delegate (Refer Q83 in Enterprise section for business
delegate) to decouple middle tier with the client tier? Should we use AOP (Aspect Oriented
Programming) (Refer Q3 in Emerging Technologies/Frameworks)? Should we use dependency
injection? Should we use annotations? Do we require internationalization? Etc.

 Assumptions, Dependencies, Risks and Issues: highlight all the assumptions, dependencies, risks
and issues. For example list all the risks you can identify.

 Design alternatives for each key functional requirement. Also discuss why a particular design
alternative was chosen over the others. This process will encourage developers analyze the possible
design alternatives without having to jump at the obvious solution, which might not always be the best
one.

 Processing logic: discuss the processing logic for the client tier, middle tier and the data tier. Where
required add process flow diagrams. Add any pre-process conditions and/or post-process conditions.
(Refer Q9 in Java section for design by contract).

 UML diagrams to communicate the design to the fellow developers, solution designers, architects etc.
Usually class diagrams and sequence diagrams are required. The other diagrams may be added for any
special cases like (Refer Q107 in Enterprise section):

 State chart diagram: useful to describe behavior of an object across several use cases.

 Activity diagram: useful to express complex operations. Supports and encourages parallel

behavior. Activity and statechart diagrams are beneficial for workflow modeling with multi threaded
programming.

 Collaboration and Sequence diagrams: Use a collaboration or sequence diagram when you
want to look at behavior of several objects within a single use case. If you want to look at a single
object across multiple use cases then use statechart.

 Object diagrams: The Object diagrams show instances instead of classes. They are useful for
explaining some complicated objects in detail such as highlighting recursive relationships.

 List the package names, class names, database names and table names with a brief description of
their responsibility in a tabular form.

 Prepare a coding standards document for the whole team to promote consistency and efficiency. Some

coding practices can degrade performance for example:

 Inappropriate use of String class. Use StringBuffer instead of String for compute intensive mutations
(Refer Q21 in Java section).

How would you go about …?

240

 Code in terms of interface. For example you might decide the LinkedList is the best choice for some
application, but then later decide ArrayList might be a better choice. (Refer Q17,Q16 in Java section)

Wrong approach ArrayList list = new ArrayList();
Right approach List list = new ArrayList(100)

 Set the initial capacity of a collection appropriately (e.g. ArrayList, HashMap etc). (Refer Q17 in Java

section).

 To promote consistency define standards for variable names, method names, use of logging, curly
bracket positions etc.

 Prepare a code review document and templates for the whole team. Let us look at some of the elements the
code review should cover:

 Proper variable declaration: e.g. instance versus static variables, constants etc.

 Performance issues: e.g. Use ArrayList, HashMap etc instead of Vector, Hashtable when there is

no thread-safety issue.

 Memory issues: e.g. Improper instantiation of objects instead of object reuse and object pooling, not
closing valuable resource in a finally block etc.

 Thread-safety issues: e.g. Java API classes like SimpleDateFormat, Calendar, DecimalFormat etc

are not thread safe, declaring variables in JSP is not thread safe, storing state information in Struts
action class or multi-threaded servlet is not thread safe.

 Error handling: e.g. Re-throwing exception without nesting original exception, EJB methods not

throwing EJB exception for system exceptions, etc.

 Use of coding standards: e.g. not using frameworks, System.out is used instead of log4j etc.

 Design issues: No re-use of code, no clear separation of responsibility, invalid use of inheritance to
get method reuse, servlets performing JDBC direct access instead of using DAO (Data Access
Objects) classes, HTML code in Struts action or servlet classes, servlets used as utility classes
rather than as a flow controller etc.

 Documentation of code: e.g. No comments, no header files etc

 Bugs: e.g. Calling setAutoCommit within container-managed transaction, binary OR “|” used instead

of logical OR “||”, relying on pass-by-reference in EJB remote calls, ResultSet not being closed on
exceptions, EJB methods not throwing EJBException for system exceptions etc (Refer Q76 & Q77 in
Enterprise section)

 Prepare additional optional guideline documents as per requirements to be shared by the team. This will

promote consistency and standards. For example:

 Guidelines to setting up J2EE development environment.
 Guidelines to version control system (CVS, VSS etc).
 Guidelines to deployment steps, environment settings, ant targets etc.
 Guidelines for the data modeling (any company standards).
 Guidelines for error handling (Refer Q39, Q40 in Java section & Q76, Q77 in Enterprise section).
 Guidelines for user interface design.
 Project overview document, Software development process document etc

Some of the above mentioned documents, which are shared by the whole team, can be published in an internal
website like Wiki. Wiki is a piece of server software that allows users to freely create and edit Web page content
using any Web browser.

Q 02: How would you go about designing a Java/J2EE application? FAQ
A 02: Design should be specific to a problem but also should be general enough to address future requirements.

Designing reusable object oriented software involves decomposing the business use cases into relevant objects
and converting objects into classes.

How would you go about …?

241

 Create a tiered architecture: client tier, business tier and data tier. Each tier can be further logically divided
into layers (Refer Q2, Q3 on Enterprise section). Use MVC (Model View Controller) architecture for the J2EE
and Java based GUI applications.

 Create a data model: A data model is a detailed specification of data oriented structures. This is different

from the class modeling because it focuses solely on data whereas class models allow you to define both
data and behavior. Conceptual data models (aka domain models) are used to explore domain concepts with
project stakeholders. Logical data models are used to explore the domain concepts, and their relationships.
Logical data models depict entity types, data attributes and entity relationships (with Entity Relationship (ER)
diagrams). Physical data models are used to design the internal schema of a database depicting the tables,
columns, and the relationships between the tables. Data models can be created by performing the following
tasks:

 Identify entity types, attributes and relationships: use entity relationship (E-R) diagrams.

 Apply naming conventions (e.g. for tables, attributes, indices, constraints etc): Your organization

should have standards and guidelines applicable to data modeling.

 Assign keys: surrogate keys (e.g. assigned by the database like Oracle sequences, Sybase identity
columns, max()+1, universally unique identifiers UUIDs, etc), natural keys (e.g. Tax File Numbers, Social
Security Numbers etc), and composite keys.

 Normalize to reduce data redundancy and denormalize to improve performance: Normalized data

have the advantage of information being stored in one place only, reducing the possibility of inconsistent
data. Furthermore, highly normalized data are loosely coupled. But normalization comes at a
performance cost because to determine a piece of information you have to join multiple tables whereas
in a denormalized approach the same piece of information can be retrieved from a single row of a table.
Denormalization should be used only when performance testing shows that you need to improve
database access time for some of your tables.

Note: Creating a data model (logical, physical etc) before design model is a matter of preference, but many OO methodologies
are based on creating the data model from the object design model (i.e. you may need to do some work to create an explicit
data model but only after you have a complete OO domain and design model). In many cases when using ORM tools like
Hibernate, you do not create the data model at all.

 Create a design model: A design model is a detailed specification of the objects and relationships between

the objects as well as their behavior. (Refer Q107 on Enterprise section)

 Class diagram: contains the implementation view of the entities in the design model. The design model
also contains core business classes and non-core business classes like persistent storage, security
management, utility classes etc. The class diagrams also describe the structural relationships between
the objects.

 Use case realizations: are described in sequence and collaboration diagrams.

 Design considerations when decomposing business use cases into relevant classes: designing

reusable and flexible design models requires the following considerations:

 Granularity of the objects (fine-grained versus coarse-grained): Can we minimize the network trip by
passing a coarse-grained value object instead of making 4 network trips with fine-grained parameters?
(Refer Q85 in Enterprise section). Should we use method level (coarse-grained) or code level (fine-
grained) thread synchronization? (Refer Q46 in Java section). Should we use a page level access
security or a fine-grained programmatic security?

 Coupling between objects (loosely coupled versus tightly coupled). Should we use business delegate

pattern to loosely couple client and business tier? (Refer Q83 in Enterprise section) Should we use
dependency injection (e.g. using Spring) or factory design pattern to loosely couple the caller from the
callee? (Refer Q09 in Emerging Technologies/Frameworks).

 Network overheads for remote objects like EJB, RMI etc: Should we use the session façade, value

object patterns? (Refer Q84 & Q85 in Enterprise section).
 Definition of class interfaces and inheritance hierarchy: Should we use an abstract class or an

interface? Is there any common functionality that we can move to the super class (i.e. parent class)?
Should we use interface inheritance with object composition for code reuse as opposed to
implementation inheritance? Etc. (Refer Q10 in Java section).

How would you go about …?

242

 Establishing key relationships (aggregation, composition, association etc): Should we use
aggregation or composition? [composition may require cascade delete] (Refer Q107, Q108 in Enterprise
section – under class diagrams). Should we use an “is a” (generalization) relationship or a “has a”
(composition) relationship? (Refer Q9 in Java section).

 Applying polymorphism and encapsulation: Should we hide the member variables to improve

integrity and security? (Refer Q10 in Java section). Can we get a polymorphic behavior so that we can
easily add new classes in the future? (Refer Q8 in Java section).

 Applying well-proven design patterns (like Gang of four design patterns, J2EE design patterns, EJB

design patterns etc) help designers to base new designs on prior experience. Design patterns also help
you to choose design alternatives (Refer Q11, Q12 in How would you go about…).

 Scalability of the system: Vertical scaling is achieved by increasing the number of servers running on

a single machine. Horizontal scaling is achieved by increasing the number of machines in the cluster.
Horizontal scaling is more reliable than the vertical scaling because there are multiple machines involved
in the cluster. In vertical scaling the number of server instances that can be run on one machine are
determined by the CPU usage and the JVM heap memory.

 How do we replicate the session state? Should we use stateful session beans or HTTP session?

Should we serialize this object so that it can be replicated?

 Internationalization requirements for multi-language support: Should we support other languages?
Should we support multi-byte characters in the database?

 Vertical slicing: Getting the reusable and flexible design the first time is impossible. By developing the initial

vertical slice (Refer Q136 in Enterprise section) of your design you eliminate any nasty integration issues
later in your project. Also get the design patterns right early on by building the vertical slice. It will give you
experience with what does work and what does not work with Java/J2EE. Once you are happy with the initial
vertical slice then you can apply it across the application. The initial vertical slice should be based on a typical
business use case.

 Ensure the system is configurable through property files, xml descriptor files, and annotations. This will

improve flexibility and maintainability. Avoid hard coding any values. Use a constant class and/or enums (JDK
1.5+) for values, which rarely change and use property files (e.g. MyApp.properties file containing
name/value pairs), xml descriptor files and/or annotations (JDK 1.5+) for values, which can change more
frequently like application process flow steps etc. Use property (e.g. MyApp.properties) or xml (e.g.
MyApp.xml) files for environment related configurations like server name, server port number, LDAP server
location etc.

 Design considerations during design, development and deployment phases: designing a fast, secured,

reliable, robust, reusable and flexible system require considerations in the following key areas:

 Performance issues (network overheads, quality of the code etc): Can I make a single coarse-grained
network call to my remote object instead of 3 fine-grained calls?

 Concurrency issues (multi-threading): What if two threads access my object simultaneously will it

corrupt the state of my object?

 Transactional issues (ACID properties): What if two clients access the same data simultaneously?
What if one part of the transaction fails, do we rollback the whole transaction? Do we need a distributed
(i.e. JTA) transaction? (Refer Q43 in Enterprise section). What if the client resubmits the same
transactional page again? (Refer Q27 in Enterprise section – How do you prevent multiple submits…).

 Security issues: Are there any potential security holes for SQL injection (Refer Q46 in Enterprise

section) or URL injection (Refer Q35 in Enterprise section) by hackers?

 Memory issues: Is there any potential memory leak problems? Have we allocated enough heap size for
the JVM? Have we got enough perm space allocated since we are using 3rd party libraries, which
generate classes dynamically? (e.g. JAXB, XSLT, JasperReports etc) – Refer Q74 in Java section.

 Scalability issues: Will this application scale vertically and horizontally if the load increases? Should

this object be serializable? Does this object get stored in the HttpSession?

How would you go about …?

243

 Maintainability, reuse, extensibility etc: How can we make the software reusable, maintainable and
extensible? What design patterns can we use? How often do we have to refactor our code?

 Logging and auditing if something goes wrong can we look at the logs to determine the root cause of

the problem?

 Object life cycles: Can the objects within the server be created, destroyed, activated or passivated
depending on the memory usage on the server? (e.g. EJB).

 Resource pooling: Creating and destroying valuable resources like database connections, threads etc

can be expensive. So if a client is not using a resource can it be returned to a pool to be reused when
other clients connect? What is the optimum pool size?

 Caching: can we save network trips by storing the data in the server’s memory? How often do we have

to clear the cache to prevent the in memory data from becoming stale?

 Load balancing: Can we redirect the users to a server with the lightest load if the other server is
overloaded?

 Transparent fail over: If one server crashes can the clients be routed to another server without any

interruptions?

 Clustering: What if the server maintains a state when it crashes? Is this state replicated across the
other servers?

 Back-end integration: How do we connect to the databases and/or legacy systems?

 Clean shutdown: Can we shut down the server without affecting the clients who are currently using the

system?

 Systems management: In the event of a catastrophic system failure who is monitoring the system? Any
alerts or alarms? Should we use JMX? Should we use any performance monitoring tools like Tivoli?

 Dynamic redeployment: How do we perform the software deployment while the site is running? (Mainly

for mission critical applications 24hrs X 7days).

 Portability issues: Can I port this application to a different server 2 years from now?

Q 03: How would you go about identifying performance and/or memory issues in your Java/J2EE application? FAQ
A 03: Profiling can be used to identify any performance issues or memory leaks. Profiling can identify what lines of code

the program is spending the most time in? What call or invocation paths are used to reach at these lines? What
kinds of objects are sitting in the heap? Where is the memory leak? Etc.

 There are many tools available for the optimization of Java code like JProfiler, Borland OptimizeIt etc.

These tools are very powerful and easy to use. They also produce various reports with graphs.

Optimizeit™ Request Analyzer provides advanced profiling techniques that allow developers to analyze the
performance behavior of code across J2EE application tiers. Developers can efficiently prioritize the
performance of Web requests, JDBC, JMS, JNDI, JSP, RMI, and EJB so that trouble spots can be
proactively isolated earlier in the development lifecycle.

Thread Debugger tools can be used to identify threading issues like thread starvation and contention issues
that can lead to system crash.

Code coverage tools can assist developers with identifying and removing any dead code from the
applications.

 Hprof which comes with JDK for free. Simple tool.

Java –Xprof myClass

java -Xrunhprof:[help]|[<option>=<value>]
java -Xrunhprof:cpu=samples, depth=6, heap=sites

How would you go about …?

244

 Use operating system process monitors like NT/XP Task Manager on PCs and commands like ps, iostat,
netstat, vmstat, uptime, nfsstat etc on UNIX machines.

 Write your own wrapper MemoryLogger and/or PerformanceLogger utility classes with the help of

totalMemory() and freeMemory() methods in the Java Runtime class for memory usage and
System.currentTimeMillis() method for performance. You can place these MemoryLogger and
PerformanceLogger calls strategically in your code. Even better approach than utility classes is using Aspect
Oriented Programming (AOP – e.g. Spring AOP Refer Q3 – Q5 in Emerging Technologies/Frameworks
section) or dynamic proxies (Refer proxy design pattern in Q11 in How would you go about…? section) for
pre and post memory and/or performance recording where you have the control of activating
memory/performance measurement only when needed.

Q 04: How would you go about minimizing memory leaks in your Java/J2EE application? FAQ
A 04: Java’s memory management (i.e. Garbage Collection) prevents lost references and dangling references but it is

still possible to create memory leaks in other ways. If the application runs with memory leaks for a long duration
you will get the error java.lang.OutOfMemoryError.

In Java, typically the memory leak occurs when an object of a longer lifecycle has a reference to the objects
of a short life cycle. This prevents the objects with short life cycle being garbage collected. The developer must
remember to remove the reference to the short-lived objects from the long-lived objects. Objects with the same life
cycle do not cause any problem because the garbage collector is smart enough to deal with the circular references
(Refer Q33 in Java section).

 Java Collection classes like Hashtable, ArrayList etc maintain references to other objects. So having a long

life cycle ArrayList pointing to many short-life cycle objects can cause memory leaks.

 Commonly used singleton design pattern (Refer Q51 in Java section) can cause memory leaks. Singletons
typically have a long life cycle. If a singleton has an ArrayList or a Hashtable then there is a potential for
memory leaks.

 Java programming language includes a finalize method that allows an object to free system resources, in

other words, to clean up after itself. However using finalize doesn't guarantee that a class will clean up
resources expediently. A better approach for cleaning up resources involves the finally method and an explicit
close statement. So freeing up the valuable resource in the finalize method or try {} block instead of finally {}
block can cause memory leaks (Refer Q45 in Enterprise section).

Q 05: How would you go about improving performance in your Java/J2EE application? FAQ
A 05: The performance bottlenecks can be attributed to one or more of the following:

Performance optimization considerations

Java
infrastructure

Application level

System
level

Network I/O, Disk I/O etc
Operating System
System configuration, topology etc
Hardware (CPU, memory, I/O etc)

Application design.
Application Server tuning.
Application coding.
Drivers etc.
Database partitioning, tuning etc

JVM selection
JVM tuning (min & max heap size, perm size etc

 Let us discuss some of the aspects in detail:

 Java/J2EE application code related performance bottlenecks:

How would you go about …?

245

 Refer Q72 in Java section.
 Refer Q123, Q125 in Enterprise section.

 Java/J2EE design related performance bottlenecks. Application design is one of the most important

considerations for performance. A well-designed application will not only avoid many performance pitfalls but
will also be easier to maintain and modify during the performance-testing phase of the project.

 Use proper design patterns to minimize network trips (session facade, value object Refer etc Q83-

Q87 in Enterprise section).

 Minimize serialization cost by implementing session beans with remote interfaces and entity beans
with local interfaces (applicable to EJB 2.x) or even the session beans can be implemented with local
interfaces sharing the same JVM with the Web tier components. For EJB1.x some EJB containers can
be configured to use pass-by-reference instead of pass-by-value (pass-by-value requires serialization)
Refer Q69, Q82 in Enterprise section.

 Use of multi-threading from a thread-pool (say 10 – 50 threads). Using a large number of threads

adversely affects performance by consuming memory through thread stacks and CPU by context
switching.

 Database related performance bottlenecks.

 Use proper database indexes. Numeric indices are more efficient than character based indices. Minimize

the number of columns in your composite keys. Performing a number of “INSERT” operations is more
efficient when fewer columns are indexed and “SELECT” operations are more efficient when, adequately
indexed based on columns frequently used in your “WHERE” clause. So it is a trade-off between
“SELECT” and “INSERT” operations.

 Minimize use of composite keys or use fewer columns in your composite keys.

 Partition the database for performance based on the most frequently accessed data and least frequently

accessed data.

 Identify and optimize your SQL queries causing performance problems (Refer Q97 in Enterprise
section).

 De-normalize your tables where necessary for performance (Refer Q98 in Enterprise section).

 Close database connections in your Java code in the finally block to avoid any “open cursors” problem

(Refer Q45 in Enterprise section).

 Use optimistic concurrency as opposed to pessimistic concurrency where appropriate (Refer Q78 in
Enterprise section).

 Application Server, JVM, Operating System, and/or hardware related performance bottlenecks.

 Application Server: Configure the application server for optimum performance (Refer Q88, Q123 in

Enterprise section).

 Operating System: Check for any other processes clogging up the system resources, maximum
number of processes it can support or connect, optimize operating system etc.

 Hardware: Insufficient memory, insufficient CPU, insufficient I/O, limitation of hardware configurations,

network constraints like bandwidth, message rates etc.

Q 06: How would you go about identifying any potential thread-safety issues in your Java/J2EE application? FAQ
A 06: When you are writing graphical programs like Swing or Internet programs using servlets or JSPs multi-threading is

a necessity for all but some special and/or trivial programs.

An application program or a process can have multiple threads like multiple processes that can run on one
computer. The multiple threads appear to be doing their work in parallel. When implemented on a multi-processor
machine, they can actually work in parallel.

How would you go about …?

246

Unlike processes, threads share the same address space (Refer Q42 in Java section) which means they can read
and write the same variables and data structures. So care should be taken to avoid one thread disturbing the work
of another thread. Let us look at some of the common situations where care should be taken:

 Swing components can only be accessed by one thread at a time. A few operations are guaranteed to be
thread safe but the most others are not. Generally the Swing components should be accessed through an
event-dispatching thread. (Refer Q62 in Java section).

 A typical Servlet life cycle creates a single instance of each servlet and creates multiple threads to handle the

service() method. The multi-threading aids efficiency but the servlet code must be coded in a thread
safe manner. The shared resources (e.g. instance variable) should be appropriately synchronized or should
only use variables in a read-only manner. (Refer Q16 in Enterprise section).

 The declaration of variables in JSP is not thread-safe, because the declared variables end up in the

generated servlet as an instance variable, not within the body of the _jspservice() method. (Refer Q34 in
Enterprise section).

 Struts framework action classes are not thread-safe. (Refer Q113 in Enterprise section).

 Some Java Collection classes like HashMap, ArrayList etc are not thread-safe. (Refer Q15 in Java section).

 Some of the Java core library classes are not thread safe. For e.g. java.util.SimpleDateFormat,

java.util.Locale etc.

Q 07: How would you go about identifying any potential transactional issues in your Java/J2EE application? FAQ
A 07:

 When a connection is created, it is in auto-commit mode. This means that each individual SQL statement is
treated as a transaction and will be automatically committed immediately after it is executed. The way to
allow two or more statements to be grouped into a transaction is to disable auto-commit mode. (Refer Q43 in
Enterprise section). Disabling auto-commit mode can improve performance by minimizing number of times it
accesses the database.

 A transaction is often described by ACID properties (Atomic, Consistent, Isolated and Durable). A

distributed transaction is an ACID transaction between two or more independent transactional resources
like two separate databases. For a transaction to commit successfully, all of the individual resources must
commit successfully. If any of them are unsuccessful, the transaction must roll back all of the resources. A 2-
phase commit is an approach for committing a distributed transaction in 2 phases. Refer Q43, Q73 in
Enterprise section.

 Isolation levels provide a degree of control of the effects one transaction can have on another concurrent

transaction. Concurrent effects are determined by the precise ways in which, a particular relational database
handles locks and its drivers may handle these locks differently. Isolation levels are used to overcome
transactional problems like lost update, uncommitted data (aka dirty reads), inconsistent data (aka. phantom
update), and phantom insert. Higher isolation levels can adversely affect performance at the expense of data
accuracy. Refer Q72 in Enterprise section.

Isolation Level Lost Update Uncommitted Data Inconsistent Data Phantom Insert
Read Uncommitted Prevented by DBMS Can happen Can happen Can happen
Read Committed Prevented by DBMS Prevented by DBMS Can happen Can happen
Repeatable Read Prevented by DBMS Prevented by DBMS Prevented by DBMS Can happen
Serializable Prevented by DBMS Prevented by DBMS Prevented by DBMS Prevented by DBMS

 Decide between optimistic and pessimistic concurrency control. (Refer Q78 in Enterprise section).

 Evaluate a strategy to determine if the data is stale when using strategies to cache data. (Refer Q79 in

Enterprise section).

EJB related transactional issues:

 Set the appropriate transactional attributes for the EJBs. (Refer Q71 in Enterprise section).

 Set the appropriate isolation level for the EJB. The isolation level should not be any more restrictive than it
has to be. Higher isolation levels can adversely affect performance. (Refer Q72 in Enterprise section).
Isolation levels are application server specific and not part of the standard EJB configuration.

How would you go about …?

247

 In EJB 2.x, transactions are rolled back by the container when a system exception is thrown. When an
application exception is thrown then the transactions are not rolled back by the container. So the developer
has to roll it back using ctx.setRollbackOnly() call. (Refer Q76, Q77 in Enterprise section).

 Detect doomed transactions to avoid performing any unnecessary compute intensive operations. (Refer Q72

in Enterprise section).

Q 08: How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE application? FAQ
A 08:

Question Answer
What are the key
characteristics of
an OO language
like Java?

Refer Q07 – Q10
in Java section

A true object oriented language should support the following 3 characteristics:

 Encapsulation (aka information hiding): implements information hiding and modularity
(abstraction).

 Polymorphism: The same message sent to different objects, results in behavior that is dependent

on the nature of the object receiving the message.

 Inheritance: Encourages code reuse and code organization by defining the new class based on the
existing class.

What is dynamic binding?

Dynamic binding (aka late binding): The dynamic binding is used to implement polymorphism. Objects
could come from local process or from across the network from a remote process. We should be able to
send messages to objects without having to know their types at the time of writing the code. Dynamic
binding provides maximum flexibility at the execution time. Usually dynamic binding or late binding takes
a small performance hit.

Refer Q10 in Java section.

Let us take an example to illustrate dynamic binding through polymorphic behavior:

Say you have a method in Java

void draw(Shape s) {
 s.erase();
 // ...
 s.draw();
}

The above method will talk to any shape, so it is independent of the specific type of object it is
erasing and drawing. Now let us look at some other program, which is making use of this
draw(Shape s) method:

Circle cir = new Circle();
Square sq = new Square();

draw(cir);
draw(sq);

So the interesting thing is that the method call to draw(Shape s) will cause different code to be
executed. So you send a message to an object even though you don’t know what specific type it is
and the right thing happens. This is called dynamic binding, which gives you polymorphic behavior.

How will you
decide whether to
use an interface or
an abstract class?

 Abstract Class: Often in a design, you want the base class to present only an interface for its
derived classes. That is, you don’t want anyone to actually create an object of the base class, only
to upcast to it so that its interface can be used. This is accomplished by making that class abstract
using the abstract key word. If anyone tries to make an object of an abstract class, the compiler
prevents them. This is a tool to enforce a particular design.

 Interface: The interface key word takes the concept of an abstract class one step further by

preventing any function definitions at all. An interface is a very useful and commonly used tool, as it
provides the perfect separation of interface and implementation. In addition, you can combine many
interfaces together, if you wish. (You cannot inherit from more than one regular class or abstract
class.)

Now the design decision…

When to use an Abstract Class: Abstract classes are excellent candidates inside of application

How would you go about …?

248

frameworks. Abstract classes let you define some default behavior and force subclasses to provide
any specific behavior.

When to use an Interface: If you need to change your design frequently, I prefer using interface to
abstract. For example, the strategy pattern lets you swap new algorithms and processes into your
program without altering the objects that use them. Example: Strategy Design Pattern.

Another justification of interfaces is that they solved the ‘diamond problem’ of traditional multiple
inheritance. Java does not support multiple inheritance. Java only supports multiple interface
inheritance. Interface will solve all the ambiguities caused by this ‘diamond problem’. Refer Q12 in
Java section.

Interface inheritance vs. Implementation inheritance: Prefer interface inheritance to implementation
inheritance because it promotes the design concept of coding to an interface and reduces
coupling. Interface inheritance can achieve code reuse with the help of object composition. Refer
Q10 in Java section.

Why abstraction is
important in Object
Oriented
programming?

The software you develop should optimally cater for the current requirements and problems and also
should be flexible enough to easily handle future changes.

Abstraction is an important OO concept. The ability for a program to ignore some aspects of the
information that it is manipulating, i.e. Ability to focus on the essential. Each object in the system serves
as a model of an abstract "actor" that can perform work, report on and change its state, and
"communicate" with other objects in the system, without revealing how these features are implemented.
Abstraction is the process where ideas are distanced from the concrete implementation of the objects.
The concrete implementation will change but the abstract layer will remain the same.

Let us look at an analogy:

When you drive your car you do not have to be concerned with the exact internal working of your car
(unless you are a mechanic). What you are concerned with is interacting with your car via its interfaces
like steering wheel, brake pedal, accelerator pedal etc. Over the years a car’s engine has improved a lot
but its basic interface has not changed (i.e. you still use steering wheel, brake pedal, accelerator pedal
etc to interact with your car). This means that the implementation has changed over the years but the
interface remains the same. Hence the knowledge you have of your car is abstract.

Black-box reuse is when a class uses another class without knowing the internal contents of it. The
black-box reuses are:

 Dependency is the weakest type of black-box reuse.

 Association is when one object knows about or has a relationship with the other objects.

 Aggregation is the whole part relationship where one object contains one or more of the other
objects.

 Composition is a stronger whole part relationship

Refer Q107, Q108 in Enterprise section

White-box reuse is when a class knows internal contents of another class. E.g. inheritance is used to
modify implementation for reusability.

Composition (Black-box reuse) Inheritance (White-box reuse)

Defined dynamically or at runtime via object
references. Since only interfaces are used, it has
the advantage of maintaining the integrity (i.e.
encapsulation).

Inheritance is defined statically or at compile time.
Inheritance allows an easy way to modify
implementation for reusability.

Explain black-box
reuse and white-
box reuse? Should
you favor
Inheritance (white-
box reuse) or
aggregation
(black-box reuse)?

Disadvantage of aggregation is that it increases
the number of objects and relationships.

A disadvantage of inheritance is that it breaks
encapsulation, which implies implementation
dependency. This means when you want to carry
out the redesign where the super class (i.e. parent
class) has to be modified or replaced, which is
more likely to affect the subclasses as well. In
general it will affect the whole inheritance
hierarchy.

Verdict: So the tendency is to favor composition
over inheritance.

How would you go about …?

249

What is your
understanding on
Aspect Oriented
Programming
(AOP)?

Aspect-Oriented Programming (AOP) complements OO programming by allowing developers to
dynamically modify the static OO model to create a system that can grow to meet new requirements.

AOP allows us to dynamically modify our static model to include the code required to fulfill the secondary
requirements (like auditing, logging, security, exception handling etc) without having to modify the
original static model (in fact, we don't even need to have the original code). Better still, we can often keep
this additional code in a single location rather than having to scatter it across the existing model, as we
would have to if we were using OO on its own. (Refer Q3 –Q5 in Emerging Technologies/Frameworks
section.)

For example A typical Web application will require a servlet to bind the HTTP request to an object and
then passes to the business handler object to be processed and finally return the response back to the
user. So initially only a minimum amount of code is required. But once you start adding all the other
additional secondary requirements (aka crosscutting concerns) like logging, auditing, security,
exception-handling etc the code will inflate to 2-4 times its original size. This is where AOP can help.

Q 09: How would you go about applying the UML diagrams in your Java/J2EE project? FAQ
A 09:

Question Answer
Explain the key
relationships in the
use case diagrams?

Refer Q107 in Enterprise section. Use case has 4 types of relationships:

Between actor and use case

 Association: Between actor and use case. May be navigable in both directions according to
the initiator of the communication between the actor and the use case.

Between use cases

 Extends: This is an optional extended behavior of a use case. This behavior is executed only
under certain conditions such as performing a security check etc.

 Includes: This specifies that the base use case needs an additional use case to fully describe

its process. It is mainly used to show common functionality that is shared by several use cases.

 Inheritance (or generalization): Child use case inherits the behavior of its parent. The child
may override or add to the behavior of the parent.

U s e c a s e d ia g ra m

p e r fo rm s e c u r ity
c h e c k

In te rn a tio n a l S tu d e n t

R e g is tra r

S tu d e n t

E n ro ll in U n iv e rs i
ty E n ro ll in s e m in a r

E n ro ll fa m ily
m e m b e rs

*
*

a s s o c ia t io n

a s s o c ia t io n

a s s o c ia t io n

in h e r ita n c e

< < in c lu d e > >

in h e r ita n c e

< < e x te n d > >

N o te :

< < e x te n d > > re la t io n s h ip is c o n d it io n a l . Y o u d o n o t
k n o w if o r w h e n e x te n d in g u s e c a s e w ill b e in v o k e d .

< < in c lu d e > > re la t io n s h ip is s im ila r to a p ro c e d u re
c a ll.

In h e r ita n c e : e x te n d s th e b e h a v io r o f th e p a re n t u s e
c a s e o r a c to r .

How would you go about …?

250

Q. What is a use case specification document? What should it cover?

A use case diagram shown above is a visual depiction of the different scenarios of interaction between an actor and a use
case. A use case specification document should enable you to easily document the business flow. Information that you
document in a use case specification should include what actors are involved, the steps that the use case performs, business
rules, and so forth. A use case specification document should cover the following:

• Actors: List the actors that participate and interact in this use case.

• Pre-conditions: Pre-conditions that need to be satisfied for the use case to perform.

• Post-conditions: Define the different states in which you expect the system to be in, after the use case executes.

• Basic Flow: List the basic events that will occur when the use case is executed. List all primary activities that the use case

will perform and describe the actions performed by the actor and the response of the use case to those actions. These will
form the basis for writing the test cases for the system.

• Alternative Flows: Any subsidiary events that can occur in the use case should be listed separately.

• Special requirements: Business rules for the basic and alternative flows should be listed as special requirements. These

business rules will also be used to write test cases. Both success and failure scenarios should be described here.

• Use case relationships: For complex systems, you need to document the relationships between use cases.

Q. What are the “Do”s and “Don’t”s of a use case diagram?

• Use cases should not be used to capture all the details of a system. The granularity to which you define use cases in a

diagram should be enough to keep the use case diagram uncluttered.

• Use cases are meant to capture “what” the system is and not “how” the system will be designed or built. Use cases

should be free of any design characteristics.

What is the main
difference between the
collaboration diagram
and the sequence
diagram?

Refer Q107 in Enterprise section:

Collaboration diagrams convey the same message as sequence diagrams but the collaboration
diagrams focus on object roles instead of times in which the messages are sent. The sequence
diagram is time line driven.

When to use various
UML diagrams?

Refer Q107 in Enterprise section.

 Use case diagrams:

 Determining the user requirements. New use cases often generate new requirements.
 Communicating with clients. The simplicity of the diagram makes use case diagrams a

good way for designers and developers to communicate with clients.
 Generating test cases. Each scenario for the use case may suggest a suite of test

cases.

 Class diagrams:

 Class diagrams are the backbone of Object Oriented methods. So they are used
frequently.

 Class diagrams can have a conceptual perspective and an implementation perspective.
During the analysis draw the conceptual model and during implementation draw the
implementation model.

 Interaction diagrams (Sequence and/or Collaboration diagrams):

 When you want to look at behavior of several objects within a single use case. If you

want to look at a single object across multiple use cases then use statechart
diagram as described below.

 State chart diagrams:

 Statechart diagrams are good at describing the behavior of an object across several

use cases. But they are not good at describing the interaction or collaboration between
many objects. Use interaction and/or activity diagrams in conjunction with the statechart
diagram to communicate complex operations involving multi-threaded programs etc.

 Use it only for classes that have complex state changes and behavior. For example:

the User Interface (UI) control objects, Objects shared by multi-threaded programs etc.

How would you go about …?

251

 Activity diagram:

 Activity and Statechart diagrams are generally useful to express complex operations.

The great strength of activity diagrams is that they support and encourage parallel
behavior. An activity and statechart diagrams are beneficial for workflow modeling with
multi- threaded programming.

Q 10: How would you go about describing the software development processes you are familiar with? FAQ
A 10: In addition to technical questions one should also have a good understanding of the software development

process.
Question Answer
What is the key
difference between the
waterfall approach and
the iterative approach
to software
development? How to
decide which one to
use?

Refer Q103 – Q105 in Enterprise section

Waterfall approach is sequential in nature. The iterative approach is non-sequential and
incremental. The iterative and incremental approach has been developed based on the following:

• You can't express all your needs up front. It is usually not feasible to define in detail (that is,

before starting full-scale development) the operational capabilities and functional characteristics
of the entire system. These usually evolve over time as development progresses.

• Technology changes over time. Some development lifecycle spans a long period of time

during which, given the pace at which technology evolves, significant technological shifts may
occur.

• Complex systems. This means it is difficult to cope with them adequately unless you have an

approach for mastering complexity.

How to decide which one to use?

Waterfall approach is more suitable in the following circumstances:

• Have a small number of unknowns and risks. That is if
• It has a known domain.
• The team is experienced in current process and technology.
• There is no new technology.
• There is a pre-existing architecture baseline.

• Is of short duration (two to three months).
• Is an evolution of an existing system?

The iterative approach is more suitable (Refer Q136 in Enterprise Section)

• Have a large number of unknowns and risks. So it pays to design, develop and test a
vertical slice iteratively and then replicate it through other iterations. That is if

• Integrating with new systems.
• New technology and/or architecture.
• The team is fairly keen to adapt to this new process.

• Is of large duration (longer than 3 months).
• Is a new system?

Have you used
extreme programming
techniques? Explain?

Extreme Programming (or XP) is a set of values, principles and practices for rapidly developing high-
quality software that provides the highest value for the customer in the fastest way possible. XP is a
minimal instance of RUP. XP is extreme in the sense that it takes 12 well-known software
development "best practices" to their logical extremes.

The 12 core practices of XP are:

1. The Planning Game: Business and development cooperate to produce the maximum

business value as rapidly as possible. The planning game happens at various scales, but the
basic rules are always the same:

 Business comes up with a list of desired features for the system. Each feature is written

out as a user story (or PowerPoint screen shots with changes highlighted), which gives
the feature a name, and describes in broad strokes what is required. User stories are
typically written on 4x6 cards.

 Development team estimates how much effort each story will take, and how much effort

the team can produce in a given time interval (i.e. the iteration).

How would you go about …?

252

 Business then decides which stories to implement in what order, as well as when and how

often to produce production releases of the system.

2. Small releases: Start with the smallest useful feature set. Release early and often, adding a

few features each time.

3. System metaphor: Each project has an organizing metaphor, which provides an easy to

remember naming convention.

4. Simple design: Always use the simplest possible design that gets the job done. The

requirements will change tomorrow, so only do what's needed to meet today's requirements.

5. Continuous testing: Before programmers add a feature, they write a test for it. Tests in XP

come in two basic flavors.

 Unit tests are automated tests written by the developers to test functionality as they write
it. Each unit test typically tests only a single class, or a small cluster of classes. Unit tests
are typically written using a unit-testing framework, such as JUnit.

 Customer to test that the overall system is functioning as specified, defines

acceptance tests (aka functional tests). Acceptance tests typically test the entire
system, or some large chunk of it. When all the acceptance tests pass for a given user
story, that story is considered complete. At the very least, an acceptance test could
consist of a script of user interface actions and expected results that a human can run.
Ideally acceptance tests should be automated using frameworks like Canoo Web test,
Selenium Web test etc.

6. Refactoring: Refactor out any duplicate code generated in a coding session. You can do this

with confidence that you didn't break anything because you have the tests.

7. Pair Programming: All production code is written by two programmers sitting at one machine.

Essentially, all code is reviewed as it is written.

8. Collective code ownership: No single person "owns" a module. Any developer is expected to

be able to work on any part of codebase at any time.

9. Continuous integration: All changes are integrated into codebase at least daily. The tests

have to run 100% both before and after integration. You can use tools like Ant, CruiseControl,
and/or Maven to continuously build and integrate your code.

10. 40-Hour Workweek: Programmers go home on time. In crunch mode, up to one week of

overtime is allowed. But multiple consecutive weeks of overtime are treated as a sign that
something is very wrong with the process.

11. On-site customer: Development team has continuous access to a real live customer or

business owner, that is, someone who will actually be using the system. For commercial
software with lots of customers, a customer proxy (usually the product manager, Business
Analyst etc) is used instead.

12. Coding standards: Everyone codes to the same standards. Ideally, you shouldn't be able to

tell by looking at it, which developer on the team has touched a specific piece of code.

A typical extreme programming project will have:

• All the programmers in a room together usually sitting around a large table.
• Fixed number of iterations where each iteration takes 1-3 weeks. At the beginning of each

iteration get together with the customer.
• Pair-programming.
• Writing test cases first (i.e. TDD – Test Driven Development).
• Delivery of a functional system at the end of 1-3 week iteration.

Have you used agile
(i.e. Lightweight)
software development
methodologies?

Agile (i.e. lightweight) software development process is gaining popularity and momentum
across organizations. Several methodologies fit under this agile development methodology banner.
All these methodologies share many characteristics like iterative and incremental development,
test driven development (i.e. TDD), stand up meetings to improve communication, automatic
testing, build and continuous integration of code etc. Among all the agile methodologies XP is
the one which has got the most attention. Different companies use different flavors of agile
methodologies by using different combinations of methodologies (e.g. primarily XP with other
methodologies like Scrum, FDD, TDD etc). Refer Q136 in Enterprise section.

How would you go about …?

253

Q 11: How would you go about applying the design patterns in your Java/J2EE application?
A 11: It is really worth reading books and articles on design patterns. It is sometimes hard to remember the design
patterns, which you do not use regularly. So if you do not know a particular design pattern you can always honestly say
that you have not used it and subsequently suggest that you can explain another design pattern, which you have used
recently or more often. It is always challenging to decide, which design pattern to use when? How do you improve your
design pattern skills? Practice, practice, practice. I have listed some of the design patterns below with scenarios and
examples:

To understand design patterns you need to have a basic understanding of object-oriented concepts like:

Decomposition: The process of dividing a problem into smaller pieces (i.e. divide and conquer approach). The following
examples will break different scenarios into objects, each with specific responsibilities. A good decomposition will often
result in improved reusability.

Polymorphism, Inheritance, and Encapsulation: Refer Q10 in Java section.

Loose coupling: The process of making objects independent of each other rather than dependent of one another.
Loosely coupled objects are easier to reuse and change.

Note: To keep it simple, System.out.println(…) is used. In real practice, use logging frameworks like log4j. Also package constructs are
not shown. In real practice, each class should be stored in their relevant packages like com.items etc. Feel free to try these code
samples by typing them into a Java editor of your choice and run the main class Shopping. Also constants should be declared in a
typesafe manner as shown below:

/**
 * use typesafe enum pattern as shown below if you are using below J2SE 5.0 or use “enum” if you are using J2SE 5.0
 */
public class ItemType {
 private final String name;

 public static final ItemType Book = new ItemType("book");
 public static final ItemType CD = new ItemType("cd");
 public static final ItemType COSMETICS = new ItemType("cosmetics");
 public static final ItemType CD_IMPORTED = new ItemType("cd_imported");

 private ItemType(String name) {this.name = name;}
 public String toString() {return name;}
 //add compareTo(), readResolve() methods etc as required ...
}

Scenario: A company named XYZ Retail is in the business of selling Books, CDs and Cosmetics. Books are sales tax
exempt and CDs and Cosmetics have a sales tax of 10%. CDs can be imported and attracts an import tax of 5%. Write a
shopping basket program, which will calculate extended price (qty * (unitprice + tax)) inclusive of tax for each item in the
basket, total taxes and grand total.

Solution: Sample code for the items (i.e. Goods) sold by XYZ Retail. Let’s define an Item interface to follow the design
principle of code to an interface not to an implementation. CO

public interface Item {

 public static final int TYPE_BOOK = 1;
 public static final int TYPE_CD = 2;
 public static final int TYPE_COSMETICS = 3;
 public static final int TYPE_CD_IMPORTED = 4;

 public double getExtendedTax();
 public double getExtendedTaxPrice() throws ItemException;
 public void setImported(boolean b);
 public String getDescription();
}

The following class Goods cannot be instantiated (since it is abstract). You use this abstract class to achieve code
reuse.

How would you go about …?

254

+g e tE xte n d e d T a x() : d o u b le
+g e tE xte n d e d T a xP ric e () : d o u b le
+ isT a x e d () : b o o le a n
+ is Im p o rte d () : b o o le a n

-q ty : in t
-p r ic e : d o u b le
- ta x : T a x

< <a b s tr a c t> >
G o o d s

- is T a xe d : b o o le a n
- is Im p o rt e d : b o o le a n

C D
- isT a xe d : b o o le a n
- is Im p o rte d : b o o le a n

B o o k
- i sT a x e d : b o o le a n
- i s Im p o rte d : b o o le a n

C o s m e tic s

« in t e r fa ce »
Ite m

-sa le sT a x : d o u b le
- im p o rtT a x : d o u b le

T a x
1 1

co d e re u s e is a ch ie v e d th ro u g h im p le m e n ta tio n in h e r i ta n ce .

/**
 * abstract parent class, which promotes code reuse for all the subclasses
 * like Book, CD, and Cosmetics. implements interface Item to
 * promote design principle code to interface not to an implementation.
 */

public abstract class Goods implements Item {
 //define attributes
 private String description;
 private int qty;
 private double price;
 private Tax tax = new Tax();

 public Goods(String description, int qty, double price) {
 this.description = description;
 this.qty = qty;
 this.price = price;
 }

 protected abstract boolean isTaxed();
 protected abstract boolean isImported();

 public double getExtendedTax() {
 tax.calculate(isTaxed(), isImported(), price);
 return this.tax.getTotalUnitTax() * qty;
 }

 public double getExtendedTaxPrice() throws ItemException {
 if (tax == null) {
 throw new ItemException("Tax should be calculated first:");
 }
 return qty * (this.tax.getTotalUnitTax() + price);
 }

 //getters and setters go here for attributes like description etc
 public String getDescription() {
 return description;
 }

 public String toString() {
 return qty + " " + description + " : ";
 }

}

The Book, CD and Cosmetics classes can be written as shown below:

How would you go about …?

255

public class Book extends Goods {
 private boolean isTaxed = false;
 private boolean isImported = false;

 public Book(String description, int qty, double price) {
 super(description, qty, price);
 }

 public boolean isTaxed() {
 return isTaxed;
 }

 public boolean isImported() {
 return isImported;
 }

 public void setImported(boolean b) {
 isImported = b;
 }
}

public class CD extends Goods {
 private boolean isTaxed = true;
 private boolean isImported = false;

 public CD(String description, int qty, double price) {
 super(description, qty, price);
 }

 public boolean isTaxed() {
 return isTaxed;
 }

 public boolean isImported() {
 return isImported;
 }

 public void setImported(boolean b) {
 isImported = b;
 }
}

public class Cosmetics extends Goods {
 private boolean isTaxed = true;
 private boolean isImported = false;

 public Cosmetics(String description, int qty, double price) {
 super(description, qty, price);
 }

 public boolean isTaxed() {
 return isTaxed;
 }

 public boolean isImported() {
 return isImported;
 }

 public void setImported(boolean b) {
 isImported = b;
 }
}

Alternative solution: Alternatively, instead of using inheritance, we can use object composition to achieve code
reuse as discussed in Q10 in Java section. If you were to use object composition instead of inheritance, you would have
classes Book, CD and Cosmetics implementing the Item interface directly (Goods class would not be required), and make
use of a GoodsHelper class to achieve code reuse through composition.

How would you go about …?

256

-isTaxed : boolean
-isImported : boolean
-helper : GoodsHelper

CD
-isTaxed : boolean
-isImported : boolean
-helper : GoodsHelper

Book
-isTaxed : boolean
-isImported : boolean
-helper : GoodsHelper

Cosmetics

«interface»
Item

GoodsHelper

1

1 1

111

interface inheritance where code reuse is achieved through composition [GoodsHelper]. code not shown.

Let’s define a Tax class, which is responsible for calculating the tax. The Tax class is composed in your Goods class,
which makes use of object composition to achieve code reuse.

public class Tax {
 //stay away from hard coding values. Define constants or read from a “.properties” file
 public static final double SALES_TAX = 0.10; //10%
 public static final double IMPORT_TAX = 0.05; //5%

 private double salesTax = 0.0;
 private double importTax = 0.0;

 public void calculate(boolean isTaxable, boolean isImported, double price) {
 if (isTaxable) {
 salesTax = price * SALES_TAX;
 }
 if (isImported) {
 importTax = price * IMPORT_TAX;
 }
 }

 public double getTotalUnitTax() {
 return this.salesTax + this.importTax;
 }
}

Factory method pattern: To create the items shown above we could use the factory method pattern as described in
Q52 in Java section. We would also implement the factory class as a singleton using the singleton design pattern as
described in Q51 in Java section. The factory method design pattern instantiates a class in a more flexible way than
directly calling the constructor. It loosely couples your calling code from the Items it creates like CD, Book, etc. Let’s look
at why factory method pattern is more flexible:

 Sometimes factory methods have to return a single instance of a class instead of creating new objects each time or

return an instance from a pool of objects.

 Factory methods have to return a subtype of the type requested. It also can request the caller to refer to the returned

object by its interface rather than by its implementation, which enables objects to be created without making their
implementation classes public.

 Sometimes old ways of creating objects can be replaced by new ways of creating the same objects or new classes

can be added using polymorphism without changing any of the existing code which uses these objects. For example:
Say you have a Fruit abstract class with Mango and Orange as its concrete subclasses, later on you can add an
Apple subclass without breaking the code which uses these objects.

How would you go about …?

257

The factory method patterns consist of a product class hierarchy and a creator class hierarchy.

/**
 * ItemFactory is responsible for creating Item objects like CD, Book, and Cosmetics etc
 */
public abstract class ItemFactory {
 public abstract Item getItem(int itemType, String description, int qty, double price)
 throws ItemException;
}

<<abstract>>
Goods

CD Book Cosmetics

«interface»
Item

+getItem()

GoodsFactory

+getItem()

<<abstract>>
ItemFactory

/**
 * GoodsFactory responsible for creating Item objects like CD, Book, and Cosmetics etc
 */
public class GoodsFactory extends ItemFactory {

 protected GoodsFactory() { } //protected so that only ItemFactorySelector within this package can
 //instantiate it to provide a single point of access
 //(i.e. singleton).
 /**
 * Factory method, which decides how to create Items.
 *
 * Benefits are: -- loosely-couples the client (i.e. ShoppingBasketBuilder class) from Items such
 * as CD, Book, and Cosmetics etc. In future if we need to create a Book item, which is imported,
 * we can easily incorporate this by adding a new item.TYPE_BOOK_IMPORTED and subsequently adding
 * following piece of code as shown:
 *
 * else if(itemType == TYPE_BOOK_IMPORTED){
 * item = new Book(description, qty,price);
 * item.setIsImported(true);
 * }
 *
 * -- It is also possible to create an object cache or object pool of our items instead of creating a new instance
 * every time without making any changes to the calling class.
 * -- Java does not support overloaded constructors which take same parameter list. Instead, use several factory methods.
 * E.g. getImportedItem(int itemType, String description, int qty, double price), getTaxedItem (int itemType ….) etc
 */

 public Item getItem(int itemType, String description, int qty, double price) throws ItemException
 {
 Item item = null; //code to interface
 if (itemType == Item.TYPE_BOOK) {
 item = new Book(description, qty, price);
 } else if (itemType == Item.TYPE_CD) {
 item = new CD(description, qty, price);
 } else if (itemType == Item.TYPE_CD_IMPORTED) {
 item = new CD(description, qty, price);
 item.setImported(true);
 } else if (itemType == Item.TYPE_COSMETICS) {
 item = new Cosmetics(description, qty, price);
 } else {
 throw new ItemException("Invalid ItemType=" + itemType);
 }
 return item; //returned object is referred by its interface instead of by its implementation
 }
}

How would you go about …?

258

Let’s use the abstract factory pattern to create an ItemFactory and the singleton pattern to provide a single point of
access to the ItemFactory returned.

Abstract factory pattern: This pattern is one level of abstraction higher than the factory method pattern because you
have an abstract factory (or factory interface) and have multiple concrete factories. Abstract factory pattern usually has a
specific method for each concrete type being returned (e.g. createCircle(), createSquare() etc). Alternatively you can have
a single method e.g. createShape(…).

Singleton pattern: Ensures that a class has only one instance and provides a global point of access to it (Refer Q51 in
Java section). E.g. a DataSource should have only a single instance where it will supply multiple connections from its
single DataSource pool.

/**
 * Abstract factory class which creates a singleton ItemFactory dynamically based on factory name
 * supplied.
 * Benefits of singleton: -- single instance of the ItemFactory -- single point of access (global
 * access within the JVM and the class loader)
 */

public class ItemFactorySelector {
 private static ItemFactory objectFactorySingleInstance = null;
 private static final String FACTORY_NAME = "com.item.GoodsFactory"; //can use a .proprties file.

 public static ItemFactory getItemFactory() {
 try {
 if (objectFactorySingleInstance == null) {

 //Dynamically instantiate factory and factory name can also be read from a properties
 //file. in future if we need a CachedGoodsFactory which caches Items to improve memory
 //usage then we can modify the FACTORY_NAME to "com.item.CachedGoodsFactory" or
 //conditionally select one of many factories.

 Class klassFactory = Class.forName(FACTORY_NAME);
 objectFactorySingleInstance = (ItemFactory) klassFactory.newInstance();
 }
 }

 catch (ClassNotFoundException cnf) {
 throw new RuntimeException("Cannot create the ItemFactory: " + cnf.getMessage());
 }catch (IllegalAccessException iae) {
 throw new RuntimeException("Cannot create the ItemFactory: " + iae.getMessage());
 }catch (InstantiationException ie) {
 throw new RuntimeException("Cannot create the ItemFactory: " + ie.getMessage());
 }

 return objectFactorySingleInstance;
 }
}

Now we should build a more complex shopping basket object step-by-step, which is responsible for building a basket with
items like CD, Book etc and calculating total tax for the items in the basket. The builder design pattern is used to define
the interface ItemBuilder and the concrete class, which implements this interface, is named ShoppingBasketBuilder.

Builder pattern: The subtle difference between the builder pattern and the factory pattern is that in builder pattern, the
user is given the choice to create the type of object he/she wants but the construction process is the same. But
with the factory method pattern the factory decides how to create one of several possible classes based on data
provided to it.

…//package & import statements

public interface ItemBuilder {
 public void buildBasket(int itemType, String description, int qty, double unit_price)
 throws ItemException;

 public double calculateTotalTax() throws ItemException;
 public double calculateTotal() throws ItemException;
 public void printExtendedTaxedPrice() throws ItemException;
 public Iterator getIterator();
}

How would you go about …?

259

+buildBasket()
+calculateTotalTax()
+calculateTotal()
+printExtendedTax()
+getItemIterator()

ItemBuilder

+buildBasket()
+calculateTotalTax()
+calculateTotal()
+printExtendedTax()
+getItemIterator()

-listItems : List
ShoppingBasketBuilder aProduct : Item

1

*

+getItem()
+getInstance()

GoodsFactory

+getItem()

ItemFactory
«call»

aProduct:Item

…//package & import statements

/**
 * Builder pattern: To simplify complex object creation by defining a class whose purpose is to
 * build instances of another class.
 * There is a subtle difference between a builder pattern and the factory pattern is that in builder
 * pattern, the user is given the choice to create the type of object he/she wants but the
 * construction process is the same. But with the factory method pattern the factory decides how to
 * create one of several possible classes based on data provided to it.
 */
public class ShoppingBasketBuilder implements ItemBuilder {

 private List listItems = null;

 private void addItem(Item item) {
 if (listItems == null) {
 listItems = new ArrayList(20);
 }
 listItems.add(item);
 }

 /**
 * builds a shopping basket
 */
 public void buildBasket(int itemType, String description, int qty, double unit_price)
 throws ItemException {
 //get the single instance of GoodsFactory using the singleton pattern
 //no matter how many times you call getInstance() you get access to the same instance.
 ItemFactory factory = ItemFactorySelector.getItemFactory();

 //use factory method pattern to create item objects, based on itemType supplied to it.
 Item item = factory.getItem(itemType, description, qty, unit_price);
 this.addItem(item); //adds the item to the basket
 }

 /**
 * calculates total tax on the items in the built basket
 */
 public double calculateTotalTax()
 throws ItemException {
 if (listItems == null) {
 throw new ItemException("No items in the basket");

How would you go about …?

260

 }
 double totalTax = 0.0;
 Iterator it = listItems.iterator();
 while (it.hasNext()) {
 Item item = (Item) it.next();
 totalTax += item.getExtendedTax();
 }
 return totalTax;
 }

 /**
 * calculates total price on the items in the built basket
 */
 public double calculateTotal() throws ItemException {
 if (listItems == null) {
 throw new ItemException("No items in the basket");
 }
 double total = 0.0;
 Iterator it = listItems.iterator();
 while (it.hasNext()) {
 Item item = (Item) it.next();
 total += item.getExtendedTaxPrice();
 }
 return total;
 }

 /**
 * prints individual prices of the items in the built basket
 */
 public void printExtendedTaxedPrice() throws ItemException {
 if (listItems == null) {
 throw new ItemException("No items in the basket");
 }
 double totalTax = 0.0;
 Iterator it = listItems.iterator();
 while (it.hasNext()) {
 Item item = (Item) it.next();
 System.out.println(item + "" + item.getExtendedTaxPrice());
 }
 }

 public Iterator getIterator() {
 return listItems.iterator();
 }
}

Finally, the calling-code, which makes use of our shopping basket builder pattern to build the shopping basket step-by-
step and also calculates the taxes and the grand total for the items in the shopping basket.

…//package & import statements

public class Shopping {
 /**
 * Class with main(String[] args) method which initially gets loaded by the
 * class loader. Subsequent classes are loaded as they are referenced in the program.
 */
 public static void main(String[] args) throws ItemException {
 process();
 }

 public static void process() throws ItemException {
 //------creational patterns: singleton, factory method and builder design patterns------
 System.out.println("----create a shopping basket with items ---");
 //Shopping basket using the builder pattern
 ItemBuilder builder = new ShoppingBasketBuilder();
 //build basket of items using a builder pattern
 builder.buildBasket(Item.TYPE_BOOK, "Book - IT", 1, 12.00);
 builder.buildBasket(Item.TYPE_CD, "CD - JAZZ", 1, 15.00);
 builder.buildBasket(Item.TYPE_COSMETICS, "Cosmetics - Lipstick", 1, 1.0);

 //let’s print prices and taxes of this built basket
 double totalTax = builder.calculateTotalTax();
 builder.printExtendedTaxedPrice();
 System.out.println("Sales Taxes: " + totalTax);

How would you go about …?

261

+check() : boolean

LongerThan15

+check() : boolean

StartsWithCD

+check() : boolean

«interface»
CheckStrategy

 System.out.println("Grand Total: " + builder.calculateTotal());
 System.out.println("----- After adding an imported CD to the basket ----");

 //Say now customer decides to buy an additional imported CD
 builder.buildBasket(Item.TYPE_CD_IMPORTED, "CD - JAZZ IMPORTED", 1, 15.00);

 //lets print prices and taxes of this built basket with imported CD added
 totalTax = builder.calculateTotalTax();
 builder.printExtendedTaxedPrice();
 System.out.println("Sales Taxes: " + totalTax);
 System.out.println("Grand Total: " + builder.calculateTotal());
 }
}

Running the above code produces an output of:

----create a shopping basket with items ---
1 Book - IT : 12.0
1 CD - JAZZ : 16.5
1 Cosmetics - Lipstick : 1.1
Sales Taxes: 1.6
Grand Total: 29.6

----- After adding an imported CD to the basket ----

1 Book - IT : 12.0
1 CD - JAZZ : 16.5
1 Cosmetics - Lipstick : 1.1
1 CD - JAZZ IMPORTED : 17.25
Sales Taxes: 3.85
Grand Total: 46.85

Scenario: The XYZ Retail wants to evaluate a strategy to determine items with description longer than 15 characters
because it won’t fit in the invoice and items with description starting with “CD” to add piracy warning label.

Solution: You can implement evaluating a strategy to determine items with description longer than 15 characters and
description starting with “CD” applying the strategy design pattern as shown below:

Strategy pattern: The Strategy pattern lets you build software as a loosely coupled collection of interchangeable parts, in
contrast to a monolithic, tightly coupled system. Loose coupling makes your software much more extensible,
maintainable, and reusable. The main attribute of this pattern is that each strategy encapsulates algorithms i.e. it is not
data based but algorithm based. Refer Q12, Q64 in Java section.

Example: You can draw borders around almost all Swing components, including panels, buttons, lists, and so on. Swing
provides numerous border types for its components: bevel, etched, line, titled, and even compound. JComponent class,
which acts as the base class for all Swing components by implementing functionality common to all Swing components,
draws borders for Swing components, using strategy pattern.

public interface CheckStrategy {
 public boolean check(String word);
}

public class LongerThan15 implements CheckStrategy {
 public static final int LENGTH = 15; //constant

 public boolean check(String description) {
 if (description == null)
 return false;
 else
 return description.length() > LENGTH;
 }
}

public class StartsWithCD implements CheckStrategy {
 public static final String STARTS_WITH = "cd";

 public boolean check(String description) {
 String s = description.toLowerCase();
 if (description == null || description.length() == 0)
 return false;
 else

How would you go about …?

262

+check() : boolean

LongerThan15

+check() : boolean

StartsWithCD

+check() : boolean

«interface»
CheckStrategy

+check() : boolean

CountDecorator

1

*

A decorator object’s interface must conform to the
interface of the component it decorates

There is a subtle difference between the decorator pattern and the proxy
pattern is that, the main intent of the decorator pattern is to enhance the
functionality of the target object whereas the main intent of the proxy pattern
is to control access to the target object.

 return s.startsWith(STARTS_WITH);
 }
}

Scenario: The XYZ retail has decided to count the number of items, which satisfy the above strategies.

Solution: You can apply the decorator design pattern around your strategy design pattern. Refer Q24 in Java section
for the decorator design pattern used in java.io.*. The decorator acts as a wrapper around the CheckStrategy objects
where by call the check(…) method on the CheckStrategy object and if it returns true then increment the counter. The
decorator design pattern can be used to provide additional functionality to an object of some kind. The key to a decorator
is that a decorator "wraps" the object decorated and looks to a client exactly the same as the object wrapped. This means
that the decorator implements the same interface as the object it decorates.

Decorator design pattern: You can think of a decorator as a shell around the object decorated. The decorator catches
any message that a client sends to the object instead. The decorator may apply some action and then pass the message
it received on to the decorated object. That object probably returns a value to the decorator which may again apply an
action to that result, finally sending the (perhaps-modified) result to the original client. To the client the decorator is
invisible. It just sent a message and got a result. However the decorator had two chances to enhance the result returned.

public class CountDecorator implements CheckStrategy {

 private CheckStrategy cs = null;
 private int count = 0;

 public CountDecorator(CheckStrategy cs) {
 this.cs = cs;
 }

 public boolean check(String description) {
 boolean isFound = cs.check(description);
 if (isFound)
 this.count++;
 return isFound;
 }

 public int count() {
 return this.count;

 }

 public void reset() {
 this.count = 0;
 }
}

Now, let’s see the calling class Shopping:

//…. package & import statements

public class Shopping {
 //...

 public static void process() throws ItemException {
 ...
 Iterator it = builder.getIterator();
 boolean bol = false;
 CheckStrategy strategy = null;

 it = builder.getIterator();
 //for starting with CD
 strategy = new StartsWithCD();
 strategy = new CountDecorator(strategy);
 while (it.hasNext()) {
 Item item = (Item) it.next();
 bol = strategy.check(item.getDescription());
 System.out.println("\n" + item.getDescription() + " --> " + bol);
 }

 System.out.println("No of descriptions starts with CD -->" +
 ((CountDecorator) strategy).count());

 it = builder.getIterator();

How would you go about …?

263

 //longer than 15 charecters
 strategy = new LongerThan15();
 strategy = new CountDecorator(strategy);
 while (it.hasNext()) {
 Item item = (Item) it.next();
 bol = strategy.check(item.getDescription());
 System.out.println("\n" + item.getDescription() + " --> " + bol);
 }

 System.out.println("No of descriptions longer than 15 characters -->" +
 ((CountDecorator) strategy).count());
 }
}

Running the above code produces an output of:

----count item description starting with 'cd' or longer than 15 characters ---
-------------------- description satarting with cd ----------------------------
Book - IT --> false
CD - JAZZ --> true
Cosmetics - Lipstick --> false
CD - JAZZ IMPORTED --> true
No of descriptions starts with CD -->2
------------------- description longer than 15 characters -----------------------
Book - IT --> false
CD - JAZZ --> false
Cosmetics - Lipstick --> true
CD - JAZZ IMPORTED --> true
No of descriptions longer than 15 characters -->2

Scenario: So far so good, for illustration purpose if you need to adapt the strategy class to the CountDecorator class so
that you do not have to explicitly cast your strategy classes to CountDecorator as shown in bold arrow in the class
Shopping. We can overcome this by slightly rearranging the classes. The class CountDecorator has two additional
methods count() and reset(). If you only just add these methods to the interface CheckStrategy then the classes
LongerThan15 and StartsWithCD should provide an implementation for these two methods. These two methods make no
sense in these two classes.

Solution: So, to overcome this you can introduce an adapter class named CheckStrategyAdapter, which just provides a
bare minimum default implementation. Adapter design pattern

public interface CheckStrategy {
 public boolean check(String word);
 public int count();
 public void reset();
}

/**
 * This is an adapter class which provides default implementations to be extended not to be used and
 * facilitates its subclasses to be adapted to each other. Throws an unchecked exception to indicate
 * improper use.
 */

public class CheckStrategyAdapter implements CheckStrategy {
 public boolean check(String word) {
 throw new RuntimeException("Improper use of CheckStrategyAdapter
 class method check(String word)");
 }

 public int count() {
 throw new RuntimeException("Improper use of CheckStrategyAdapter class method count()");
 }

 public void reset() {
 throw new RuntimeException("Improper use of CheckStrategyAdapter class method reset()");
 }
}

public class LongerThan15 extends CheckStrategyAdapter {
 public static final int LENGTH = 15;

 public boolean check(String description) {
 if (description == null)
 return false;

How would you go about …?

264

+check() : boolean
+count() : int
+reset()

«interface»
CheckStrategy

+check() : boolean
+count() : int
+reset()

CheckStrategyAdapter +check() : boolean

LongerThan15

+check() : boolean

StartsWuthCD

Adapter provides default implementation, so that it can be extended to provide specific implementation.

+check() : boolean
+count() : int
+reset()

CountDecorator

1

1

 else
 return description.length() > LENGTH;
 }
}

public class StartsWithCD extends CheckStrategyAdapter {
 public static final String STARTS_WITH = "cd";

 public boolean check(String description) {
 String s = description.toLowerCase();
 if (description == null || description.length() == 0)
 return false;
 else
 return s.startsWith(STARTS_WITH);
 }
}

public class CountDecorator extends CheckStrategyAdapter {

 private CheckStrategy cs = null;
 private int count = 0;

 public CountDecorator(CheckStrategy cs) {
 this.cs = cs;
 }

 public boolean check(String description) {
 boolean isFound = cs.check(description);
 if (isFound){
 this.count++;
 }
 return isFound;
 }

 public int count() {
 return this.count;
 }

 public void reset() {
 this.count = 0;
 }
}

Now, let’s see the revised calling class Shopping:

//...package & import statements

public class Shopping {
 //......
 public static void process() throws ItemException {

 //--------------------------Strategy and decorator design pattern--------------------------
 System.out.println("-count item description starting with 'cd'or longer than 15 characters -");
 Iterator it = builder.getIterator();
 boolean bol = false;
 CheckStrategy strategy = null;
 System.out.println("---------------- description satarting with cd -----------------");
 it = builder.getIterator();
 //for starting with CD
 strategy = new StartsWithCD();
 strategy = new CountDecorator(strategy);
 while (it.hasNext()) {
 Item item = (Item) it.next();
 bol = strategy.check(item.getDescription());
 System.out.println(item.getDescription() + " --> " + bol);
 }

 System.out.println("No of descriptions starts with CD -->" + strategy.count());

 System.out.println("-------------- description longer than 15 characters ------------------");
 it = builder.getIterator();
 //longer than 15 charecters
 strategy = new LongerThan15();
 strategy = new CountDecorator(strategy);

How would you go about …?

265

 while (it.hasNext()) {
 Item item = (Item) it.next();
 bol = strategy.check(item.getDescription());
 System.out.println(item.getDescription() + " --> " + bol);
 }
 System.out.println("No of descriptions longer than 15 characters -->" + strategy.count());
 }
}

The output is:

----count item description starting with 'cd'or longer than 15 characters ---
-------------------- description satarting with cd ----------------------------
Book - IT --> false
CD - JAZZ --> true
Cosmetics - Lipstick --> false
CD - JAZZ IMPORTED --> true
No of descriptions starts with CD -->2

------------------- description longer than 15 characters -----------------------

Book - IT --> false
CD - JAZZ --> false
Cosmetics - Lipstick --> true
CD - JAZZ IMPORTED --> true
No of descriptions longer than 15 characters -->2

Scenario: The XYZ Retail also requires a piece of code, which performs different operations depending on the type of
item. If the item is an instance of CD then you call a method to print its catalog number. If the item is an instance of
Cosmetics then you call a related but different method to print its color code. If the item is an instance of Book then you
call a separate method to print its ISBN number. One way of implementing this is using the Java constructs instanceof
and explicit type casting as shown below:

it = builder.getIterator();

while(it.hasNext();) {
 String name = null;
 Item item = (Item)iter.next();

 if(item instanceof CD) {
 ((CD) item). markWithCatalogNumber();
 } else if (item instanceof Cosmetics) {
 ((Cosmetics) item). markWithColourCode ();
 } else if (item instanceof Book) {
 ((Book) item). markWithISBNNumber();
 }
}

Problem: The manipulation of a collection of polymorphic objects with the constructs typecasts and instanceof as
shown above can get messy and unmaintainable with large elseif constructs and these constructs in frequently accessed
methods/ loops can adversely affect performance. Solution: You can apply the visitor design pattern to avoid using
these typecast and “instanceof” constructs as shown below:

Visitor pattern: The visitor pattern makes adding new operations easy and all the related operations are localized in a
visitor. The visitor pattern allows you to manipulate a collection of polymorphic objects without the messy and
unmaintainable typecasts and instanceof operations. Visitor pattern allows you to add new operations, which affect a
class hierarchy without having to change any of the classes in the hierarchy. For example we can add a
GoodsDebugVisitor class to have the visitor just print out some debug information about each item visited etc. In fact
you can write any number of visitor classes for the Goods hierarchy e.g. GoodsLabellingVisitor, GoodsPackingVisitor
etc.

public interface Item {
 //...
 public void accept(ItemVisitor visitor);
}

public interface ItemVisitor {
 public void visit (CD cd);
 public void visit (Cosmetics cosmetics);
 public void visit (Book book);
}

How would you go about …?

266

+visit(CD cd)()
+visit(Book book)()
+visit(Cosmetics cosmetics()

GoodsLabellingVisitor

+visit(CD cd)()
+visit(Book book)()
+visit(Cosmetics cosmetics)()

«interface»
ItemVisitor

<<abstract>>
Goods

+accept(ItemVisitor visitor)()

CD

+accept(ItemVisitor visitor)()

Book

+accept(ItemVisitor visitor)()

Cosmetics

+accept(ItemVisitor visitor)()

«interface»
Item

/**
 * visitor class which calls different methods depending
* on type of item.
 */
public class GoodsLabellingVisitor implements ItemVisitor {

 public void visit(CD cd) {
 markWithCatalogNumber(cd);
 }

 public void visit(Cosmetics cosmetics) {
 markWithColorNumber(cosmetics);
 }

 public void visit(Book book) {
 markWithISBNNumber(book);
 }

 private void markWithCatalogNumber(CD cd) {
 System.out.println("Catalog number for : " + cd.getDescription());
 }

 private void markWithColorNumber(Cosmetics cosmetics) {
 System.out.println("Color number for : " + cosmetics.getDescription());
 }

 public void markWithISBNNumber(Book book) {
 System.out.println("ISBN number for : " + book.getDescription());
 }
}

public class CD extends Goods {
 //...
 public void accept(ItemVisitor visitor) {
 visitor.visit(this);
 }
}

public class Book extends Goods {
 //...
 public void accept(ItemVisitor visitor) {
 visitor.visit(this);
 }
}

public class Cosmetics extends Goods {
 //...

How would you go about …?

267

+currentItem()()
+nextItem()
+previousItem()
+firstItem()
+lastItem()

«interface»
Iterator

+currentItem()
+nextItem()
+previousItem()
+firstItem()
+lastItem()

ItemsIterator

+getItemIterator()

ShoppingBasketBuilder

+getItemIterator()

«interface»
ItemBuilder

 public void accept(ItemVisitor visitor) {
 visitor.visit(this);
 }
}

Now, let’s see the calling code or class Shopping:

//... package and import statements

public class Shopping {

 public static void process() throws ItemException {

 //visitor pattern example, no messy instanceof and typecast constructs
 it = builder.getIterator();
 ItemVisitor visitor = new GoodsLabellingVisitor ();
 while (it.hasNext()) {
 Item item = (Item) it.next();
 item.accept(visitor);
 }
 }
}

The output is:

---- markXXXX(): avoid huge if else statements, instanceof & type casts --------
ISBN number for : Book - IT
Catalog number for : CD - JAZZ
Color number for : Cosmetics - Lipstick
Catalog number for : CD - JAZZ IMPORTED

Scenario: The XYZ Retail would like to have a functionality to iterate through every second or third item in the basket to
randomly collect some statistics on price.

Solution: This can be implemented by applying the iterator design pattern.

Iterator pattern: Provides a way to access the elements of an aggregate object without exposing its underlying
implementation.

//… package and import statements

public interface ItemBuilder {
 //..
 public com.item.Iterator getItemIterator();
}

package com.item;

public interface Iterator {
 public Item nextItem();
 public Item previousItem();
 public Item currentItem();
 public Item firstItem();
 public Item lastItem();
 public boolean isDone();
 public void setStep(int step);
}

//… package and import statements

public class ShoppingBasketBuilder
 implements ItemBuilder {

 private List listItems = null;

 public Iterator getIterator() {
 return listItems.iterator();
 }

 public com.item.Iterator getItemIterator() {
 return new ItemsIterator();
 }

How would you go about …?

268

 /**
 * inner class which iterates over basket of items
 */
 class ItemsIterator implements com.item.Iterator {
 private int current = 0;

 private int step = 1;

 public Item nextItem() {
 Item item = null;
 current += step;
 if (!isDone()) {
 item = (Item) listItems.get(current);
 }
 return item;
 }

 public Item previousItem() {
 Item item = null;
 current -= step;
 if (!isDone()) {
 item = (Item) listItems.get(current);
 }
 return item;
 }

 public Item firstItem() {
 current = 0;
 return (Item) listItems.get(current);
 }

 public Item lastItem() {
 current = listItems.size() - 1;
 return (Item) listItems.get(current);
 }

 public boolean isDone() {
 return current >= listItems.size() ? true : false;
 }

 public Item currentItem() {
 if (!isDone()) {
 return (Item) listItems.get(current);
 } else {
 return null;
 }
 }

 public void setStep(int step) {
 this.step = step;
 }
 }
}

Now, let’s see the calling code Shopping:

//… package & import statements

public class Shopping {
 //..

 public static void process() throws ItemException {
 //Iterator pattern example, inner implementations of ShopingBasketBuilder is protected.
 com.item.Iterator itemIterator = builder.getItemIterator();

 //say we want to traverse through every second item in the basket
 itemIterator.setStep(2);
 Item item = null;
 for (item = itemIterator.firstItem(); !itemIterator.isDone(); item = itemIterator.nextItem()) {
 System.out.println("nextItem:" + item.getDescription() + "==>" + item.getExtendedTaxPrice());
 }

 item = itemIterator.lastItem();
 System.out.println("lastItem: " + item.getDescription() + "==> " + item.getExtendedTaxPrice());

How would you go about …?

269

+prepareItemForRetail()
+addToStock()
+applyBarcode()
+markRetailPrice()

<<abstract>>
Goods

+addToStock()
+applyBarcode()
+markRetailPrice()

CD

+addToStock()
+applyBarcode()
+markRetailPrice()

Book

+addToStock()
+applyBarcode()
+markRetailPrice()

Cosmetics

addToStock() --> abstract
applyBarcode --> abstract
markRetailPrice --> abstract

 item = itemIterator.previousItem();
 System.out.println("previousItem:" + item.getDescription()+ "=>" + item.getExtendedTaxPrice());
 }
}

The output is:

 --------------- steps through every 2nd item in the basket -----------------------
 nextItem: Book - IT ====> 12.0
 nextItem: Cosmetics - Lipstick ====> 1.1
 lastItem: CD - JAZZ IMPORTED ====> 17.25
 previousItem : CD - JAZZ====>16.5

Scenario: The XYZ Retail buys the items in bulk from warehouses and sells them in their retail stores. All the items sold
need to be prepared for retail prior to stacking in the shelves for trade. The preparation involves 3 steps for all types of
items, i.e. adding the items to stock in the database, applying barcode to each item and finally marking retail price on the
item. The preparation process is common involving 3 steps but each of these individual steps is specific to type of item
i.e. Book, CD, and Cosmetics.

Solution: The above functionality can be implemented applying the template method design pattern as shown below:

Template method pattern: When you have a sequence of steps to be processed within a method and you want to defer
some of the steps to its subclass then you can use a template method pattern. So the template method lets the subclass
to redefine some of the steps.

Example Good example of this is the process() method in the Struts RequestProcessor class, which executes a
sequence of processXXXX(…) methods allowing the subclass to override some of the methods when required. Refer
Q110 in Enterprise section.

//...
public abstract class Goods implements Item {
 //...

 /**
 * The template method
 */
 public void prepareItemForRetail() {
 addToStock();
 applyBarcode();
 markRetailPrice();
 }

 public abstract void addToStock();
 public abstract void applyBarcode();
 public abstract void markRetailPrice();

}

//..
public class Book extends Goods {
 //..

 //following methods gets called by the template method

 public void addToStock() {
 //database call logic to store the book in stock table.
 System.out.println("Book added to stock : " + this.getDescription());
 }

 public void applyBarcode() {
 //logic to print and apply the barcode to book.
 System.out.println("Bar code applied to book : " + this.getDescription());
 }

 public void markRetailPrice() {
 //logic to read retail price from the book table and apply the retail price.
 System.out.println("Mark retail price for the book : " + this.getDescription());
 }
}

How would you go about …?

270

//...
public class CD extends Goods {
 //..
 //following methods gets called by the template method

 public void addToStock() {
 //database call logic to store the cd in stock table.
 System.out.println("CD added to stock : " + this.getDescription());
 }

 public void applyBarcode() {
 //logic to print and apply the barcode to cd.
 System.out.println("Bar code applied to cd : " + this.getDescription());
 }

 public void markRetailPrice() {
 //logic to read retail price from the cd table and apply the retail price.
 System.out.println("Mark retail price for the cd : " + this.getDescription());
 }
}

//...
public class Cosmetics extends Goods {
 //...

 public void addToStock() {
 //database call logic to store the cosmetic in stock table.
 System.out.println("Cosmetic added to stock : " + this.getDescription());
 }

 public void applyBarcode() {
 //logic to print and apply the barcode to cosmetic.
 System.out.println("Bar code applied to cosmetic : " + this.getDescription());
 }

 public void markRetailPrice() {
 //logic to read retail price from the cosmetic table and apply the retail price.
 System.out.println("Mark retail price for the cosmetic : " + this.getDescription());
 }
}

Now, let’s see the calling code Shopping:

//...
public class Shopping {
 //...

 public static void process() throws ItemException {
 //...

 Item item = null;
 for (item = itemIterator.firstItem(); !itemIterator.isDone(); item = itemIterator.nextItem()) {
 item.prepareItemForRetail();
 System.out.println("-----------------------------------");
 }
 }
}

The output is:

 ------------------- prepareItemForRetail() -------------------------------
 Book added to stock : Book - IT
 Bar code applied to book : Book - IT
 Mark retail price for the book : Book - IT

Scenario: The employees of XYZ Retail are at various levels. In a hierarchy, the general manager has subordinates, and
also the sales manager has subordinates. The retail sales staffs have no subordinates and they report to their immediate
manager. The company needs functionality to calculate salary at different levels of the hierarchy.

Solution: You can apply the composite design pattern to represent the XYZ Retail company employee hierarchy.

How would you go about …?

271

+addEmployee()
+removeEmployee()
+hasSubordinates()
+getSalaries()

<<abstract>>
Employee

+addEmployee()
+removeEmployee()
+hasSubordinates()

Staff

+addEmployee()
+removeEmployee()
+hasSubordinates()
+getSalaries()

Manager

1

*

Leaf
Composite

Composite design pattern: The composite design pattern composes objects into tree structures where individual
objects like sales staff and composite objects like managers are handled uniformly. Refer Q61 in Java section or Q25 in
Enterprise section.

/**
 * Base employee class
 */
public abstract class Employee {
 private String name;
 private double salary;

 public Employee(String name, double salary) {
 this.name = name;
 this.salary = salary;
 }

 public String getName() {
 return name;
 }

 public double getSalaries() {
 return salary;
 }

 public abstract boolean addEmployee(Employee emp);
 public abstract boolean removeEmployee(Employee emp);
 protected abstract boolean hasSubordinates();
}

// package & import statements

/**
 * This is the Employee composite class having subordinates.
 */
public class Manager extends Employee {

 List subordinates = null;

 public Manager(String name, double salary) {
 super(name, salary);
 }

 public boolean addEmployee(Employee emp) {
 if (subordinates == null) {
 subordinates = new ArrayList(10);
 }
 return subordinates.add(emp);
 }

 public boolean removeEmployee(Employee emp) {
 if (subordinates == null) {
 subordinates = new ArrayList(10);
 }
 return subordinates.remove(emp);
 }

 /**
 * Recursive method call to calculate the sum of salary of a manager and his subordinates, which
 * means sum of salary of a manager on whom this method was invoked and any employees who
 * themselves will have any subordinates and so on.
 */
 public double getSalaries() {
 double sum = super.getSalaries(); //this one's salary

 if (this.hasSubordinates()) {
 for (int i = 0; i < subordinates.size(); i++) {
 sum += ((Employee) subordinates.get(i)).getSalaries(); // recursive method call
 }
 }
 return sum;
 }

 public boolean hasSubordinates() {

How would you go about …?

272

 boolean hasSubOrdinates = false;
 if (subordinates != null && subordinates.size() > 0) {
 hasSubOrdinates = true;
 }
 return hasSubOrdinates;
 }
}

/**
 * This is the leaf staff employee object. staff do not have any subordinates.
 */
public class Staff extends Employee {

 public Staff(String name, double salary) {
 super(name, salary);
 }

 public boolean addEmployee(Employee emp) {
 throw new RuntimeException("Improper use of Staff class");
 }

 public boolean removeEmployee(Employee emp) {
 throw new RuntimeException("Improper use of Staff class");
 }

 protected boolean hasSubordinates() {
 return false;
 }
}

Now, let’s see the calling code Shopping:

//...
public class Shopping {
 //.....

 public static void process() throws ItemException {
 //....

 System.out.println("----------------- Employee hierachy & getSalaries() recursively ---------");
 //Employee hierachy

 Employee generalManager = new Manager("John Smith", 100000.00);

 Employee salesManger = new Manager("Peter Rodgers", 80000.00);
 Employee logisticsManger = new Manager("Graham anthony", 90000.00);

 Employee staffSales1 = new Staff("Lisa john", 40000.00);
 Employee staffSales2 = new Staff("Pamela watson", 50000.00);
 salesManger.addEmployee(staffSales1);
 salesManger.addEmployee(staffSales2);

 Employee logisticsTeamLead = new Manager("Cooma kumar", 70000.00);

 Employee staffLogistics1 = new Staff("Ben Sampson", 60000.00);
 Employee staffLogistics2 = new Staff("Vincent Chou", 20000.00);
 logisticsTeamLead.addEmployee(staffLogistics1);
 logisticsTeamLead.addEmployee(staffLogistics2);

 logisticsManger.addEmployee(logisticsTeamLead);

 generalManager.addEmployee(salesManger);
 generalManager.addEmployee(logisticsManger);

 System.out.println(staffSales1.getName() + "-->" + staffSales1.getSalaries());
 System.out.println(staffSales2.getName() + "-->" + staffSales2.getSalaries());

 System.out.println("Logistics dept " + " --> " + logisticsManger.getSalaries());

 System.out.println("General Manager " + " --> " + generalManager.getSalaries());
 }
}

The output is:

How would you go about …?

273

--------------------- Employee hierachy & getSalaries() recursively -------------
Lisa john-->40000.0
Pamela watson-->50000.0
Logistics dept --> 240000.0
General Manager --> 510000.0

Scenario: The purchasing staffs (aka logistics staff) of the XYZ Retail Company need to interact with other
subsystems in order to place purchase orders. They need to communicate with their stock control department to
determine the stock levels, also need to communicate with their wholesale supplier to determine availability of stock and
finally with their bank to determine availability of sufficient funds to make a purchase.

Solution: You can apply the façade design pattern to implement the above scenario.

Façade pattern: The façade pattern provides an interface to large subsystems of classes. A common design goal is to
minimize the communication and dependencies between subsystems. One way to achieve this goal is to introduce a
façade object that provides a single, simplified interface.

public class StockControl {
 public boolean isBelowReorderpoint(Item item) {
 //logic to evaluate stock level for item
 return true;
 }
}

B a n k S t o c k C o n t r o l W h o l e S a l e r

W i t h o u t f a c a d e

P u r c h a s e E v a l u a t i o n F a c a d e

B a n k S t o c k C o n t r o l W h o l e s a l e r

W i t h f a c a d e

public class Bank {
 public boolean hasSufficientFunds() {
 //logic to evaluate if we have sufficient savings goes here
 return true;
 }
}

public class WholeSaler {
 public boolean hasSufficientStock(Item item) {
 //logic to evaluate if the wholesaler has enough stock goes here
 return true; //to keep it simple
 }
}

/**

How would you go about …?

274

 * This is the facade class
 */
public class PurchaseEvaluation {

 private StockControl stockControl = new StockControl();
 private WholeSaler wholeSaler = new WholeSaler();
 private Bank bank = new Bank();

 public boolean shouldWePlaceOrder(Item item) {
 if (!stockControl.isBelowReorderpoint(item)) {
 return false;
 }

 if (!wholeSaler.hasSufficientStock(item)) {
 return false;
 }

 if (!bank.hasSufficientFunds()) {
 return false;
 }

 return true;
 }
}

Now, let’s see the calling code or class Shopping:

//....

public class Shopping {
 //.......

 public static void process() throws ItemException {

 //....

 //----------------------facade design pattern --------------------------------
 System.out.println("--------------------shouldWePlaceOrder----------------------------") ;
 PurchaseEvaluation purchaseEval = new PurchaseEvaluation();
 boolean shouldWePlaceOrder = purchaseEval.shouldWePlaceOrder(item);
 System.out.println("shouldWePlaceOrder=" + shouldWePlaceOrder);
 }
}

The output is:

--------------------shouldWePlaceOrder()----------------------------
shouldWePlaceOrder=true

Scenario: The purchasing department also requires functionality where, when the stock control system is updated, all the
registered departmental systems like logistics and sales should be notified of the change.

Solution: This can be achieved by applying the observer design pattern as shown below:

Observer pattern: defines a one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically. (aka publish-subscribe pattern)

0

5 0

1 0 0

1 s t

Q t r

3 r d

Q t r

E a s t

W e s t

N o r t h

1 s t Q t r

2 n d Q t r

3 r d Q t r

4 t h Q t r

S u b j e c t

O b s e r v e r s

1 s t Q t r = 1 0 % , 2 n d Q t r = 2 0 % , 3 Q t r = 6 0 % , 4 t h Q t r = 1 0 %

r e g is te r re g is te r
N o tify

change
N o tify

change

How would you go about …?

275

/**
 * This is an observer (aka subscriber) interface. This gets notified through its update method.
 */
public interface Department {
 public void update(Item item, int qty);
}

public class LogisticsDepartment implements Department {
 public void update(Item item, int qty) {
 //logic to update department's stock goes here
 System.out.println("Logistics has updated its stock for " + item.getDescription() +
 " with qty=" + qty);
 }
}

public class SalesDepartment implements Department {
 public void update(Item item, int qty) {
 //logic to update department's stock goes here
 System.out.println("Sales has updated its stock for " + item.getDescription() +
 " with qty=" + qty);
 }
}

+update()

LogisticsDepartment

+addSubscribers()
+removeSubscribers()
+notify()

XYZStockControl

+update()

«interface»
Department

+addSubscribers()
+removeSubscribers()
+notify()

«interface»
StockControl

+update()

SalesDepartment

-observers

-subject

Subject (aka publisher)

Observer (aka Subscriber)

/**
 * Subject (publisher) class: when stock is updated, notifies all the
 * subscribers.
 */
public interface StockControl {
 public void notify(Item item, int qty);
 public void updateStock(Item item, int qty) ;
 public boolean addSubscribers(Department dept);
 public boolean removeSubscribers(Department dept);
}

//… package & import statements

**
 * publisher (observable) class: when stock is updated
 * notifies all the subscribers.
 */
public class XYZStockControl implements StockControl{

 List listSubscribers = new ArrayList(10);

 //...

 public boolean addSubscribers(Department dept) {
 return listSubscribers.add(dept);

How would you go about …?

276

 }

 public boolean removeSubscribers(Department dept) {
 return listSubscribers.remove(dept);
 }

 /**
 * writes updated stock qty into databases
 */
 public void updateStock(Item item, int qty) {
 //logic to update an item's stock goes here
 notify(item, qty); //notify subscribers that with the updated stock info.
 }

 public void notify(Item item, int qty) {
 int noOfsubscribers = listSubscribers.size();
 for (int i = 0; i < noOfsubscribers; i++) {
 Department dept = (Department) listSubscribers.get(i);
 dept.update(item, qty);
 }
 }
}

Now, let’s see the calling code or class Shopping:

// package & import statements

public class Shopping {
 //...............
 public static void process() throws ItemException {
 //.........

 //----------------------observer design pattern---
 System.out.println("--------------------notify stock update----------------------------");
 Department deptLogistics = new LogisticsDepartment(); //observer/subscriber
 Department salesLogistics = new SalesDepartment(); //observer/subscriber

 StockControl stockControl = new XYZStockControl();//observable/publisher
 //let's register subscribers with the publisher
 stockControl.addSubscribers(deptLogistics);
 stockControl.addSubscribers(salesLogistics);

 //let's update the stock value of the publisher
 for (item = itemIterator.firstItem(); !itemIterator.isDone(); item = itemIterator.nextItem()) {
 if (item instanceof CD) {
 stockControl.updateStock(item, 25);
 } else if (item instanceof Book){
 stockControl.updateStock(item, 40);
 }
 else {
 stockControl.updateStock(item, 50);
 }
 }
 }
}

The output is:

--------------------notify stock update----------------------------
Logistics has updated its stock for Book - IT with qty=40
Sales has updated its stock for Book - IT with qty=40
Logistics has updated its stock for CD - JAZZ with qty=25
Sales has updated its stock for CD - JAZZ with qty=25
Logistics has updated its stock for Cosmetics - Lipstick with qty=50
Sales has updated its stock for Cosmetics - Lipstick with qty=50
Logistics has updated its stock for CD - JAZZ IMPORTED with qty=25
Sales has updated its stock for CD - JAZZ IMPORTED with qty=25

Scenario: The stock control staff require a simplified calculator, which enable them to add and subtract stock counted
and also enable them to undo and redo their operations. This calculator will assist them with faster processing of stock
counting operations.

Solution: This can be achieved by applying the command design pattern as shown below:

How would you go about …?

277

Command pattern: The Command pattern is an object behavioral pattern that allows you to achieve complete
decoupling between the sender and the receiver. A sender is an object that invokes an operation, and a receiver is an
object that receives the request to execute a certain operation. With decoupling, the sender has no knowledge of the
Receiver's interface. The term request here refers to the command that is to be executed. The Command pattern also
allows you to vary when and how a request is fulfilled. At times it is necessary to issue requests to objects without
knowing anything about the operation being requested or the receiver of the request. In procedural languages, this type of
communication is accomplished via a call-back: a function that is registered somewhere to be called at a later point.
Commands are the object-oriented equivalent of call-backs and encapsulate the call-back function.

T e s t
(c l ie n t a p p l ic a t io n)

+ d r a w ()

D r a w In v o k e r
(In v o k e r)

+ e x e c u te ()

« in te r fa c e »
C o m m a n d

+ e x e c u te ()

C ir c le C o m m a n d

+ e x e c u te ()

S q u a r e C o m m a n d

+ d r a w ()

C ir c le

+ d r a w ()

S q u a r e

1 *

C o m m a n d p a t t e r n

1 . in v o k e th e r e c e iv e r

2 . in v o k e th e
c o m m a n d a n d
p a s s th e r e c ie v e r
a s a n a r g u m e n t

3 . in v o k e th e in v o k e r
a n d p a s s th e
c o m m a n d a s a n
a r g u m e n t

// package & import statements

/**
 * Invoker
 */
public class Staff extends Employee {

 private Calculator calc = new Calculator();
 private List listCommands = new ArrayList(15);
 private int current = 0;

 public Staff(String name) {
 super(name);
 }

 //...
 /**
 * make use of command.
 */
 public void compute(char operator, int operand) {
 Command command = new CalculatorCommand(calc, operator, operand);//initialise the calculator
 command.execute();
 //add commands to the list so that undo operation can be performed
 listCommands.add(command);
 current++;
 }

 /**
 * perform redo operations
 */

How would you go about …?

278

 public void redo(int noOfLevels) {
 int noOfCommands = listCommands.size();
 for (int i = 0; i < noOfLevels; i++) {
 if (current < noOfCommands) {
 ((Command) listCommands.get(current++)).execute();
 }
 }
 }

 /**
 * perform undo operations
 */
 public void undo(int noOfLevels) {
 for (int i = 0; i < noOfLevels; i++) {
 if (current > 0) {
 ((Command) listCommands.get(--current)).unexecute();
 }
 }
 }
}

+compute()
+redo()
+undo()

Staff

<<abstract>>
Employee

+execute()
+unexecute()

CalculatorCommand

+execute()
+unexecute()

«interface»
Command

+calculate()

Calculator

1 *Invoker

Receiver

Command, which decouples
the invoker from the receiver.

**
 * actual receiver of the command who performs calculation
 */
public class Calculator {
 private int total = 0;

 /**
 * calculates.
 */
 public void calculate(char operator, int operand) {
 switch (operator) {
 case '+':
 total += operand;
 break;
 case '-':
 total -= operand;
 break;
 }

 System.out.println("Total = " + total);

How would you go about …?

279

 }
}

/**
 * command interface
 */
public interface Command {
 public void execute();
 public void unexecute();
}

/**
 * calculator command, which decouples the receiver Calculator from the invoker Staff
 */

public class CalculatorCommand implements Command {
 private Calculator calc = null;
 private char operator;
 private int operand;

 public CalculatorCommand(Calculator calc, char operator, int operand) {
 this.calc = calc;
 this.operator = operator;
 this.operand = operand;
 }

 public void execute() {
 calc.calculate(operator, operand);
 }

 public void unexecute() {
 calc.calculate(undoOperand(operator), operand);
 }

 private char undoOperand(char operator) {
 char undoOperator = ' ';
 switch (operator) {
 case '+':
 undoOperator = '-';
 break;

 case '-':
 undoOperator = '+';
 break;
 }
 return undoOperator;
 }
}

Now, let’s see the calling code class Shopping:

//..............
public class Shopping {
 //...........
 public static void process() throws ItemException {

 //-------------------------------command design pattern-----------------------------------
 System.out.println("------------Calculator with redo & undo operations-----------------------");
 Staff stockControlStaff = new Staff("Vincent Chou");

 stockControlStaff.compute('+',10);//10
 stockControlStaff.compute('-',5);//5
 stockControlStaff.compute('+',10);//15
 stockControlStaff.compute('-',2);//13

 //lets try our undo operations
 System.out.println("---------------undo operation : 1 level---------------------------");
 stockControlStaff.undo(1);
 System.out.println("---------------undo operation : 2 levels---------------------------");
 stockControlStaff.undo(2);

 //lets try our redo operations
 System.out.println("---------------redo operation : 2 levels---------------------------");
 stockControlStaff.redo(2);

How would you go about …?

280

+ g e tP rice ()
+ se tP rice ()

« in te rfa ce »
P ric e L is t

+ g e tP rice ()
+ se tP rice ()

X Y Z P ric e L is t

 System.out.println("---------------redo operation : 1 level---------------------------");
 stockControlStaff.redo(1);
 }
}

The output is:

--------------Calculator with redo & undo operations---------------------------
Total = 10
Total = 5
Total = 15
Total = 13
---------------undo operation : 1 level---------------------------
Total = 15
---------------undo operation :2 levels---------------------------
Total = 5
Total = 10
---------------redo operation : 2 levels---------------------------
Total = 5
Total = 15
---------------redo operation : 1 level---------------------------
Total = 13

Scenario: The XYZ Retail has a 3rd party software component called XYZPriceList, which implements an interface
PriceList. This 3rd party software component is not thread-safe. So far it performed a decent job since only the sales
manager had access to this software component. The XYZ Retail now wants to provide read and write access to all the
managers. The source code is not available and only the API is available, so modifying the existing component is not
viable. This will cause a dirty read problem if two managers try to concurrently access this component. For example, if the
sales manager tries to access an item’s price while the logistics manger is modifying the price (say modification takes 1
second), then the sales manager will be reading the wrong value. Let’s look at this with a code sample:

public interface PriceList {
 public double getPrice(int itemId) ;
 public void setPrice(int itemId,double newPrice) ;
}

//…
public class XYZPriceList implements PriceList{

 private static final Map mapPrices = new HashMap(30,.075f);
 public static PriceList singleInstance = new XYZPriceList();//only one instance

 /**
 * static initializer block
 */
 static {
 //only one item is added to keep it simple
 mapPrices.put(new Integer(1), new Double(12.00));//Book - IT
 //... add more items to price list
 }

 public static PriceList getInstance() {
 return singleInstance;
 }

 public double getPrice(int itemId) {
 double price = ((Double)mapPrices.get(new Integer(itemId))).doubleValue();
 System.out.println("The price of the itemId " + itemId + " = "+ price);
 return price;
 }

 public void setPrice(int itemId,double newPrice) {
 System.out.println("wait while mutating price from 12.0 to 15.00");
 try {
 // transient value while updating with a proper value, just to illustrate the effect
 // of concurrent access
 mapPrices.put(new Integer(itemId),new Double(-1));
 Thread.sleep(1000);//assume update/set operation takes 1 second
 mapPrices.put(new Integer(itemId),new Double(newPrice));

 } catch (InterruptedException ie) {}
 }
}

How would you go about …?

281

The multi-threaded access class:

public class PriceListUser implements Runnable {

 int itemId;
 double price;
 static int count = 0;

 public PriceListUser(int itemId) {
 this.itemId = itemId;
 }

 /**
 * runnable code where multi-threads are executed
 */
 public void run() {
 String name = Thread.currentThread().getName();

 if (name.equals("accessor")) {
 price = XYZPriceList.getInstance().getPrice(itemId); //using 3rd party commponent

 } else if (name.equals("mutator")) {
 XYZPriceList.getInstance().setPrice(itemId, 15.00); //using 3rd party commponent
 }
 }
}

Now, let’s see the calling code or class Shopping:

//....
public class Shopping {
 //....
 public static void process() throws ItemException {
 //..........

 //------------------------------------proxy design pattern------------------------------
 System.out.println("---------------Accessing the price list---------------------------");

 PriceListUser user1 = new PriceListUser(1);//accessing same itemId=1
 PriceListUser user2 = new PriceListUser(1);//accessing same itemId=1

 Thread t1 = new Thread(user1);
 Thread t2 = new Thread(user2);
 Thread t3 = new Thread(user1);

 t1.setName("accessor");//user 1 reads the price
 t2.setName("mutator");//user 2 modifies the price
 t3.setName("accessor");//user 1 reads the price

 t1.start(); // accessor user-1 reads before mutator user-2 modifies the price as 12.00
 t2.start(); // mutator user-2 sets the price to 15.00
 t3.start(); // while the user-2 is setting the price to 15.00 user-1 reads again and gets the
 // price as 12.00
 //user-2 gets the wrong price i.e gets 12.0 again instead of 15.00
 }
}

The output is:

---------------Accessing the price list---------------------------
The price of the itemId 1 = 12.0
wait while mutating price from 12.0 to 15.00
The price of the itemId 1 = -1.0
 OR
---------------Accessing the price list---------------------------
wait while mutating price from 12.0 to 15.00
The price of the itemId 1 = -1.0
The price of the itemId 1 = -1.0

Problem: You get one of the two outputs shown above depending on how the threads initialized by the operating system.
The first value of 12.0 is okay and the second value of 12.0 again is a dirty read because the value should have been
modified to 15.0 by the user-2. So the user-1 reading the value for the second time should get the value of 15.0 after it
has been modified.

How would you go about …?

282

Solution: This threading issue and inability to modify the existing component can be solved by applying the proxy
design pattern. You will be writing a proxy class, which will apply the locking for the entries in the XYZPriceList. This
proxy class internally will be making use of the XYZPriceList in a synchronized fashion as shown below:

Proxy pattern: Provides a surrogate or placeholder for another object to control access to it. Proxy object acts as an
intermediary between the client and the target object. The proxy object has the same interface as the target object. The
proxy object holds reference to the target object. There are different types of proxies:

 Remote Proxy: provides a reference to an object, which resides in a separate address space. e.g. EJB, RMI, CORBA

etc (RMI stubs acts as a proxy for the skeleton objects.)

 Virtual Proxy: Allows the creation of memory intensive objects on demand. The target object will not be created until

it is really needed.

 Access Proxy: Provides different clients with different access rights to the target object.

Example In Hibernate framework (Refer Q15 - Q16 in Emerging Technologies/Frameworks section) lazy loading of
persistent objects are facilitated by virtual proxy pattern. Say you have a Department object, which has a collection of
Employee objects. Let’s say that Employee objects are lazy loaded. If you make a call department.getEmployees() then
Hibernate will load only the employeeIDs and the version numbers of the Employee objects, thus saving loading of
individual objects until later. So what you really have is a collection of proxies not the real objects. The reason being, if
you have hundreds of employees for a particular department then chances are good that you will only deal with only a few
of them. So, why unnecessarily instantiate all the Employee objects? This can be a big performance issue in some
situations. So when you make a call on a particular employee i.e. employee.getName() then the proxy loads up the real
object from the database.

P roxy pattern

Test
(c lien t ap p licatio n)

+request()

R ealS u b ject

+request()

P ro xy

+request()

« in te rface»
S u bjec t

aC lien t
sub jec t aP roxy

rea lS ub jec t aR ealS ub ject

/**
 * synchronized proxy class for XYZPriceList
 */
public class XYZPriceListProxy implements PriceList {
 //assume that we only have two items in the pricelist
 Integer[] locks = { new Integer(1), new Integer(2) };//locks for each item in the price list

 public static PriceList singleInstance = new XYZPriceListProxy();//single instance of XYZPriceListProxy

 PriceList realPriceList = XYZPriceList.getInstance(); // real object

 public static PriceList getInstance() {
 return singleInstance;
 }

 public double getPrice(int itemId) {
 synchronized (locks[itemId]) {
 return realPriceList.getPrice(itemId);
 }

How would you go about …?

283

 }

 public void setPrice(int itemId, double newPrice) {
 synchronized (locks[itemId]) {
 realPriceList.setPrice(itemId, newPrice);
 }
 }
}

-realSubject

+getPrice()
+setPrice()

«interface»
PriceList

+getPrice()
+setPrice()

XYZPriceList

+getPrice()
+setPrice()

XYZPriceListProxy

real subjectProxy (aka surrogate)

You should make a slight modification to the PriceListUser class as shown below in bold.

public class PriceListUser implements Runnable {

 int itemId;
 double price;
 static int count = 0;

 public PriceListUser(int itemId) {
 this.itemId = itemId;
 }

 /**
 * runnable code where multi-threads are executed
 */
 public void run() {
 String name = Thread.currentThread().getName();

 if (name.equals("accessor")) {
 price = XYZPriceListProxy.getInstance().getPrice(itemId);

 } else if (name.equals("mutator")) {
 XYZPriceListProxy.getInstance().setPrice(itemId, 15.00);
 }
 }
}

Running the same calling code Shopping will render the following correct results by preventing dirty reads:

---------------Accessing the price list---------------------------
The price of the itemId 1 = 12.0
wait while mutating price from 12.0 to 15.00
The price of the itemId 1 = 15.0
 OR
---------------Accessing the price list---------------------------
wait while mutating price from 12.0 to 15.00
The price of the itemId 1 = 15.0
The price of the itemId 1 = 15.0

How would you go about …?

284

What is a dynamic proxy? Dynamic proxies were introduced in J2SE 1.3, and provide an alternate dynamic mechanism
for implementing many common design patterns like Façade, Bridge, Decorator, Proxy (remote proxy and virtual proxy),
and Adapter. While all of these patterns can be written using ordinary classes instead of dynamic proxies, in many
situations dynamic proxies are more compact and can eliminate the need for a lot of handwritten classes. Dynamic
proxies are reflection-based and allow you to intercept method calls so that you can interpose additional behavior
between a class caller and its callee. Dynamic proxies are not always appropriate because this code simplification comes
at a performance cost due to reflection overhead. Dynamic proxies illustrate the basics of Aspect Oriented Programming
(AOP) which complements your Object Oriented Programming. Refer Q03, Q04 and Q05 in Emerging
Technologies/Frameworks section.

Where can you use dynamic proxies? Dynamic proxies can be used to add crosscutting concerns like logging,
performance metrics, memory logging, retry semantics, test stubs, caching etc. Let’s look at an example:

InvocationHandler interface is the heart of a proxy mechanism.

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

/**
 * Handles logging and invocation of target method
 */
public class LoggingHandler implements InvocationHandler {

 protected Object actual;

 public LoggingHandler(Object actual) {
 this.actual = actual;
 }

 public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
 try {
 System.out.println(">>>>>>start executing method: " + method.getName());
 Object result = method.invoke(actual, args);
 return result;
 } catch (InvocationTargetException ite) {
 throw new RuntimeException(ite.getMessage());
 } finally {
 System.out.println("<<<<<<finished executing method: " + method.getName());
 }
 }
}

Let’s define the actual interface and the implementation class which adds up two integers.

public interface Calculator {
 public int add(int i1, int i2);
}

public class CalculatorImpl implements Calculator {

 public int add(int i1, int i2) {
 final int sum = i1 + i2;
 System.out.println("Sum is : " + sum);
 return sum;
 }
}

Factory method class CalculatorFactory, which uses the dynamic proxies when logging, is required.

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Proxy;

/**
 * singleton factory
 */
public class CalculatorFactory {

 private static CalculatorFactory singleInstance = null;
 private CalculatorFactory() {}

 public static CalculatorFactory getInstance() {

How would you go about …?

285

 if (singleInstance == null) {
 singleInstance = new CalculatorFactory();
 }
 return singleInstance;
 }

 public Calculator getCalculator(boolean withLogging) {

 Calculator c = new CalculatorImpl();

 //use dynamic proxy if logging is required, which logs your method calls
 if (withLogging) {
 //invoke the handler, which logs and invokes the target method on the Calculator
 InvocationHandler handler = new LoggingHandler(c);

 //create a proxy
 c = (Calculator) Proxy.newProxyInstance(c.getClass().getClassLoader(),
 c.getClass().getInterfaces(), handler);
 }

 return c;
 }
}

Finally the test class:

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Proxy;

public class TestProxy {

 public static void main(String[] args) {
 System.out.println("==============Without dynamic proxy=============");
 Calculator calc = CalculatorFactory.getInstance().getCalculator(false);
 calc.add(3, 2);

 System.out.println("===============With dynamic proxy================");
 calc = CalculatorFactory.getInstance().getCalculator(true);
 calc.add(3, 2);
 }
}

The output is:

==============Without dynamic proxy=============
Sum is : 5
===============With dynamic proxy================
>>>>>>start executing method: add
Sum is : 5
<<<<<<finished executing method: add

Pattern Description
Adapter pattern Sometimes a library cannot be used because its interface is not compatible with the interface

required by an application. Also it is possible that you may not have the source code for the
library interface. Even if you had the source code, it is not a good idea to change the source
code of the library for each domain specific application. This is where you can use an adapter
design pattern. Adapter lets classes work together that could not otherwise because of
incompatible interfaces. This pattern is also known as a wrapper.

Bridge pattern Refer Q41 in Enterprise section.
Chain of responsibility pattern Refer Q22 in Enterprise section

Useful links:

 http://www.allapplabs.com/Java_design_patterns/creational_patterns.htm
 http://www.patterndepot.com/put/8/JavaPatterns.htm
 http://www.javaworld.com/columns/jw-Java-design-patterns-index.shtml
 http://www.onjava.com/pub/a/onjava/2002/01/16/patterns.html?page=1
 http://www.corej2eepatterns.com/index.htm
 http://www.theserverside.com/books/wiley/EJBDesignPatterns/index.tss

How would you go about …?

286

 http://www.martinfowler.com/eaaCatalog/

Q 12: How would you go about designing a Web application where the business tier is on a separate machine from the

presentation tier. The business tier should talk to 2 different databases and your design should point out the
different design patterns? FAQ

A 12: The following diagram shows the various components at different tiers.

Web Container EJB Container

Application Server

Business
Objects

DAOs

Loans
Database

EJ
B

J2EE components in a multi-tier architecture and design patterns

Br
ow

se
r (

W
eb

 cl
ien

t) I
n
t
e
r
n
e
t

Client
Tier

Application Server

N
e
t
w
o
r
k

JD
BC

CRM
Database

Presentation Tier Business Tier (business logic) Resource
Tier

Servlet
(front controller)

Command
objects

JSPs
(view)

Bu
sin

es
sD

el
eg

at
e

+
Se

rv
ice

Lo
ca

to
r

(model) -- Domain Objects / Value Objects / Data Transfer Objects

A

B
DC E F

Client

Application Server Application Server Database
Server

N
e
t
w
o
r
k

Integration
Tier

JM
S

JC
A

JN
DI

Design patterns:

A denotes Web tier design patterns:

Model-View-Controller (MVC) design pattern: MVC stands for Model-View-Controller architecture. It divides the
functionality of displaying and maintaining of the data to minimize the degree of coupling (i.e. promotes loose coupling)
between components. It is often used by applications that need the ability to maintain multiple views like html, wml,
JFC/Swing, XML based Web service etc of the same data. Multiple views and controllers can interface with the same
model. Even new types of views and controllers can interface with a model without forcing a change in the model design.
Refer Q 03 in Enterprise section.

Front controller design pattern: The MVC pattern can be further improved and simplified by using the Front Controller
pattern with command objects. The Front Controller pattern uses a single servlet, which acts as initial point of contact for
handling all the requests, including invoking services such as security (authentication and authorization), logging,
gathering user input data from the request, gathering data required by the view etc by delegating to the helper classes,
and managing the choice of an appropriate view with the dispatcher classes. These helper and dispatcher classes are
generally instances of a command design pattern (Refer Q11 in How would you about… section) and therefore usually
termed as command objects. The Front Controller pattern improves manageability, and improves reusability by moving
common behavior among command objects into the centralized controller or controller managed helper classes. Also
refer Q 24 in Enterprise section.

Composite view design pattern: This will enable reuse of JSP sub-views and improves maintainability by having to
change them at one place only. Refer Q25 in Enterprise section.

How would you go about …?

287

View Helper: When processing logic is embedded inside the controller or view it causes code duplication in all the pages.
This causes maintenance problems, as any change to piece of logic has to be done in all the views. In the view helper
pattern the view delegates its processing responsibilities to its helper classes. Refer Q25 in Enterprise section.

Service to Worker and Dispatcher View: Refer Q25 in Enterprise section.
B Use a Business Delegate design pattern to reduce the coupling between the presentation tier components and the
business services tier components. Refer Q83 in Enterprise sections.

C The JNDI look-up is expensive because the client needs to get a network connection to the server first. So this look-
up process is expensive and redundant. To avoid this expensive and redundant process, service objects can be cached
when a client performs the JNDI look-up for the first time and reuse that service object from the cache for the subsequent
look-ups. The service locator pattern implements this technique. Refer Q87 in Enterprise section.

D EJBs use proxy (Refer Q62 in Java section) design pattern. Avoid fine-grained method calls by creating a value
object (Refer Q85 in Enterprise section) design pattern, which will help the client, make a coarse-grained call. Also use a
session façade (Refer Q84 in Enterprise section) design pattern to minimize network overheads and complexities
between the client server interactions. For faster data access for read-only data of large resultsets use a fast-lane reader
(Refer Q86 in Enterprise section) design pattern.

D, E, F Use factory pattern to reduce the coupling or the dependencies between the calling code (e.g. EJB etc) and
called code like business objects, handler objects, data access objects etc. This is a very powerful and common feature in
many frameworks. Refer Q52 in Java section. When writing your factory class, it does not make sense to create a new
factory object for each invocation. So use a singleton design pattern to have a single instance of the factory class per
JVM per class loader. Refer Q51 in Java section.

F Use the data access object design pattern to promote the design concept of code to interface not implementation,
so that the implementation can change without affecting the calling code.

Q 13: How would you go about determining the enterprise security requirements for your Java/J2EE application?
A 13: It really pays to understand basic security terminology and J2EE security features. Let’s look at them:

Some of the key security concepts are:

 Authentication
 Authorization (J2EE declarative & programmatic)
 Data Integrity
 Confidentiality and privacy
 Non-repudiation and auditing

Terminology Description
Authentication Authentication is basically an identification process. Do I know who you are?

Terminology used for J2EE security:

Principal: An entity that can be identified and authenticated. For example an initiator of the request like a
user.

Principal name: Identity of a principal like user id.

Credential: Information like password or certificate, which can authenticate a principal.

Subject: A set of principals and their credentials associated with a thread of execution.

Authentication: The process by which a server verifies the identity presented by a user through
username/userid and password or certificate. For example the username and password supplied by the
user can be validated against an LDAP server or a database server to verify he is whom he claims to be.

Authentication methods:

 Basic/Digest authentication: Browser specific and password is encoded using Base-64 encoding.
Digest is similar to basic but protects the password through encryption. This is a simple challenge-
response scheme where the client is challenged for a user id and password. The Internet is divided
into realms. A realm is supposed to have one user repository (e.g. LDAP or Database) so a
combination of user id and password is unique to that realm. The user challenge has the name of the
realm so that users with different user ids and password on different systems know which one to
apply. Lets look at a HTTP user challenge format

How would you go about …?

288

WWW-Authenticate: Basic realm=”realm_name”

The user-agent (i.e. Web browser) returns the following HTTP header field

Authorization: Basic userid:password
With Basic authentication the user id and password string, which is base64 encoded. The purpose of
base64 is to avoid sending possibly unprintable or control characters over an interface that expects
text characters. It does not provide any security because the clear text can be readily restored (i.e.
decoded).

With Digest authentication the server challenges the user with a “nonce”, which is an unencrypted
random value. The user responds with a checksum (typically MD5 hash) of the user id, password, the
“nonce” and some other data. The server creates the same checksum from the user parameters like
userid, password, the nonce etc available in the user registry. If both the checksums match then it is
assumed that the user knows the correct password.

 Form-based authentication: Most Web applications use the form-based authentication since it

allows applications to customize the authentication interface. Uses base64 encoding, which can
expose username and password unless all connections are over SSL. (Since this is the most common
let us look at in greater detail under Authorization).

 Certificate based authentication: Uses PKI and SSL. This is by far the most secured authentication

method. A user must provide x.509 certificate to authenticate with the server.

Authorization Authorization is the process by which a program determines whether a given identity is permitted to access
a resource such as a file or an application component. Now that you are authenticated, I know who you
are? But Are you allowed to access the resource or component you are requesting?

Terminology used for J2EE security:

Authorization: Process of determining what type of access (if any) the security policy allows to a resource
by a principal.

Security role: A logical grouping of users who share a level of access permissions.

Security domain: A scope that defines where a set of security policies are maintained and enforced. Also
known as security policy domain or realm.

J2EE uses the concept of security roles for both declarative and programmatic access controls. This is
different from the traditional model, which is permission-based (for example UNIX file system security
where resources like files are associated with a user or group who might have permission to read the file
but not execute).

Let us look at some differences between permission based and role based authorization

Permission-based authorization: Typically in permission-based security both users and resources are
defined in a registry (e.g. LDAP or Database) and the association of users and groups with the resources
takes place through Access Control Lists (ACL). The maintenance of registry and ACLs requires a
security administrator.

Role based authorization: In J2EE role based model, the users and groups of users are still stored in a
user registry (e.g. LDAP or Database). A mapping must also be provided between users and groups to
the security constraints. This can exist in a registry or J2EE applications themselves can have their
own role based security constraints defined through deployment descriptors like web.xml, ejb-jar.xml,
and/or application.xml. So the applications themselves do not have to be defined by a security
administrator.

Now let’s look at role based authorization in a bit more detail:

J2EE has both a declarative and programmatic way of protecting individual method of each component
(Web or EJB) by specifying, which security role can execute it.

 Refer Q23 in Enterprise section.
 Refer Q81 in Enterprise section
 Also refer Q7 in Enterprise section for the deployment descriptors where <security-role> are defined.

Let’s look at the commonly used form-based authentication and authorization in a bit more detail.

STEP:1 The web.xml defines the type of authentication mechanism

<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>FBA</realm-name>

How would you go about …?

289

 <form-login-config>
 <form-login-page>myLogon</form-login-page>
 <form-error-page>myError</form-error-page>
 </form-login-config>
</login-config>

STEP: 2 The user creates a form that must contain fields for username, password etc as shown below.
The names should be as shown for fields in bold:

<form method=”POST” action=”j_security_check”>
 <input type=”text” name=”j_username”>
 <input type=”text” name=”j_password”>
</form>

STEP: 3 Set up a security realm to be used by the container. Since LDAP or database provide flexibility
and ease of maintenance, Web containers have support for different types of security realms like LDAP,
Database etc.

For example Tomcat Web container uses the server.xml to set up the database as the security realm.

<realm classname="org.apache.catalina.realm.JDBCRealm" debug="99"
 drivername="org.gjt.mm.mysql.Driver"
 connectionurl="jdbc:mysql://localhost/tomcatusers?user=test;password=test"
 usertable="users" usernamecol="user_name" usercredcol="user_pass"
 userroletable="user_roles" rolenamecol="role_name"/>

You have to create necessary tables and columns created in the database.

STEP: 4 Set up the security constraints in the web.xml for authorization.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>PrivateAndSensitive</web-resource-name>
 <url-pattern>/private/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>executive</role-name>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>

The Web containers perform the following steps to implement security when a protected Web
resource is accessed:

Step 1: Determine whether the user has been authenticated.

Step 2: If the user has not been already authenticated, request the user to provide security credentials by
redirecting the user to the login page defined in the web.xml as per Step-1 & Step-2 described above.

Step 3: Validate the user credentials against the security realm set up for the container.

Step 4: Determine whether the authenticated user is authorized to access the Web resource defined in
the deployment descriptor web.xml. Web containers enforce authorization on a page level. For fine grained
control programmatic security can be employed using

request.getRemoteUser(), request.isUserInRole(), request.getUserPrincipal() etc

Note: Web containers can also propagate the authentication information to EJB containers.

Data integrity Data integrity helps to make sure if something is intact and not tampered with during transmission.

Checksums: Simply adds up the bytes within a file or a request message. If the checksums match the
integrity is maintained. The weakness with the simplest form of checksum is that some times junks can be
added to make sums equal like

ABCDE == EDCBA

There are more sophisticated checksums like Adler-32, CRC-32 (refer java.util.zip package), which are
designed to address the above weakness by considering not only the value of each byte but also its
position.

Cryptography hashes: This uses a mathematical function to create a small result called message digest
from the input message. Difficult to create false positives. Common hash functions are MD5, SHA etc.

How would you go about …?

290

Data [e.g. Name is Peter] MD5 iterative hash function Digest [e.g. f31d120d3]

It is not possible to change the message digest back to its original data. You can only compare two
message digests i.e. one came with the client’s message and the other is recomputed by the server from
sent message. If both the message digests are equal then the message is intact and has not been
tampered with.

Confidentiality
and Privacy

The confidentiality and privacy can be accomplished through encryption. Encryption can be:

Symmetric or private-key: This is based on a single key. This requires the sender and the receiver to
share the same key. Both must have the key. The sender encrypts his message with a private key and the
receiver decrypts the message with his own private key. This system is not suitable for large number of
users because it requires a key for every pair of individuals who need to communicate privately. As the
number of participants increases then number of private keys required also increases. So a company
which wants to talk to 1000 of its customers should have 1000 private keys. Also the private keys need to
be transmitted to all the participants, which has the vulnerability to theft. The advantages of the
symmetric encryption are its computational efficiency and its security.

Asymmetric or public-key infrastructure (PKI): This is based on a pair of mathematically related keys.
One is a public key, which is distributed to all the users, and the other key is a private key, which is kept
secretly on the server. So this requires only two keys to talk to 1000 customers. This is also called
Asymmetric encryption because the message encrypted by public key can only be decrypted by the
private key and the message encrypted by the private key can only be decrypted by the public key.

In a public key encryption anybody can create a key pair and publish the public key. So we need to verify
the owner of the public key is who you think it is. So the creator of this false public key can intercept the
messages intended for someone else and decrypt it. To protect this public key systems provide
mechanisms for validating the public keys using digital signatures and digital certificates.

Digital signature: A digital signature is a stamp on the data, which is unique and very difficult to forge. A
digital signature has 2 steps and establishes 2 things from the security perspective.

STEP 1: To sign a document means hashing software (e.g. MD5, SHA) will crunch the data into just a few
lines by the process called ’hashing’. These few lines are called message digest. It is not possible to
change the message digest back to its original data. Same as what we saw above in cryptography
hashes. This establishes whether the message has been modified between the time it was digitally
signed and sent and time it was received by the recipient.

STEP 2: Computing the digest can verify the integrity of the message but does not stop from someone
intercepting it or verifying the identity of the signer. This is where encryption comes into picture. Signing
the message with the private key will be useful for proving that the message must have come from the user
who claims to have signed it. The second step in creating a digital signature involves encrypting the
digest code created in STEP 1 with the sender’s private key.

When the message is received by the recipient the following steps take place:

1. Recipient recomputes the digest code for the message.
2. Recipient decrypts the signature by using the sender’s public key. This will yield the original digest

code of the sender.
3. Compare the original and the recomputed digest codes. If they match then the message is both intact

and signed by the user who claims to have signed it (i.e. authentic).

Digital Certificates: A certificate represents an organization in an official digital form. This is equivalent to
an electronic identity card which serves the purpose of

 Identifying the owner of the certificate. This is done with authenticating the owner through trusted 3rd
parties called the certificate authorities (CA) e.g. Verisign etc. The CA digitally signs these certificates.
When the user presents the certificate the recipient validates it by using the digital signature.

 Distributing the owner’s public key to his/her users (or recipients of the message).

The server certificates let visitors to your website exchange personal information like credit card number
etc with the server with the confidence that they are communicating with intended site and not the rogue
site impersonating the intended site. Server certificates are must for e-commerce sites. Personal
certificates let you authenticate a visitor's identity and restrict access to specified content to particular
visitors. Personal certificates are ideal for business-to business communication where offering partners and
suppliers have special access to your website.

A certificate includes details about the owner of the certificate and the issuing CA. A certificate includes:

 Distinguished name (DN) of the owner, which is a unique identifier. You need the following for the DN:

How would you go about …?

291

• Country Name (C)
• State (ST)
• Locality (L)
• Organization Name (O)
• Organization Unit (OU)
• Common Name (CN)
• Email Address.

 Public key of the owner.
 The issue date of the certificate.
 The expiry date of the certificate.
 The distinguished name of the issuing CA.
 The digital signature of the issuing CA.

 Now lets look at the core concept of the certificates:

STEP 1: The owner makes a request to the CA by submitting a certificate request with the above
mentioned details. The certificate request can be generated with tool like OpenSSL REQ, Java keytool etc.
This creates a certreq.perm file, which can be transferred to CA via FTP.

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBJTCB0AIBADBtMQswCQYDVQQGEwJVUzEQMA4GA1UEChs4lBMHQXJpem9uYTEN
A1UEBxMETWVzYTEfMB0GA1UEChMWTWVs3XbnzYSBDb21tdW5pdHkgQ29sbGVnZTE
A1UEAxMTd3d3Lm1jLm1hcmljb3BhLmVkdTBaMA0GCSqGSIb3DQEBAQUAA0kAMEYC
------END NEW CERTIFICATE REQUEST-----

STEP 2: The CA takes the owner’s certificate request and creates a message ‘m’ from the request and
signs the message ‘m’ with CA’s private key to create a separate signature ‘sig’. The message ‘m’ and the
signature ‘sig’ form the certificate, which gets sent to the owner.

STEP 3: The owner then distributes both parts of the certificate (message ‘m’ and signature ‘sig’) to his
customers (or recipients) after signing the certificate with owner’s private key.

STEP 4: The recipient of the certificate (i.e. the client) extracts the certificate with owner’s public key and
subsequently verifies the signature ‘sig’ using CA’s public-key. If the signature proves valid, then the
recipient accepts the public key in the certificate as the owner’s key.

Non-repudiation
and auditing

Proof that the sender actually sent the message. It also prohibits the author of the message from falsely
denying that he sent the message. This is achieved by record keeping the exact time of the message
transmission, the public key used to decrypt the message, and the encrypted message itself. Record
keeping can be complicated but critical for non-repudiation.

Secure Socket
Layer (SSL)

Secure Socket Layer (SSL) uses a combination of symmetric and asymmetric (public-key) encryption to
accomplish confidentiality, integrity, authentication and non-repudiation for Internet communication. In a
nutshell SSL uses public key encryption to confidentially transmit a session key which can be used to
conduct symmetric encryption. SSL uses the public key technology to negotiate a shared session key
between the client and the server. The public key is stored in an X.509 certificate that usually has a digital
signature from a trusted 3rd party like Verisign. Lets look at the handshake sequence where the server and
the client negotiate the cipher suite to be used, establish a shared session key and authenticate server to
the client and optionally client to the server.

 Client requests a document from a secure server https://www.myapp.com.au.
 The server sends its X.509 certificate to the client with its public key stored in the certificate.
 The client checks whether the certificate has been issued by a CA it trusts.
 The client compares the information in the certificate with the site’s public key and domain name.
 Client tells the server what cipher suites it has available.
 The server picks the strongest mutually available ciphers suite and notifies the client.
 The client generates a session key (symmetric key or private key) and encrypts it using the server’s

public key and sends it to the server.
 The server receives the encrypted session key and decrypts it using its private key.
 The client and server use the session key to encrypt and decrypt the data they send to each other.

Q. What advise would you give a server side Web developer wanting to ensure that his/her code was
secure from external attacks?

Security flaws in Web applications easily bypass firewalls and other basic security measures. In addition to using
some of the security measures discussed above like authentication, authorization, encryption and certificates with
HTTPS (i.e. HTTP + SSL) etc, it is possible to unwittingly create a Web application that allows outside access.
Attackers can easily tamper any part of the HTTP request like URL, cookies, form fields, hidden fields, headers etc

How would you go about …?

292

before submitting the request. There are some common names like cross site scripting, SQL injection, hidden
field manipulation, cookie poisoning, etc for input tampering attacks.

• Use HTTP post as opposed to HTTP get: HTTP get sends sensitive information as a query string appended

to your URL, which can be easily tampered with to determine any security holes in your web application.
HTTP post is more secured due to hiding sensitive information from your URL query string.

• Strip any unwanted special characters and tags. Cross site scripting is by far the most common
vulnerability in Web applications. This occurs when a hacker changes your URL, form fields, hidden fields, or
cookie parameters to create an error or to view unauthorized information. There are dangers like:

 Having special meta characters such as “&, >, !, $” in your browser input data have special meaning to

many operating systems (e.g. “<” means read input from a file) .

 Some applications allow users to format their input with HTML tags such as etc. This also allows

users to insert JavaScript and DHTML tags. These user created HTML can have malicious scripts, applet
references, and other techniques to access files, delete files, steal information etc.

The best practice to prevent the above mentioned security vulnerability is to strip any unwanted characters
and HTML tags from user input.

 Perform rigorous positive input data validation. Positive input validation means checking the input data

against a list of valid characters like A-Z and 0-9 etc as opposed to checking for any invalid characters
because it is too difficult to determine all possible malicious characters. Each input parameter should be
checked against a strict format that specifies exactly what input will be allowed like data type (e.g. String,
int etc), allowed character set (e.g. A-Z 0-9 etc), minimum and maximum lengths, numeric range, specific
legal values (enumeration), specific patterns (regular expressions), null is allowed or not, duplicate values,
required parameter or not, etc.

 Perform server-side validation because client side validation can be easily by passed by the attacker. Client

side validation should be used mainly for quick user responsiveness. Any client side validation should be
revalidated on the server side.

 Have a centralized code for input validation because scattered code is hard to maintain.

• Handle your exceptions properly without revealing any sensitive information about your datasources,

table names etc, which could help them create a SQL injection attack (Refer Q46 in Enterprise section). Catch
all your exceptions and display harmless error messages to users and hackers alike.

• Protect your Web resources like JSP files, HTML files, pdfs, css, script files etc behind the WEB-INF

directory. Refer Q35 in Enterprise section.

• Avoid using hidden fields, cookies etc to store sensitive state information. Refer Q10 in Enterprise
section. HTML hidden fields are not hidden and not secure. Users can see them by simply viewing the HTML
source of your form in their browser and also easy for a hacker to change the hidden fields and resubmit the
edited form.

• Prefer prepared statements over statements to prevent any SQL injection attacks. Refer Q46 in Enterprise

section.

Q 14: How would you go about describing the open source projects like JUnit (unit testing), Ant (build tool), CVS (version

control system) and log4J (logging tool) which are integral part of most Java/J2EE projects?
A 14: JUnit, ANT and CVS are integral part of most Java/J2EE projects. JUnit for unit testing, ANT for build and

deployment, and CVS for source control. Let’s look at each, one by one. I will be covering only the key concepts,
which can be used as a reference guide in addition to being handy in interviews.

JUnit

This is a regression testing framework, which is used by developers who write unit tests in Java. Unit testing is relatively
inexpensive and easy way to produce better code faster. Unit testing exercises testing of a very small specific
functionality. To run JUnit you should have JUnit.jar in your classpath.

Unix: CLASSPATH=$CLASSPATH:/usr/Java/packages/junit3.8.1/JUnit.jar
Dos: CLASSPATH=%CLASSPATH%;C:\junit3.8.1/JUnit.jar

JUnit can be coded to run in two different modes as shown below:

How would you go about …?

293

Per test mode Per suite setup (more common)
The per test mode will call the setUp() method before executing
every test case and tearDown() method after executing every
test case. Let’s look at an example: CO

import junit.framework.TestCase;
public class SampleTest extends TestCase {

 Object o = null;

 public SampleTest(String method) {
 super(method);
 }

 protected void setUp() {
 System.out.println("running setUp()");
 //Any database access code
 //Any set up code
 o = new Object();
 }

 protected void tearDown() {
 System.out.println("running tearDown()");
 //Any clean up code
 o = null;
 }

 public void testCustomer() {
 System.out.println("running testCustomer()");
 assertNotNull("check if it is null", o);
 }

 public void testAccount() {
 System.out.println("running testAccount()");
 if (someCondition == false)
 fail(“failed condition …. ”);
 }

 public static Test suite() {
 TestSuite suite = new TestSuite();
 // in order of test execution
 suite.addTest(new SampleTest("testCustomer"));
 suite.addTest(new SampleTest("testAccount"));

 return suite;
 }

}

as per the above example the execution sequence is as follows:

running setUp()
running testAccount()
running tearDown()
running setUp()
running testCustomer()
running tearDown()

In this mode the setUp() and tearDown() will be executed only
once: CO

import junit.framework.*;
import junit.extensions.*;
public class SampleTest2 extends TestCase {

 Object o = null;

 public SampleTest2(String method) {
 super(method);
 }

 public void testCustomer() {
 System.out.println("running testCustomer()");
 assertNotNull("check if it is null", o);
 }

 public void testAccount() {
 System.out.println("running testAccount()");
 }

 public static Test suite() {
 TestSuite suite = new TestSuite();

 suite.addTest(new SampleTest2("testCustomer"));
 suite.addTest(new SampleTest2("testAccount"));

 TestSetup wrapper = new TestSetup(suite) {

 protected void setUp() {
 oneTimeSetUp();
 }

 protected void tearDown() {
 oneTimeTearDown();
 }
 };
 return wrapper;
 }

 public static void oneTimeSetUp() { // runs only once
 System.out.println("running setUp()");
 }

 public static void oneTimeTearDown () { // runs only once
 System.out.println("running tearDown ()");
 }
}

as per the above example the execution sequence is as follows:

running setUp()
running testCustomer()
running testAccount()
running tearDown()

Q. How do you handle exceptions in JUnit? CO

Wrong approach Right approach
public void testUser() throws DelegateException { // bad
 try {
 executeSomeMethodThatCanThrowAnException (….);
 }
 catch(DelegateException ex) {
 ex.printStackTrace (…);
 }
}

public void testUser() {
 try {
 executeSomeMethodThatCanThrowAnException (….);
 }
 catch(DelegateException ex) {
 ex.printStackTrace (…);
 fail (ex.getMessage ()) ; // good
 }
}

How to run JUnit?

How would you go about …?

294

Text mode: java –cp <junit.jar path> junit.textui.TestRunner
Graphics mode: java –cp <junit.jar path> junit.swingui.TestRunner

The smallest groupings of test expressions are the methods that you put them in. Whether you use JUnit or not, you
need to put your test expressions into Java methods, so you might as well group the expressions, according to any
criteria you want, into methods. An object that you can run with the JUnit infrastructure is a Test. But you can't just
implement Test and run that object. You can only run specially created instances of TestCase. A TestSuite is just an
object that contains an ordered list of runnable Test objects. TestSuites also implement Test and are runnable.
TestRunners execute Tests, TestSuites and TestCases.

ANT (Another Niche Tool)

Ant is a tool which helps you build, test, and deploy (Java or other) applications. ANT is a command-line program that
uses a XML file (i.e. build.xml) to describe the build process. The build.xml file describes the various tasks ant has to
complete. ANT is a very powerful, portable, flexible and easy to use tool. Ant has the following command syntax:

ant [ant-options] [target 1] [target 2] [….target n]

Some ant options are:

-help, -h : print list of available ant-options (i.e. prints this message)
-verbose : be extra verbose
-quiet : be extra quiet
-projecthelp , -p : print project help information
-buildfile <file> : use given build file
-logger <classname> : class which is to perform logging
-D<property=value> : use value for given property
-propertyfile <name> : load all properties from file with –D properties taking precedence.
-keep-going, -k : execute all targets that do not depend on failed targets
… and more

Let’s look at a simple build.xml file:

?xml version="1.0" encoding="UTF-8"?>
<project name="MyProject" default="compile" basedir=".">

 <property name="src" value=".\src\" />
 <property name="build" value=".\classes\" />

 <target name="init">
 <mkdir dir="${build}" />
 </target>

 <target name="compile" description="compiles the packages" depends="init">
 <javac srcdir="${src}" destdir="${build}" optimize="on" debug="on">
 <classpath>
 <pathelement location="${build}" />
 </classpath>
 </javac>
 </target>

 <target name="clean" description="cleans the build directory">
 <delete dir="${build}" />
 </target>

</project>

We can run the above with one of the following commands

$ ant compile
$ ant clean compile
$ ant –b build.xml compile

Now lets look at some of the key concepts:
Concept Explanation with example
Ant Targets An Ant build file contains one project, which itself contains multiple targets. Each target contains tasks. Targets

can depend on each other, so building one target may cause others to be built first. From the above build.xml file
example

How would you go about …?

295

name: Name of the target to run.

description: A target determines whether the target defined as internal or public based on description. If the
description attribute is defined then it is public and otherwise it is internal. In the above example targets compile
and clean are public. The target init is internal. When you run the following command option, only the public
targets are displayed.

ant -projecthelp

depends: The target “compile” depends on the target “init”. So the target init will be run before target compile is
run.

If: If the given property has been defined then the target will be executed.

<target name=”A” if=”somePropertyName1”>
 <echo message=”I am in target A”>
</target>

unless: If the given property is not defined then the target will be executed.

<target name=”B” unless=”somePropertyName2”>
 <echo message=”I am in target B”>
</target>

Ant delegates work to other targets as follows:

<target name=”build” depends=”prepare”>
 <antcall target=”compile” />
 <antcall target=”jar” />
</target>

Ant tasks Ant task is where real work is done. A task can take any number of attributes. Ant tasks can be categorized as
follows:

 Core tasks: Tasks that are shipped with core distribution like <javac …>, <jar …> etc
 Optional tasks: Tasks that require additional jar files to be executed like <ftp ….> etc
 User defined tasks: Tasks that are to be developed by users by extending Ant framework.

For example <javac > is a task.

<javac srcdir="${src}" destdir="${build}" optimize="on" debug="on">
 <classpath>
 <pathelement location="${build}" />
 </classpath>
</javac>

Ant data types Ant data types are different to the ones in other programming languages. Lets look at some of the ant data types.

description:

<project default=”deploy” basedir=”.”>
 <description> This is my project</description>
</project>

patternset:

? matches a single character
* matches 0 or more characters
** matches 0 or more directory recursively

<patternset id=”classfile”>
 <include name=”**/*.class” />
 <exclude name=”**/*Test*.class” />
</patternset>

dirset:

<dirset dir=”${build.dir}”>
 <patternset id=”classfile”>
 <include name=”**/classes” />
 <exclude name=”**/*Test*” />
 </patternset>
</dirset>

How would you go about …?

296

fileset:

<fileset dir=”${build.dir}”>
 <include name=”**/*.Java” />
 <exclude name=”**/*Test*” />
</fileset>

filelist, filemapper,filterchain,filterreader, selectors, xmlcatalogs etc

Let’s look at some
key tasks where:

Ant updates data
from repository.

Carries out unit
tests with JUnit.

Builds a jar file if
JUnit is success.

Email the results
with the help of
Ant loggers and
listeners.

Fetch code updates from CVS:

<target name=”cvsupdate” depends=”prepare”>
 <cvspass cvsroot=”${CVSROOT}” passwd=”${rep.passwd}” />
 <cvs cvsRoot=”${CVSROOT}” command=”update –p -d” failOnError=”true” />
</target>

Run unit tests with JUnit:

<target name=”test” depnds=”compile”>
 <junit failureproperty=”${testsFailed}” >
 <classpath>
 <pathelement path=”${classpath}” />
 <pathelement path=”${build.dir.class}” />
 </classpath>
 <formatter type=”xml”/>
 <test name=”mytests.testall” todir=”${reports.dir}” />
 </junit>
</target>

Creating a jar file:

<target name=”jar” depnds=”test” unless=”testsFailed”>
 <jar destfile=”${build.dir}/${name}.jar” basedir=”${build.dir}”
 include=”**/*.class” />
</target>

Email the results with the help of loggers:

Now let’s look at how we can e-mail the run results. Ant has listeners and loggers. A listener is a component
that is alerted to certain events during the life of a build. A logger is built on top of the listener and is the
component that is responsible for logging details about the build. The listeners are alerted to 7 different events
like build started, build finished, target started, target finished, task started, task finished and message logged.

The loggers are more useful and interesting. You are always using a logger when you run ant (i.e.
DefaultLogger). You can specify the logger as shown below:

ant –logger org.apache.tools.ant.listener.MailLogger

You can also specify other loggers like XmlLogger, Log4Jlistener etc.

The MailLogger logs whatever information comes its way and then sends e-mail. A group of properties must be
set for a MailLogger which can be passed on to ant as a standard commandline Java option <i.e. –
DmailLogger.mailhost=”blah.com” > or the <property …> statements in the init target. Let’s look at some of the
properties to be set:

MailLogger.mailhost
MailLogger.from
MailLogger.failure.notify whether to send an e-mail on build failure.
MailLogger.success.notify whether to send an e-mail on build success.
MailLogger.fail.to
MailLogger.success.to

Note: Maven is a software project management and comprehension tool, which is gaining popularity. Maven is based on the concept of
project object model (POM), and it can manage a project’s build process, reporting and documentation from a centralized piece of
information. Maven provides a uniform build system where by requiring a single set of Ant build files that can be shared by all projects
using Maven. Maven provides following information about your project: Change logs from your repository information, cross referenced
sources, source metrics, mailing lists, developer lists, dependency lists, unit test reports including coverage etc.

CVS

How would you go about …?

297

CVS is a version control or tracking system. It maintains records of files through their development and allows retrieval of
any stored version of a file, and supports production of multiple versions.

cvs [cvs-options] command [command-options-arguments]
CVS allows you to split the development into 2 or more parts called a trunk (MAIN) and a branch. You can create 1 or
more branches. Typically a branch is used for bug fixes and trunk is used for future development. Both the trunk and
branches are stored in the same repository. This allows the change from branch (i.e. bug fixes) to ultimately or
periodically be merged into the main trunk ensuring that all bug fixes get rolled into next release.

Unlike some other version control systems, CVS instead of locking files to prevent conflicts (i.e. when 2 developers
modifying the same file) it simply allows multiple developers to work on the same file. Subsequently with the aid of cvs file
merging feature it allows you to merge all the changes into one file. The benefits of version control systems like CVS
include:

• Any stored revision of a file can be retrieved to be viewed or changed.
• Differences between 2 revisions can be displayed.
• Patches can be created automatically.
• Multiple developers can simultaneously work on the same file.
• Project can be branched into multiple streams for varied tasks and then branches can be merged back into trunk

(aka MAIN).
• Also supports distributed development and can be configured to record commit messages into a bug tracking

system.

Let’s look at some of the key concepts and commands.
Concept Explanation with examples
Building a repository The repository should be built on a partition that is backed up and won’t shut down. The

repositories are stored under ‘cvsroot’ i.e. /var/lib/cvsroot or /cvsroot. The command to set up
the chosen directory as a CVS repository:

$ cvs –d /var/lib/cvsroot

Let’s look at some command line examples:

$ mkdir /var/lib/cvsroot
$ chgrp team /var/lib/cvsroot
$ chmod g+srwx /var/lib/cvsroot
$ cvs –d /var/lib/cvsroot

Importing projects After creating a repository you can import a project or a related collection of files stored under a
single directory by using the following command:

cvs [-d <repository-path>] import <project_name> <vendor_tag> <related_tag>

Let’s look at some command line examples:

$ cd /tmp
$ mkdir ProjectX
$ touch ProjectX/File1.Java
$ touch ProjectX/File2.Java
$ touch ProjectX/File3.Java
$ cd ProjectX
$ cvs –d /var/lib/cvsroot import ProjectX INITIAL start

Creating a sandbox,
checking out and
updating files from cvs
repository into a
sandbox

Copy of the files, which gets checked out by the client from the cvs repository, is called a
sandbox. The user can manipulate the files within the sandbox and when the files have been
modified they can be resubmitted into the repository with the changes. Let’s look at how to
create a sandbox (i.e. a client working copy):

$ cd /myLocalCopy
$ cvs –d /var/lib/cvsroot checkout ProjectX

The above command will result in creating a subdirectory called ProjectX under the present
working directory “/myLocalCopy”.

How would you go about …?

298

Subsequently to keep the sandbox in sync with the repository, an update command can be
executed. The update command checks your checked-out cvs sandbox against the cvs
repository and down loads any changed files into the sandbox from the repository.

cvs update -d

Adding files into cvs
repository from a
sandbox.

To add file from sandbox into cvs repository you should create a file first.

$ touch file3
$ cvs add file3
$ cvs commit

To add directories and files

$ cvs add design plan design/*.rtf plan/*.rtf

Checking file stats and
help

$ cvs [cvs-options] stats [command-option] <filename>
$ cvs –help
$ cvs rlog ProjectX

Removing a file from
the cvs repository.

To remove a file from the repository, first remove the file from the sandbox directory and then
run the cvs command.

$ rm file3
$ cvs remove file3
$ cvs commit

Moving or renaming
files

To move or rename files:

$ mv file1 file101
$ cvs remove file1
$ cvs add file101
$ cvs commit

Releasing a sandbox CVS release should be used before deleting a sandbox. CVS first checks whether there are
any files with uncommitted changes.

$ cvs release

Tagging files Tagging is a way of marking a group of file revisions as belong together. If you want to look at
all the file revisions belonging to a tag the cvs will use the tag string to locate all the files.

To tag files in the repository

$ cvs –d /var/lib/cvsroot rtag -r HEAD release_1 ProjectX

To tag files in the sandbox

$ cvs tag release_1

Removing tags To remove a tag from sandbox.

$ cvs tag –d release_1 file1

To remove a tag from repository.

$ cvs rtag –d release_1 file1

Retrieving files based
on past revisions
instead of the latest
files.

We have already looked at how to checkout latest code. What if we want to checkout by a
revision?

$ cvs checkout –r Tagname ProjectX

To update by revision

$ cvs update –d -r release_1

Creating branches Branches can be added to the repository tree in order to allow different development paths to
be tried, or to add parallel development of code to different base versions.

How would you go about …?

299

CVS TRUNK & BRANCH

2.6.2.1 2.6.2.2

2.5 2.6 2.7

release_1_branch

Trunk

Trunk
Tag: release_1

Tag:
release_1_branch_merge_1

To create a branch from sandbox, you can use

$ cvs update –d -r release_1
$ cvs tag –r release_1 –b release_1_branch

To create a branch from the repository

$ cvs rtag –r release_1 –b release_1_branch

As shown in the diagram it is always a good practice to tag the trunk at the root of branch
before branching. This makes it easier to merge the changes back to trunk later. It is also a
good practice to tag the branch at the root of the branch prior to merging back to head.

To merge from branch to trunk (HEAD)

cvs update –j branch_base_tag –j branchname

$ cvs update –j release_1 –j release_1_branch

To make subsequent merges from the branch to trunk(HEAD)

$ cvs update –j release_1_branch_merge_1 –j release_1_branch

To merge from trunk to branch

$ cvs update –j release_1_branch_merge_1 –j HEAD

CVS admin task To add binary files like images, documents etc to cvs

$ cvs add -kb image.jpg
$ cvs add -kb acceptance.doc

Log4J

Refer Q126 in Enterprise section.

Q 15: How would you go about describing Service Oriented Architecture (SOA) and Web services? FAQ
A 15: This book would not be complete without mentioning SOA and Web services.

Q. What is a Service Oriented Architecture (SOA)? SOA is an evolution of the fundamentals governing a component
based development. Component based development provides an opportunity for greater code reuse than what is possible
with Object Oriented (OO) development.

How would you go about …?

300

Reuse: SOA provides even greater code reuse by utilizing OO development, component based development and also by
identifying and organizing well-defined and non-repeatable services into a hierarchy of composite services (e.g. Purchase
order service makes use of an authentication service). You can build a new application from a existing service. For
example: you can make use of Google’s search service and eBay’s services with the service you intend to provide.

R euse o f w ell-defined and non-repeatab le serv ices

S O A S erv ice h as a w e ll d e fin ed ro le : separa te se rv ices to au then tica te the use r and to c rea te a pu rchase
orde r. P u rchase o rde r se rv ice m akes use o f the au then tica tion se rv ice . M a rke ting S erv ice a lso can take
advan tage o f the au then tica tion se rv ice . Th is m eans you can have s ing le s ign on m echan ism .

S ales S erv ice
P u rchase o rder +

A u then tica tion
S erv ice

D atab ase
P u rchase
o rd er d a ta

L D A P u ser
d a ta

S erv ice do es no t p lay a w e ll d e fin ed ro le : au then tica tes the use r and c rea tes a pu rchase o rde r

S ales S erv ice
P u rch ase o rd er

S erv ice
D atab ase
P u rch ase
ord er d ata

L D A P u ser
d ata

A uth en tica tio n
S erv iceM arketin g S erv ice

Loosely coupled: SOA results in loosely coupled application components, in which code is not necessarily tied to a
particular database. Loose coupling enables enterprises to plug in new services or upgrade existing services in a modular
fashion to react to the new business requirements. For example: An application where a JSP presentation tier is not
tightly integrated with the business objects and the data model when access is carried out via a service layer (e.g. a
façade -- stateless session EJB).

Loosely coupled service

Pr
es

en
ta

tio
n

Ti
er

(e
.g

. J
SP

)

Business Logic Layer

Data Access
Objects (DAO)

Layer
Relational
Database
(RDBMS)

Tightly coupled - JSP client has to make 4 calls to the business layer

Business
Object

Business
Object

Business
Object

Business
Object

call1

call4

call2

call3

Loosely coupled SOA - JSP client has to make 2 coarse-grained calls to the service layer

Pr
es

en
ta

tio
n

Ti
er

(e
.g

. J
SP

)

Data
Access
Objects
(DAO)
Layer

Relational
Database
(RDBMS)

Business Logic Layer

Business
Object

Business
Object

Business
Object

Business
Object

Service Layer
Service 1

(façade - e.g. EJB)

Service 2
(façade - e.g. EJB)

call 1

call 2

call2

call 1
call 2

call 3
call 4

Coarse grained: Services are also should be coarse grained (i.e. should be a business level service. fine grained
services can not only adversely affect performance but also result in tight coupling). For example: You may have a
purchase component with individual methods to create a purchase order, add line items, and a customer component to
set the customer information etc. Invoking these individual methods locally would not cause any problem but if you use
remote service calls then performance problems can be evident. The solution is for the service to provide a single method

How would you go about …?

301

call to create an order, add line items and set the customer details using a façade design pattern by receiving a single
DTO (Data Transfer Object) or an XML containing the full data structure for the entire order.

Service Implementation

Coarse grained service (using a façade)

Façade
e.g. EJB, Web serviceConsumer

Subsystem

Purchase
(e.g. EJB)

Customer
(e.g. EJB)

Service
Interface

invoke
coarse-grained
service method

processOrder(...)

uses

1.
 cr

ea
te

or
de

r

I
n
t
e
r
n
e
t

2.
 a

dd
 lin

e
ite

m
s

3.
Se

t

cu
sto

me
r

de
tai

ls

Note: Fine grained services can result in tight coupling. So
prefer coarse-grained services.

Note: SOAs are very popular and there is a huge demand exists for development and implementation of SOAs. Also examine topics
such as BPM (Business Process Management) and BPEL (Business Process Execution Language).

Q. What are the best practices to follow when building applications based on SOA?

• Choose your implementation technologies carefully. Carefully consider if Web services are suitable. Sometimes using

traditional technologies such as Java RMI, EJB and/or JMS may be more appropriate for your use cases than using
Web services.

• Build coarse grained services as opposed to fine grained services. Fine grained services can not only adversely affect

performance but also can result in tightly coupled services.

• Services need to have well-defined interfaces (i.e. contract) that are implementation independent. An important aspect

of SOA is the separation of the service interface (i.e. the what) from its implementation (i.e. the how). This allows you
to change implementation without breaking the contract. The same interface can be shared by many implementations.

• XML document should be preferred over Data Transfer Objects (DTOs). Data Transfer Objects (DTOs or aka Value

Objects) must respect some of the rules such as:

• They must be serializable into XML. Ability to serialize into XML guarantees platform independence.
• They must be independent of the data source. Do not include any persistence code. SOA does not go well with

Object-Relational mapping tools.

Q. What are the key advantages offered by SOA?

• Breaks down the silos of data, applications, and functionalities into enterprise services.

SOA breaks the silo approach

Finance
application

CRM
application

Investor
Application

function A

function C

function E

function F

function C

function Z

function A

function C

function Y

Data Data Data

traditional silo approach : tightly coupled &
functions are repeated (no reuse) as shown below.

SOA approach: loosely coupled ,
greater reuse etc.

Finance
application

CRM
application

Investor
Application

Data Data

Data

Service A

Service B

Service C

Service D

How would you go about …?

302

• Adapts an application to changing business needs and technological changes due to well-defined interfaces.
• Easily integrates applications with other systems in a loosely coupled manner.
• Reuse and improved asset utilization by leveraging existing investments in legacy applications.
• Business agility by quickly and easily creating a business process by leveraging on existing services.
• Provides interoperability and multi channel access.

Q. What is the difference between SOA and a Web service?

SOA (Service Oriented Architecture) Web services
SOA is a software design principle and an architectural
pattern for implementing loosely coupled, reusable and
coarse grained services.

Web service is an implementation technology and one of the ways to
implement SOA. You can build SOA based applications without using Web
services – for example by using other traditional technologies like Java
RMI, EJB, JMS based messaging, etc. But what Web services offer is the
standards based and platform-independent service via HTTP, XML,
SOAP, WSDL and UDDI, thus allowing interoperability between
heterogeneous technologies such as J2EE and .NET.

You can implement SOA using any protocols such as
HTTP, HTTPS, JMS, SMTP, RMI, IIOP (i.e. EJB uses
IIOP), RPC etc. Messages can be in XML or Data
Transfer Objects (DTOs).

Interfaces must be based on Internet protocols such as HTTP, FTP and
SMTP. There are two main styles of Web services: SOAP and REST.
Messages must be in XML and binary data attachments.

Q. What is the difference between a Web (website) and a Web service?

Web (website) Web Service
A Web is a scalable information space with
interconnected resources. A Web
interconnects resources like Web pages,
images, an application, word document, e-mail
etc.

A Web service is a service, which lives on the Web. A Web service posses both the
characteristics of a Web and a service. We know what a Web is; let’s look at what a
service is?

A service is an application that exposes its functionality through an API (Application
Programming Interface). So what is a component you may ask? A service is a
component that can be used remotely through a remote interface either
synchronously or asynchronously. The term service also implies something special
about the application design, which is called a service-oriented architecture
(SOA). One of the most important features of SOA is the separation of interface
from implementation. A service exposes its functionality through interface and
interface hides the inner workings of the implementation. The client application (i.e.
user of the service) only needs to know how to use the interface. The client does not
have to understand actually how the service does its work. For example: There are
so many different models of cars like MAZDA, HONDA, TOYOTA etc using different
types of engines, motors etc but as a user or driver of the car you do not have to be
concerned about the internals. You only need to know how to start the car, use the
steering wheel etc, which is the interface to you.

Usually a service runs on a server, waiting for the client application to call it and ask
to do some work? These services are often run on application servers, which
manage scalability, availability, reliability, multi-threading, transactions, security etc.

Designed to be consumed by humans (i.e.
users, clients, business partners etc). For
example: www.google.com is a Web search
engine that contains index to more than 8
billion of other Web pages. The normal
interface is a Web browser like Internet
Explorer, which is used by human.

Designed to be consumed by software (i.e. other applications).

For example: Google also provides a Web service interface through the Google API
to query their search engine from an application rather than a browser.
Refer http://www.google.com/apis/ for Google Web API

Q. Why use Web services when you can use traditional style middleware such as RPC, CORBA, RMI and DCOM?

Traditional middleware Web Services
Tightly coupled connections to the application
and it can break if you make any modification to your
application. Tightly coupled applications are hard to
maintain and less reusable.

Web Services support loosely coupled connections. The interface of the
Web service provides a layer of abstraction between the client and the server.
The loosely coupled applications reduce the cost of maintenance and
increases reusability.

Generally does not support heterogeneity. Web Services present a new form of middleware based on XML and Web.
Web services are language and platform independent. You can develop a
Web service using any language and deploy it on to any platform, from small
device to the largest supercomputer. Web service uses language neutral
protocols such as HTTP and communicates between disparate
applications by passing XML messages to each other via a Web API.

Does not work across Internet. Does work across Internet.
More expensive and hard to use. Less expensive and easier to use.

How would you go about …?

303

S e r v ic e R e q u e s to r R e g is t r y

S e r v ic e P r o v id e r

S e r v ic e P r o v id e r

W e b s e r v i c e s o v e r v i e w

UD D I [p
ub lis

h]

U D D I [p u b l is h]

W S D L , S O A P [b i n d]W S DL, S OAP [b ind]

U D D I [f in d]

Let’s look at some of the key terms

What is Explanation
XML XML provides the way to structure data and XML provides the foundation on which Web services are built.

SOAP SOAP stands for Simple Object Access Protocol. It is an XML based lightweight protocol, which allows software

components and application components to communicate, mostly using HTTP (can use SMTP etc). SOAP sits on top
of the HTTP protocol. SOAP is nothing but XML message based document with pre-defined format. SOAP is
designed to communicate via the Internet in a platform and language neutral manner and allows you to get around
firewalls as well. Let’s look at thr structure of a SOAP messages:

• A SOAP message MUST be encoded using XML
• A SOAP message MUST use the SOAP Envelope namespace
• A SOAP message MUST use the SOAP Encoding namespace
• A SOAP message must NOT contain a DTD reference
• A SOAP message must NOT contain XML Processing Instructions

SOAP M essage (An XM L docum ent)

SOAPPart
SOAPEnvelope

SOAPHeader (optional)
Header

Header

SOAPBody

XM L Content or SOAP fault

A ttachm entPart
M IM E Headers

Content (XM L, Im age etc)

Attachm entPart
M IM E Headers

Content (XM L, Im age etc)

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Header>
 ...
 ...
 </soap:Header>
 <soap:Body>
 ...

How would you go about …?

304

 ...
 <soap:Fault>
 ...
 ...
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

Let’s look at a SOAP request and a SOAP response:

SOAP Request:

POST /Price HTTP/1.1
Host: www.mysite.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 300

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Body>
 <m:GetPrice xmlns:m="http://www.mysite.com/prices">
 <m:Item>PlasmaTV</m:Item>
 </m:GetPrice>
 </soap:Body>
</soap:Envelope>

SOAP Response:

HTTP/1.1 200 OK
Content-Type: application/soap; charset=utf-8
Content-Length: 200

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Body>
 <m:GetPriceResponse
 xmlns:m="http://www.mysite.com/prices">
 <m:Price>3500.00</m:Price>
 </m:GetPriceResponse>
 </soap:Body>
</soap:Envelope>

Let’s look at a HTTP header:

POST /Price HTTP/1.1
Host: www.mysite.com
Content-Type: text/plain
Content-Length: 200

SOAP HTTP Binding

A SOAP method is an HTTP request/response that complies with the SOAP encoding rules.

HTTP + XML = SOAP

Let’s look at a HTTP header containing a soap message:

POST /Price HTTP/1.1
Host: www.mysite.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 200

WSDL (Web
Services
Description
Language)

WSDL stands for Web Services Description Language. A WSDL document is an XML document that describes how
the messages are exchanged. Let’s say we have created a Web service. Who is going to use that and how does the
client know which method to invoke and what parameters to pass? There are tools that can generate WSDL from the
Web service. Also there are tools that can read a WSDL document and create the necessary code to invoke the Web
service. So the WSDL is the Interface Definition Language (IDL) for Web services.

UDDI
(Universal

UDDI stands for Universal Description Discovery and Integration. UDDI provides a way to publish and discover
information about Web services. UDDI is like a registry rather than a repository. A registry contains only reference

How would you go about …?

305

Description
Discovery and
Integration)

information like the JNDI, which stores the EJB stub references. UDDI has white pages, yellow pages and green
pages. If the retail industry published a UDDI for a price check standard then all the retailers can register their
services into this UDDI directory. Shoppers will search the UDDI directory to find the retailer interface. Once the
interface is found then the shoppers can communicate with the services immediately.

The Web services can be registered for public use at http://www.uddi.org. Once the Web service is selected through
the UDDI then it can be located using the discovery process.

Before UDDI, there was no Internet standard for businesses to reach their customers and partners with information
about their products and services. Neither was there a method of how to integrate businesses into each other's
systems and processes. UDDI uses WSDL to describe interfaces to Web services.

So far we have looked at some open standards/protocols relating to Web services, which enable interoperability between disparate
systems (e.g. Between .Net and J2EE etc). These standards provide a common and interoperable approach for defining (WSDL),
publishing (UDDI) and using (SOAP) Web services. Now we will look at some of the Java related APIs for Web services. The J2EE 1.4
platform provides comprehensive support for Web services through the JAX-RPC (Java API for XML based RPC (Remote Procedure
Call)) and JAXR (Java API for XML Registries). In the J2EE 1.4 platform you can build Web services without knowing anything about
the above mentioned XML based standards and protocols. A Web service client accesses the service through the Web container or
the EJB container.

I
n
t
e
r
n
e
t

Publish, Discover, Bind and Invoke using JAX-RPC & JAXR

Web Services
Client

Web Services
Provider

(Stateless Session Bean,
Servlets etc)

Web Services
Directory (aka Registry)

JAXR

(2. Discover)
JAXR (1. Publish)

JAX-RPC (3. Bind & Invoke service)

JAX-RPC Runtime - client-
side

SO
AP

 m
es

sa
ge

 h
an

dl
er

 ac
tio

ns

Deployment XML

Ma
ps

 J
av

a
to

 X
ML

&
As

se
m

bl
es

SO
AP

 m
es

sa
ge

JA
X-

RP
C

 c
lie

nt
JA

X-
RP

C
AP

Is

Dynamic
Invocation
Interface

(DII)

Dynamic
Proxy

Generated
Stubs
Proxy

3 models for
invoking Service
EndPoint from

client SOAP Msg over HTTP

Ma
ps

 X
M

L
to

 J
av

a
&

Di
sa

ss
em

bl
es

SO
AP

 m
es

sa
ge

1.request 1

JAX-RPC Runtime within the J2EE
container

Se
rv

ic
e I

m
pl

em
en

ta
tio

n
on

 J
2E

E
(W

eb
 T

ier
 --

 P
lai

n
Ja

va
 cl

as
s d

ep
loy

ed
 lik

e
a

Se
rv

let
,

EJ
B

Ti
er

 --
 S

ta
te

les
s S

es
sio

n
Be

an

J2EE Container

SO
AP

 m
es

sa
ge

 h
an

dl
er

 a
ct

io
ns

 +
co

nt
ai

ne
r s

er
vi

ce
s

W
eb

 S
er

vic
e

Po
rt

--
re

pr
es

en
tin

g
a n

et
wo

rk
en

dp
oi

nt
 in

st
an

ce
 o

f a
 W

eb
 S

er
vic

e (
SE

I)1

M
ap

s
XM

L
to

 J
av

a
&

Di
sa

ss
em

bl
es

SO
AP

 m
es

sa
ge

M
ap

s J
av

a
to

 X
M

L
&

As
se

m
bl

es
SO

AP
 m

es
sa

ge

1

1. request

2.
re

sp
on

se

SOAP Msg over HTTP 2

2
2.response

Keypoints: There are 3 different models (DII, Dynamic Proxy, Generated Stubs Proxy) for invoking a Web Service Endpoint from a
client. A client accesses a web service with a Service Endpoint Interface (SEI) as defined by JAX-RPC + port combination. The JAX-
RPC is used to hide the complexities of SOAP messages (generating, parsing etc) from the developer. This is all taken care of by the
JAX-RPC runtime system as shown in shadowed boxes. The developer also does not have to worry about mapping Java to XML and
XML back to Java. All these low level work is done behind the scenes and allowing the developer to concentrate on high level issues.
The “message handler actions” provides message handling facilities like encryption, decryption, logging, auditing etc to the web
service endpoints. A J2EE web service is never accessed directly and it is accessed via the container, thereby taking advantage of
the container services such as security, thread management, quality-of-service guarantee etc. J2EE supports web services in the web
tier via a plain Java class deployed like a servlet and packaged as a .war file and in the EJB tier via a stateless session bean.

WSDLWSDL
Service provider stores
WSDL documents
along with other
documents in the registry

WSDLWSDL
Client uses these WSDL
documents to see what
services are offered and
how to contact them.

1

2 2

How would you go about …?

306

JAX-RPC

JAX-RPC (Java API for XML based RPC) supports XML based RPC for Java and J2EE platforms. JAX-RPC provides
an easy to develop programming model to develop Web services. As shown in the diagram above, a JAX-RPC runtime
system and API abstracts the complexities of SOAP protocol by :

• Providing a standard way of marshalling Java to XML and Java to WSDL and unmarshalling XML to Java and

WSDL to Java.

• Standardizing the creation of SOAP requests and responses.

• Supporting and dispatching SOAP requests to methods on JAX-RPC Service Endpoint classes in the Web

Container.

• Specifying a standard way to plug in SOAP message handlers, allowing both pre and post processing of SOAP

requests and responses.

Q. What are JAX-RPC message handlers?
A. The JAX-RPC message handlers are similar to servlet filters. They provide additional message-
handling facilities to Web service endpoints (both client and server) as extensions to the basic service
implementation logic by providing logging, auditing, encryption, decryption etc.

E J B C o n ta in e r

E J B s

RM
I/I

IO
P

JN
DI

JT
A

JD
BC

JM
S

Ja
va

M
ail

JA
F

P o rts

JA
X-

RP
C

JN
DI

W e b C o n ta in e r

S e rv le ts J S P

RM
I/I

IO
P

JT
A

JD
BC

JM
S

Ja
va

M
ail

JA
F

JA
X-

RP
C

P o r ts

I
n
t
e
r
n
e
t

Cl
ien

t

R M I /
IIO P

H T T P /S S L

S O A P /H T T P

S O A P /H T T P

S O A P /
H T T P

Q. How does a client view(or accesses) a Web service ? What is a Web service port?
A. A client views each J2EE Web service as an SEI (Service Endpoint Interface) and port combination. A
single J2EE container can host many combinations of SEI + port and each SEI+port combination is an
instance of a Web service. Ports are effectively instances of Web services similar in concept to instances
in a JVM. A port’s lifecycle is governed by the container it runs in. The container is responsible for
creating, initializing, destroying or recreating the port. Web service ports are stateless and the container
may decide to destroy and recreate the port across the same client’s invocations.

Q. How do you implement a Web service in a J2EE environment?
A. A Web service on the J2EE platform may be implemented using a JAX-RPC sevice endpoint or using a EJB
service endpoint.

• JAX-RPC sevice endpoint - The sevice implementation is a plain Java class deployed in the Web container. The

service adheres to the Web container’s servlet life cycle and concurrency requirements. The service
implementation class run like a servlet inside the Web container but it does not need to extend the Servlet or
HttpServlet class.

• EJB service endpoint – The service implementation is a stateless session bean in an EJB container. The service

adheres to the EJB container’s lifecycle and concurrency requirements.

How would you go about …?

307

Web container – JAX-RPC Endpoint EJB container – EJB Endpoints

Hello.war

wsdl
HelloService.wsdl

Hello.war

WEB-INF

mapping.xml

web.xml

webservices.xml

classes

com.HelloImpl.class

com.Hello.class

Hello.jar

Hello.jar

META-INF

wsdl

mapping.xml

ejb-jar.xml

webservices.xml

HelloService.wsdl

com.HelloBean.class

com.Hello.class

Build a class that implements a business method, which
can be exposed as a Web service. This class does not
have to extend the Servlet or HttpServlet class.

package com;

public class HelloImpl {
 …
 public void howAreYou(String name) {
 log.info (“Fine thank you ” + name) ;
 }
}

Build a stateless session bean with the service method
you want to expose. If your stateless session bean is
going to serve only as a Web service then you can omit
home interface, remote interface, local interface etc.

package com;

public class HelloBean implements SessionBean {
 …
 public void howAreYou(String name) {
 log.info(“Fine thank you ” + name) ;
 }

 public void ejbCeate(){}
 public void ejbRemove(){}
 public void ejbActivate(){}
 public void ejbPassivate(){}
}

Build a remote interface for the service that declares all the methods that the service exposes.

package com;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Hello extends Remote {
 public String howAreYou (String name) throws
 RemoteException
}

Create a Servlet mapping in your web.xml file that maps
a URL pattern to your service servlet.

…
<servlet>
 <servlet-name>HelloServlet</ servlet-name>
 <servlet-class>com.HelloImpl</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name> HelloServlet </servlet-name>
 <url-pattern>/Hello</url-pattern>
</servlet-mapping>
…

The web.xml file does not contain any web services
related information.

In your ejb-jar.xml file, add a <session-endpoint> node.

…
<session>
 <ejb-name>HelloBean</ejb-name>
 <service-endpoint>com.Hello</service-endpoint>
 <ejb-class>com.HelloBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
</session>

Build or generate the WSDL file HelloService.wsdl. This file is a part of the Web services standard and it describes
the services you publish along with arguments passed, their types and return values in a platform independent
manner. This file can be generated using tools such as wscompile that ships as part of the Java Web Services

How would you go about …?

308

Developer Pack (WSDP)

WSDL

Abstract Definitions

Concrete Definitions

Types

Messages

PortTypes

Bindings

Services

Operations

Operations

Ports

m
od

ifi
er

reference

reference

reference

reference

contains

contains

contains

<definitions name=”HelloService” targetNamespace=”http://hello.com/”
 xmlns:tns=”http://hello.com” xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap” …..
>

 <types />

 <message name=”hello_param”>
 <part name=”arg_1” type=”xsd:string” />
 </message>

 <portType name=”Hello”>
 <operation name=”howAreYou” parameterOrder=”arg_1”>
 <input message=”tns:hello_param” />
 </portType>

 <binding name=”HelloBinding” type=”tns:Hello”>
 <soap:binding transport=”http://schemas.xmlsoap.org/soap/http” style=”rpc” />
 <operation name=”howAreYou” >
 <soap:operation soapAction=”” />
 <input> <soap:body use=”literal” namespace=”http://hello.com/”> </input>
 </operation>
 </binding>

 <service name=”HelloService”>
 <port name=”HelloPort” binding=”tns:HelloBinding” >
 <soap:address location=”http://myServer:8080/hello.do” />
 </port>
 </service>

</definitions>

Build or generate the JAX-RPC mapping file mapping.xml. Your application server uses this file to map Web service
requests to your Servlet. This file can be generated using tools such as wscompile that ships as part of the Java
Web Services Developer Pack (WSDP).

Build a webservices.xml file.

….
<webservice-description>
 < webservice-description-name>
 HelloService
 < webservice-description-name>
 <wsdl-file>
 WEB-INF/wsdl/HelloService.wsdl
 </wsdl-file>
 <jaxrpc-mapping-file>
 WEB-INF/mapping.xml
 </jaxrpc-mapping-file>
 <port-component>
 <port-component-name>
 Hello
 </port-component-name>
 <wsdl-port>HelloPort</wsdl-port>
 <service-endpoint-interface>
 com.Hello
 </service-endpoint-interface>
 <service-impl-bean>
 HelloServlet
 </service-impl-bean>
 </port-component>
</webservice-description>
….

Build a webservices.xml file.

….
<webservice-description>
 < webservice-description-name>
 HelloService
 < webservice-description-name>
 <wsdl-file>
 META-INF/wsdl/HelloService.wsdl
 </wsdl-file>
 <jaxrpc-mapping-file>
 META-INF/mapping.xml
 </jaxrpc-mapping-file>
 <port-component>
 <port-component-name>
 Hello
 </port-component-name>
 <wsdl-port>HelloPort</wsdl-port>
 <service-endpoint-interface>
 com.Hello
 </service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>
 HelloBean
 </ejb-link>
 </service-impl-bean>
 </port-component>
</webservice-description>
….

Assemble the Hello.war file as shown above and deploy
it.

Assemble the Hello.jar file as shown above in the
diagram and deploy it.

How would you go about …?

309

Q. How would you publish and find WSDL descriptions? What are the 4 primary UDDI data types?
A. UDDI provides a method for publishing and finding service descriptions. A complete WSDL service description is a
combination of service interface and service implementation document. Since the service interface represents a
reusable definition of a service, it is published in a UDDI as a tModel. The service implementation describes instances
of a service. Each instance is defined using WSDL service element. Each service element in a service implementation
document is used to publish a UDDI business service.

WSDL to UDDI mapping

WSDL UDDI

<types>
<messages>
<portType>
<binding>

<service>
 <port> …. </port>
 <port> …. </port>
<service>

BusinessEntity

BusinessService

BindingTemplate

BindingTemplate

tModel

tModel

Service interface

Service implementation

There are 4 primary UDDI data types: businessEntity, businessService, bindingTemplate, and tModel.

Q. What are the modes of operations supported by the JAX-RPC?
A. The JAX-RPC supports following 3 modes of operation:

• Synchronous request/response mode – After a remote method is invoked, the client’s thread blocks until a
return value is returned or an exception is thrown.

• Fire and forget mode – After a remote method is invoked, the client’s thread is not blocked and it continues

processing. A return value or an exception is not expected.

• Non-blocking RPC invocation mode -- After a remote method is invoked, the client’s thread is not blocked and

it continues processing. Later, the client processes the remote method return by performing a blocked receive
call or by polling for the return value.

Q. How can a client application make a request to a Web service?
A. A client application can make use of one of the following 3 ways (Refer diagram “Publish, Discover, Bind and Invoke
using JAX-RPC & JAXR”):

• Invoking methods on a generated static stubs - Based on the contents of a WSDL file description of a
service, tools (WSDL2Java) can be used to generate stubs. The client application uses the stubs to invoke
remote methods available as a Web service.

• Using a Dynamic Proxy - The client runtime creates a dynamic proxy that supports a Web service endpoint.

• Using a Dynamic Invocation Interface (DII) - Operations on target service endpoints are accessed dynamically

based on an in-memory model of the WSDL file description of the service. This eliminates the need for clients to
know in advance a service’s exact name and parameters. A DII client can discover this at runtime by using a
service broker that can look up the service’s information.

All the above modes are passed through the JAX-RPC client side runtime.

JAXR

Stands for Java API for XML Registries (JAXR). JAXR provides a uniform way (just like JDBC, JMS, JNDI etc) to use
business registries based on open standards like UDDI, ebXML etc in Java programming language. Businesses can
use registries to register themselves or discover other businesses in a loosely coupled manner. A business can use
JAXR to search a registry for other businesses.

SAAJ

Stands for SOAP with Attachments API for Java. SAAJ enables developers to produce and consume messages
conforming to SOAP specifications and provides an abstraction for handling SOAP messages with attachments.

How would you go about …?

310

Attachments can be complete XML messages, parts of XML, or MIME multipart/related (e.g. image/gif) type
attachments. SAAJ supports synchronous request/response and fire and forget modes.

Note: JAX-RPC 2.0 has been renamed to JAX-WS 2.0 (Java API for XML Web Services).

Q. What is Apache AXIS?
A. Apache AXIS is a Web services tool kit, which enables you to expose a functionality you have as a Web service
without having to learn everything there is to know about the underlying platform. It hides all the complexities from the
developer and improves productivity.

Speaking of toolkits, over the past few years some new design paradigms and frameworks have gained popularity to
make you more productive. The next section gives you an overview.

General Tip #9:

If you are asked a design question like How would you go about building a ticketing system for a travel agency? then you should
not jump into start designing by drawing some boxes for a 3 tier J2EE architecture etc. Any design should involve proper requirements
gathering. The design process is all about trade-offs among performance, memory usage, reliability, scalability, coupling, maintenance
etc. You could ask some relevant requirements gathering questions as shown below to show that you always gather requirements prior
to designing a software system.:

-- Is it a ticketing system for an air travel only or for all modes of transport like air, train, coach etc?

-- Should this system be linked to the relevant airline systems? (This would require messaging or Web
 services).

-- Does this system require the services of an online payment gateway?

Q. A customer has asked you to write a function to convert a given text to uppercase. What question(s) do you need to ask to flesh out
the requirements?

[Hint]

-- Do you require multilingual support? When you add more languages there are more things to consider and sometimes
 uppercase/lowercase classification doesn’t make sense in other languages [i.e. InternationalizatioN I18N].

-- How would you like the input text captured? GUI based or command line?

Next section very briefly covers some of the popular emerging technologies & frameworks. Some organizations might be
considering or already started using these technologies. All these have emerged over the past 3 years. So it is vital that
you have at least a basic understanding of these new paradigms and frameworks because these new paradigms and
frameworks can offer great benefits such as ease of maintenance, reduction in code size, elimination of duplication of
code, ease of unit testing, loose coupling among components, light weight and fine grained objects etc. A few years ago,
developers with EJB experience were well sought after and well paid and now a days I believe that this has
changed and you need to have experience in Spring, Hibernate, and one or more component based Web
frameworks like JSF and Tapestry.

Emerging Technologies/Frameworks…

311

SECTION FOUR

Emerging Technologies/Frameworks…

This section covers some of the popular emerging technologies you need to be at
least aware of, if you have not already used them. If there are two or more interview
candidates with similar skills and experience then awareness or experience with
some of the emerging technologies can play a role in the decision making. Some
organizations might be considering or already started using these technologies. So
it is well worth your effort to demonstrate that you understand the basic concepts or
have an appreciation for the following technologies/frameworks and an eagerness
to learn.

 Test Driven Development (TDD).

 Aspect Oriented Programming (AOP).

 Inversion of Control (IoC) (Also known as Dependency Injection).

 Annotation or attribute based programming (xdoclet etc).

 Spring framework.

 Hibernate framework.

 EJB 3.0

 Component based Web frameworks like (JSF, Tapestry etc)

Note: It is out of scope for this book to cover all of these technologies/frameworks in detail. Important
and popular technologies (TDD, AOP, IoC, and Annotations) and frameworks (Hibernate, Spring, EJB
3.0) are discussed with examples. If you hire smart people with a good understanding of Java/J2EE
core concepts and key areas with some basic understanding of emerging technologies and frameworks
then their current skills are not as important as their ability to learn quickly, eagerness to learn, and be
productive.

Emerging Technologies/Frameworks…

312

Q. What is the hot trend in Enterprise apps these days?

This section covers some of the recent and popular design paradigms such as Plain Old Java Objects (POJOs) and Plain Old Java
Interfaces (POJI) based services and interceptors, Aspect Oriented Programming (AOP), Dependency Injection (aka IoC), attributes or
annotations oriented programming, etc and tools and frameworks which apply these new paradigms such as Spring (IoC and AOP),
Hibernate (O/R mapping), EJB 3.0 (POJO, POJI, and annotations), XDoclet (attributes oriented programming) , JSF (component based
Web framework), Tapestry (component based Web framework) etc. All these have emerged over the past 2-4 years.

Q. Why should you seriously consider these technologies?
These new paradigms and frameworks can offer great benefits such as ease of maintenance, reduction in code size, elimination of
duplication of code, ease of unit testing, loose coupling among components, light weight and fine grained objects, and developer
productivity.

Q. How would you convince a development team to use these new paradigms/frameworks?
Build a vertical slice with some code for a business use case to demonstrate the above mentioned benefits.

Q 01: What is Test Driven Development (TDD)? FAQ
A 01: TDD is an iterative software development process where you first write the test with the idea that it must fail.

This is a different approach to the traditional development where you write the application functionality first and
then write test cases. The major benefit of this approach is that the code becomes thoroughly unit tested (you can
use JUnit or other unit testing frameworks). For JUnit refer Q14 on “How would you go about…” section. TDD is
based on two important principles preached by its originator Kent Beck:

 Write new business code only if an automated unit test has failed: Business application requirements

drive the tests and tests drive the actual functional code. Each test should test only one business concept,
which means avoid writing a single test which tests withdrawing money from an account and depositing money
into an account. Any change in the business requirements will impact pre and post conditions of the test.
Talking about pre and post conditions, following design by contract methodology (Refer Q11 in Java section)
helps achieving TDD. In design by contract, you specify the pre and post conditions that act as contracts of a
method, which provides a specification to write your tests against.

 Eliminate duplication from the code: A particular business concept should be implemented only once within

the application code. Code for checking an account balance should be centralized to only one place within the
application code. This makes your code decoupled, more maintainable and reusable.

I can hear some of you all saying how can we write the unit test code without the actual application code. Let’s
look at how it works in steps. The following steps are applied iteratively for business requirements.

STEP: 1 write some tests for a specific business requirement.

STEP: 2 write some basic structural code so that your test compiles but the test should fail (failures are the
pillars of success). For example just create the necessary classes and corresponding methods with skeletal code.

STEP: 3 write the required business code to pass the tests which you wrote in step 1.

STEP: 4 finally refactor the code you just wrote to make it is as simple as it can be. You can refactor your code
with confidence that if it breaks the business logic then you have unit test cases that can quickly detect it.

STEP: 5 run your tests to make sure that your refactored code still passes the tests.

STEP: 6 Repeat steps 1-5 for another business requirement.

To write tests efficiently some basic guidelines need to be followed:

 You should be able to run each test in isolation and in any order.
 The test code should not have any duplicate business logic.
 You should test for all the pre and post conditions as well as exceptions.
 Each test should concentrate on one business requirement as mentioned earlier.
 There are many ways to write test conditions so proper care and attention should be taken. In some cases

pair programming can help by allowing two brains to work in collaboration. You should have strategies to
overcome issues around state of data in RDBMS (Should you persist sample test data, which is a snapshot
of your actual data prior to running your tests? Or should you hard code data? Or Should you combine both
strategies? Etc).

Emerging Technologies/Frameworks…

313

Q 02: What is the point of Test Driven Development (TDD)? What do you think of TDD?
A 02: TDD process improves your confidence in the delivered code for the following reasons.

 TDD can eliminate duplication of code and also disciplines the developer to focus his mind on delivering
what is absolutely necessary. This means the system you develop only does what it is supposed to do
because you first write test cases for the business requirements and then write the required functionality to
satisfy the test cases and no more.

 These unit tests can be repeatedly run to alert the development team immediately if someone breaks any

existing functionality. All the unit tests can be run overnight as part of the deployment process and test
results can be emailed to the development team.

 TDD ensures that code becomes thoroughly unit tested. It is not possible to write thorough unit tests if you

leave it to the end due to deadline pressures, lack of motivation etc.

 TDD complements design by contract methodology and gets the developer thinking in terms of pre and
post conditions as well as exceptions.

 When using TDD, tests drive your code and to some extent they assist you in validating your design at an

earlier stage.

 TDD also helps you refactor your code with confidence that if it breaks the business logic it gets picked up
when you run your unit tests next time.

 TDD promotes design to interface not implementation design concept. For example: when your code

has to take input from an external source or device which is not present at the time of writing your unit
tests, you need to create an interface, which takes input from another source in order for your tests to
work.

Q. What in your own view is the worst part of Java development ? How would you go about fixing it? [Hint]

• Excessive use of checked exceptions and try {} catch {} and finally {} blocks. How to fix: Make use of frameworks like Spring, which

makes use of unchecked exceptions and templates (e.g. JdbcTemplate, JndiTemplate, JmsTemplate) etc to solve the above issue
in a non-intrusive and consistent manner.

• Repetition of code for example singleton factories, Data Transfer Objects (DTOs), resource management code like opening and

closing resources etc. How to fix: Make use of Hibernate detached objects to avoid or minimize DTOs, Spring DAO support and
templates to minimize resource management code, Spring dependency injection to avoid or minimize the number of singleton
factories and use Aspect Oriented Programming (AOP – e.g. Spring AOP) to implement secondary requirements like auditing,
logging, transaction management, security etc to improve productivity.

• Too many XML based configuration files. How to fix: Use Java annotations (i.e. From JDK 1.5 onwards) where applicable to have a

right balance between XML configuration files and annotations.

Let us look at some of these in a bit more detail in this section.

Q 03: What is aspect oriented programming (AOP)? Do you have any experience with AOP?
A 03: Aspect-Oriented Programming (AOP) complements OOP (Object Oriented Programming) by allowing the

developer to dynamically modify the static OO model to create a system that can grow to meet new requirements.

AOP allows you to dynamically modify your static model consisting mainly of business logic to include the code
required to fulfill the secondary requirements or in AOP terminology called cross-cutting concerns (i.e.
secondary requirements) like auditing, logging, security, exception handling etc without having to modify the
original static model (in fact, we don't even need to have the original code). Better still, we can often keep this
additional code in a single location rather than having to scatter it across the existing model, as we would have to
if we were using OOP on its own.

For example; A typical Web application will require a servlet to bind the HTTP request to an object and then pass
it to the business handler object to be processed and finally return the response back to the user. So only a
minimum amount of code is initially required. But once you start adding all the other additional secondary
requirements or cross-cutting concerns like logging, auditing, security, exception-handling, transaction
demarcation, etc the code will inflate to 2-4 times its original size. This is where AOP can assist by separately
modularizing these cross-cutting concerns and integrating theses concerns at runtime or compile time through

Emerging Technologies/Frameworks…

314

aspect weaving. AOP allows rapid development of an evolutionary prototype using OOP by focusing only on the
business logic by omitting concerns such as security, auditing, logging etc. Once the prototype is accepted,
additional concerns like security, logging, auditing etc can be weaved into the prototype code to transfer it into a
production standard application.

AOP nomenclature is different from OOP and can be described as shown below:

Join points: represents the point at which a cross-cutting concern like logging, auditing etc intersects with a main
concern like the core business logic. Join points are locations in programs’ execution path like method &
constructor call, method & constructor execution, field access, class & object initialization, exception handling
execution etc.

pointcut: is a language construct that identifies specific join points within the program. A pointcut defines a
collection of join points and also provides a context for the join point.

Advice: is an implementation of a cross-cutting concern which is a piece of code that is executed upon reaching a
pointcut within a program.

Aspect: encapsulates join points, pointcuts and advice into a reusable module for the cross-cutting concerns
which is equivalent to Java classes for the core concerns in OOP. Classes and aspects are independent of one
another. Classes are unaware of the presence of aspects, which is an important AOP concept. Only pointcut
declaration binds classes and aspects.

Weaving is the process for interleaving separate cross-cutting concerns such as logging into core concerns such
as business logic code to complete the system. AOP weaving composes different implementations of aspects into
a cohesive system based on weaving rules. The weaving process (aka injection of aspects into Java classes) can
happen at:

 Compile-time: Weaving occurs during compilation process.
 Load-time: Weaving occurs at the byte-code level at class loading time.
 Runtime: Similar to load-time where weaving occurs at byte-code level during runtime as join points are

reached in the executing application.

So which approach to use? Load-time and runtime weaving have the advantages of being highly dynamic and
enabling changes on the fly without having to rebuild and redeploy. But Load-time and runtime weaving adversely
affect system performance. Compile time weaving offers better performance but requires rebuilding and
redeployment to effect changes.

Q. Do you have any experience with AOP?

Two of the most interesting modules of the Spring framework are AOP (Aspect Oriented Programming) and
Inversion Of Control (IoC) container (aka Dependency Injection). Let us look at a simple AOP example.

STEP 1: Define the interface and the implementation classes. Spring promotes the code to interface design
concept.

public interface Hello {
 public void hello();
}

public class HelloImpl implements Hello{
 public void hello() {
 System.out.println("Printing hello. ");
 }
}

STEP 2: Configure the Spring runtime via the SpringConfig.xml file. Beans can be configured and subsequently
injected into the calling Test class.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-
beans.dtd">

<beans>
 <!-- bean configuration which enables dependency injection -->
 <bean id="helloBean" class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target">

Emerging Technologies/Frameworks…

315

 <bean class="HelloImpl" singleton="false" />
 </property>

 </bean>

</beans>

STEP 3: Write your Test class. The “SpringConfig.xml” configuration file should be in the classpath.

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.FileSystemXmlApplicationContext;

public class Test {

 public static void main(String[] args) {
 ApplicationContext ctx = new FileSystemXmlApplicationContext("SpringConfig.xml");

 Hello h = (Hello)ctx.getBean("helloBean");
 h.hello();
 }

}

If you run the Test class, you should get an output of :

Printing hello.

Now, if you want to trace your methods like hello() before and after in your Hello class, then you can make use of
the Spring AOP.

Sequence diagram showing transparent calls to Advice

caller:
Test

ctx:
ApplicationContext

Hello

advice1:
TracingBeforeAdvice

advice2
TracingAfterAdvice

getBean(string) creates

void before(...)

hello()

void afterReturning (...)

STEP 4: Firstly you need to define the classes for the before and after advice for the method tracing as follows:

import java.lang.reflect.Method;
import org.springframework.aop.MethodBeforeAdvice;

public class TracingBeforeAdvice implements MethodBeforeAdvice {

 public void before(Method arg0, Object[] arg1, Object arg2) throws Throwable {
 System.out.println("Just before method call...");
 }
}

Emerging Technologies/Frameworks…

316

import java.lang.reflect.Method;
import org.springframework.aop.AfterReturningAdvice;

public class TracingAfterAdvice implements AfterReturningAdvice {

 public void afterReturning(Object arg0, Method arg1, Object[] arg2, Object arg3)
 throws Throwable {
 System.out.println("Just after returning from the method call...");
 }
}

STEP 5: In order to attach the advice to the appropriate joint points, you must make a few amendments to the
SpringConfig.xml file as shown below in bold:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-
beans.dtd">

<beans>
 <!-- bean configuration which enables dependency injection -->
 <bean id="helloBean"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target">
 <bean class="HelloImpl" singleton="false" />
 </property>

 <property name="interceptorNames">
 <list>
 <value>traceBeforeAdvisor</value>
 <value>traceAfterAdvisor</value>
 </list>
 </property>
 </bean>

 <!-- Advice classes -->
 <bean id="tracingBeforeAdvice" class="TracingBeforeAdvice" />
 <bean id="tracingAfterAdvice" class="TracingAfterAdvice" />

 <!-- Advisor: way to associate advice beans with pointcuts -->
 <!-- pointcut definition for before method call advice -->
 <bean id="traceBeforeAdvisor"
 class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
 <property name="advice">
 <ref local="tracingBeforeAdvice" />
 </property>
 <property name="pattern">
 <!-- apply the advice to Hello class methods -->
 <value>Hello.*</value>
 </property>
 </bean>

 <!-- Advisor: way to associate advice beans with pointcuts -->
 <!-- pointcut definition for after returning from the method advice -->
 <bean id="traceAfterAdvisor"
 class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
 <property name="advice">
 <ref local="tracingAfterAdvice" />
 </property>

 <!-- apply the advice to Hello class methods -->
 <property name="pattern">
 <value>Hello.*</value>
 </property>
 </bean>

</beans>

If you run the Test class again, you should get an output with AOP in action:

Just before method call...
Printing hello.
Just after returning from the method call...

Emerging Technologies/Frameworks…

317

As was briefly discussed in Q43 in Enterprise - Java section, Spring offers declarative transaction management.
This is enabled by Spring AOP. Declarative transaction management should be preferred over programmatic
transaction management since it is non-invasive and has least impact on your application code. Not only
transaction management but also other system level services like security, logging, auditing etc should be
implemented declaratively with the AOP feature.

Q 04: What are the differences between OOP and AOP?
A 04:

Object Oriented Programming (OOP) Aspect Oriented Programming (AOP)
OOP looks at an application as a set of collaborating
objects. OOP code scatters system level code like logging,
security etc with the business logic code.

AOP looks at the complex software system as combined
implementation of multiple concerns like business logic, data
persistence, logging, security, multithread safety, error
handling, and so on. Separates business logic code from the
system level code. In fact one concern remains unaware of
other concerns.

OOP nomenclature has classes, objects, interfaces etc.

AOP nomenclature has join points, point cuts, advice, and
aspects.

Provides benefits such as code reuse, flexibility, improved
maintainability, modular architecture, reduced
development time etc with the help of polymorphism,
inheritance and encapsulation.

AOP implementation coexists with the OOP by choosing OOP
as the base language. For example: AspectJ uses Java as
the base language.

AOP provides benefits provided by OOP plus some additional
benefits which are discussed in the next question.

Q 05: What are the benefits of AOP?
A 05:

 OOP can cause the system level code like logging, transaction management, security etc to scatter throughout
the business logic. AOP helps overcome this problem by centralizing these cross-cutting concerns.

 AOP addresses each aspect separately in a modular fashion with minimal coupling and duplication of code.

This modular approach also promotes code reuse by using a business logic concern with a separate logger
aspect.

 It is also easier to add newer functionalities by adding new aspects and weaving rules and subsequently

regenerating the final code. This ability to add newer functionality as separate aspects enable application
designers to delay or defer some design decisions without the dilemma of over designing the application.

 Promotes rapid development of evolutionary prototypes using OOP by focusing only on the business logic by

omitting cross-cutting concerns such as security, auditing, logging etc. Once the prototype is accepted,
additional concerns like security, logging, auditing etc can be weaved into the prototype code to transfer it into
a production standard application.

 Developers can concentrate on one aspect at a time rather than having to think simultaneously about business

logic, security, logging, performance, multithread safety etc. Different aspects can be developed by different
developers based on their key strengths. For example: A security aspect can be developed by a security
expert or a senior developer who understands security.

Q 06: What is attribute or annotation oriented programming? FAQ
A 06: Before looking at attribute oriented programming let’s look at code generation processes. There are two kinds of

code generation processes.

Passive code generation: is template driven. Input wizards are used in modern IDEs like eclipse, WebSphere
Studio Application Developer (WSAD) etc where parameters are supplied and the code generator carries out the
process of parameter substitution and source code generation. For example: in WSAD or eclipse you can create
a new class by supplying the “New Java class” wizard appropriate input parameters like class name, package
name, modifiers, superclass name, interface name etc to generate the source code. Another example would be
Velocity template engine, which is a powerful Java based generation tool from the Apache Software Foundation.
Active code generation: Unlike passive code generators the active code generators can inject code directly into
the application as and when required.

Emerging Technologies/Frameworks…

318

Attribute/Annotation oriented programming languages leverages active code generation with the use of
declarative tags embedded within the application source code to generate any other kind of source code,
configuration files, deployment descriptors etc. These declarative metadata tags are called attributes or
annotations. The purpose of these attributes is to extend the functionality of the base language like Java, with the
help of custom attributes provided by other providers like Hibernate framework, Spring framework, XDoclet etc.
The attributes or annotations are specified with the symbol “@<label>”. J2SE 5.0 has a built-in runtime support for
attributes.

Let’s look at an example. Say we have a container managed entity bean called Account. Using attribute oriented
programming we can generate the deployment descriptor file ejb-jar.xml by embedding some attributes within the
bean implementation code.

/**
 * @ejb.bean
 * name=”Account”
 * jndi-name =”ejb/Account”
 */
public abstract class AccountBean implements EntityBean {
 ….
}

The above-embedded attributes can generate the ejb-jar.xml as shown below using XDoclet (use an Ant script):

<ejb-jar>
 <entity>
 <ejb-name>Account</ejb-name>
 <home>com.AccountHome</home>
 <remote>com.Account</remote>
 <ejb-class>com.AccountBean</ejb-class>
 ….

 </entity>
</ejb-jar>

Q 07: What are the pros and cons of annotations over XML based deployment descriptors? FAQ
A 07: Service related attributes in your application can be configured through a XML based deployment descriptor files

or annotations. XML based deployment descriptor files are processed separately from the code, often at runtime,
while annotations are compiled with your source code and checked by the compiler.

XML Annotations
More verbose because has to duplicate a lot of
information like class names and method names
from your code.

Less verbose since class names and method names are part of your
code.

Less robust due to duplication of information which
introduces multiple points for failure. If you
misspell a method name then the application will
fail.

More robust because annotations are processed with your code and
checked by the compiler for any discrepancies and inaccuracies.

More flexible since processed separately from the
code. Since it is not hard-coded can be changed
later. Your deployment team has a greater
flexibility to inspect and modify the configuration.

Less flexible since annotations are embedded in Java comment style
within your code.

For example, to define a stateless session EJB 3.0 with annotations,
which can serve both local and remote clients:

@Stateless
@Local ({LocalCounter.class})
@Remote ({RemoteCounter.class})

public class CounterBean implements LocalCounter, RemoteCounter {
 ...
}

XML files can express complex relationships and
hierarchical structures at the expense of being
verbose.

Annotations can hold only a small amount of configuration information
and most of the plumbing has to be done in the framework.

Emerging Technologies/Frameworks…

319

Q. Which one to use?

Annotations are suitable for most application needs. XML files are more complex and can be used to address
more advanced issues. XML files can be used to override default annotation values. Annotations cannot be used if
you do not have access to source-code. The decision to go with annotation or XML depends upon the architecture
behind the framework. For example Spring is primarily based on XML and EJB 3.0 is primarily based on
annotations, but both support annotations and XML to some degree. EJB 3.0 uses XML configuration files as an
optional overriding mechanism and Spring uses annotations to configure some Spring services.

Q 08: What is XDoclet?
A 08: XDoclet is an open source code generation engine for attribute oriented programming from SourceForge.net

(http://xdoclet.sourceforge.net/xdoclet/index.html). So you add attributes (i.e. metadata) in JavaDoc style tags
(@ejb.bean) and XDoclet will parse your source files and JavaDoc style attributes provided in the Java comment
with @ symbol to generate required artifacts like XML based deployment descriptors, EJB interfaces etc. XDoclet
can generate all the artifacts of an EJB component, such as remote & local interfaces as well as deployment
descriptors. You place the required attributes on the relevant classes and methods that you want to process.

Q 09: What is inversion of control (IoC) (also known more specifically as dependency injection)? FAQ
A 09: Inversion of control or dependency injection (which is a specific type of IoC) is a term used to resolve object

dependencies by injecting an instantiated object to satisfy dependency as opposed to explicitly requesting an
object. So objects will not be explicitly requested but objects are provided as needed with the help of an Inversion
Of Controller container (e.g. Spring, Hivemind etc). This is analogous to the Hollywood principal where the
servicing objects say to the requesting client code (i.e. the caller) “don’t call us, we’ll call you”. Hence it is called
inversion of control.

Without Dependency Injection

CarBO

(Caller)

CarDAO

(being called)

Note: being called or dependent data access object CarDAO is invoked directly by the business object CarBO.

Invoke directly

Direct invocation tightly couples the caller and the callee

CarBO

(Caller)

CarDAO

(being called)

CarDAOFactory

(factory)1. getDAO() 2. creates
3. returns DAO

Use of a factory loosely couples the caller and the callee

Note: being called or dependent data access object CarDAO is invoked indirectly via a factory CarDAOFactory by the business object CarBO.
The caller and the being called objects are loosely coupled because the implementation of the being called object (CarDAO) can change
without any changes required to the caller (CarBO).

4. invoke data access methods

Most of you all are familiar with the software development context where client code (requesting code)
collaborates with other dependent objects (or servicing objects) by knowing which objects to talk to, where to
locate them and how to talk with them. This is achieved by embedding the code required for locating and
instantiating the requested components within the client code. The above approach will tightly couple the
dependent components with the client code.

Caller code:
class CarBO {
 public void getCars(String color) {
 //if you need to use a different implementation class say FastCarDAOImpl then need to
 //make a change to the caller here (i.e. CarDAO dao = new FastCarDAOImpl()). so the
 //caller is tightly coupled. If this line is called by 10 different callers then you
 //need to make changes in 10 places.
 CarDAO dao = new CarDAOImpl();
 List listCars = dao.findCarsByColor(color);
 }
}

Emerging Technologies/Frameworks…

320

Being called code:

interface CarDAO (){
 public abstract List findCarsByColor(color);
}

interface CarDAOImpl extends CarDAO (){
 public List findCarsByColor(color) {
 //data access logic goes here
 }
}

This tight coupling can be resolved by applying the factory design pattern and program to interfaces not to
implementations driven development.

Simplified factory class implemented with a singleton design pattern:

class CarDAOFactory {
 private static final CarDAOFactory onlyInstance = new CarDAOFactory();

 private CarDAOFactory(){}//private so that cannot be instantiated from outside the class

 public CarDAOFactory getInstance(){
 return onlyInstance;
 }

 public CarDAO getDAO(){
 //if the implementation changes to FastCarDAOImpl then change here only instead of 10
 //different places.
 return new CarDAOImpl();
 }
}

Now the caller code should be changed to:

class CarBO {
 public void getCars(String color) {
 //if you need to use a different implementation class say FastCarDAOImpl then need to
 //make one change only to the factory class CarDAOFactory to return a different
 //implementation (i.e. FastCarDAOImpl) rather than having to change all the callers.
 CarDAO dao = CarDAOFactory.getInstance().getDAO();
 List listCars = dao.findCarsByColor(color);
 }
}

But the factory design pattern is still an intrusive mechanism because servicing objects need to be requested
explicitly. Also if you work with large software systems, as the system grows the number of factory classes can
become quite large. All the factory classes are simple singleton classes that make use of static methods and field
variables, and therefore cannot make use of inheritance. This results in same basic code structure repeated in all
the factory classes.

Dependency Injection (aka Inversion of Control -- IoC)

CarBO

(Caller)

CarDAO

(being called)

Inject dependency
(via constructor or setter method setCarDAO(..))

Note: being called or dependent data access object CarDAO is injected into the caller business
object CarBO via annotations or XML based descriptor files.

getCarDAO()

Use accessor method getCarDAO() or the instance variable
carDAO set via the constructor to access the CarDAO object.

Let us look at how dependency injection comes to our rescue. It takes the approach that clients declare their
dependency on servicing objects through a configuration file (like spring-config.xml) and some external piece of

Emerging Technologies/Frameworks…

321

code (e.g. Spring) assumes the responsibility of locating and instantiating these servicing components and
supplying the relevant references when needed to the client code whereby acting as the factory objects. This
external piece of code is often referred to as IoC (specifically known as dependency injection) container or
framework.

SpringConfig.xml

<beans>

 <bean id="car" class="CarBO" singleton="false" >
 <constructor-arg>
 <ref bean="carDao" />
 </constructor-arg>
 </bean>

 <bean id="carDao” class="CarDAOImpl" singleton="false" />

</beans>

Now your CarBO code changes to:
class CarBO {
 private CarDAO dao = null;

 public CarBO(CarDAO dao) {
 this.dao = dao;
 }
 public void getCars(String color) {
 //if you need to use a different implementation class say FastCarDAOImpl then need to
 //make one change only to the SpringConfig.xml file to use a different implementation
 //class(i.e. class=”FastCarDAOImpl”) rather than having to change all the callers.
 List listCars = dao.findCarsByColor(color);
 }
}

Your calling code would be (e.g. from a Web client or EJB client):
ApplicationContext ctx = new FileSystemXmlApplicationContext("SpringConfig.xml");

//lookup “car” in your caller where “carDao” is dependency injected using the constructor.
CarBO bo = (CarBO)ctx.getBean("car"); //Spring creates an instance of the CarBO object with
 //an instance of CarDAO object as the constructor arg.
String color = red;
bo.getCars(color)

You can use IoC containers like Spring framework to inject your business objects and DAOs into your calling
classes. Dependencies can be wired by either using annotations or using XML as shown above. Tapestry 4.0
makes use of the Hivemind IoC container for injecting application state objects, pages etc.

IoC or dependency injection containers generally control creation of objects (by calling “new”) and resolve
dependencies between objects it manages. Spring framework, Pico containers, Hivemind etc are IoC containers to
name a few. IoC containers support eager instantiation, which is quite useful if you want self-starting services
that “come up” on their own when the server starts. They also support lazy loading, which is useful when you
have many services which may only be sparsely used.

Q 10: What are the different types of dependency injections? FAQ
A 10: There are three types of dependency injections.

 Constructor Injection (e.g. Pico container, Spring etc): Injection is done through constructors.
 Setter Injection (e.g. Spring): Injection is done through setter methods.
 Interface Injection (e.g. Avalon): Injection is done through an interface.

Spring supports both constructor-based injection and setter-based injection. The above example on Q9 is based
on the constructor-based injection. Here is the same example using the Spring’s setter-based injection.

 SpringConfig.xml

<beans>

 <bean id="car" class="CarBO" singleton="false" >

Emerging Technologies/Frameworks…

322

 <property name=”dao”>
 ref bean="carDao" />
 </property>
 </bean>

 <bean id="carDao” class="CarDAOImpl" singleton="false" />

</beans>

Now your CarBO code changes to:
class CarBO {
 private CarDAO dao = null;

 public CarBO() {}
 ….

 public void setDao(CarDAO carDao){
 this.dao = carDao;
 }

 public void getCars(String color) {
 //if you need to use a different implementation class say FastCarDAOImpl then need to
 //make one change only to the SpringConfig.xml file to use a different implementation
 //class(i.e. class=”FastCarDAOImpl”) rather than having to change all the callers.
 List listCars = dao.findCarsByColor(color);
 }
}

The above SpringConfig.xml code creates an instance of CarBO object and CarDAO object and calls the
setDao(CarDAO carDao) method, passing in the reference to the CarDAO object.

Your caller code would be (e.g. from a Web client or EJB client) same as above:
ApplicationContext ctx = new FileSystemXmlApplicationContext("SpringConfig.xml");

//lookup “car” in your caller where “carDao” is dependency injected using the setter method.
CarBO bo = (CarBO)ctx.getBean("car"); //Spring creates an instance of the CarBO object with
 //an instance of CarDAO object and then invokes the
 //setter method setDao(CarDAO carDao) on CarBO.
String color = red;
bo.getCars(color)

Q. Which one to use?

The choice between constructor-based injection and setter-based injection goes back to OO programming
question – Should you fill fields in a constructor or setter methods?. There is no clear cut answer for this question.
It is a good practice to start with constructor-based injection since it permits immutability (i.e. if your classes are
meant to be immutable) and also constructors with parameters give you a clear statement of what is required to
create a valid object. If there is more than one way to create a valid object then provide multiple constructors. But
if you have a lot of constructor parameters then your constructors can look messy and also if you have many string
based parameters then setter-based injection will be more descriptive because each setter name will indicate what
the string is supposed to do (e.g. setFirstName(…), setLastName(…) etc)

Q 11: What are the benefits of IoC (aka Dependency Injection)? FAQ
A 11:

 Minimizes the amount of code in your application. With IoC containers you do not care about how services are
created and how you get references to the ones you need. You can also easily add additional services by
adding a new constructor or a setter method with little or no extra configuration.

 Makes your application more testable by not requiring any singletons or JNDI lookup mechanisms in your unit

test cases. IoC containers make unit testing and switching implementations very easy by manually allowing
you to inject your own objects into the object under test.

 Loose coupling is promoted with minimal effort and least intrusive mechanism. The factory design pattern is

more intrusive because components or services need to be requested explicitly whereas in IoC the
dependency is injected into the requesting code. Also some containers promote the design to interfaces not to
implementations design concept by encouraging managed objects to implement a well-defined service
interface of your own.

Emerging Technologies/Frameworks…

323

 IoC containers support eager instantiation and lazy loading of services. Containers also provide support for

instantiation of managed objects, cyclical dependencies, life cycle management, and dependency resolution
between managed objects etc.

Q 12: What is the difference between a service locator pattern and an inversion of control pattern?
A 12:

Service locator Inversion Of Control (IoC)
The calling class which needs the dependent classes
needs to tell the service locator which classes are needed.
Also the calling classes have the responsibility of finding
these dependent classes and invoking them. This makes
the classes tightly coupled with each other.

In IoC (aka Dependency Injection) pattern the responsibility is
shifted to the IoC containers to locate and load the dependent
classes based on the information provided in the descriptor files.
Changes can be made to the dependent classes by simply
modifying the descriptor files. This approach makes the
dependent classes loosely coupled with the calling class.

Difficult to unit test the classes separately due to tight
coupling.

Easy to unit test the classes separately due to loose coupling.

Q 13: Why dependency injection is more elegant than a JNDI lookup to decouple client and the service?
A 13: Here are a few reasons why a JNDI look up is not elegant:

 The client and the service being looked up must agree on a string based name, which is a contract not
enforced by the compiler or any deployment-time checks. You will have to wait until runtime to discover any
discrepancies in the string based name between the lookup code and the JNDI registry.

 The JNDI lookup code is verbose with its own try-catch block, which is repeated across the application.

 The retrieved service objects are not type checked at compile-time and could result in a casting error at

runtime.

Dependency injection is more elegant because it promotes loose coupling with minimal effort and is the least
intrusive mechanism. Dependency is injected into requesting piece of code by the IoC containers like Spring etc.
With IoC containers you do not care about how services are created and how you get references to the ones you
need. You can also easily add additional services by adding a new constructor or a setter method with little or
extra configuration.

Q 14: Explain Object-to-Relational (O/R) mapping?
A 14: There are several ways to persist data and the persistence layer is one of the most important layers in any

application development. O/R mapping is a technique of mapping data representation from an object model to a
SQL based relational model.

O/R mapping is well suited for read modify write centric applications and not suited for write centric
applications (i.e. batch processes with large data sets like 5000 rows or more) where data is seldom read.
Although this was generally true of many earlier O/R mapping frameworks, most today (including latest Hibernate)
allow for efficient ways of performing large batch style write operations. O/R mapping tools/frameworks allow you
to model inheritance (Refer Q101 in Enterprise section), association and composition class relationships. O/R
mapping tools work well in 80-90% of cases. Use basic database features like stored procedures, triggers etc,
when O/R mapping is not appropriate. Keep in mind that no one size fits all solution. Always validate your
architectural design with a vertical slice and test for performance. Some times you have to handcraft your SQL and
a good O/R mapping (aka ORM) tool/framework should allow that. O/R mapping tools/frameworks allow your
application to be:

• Less verbose (e.g. transparent persistence , Object Oriented query language , transitive persistence etc)
• More portable (i.e. vendor independence due to multi dialect support)
• More maintainable (i.e. transparent persistence, inheritance mapping strategies, automatic dirty checking etc).

Takes care of much of the plumbing like connection establishment, exception handling, configuration etc. You can
often leverage the framework’s strategies and capabilities to get efficiencies. Also provides support for eager
fetching, lazy loading (i.e. using proxy objects), caching strategies and detached objects (no DTOs required).
Hibernate is a popular O/R mapping (aka ORM) framework, which provides above mentioned benefits and
features.

Emerging Technologies/Frameworks…

324

Ap
pl

ica
tio

n

E J B C o n ta in e r

Bu
sin

es
s D

ele
ga

te

[T
ra

ns
ac

tio
na

l d
em

ar
ca

tio
n]

D a t a a c c e s s - O /R m a p p in g

P e r s is te n t O b je c ts

P e r s is te n t O b je c ts

O /R m a p p in g
t o o l

e .g . H ib e r n a te

R e la t io n a l
D a t a b a s e
(R D B M S)

J D B C (d ir e c t a c c e s s)

EJ
B

(S
es

sio
n)

EJ
B

(E
nt

ity
)

R M I / I IO P

DA
O

int
er

fa
ce

DA
O

Im
pl

Q. Have you used any of the frameworks using paradigms like IoC, AOP, O/R mapping tool, POJO & POJI based

development, component based Web frameworks etc. Where do these frameworks fit in?

Web Container EJB Container

Application Server

This shaded area can be run outside the container if remote
access is not required. It can be tested outside the container
by injecting business objects and DAOs into the test cases.
Later on can be deployed into the container along with EJBs
for remote access.

Sp
rin

g
 IO

C
+

AO
P

Business
Objects

DAOs

Sp
rin

g
 H

ibe
rn

at
e

su
pp

or
t /

 JD
BC

te
m

pla
te

 su
pp

or
t e

tc
Hi

be
rn

at
e

Database

EJ
B

Where do these frameworks fit in?

This shaded area work at a higher
level of abstraction by burying the
Servlet API deep down. Very
useful when building large
applications & applications with
common behavior.

Component based Web
frameworks like

Tapestry, JSF etc

Request based Web
framework

Spring MVC

Br
ow

se
r (

W
eb

 c
lie

nt
)

I
n
t
e
r
n
e
t

Sp
rin

g
 IO

C
+

AO
P

Q. What open source frameworks do you have experience with? Hibernate, IBatis, Spring, Struts, Tapestry, log4j,
Ant, Quartz (scheduler, an alternative to Timer and TimerTask) etc

Q 15: Give an overview of hibernate framework? FAQ
A 15: Hibernate is a full-featured, open source Object-to-Relational (O/R) mapping framework. Unlike EJB (EJB’s new

persistence API can operate outside of an EJB container), Hibernate can work inside or outside of a J2EE
container. Hibernate works with Plain Old Java Objects (POJOs), which is much like a JavaBean.

Q. How will you configure Hibernate?

The configuration files hibernate.cfg.xml (or hibernate.properties) and mapping files *.hbm.xml are used by the
Configuration class to create (i.e. configure and bootstrap hibernate) the SessionFactory, which in turn creates
the Session instances. Session instances are the primary interface for the persistence service.

Emerging Technologies/Frameworks…

325

• hibernate.cfg.xml (alternatively can use hibernate.properties): These two files are used to configure the
hibernate service (connection driver class, connection URL, connection username, connection password,
dialect etc). If both files are present in the classpath then hibernate.cfg.xml file overrides the settings found in
the hibernate.properties file.

• Mapping files (*.hbm.xml): These files are used to map persistent objects to a relational database. It is the

best practice to store each object in an individual mapping file (i.e. mapping file per class) because storing
large numbers of persistent classes into one mapping file can be difficult to manage and maintain. The naming
convention is to use the same name as the persistent (POJO) class name. For example Account.class will
have a mapping file named Account.hbm.xml. Alternatively hibernate annotations can be used as part of your
persistent class code instead of the *.hbm.xml files.

Q. What is a SessionFactory? Is it a thread-safe object?

SessionFactory is Hibernate’s concept of a single datastore and is threadsafe so that many threads can access it
concurrently and request for sessions and immutable cache of compiled mappings for a single database. A
SessionFactory is usually only built once at startup. SessionFactory should be wrapped in some kind of singleton
so that it can be easily accessed in an application code.

SessionFactory sessionFactory = new Configuration().configure().buildSessionfactory();

Presentation layer

Business layer

DAO layerAp
pl

ica
tio

n

Hibernate Architecture

Primary components

Session

Detached
Objects

Transient
Objects

Session Factory

JNDI JDBC JTA

Database

Layered architecture

hibernate.cfg.xml
(also hibernate.properties)

Mapping files
*.hbm.xml

Configuration

SessionFactory

Session

Transaction Query Application Code

Transaction

Persistent
Objects

Persistent
Objects

Q. What is a Session? Can you share a session object between different threads?

Session is a light weight and a non-threadsafe object (No, you cannot share it between threads) that represents a
single unit-of-work with the database. Sessions are opened by a SessionFactory and then are closed when all
work is complete. Session is the primary interface for the persistence service. A session obtains a database
connection lazily (i.e. only when required). To avoid creating too many sessions, ThreadLocal class can be used
as shown below to get the current session no matter how many times you make a call to the currentSession()
method.

…
public class HibernateUtil {
 …
public static final ThreadLocal local = new ThreadLocal();

public static Session currentSession() throws HibernateException {
 Session session = (Session) local.get();
 //open a new session if this thread has no session
 if(session == null) {
 session = sessionFactory.openSession();
 local.set(session);
 }
 return session;
}

}

Emerging Technologies/Frameworks…

326

It is also vital that you close your session after your unit of work completes. Note: Keep your Hibernate Session
API handy.

Q. Explain hibernate object states? Explain hibernate objects lifecycle?
Persistent Detached Transient
Persistent objects and collections are short lived single
threaded objects, which store the persistent state. These
objects synchronize their state with the database depending
on your flush strategy (i.e. auto-flush where as soon as
setXXX() method is called or an item is removed from a Set,
List etc or define your own synchronization points with
session.flush(), transaction.commit() calls). If you remove
an item from a persistent collection like a Set, it will be
removed from the database either immediately or when flush()
or commit() is called depending on your flush strategy. They
are Plain Old Java Objects (POJOs) and are currently
associated with a session. As soon as the associated session
is closed, persistent objects become detached objects and are
free to use directly as data transfer objects in any application
layers like business layer, presentation layer etc.

Detached objects and collections
are instances of persistent objects
that were associated with a
session but currently not
associated with a session. These
objects can be freely used as Data
Transfer Objects without having
any impact on your database.
Detached objects can be later on
attached to another session by
calling methods like
session.update(),
session.saveOrUpdate() etc. and
become persistent objects.

Transient objects and
collections are instances of
persistent objects that were
never associated with a
session. These objects can
be freely used as Data
Transfer Objects without
having any impact on your
database. Transient objects
become persistent objects
when associated to a
session by calling methods
like session.save(),
session.persist() etc.

Hibernate objects lifecycle

Transient
Object

Persistent
Object

Detached
Objectnew

get()
find()
load()

iterate() etc

close()
clear()
evict()

can be garbage collected when not reachable

Can be garbage
collected when not

reachable

delete()

save()
persist()
merge()

update()
saveOrUpdate()

lock()
merge()

replicate()

Statechart diagram

Car car1 = new Car()

Session session = HibernateUtil.currentSession();
session.save(car1);
session.flush();

Session session = HibernateUtil.currentSession();
session.saveOrUpdate(car1);
session.flush();

Transient

Persistent

Detached

becomes persistent

session.close() becomes detached

session.delete(car2);becomes transient

Note: The state of the transient and detached objects cannot be synchronized with the database because they are not managed by hibernate.
When a session is closed the persistent objects become detached objects. The detached objects can be re-attached to another session by
invoking update(), saveOrUpdate() or lock(). Detached objects can be passed all the way up to the presentation layer and later on re-attched.

Session session = HibernateUtil.currentSession();
Car car2 = session.load(Car.class, carPK);

session.evict(car1);
session.clear(); //affects all objects in the session

becomes detached

becomes persistent

car1

car1

car1

car1

car2

becomes persistent car2

refresh()

Emerging Technologies/Frameworks…

327

Q. What are the benefits of detached objects?

• Detached objects can be passed across layers all the way up to the presentation layer without having to use

any DTOs (Data Transfer Objects). You can later on re-attach the detached objects to another session.

Session session1 = sessionFactory.openSession();
Car myCar = session1.get(Car.class, carId); //”myCar” is a persistent object at this stage.
session1.close(); //once the session is closed “myCar” becomes a detached object

you can now pass the “myCar” object all the way upto the presentation tier. It can be modified without any
effect to your database table.

myCar.setColor(“Red”); //no effect on the database

When you are ready to persist this change to the database, it can be reattached to another session as shown
below:

Session session2 = sessionFactory.openSession();
Transaction tx = session2.beginTransaction();
session2.update(myCar); //detached object ”myCar” gets re-attached
tx.commit(); //change is synchronized with the database.
session2.close()

• When long transactions are required due to user think-time, it is the best practice to break the long transaction
up into two or more transactions. You can use detached objects from the first transaction to carry data all the
way up to the presentation layer. These detached objects get modified outside a transaction and later on re-
attached to a new transaction via another session.

Q. How does Hibernate distinguish between transient (i.e. newly instantiated) and detached objects?

• Hibernate uses the “version” property, if there is one.
• If not uses the identifier value. No identifier value means a new object. This does work only for Hibernate

managed surrogate keys. Does not work for natural keys and assigned (i.e. not managed by Hibernate)
surrogate keys.

• Write your own strategy with Interceptor.isUnsaved().

Q. What is a Hibernate transaction object?

Transaction is a single threaded, short lived object used by the application to specify atomicity. Transaction
abstracts your application code from underlying JDBC, JTA or CORBA transactions. At times a session can span
several transactions. When long transactions are required due to user think-time, it is the best practice to break
the long transaction up into two or more transactions. You can use detached objects from the first transaction to
carry data all the way up to the presentation layer. These detached objects get modified outside a transaction and
later on re-attached to a new transaction via another session.

Transaction tx = session.beginTransaction();
Employee emp = new Employee();
emp.setName(“Brian”);
emp.setSalary(1000.00);

session.save(emp);
tx.commit();
//close session

Q. How do you query the database with Hibernate?

Hibernate provides a very robust querying API that supports query strings, named queries and queries built as
aggregate expressions. The most flexible way is using the Hibernate Query Language syntax (HQL), which is
easy to understand and is an Object Oriented extension to SQL, which supports inheritance and polymorphism.

Query query = session.createQuery(“Select car from Car as car where car.color = :color”);
query.setString(“color”,”black”);
List list = query.list();

HQL SQL
HQL uses classes and properties instead of tables and columns.
HQL is less verbose than SQL and supports automatic association

SQL uses tables and columns and is more verbose.

Emerging Technologies/Frameworks…

328

joining.

Select car from Car as car join car.parts as
part where car.color = ‘black’ and part.cost >
100”);

Select car.* from Car as car join Part
part on car.part_id = part.id where
car.color = ‘black’ and part.cost >
100”);

Type-safe queries can be handled by the object oriented query by criteria approach.

String color = “black”;
Criteria criteria = session.createCriteria(Car.class);
criteria.add(Expression.eq(“color”, color));
Collection col = criteria.list();

You can also use Hibernate’s direct SQL query feature. If none of the above meets your requirements then you
can get a plain JDBC connection from a Hibernate session.

Q. How does hibernate support legacy applications?

You can use user defined data types and composite primary keys to get additional flexibility to support legacy
applications. It is best practice to use wrapper classes like Boolean, Integer, Long etc instead of primitive types in
your persistent classes. For example If you have a legacy application, which has the value of null for a Boolean
property in its legacy table, then hibernate will throw a PropertyAccessException if you use the primitive type
boolean since it cannot take the null value.

Q. Explain some of the following attributes used in *.hbm.xml mapping file?
Attribute Description and possible values Example
cascade Lets you control your graph of objects as to how

automatically any associated objects gets saved,
updated or deleted. It is also known as transitive
persistence.

none (default): no automatic action.

save-update: save or update actions are automatically
passed to the child entities.

delete: Delete actions are automatically passed to child
entities.

delete-orphan: When a child is removed from the
parent, then the child is automatically deleted.

all: save, update and delete actions are passed to child
entities but not delete-orphan.

all-delete-orphan: save, update, delete and delete-
orphan actions are passed to child entities.

There are other cascade values such as merge,
replicate, persist, lock etc.

If you have a true composition relationship, where if the
parent gets deleted then the children should also be
deleted, then you should set the cascade attribute to all-
delete-orphan. For example if an Order object is deleted
then all its LineItem objects (i.e. children) should also be
deleted as well.

<hibernate-mapping>
 <class name=”Car” table=”car”>
 ….
 <set name=”parts” cascade=”all” lazy=”true”>
 <key column=”part_id” />
 <one-to-many class=”com.Part” />
 </set>
 ….
 </class>
</hibernate-mapping>

inverse This attribute is used when you use the one-to-many and
many-to-one bidirectional association to indicate that
many-to-one side controls the association as opposed to
one-to-many side.

If you do not have the inverse flag or if it is set to false
then the one-to-many side will control the association,
which means if you have the following scenario:

Car car1 = new Car(“blue”);

//one-to-many side
<hibernate-mapping>
 <class name=”Car” table=”car”>
 ….
 <set name=”parts” cascade=”all” inverse=”true”>
 <key column=”part_id” />
 <one-to-many class=”com.Part” />
 </set>
 ….
 </class>

Emerging Technologies/Frameworks…

329

car1.getParts().add(new Part(“Steering”));
car1.getParts().add(new Part(“Brake”));
session.save(car1);

This will result in 3 INSERT SQL calls (1 for the parent
Car object and 2 times for the Part objects). Since the
association is controlled by the Car object (i.e. one-to-
many side), inserting the part objects will not set the
foreign key value (i.e. car_id) into the Part objects. There
will be two additional UPDATE SQL calls to add the Car
object’s foreign key value into the Part records. So this is
not only inefficient but also will cause errors during
INSERT SQL calls to Part objects if every part should
have a car (i.e. foreign-key column car_id in Part is a
not-null column).

The solution to overcome the above issue is to set the
attribute inverse=”true” on the Car object (i.e. one-to-
many side) to indicate that the ownership of the
association should be given to the Part objects (i.e.,
many-to-one side). Since the association belongs to the
Part objects there will never be an INSERT SQL call to
the Part record with a null car_id.

</hibernate-mapping>

//many-to-one side
<hibernate-mapping>
 <class name=”Part” table=”part”>
 ….
 <many-to-one name=”car” column=”car_id” / >
 ….
 </class>
</hibernate-mapping>

lazy This property is used to determine if all the associated
graph of objects should be “eagerly” fetched or “lazily”
loaded when methods like session.get(…),
session.load(…), session.find(…), etc are executed. The
lazy loading uses proxy objects.

lazy= true (default on hibernate 3.0 onwards) means
load associated objects lazily.

lazy=false means load associated objects eagerly.

It is the best practice to set the lazy attribute to true in
the mapping file and make it a conscious choice to
eagerly join in your HQL or eagerly fetch in your criteria
query for specific use cases. For e.g.

String hqlQuery = “ FROM Car c OUTER JOIN FETCH
 c.parts WHERE c.color=?”;

If you want to access a lazily initialized collection, you
must make sure that the session is open, otherwise an
exception will be thrown.

You could also optimize your lazy loading strategy by
specifying the batch-size attribute as discussed next.

<hibernate-mapping>
 <class name=”Car” table=”car”>
 ….
 <set name=”parts” cascade=”all” lazy=”true”>
 <key column=”part_id” />
 <one-to-many class=”com.Part” />
 </set>
 ….
 </class>
</hibernate-mapping>

//session should be open to access a proxy object

Session session= sessionFactory.openSession();
Car car = session.load(Car.class, 12);// id =12
Set parts = car.getParts();
session.close(); //session is closed.
Part part1 = (Part)parts.get(0); //exception is thrown
 //because the session is closed

batch-size This is used as an optimization strategy for loading
objects lazily. Hibernate can load several uninitialized
proxy objects if one proxy object or collection is
accessed.

For example, say you have 50 Car objects loaded into a
session with a session.find(….) query operation. Say
each car object has an association with a collection of 10
Part objects. So if you iterate through all your Car
objects, there will be 50 SQL SELECT calls to the
database for every invocation of car.getParts() method.
If you set your batch-size attribute to 20, then there will
be only 3 SQL SELECTs to the database. Hibernate will
load 20,20,10 collections in just 3 SELECT calls.

<hibernate-mapping>
 <class name=”Car” table=”car”>
 ….
 <set name=”parts” batch-size=”20”>
 <key column=”part_id” />
 <one-to-many class=”com.Part” />
 </set>
 ….
 </class>
</hibernate-mapping>

unsaved-
value

unsaved-value attribute comes into play when you use
the saveOrUpdate(…) method.

null is the default value. Other values supported are
any, none, and id-value.

If the unsaved-value is set to null or not set at all (default
value is null) and if the primary-key property value is null
then hibernate assumes that the object is transient and

<hibernate-mapping>
 <class name=”Car” table=”car”>
 <id name=”id” column=”car_id” type=”long”
 unsaved-value=”null”>
 <generator class=”native” />
 </id>
 <set name=”parts” cascade=”all” lazy=”true”>
 <key column=”part_id” />
 <one-to-many class=”com.Part” />

Emerging Technologies/Frameworks…

330

assigns a new primary-key id value before saving. If the
primary-key property value is not-null then hibernate
assumes that the object is already persistent and
updates the object in the database without inserting.

If you use a long primitive value instead of a Long
wrapper object (best practice is to use wrapper objects)
to store the primary key then the unsaved-value attribute
value should be set to 0 because primitive values cannot
be null.

 </set>
 ….
 </class>
</hibernate-mapping>

Q. What is the difference between the session.get() method and the session.load() method?

Both the session.get(..) and session.load() methods create a persistent object by loading the required object from the
database. But if there was not such object in the database then the method session.load(..) throws an exception whereas
session.get(…) returns null.

Q. What is the difference between the session.update() method and the session.lock() method?

Both of these methods and saveOrUpdate() method are intended for reattaching a detached object. The session.lock()
method simply reattaches the object to the session without checking or updating the database on the assumption that the
database in sync with the detached object. It is the best practice to use either session.update(..) or
session.saveOrUpdate(). Use session.lock() only if you are absolutely sure that the detached object is in sync with your
detached object or if it does not matter because you will be overwriting all the columns that would have changed later on
within the same transaction.

Note: When you reattach detached objects you need to make sure that the dependent objects are reattached as well.

Q. How would you reattach detached objects to a session when the same object has already been loaded into
the session?

You can use the session.merge() method call.

Q. What are the general considerations or best practices for defining your Hibernate persistent classes?

A Hibernate persistent class is a Plain Old Java Object (POJO), which has not interfaces to be implemented and no
persistent superclass to be extended. The following are the requirements and best practices (all are not strict
requirements) to consider for your Hibernate persistent classes:

1. You must have a default no-argument constructor for your persistent classes and there should be getXXX() (i.e

accessor/getter) and setXXX(i.e. mutator/setter) methods for all your persistable instance variables.

2. You should implement the equals() and hashCode() methods based on your business key and it is important not to

use the id field in your equals() and hashCode() definition if the id field is a surrogate key (i.e. Hibernate managed
identifier). This is because the Hibernate only generates and sets the field when saving the object.

Car car = session.load(Car.class, carId);
car.getParts().add(new Part(“Steering”)); // adds a new entity with id = null (if Integer)
 // or id = 0 (if primitive int)
car.getParts().add(new Part(“Accelerator”));// has id = null too so overwrites last added
 // object in the Set.

Alternatively if you use manually assigned id fields then you can use your id field in your equals() and hashCode()
methods but you must make sure to set the id field prior to adding the object to the Set and it is quite difficult to
guarantee this in most applications.

Car car = session.load(Car.class, carId);
Part part1 = new Part(“Steering”);
part1.setId(1001);
car.getParts().add(part1)); //adds a new part entity with id=1001
Part part2 = new Part(“Accelerator”);
part1.setId(1002);
car.getParts().add(part2); //has the id=1002 so adds a new part entity with id=1002

Emerging Technologies/Frameworks…

331

So to avoid the problem of inadvertently not setting the id prior to adding the object to the Set, it is recommended to
use the “semi” unique business key (i.e natural key) to implement equals() and hashCode() methods.

3. It is recommended to implement the Serializable interface. This is potentially useful if you want to migrate around a
multi-processor cluster.

4. The persistent class should not be final because if it is final then lazy loading cannot be used by creating proxy

objects.

5. Use XDoclet tags for generating your *.hbm.xml files or Annotations (JDK 1.5 onwards), which are less verbose than

*.hbm.xml files.

Q. What is the difference between an object identity and a database identity?
Object Database

Identity: car1 == car2 (i.e. car1 & car 2 are pointing to the
same object).

Equality: car1.equals(car2) Refer Q18 in Java section.

Identity: car1.getId().equals(car2.getId())

Where “id” is the primary key. If the ids are equal then both
the car objects are referring to the same row in the
database.

Q. What are the important considerations in writing your equals() & hashCode() methods?

1. Use your semi unique business keys. For example you can use the following immutable fields (i.e. instance

variables) as your business keys in your Car persistence class: name, model and createddate. You need to make
sure that the fields used in your equals() method must be used in your hashCode() method as well.

2. If two objects are equal i.e. car1.equals(car2) returns “true” then car1.hashCode() == car2.hashCode() must return

“true” as well. But if two objects are not equal i.e. car1.equals(car2) returns “false” then car1.hashCode() ==
car2.hashCode() can return either “true” or “false”. Refer Q19, Q20 in Java section for a discussion on equals() and
hashCode() contract.

3. When referring to fields (i.e. instance variables) of the argument object, always use the accessor methods rather than

directly using the instance variables because your supplied argument object might be a proxy object rather than the
actual object. For example:

public boolean equals(Object supplied) {
 if (this == supplied){
 return true; //same objects
 }
 if (other == null) {
 return false;
 }

 if(! (other instanceOf Car)) {
 return false;
 }

 final Car car2 = (Car) supplied;

 if(this.name.equals (car2.getName()) &&
 this.model.equals (car2.getModel()) &&
 this.createdDate.equals (car2.getCreatedDate())) {

 return true;
 }
 else {
 return false;
 }
}

Need to make sure that all the three fields used in equals() method are used in hashCode() method
as well.

public int hashCode() {
 int hashCode = name.hashCode() * 11;
 hashCode = hashCode + model.hashCode() * 17;
 hashCode = hashCode + createdDate.hashCode() * 29;
 return hashCode;

Emerging Technologies/Frameworks…

332

}

Q. What are the different types of persistent objects defined by Hibernate?

• Entity objects (aka first rank class): These objects have a persistent identity. Usually an identifier field (e.g. id), which

is managed by Hibernate. These are typically central business objects like Investor, Customer, Order etc

• Value objects (aka second rank class): These objects do not have an identity and only exist in a relationship to an

entity object (aka first rank class). These are typically supporting objects such as Address, Name etc.

Q. How would you map a composition relationship in Hibernate?

A Hibernate component (not an architectural level component like EJB etc) is a contained value object, which refers to
the Object Oriented notion of composition. A standard example is that of an Address value object stored as a property
of an Investor entity object. Address value object depends on an Investor entity object.

Composition O/R mapping

Class diagram

Table schema

-id : Long
-name : String
-address : Address

Investor
-street : String
-suburb : String
-postcode : String

Address

1 1

-id (PK)
-name
-street
-suburb
-post_code

TB_Investor <class name=”Investor” table=”TB_Investor”>

 <id name=”id” column=”id”>
 <generator class=”sequence” />
 </id>

 <property name=”name” column=”name” />

 <component name=”address” class=”Address” >
 <property name=”street” column=”street” />
 <property name=”suburb” column=”suburb” />
 <property name=”postcode” column=”post_code” />
 </component>

</class>

As you can see above in the fine-grained persistence diagram, there are more classes (i.e. 2 classes) than table (i.e. 1
table). Fine grained persistence object models have greater code reuse and easier to understand. Collections of
components are also possible by using a <composite-element> tag. You can also define a composition relationship with
a one-to-many entity association relationship with the cascade attribute set to “all-delete-orphan”.

Q. What association or aggregation relationships can be mapped with Hibernate?

Database relationships are typically defined in terms of cardinality and direction. From an OO perspective, relationships
are defined as association or aggregation. These relationships for objects can be viewed as either unidirectional (i.e.
when one object knows about the other but not vice versa) or bidirectional (i.e. both objects would know about each
other). Cardinality can be defined as one-to-one (i.e. both on primary key as well as foreign key with a unique
constraint), one-to-many, many-to-one and many-to-many. Hibernate managed entity objects can be mapped for all
the above mentioned cardinality and direction.

Q. How would you map inheritance relationships in Hibernate? Also refer Q101 in Enterprise section.

There are number of ways Hibernate can handle inheritance among entity objects. The simplest is to use one table for
the whole hierarchy. Only one table is required. With this design strategy, each row of the table can hold an object of
any type from the entity object inheritance hierarchy. You should assign one column as the “discriminator” property of an
entity class, which contains a value used to tell which actual type of object is stored in that particular row.

Another strategy to map inheritance relationship is to use table per subclass strategy. Say you have a table called
Vehicle and three subclass tables called Car, Van and Bus. These 3 subclass tables will have primary key associations
to the superclass table Vehicle. So this relational model is actually a one-to-one association on a primary key. The entity
object model will have a superclass representing the Vehicle table and 3 entity subclasses representing the Car, Van
and Bus tables.

Another strategy to map inheritance relationship is to use table per concrete class strategy. There will only be 3 tables
(i.e. Car, Van and Bus) involved for the subclasses. The entity object model will have a superclass representing the

Emerging Technologies/Frameworks…

333

Vehicle table and 3 entity subclasses representing the Car, Van and Bus tables. If your superclass Vehicle is abstract,
then map it with abstract=”true”.

Finally, you could also mix table per class hierarchy strategy with table per subclass strategy.

Q 16: Explain some of the pitfalls of Hibernate and explain how to avoid them? Give some tips on Hibernate best

practices? FAQ
A 16:

Pitfalls on Hibernate and how to avoid them:

 O/R mapping framework like Hibernate is well suited for read modify write centric applications and not

suited for write centric applications (i.e. batch processes with large data sets like 5000 rows or more) where
data is seldom read.

 Use the ThreadLocal session pattern when obtaining Hibernate session objects (Refer Q15 in Emerging

Technologies/Frameworks). This is important because Hibernate’s native API does not use the current thread
to maintain associations between session and transaction or between session and application thread. Spring
ORM support for Hibernate can not only take care of the above pitfall but also can improve productivity.

 Handle resources properly by making sure you properly flush and commit each session object when persisting

information and also make sure you release or close the session object when you are finished working with it.
Most developers fall into this pitfall. If you pass a connection object to your session object then remember to
issue session.close().close () which will first release the connection back to the pool and then will close the
session. If you do not pass a connection object then issue session.close() to close the session.

 Use lazy associations when you use relationships otherwise you can unwittingly fall into the trap of executing

unnecessary SQL statements in your Hibernate applications. Let us look at an example: Suppose we have a
class Employee with many-to-one relationship with class Department. So one department can have many
employees. Suppose we want to list the name of the employees then we will construct the query as follows:

Query query = session.createQuery(“from Employee emp”);
List list = query.list();

Hibernate will generate the following SQL query:

SELECT <fields> from Employee;

If it only generates the query above then it is okay and it serves our purpose, but we get another set of SQL
queries without asking it to do anything. One for each of the referenced departments in Department table. If
you had 5 departments then the following query will be executed 5 times with corresponding department id.
This is the N+1 selects problem. In our example it is 5 + 1. Employee table is queried once and Department
table is queried 5 times.

SELECT <fields> from Department where DEPARTMENT.id=?

Solution is to make the Department class lazy (in Hibernate 3.0 the default value for lazy attribute is “true”),
simply by enabling the lazy attribute in the Department’s hbm.xml mapping definition file, which will result in
executing only the first statement from the Employee table and not the 5 queries from the Department table.

<class name=”com.Department” table=”Department” lazy=”true” > …. </class>

Only one query is required to return an employee object with its department initialized. In Hibernate, lazy
loading of persistent objects are facilitated by proxies (i.e. virtual proxy design pattern). In the above example
you have a Department object, which has a collection of Employee objects. Let’s say that Employee objects
are lazy loaded. If you make a call department.getEmployees() then Hibernate will load only the employeeIDs
and the version numbers of the Employee objects, thus saving loading of individual objects until later. So what
you really have is a collection of proxies not the real objects. The reason being, if you have hundreds of
employees for a particular department then chances are good that you will only deal with only a few of them.
So, why unnecessarily instantiate all the Employee objects? This can be a big performance issue in some
situations.

 Avoid N+1 selects problem: Having looked at the N+1 problem occurring inadvertently due to not having a

lazy association in the previous example, now what if we need the Departmental information in addition to the
Employee details. It is not a good idea to execute N+1 times.

Emerging Technologies/Frameworks…

334

<class name=”com.Department” table=”Department” lazy=”true” > …. </class>

Now to retrieve Departmental info you would:

Query query = session.createQuery(“from Employee emp”);
List list = query.list();
Iterator it = list.iterator();

while(iter.hasNext()) {
 Employee emp = (Employee) it.next();
 emp.getDepartment().getName(); //N+1 problem. Since Department is not already loaded so
 //additional query is required for each department.
}

The solution is to make sure that the initial query retrieves all the data needed to load the objects by issuing a
HQL fetch join (eager loading) as shown below:

“from Employee emp join fetch emp.Department dept”

The above HQL results in an inner join SQL as shown below:

SELECT <fields from Employee & Department> FROM employee
 inner join department on employee.departmentId = department.id.

Alternatively you can use a criteria query as follows:

Criteria crit = session.createCriteria(Employee.class);
crit.setFetchMode(“department”, FetchMode.EAGER);

The above approach creates the following SQL:

SELECT <fields from Employee & Department> FROM employee
 left outer join department on employee.departmentId = department.id where 1=1;

Tips on Hibernate best practices:

• Define equals() and hashCode() methods with the semi unique business key attributes (should not use the

indentifier property) for the entity objects that are stored in a collection like a Set. Follow the equals() &
hashCode() contracts.

• Leave all your associations by default as lazy and also specify an appropriate batch-size for performance.

Also make it a conscious choice to eagerly fetch data only for specific use cases.

• Define your session management (i.e. use of detached objects etc), caching (both 1st level & 2nd level cache)
and flush (i.e. auto-flush vs defining your own synchronization points etc) strategies early in your project.

• Prefer using bi-directional associations for a one-to-many association with an inverse=”true” attribute for

efficiency. Also use batch updates/inserts for bulk inserts/updates (may even consider using Stored
Procedures directly for large data).

• Where possible use surrogate key as your identifier as opposed to using composite keys.

• Keep your database transactions as short as possible with the use of detached objects and also understand

the Hibernate object life cycles and states.

• Use Spring ORM support for hibernate, which reduces the code size by almost a half and provides additional
benefits such as easier testing, consistent exception hierarchy and management of Hibernate resources.
Spring exceptions are unchecked and hence you do not have to write any try{} catch{} and finally{} semantics
and also you can manage the transactions declaratively via Spring transaction management (Refer Q43 in
Enterprise section) using Spring AOP (Refer Q3 in Emerging Technologies/Frameworks section).

Q 17: Give an overview of the Spring framework? What are the benefits of Spring framework? FAQ
A 17: The Spring framework is the leading full-stack Java/J2EE application framework. Unlike other frameworks, Spring

does not impose itself on the design of a project due to its modular nature and, it has been divided logically into

Emerging Technologies/Frameworks…

335

independent packages, which can function independently. It provides a light weight container and a non-invasive
programming model enabled by the use of dependency injection (aka IoC), AOP (Aspect Oriented
Programming), and portable service abstractions (JdbcTemplate, JmsTemplate etc).

It includes abstraction layers for transactions, persistence frameworks (e.g. HibernateTemplate support for
Hibernate), Web development, a JDBC integration framework, an AOP integration framework, email support, Web
Services (i.e. JAX-RPC) support etc. It also provides integration modules for popular Object-to-Relational (O/R)
mapping tools like Hibernate, JDO etc. The designers of an application can feel free to use just a few Spring
packages and leave out the rest. The other spring packages can be introduced into an existing application in a
phased manner. Spring is based on the IoC pattern (aka Dependency Injection pattern) and also complements
OOP (Object Oriented Programming) with AOP (Aspect Oriented Programming). You do not have to use AOP if
you do not want to and AOP complements Spring IoC to provide a better middleware solution.

As shown in the diagram below the Spring modules are built on top of the core container, which defines how
beans are configured, created and managed.

S p r in g f ra m e w o rk m o d u le s

S p r in g C o re (B e a n c o n ta in e r, S u p p o rt in g u til itie s)

S p r in g A O P

S p r in g O R M
(H ib e rn a te s u p p o r t,

J D O s u p p o rt e tc)

S p rin g D A O
(T ra n s a c tio n s u p p o rt,
D A O s u p p o rt , J D B C

s u p p o r t e t c)

S p r in g W e b
(w e b u tilit ie s , w e b c o n te x t

e tc) S p r in g W e b
M V C

(M V C f ra m e w o rk ,
w e b v ie w s , J S P ,

P D F e tc)S p r in g C o n te x t
(U I s u p p o rt , a p p lic a tio n

c o n t e x t, m a il, E J B
s u p p o rt e tc)

Q. Where does Spring fit in your J2EE architecture?

Where does Sping framework fit in?

Web Container

EJB Container

Application Server

This shaded area can be run outside the container if remote
access is not required. It can be tested outside the container
by injecting business objects and DAOs into the test cases.
Later on can be deployed into the container along with EJBs
if remote access is required.

Sp
rin

g
 IO

C
+

AO
P

Business
Objects

DAOs

Sp
rin

g
 H

ibe
rn

at
e

te
m

pla
te

 su
pp

or
t /

 JD
BC

te
m

pla
te

 su
pp

or
t e

tc
Hi

be
rn

at
e

Database

EJ
B

 (o
nly

 if
re

m
ot

e
ac

ce
ss

 is
 re

qu
ire

d)

Spring MVC
Spring IOC

Br
ow

se
r (

W
eb

 c
lie

nt
)

I
n
t
e
r
n
e
t JD

BC

Sp
rin

g
 IO

C
+

AO
P

Benefits of Spring framework:

• Spring can effectively organize your middle tier objects as shown in the diagram above, whether or not you

choose to use EJB. Applications built using Spring are easy to test. For example: As shown in the diagram
above with the shaded area, your business logic and data access logic can be easily tested outside the
container by injecting (i.e. dependency injection. Spring supports constructor and setter dependency

Emerging Technologies/Frameworks…

336

injections) business objects and DAO objects into your JUnit test cases and later on if remote access is
required, can be deployed inside the EJB container with a thin layer (i.e. no business logic) of EJBs (i.e.
stateless session beans for remote access). Spring also provides support for proxying remote calls via RMI,
JAX-RPC etc.

• Spring can facilitate good programming practice by encouraging programming to interfaces rather than to

implementation.

• Spring provides a consistent framework for data access, whether using JDBC or O/R mapping frameworks like
Hibernate, TopLink or JDO. Spring ORM support for hibernate reduces the code size by almost a half and
provides additional benefits such as easier testing, consistent exception hierarchy (Spring folds your
SQLException to a common set of unchecked exceptions) and management of Hibernate resources like
SessionFactory. Spring exceptions are unchecked and hence you do not have to write any try{} catch{} and
finally{} semantics and also you can manage the transactions declaratively via Spring transaction management
(Refer Q43 in Enterprise section) using Spring AOP (Refer Q3 in Emerging Technologies/Frameworks
section).

Hibernate persistence code without and with Spring

Without Spring ORM support
With Spring ORM support

publi List getCustomers() throws MyCheckedException {
 List customers = null;
 Session session = null;
 try {
 session = sessionFactory.openSession();
 customers = session.find(“from Customer ”);
 }
 catch(Exception ex){
 //handle exception
 }

 finally{
 session.close();
 }
 return customers;
}

publi List getCustomers () {
 return getHibernateTemplate().find (“from Customer ”);
 }

• Spring provides a consistent abstraction for transaction management by supporting different transaction APIs
such as JTA, JDBC, Hibernate, iBATIS and JDO. Supports both programmatic transaction management and
declarative transaction management (preferred approach for transaction management since it has least impact
on application code due to its non-invasive nature). Unlike EJB, Spring does not have a default support for
distributed transactions (i.e. XA transactions -) but can plug-in a JTA transaction manager.

Q. What is the important consideration if you are using Spring declarative transaction management
with EJB (i.e. for remote access)?

You need to turn off the EJB transaction support by setting the transaction attribute to “NotSupported”

<container-transaction >
 <method >
 <ejb-name>CRMService</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
</container-transaction>

• JDBC applications are verbose with try{}, catch{} and finally blocks and very tedious to write. A good

abstraction layer like Spring lets you customize a default JDBC with a query and anonymous inner class (Refer
Q35 in Java section) to eliminate much of the code. You do not have to worry about managing the resources
like DataSource, Connection, Statement and ResultSet, configuring your DataSource, managing transactions
and SQLExceptions. Spring IoC + AOP (for declarative transaction) will take care of all these.

Emerging Technologies/Frameworks…

337

JDBC persistence code without and with Spring IOC

Without Spring IOC With Spring IOC support
DataSource ds = (DataSource) getLocatorInstance().getService("jdbc/Names");
Connection con = ds.getConnection();
Statement stmt = null;
ResultSet rs = null;

final List listNames = new ArrayList(20);

try{
 stmt = con.createStatement();
 rs = stmt.executeQuery("SELECT user.name as name From User user");
 while(rs.next()){
 names.add(rs.getString(“name”));
 }
}

catch(Exception ex){
 //handle exception code.
}

finally{
 try{
 if(rs != null) rs.close()
 if(stmt != null) stmt.close();
 if(con != null) con.close();
 }
 catch(Exception ex){
 //handle exception code
 }
}

JdbcTemplate template = new JdbcTemplate(dataSource);
final List listNames = new ArrayList(20);

template.query(“SELECT User.name as name FROM User” ,

 new RowCallbackHandler () {
 public void processRow (ResultSet rs) throws SQLException {
 names.add(rs.getString(“name”));
 }
 });

Q 18: How would EJB 3.0 simplify your Java development compared to EJB 1.x, 2.x ? FAQ
A 18: EJB 3.0 is taking ease of development very seriously and has adjusted its model to offer the POJO (Plain Old

Java Object) persistence and the new O/R mapping model inspired by and based on Hibernate (a less
intrusive model). In EJB 3.0, all kinds of enterprise beans are just POJOs. EJB 3.0 extensively uses Java
annotations, which replace excessive XML based configuration files and eliminate the need for rigid component
model used in EJB 1.x, 2.x. Annotations can be used to define a bean’s business interface, O/R mapping
information, resource references etc. EJB 3.0 also supports XML files for overriding default values and configuring
external resources such as database connections.

 In EJB 1.x, 2.x the container manages the behavior and internal state of the bean instances at runtime. All

the EJB 1.x, 2.x beans must adhere to a rigid specification. In EJB 3.0, all container services can be
configured and delivered to any POJO in the application via annotations. You can build complex object
structures with POJOs. Java objects can inherit from each other. EJB 3.0 components are only
coupled via their published business interfaces hence the implementation classes can be changed without
affecting rest of the application. This makes the application more robust, easier to test, more portable and
makes it easier to build loosely coupled business components in POJO.

The business interface:
public interface Account {
 public void deposit(double amount);
}

The bean implementation class:
@Stateless
@Remote({Account.class})
public class AccountBean implements Account {
 public void deposit(double amount){
 //….
 }
}

you can also specify multiple interfaces for a session bean. One for local clients and one for remote clients.

Emerging Technologies/Frameworks…

338

 EJB 3.0 unlike EJB 1.x, 2.x does not have a home interface. The bean class may or may not implement a
business interface. If the bean class does not implement any business interface, a business interface will
be generated using the public methods. If only certain methods should be exposed in the business
interface, all of those methods can be marked with @BusinessMethod annotation.

 EJB 3.0 defines smart default values. For example by default all generated interfaces are local, but the

@Remote annotation can be used to indicate that a remote interface should be generated.

 The EJB 3.0 (i.e, Inversion Of Control design pattern) container takes care of the creation, pooling and
destruction of the session bean instances and the application only works with the business interfaces. But
if the application needs a finer control over the session beans, for example to perform database
initialization when the container creates the session bean or close external connection etc, you can
implement lifecycle callback methods in the bean class. These methods are called by the container at
various stages(e.g. bean creation and destruction) of the bean’s lifecycle. Unlike EJB 2.1, where all
callback methods must be implemented even if they are empty, EJB 3.0 beans can have any number of
callback methods (i.e. even no methods at all) with any method name. In EJB 3.0, you can specify any
bean method as a callback by annotating it with the following annotations @PostConstruct,
@PreDestroy, @PrePassivate, @PostPassivate, @PostActivate, @Init, @Remove (only
for stateful session beans) and @PostConstruct.

public class AccountBean implements Account {

 //...

 @PostConstruct
 public void initialize(){
 //initialize data from the database
 }

 @PreDestroy
 public void exit(){
 //save data back to the database
 }
}

 An MDB (Message Driven Bean) class must implement the MessageListener interface.

 EJB 3.0 makes use of dependency injection to make decoupled service objects and resources like queue

factories, queues etc available to any POJO. Using the @EJB annotation, you can inject an EJB stub into
any POJO managed by the EJB 3.0 container and using @Resource annotation you can inject any
resource from the JNDI.

public class AccountMDB implements MessageListener {

 @EJB Account account;

 //use the “account” variable
 // … …
}

 EJB 3.0 wires runtime services such as transaction management, security, logging, profiling etc to

applications at runtime. Since those services are not directly related to application’s business logic they are
not managed by the application itself. Instead, the services are transparently applied by the container
utilizing AOP (Aspect Oriented Programming). To apply a transaction attribute to a POJO method using
annotation:

public class Account {

 @TransactionAttribute(TransactionAttributeType.REQUIRED)

public getAccountDetails(){
 //…
 }
}

 In EJB 3.0, you can extend the container services by writing your own interceptors using the
@AroundInvoke annotation. You can specify any bean method as the interceptor method that will execute
before and after any other bean method runs.

Emerging Technologies/Frameworks…

339

@Stateful
public class AccountBean implements Account {

 // bean methods that are to be intercepted by the log() method
 // … …

 @AroundInvoke

public Object log(InvocationContext ctx) throws Exception {
 //…
 }
}

 EJB 3.0 supports both unidirectional and bidirectional relationships between entity beans. To create an

entity bean, you only need to code a bean class and annotate it with appropriate metadata annotations.
The bean class is a POJO.

@Entity
public class AccountEntityBean {
 private Integer accountNumber;
 private String accountName;

 @id (generate=AUTO)
 public Integer getUserId() {
 return this.accountNumber;
 }

 //getters & setters
 //… …

}

 EJB QL queries can be defined through the @NamedQuery annotation. You can also create regular JDBC

style queries using the EntityManager. POJOs are not persistent by birth and become persistent once it is
associated with an EntityManager.

Q. What recent technology trends are vital to enterprise Web development?

• Component based Web frameworks like JSF and Tapestry.
• Ajax (Asynchronous JavaScript and XML).

Q. What is a component based and event-driven Web framewok? How do they differ from request based
frameworks like Struts?

Struts and many other MVC Web frameworks are request based and to achieve reusability you typically develop JSP tag libraries and/or
include files with common functionality. This approach of reusability is not only ugly but also difficult to achieve code reuse. Component
based and event-driven Web frameworks have emerged to provide better code reuse and improve ease of development. These
component based frameworks provide an API for developing reusable features that are easily packaged and reused across applications.
These frameworks are very useful when developing large Web applications or many Web applications with common functionality. The
leading contenders in this space of component based and event-driven frameworks are JavaServer Faces (JSF) and Tapestry.
These frameworks

• bury the Servlet API deep down and shield the developer from having to work directly with the Servlet API.
• bind Web display controls directly to Java object properties and user interactions like button click etc are mapped directly Java event

handling methods in these Java objects (just like Swing).
• allow you to group and package chunks of functionality into components to be reused in different contexts or applications. The

standard framework ships with the core components, enabling the most commonly required functionality and you can make use of
these components to build more reusable components more specific to your application or industry.

Both the JSF and Tapestry address the above mentioned fundamentals but they differ greatly the way they implement these
fundamentals.

Q 19: Briefly explain key features of the JavaServer Faces (JSF) framework?
A 19: JavaServer Faces is a new framework for building Web applications using Java. JSF provides you with the

following main features:

Emerging Technologies/Frameworks…

340

 Basic user interface components like buttons, input fields, links etc. and custom components like tree/table
viewer, query builder etc. JSF was built with a component model in mind to allow tool developers to
support Rapid Application Development (RAD). User interfaces can be created from these reusable server-
side components.

 Provides a set of JSP tags to access interface components. Also provides a framework for implementing

custom components.

 Supports mark up languages other than HTML like WML (Wireless Markup Language) by encapsulating

event handling and component rendering. There is a single controller servlet every request goes through
where the job of the controller servlet is to receive a faces page with components and then fire off events
for each component to render the components using a render tool kit.

 Uses a declarative navigation model by defining the navigation rules inside the XML configuration file

faces-config.xml . This configuration file also defines bean resources used by JSF.

 JSF can hook into your model, which means the model is loosely coupled from JSF.

JavaServer Faces application structure

Web

WEB-INF

JSPs

classes

lib jsf-impl.jar
jsf-api.jar

faces-config.xml
web.xml

input_accountNumber.jsp
output_accountNumber.jsp

AccountBean.class

Let’s look at some code snippets. Texts are stored in a properties file called message.properties so that this
properties file can be quickly modified without having to modify the JSPs and also more maintainable because
multiple JSP pages can use the same property.

account_nuber = Account number
account_button = Get account details
account_message=Processing account number :

input_accountNumber.jsp

<%@ taglib uri="http://java.sun.com.jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com.jsf/core" prefix="f" %>
<f:loadBundle basename="messages" var="msg"/>

<html>
 ...
 <body>
 <f:view>
 <h:form id="accountForm">
 <h:outputText value="#{msg.account_number}" />
 <h:inputText value="#{accountBean.accountNumber}" />
 <h:commandButton action="getAccount" value="#{msg.account_button}" />
 </h:form>
 </f:view>
 </body>
</html>

AccountBean.Java

public class AccountBean {
 String accountNumber;

Emerging Technologies/Frameworks…

341

 public String getAccountNumber() {
 return accountNumber;
 }

 public void setAccountNumber(String accountNumber) {
 this.accountNumber = accountNumber;
 }

}

faces-config.xml

...
<faces-config>

 <navigation-rule>
 <form-view-id>/jsps/input_accountNumber.jsp</form-view-id>
 <navigation-case>
 <from-outcome>getAccount</from-outcome>
 <to-view-id>/jsps/output_accountNumber.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
 ...

 <managed-bean>
 <managed-bean-name>accountBean</managed-bean-name>
 <managed-bean-class>AccountBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>

</faces-config>

output_accountNumber.jsp

<html>
 ...
 <body>
 <f:view>
 <h3>
 <h:outputText value="#{msg.account_message}" />
 <h:outputText value="#{accountBean.accountNumber}" />
 </h3>
 </f:view>
 </body>
</html>

Q 20: How would the JSF framework compare with the Struts framework? How would a Spring MVC framework compare

with Struts framework?
A 20:

Struts framework JavaServer Faces
More matured since Struts has been around for a few
years. It has got several successful implementations.

Less matured than Struts.

The heart of Struts framework is the controller, which
uses the front controller design pattern and the
command design pattern. Struts framework has got
only single event handler for the HTTP request.

The heart of JSF framework is the Page Controller Pattern where
there is a front controller servlet where all the faces request go
through with the UI components and then fire off events for each
component and render the components using a render toolkit. So
JSF can have several event handlers on a page. Also JSF
loosely couples your model, where it can hook into your model (i.e
unlike Struts your model does not have to extend JSF classes).

Struts does not have the vision of Rapid Application
Development (RAD).

JSF was built with a component model in mind to allow RAD. JSF
can be thought of as a combination of Struts framework for thin
clients and the Java Swing user interface framework for thick
clients.

Has got flexible page navigation using navigation rules
inside the struts-config.xml file and Action classes
using mapping.findForward (…) .

JSF allows for more flexible navigation and a better design
because the navigation rule (specified in faces-config.xml) is
decoupled from the Action whereas Struts forces you to hook
navigation into your Action classes.

Emerging Technologies/Frameworks…

342

Struts is a sturdy frame work which is extensible and
flexible. The existing Struts applications can be
migrated to use JSF component tags instead of the
original Struts HTML tags because Struts tags are
superseded and also not undergoing any active
development. You can also use the Struts-Faces
Integration library to migrate your pages one page at
a time to using JSF component tags.

JSF is more flexible than Struts because it was able to learn from
Struts and other Web frameworks. JSF is also more extensible and
can integrate with RAD tools etc. So JSF will be a good choice for
new applications.

Struts framework Spring MVC framework
Both are request based MVC frameworks.

Struts addresses only the
presentation aspects of application
development.

Spring MVC is an integral part of the Spring framework, which fully integrates Spring
with the rest of the framework that manage business components as well as other
aspects of Spring enterprise development. Spring Controllers are configured via IoC
like any other objects and this makes Spring MVC easier to test compared to Struts.
Spring, like WebWork, provides interceptors as well as controllers, making it easy to
factor out behavior common to the handling of many requests.

In Struts, Actions are core
"processing" objects of the
framework. They play the role of
controllers in the MVC pattern.

Spring uses the Controller interface. In other words, Controllers process user input and
dispatch to view components in Spring. The most significant difference between the
Struts Action and the Spring Controller is that Actions are abstract classes and
Controllers are interfaces. This design based on “code to interface” principle gives
Spring MVC greater flexibility by minimizing the coupling between the application and
the framework itself.

Struts actions are configured as
“mappings” in struts-config.xml.
Struts uses its own ActionServlet
class mapped in the web.xml file.

Spring Controllers are configured as “beans” in <servlet-name>-servlet.xml. e.g.
action-servlet.xml where “action” is the servlet name configured in web.xml file.

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

Struts has specialized ActionForm
objects to map request
parameters.

The Spring MVC framework support mapping request parameters directly into POJOs
(Plain Old Java Objects). This feature greatly simplifies application maintenance by
limiting the number of classes to create and maintain.

Struts uses ActionMapping objects
to represent resources such as
Actions, JSPs, HTML files, Tiles
etc.

This is a bit similar to ModelAndView interface in Spring. Spring also offers better
integration with different view technologies like Velocity, XSLT etc and also enables
you to integrate your own templating language into Spring with the View interface.

Struts uses its own tag library. E.g.
html, bean and logic tag prefixes.

Spring leverages JSTL and JSP expression language (EL). Spring MVC only offers a
small tag library for binding of command objects into Web form.

Pages can be composed using tiles (template) framework or decorated using SIteMesh (Servlet filter) framework.

Validation can be supported by using the Commons validator framework consisting of validation.xml and validator-rule.xml
files.

Note: Recently a new type of Web programming has challenged the other Web frameworks called the Rich Internet Application (RIA).
These applications are typically use technologies such as Ajax which involves JavaScript to communicate with the server without
reloading a Web page.

Q. What is Ajax ?

There is a lot of hype surrounding the latest Web development Ajax (Asynchronous JavaScript And XML). The intent of
Ajax is to make Web pages more responsive and interactive by exchanging small amounts of data with the server behind
the scenes without refreshing the page, so that the entire Web page does not have to be reloaded each time the user
makes a change. Ajax technique uses a combination of JavaScript, XHTML (or HTML) and XMLHttp.

Emerging Technologies/Frameworks…

343

Q. Where to use Ajax ? What is the benefit of Ajax ?

In an application that requires a lot of interactivity with a business or service layer sitting on the server, where the user
must reload the entire page many times. This will offer the benefits of reducing the load on the server and improving the
productivity of the user due to faster response (unlike the traditional architecture where the user must wait for the entire
Web page to reload to see the new results from the server, Ajax brings down JavaScript calls and the actual data. So
Ajax pages appear to load quickly since the payload coming down from the server is much smaller in size than bringing
down the entire HTML page in the traditional architecture).

General Tip #10:

Some interviewers would like to ask brain teaser questions to evaluate your mental agility. It is even more vital for the entry level
positions. These brain teaser questions can help evaluate your aptitude to learn new things faster.

Questions:

Q1: If you are given a two-armed scale and 8 balls of which one is heavier than the other 7 balls. How would you go about determining
the heavier ball by using the scale only twice?

Q2: If you have two containers, one holds 5 liters of milk and the other holds 3 liters of milk. How will you measure exactly 4 liters into the
five liter container? (It is okay to waste milk and you can have as much milk as you like).

Q3: If you have 6 pairs of blue gloves and 4 pairs of black gloves are in a box. If you are blind folded, then how many gloves do you have
to pull out before you have got a match?

Q4: If your clock shows 9:45 pm, then calculate the angle between the hour hand and the minute hand?

Q5: If you need to take a tiger, a cow and a pile of hay from one side of a river to another side by boat. You can only take one thing at a
time and care should be taken what two things you leave behind together. For example if you decide to take the pile of hay first to the
other side then you will be leaving behind the tiger and the cow this side, which can result in tiger eating the cow. [HINT: The cow can
eat the pile of hay but not the tiger]

Answers:

A1: Put 3 balls on each side of the scale. Measure 1 If the arms are equal, then you know that the heavier ball is one of the two
remaining. Measure 2 So weigh these two remaining balls and you will find out which is heavier.

Measure 1 If the arms are unequal when you weighed three balls in each arm then take the three balls on the heavier side and pick
any two balls out of those three Measure 2 and weigh them against each other to find which is heavier. If they are equal then the
remaining ball is the heavy one.

A2: Fill up the 3 liter container with milk and pour it into the 5 liter container. Fill up the 3 liter container again with milk and pour it into the
5 liter container on top of the 3 liter which is already there. So you will be left with 1 liter in the 3 liter container and 5 liters in the 5 liter
container. Now, empty the 5 liter container and pour the 1 liter from the 3 liter container into the 5 liter container. Fill up the 3 liter
container again and pour into the 5 liter container on top of the 1 liter already there to get 4 liters.

A3: To get matching gloves you need to pick three gloves because there are only 2 colors. i.e blue, blue, black (you have a match on
blue) or blue, black, black (you have a match on black) or black, blue, black (you have a match on black) and so on.

A4: When the minute hand is in 45 minutes (that is pointing against 9) the hour hand would have moved three-fourth of an hour (that is
¾ of the way to 10). Each hour division is 360 degrees / 12 hours = 30 degrees. So three-fourth of an hour is 30*(3/4) = 22.5 degrees.

A5: Firstly take the cow across to the other side of the river and leave behind the tiger with the pile of hay on this side because the tiger
would not eat the hay. Come back and take the pile of hay to the other side of the river and bring back the cow with you to this side
because you cannot leave behind the cow and the hay together. Take the tiger to the other side. Now you can leave behind the tiger and
the hay on the other side. Come back again and finally take the cow to the other side.

So far you have briefly looked at some of the emerging paradigms like Dependency Injection (aka IoC -- Inversion Of Control), AOP
(Aspect Oriented Programming), annotations, O/R mapping, component based Web technology and some of the frameworks, which are
based on these paradigms like Spring (IoC & AOP), Java 5.0 annotations, Hibernate (O/R mapping), JSF (component based web
framework) etc. These paradigms and frameworks simplify your programming model by hiding the complexities behind the framework
and minimizing the amount of code an application developer has to write.

Sample interview questions

344

SECTION FIVE

Sample interview questions…

Tips:

 Try to find out the needs of the project in which you will be working and the

needs of the people within the project.

 80% of the interview questions are based on your own resume.

 Where possible briefly demonstrate how you applied your skills/knowledge in the

key areas as described in this book. Find the right time to raise questions and
answer those questions to show your strength.

 Be honest to answer technical questions, you are not expected to know

everything (for example you might know a few design patterns but not all of
them etc).

 Do not be critical, focus on what you can do. Also try to be humorous.

 Do not act in superior way.

General Tip #11:

There is a difference between looking excited about a job or a job offer and looking desperate for one. Do not immediately
jump at the opportunity. If you have any impending interviews ask the interviewer for some time to respond to the offer.
Never give into the pressure (e.g. this is the best job and if you do not take it right now you might miss out etc) from the
job agencies. Interviewers are generally happy to wait for the right candidate. Give yourself attention to all the aspects on
offer like salary, type of industry (finance, telecom, consulting etc), opportunity for growth, type of project (large scale
mission critical, medium sized etc), type of role (design, development and design, team lead, architect etc), type of
technology used and opportunity to learn new things (e.g. Spring, Hibernate, Tapestry, JSF, Web services, messaging
etc) to keep you motivated at your job as well as improve your future job prospects. Never think of salary aspect alone.
You should have a long term plan. Sometimes it is worth your while to compromise on a few quid to acquire most sought
after skills (at the time of writing Spring, Hibernate, JSF, Tapestry etc) and/or valuable skills (design skills, leadership
skills etc). So for each interview you attend keep a checklist of aspects on offer and always act calmly and professionally
to make the right decision for you.

Sample interview questions

345

Java

Questions Hint
Multi-threading
What language features are available to allow shared access to data in a multi-threading
environment?

Synchronized block,
Synchronized method,
wait, notify

What is the difference between synchronized method and synchronized block? When
would you use?

Block on subset of data. Smaller code
segment.

What Java language features would you use to implement a producer (one thread) and a
consumer (another thread) passing data via a stack?

wait, notify

Data Types
What Java classes are provided for date manipulation? Calendar, Date
What is the difference between String and StringBuffer? mutable, efficient
How do you ensure a class is Serializable? Implement Serializable
What is the difference between static and instance field of a class Per class vs. Per Object
What method do you need to implement to store class in Hashtable or HashMap? hashCode(), equals()
How do you exclude a field of the class from serialization? transient
Inheritance
What is the difference between an Interface and an abstract base class? interface inheritance, implementation

inheritance.
What does overriding a method mean? (What about overloading?) inheritance (different signature)
Memory
What is the Java heap, and what is the stack? dynamic, program thread execution.
Why does garbage collection occur and when can it occur? To recover memory, as heap gets full.
If I have a circular reference of objects, but I no longer reference any of them from any
executing thread, will these cause garbage collection problems?

no

Exceptions
What is the problem or benefits of catching or throwing type “java.lang.Exception”? Hides all subsequent exceptions.
What is the difference between a runtime exception and a checked exception? Must catch or throw checked

exceptions.

Web components

Questions HINT
JSP
What is the best practice regarding the use of scriptlets in JSP pages? (Why?) Avoid
How can you avoid scriptlet code? custom tags, Java beans
What do you understand by the term JSP compilation? compiles to servlet code
Servlets
What does Servlet API provide to store user data between requests? HttpSession
What is the difference between forwarding a request and redirecting? redirect return to browser
What object do you use to forward a request? RequestDispatcher
What do you need to be concerned about with storing data in a servlet instance fields? Multi-threaded.
What’s the requirement on data stored in HttpSession in a clustered (distributable)
environment?

Serializable

If I store an object in session, then change its state, is the state replicated to distributed
Session?

No, only on setAttribute() call.

How does URL-pattern for servlet work in the web.xml? /ddd/* or *.jsp
What is a filter, and how does it work? Before/after request, chain.

Enterprise

Questions Hint
JDBC
What form of statement would you use to include user-supplied values? PreparedStatement
Why might a preparedStatement be more efficient than a statement? Execution plan cache.
How would you prevent an SQL injection attack in JDBC? PreparsedStatement
What is the performance impact of testing against NULL in WHERE clause on Oracle? Full table scan.
List advantages and disadvantages in using stored procedures? Pro: integration with existing dbase,

reduced network traffic
Con: not portable, mutliple language

Sample interview questions

346

knowledge required
What is the difference between sql.Date, sql.Time, and sql.Timestamp? Date only, time only, date and time
If you had a missing int value how do you indicate this to PreparedStatement? setNull(pos, TYPE)
How can I perform multiple inserts in one database interaction? executeBatch
Given this problem: Program reads 100,000 rows, converts to Java class in list, then
converts list to XML file using reflection. Runs out of program memory. How would you
fix?

Read one row at time, limit select,
allocate more heap (result set =
cursor)

How might you model object inheritance in database tables? Table per hierarchy, table per class,
table per concrete class

JNDI
What are typical uses for the JNDI API within an enterprise application Resource management, LDAP access
Explain the difference between a lookup of these “java:comp/env/ejb/MyBean” and
“ejb/MyBean”?

logical mapping performed for
java:comp/env

What is the difference between new InitialContext() from servlet or from an EJB? Different JNDI environments initialized.
EJB controller by ejb-jar.xml, servlet
by web.xml

What is an LDAP server used for in an enterprise environment? authentication, authorization
What is authentication, and authorization? Confirming identity, confirming access

rights
EJB
What is the difference between Stateless and Stateful session beans (used?) Stateful holds per client state
What is the difference between Session bean and Entity bean (when used?) Entity used for persistence
With Stateless Session bean pooling, when would a container typically take a instance
from the pool and when would it return it?

for each business method

What is the difference between “Required”, “Supports”, “RequiresNew” “NotSupported”,
“Mandatory”, “Never”

Needs transaction, existing OK but
doesn’t need, must start new one,
suspends transaction, must already be
started, error if transaction

What is “pass-by-reference” and “pass-by-value”, and how does it affect J2EE
applications?

Reference to actual object versus copy
of object. RMI pass by value

What EJB patterns, best practices are you aware of? Describe at least two. Façade, delegate, value list, DAO,
value object

How do you define finder methods for a CMP? Home, XML
If I reference an EJB from another EJB what can I cache to improve performance, and
where should I do the caching?

Home, set it up in setSessionContext

Describe some issues/concerns you have with the J2EE specification Get their general opinion of J2EE
Why is creating field value in setSessionContext of a performance benefit? pooled, gc
What is the difference between System exception and application exception from an EJB
method?

System exception, container will auto
rollback

What do you understand by the term “offline optimistic locking” or long-lived business
transaction? How might you implement this using EJB?

version number, date, field
comparisons

Explain performance difference between getting a list of summary information (e.g.
customer list) via finder using a BMP entity vs. Session using DAO?

BMP: n+1 database reads, n RMI calls

What is meant by a coarse-grained and a fine-grained interface? Amount of data transferred per method
call

XML/XSLT
What is the difference between a DOM parser and a SAX parser? DOM: reads entire model, SAX: event

published during parsing
What is the difference between DTD and XML Schema? level of detail, Schema is in XML.
What does the JAXP API do for you? Parser independence
What is XSLT and how can it be used? XML transformation
What would be the XPath to select any element called table with the class attribute of
info?

Table[@class=’info’]

JMS
How can asynchronous events be managed in J2EE? JMS
How do transactions affect the onMessage() handling of a MDB? Taking off queue
If you send a JMS message from an EJB, and transaction rollback, will message be
sent?

yes

How do you indicate what topic or queue MDB should react to? deployment descriptor
What is the difference between a topic and a queue? broadcast, single
SOAP
What is a Web service, and how does it relate to SOAP? SOAP is the protocol
What is a common transport for SOAP messages? HTTP
What is WSDL? How would you use a WSDL file? XML description of Web Service:

interface and how to bind to it.
With new J2EE SOAP support what is: JAXR, JAX-RPC, and SAAJ? registry, rap, attachments
Security
Where can container level security be applied in J2EE application? Web Uri’s, EJB methods
How can the current user be obtained in a J2EE application (Web and Enterprise)? getUserPrincipal

Sample interview questions

347

getCallerPrincipal
How can you perform role checks in a J2EE application (Web and enterprise)? IsUserInRole()

IsCallerInRole()

Design

Questions Hint
OO
Name some type of UML diagrams. class, sequence, activity, use case
Describe some types of relationships can you show on class diagrams? generalization, aggregation, uses
What is the difference between association, aggregation, and generalization? Relationship, ownership, inheritance
What is a sequence diagram used to display? Object instance interactions via

operations/signals
What design patterns do you use. Describe one you have used (not singleton) e.g. Builder, Factory, Visitor, Chain of

Command
Describe the observer pattern and an example of how it would be used e.g. event notification when model

changes to view
What are Use Cases? Define interaction between actors and

the system
What is your understanding of encapsulation? Encapsulate data and behavior within

class
What is your understanding of polymorphism? Class hierarchy, runtime determine

instance
Process
Have you heard of or used test-driven development? e.g. XP process
What previous development process have you followed? Rational, XP, waterfall
How do you approach capturing client requirements? Numbered requirements, use case
What process steps would you include between the capture of requirements and when
coding begins?

Architecture, Design, UML modeling

How would you go about solving performance issue in an application? Set goals, establish bench, profile
application, make changes one at a
time

What developer based testing are you familiar with (before system testing?) Unit test discussion
How might you test a business system exposed via a Web interface? Automated script emulating browser
What is your experience with iterative development? Multiple iteration before release
Distributed Application
Explain a typical architecture of a business system exposed via Web interface? Explain tiers (presentation, enterprise,

resource) Java technology used in
each tiers, hardware distribution of
Web servers, application server,
database server

Describe what tiers you might use in a typical large scale (> 200 concurrent users)
application and the responsibilities of each tier (where would validation, presentation,
business logic, persistence occur).

Another way of asking same question
as above if their answer wasn’t
specific enough

Describe what you understand by being able to “scale” an application? How does a J2EE
environment aid scaling.

Vertical and Horizontal scaling. Thread
management, clustering, split tiers

What are some security issues in Internet based applications? authentication, authorization, data
encryption, denial service, xss attacks

General

Questions Hints
What configuration management are you familiar with? e.g. CVS, ClearCase
What issue/tracking process have you followed? Want details on bug recording and

resolution process.
What are some key factors to working well within a team? Gets a view on how you would work

within interviewer’s environment.
What attributes do you assess when considering a new job? (what makes it a good one) Insight into what motivates you.
What was the last computing magazine you read? Last computing book? What is a
regular online magazine/reference you use?

Understand how up to date you keep
yourself.

GLOSSARY OF TERMS

348

GLOSSARY OF TERMS

TERM DESCRIPTION
ACID Atomicity, Consistency, Isolation, Durability.
Ajax Asynchronous JavaScript And XML
aka also known as.
AOP Aspect Oriented Programming
API Application Programming Interface
AWT Abstract Window Toolkit
BLOB Binary Large Object
BMP Bean Managed Persistence
CGI Common Gateway Interface
CLOB Character Large OBject
CMP Container Managed Persistence
CORBA Common Object Request Broker Architecture
CRM Customer Relationships Management
CRUD Create, Read, Update and Delete
CSS Cascading Style Sheets
csv Comma Separated Value
CRC Cyclic Redundancy Checks
DAO Data Access Object
DNS Domain Name Service
DOM Document Object Model
DTD Document Type Definition
EAR Enterprise ARchive
EIS Enterprise Information System
EJB Enterprise JavaBean
EL Expression Language
ERP Enterprise Resource Planning
FDD Feature Driven Development
GIF Graphic Interchange Format
GOF Gang Of Four
HQL Hibernate Query Language.
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
I/O Input/Output
IDE Integrated Development Environment
IIOP Internet Inter-ORB Protocol
IoC Inversion of Control
IP Internet Protocol
J2EE Java 2 Enterprise Edition
JAAS Java Authentication and Authorization Service
JAF JavaBeans Activation Framework
JAR Java ARchive
JAXB Java API for XML Binding
JAXP Java API for XML Parsing
JAXR Java API for XML Registries
JAX-RPC Java API for XML-based RPC
JAX-WS Java API for XML-based Web Services
JCA J2EE Connector Architecture
JDBC Java Database Connectivity
JDK Java Development Kit
JFC Java Foundation Classes
JMS Java Messaging Service
JMX Java Management eXtensions
JNDI Java Naming and Directory Interface
JNI Java Native Interface
JRMP Java Remote Method Protocol
JSF JavaServer Faces
JSP Java Server Pages
JSTL Java Standard Tag Library
JTA Java Transaction API
JVM Java Virtual Machine
LDAP Lightweight Directory Access Protocol

GLOSSARY OF TERMS

349

MOM Message Oriented Middleware
MVC Model View Controller
NDS Novell Directory Service
NIO New I/O
O/R mapping Object to Relational mapping.
OO Object Oriented
OOP Object Oriented Programming
OOPL Object Oriented Programming Language
ORB Object Request Broker
ORM Object to Relational Mapping.
POJI Plain Old Java Interface
POJO Plain Old Java Object
RAR Resource adapter ARchive
RDBMS Relational Database Management System
RMI Remote Method Invocation
RPC Remote Procedure Call
RUP Rational Unified Process
SAAJ SOAP with attachment API for Java
SAX Simple API for XML
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TDD Test Driven Development
UDDI Universal Description Discovery and Integration
UDP User Datagram Protocol
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF
VO Value Object which is a plain Java class which has attributes or fields and corresponding getter getXXX()

and setter setXXX() methods .
WAR Web ARchive
WML Wireless Markup Language
WSDL Web Service Description Language
XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language
XP Extreme Programming
XPath XML Path
XSD XML Schema Definition
XSL Extensible Style Language
XSL-FO Extensible Style Language – Formatting Objects
XSLT Extensible Style Language Transformation

RESOURCES

350

RESOURCES

Articles

 Sun Java Certified Enterprise Architect by Leo Crawford on http://www.leocrawford.org.uk/work/jcea/part1/index.html.
 Practical UML: A Hands-On Introduction for Developers by Randy Miller on http://bdn.borland.com/article/0,1410,31863,00.html
 W3 Schools on http://www.w3schools.com/default.asp.
 LDAP basics on http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzahy/rzahyovrco.htm.
 Java World articles on design patterns: http://www.javaworld.com/columns/jw-Java-design-patterns-index.shtml.
 Web Servers vs. App Servers: Choosing Between the Two By Nelson King on

http://www.serverwatch.com/tutorials/article.php/1355131.
 Follow the Chain of Responsibility by David Geary on Java World - http://www.javaworld.com/javaworld/jw-08-2003/jw-0829-

designpatterns.html.
 J2EE Design Patterns by Sue Spielman on http://www.onjava.com/pub/a/onjava/2002/01/16/patterns.html.
 The New Methodology by Martin Fowler on http://www.martinfowler.com/articles/newMethodology.html.
 Merlin brings nonblocking I/O to the Java platform by Aruna Kalagnanam and Balu G on

http://www.ibm.com//developerworks/Java/library/j-javaio.
 Hibernate Tips and Pitfalls by Phil Zoio on http://www.realsolve.co.uk/site/tech/hib-tip-pitfall-series.php.
 Hibernate Reference Documentation on http://www.hibernate.org/hib_docs/reference/en/html_single/.
 Object-relation mapping without the container by Richard Hightower on http://www-128.ibm.com/developerworks/library/j-

hibern/?ca=dnt515.
 Object to Relational Mapping and Relationships with Hibernate by Mark Eagle on http://www.meagle.com:8080/hibernate.jsp.
 Mapping Objects to Relational databases: O/R Mapping In detail by Scott W. Ambler on

http://www.agiledata.org/essays/mappingObjects.html.
 I want my AOP by Ramnivas Laddad on Java World.
 WebSphere Application Server 5.0 for iSeries – Performance Considerations by Jill Peterson.
 Dependency Injection using pico container by Subbu Ramanathan .
 WebSphere Application Server & Database Performance tuning by Michael S. Pallos on

http://www.bizforum.org/whitepapers/candle-5.htm.
 A beginners guide to Dependency Injection by Dhananjay Nene on

http://www.theserverside.com/articles/article.tss?l=IoCBeginners.
 The Spring series: Introduction to the Spring framework by Naveen Balani on http://www-

128.ibm.com/developerworks/web/library/wa-spring1.
 The Spring Framework by Benoy Jose.
 Inversion of Control Containersband the Dependency Injection pattern by Martin Fowler.
 Migrate J2EE Applications for EJB 3.0 by Debu Panda on JavaPro.
 EJB 3.0 in a nutshell by Anil Sharma on JavaWorld.
 Preparing for EJB 3.0 by Mike Keith on ORACLE Technology Network.
 Simplify enterprise Java development with EJB 3.0 by Michael Juntao Yuan on JavaWorld.
 J2SE: New I/O by John Zukowski on http://java.sun.com/developer/technicalArticles/releases/nio/.
 High-Performance I/O arrives by Danniel F. Savarese on JavaPro.
 Hibernate – Proxy Visitor Pattern by Kurtis Williams.
 Best Practices for Exception Handling by Gunjan Doshi.
 Three Rules for Effective Exception Handling by Jim Cushing.
 LDAP and JNDI: Together forever – by Sameer Tyagi.
 Introduction To LDAP – by Brad Marshall.
 Java theory and practice: Decorating with dynamic proxies by Brian Goetz.
 Java Dynamic Proxies: One Step from Aspect-Oriented Programming by Lara D’Abreo.
 Java Design Patterns on http://www.allapplabs.com/java_design_patterns .
 Software Design Patterns on http://www.dofactory.com/Patterns/Patterns.aspx .
 JRun: Core Dump and Dr. Watson Errors on http://www.macromedia.com/cfusion/knowledgebase/index.cfm?id=tn_17534
 The Guerrilla Guide to Interviewing by Joel Spolsky at http://www.joelonsoftware.com/printerFriendly/articles/fog0000000073.html
 The Riddle of Job Interviews by Kate Kane at http://www.fastcompany.com/online/01/jobint_Printer_Fiendly.html
 An Introduction to Aspect-Oiented Programming with the Spring Framework, Part 1 by Russell Miles at

http://www.onjava.com/lpt/a/4994
 5 Habits Of Best Software Developers by Angusman Chakraborty at http://blog.taragana.com/index.php/archive/5-habits-of-best-

doftware-developers/
 Getting started with Hibernate by Alan P Saxton at http://www.cs.bham.ac.uk/~aps/syllabi/2004_2005/issws/h03/hibernate.html
 Hibernate Tips by Jason Carreira at http://jroller.com/page/jcarreira/20050223
 Five Things I Love About Spring by Bruce A. Tate at http://www.onjava.com/lpt/a/5833
 Service-oriented modeling and architecture by Ali Arsanjani , Ph.D at http://www-

128.ibm.com/developerworks/webservices/library/ws-soa-design1/
 Delving into Service-Oriented Architecture by Bernhad Borges, Kerrie Holley and Ali Arsanjani at

http://www.developer.com/design/print.php/10925_3409221_1
 SOA: Are We Reinventing the Wheel? By Nick Simha at http://dev2dev.bea.com/lpt/a/435
 Getting a little closer to SOA by Fabrice Marguerie at http://madgeek.com/Articles/SOA/EN/SOA-Softly.html
 What is sevice-oriented architecture by Raghu R. Kodali at http://www.javaworld.com/javaworld/jw-06-2005/jw-0613-soa_p.html

RESOURCES

351

 J2EE-Supported Web Service standards and Technologies by Vijay Ramachandran, Sean Brydon, Greg Murray. Inderjeet Singh,
Beth Stearns, Thierry Violleau.

 J2EE 1.4 eases Web service development by Frank Sommers at http://www.javaworld.com/javaworld/jw-06-2003/jw-0620-
webservices_p.html

 A developer’s introduction to JAX-RPC, Part 1 & 2 by Joshy Joseph at http://www-
128.ibm.com/developerworks/webservices/library/

 Developing Web Services with Java 2 Platform, Enterprise Edition (J2EE) 1.4 Platform by Qusay H. Mahmoud at
http://java.sun.com/developer/technicalArticles/J2EE/j2ee_ws/

 Scriptless JSP Pages: The Front Man by Bear Bibeault at http://www.javaranch.com/journal/200603/Journal200603.jsp
 Advanced DAO programming by Sean Sullivan at http://www-128.ibm.com/developerworks/library/j-dao/
 Understanding JavaServer Pages Model 2 architecture by Govind Seshadri at http://www.javaworld.com/javaworld/jw-12-1999/jw-

12-ssj-jspmvc_p.html
 A Fast Introduction to Basic Servlet Programming by Marty Hall at

http://www.informit.com/articles/printerfriendly.asp/p=29817&r1=1
 What’s new in J2Se 5.0? based on Joshua Bloch’s on-line talk.
 Introducing Java 5 by Andy Grant at http://www.sitepoint.com/print/introducing-java-5
 Experiences with the New Java 5 Language Features by Jess Garms and Tim Hanson at http://dev2dev.bea.com/lpt/a/442
 Five Favorite Features from 5.0 by David Flanagan at http://www.onjava.com/lpt/a/5799
 First among equals by Kevlin Henney at http://www.regdeveloper.com/2005/12/29/first_among_equals/print.html
 Painting in AWT and Swing by Amy Fowler.
 A Hands-On Introduction for Developers by Randy Miller at http://bdn.borland.com/article/0,1410,31863,00.html

 www.javaworld.com articles.
 http://www-128.ibm.com/developerworks/java articles.
 http://www.devx.com/java articles.
 www.theserverside.com/tss articles.
 http://javaboutique.internet.com/articles articles.

Books

 Beginning Java 2 by Ivor Horton.
 Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (GoF) .
 UML Distilled by Martin Fowler, Kendall Scott .
 Mastering Enterprise Java Beans II by Ed Roman, Scott Ambler, Tyler Jewell, Floyd Marinescu.
 EJB Design Patterns by Floyd Marinescu .
 Sun Certified Enterprise Architect for J2EE Technology Study Guide by Mark Cade and Simon Roberts.
 Professional Java Server Programming - J2EE edition by Wrox publication.
 Design Patterns Java Companion by James W. Cooper (Free download: http://www.patterndepot.com/put/8/JavaPatterns.htm).
 Test Driven Development – By Example, by Kent Beck.
 Effective Java – programming language guide by Joshua Bloch

INDEX

352

INDEX

Emerging Technologies/Frameworks
Briefly explain key features of the JavaServer Faces (JSF)

framework? 339
Explain Object-to-Relational (O/R) mapping? 323
Explain some of the pitfalls of Hibernate and explain how to

avoid them? 333
Give an overview of hibernate framework? 324
Give an overview of the Spring framework? 334
How would EJB 3.0 simplify your Java development

compared to EJB 1.x, 2.x? 337
How would the JSF framework compare with the Struts

framework? 341
What are the benefits of IoC (aka Dependency Injection)?

 322
What are the differences between OOP and AOP? 317
What are the different types of dependency injections? 321
What are the pros and cons of annotations over XML based

deployment descriptors? 318
What is aspect oriented programming? Explain AOP? 313
What is attribute or annotation oriented programming? 317
What is inversion of control (IoC) (also known as

dependency injection)? 319
What is Test Driven Development (TDD)? 312
What is the difference between a service locator pattern

and an inversion of control pattern? 323
What is the point of Test Driven Development (TDD)? 313
What is XDoclet? 319
Why dependency injection is more elegant than a JNDI

lookup to decouple client and the service? 323
Enterprise - Best practices and performance

considerations
Explain some of the J2EE best practices to improve

performance? 223
Explain some of the J2EE best practices? 222
Give some tips on J2EE application server performance

tuning? 222
Enterprise - EJB 2.x

Can an EJB client invoke a method on a bean directly? 168
Discuss EJB container security? 174
Explain EJB architecture? 165
Explain exception handling in EJB? 172
Explain lazy loading and dirty marker strategies? 179
How can we determine if the data is stale (for example

when using optimistic locking)? 174
How do you rollback a container managed transaction in

EJB? 173
How to design transactional conversations with session

beans? 172
What are EJB best practices? 176
What are isolation levels? 170
What are not allowed within the EJB container? 174
What are the implicit services provided by an EJB

container? 170
What are transactional attributes? 170
What is a business delegate? Why should you use a

business delegate? 176
What is a distributed transaction? What is a 2-phase

commit? 171
What is a fast-lane reader? 178
What is a Service Locator? 178
What is a session façade? 177
What is a value object pattern? 177
What is dooming a transaction? 171

What is the difference between Container Managed
Persistence (CMP) and Bean Managed Persistence
(BMP)? 168

What is the difference between EJB 1.1 and EJB 2.0? What
is the difference between EJB 2.x and EJB 3.0? 169

What is the difference between EJB and JavaBeans? 164
What is the difference between optimistic and pessimistic

concurrency control? 173
What is the difference between session and entity beans?

 168
What is the difference between stateful and stateless

session beans? 168
What is the role of EJB 2.x in J2EE? 163

Enterprise - J2EE
Explain J2EE class loaders? 105
Explain MVC architecture relating to J2EE? 99
Explain the J2EE 3-tier or n-tier architecture? 97
So what is the difference between a component and a

service you may ask? 96
What are ear, war and jar files? What are J2EE Deployment

Descriptors? 101
What is J2EE? What are J2EE components and services?

 95
What is the difference between a Web server and an

application server? 101
Why use design patterns in a J2EE application? 101

Enterprise - JDBC
Explain differences among java.util.Date, java.sql.Date,

java.sql.Time, and java.sql.Timestamp? 153
How to avoid the “running out of cursors” problem? 152
What are JDBC Statements? What are different types of

statements? How can you create them? 147
What is a Transaction? What does setAutoCommit do? 147
What is JDBC? How do you connect to a database? 145
What is the difference between JDBC-1.0 and JDBC-2.0?

What are Scrollable ResultSets, Updateable ResultSets,
RowSets, and Batch updates? 152

What is the difference between statements and prepared
statements? 153

Enterprise - JMS
Discuss some of the design decisions you need to make

regarding your message delivery? 186
Give an example of a J2EE application using Message

Driven Bean with JMS? 189
How JMS is different from RPC? 180
What are some of the key message characteristics defined

in a message header? 184
What is Message Oriented Middleware? What is JMS? 180
What type of messaging is provided by JMS? 185

Enterprise - JNDI & LDAP
Explain the difference between the look up of “java

comp/env/ejb/MyBean” and “ejb/MyBean”? 156
Explain the RMI architecture? 159
How will you pass parameters in RMI? 161
What are the differences between RMI and a socket? 161
What are the services provided by the RMI Object? 161
What is a JNDI InitialContext? 156
What is a remote object? Why should we extend

UnicastRemoteObject? 160
What is an LDAP server? And what is it used for in an

enterprise environment? 156
What is HTTP tunnelling or how do you make RMI calls

across firewalls? 161

INDEX

353

What is JNDI? And what are the typical uses within a J2EE
application? 155

What is the difference between RMI and CORBA? 161
Why use LDAP when you can do the same with relational

database (RDBMS)? 157
Enterprise - JSP

Explain hidden and output comments? 139
Explain the life cycle methods of a JSP? 133
How will you avoid scriptlet code in JSP? 144
Is JSP variable declaration thread safe? 139
Tell me about JSP best practices? 143
What are custom tags? Explain how to build custom tags?

 140
What are implicit objects and list them? 137
What are the differences between static and a dynamic

include? 137
What are the different scope values or what are the

different scope values for <jsp
usebean> ? 137

What are the main elements of JSP? What are scriplets?
What are expressions? 134

What is a JSP? What is it used for? What do you
understand by the term JSP translation phase or
compilation phase? 126

What is a TagExtraInfo class? 142
What is the difference between custom JSP tags and

Javabeans? 142
Enterprise - Logging, testing and deployment

Enterprise - Logging, testing and deployment 226
Give an overview of log4J? 225
How do you initialize and use Log4J? 225
What is the hidden cost of parameter construction when

using Log4J? 225
What is the test phases and cycles? 226

Enterprise - Personal
Have you used any load testing tools? 228
Tell me about yourself or about some of the recent projects

you have worked with? What do you consider your most
significant achievement? Why do you think you are
qualified for this position? Why should we hire you and
what kind of contributions will you make? 228

What operating systems are you comfortable with? 228, 229
What source control systems have you used? 228
Which on-line technical resources do you use to resolve

any design and/or development issues? 229
Enterprise - RUP & UML

Explain the 4 phases of RUP? 206
What are the characteristics of RUP? Where can you use

RUP? 208
What are the different types of UML diagrams? 208
What is RUP? 206
What is the difference between a collaboration diagram and

a sequence diagram? 213
What is the difference between aggregation and

composition? 213
When to use ‘use case’ diagrams? 209
When to use activity diagrams? 213
When to use class diagrams? 209
When to use interaction diagrams? 211
When to use object diagrams? 210
When to use package diagrams? 210
When to use statechart diagram? 212
Why is UML important? 208

Enterprise - Servlet
Briefly discuss the following patterns Composite view, View

helper, Dispatcher view and Service to worker? Or
explain J2EE design patterns? 123

Explain declarative security for Web applications? 122
Explain Servlet URL mapping? 125
Explain the directory structure of a Web application? 114
Explain the Front Controller design pattern or explain J2EE

design patterns? 122
Explain the life cycle methods of a servlet? 113

How do you get your servlet to stop timing out on a really
long database query? 118

How do you make a Servlet thread safe? What do you need
to be concerned about with storing data in Servlet
instance fields? 117

How would you get the browser to request for an updated
page in 10 seconds? 109

HTTP is a stateless protocol, so, how do you maintain
state? How do you store user data between requests?
 110

If an object is stored in a session and subsequently you
change the state of the object, will this state change
replicated to all the other distributed sessions in the
cluster? 121

What are the considerations for servlet clustering? 120
What are the different scopes or places where a servlet can

save data for its processing? 110
What are the ServletContext and ServletConfig objects?

What are Servlet environment objects? 115
What are the two objects a servlet receives when it accepts

a call from its client? 109
What can you do in your Servlet/JSP code to tell browser

not to cache the pages? 109
What is a filter, and how does it work? 121
What is a RequestDispatcher? What object do you use to

forward a request? 119
What is pre-initialization of a Servlet? 119
What is the difference between CGI and Servlet? 108
What is the difference between doGet () and doPost () or

GET and POST? 115
What is the difference between forwarding a request and

redirecting a request? 119
What is the difference between HttpServlet and

GenericServlet? 116
What is the difference between request parameters and

request attributes? 109
Which code line should be set in a response object before

using the PrintWriter or the OutputStream? 110
Enterprise - Software development process

What software development processes/principles are you
familiar with? 230

Enterprise - SQL, Tuning and O/R mapping
Explain a sub-query? How does a sub-query impact on

performance? 198
Explain inner and outer joins? 197
How can you performance tune your database? 199
How do you implement one-to-one, one-to-many and many-

to-many relationships while designing tables? 199
How do you map inheritance class structure to relational

data model? 201
How will you map objects to a relational database? How will

you map class inheritance to relational data model? 200
What is a view? Why will you use a view? What is an

aggregate function? 201
What is normalization? When to denormalize? 199

Enterprise - Struts
Are Struts action classes thread-safe? 216
Give an overview of Struts? 214
How do you implement internationalization in Struts? 216
How do you upload a file in Struts? 216
What design patterns are used in Struts? 217
What is a synchronizer token pattern in Struts or how will

you protect your Web against multiple submissions? 215
What is an action mapping in Struts? How will you extend

Struts? 217
Enterprise - Web and Application servers

Explain Java Management Extensions (JMX)? 219
What application servers, Web servers, LDAP servers, and

Database servers have you used? 218
What is a virtual host? 218
What is application server clustering? 219
What is the difference between a Web server and an

application server? 218

INDEX

354

Enterprise - Web and Applications servers
Explain some of the portability issues between different

application servers? 220
Enterprise - XML

Explain where your project needed XML documents? 196
How do you write comments in an XML document? 195
What is a CDATA section in an XML? 194
What is a namespace in an XML document? 195
What is a valid XML document? 195
What is a version information in XML? 194
What is a well-formed XML document? 195
What is the difference between a SAX parser and a DOM

parser? 190
What is XML? And why is XML important? 190
What is XPATH? What is XSLT/XSL/XSL-FO/XSD/DTD

etc? What is JAXB? What is JAXP? 191
What is your favorite XML framework or a tool? 196
Which is better to store data as elements or as attributes?

 191
Why use an XML document as opposed to other types of

documents like a text file etc? 196
How would you go about...?

How would you go about applying the design patterns in
your Java/J2EE application? 253

How would you go about applying the Object Oriented (OO)
design concepts in your Java/J2EE application? 247

How would you go about applying the UML diagrams in
your Java/J2EE project? 249

How would you go about describing the open source
projects like JUnit (unit testing), Ant (build tool), CVS
(version control system) and log4J (logging tool) which
are integral part of most Java/J2EE projects? 292

How would you go about describing the software
development processes you are familiar with? 251

How would you go about describing Web services? 3, 299
How would you go about designing a Java/J2EE

application? 240
How would you go about designing a Web application

where the business tier is on a separate machine from
the presentation tier. The business tier should talk to 2
different databases and your design should point out the
different design patterns? 286

How would you go about determining the enterprise
security requirements for yor Java/J2EE application?287

How would you go about documenting your Java/J2EE
application? 239

How would you go about identifying any potential thread-
safety issues in your Java/J2EE application? 245

How would you go about identifying any potential
transactional issues in your Java/J2EE application? 246

How would you go about identifying performance and/or
memory issues in your Java/J2EE application? 243

How would you go about improving performance in your
Java/J2EE application? 244

How would you go about minimizing memory leaks in your
Java/J2EE application? 244

Java
Briefly explain high-level thread states? 58
Discuss the Java error handling mechanism? What is the

difference between Runtime (unchecked) exceptions
and checked exceptions? What is the implication of
catching all the exceptions with the type “Exception”? 53

Explain different ways of creating a thread? 57
Explain Java class loaders? Explain dynamic class loading?

 15
Explain Outer and Inner classes (or Nested classes) in

Java? When will you use an Inner Class? 49
Explain some of the new features in J2SE 5.0, which

improves ease of development 65
Explain static vs dynamic class loading? 16
Explain the assertion construct? 24
Explain the Java Collections Framework? 26

Explain the Java I/O streaming concept and the use of the
decorator design pattern in Java I/O? 42

Explain threads blocking on I/O? 61
Give a few reasons for using Java? 14
Give an example where you might use a static method? 46
How can threads communicate with each other? How would

you implement a producer (one thread) and a consumer
(another thread) passing data (via stack)? 59

How can you improve Java I/O performance? 44
How do you express an ‘is a’ relationship and a ‘has a’

relationship or explain inheritance and composition?
What is the difference between composition and
aggregation? 18

How does Java allocate stack and heap memory? Explain
re-entrant, recursive and idempotent
methods/functions? 48

How does the Object Oriented approach improve software
development? 18

How does thread synchronization occurs inside a monitor?
What levels of synchronization can you apply? What is
the difference between synchronized method and
synchronized block? 58

How will you call a Web server from a stand alone Java
application? 64

If 2 different threads hit 2 different synchronized methods in
an object at the same time will they both continue? 61

If you have a circular reference of objects, but you no
longer reference it from an execution thread, will this
object be a potential candidate for garbage collection?
 53

What are “static initializers” or “static blocks with no function
names”? 17

What are access modifiers? 46
What are some of the best practices relating to Java

collection? 30
What are the advantages of Object Oriented Programming

Languages (OOPL)? 18
What are the benefits of the Java Collections Framework?

 29
What are the flow control statements in Java 55
What are the non-final methods in Java Object class, which

are meant primarily for extension? 34
What are the usages of Java packages? 15
What do you know about the Java garbage collector? When

does the garbage collection occur? Explain different
types of references in Java? 51

What do you mean by polymorphism, inheritance,
encapsulation, and dynamic binding? 19

What is a daemon thread? 59
What is a factory pattern? 62
What is a final modifier? Explain other Java modifiers? 46
What is a singleton pattern? How do you code it in Java? 61
What is a socket? How do you facilitate inter process

communication in Java? 64
What is a user defined exception? 55
What is design by contract? Explain the assertion

construct? 22
What is serialization? How would you exclude a field of a

class from serialization or what is a transient variable?
What is the common use? 41

What is the difference between “==” and equals(…)
method? What is the difference between shallow
comparison and deep comparison of objects? 33

What is the difference between aggregation and
composition? 19

What is the difference between an abstract class and an
interface and when should you use them? 24

What is the difference between an instance variable and a
static variable? Give an example where you might use a
static variable? 46

What is the difference between C++ and Java? 14
What is the difference between constructors and other

regular methods? What happens if you do not provide a

INDEX

355

constructor? Can you call one constructor from another?
How do you call the superclass’ constructor? 17

What is the difference between final, finally and finalize() in
Java? 47

What is the difference between processes and threads? 56
What is the difference between yield and sleeping? 58
What is the main difference between a String and a

StringBuffer class? 38
What is the main difference between an ArrayList and a

Vector? What is the main difference between HashMap
and Hashtable? 25

What is the main difference between pass-by-reference and
pass-by-value? 40

What is the main difference between shallow cloning and
deep cloning of objects? 45

What is the main difference between the Java platform and
the other software platforms? 14

What is type casting? Explain up casting vs down casting?
When do you get ClassCastException? 50

When is a method said to be overloaded and when is a
method said to be overridden? 25

When providing a user defined key class for storing objects
in the HashMaps or Hashtables, what methods do you
have to provide or override (i.e. method overriding)? 36

When should you use a checked exception and when
should you use an unchecked exception 55

When to use an abstract class? 25
When to use an interface? 25
Where and how can you use a private constructor? 46
Why is it not advisable to catch type “Exception”? 54
Why should you catch a checked exception late in a catch

{} block? 55
Why should you throw an exception early? 54
Why there are some interfaces with no defined methods

(i.e. marker interfaces) in Java? 25
Why would you prefer a short circuit “&&, ||” operators over

logical “& , |” operators 47
Java - Applet

How will you communicate between two Applets? 76
How will you initialize an applet? 76
How would you communicate between applets and

servlets? 76
What is a signed Applet? 76
What is the difference between an applet and an

application? 77
What is the order of method invocation in an applet? 76

Java - Performance and Memory issues
How would you detect and minimize memory leaks in Java?

 81

How would you improve performance of a Java application?
 78

Why does the JVM crash with a core dump or a Dr.Watson
error? 81

Java - Personal
Did you have to use any design patterns in your Java

project? 83
Do you have any role models in software development? 88
How do you handle pressure? Do you like or dislike these

situations? 85
Java – Behaving right in an interview 89
Tell me about yourself or about some of the recent projects

you have worked with? What do you consider your most
significant achievement? Why do you think you are
qualified for this position? Why should we hire you and
what kind of contributions will you make? 83

What are your career goals? Where do you see yourself in
5-10 years? 85

What do you like and/or dislike most about your current
and/or last position? 84

What past accomplishments gave you satisfaction? What
makes you want to work hard? 88

What was the last Java related book or article you read? 87
Which Java related website(s) or resource(s) do you use to

keep your knowledge up to date beyond Google 88
Why are you leaving your current position? 84
Why do you want to work for us? 88

Java - Swing
Explain layout managers? 74
Explain the Swing Action architecture? 70
Explain the Swing delegation event model? 75
Explain the Swing event dispatcher mechanism? 73
How does Swing painting happen? How will you improve

the painting performance? 70
How will you go about building a Swing GUI client 69
If you add a component to the CENTER of a border layout,

which directions will the component stretch? 72
What do you understand by MVC as used in a JTable? 74
What is the base class for all Swing components? 72
What is the difference between AWT and Swing? 69

Java/J2EE - Personal
What are your strengths and weaknesses? Can you

describe a situation where you took initiative? Can you
describe a situation where you applied your problem
solving skills? 85

Key Points
Enterprise - Key Points 233
Java - Key Points 91

356

