

Learning	Apache	Kafka	Second	Edition

Table	of	Contents

Learning	Apache	Kafka	Second	Edition

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Errata

Piracy

Questions

1.	Introducing	Kafka

Welcome	to	the	world	of	Apache	Kafka

Why	do	we	need	Kafka?

Kafka	use	cases

Installing	Kafka

Installing	prerequisites

Installing	Java	1.7	or	higher

Downloading	Kafka

Building	Kafka

Summary

2.	Setting	Up	a	Kafka	Cluster

A	single	node	–	a	single	broker	cluster

Starting	the	ZooKeeper	server

Starting	the	Kafka	broker

Creating	a	Kafka	topic

Starting	a	producer	to	send	messages

Starting	a	consumer	to	consume	messages

A	single	node	–	multiple	broker	clusters

Starting	ZooKeeper

Starting	the	Kafka	broker

Creating	a	Kafka	topic	using	the	command	line

Starting	a	producer	to	send	messages

Starting	a	consumer	to	consume	messages

Multiple	nodes	–	multiple	broker	clusters

The	Kafka	broker	property	list

Summary

3.	Kafka	Design

Kafka	design	fundamentals

Log	compaction

Message	compression	in	Kafka

Replication	in	Kafka

Summary

4.	Writing	Producers

The	Java	producer	API

Simple	Java	producers

Importing	classes

Defining	properties

Building	the	message	and	sending	it

Creating	a	Java	producer	with	custom	partitioning

Importing	classes

Defining	properties

Implementing	the	Partitioner	class

Building	the	message	and	sending	it

The	Kafka	producer	property	list

Summary

5.	Writing	Consumers

Kafka	consumer	APIs

The	high-level	consumer	API

The	low-level	consumer	API

Simple	Java	consumers

Importing	classes

Defining	properties

Reading	messages	from	a	topic	and	printing	them

Multithreaded	Java	consumers

Importing	classes

Defining	properties

Reading	the	message	from	threads	and	printing	it

The	Kafka	consumer	property	list

Summary

6.	Kafka	Integrations

Kafka	integration	with	Storm

Introducing	Storm

Integrating	Storm

Kafka	integration	with	Hadoop

Introducing	Hadoop

Integrating	Hadoop

Hadoop	producers

Hadoop	consumers

Summary

7.	Operationalizing	Kafka

Kafka	administration	tools

Kafka	cluster	tools

Adding	servers

Kafka	topic	tools

Kafka	cluster	mirroring

Integration	with	other	tools

Summary

Index

Learning	Apache	Kafka	Second	Edition

Learning	Apache	Kafka	Second	Edition
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2013

Second	edition:	February	2015

Production	reference:	1210215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-309-0

www.packtpub.com

http://www.packtpub.com

Credits
Author

Nishant	Garg

Reviewers

Sandeep	Khurana

Saurabh	Minni

Supreet	Sethi

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Meeta	Rajani

Content	Development	Editor

Shubhangi	Dhamgaye

Technical	Editors

Manal	Pednekar

Chinmay	S.	Puranik

Copy	Editors

Merilyn	Pereira

Aarti	Saldanha

Project	Coordinator

Harshal	Ved

Proofreaders

Stephen	Copestake

Paul	Hindle

Indexer

Rekha	Nair

Graphics

Sheetal	Aute

Production	Coordinator

Nilesh	R.	Mohite

Cover	Work

Nilesh	R.	Mohite

About	the	Author
Nishant	Garg	has	over	14	years	of	software	architecture	and	development	experience	in
various	technologies,	such	as	Java	Enterprise	Edition,	SOA,	Spring,	Hadoop,	Hive,	Flume,
Sqoop,	Oozie,	Spark,	Shark,	YARN,	Impala,	Kafka,	Storm,	Solr/Lucene,	NoSQL
databases	(such	as	HBase,	Cassandra,	and	MongoDB),	and	MPP	databases	(such	as
GreenPlum).

He	received	his	MS	in	software	systems	from	the	Birla	Institute	of	Technology	and
Science,	Pilani,	India,	and	is	currently	working	as	a	technical	architect	for	the	Big	Data
R&D	Group	with	Impetus	Infotech	Pvt.	Ltd.	Previously,	Nishant	has	enjoyed	working
with	some	of	the	most	recognizable	names	in	IT	services	and	financial	industries,
employing	full	software	life	cycle	methodologies	such	as	Agile	and	SCRUM.

Nishant	has	also	undertaken	many	speaking	engagements	on	big	data	technologies	and	is
also	the	author	of	HBase	Essestials,	Packt	Publishing.

I	would	like	to	thank	my	parents	(Mr.	Vishnu	Murti	Garg	and	Mrs.	Vimla	Garg)	for	their
continuous	encouragement	and	motivation	throughout	my	life.	I	would	also	like	to	thank
my	wife	(Himani)	and	my	kids	(Nitigya	and	Darsh)	for	their	never-ending	support,	which
keeps	me	going.

Finally,	I	would	like	to	thank	Vineet	Tyagi,	CTO	and	Head	of	Innovation	Labs,	Impetus,
and	Dr.	Vijay,	Director	of	Technology,	Innovation	Labs,	Impetus,	for	encouraging	me	to
write.

About	the	Reviewers
Sandeep	Khurana,	an	18	years	veteran,	comes	with	an	extensive	experience	in	the
Software	and	IT	industry.	Being	an	early	entrant	in	the	domain,	he	has	worked	in	all
aspects	of	Java-	/	JEE-based	technologies	and	frameworks	such	as	Spring,	Hibernate,	JPA,
EJB,	security,	Struts,	and	so	on.	For	the	last	few	professional	engagements	in	his	career
and	also	partly	due	to	his	personal	interest	in	consumer-facing	analytics,	he	has	been
treading	in	the	big	data	realm	and	has	extensive	experience	on	big	data	technologies	such
as	Hadoop,	Pig,	Hive,	ZooKeeper,	Flume,	Oozie,	HBase	and	so	on.

He	has	designed,	developed,	and	delivered	multiple	enterprise-level,	highly	scalable,
distributed	systems	during	the	course	of	his	career.	In	his	long	and	fruitful	professional
life,	he	has	been	with	some	of	the	biggest	names	of	the	industry	such	as	IBM,	Oracle,
Yahoo!,	and	Nokia.

Saurabh	Minni	is	currently	working	as	a	technical	architect	at	AdNear.	He	completed	his
BE	in	computer	science	at	the	Global	Academy	of	Technology,	Bangalore.	He	is
passionate	about	programming	and	loves	getting	his	hands	wet	with	different	technologies.

At	AdNear,	he	deployed	Kafka.	This	enabled	smooth	consumption	of	data	to	be	processed
by	Storm	and	Hadoop	clusters.	Prior	to	AdNear,	he	worked	with	Adobe	and	Intuit,	where
he	dabbled	with	C++,	Delphi,	Android,	and	Java	while	working	on	desktop	and	mobile
products.

Supreet	Sethi	is	a	seasoned	technology	leader	with	an	eye	for	detail.	He	has	proven
expertise	in	charting	out	growth	strategies	for	technology	platforms.	He	currently	steers
the	platform	team	to	create	tools	that	drive	the	infrastructure	at	Jabong.	He	often	reviews
the	code	base	from	a	performance	point	of	view.	These	aspects	also	put	him	at	the	helm	of
backend	systems,	APIs	that	drive	mobile	apps,	mobile	web	apps,	and	desktop	sites.

The	Jabong	tech	team	has	been	extremely	helpful	during	the	review	process.	They
provided	a	creative	environment	where	Supreet	was	able	to	explore	some	of	cutting-edge
technologies	like	Apache	Kafka.

I	would	like	to	thank	my	daughter,	Seher,	and	my	wife,	Smriti,	for	being	patient	observers
while	I	spent	a	few	hours	everyday	reviewing	this	book.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
This	book	is	here	to	help	you	get	familiar	with	Apache	Kafka	and	to	solve	your	challenges
related	to	the	consumption	of	millions	of	messages	in	publisher-subscriber	architectures.	It
is	aimed	at	getting	you	started	programming	with	Kafka	so	that	you	will	have	a	solid
foundation	to	dive	deep	into	different	types	of	implementations	and	integrations	for	Kafka
producers	and	consumers.

In	addition	to	an	explanation	of	Apache	Kafka,	we	also	spend	a	chapter	exploring	Kafka
integration	with	other	technologies	such	as	Apache	Hadoop	and	Apache	Storm.	Our	goal
is	to	give	you	an	understanding	not	just	of	what	Apache	Kafka	is,	but	also	how	to	use	it	as
a	part	of	your	broader	technical	infrastructure.	In	the	end,	we	will	walk	you	through
operationalizing	Kafka	where	we	will	also	talk	about	administration.

What	this	book	covers
Chapter	1,	Introducing	Kafka,	discusses	how	organizations	are	realizing	the	real	value	of
data	and	evolving	the	mechanism	of	collecting	and	processing	it.	It	also	describes	how	to
install	and	build	Kafka	0.8.x	using	different	versions	of	Scala.

Chapter	2,	Setting	Up	a	Kafka	Cluster,	describes	the	steps	required	to	set	up	a	single-	or
multi-broker	Kafka	cluster	and	shares	the	Kafka	broker	properties	list.

Chapter	3,	Kafka	Design,	discusses	the	design	concepts	used	to	build	the	solid	foundation
for	Kafka.	It	also	talks	about	how	Kafka	handles	message	compression	and	replication	in
detail.

Chapter	4,	Writing	Producers,	provides	detailed	information	about	how	to	write	basic
producers	and	some	advanced	level	Java	producers	that	use	message	partitioning.

Chapter	5,	Writing	Consumers,	provides	detailed	information	about	how	to	write	basic
consumers	and	some	advanced	level	Java	consumers	that	consume	messages	from	the
partitions.

Chapter	6,	Kafka	Integrations,	provides	a	short	introduction	to	both	Storm	and	Hadoop
and	discusses	how	Kafka	integration	works	for	both	Storm	and	Hadoop	to	address	real-
time	and	batch	processing	needs.

Chapter	7,	Operationalizing	Kafka,	describes	information	about	the	Kafka	tools	required
for	cluster	administration	and	cluster	mirroring	and	also	shares	information	about	how	to
integrate	Kafka	with	Camus,	Apache	Camel,	Amazon	Cloud,	and	so	on.

What	you	need	for	this	book
In	the	simplest	case,	a	single	Linux-based	(CentOS	6.x)	machine	with	JDK	1.6	installed
will	give	a	platform	to	explore	almost	all	the	exercises	in	this	book.	We	assume	you	are
familiar	with	command	line	Linux,	so	any	modern	distribution	will	suffice.

Some	of	the	examples	need	multiple	machines	to	see	things	working,	so	you	will	require
access	to	at	least	three	such	hosts;	virtual	machines	are	fine	for	learning	and	exploration.

As	we	also	discuss	the	big	data	technologies	such	as	Hadoop	and	Storm,	you	will
generally	need	a	place	to	run	your	Hadoop	and	Storm	clusters.

Who	this	book	is	for
This	book	is	for	those	who	want	to	know	about	Apache	Kafka	at	a	hands-on	level;	the	key
audience	is	those	with	software	development	experience	but	no	prior	exposure	to	Apache
Kafka	or	similar	technologies.

This	book	is	also	for	enterprise	application	developers	and	big	data	enthusiasts	who	have
worked	with	other	publisher-subscriber-based	systems	and	now	want	to	explore	Apache
Kafka	as	a	futuristic	scalable	solution.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text	are	shown	as	follows:	“Download	the	jdk-7u67-linux-x64.rpm
release	from	Oracle’s	website.”

A	block	of	code	is	set	as	follows:

String	messageStr	=	new	String("Hello	from	Java	Producer");

KeyedMessage<Integer,	String>	data	=	new	KeyedMessage<Integer,	String>

(topic,	messageStr);

producer.send(data);

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

Properties	props	=	new	Properties();

props.put("metadata.broker.list","localhost:9092");

props.put("serializer.class","kafka.serializer.StringEncoder");

props.put("request.required.acks",	"1");

ProducerConfig	config	=	new	ProducerConfig(props);	

Producer<Integer,	String>	producer	=	new	Producer<Integer,	

				String>(config);

Any	command	line	input	or	output	is	written	as	follows:

[root@localhost	kafka-0.8]#	java	SimpleProducer	kafkatopic	Hello_There

New	terms	and	important	words	are	shown	in	bold.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Introducing	Kafka
In	today’s	world,	real-time	information	is	continuously	being	generated	by	applications
(business,	social,	or	any	other	type),	and	this	information	needs	easy	ways	to	be	reliably
and	quickly	routed	to	multiple	types	of	receivers.	Most	of	the	time,	applications	that
produce	information	and	applications	that	are	consuming	this	information	are	well	apart
and	inaccessible	to	each	other.	These	heterogeneous	application	leads	to	redevelopment
for	providing	an	integration	point	between	them.	Therefore,	a	mechanism	is	required	for
the	seamless	integration	of	information	from	producers	and	consumers	to	avoid	any	kind
of	application	rewriting	at	either	end.

Welcome	to	the	world	of	Apache	Kafka
In	the	present	big-data	era,	the	very	first	challenge	is	to	collect	the	data	as	it	is	a	huge
amount	of	data	and	the	second	challenge	is	to	analyze	it.	This	analysis	typically	includes
the	following	types	of	data	and	much	more:

User	behavior	data
Application	performance	tracing
Activity	data	in	the	form	of	logs
Event	messages

Message	publishing	is	a	mechanism	for	connecting	various	applications	with	the	help	of
messages	that	are	routed	between—for	example,	by	a	message	broker	such	as	Kafka.
Kafka	is	a	solution	to	the	real-time	problems	of	any	software	solution;	that	is	to	say,
dealing	with	real-time	volumes	of	information	and	routing	it	to	multiple	consumers
quickly.	Kafka	provides	seamless	integration	between	information	from	producers	and
consumers	without	blocking	the	producers	of	the	information	and	without	letting
producers	know	who	the	final	consumers	are.

Apache	Kafka	is	an	open	source,	distributed,	partitioned,	and	replicated	commit-log-based
publish-subscribe	messaging	system,	mainly	designed	with	the	following	characteristics:

Persistent	messaging:	To	derive	the	real	value	from	big	data,	any	kind	of
information	loss	cannot	be	afforded.	Apache	Kafka	is	designed	with	O(1)	disk
structures	that	provide	constant-time	performance	even	with	very	large	volumes	of
stored	messages	that	are	in	the	order	of	TBs.	With	Kafka,	messages	are	persisted	on
disk	as	well	as	replicated	within	the	cluster	to	prevent	data	loss.
High	throughput:	Keeping	big	data	in	mind,	Kafka	is	designed	to	work	on
commodity	hardware	and	to	handle	hundreds	of	MBs	of	reads	and	writes	per	second
from	large	number	of	clients.
Distributed:	Apache	Kafka	with	its	cluster-centric	design	explicitly	supports
message	partitioning	over	Kafka	servers	and	distributing	consumption	over	a	cluster
of	consumer	machines	while	maintaining	per-partition	ordering	semantics.	Kafka
cluster	can	grow	elastically	and	transparently	without	any	downtime.
Multiple	client	support:	The	Apache	Kafka	system	supports	easy	integration	of
clients	from	different	platforms	such	as	Java,	.NET,	PHP,	Ruby,	and	Python.
Real	time:	Messages	produced	by	the	producer	threads	should	be	immediately
visible	to	consumer	threads;	this	feature	is	critical	to	event-based	systems	such	as
Complex	Event	Processing	(CEP)	systems.

Kafka	provides	a	real-time	publish-subscribe	solution	that	overcomes	the	challenges	of
consuming	the	real-time	and	batch	data	volumes	that	may	grow	in	order	of	magnitude	to
be	larger	than	the	real	data.	Kafka	also	supports	parallel	data	loading	in	the	Hadoop
systems.

The	following	diagram	shows	a	typical	big	data	aggregation-and-analysis	scenario
supported	by	the	Apache	Kafka	messaging	system:

On	the	production	side,	there	are	different	kinds	of	producers,	such	as	the	following:

Frontend	web	applications	generating	application	logs
Producer	proxies	generating	web	analytics	logs
Producer	adapters	generating	transformation	logs
Producer	services	generating	invocation	trace	logs

On	the	consumption	side,	there	are	different	kinds	of	consumers,	such	as	the	following:

Offline	consumers	that	are	consuming	messages	and	storing	them	in	Hadoop	or
traditional	data	warehouse	for	offline	analysis
Near	real-time	consumers	that	are	consuming	messages	and	storing	them	in	any
NoSQL	datastore,	such	as	HBase	or	Cassandra,	for	near	real-time	analytics
Real-time	consumers,	such	as	Spark	or	Storm,	that	filter	messages	in-memory	and
trigger	alert	events	for	related	groups

Why	do	we	need	Kafka?
A	large	amount	of	data	is	generated	by	companies	having	any	form	of	web-	or	device-
based	presence	and	activity.	Data	is	one	of	the	newer	ingredients	in	these	Internet-based
systems	and	typically	includes	user	activity;	events	corresponding	to	logins;	page	visits;
clicks;	social	networking	activities	such	as	likes,	shares,	and	comments;	and	operational
and	system	metrics.	This	data	is	typically	handled	by	logging	and	traditional	log
aggregation	solutions	due	to	high	throughput	(millions	of	messages	per	second).	These
traditional	solutions	are	the	viable	solutions	for	providing	logging	data	to	an	offline
analysis	system	such	as	Hadoop.	However,	the	solutions	are	very	limiting	for	building
real-time	processing	systems.

According	to	the	new	trends	in	Internet	applications,	activity	data	has	become	a	part	of
production	data	and	is	used	to	run	analytics	in	real	time.	These	analytics	can	be:

Search-based	on	relevance
Recommendations	based	on	popularity,	co-occurrence,	or	sentimental	analysis
Delivering	advertisements	to	the	masses
Internet	application	security	from	spam	or	unauthorized	data	scraping
Device	sensors	sending	high-temperature	alerts
Any	abnormal	user	behavior	or	application	hacking

Real-time	usage	of	these	multiple	sets	of	data	collected	from	production	systems	has
become	a	challenge	because	of	the	volume	of	data	collected	and	processed.

Apache	Kafka	aims	to	unify	offline	and	online	processing	by	providing	a	mechanism	for
parallel	load	in	Hadoop	systems	as	well	as	the	ability	to	partition	real-time	consumption
over	a	cluster	of	machines.	Kafka	can	be	compared	with	Scribe	or	Flume	as	it	is	useful	for
processing	activity	stream	data;	but	from	the	architecture	perspective,	it	is	closer	to
traditional	messaging	systems	such	as	ActiveMQ	or	RabitMQ.

Kafka	use	cases
There	are	number	of	ways	in	which	Kafka	can	be	used	in	any	architecture.	This	section
discusses	some	of	the	popular	use	cases	for	Apache	Kafka	and	the	well-known	companies
that	have	adopted	Kafka.	The	following	are	the	popular	Kafka	use	cases:

Log	aggregation:	This	is	the	process	of	collecting	physical	log	files	from	servers	and
putting	them	in	a	central	place	(a	file	server	or	HDFS)	for	processing.	Using	Kafka
provides	clean	abstraction	of	log	or	event	data	as	a	stream	of	messages,	thus	taking
away	any	dependency	over	file	details.	This	also	gives	lower-latency	processing	and
support	for	multiple	data	sources	and	distributed	data	consumption.
Stream	processing:	Kafka	can	be	used	for	the	use	case	where	collected	data
undergoes	processing	at	multiple	stages—an	example	is	raw	data	consumed	from
topics	and	enriched	or	transformed	into	new	Kafka	topics	for	further	consumption.
Hence,	such	processing	is	also	called	stream	processing.
Commit	logs:	Kafka	can	be	used	to	represent	external	commit	logs	for	any	large
scale	distributed	system.	Replicated	logs	over	Kafka	cluster	help	failed	nodes	to
recover	their	states.
Click	stream	tracking:	Another	very	important	use	case	for	Kafka	is	to	capture	user
click	stream	data	such	as	page	views,	searches,	and	so	on	as	real-time	publish-
subscribe	feeds.	This	data	is	published	to	central	topics	with	one	topic	per	activity
type	as	the	volume	of	the	data	is	very	high.	These	topics	are	available	for
subscription,	by	many	consumers	for	a	wide	range	of	applications	including	real-time
processing	and	monitoring.
Messaging:	Message	brokers	are	used	for	decoupling	data	processing	from	data
producers.	Kafka	can	replace	many	popular	message	brokers	as	it	offers	better
throughput,	built-in	partitioning,	replication,	and	fault-tolerance.

Some	of	the	companies	that	are	using	Apache	Kafka	in	their	respective	use	cases	are	as
follows:

LinkedIn	(www.linkedin.com):	Apache	Kafka	is	used	at	LinkedIn	for	the	streaming
of	activity	data	and	operational	metrics.	This	data	powers	various	products	such	as
LinkedIn	News	Feed	and	LinkedIn	Today,	in	addition	to	offline	analytics	systems
such	as	Hadoop.
DataSift	(www.datasift.com):	At	DataSift,	Kafka	is	used	as	a	collector	to	monitor
events	and	as	a	tracker	of	users’	consumption	of	data	streams	in	real	time.
Twitter	(www.twitter.com):	Twitter	uses	Kafka	as	a	part	of	its	Storm—a	stream-
processing	infrastructure.
Foursquare	(www.foursquare.com):	Kafka	powers	online-to-online	and	online-to-
offline	messaging	at	Foursquare.	It	is	used	to	integrate	Foursquare	monitoring	and
production	systems	with	Foursquare-and	Hadoop-based	offline	infrastructures.
Square	(www.squareup.com):	Square	uses	Kafka	as	a	bus	to	move	all	system	events
through	Square’s	various	datacenters.	This	includes	metrics,	logs,	custom	events,	and
so	on.	On	the	consumer	side,	it	outputs	into	Splunk,	Graphite,	or	Esper-like	real-time

http://www.linkedin.com
http://www.datasift.com
http://www.twitter.com
http://www.foursquare.com
http://www.squareup.com

alerting.

Note
The	source	of	the	preceding	information	is
https://cwiki.apache.org/confluence/display/KAFKA/Powered+By.

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

Installing	Kafka
Kafka	is	an	Apache	project	and	its	current	version	0.8.1.1	is	available	as	a	stable	release.
This	Kafka	0.8.x	offers	many	advanced	features	compared	to	the	older	version	(prior	to
0.8.x).	A	few	of	its	advancements	are	as	follows:

Prior	to	0.8.x,	any	unconsumed	partition	of	data	within	the	topic	could	be	lost	if	the
broker	failed.	Now	the	partitions	are	provided	with	a	replication	factor.	This	ensures
that	any	committed	message	would	not	be	lost,	as	at	least	one	replica	is	available.
The	previous	feature	also	ensures	that	all	the	producers	and	consumers	are
replication-aware	(the	replication	factor	is	a	configurable	property).	By	default,	the
producer’s	message	sending	request	is	blocked	until	the	message	is	committed	to	all
active	replicas;	however,	producers	can	also	be	configured	to	commit	messages	to	a
single	broker.
Like	Kafka	producers,	the	Kafka	consumer	polling	model	changes	to	a	long-pulling
model	and	gets	blocked	until	a	committed	message	is	available	from	the	producer,
which	avoids	frequent	pulling.
Additionally,	Kafka	0.8.x	also	comes	with	a	set	of	administrative	tools,	such	as
controlled	cluster	shutdown	and	the	Lead	replica	election	tool,	for	managing	the
Kafka	cluster.

The	major	limitation	with	Kafka	version	0.8.x	is	that	it	can’t	replace	the	version	prior	to
0.8,	as	it	is	not	backward-compatible.

Coming	back	to	installing	Kafka,	as	a	first	step	we	need	to	download	the	available	stable
release	(all	the	processes	have	been	tested	on	64-bit	CentOS	6.4	OS	and	may	differ	on
other	kernel-based	OS).	Now	let’s	see	what	steps	need	to	be	followed	in	order	to	install
Kafka.

Installing	prerequisites
Kafka	is	implemented	in	Scala	and	uses	build	tool	Gradle	to	build	Kafka	binaries.	Gradle
is	a	build	automation	tool	for	Scala,	Groovy,	and	Java	projects	that	requires	Java	1.7	or
later.

Installing	Java	1.7	or	higher
Perform	the	following	steps	to	install	Java	1.7	or	later:

1.	 Download	the	jdk-7u67-linux-x64.rpm	release	from	Oracle’s	website:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

2.	 Change	the	file	mode	as	follows:

[root@localhost	opt]#chmod	+x	jdk-7u67-linux-x64.rpm	

3.	 Change	to	the	directory	in	which	you	want	to	perform	the	installation.	To	do	so,	type
the	following	command:

[root@localhost	opt]#	cd	<directory	path	name>

For	example,	to	install	the	software	in	the	/usr/java/	directory,	type	the	following
command:

[root@localhost	opt]#	cd	/usr/java

4.	 Run	the	installer	using	the	following	command:

[root@localhost	java]#	rpm	-ivh	jdk-7u67-linux-x64.rpm	

5.	 Finally,	add	the	environment	variable	JAVA_HOME.	The	following	command	will	write
the	JAVA_HOME	environment	variable	to	the	file	/etc/profile	that	contains	a	system-
wide	environment	configuration:

[root@localhost	opt]#	echo	"export	JAVA_HOME=/usr/java/jdk1.7.0_67	"	>>	

/etc/profile

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Downloading	Kafka
Perform	the	following	steps	to	download	Kafka	release	0.8.1.1:

1.	 Download	the	current	beta	release	of	Kafka	(0.8)	into	a	folder	on	your	filesystem	(for
example,	/opt)	using	the	following	command:

[root@localhost	opt]#wget	

http://apache.tradebit.com/pub/kafka/0.8.1.1/kafka_2.9.2-0.8.1.1.tgz

Note
The	preceding	URL	may	change.	Check	the	correct	download	version	and	location	at
http://kafka.apache.org/downloads.html.

2.	 Extract	the	downloaded	kafka_2.9.2-0.8.1.1.tgz	file	using	the	following
command:

[root@localhost	opt]#	tar	xzf	kafka_2.9.2-0.8.1.1.tgz

3.	 After	extraction	of	the	kafka_2.9.2-0.8.1.1.tgz	file,	the	directory	structure	for
Kafka	0.8.1.1	looks	as	follows:

4.	 Finally,	add	the	Kafka	bin	folder	to	PATH	as	follows:

[root@localhost	opt]#	export	KAFKA_HOME=/opt/kafka_2.9.2-0.8.1.1

[root@localhost	opt]#	export	PATH=$PATH:$KAFKA_HOME/bin

http://kafka.apache.org/downloads.html

Building	Kafka
The	default	Scala	version	that	is	used	to	build	Kafka	release	0.8.1.1	is	Scala	2.9.2	but	the
Kafka	source	code	can	also	be	compiled	from	other	Scala	versions	as	well,	such	as	2.8.0,
2.8.2,	2.9.1,	or	2.10.1.	Use	the	following	the	command	to	build	the	Kafka	source:

[root@localhost	opt]#	./gradlew	-PscalaVersion=2.9.1	jar

In	Kafka	8.x	onwards,	the	Gradle	tool	is	used	to	compile	the	Kafka	source	code	(available
in	kafka-0.8.1.1-src.tgz)	and	build	the	Kafka	binaries	(JAR	files).	Similar	to	Kafka
JAR,	the	unit	test	or	source	JAR	can	also	be	built	using	the	Gradle	build	tool.	For	more
information	on	build-related	instructions,	refer	to
https://github.com/apache/kafka/blob/0.8.1/README.md.

https://github.com/apache/kafka/blob/0.8.1/README.md

Summary
In	this	chapter,	we	have	seen	how	companies	are	evolving	the	mechanism	of	collecting
and	processing	application-generated	data,	and	are	learning	to	utilize	the	real	power	of	this
data	by	running	analytics	over	it.

You	also	learned	how	to	install	0.8.1.x.	The	following	chapter	discusses	the	steps	required
to	set	up	single-	or	multi-broker	Kafka	clusters.

Chapter	2.	Setting	Up	a	Kafka	Cluster
Now	we	are	ready	to	play	with	the	Apache	Kafka	publisher-subscriber	messaging	system.
With	Kafka,	we	can	create	multiple	types	of	clusters,	such	as	the	following:

A	single	node—single	broker	cluster
A	single	node—multiple	broker	clusters
Multiple	nodes—multiple	broker	clusters

A	Kafka	cluster	primarily	has	five	main	components:

Topic:	A	topic	is	a	category	or	feed	name	to	which	messages	are	published	by	the
message	producers.	In	Kafka,	topics	are	partitioned	and	each	partition	is	represented
by	the	ordered	immutable	sequence	of	messages.	A	Kafka	cluster	maintains	the
partitioned	log	for	each	topic.	Each	message	in	the	partition	is	assigned	a	unique
sequential	ID	called	the	offset.
Broker:	A	Kafka	cluster	consists	of	one	or	more	servers	where	each	one	may	have
one	or	more	server	processes	running	and	is	called	the	broker.	Topics	are	created
within	the	context	of	broker	processes.
Zookeeper:	ZooKeeper	serves	as	the	coordination	interface	between	the	Kafka
broker	and	consumers.	The	ZooKeeper	overview	given	on	the	Hadoop	Wiki	site	is	as
follows	(http://wiki.apache.org/hadoop/ZooKeeper/ProjectDescription):

“ZooKeeper	allows	distributed	processes	to	coordinate	with	each	other	through
a	shared	hierarchical	name	space	of	data	registers	(we	call	these	registers
znodes),	much	like	a	file	system.”

The	main	differences	between	ZooKeeper	and	standard	filesystems	are	that	every
znode	can	have	data	associated	with	it	and	znodes	are	limited	to	the	amount	of	data
that	they	can	have.	ZooKeeper	was	designed	to	store	coordination	data:	status
information,	configuration,	location	information,	and	so	on.

Producers:	Producers	publish	data	to	the	topics	by	choosing	the	appropriate	partition
within	the	topic.	For	load	balancing,	the	allocation	of	messages	to	the	topic	partition
can	be	done	in	a	round-robin	fashion	or	using	a	custom	defined	function.
Consumer:	Consumers	are	the	applications	or	processes	that	subscribe	to	topics	and
process	the	feed	of	published	messages.

So	let’s	start	with	a	very	basic	cluster	setup.

http://wiki.apache.org/hadoop/ZooKeeper/ProjectDescription

A	single	node	–	a	single	broker	cluster
This	is	the	starting	point	for	learning	Kafka.	In	the	previous	chapter,	we	installed	Kafka	on
a	single	machine.	Now	it	is	time	to	set	up	a	single	node	-	single	broker-based	Kafka
cluster,	as	shown	in	the	following	diagram:

Starting	the	ZooKeeper	server
Kafka	provides	the	default	and	simple	ZooKeeper	configuration	file	used	to	launch	a
single	local	ZooKeeper	instance	although	separate	ZooKeeper	installation	can	also	be
carried	out	while	setting	up	the	Kafka	cluster.	First	start	the	local	ZooKeeper	instance
using	the	following	command:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/zookeeper-server-start.sh		

config/zookeeper.properties

You	should	get	output	as	shown	in	the	following	screenshot:

Note
Kafka	comes	with	the	required	property	files	defining	minimal	properties	required	for	a
single	broker—single	node	cluster.

The	important	properties	defined	in	zookeeper.properties	are	shown	in	the	following
code:

#	Data	directory	where	the	zookeeper	snapshot	is	stored.

dataDir=/tmp/zookeeper

#	The	port	listening	for	client	request

clientPort=2181

#	disable	the	per-ip	limit	on	the	number	of	connections	since	this	is	a	

non-production	config

maxClientCnxns=0

By	default,	the	ZooKeeper	server	will	listen	on	*:2181/tcp.	For	detailed	information	on
how	to	set	up	multiple	ZooKeeper	servers,	visit	http://zookeeper.apache.org/.

http://zookeeper.apache.org/

Starting	the	Kafka	broker
Now	start	the	Kafka	broker	in	the	new	console	window	using	the	following	command:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-server-start.sh	

config/server.properties

You	should	now	see	output	as	shown	in	the	following	screenshot:

The	server.properties	file	defines	the	following	important	properties	required	for	the
Kafka	broker:

#	The	id	of	the	broker.	This	must	be	set	to	a	unique	integer	for	each	

broker.

Broker.id=0

#	The	port	the	socket	server	listens	on

port=9092

#	The	directory	under	which	to	store	log	files

log.dir=/tmp/kafka8-logs

#	The	default	number	of	log	partitions	per	topic.	

num.partitions=2

#	Zookeeper	connection	string	

zookeeper.connect=localhost:2181

The	last	section	in	this	chapter	defines	a	few	additional	and	important	properties	available
for	the	Kafka	broker.

Creating	a	Kafka	topic
Kafka	provides	a	command	line	utility	to	create	topics	on	the	Kafka	server.	Let’s	create	a
topic	named	kafkatopic	with	a	single	partition	and	only	one	replica	using	this	utility:

[root@localhost	kafka_2.9.2-0.8.1.1]#bin/kafka-topics.sh	--create	--

zookeeper	localhost:2181	--replication-factor	1	--partitions	1	--topic	

kafkatopic

Created	topic	"kafkatopic".

You	should	get	output	on	the	Kafka	server	window	as	shown	in	the	following	screenshot:

The	kafka-topics.sh	utility	will	create	a	topic,	override	the	default	number	of	partitions
from	two	to	one,	and	show	a	successful	creation	message.	It	also	takes	ZooKeeper	server
information,	as	in	this	case:	localhost:2181.	To	get	a	list	of	topics	on	any	Kafka	server,
use	the	following	command	in	a	new	console	window:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--list	--

zookeeper	localhost:2181

kafkatopic

Starting	a	producer	to	send	messages
Kafka	provides	users	with	a	command	line	producer	client	that	accepts	inputs	from	the
command	line	and	publishes	them	as	a	message	to	the	Kafka	cluster.	By	default,	each	new
line	entered	is	considered	as	a	new	message.	The	following	command	is	used	to	start	the
console-based	producer	in	a	new	console	window	to	send	the	messages:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-console-producer.sh	--

broker-list	localhost:9092	--topic	kafkatopic

The	output	will	be	as	shown	in	the	following	screenshot:

While	starting	the	producer’s	command	line	client,	the	following	parameters	are	required:

broker-list

topic

The	broker-list	parameter	specifies	the	brokers	to	be	connected	as
<node_address:port>—that	is,	localhost:9092.	The	kafkatopic	topic	was	created	in
the	Creating	a	Kafka	topic	section.	The	topic	name	is	required	to	send	a	message	to	a
specific	group	of	consumers	who	have	subscribed	to	the	same	topic,	kafkatopic.

Now	type	the	following	messages	on	the	console	window:

Type	Welcome	to	Kafka	and	press	Enter
Type	This	is	single	broker	cluster	and	press	Enter

You	should	see	output	as	shown	in	the	following	screenshot:

Try	some	more	messages.	The	default	properties	for	the	consumer	are	defined	in
producer.properties.	The	important	properties	are:

#	list	of	brokers	used	for	bootstrapping	knowledge	about	the	rest	of	the	

cluster

#	format:	host1:port1,host2:port2…

metadata.broker.list=localhost:9092

#	specify	the	compression	codec	for	all	data	generated:	none	,	gzip,	

snappy.

compression.codec=none

Detailed	information	about	how	to	write	producers	for	Kafka	and	producer	properties	will
be	discussed	in	Chapter	4,	Writing	Producers.

Starting	a	consumer	to	consume	messages
Kafka	also	provides	a	command	line	consumer	client	for	message	consumption.	The
following	command	is	used	to	start	a	console-based	consumer	that	shows	the	output	at	the
command	line	as	soon	as	it	subscribes	to	the	topic	created	in	the	Kafka	broker:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-console-consumer.sh	--

zookeeper	localhost:2181	--topic	kafkatopic	--from-beginning

On	execution	of	the	previous	command,	you	should	get	output	as	shown	in	the	following
screenshot:

The	default	properties	for	the	consumer	are	defined	in	/config/consumer.properties.
The	important	properties	are:

#	consumer	group	id	(A	string	that	uniquely	identifies	a	set	of	consumers	#	

within	the	same	consumer	group)

group.id=test-consumer-group

Detailed	information	about	how	to	write	consumers	for	Kafka	and	consumer	properties	is
discussed	in	Chapter	5,	Writing	Consumers.

By	running	all	four	components	(zookeeper,	broker,	producer,	and	consumer)	in
different	terminals,	you	will	be	able	to	enter	messages	from	the	producer’s	terminal	and
see	them	appearing	in	the	subscribed	consumer’s	terminal.

Usage	information	for	both	producer	and	consumer	command	line	tools	can	be	viewed	by
running	the	command	with	no	arguments.

A	single	node	–	multiple	broker	clusters
Now	we	have	come	to	the	next	level	of	the	Kafka	cluster.	Let	us	now	set	up	a	single	node	-
multiple	broker-based	Kafka	cluster	as	shown	in	the	following	diagram:

Starting	ZooKeeper
The	first	step	in	starting	ZooKeeper	remains	the	same	for	this	type	of	cluster.

Starting	the	Kafka	broker
For	setting	up	multiple	brokers	on	a	single	node,	different	server	property	files	are
required	for	each	broker.	Each	property	file	will	define	unique,	different	values	for	the
following	properties:

broker.id

port

log.dir

For	example,	in	server-1.properties	used	for	broker1,	we	define	the	following:

broker.id=1

port=9093

log.dir=/tmp/kafka-logs-1

Similarly,	for	server-2.properties,	which	is	used	for	broker2,	we	define	the	following:

broker.id=2

port=9094

log.dir=/tmp/kafka-logs-2

A	similar	procedure	is	followed	for	all	new	brokers.	While	defining	the	properties,	we
have	changed	the	port	numbers	as	all	additional	brokers	will	still	be	running	on	the	same
machine	but,	in	the	production	environment,	brokers	will	run	on	multiple	machines.	Now
we	start	each	new	broker	in	a	separate	console	window	using	the	following	commands:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-server-start.sh	

config/server-1.properties

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-server-start.sh	

config/server-2.properties

…

Creating	a	Kafka	topic	using	the	command	line
Using	the	command	line	utility	for	creating	topics	on	the	Kafka	server,	let’s	create	a	topic
named	replicated-kafkatopic	with	two	partitions	and	two	replicas:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--create	--

zookeeper	localhost:2181	--replication-factor	3	--partitions	1	--topic	

replicated-kafkatopic

Created	topic	"replicated-kafkatopic".

Starting	a	producer	to	send	messages
If	we	use	a	single	producer	to	get	connected	to	all	the	brokers,	we	need	to	pass	the	initial
list	of	brokers,	and	the	information	of	the	remaining	brokers	is	identified	by	querying	the
broker	passed	within	broker-list,	as	shown	in	the	following	command.	This	metadata
information	is	based	on	the	topic	name:

--broker-list	localhost:9092,	localhost:9093

Use	the	following	command	to	start	the	producer:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-console-producer.sh	--

broker-list	localhost:9092,	localhost:9093	--topic	replicated-kafkatopic

If	we	have	a	requirement	to	run	multiple	producers	connecting	to	different	combinations
of	brokers,	we	need	to	specify	the	broker	list	for	each	producer	as	we	did	in	the	case	of
multiple	brokers.

Starting	a	consumer	to	consume	messages
The	same	consumer	client,	as	in	the	previous	example,	will	be	used	in	this	process.	Just	as
before,	it	shows	the	output	on	the	command	line	as	soon	as	it	subscribes	to	the	topic
created	in	the	Kafka	broker:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-console-consumer.sh	--

zookeeper	localhost:2181	--from-beginning	--topic	replicated-kafkatopic

Multiple	nodes	–	multiple	broker	clusters
This	cluster	scenario	is	not	discussed	in	detail	in	this	book	but,	as	in	the	case	of	the	single
node—multiple	broker	Kafka	cluster,	where	we	set	up	multiple	brokers	on	each	node,	we
should	install	Kafka	on	each	node	of	the	cluster,	and	all	the	brokers	from	the	different
nodes	need	to	connect	to	the	same	ZooKeeper.

For	testing	purposes,	all	the	commands	will	remain	identical	to	the	ones	we	used	in	the
single	node—multiple	brokers	cluster.

The	following	diagram	shows	the	cluster	scenario	where	multiple	brokers	are	configured
on	multiple	nodes	(Node	1	and	Node	2,	in	this	case),	and	the	producers	and	consumers	are
connected	in	different	combinations:

The	Kafka	broker	property	list
The	following	is	the	list	of	a	few	important	properties	that	can	be	configured	for	the	Kafka
broker.	For	the	complete	list,	visit
http://kafka.apache.org/documentation.html#brokerconfig.

Property	name Description Default	value

broker.id

Each	broker	is	uniquely	identified	by	a	non-negative	integer	ID.	This
ID	serves	as	the	broker’s	name	and	allows	the	broker	to	be	moved	to
a	different	host/port	without	confusing	consumers.

0

log.dirs

These	are	the	directories	in	which	the	log	data	is	stored.	Each	new
partition	that	is	created	will	be	placed	in	the	directory	that	currently
has	the	fewest	partitions.

/tmp/kafka-

logs

zookeeper.connect

This	specifies	the	ZooKeeper’s	connection	string	in	the
hostname:port/chroot	form.	Here,	chroot	is	a	base	directory	that	is
prepended	to	all	path	operations	(this	effectively	namespaces	all
Kafka	znodes	to	allow	sharing	with	other	applications	on	the	same
ZooKeeper	cluster).

localhost:2181

host.name

This	is	the	hostname	of	the	broker.	If	this	is	set,	it	will	only	bind	to
this	address.	If	this	is	not	set,	it	will	bind	to	all	interfaces,	and	publish
one	to	ZooKeeper.

Null

num.partitions
This	is	the	default	number	of	partitions	per	topic	if	a	partition	count
isn’t	given	at	the	time	of	topic	creation.

1

auto.create.topics.enable

This	enables	auto-creation	of	the	topic	on	the	server.	If	this	is	set	to
true,	then	attempts	to	produce,	consume,	or	fetch	metadata	for	a	non-
existent	topic	will	automatically	create	it	with	the	default	replication
factor	and	number	of	partitions.

True

default.replication.factor This	is	the	default	replication	factor	for	automatically	created	topics. 1

http://kafka.apache.org/documentation.html#brokerconfig

Summary
In	this	chapter,	you	learned	how	to	set	up	a	Kafka	cluster	with	single/multiple	brokers	on	a
single	node,	run	command	line	producers	and	consumers,	and	exchange	some	messages.
We	also	discussed	important	settings	for	the	Kafka	broker.

In	the	next	chapter,	we	will	look	at	the	internal	design	of	Kafka.

Chapter	3.	Kafka	Design
Before	we	start	getting	our	hands	dirty	by	coding	Kafka	producers	and	consumers,	let’s
quickly	discuss	the	internal	design	of	Kafka.

In	this	chapter,	we	shall	be	focusing	on	the	following	topics:

Kafka	design	fundamentals
Message	compression	in	Kafka
Replication	in	Kafka

Due	to	the	overheads	associated	with	JMS	and	its	various	implementations	and	limitations
with	the	scaling	architecture,	LinkedIn	(www.linkedin.com)	decided	to	build	Kafka	to
address	its	need	for	monitoring	activity	stream	data	and	operational	metrics	such	as	CPU,
I/O	usage,	and	request	timings.

While	developing	Kafka,	the	main	focus	was	to	provide	the	following:

An	API	for	producers	and	consumers	to	support	custom	implementation
Low	overheads	for	network	and	storage	with	message	persistence	on	disk
A	high	throughput	supporting	millions	of	messages	for	both	publishing	and
subscribing—for	example,	real-time	log	aggregation	or	data	feeds
Distributed	and	highly	scalable	architecture	to	handle	low-latency	delivery
Auto-balancing	multiple	consumers	in	the	case	of	failure
Guaranteed	fault-tolerance	in	the	case	of	server	failures

http://www.linkedin.com

Kafka	design	fundamentals
Kafka	is	neither	a	queuing	platform	where	messages	are	received	by	a	single	consumer	out
of	the	consumer	pool,	nor	a	publisher-subscriber	platform	where	messages	are	published
to	all	the	consumers.	In	a	very	basic	structure,	a	producer	publishes	messages	to	a	Kafka
topic	(synonymous	with	“messaging	queue”).	A	topic	is	also	considered	as	a	message
category	or	feed	name	to	which	messages	are	published.	Kafka	topics	are	created	on	a
Kafka	broker	acting	as	a	Kafka	server.	Kafka	brokers	also	store	the	messages	if	required.
Consumers	then	subscribe	to	the	Kafka	topic	(one	or	more)	to	get	the	messages.	Here,
brokers	and	consumers	use	Zookeeper	to	get	the	state	information	and	to	track	message
offsets,	respectively.	This	is	described	in	the	following	diagram:

In	the	preceding	diagram,	a	single	node—single	broker	architecture	is	shown	with	a	topic
having	four	partitions.	In	terms	of	the	components,	the	preceding	diagram	shows	all	the
five	components	of	the	Kafka	cluster:	Zookeeper,	Broker,	Topic,	Producer,	and	Consumer.

In	Kafka	topics,	every	partition	is	mapped	to	a	logical	log	file	that	is	represented	as	a	set
of	segment	files	of	equal	sizes.	Every	partition	is	an	ordered,	immutable	sequence	of
messages;	each	time	a	message	is	published	to	a	partition,	the	broker	appends	the	message
to	the	last	segment	file.	These	segment	files	are	flushed	to	disk	after	configurable	numbers
of	messages	have	been	published	or	after	a	certain	amount	of	time	has	elapsed.	Once	the
segment	file	is	flushed,	messages	are	made	available	to	the	consumers	for	consumption.

All	the	message	partitions	are	assigned	a	unique	sequential	number	called	the	offset,	which
is	used	to	identify	each	message	within	the	partition.	Each	partition	is	optionally	replicated
across	a	configurable	number	of	servers	for	fault	tolerance.

Each	partition	available	on	either	of	the	servers	acts	as	the	leader	and	has	zero	or	more

servers	acting	as	followers.	Here	the	leader	is	responsible	for	handling	all	read	and	write
requests	for	the	partition	while	the	followers	asynchronously	replicate	data	from	the
leader.	Kafka	dynamically	maintains	a	set	of	in-sync	replicas	(ISR)	that	are	caught-up	to
the	leader	and	always	persist	the	latest	ISR	set	to	ZooKeeper.	In	if	the	leader	fails,	one	of
the	followers	(in-sync	replicas)	will	automatically	become	the	new	leader.	In	a	Kafka
cluster,	each	server	plays	a	dual	role;	it	acts	as	a	leader	for	some	of	its	partitions	and	also	a
follower	for	other	partitions.	This	ensures	the	load	balance	within	the	Kafka	cluster.

The	Kafka	platform	is	built	based	on	what	has	been	learned	from	both	the	traditional
platforms	and	has	the	concept	of	consumer	groups.	Here,	each	consumer	is	represented	as
a	process	and	these	processes	are	organized	within	groups	called	consumer	groups.

A	message	within	a	topic	is	consumed	by	a	single	process	(consumer)	within	the	consumer
group	and,	if	the	requirement	is	such	that	a	single	message	is	to	be	consumed	by	multiple
consumers,	all	these	consumers	need	to	be	kept	in	different	consumer	groups.	Consumers
always	consume	messages	from	a	particular	partition	sequentially	and	also	acknowledge
the	message	offset.	This	acknowledgement	implies	that	the	consumer	has	consumed	all
prior	messages.	Consumers	issue	an	asynchronous	pull	request	containing	the	offset	of	the
message	to	be	consumed	to	the	broker	and	get	the	buffer	of	bytes.

In	line	with	Kafka’s	design,	brokers	are	stateless,	which	means	the	message	state	of	any
consumed	message	is	maintained	within	the	message	consumer,	and	the	Kafka	broker
does	not	maintain	a	record	of	what	is	consumed	by	whom.	If	this	is	poorly	implemented,
the	consumer	ends	up	in	reading	the	same	message	multiple	times.	If	the	message	is
deleted	from	the	broker	(as	the	broker	doesn’t	know	whether	the	message	is	consumed	or
not),	Kafka	defines	the	time-based	SLA	(service	level	agreement)	as	a	message	retention
policy.	In	line	with	this	policy,	a	message	will	be	automatically	deleted	if	it	has	been
retained	in	the	broker	longer	than	the	defined	SLA	period.	This	message	retention	policy
empowers	consumers	to	deliberately	rewind	to	an	old	offset	and	re-consume	data
although,	as	with	traditional	messaging	systems,	this	is	a	violation	of	the	queuing	contract
with	consumers.

Let’s	discuss	the	message	delivery	semantic	Kafka	provides	between	producer	and
consumer.	There	are	multiple	possible	ways	to	deliver	messages,	such	as:

Messages	are	never	redelivered	but	may	be	lost
Messages	may	be	redelivered	but	never	lost
Messages	are	delivered	once	and	only	once

When	publishing,	a	message	is	committed	to	the	log.	If	a	producer	experiences	a	network
error	while	publishing,	it	can	never	be	sure	if	this	error	happened	before	or	after	the
message	was	committed.	Once	committed,	the	message	will	not	be	lost	as	long	as	either	of
the	brokers	that	replicate	the	partition	to	which	this	message	was	written	remains
available.	For	guaranteed	message	publishing,	configurations	such	as	getting
acknowledgements	and	the	waiting	time	for	messages	being	committed	are	provided	at	the
producer’s	end.

From	the	consumer	point-of-view,	replicas	have	exactly	the	same	log	with	the	same

offsets,	and	the	consumer	controls	its	position	in	this	log.	For	consumers,	Kafka
guarantees	that	the	message	will	be	delivered	at	least	once	by	reading	the	messages,
processing	the	messages,	and	finally	saving	their	position.	If	the	consumer	process	crashes
after	processing	messages	but	before	saving	their	position,	another	consumer	process	takes
over	the	topic	partition	and	may	receive	the	first	few	messages,	which	are	already
processed.

Log	compaction
Log	compaction	is	a	mechanism	to	achieve	finer-grained,	per-message	retention,	rather
than	coarser-grained,	time-based	retention.	It	ensures	that	the	last	known	value	for	each
message	key	within	the	log	for	a	topic	partition	must	be	retained	by	removing	the	records
where	a	more	recent	update	with	the	same	primary	key	is	done.	Log	compaction	also
addresses	system	failure	cases	or	system	restarts,	and	so	on.

In	the	Kafka	cluster,	the	retention	policy	can	be	set	on	a	per-topic	basis	such	as	time	based,
size-based,	or	log	compaction-based.	Log	compaction	ensures	the	following:

Ordering	of	messages	is	always	maintained
The	messages	will	have	sequential	offsets	and	the	offset	never	changes
Reads	progressing	from	offset	0,	or	the	consumer	progressing	from	the	start	of	the
log,	will	see	at	least	the	final	state	of	all	records	in	the	order	they	were	written

Log	compaction	is	handled	by	a	pool	of	background	threads	that	recopy	log	segment	files,
removing	records	whose	key	appears	in	the	head	of	the	log.

The	following	points	summarize	important	Kafka	design	facts:

The	fundamental	backbone	of	Kafka	is	message	caching	and	storing	on	the	fiesystem.
In	Kafka,	data	is	immediately	written	to	the	OS	kernel	page.	Caching	and	flushing	of
data	to	the	disk	are	configurable.
Kafka	provides	longer	retention	of	messages	even	after	consumption,	allowing
consumers	to	re-consume,	if	required.
Kafka	uses	a	message	set	to	group	messages	to	allow	lesser	network	overhead.
Unlike	most	messaging	systems,	where	metadata	of	the	consumed	messages	are	kept
at	the	server	level,	in	Kafka	the	state	of	the	consumed	messages	is	maintained	at	the
consumer	level.	This	also	addresses	issues	such	as:

Losing	messages	due	to	failure
Multiple	deliveries	of	the	same	message

By	default,	consumers	store	the	state	in	Zookeeper	but	Kafka	also	allows	storing	it
within	other	storage	systems	used	for	Online	Transaction	Processing	(OLTP)
applications	as	well.

In	Kafka,	producers	and	consumers	work	on	the	traditional	push-and-pull	model,
where	producers	push	the	message	to	a	Kafka	broker	and	consumers	pull	the	message
from	the	broker.
Kafka	does	not	have	any	concept	of	a	master	and	treats	all	the	brokers	as	peers.	This
approach	facilitates	addition	and	removal	of	a	Kafka	broker	at	any	point,	as	the
metadata	of	brokers	are	maintained	in	Zookeeper	and	shared	with	consumers.
Producers	also	have	an	option	to	choose	between	asynchronous	or	synchronous	mode
to	send	messages	to	a	broker.

Message	compression	in	Kafka
For	the	cases	where	network	bandwidth	is	a	bottleneck,	Kafka	provides	a	message	group
compression	feature	for	efficient	message	delivery.	Kafka	supports	efficient	compression
by	allowing	recursive	message	sets	where	the	compressed	message	may	have	infinite
depth	relative	to	messages	within	itself.	Efficient	compression	requires	compressing
multiple	messages	together	rather	than	compressing	each	message	individually.	A	batch	of
messages	is	compressed	together	and	sent	to	the	broker.	There	is	a	reduced	network
overhead	for	the	compressed	message	set	and	decompression	also	attracts	very	little
additional	overhead.

In	an	earlier	version	of	Kafka,	0.7,	compressed	batches	of	messages	remained	compressed
in	the	log	files	and	were	presented	as	a	single	message	to	the	consumer	who	later
decompressed	it.	Hence,	the	additional	overhead	of	decompression	was	present	only	at	the
consumer’s	end.

In	Kafka	0.8,	changes	were	made	to	the	broker	in	the	way	it	handles	message	offsets;	this
may	also	cause	a	degradation	in	broker	performance	in	the	case	of	compressed	messages.

Note
In	Kafka	0.7,	messages	were	addressable	by	physical	byte	offsets	in	the	partition’s	log
whereas	in	Kafka	0.8	each	message	is	addressable	by	a	non-comparable,	increasingly
logical	offset	that	is	unique	per	partition—that	is,	the	first	message	has	an	offset	of	1,	the
tenth	message	has	an	offset	of	10,	and	so	on.	In	Kafka	0.8,	changes	to	offset	management
simplify	the	consumer	capability	to	rewind	the	message	offset.

In	Kafka	0.8,	the	lead	broker	is	responsible	for	serving	the	messages	for	a	partition	by
assigning	unique	logical	offsets	to	every	message	before	it	is	appended	to	the	logs.	In	the
case	of	compressed	data,	the	lead	broker	has	to	decompress	the	message	set	in	order	to
assign	offsets	to	the	messages	inside	the	compressed	message	set.	Once	offsets	are
assigned,	the	leader	again	compresses	the	data	and	then	appends	it	to	the	disk.	The	lead
broker	follows	this	process	for	every	compressed	message	sets	it	receives,	which	causes
CPU	load	on	a	Kafka	broker.

In	Kafka,	data	is	compressed	by	the	message	producer	using	either	the	GZIP	or	Snappy
compression	protocols.	The	following	producer	configurations	need	to	be	provided	to	use
compression	at	the	producer’s	end.

Property	name Description Default
value

compression.codec
This	parameter	specifies	the	compression	codec	for	all	data	generated	by	this	producer.
Valid	values	are	none,	gzip,	and	snappy.

none

compressed.topics

This	parameter	allows	you	to	set	whether	compression	should	be	turned	on	for	particular
topics.	If	the	compression	codec	is	anything	other	than	none,	enable	compression	only
for	specified	topics,	if	any.	If	the	list	of	compressed	topics	is	empty,	then	enable	the
specified	compression	codec	for	all	topics.	If	the	compression	codec	is	none,
compression	is	disabled	for	all	topics.

null

The	ByteBufferMessageSet	class	representing	message	sets	may	consist	of	both
uncompressed	as	well	as	compressed	data.	To	differentiate	between	compressed	and
uncompressed	messages,	a	compression-attributes	byte	is	introduced	in	the	message
header.	Within	this	compression	byte,	the	lowest	two	bits	are	used	to	represent	the
compression	codec	used	for	compression	and	the	value	0	of	these	last	two	bits	represents
an	uncompressed	message.

Message	compression	techniques	are	very	useful	for	mirroring	data	across	datacenters
using	Kafka,	where	large	amounts	of	data	get	transferred	from	active	to	passive
datacenters	in	the	compressed	format.

Replication	in	Kafka
Before	we	talk	about	replication	in	Kafka,	let’s	talk	about	message	partitioning.	In	Kafka,
a	message	partitioning	strategy	is	used	at	the	Kafka	broker	end.	The	decision	about	how
the	message	is	partitioned	is	taken	by	the	producer,	and	the	broker	stores	the	messages	in
the	same	order	as	they	arrive.	The	number	of	partitions	can	be	configured	for	each	topic
within	the	Kafka	broker.

Kafka	replication	is	one	of	the	very	important	features	introduced	in	Kafka	0.8.	Though
Kafka	is	highly	scalable,	for	better	durability	of	messages	and	high	availability	of	Kafka
clusters,	replication	guarantees	that	the	message	will	be	published	and	consumed	even	in
the	case	of	broker	failure,	which	may	be	caused	by	any	reason.	Both	producers	and
consumers	are	replication-aware	in	Kafka.	The	following	diagram	explains	replication	in
Kafka:

Let’s	discuss	the	preceding	diagram	in	detail.

In	replication,	each	partition	of	a	message	has	n	replicas	and	can	afford	n-1	failures	to
guarantee	message	delivery.	Out	of	the	n	replicas,	one	replica	acts	as	the	lead	replica	for
the	rest	of	the	replicas.	Zookeeper	keeps	the	information	about	the	lead	replica	and	the
current	follower	in-sync	replicas	(ISR).	The	lead	replica	maintains	the	list	of	all	in-sync
follower	replicas.

Each	replica	stores	its	part	of	the	message	in	local	logs	and	offsets,	and	is	periodically
synced	to	the	disk.	This	process	also	ensures	that	either	a	message	is	written	to	all	the

replicas	or	to	none	of	them.

Kafka	supports	the	following	replication	modes:

Synchronous	replication:	In	synchronous	replication,	a	producer	first	identifies	the
lead	replica	from	ZooKeeper	and	publishes	the	message.	As	soon	as	the	message	is
published,	it	is	written	to	the	log	of	the	lead	replica	and	all	the	followers	of	the	lead
start	pulling	the	message;	by	using	a	single	channel,	the	order	of	messages	is	ensured.
Each	follower	replica	sends	an	acknowledgement	to	the	lead	replica	once	the
message	is	written	to	its	respective	logs.	Once	replications	are	complete	and	all
expected	acknowledgements	are	received,	the	lead	replica	sends	an
acknowledgement	to	the	producer.	On	the	consumer’s	side,	all	the	pulling	of
messages	is	done	from	the	lead	replica.
Asynchronous	replication:	The	only	difference	in	this	mode	is	that,	as	soon	as	a	lead
replica	writes	the	message	to	its	local	log,	it	sends	the	acknowledgement	to	the
message	client	and	does	not	wait	for	acknowledgements	from	follower	replicas.	But,
as	a	downside,	this	mode	does	not	ensure	message	delivery	in	case	of	a	broker
failure.

If	any	of	the	follower	in-sync	replicas	fail,	the	leader	drops	the	failed	follower	from	its
ISR	list	after	the	configured	timeout	period	and	writes	will	continue	on	the	remaining
replicas	in	ISRs.	Whenever	the	failed	follower	comes	back,	it	first	truncates	its	log	to	the
last	checkpoint	(the	offset	of	the	last	committed	message)	and	then	starts	to	catch	up	with
all	messages	from	the	leader,	starting	from	the	checkpoint.	As	soon	as	the	follower
becomes	fully	synced	with	the	leader,	the	leader	adds	it	back	to	the	current	ISR	list.

If	the	lead	replica	fails,	either	while	writing	the	message	partition	to	its	local	log	or	before
sending	the	acknowledgement	to	the	message	producer,	a	message	partition	is	resent	by
the	producer	to	the	new	lead	broker.

The	process	of	choosing	the	new	lead	replica	involves	all	the	followers’	ISRs	registering
themselves	with	Zookeeper.	The	very	first	registered	replica	becomes	the	new	lead	replica
and	its	log	end	offset	(LEO)	becomes	the	offset	of	the	last	committed	message	(also
known	as	high	watermark	(HW)).	The	rest	of	the	registered	replicas	become	the
followers	of	the	newly	elected	leader.	Each	replica	registers	a	listener	in	Zookeeper	so	that
it	will	be	informed	of	any	leader	change.	Whenever	the	new	leader	is	elected	and	the
notified	replica	is	not	the	leader,	it	truncates	its	log	to	the	offset	of	the	last	committed
message	and	then	starts	to	catch	up	from	the	new	leader.	The	new	elected	leader	waits
either	until	the	time	configured	is	passed	or	until	all	live	replicas	get	in	sync	and	then	the
leader	writes	the	current	ISR	to	Zookeeper	and	opens	itself	up	for	both	message	reads	and
writes.

Replication	in	Kafka	ensures	stronger	durability	and	higher	availability.	It	guarantees	that
any	successfully	published	message	will	not	be	lost	and	will	be	consumed,	even	in	the
case	of	broker	failures.

Note
For	more	insight	on	Kafka	replication	implementation,	visit

https://cwiki.apache.org/confluence/display/KAFKA/kafka+Detailed+Replication+Design+V3

https://cwiki.apache.org/confluence/display/KAFKA/kafka+Detailed+Replication+Design+V3

Summary
In	this	chapter,	you	learned	the	design	concepts	used	to	build	a	solid	foundation	for	Kafka.
You	also	learned	how	message	compression	and	replication	are	done	in	Kafka.

In	the	next	chapter,	we	will	be	focusing	on	how	to	write	Kafka	producers	using	the	API
provided.

Chapter	4.	Writing	Producers
Producers	are	applications	that	create	messages	and	publish	them	to	the	Kafka	broker	for
further	consumption.	These	producers	can	be	different	in	nature;	for	example,	frontend
applications,	backend	services,	proxy	applications,	adapters	to	legacy	systems,	and
producers	for	Hadoop.	These	producers	can	also	be	implemented	in	different	languages
such	as	Java,	C,	and	Python.

In	this	chapter,	we	will	be	focusing	on	the	following	topics:

The	Kafka	API	for	message	producers
Java-based	Kafka	producers
Java-based	producers	using	custom	message	partitioning

At	the	end	of	the	chapter,	we	will	also	explore	a	few	important	configurations	required	for
the	Kafka	producer.

Let’s	begin.	The	following	diagram	explains	the	high-level	working	of	Kafka	producers	in
producing	the	messages:

The	producer	connects	to	any	of	the	alive	nodes	and	requests	metadata	about	the	leaders
for	the	partitions	of	a	topic.	This	allows	the	producer	to	put	the	message	directly	to	the
lead	broker	for	the	partition.

The	Kafka	producer	API	exposes	the	interface	for	semantic	partitioning	by	allowing	the
producer	to	specify	a	key	to	partition	by	and	using	this	to	hash	to	a	partition.	Thus,	the
producer	can	completely	control	which	partition	it	publishes	messages	to;	for	example,	if

customer	ID	is	selected	as	a	key,	then	all	data	for	a	given	customer	will	be	sent	to	the	same
partition.	This	also	allows	data	consumers	to	make	locality	assumptions	about	customer
data.

For	high	efficiency	in	Kafka,	producers	can	also	publish	the	messages	in	batches	that	work
in	asynchronous	mode	only.	In	asynchronous	mode,	the	producer	works	either	with	a	fixed
number	of	messages	or	fixed	latency	defined	by	producer	configuration,	queue.time	or
batch.size,	respectively	for	example,	10	seconds	or	50	messages.	Data	is	accumulated	in
memory	at	the	producer’s	end	and	published	in	batches	in	a	single	request.	Asynchronous
mode	also	brings	the	risk	of	losing	the	data	in	the	case	of	a	producer	crash	with
accumulated	non-published,	in-memory	data.

Note
For	asynchronous	producers,	callback	method	functionality	is	proposed	for	future	release;
this	would	be	used	for	registering	handlers	to	catch	sent	errors.

In	the	next	few	sections,	we	will	discuss	the	API	provided	by	Kafka	for	writing	Java-
based	custom	producers.

The	Java	producer	API
Let	us	first	understand	the	important	classes	that	are	imported	to	write	Java-based	basic
producers	for	a	Kafka	cluster:

Producer:	Kafka	provides	the	kafka.javaapi.producer.Producer	class	(class
Producer<K,	V>)	for	creating	messages	for	single	or	multiple	topics	with	message
partition	as	an	optional	feature.	The	default	message	partitioner	is	based	on	the	hash
of	the	key.	Here,	Producer	is	a	type	of	Java	generic
(http://en.wikipedia.org/wiki/Generics_in_Java)	written	in	Scala	where	we	need	to
specify	the	type	of	parameters;	K	and	V	specify	the	types	for	the	partition	key	and
message	value,	respectively.	The	following	is	the	class	diagram	and	its	explanation:

KeyedMessage:	The	kafka.producer.KeyedMessage	class	takes	the	topic	name,
partition	key,	and	the	message	value	that	need	to	be	passed	from	the	producer	as
follows:

class	KeyedMessage[K,	V](val	topic:	String,	val	key:	K,	val	message:	V)	

Here,	KeyedMessage	is	a	type	of	Java	generic	written	in	Scala	where	we	need	to
specify	the	type	of	the	parameters;	K	and	V	specify	the	type	for	the	partition	key	and
message	value,	respectively,	and	the	topic	is	always	of	type	String.

http://en.wikipedia.org/wiki/Generics_in_Java

ProducerConfig:	The	kafka.producer.ProducerConfig	class	encapsulates	the
values	required	for	establishing	the	connection	with	the	brokers	such	as	the	broker
list,	message	partition	class,	serializer	class	for	the	message,	and	partition	key.

The	Producer	API	wraps	the	low-level	producer	implementations	for	synchronous	(default
behavior)	and	asynchronous	producers	that	are	picked	up	based	on	the	producer
configuration	producer.type.	For	example,	in	the	case	of	asynchronous	producers	the
kafka.producer.Producer	class	handles	the	buffering	of	the	producer’s	data	before	the
data	is	serialized	and	dispatched	to	the	appropriate	Kafka	broker	partition.	Internally,	the
kafka.producer.async.ProducerSendThread	instance	dequeues	the	batch	of	messages
and	kafka.producer.EventHandler	serializes	and	dispatches	the	data.	The	Kafka
producer	configuration	event.handler	also	provides	the	ability	to	define	custom	event
handlers.

Note
All	the	examples	are	developed	and	tested	for	a	multi-broker	cluster	(either	single	or
multiple	nodes).	For	more	information	on	how	to	set	up	a	single	node	-	multi-broker
cluster,	refer	to	Chapter	2,	Setting	Up	a	Kafka	Cluster.

Simple	Java	producers
Now	we	will	start	writing	a	simple	Java-based	producer	to	transmit	the	message	to	the
broker.	This	SimpleProducer	class	is	used	to	create	a	message	for	a	specific	topic	and
transmit	it	using	the	default	message	partitioning.

Importing	classes
As	the	first	step,	we	need	to	import	the	following	classes:

import	kafka.javaapi.producer.Producer;

import	kafka.producer.KeyedMessage;

import	kafka.producer.ProducerConfig;

Defining	properties
As	the	next	step	in	writing	the	producer,	we	need	to	define	properties	for	making	a
connection	with	the	Kafka	broker	and	pass	these	properties	to	the	Kafka	producer:

Properties	props	=	new	Properties();

props.put("metadata.broker.list","localhost:9092,	localhost:9093,	

localhost:9094");

props.put("serializer.class","kafka.serializer.StringEncoder");

props.put("request.required.acks",	"1");

ProducerConfig	config	=	new	ProducerConfig(props);	

Producer<String,	String>	producer	=	new	Producer<String,	String>	(config);

Now	let	us	see	the	major	properties	mentioned	in	the	code:

metadata.broker.list:	This	property	specifies	the	list	of	brokers	(in	the
[<node:port>,	<node:port>]	format)	that	the	producer	needs	to	connect	to.	Kafka
producers	automatically	determine	the	lead	broker	for	the	topic,	partition	it	by	raising
a	request	for	the	metadata,	and	connect	to	the	correct	broker	before	it	publishes	any
message.
serializer.class:	This	property	specifies	the	serializer	class	that	needs	to	be
used	while	preparing	the	message	for	transmission	from	the	producer	to	the	broker.	In
this	example,	we	will	be	using	the	string	encoder	provided	by	Kafka.	By	default,	the
serializer	class	for	the	key	and	message	is	the	same,	but	we	can	also	implement	the
custom	serializer	class	by	extending	the	Scala-based	kafka.serializer.Encoder
implementation.	Producer	configuration	key.serializer.class	is	used	to	set	the
custom	encoder.
request.required.acks:	This	property	instructs	the	Kafka	broker	to	send	an
acknowledgment	to	the	producer	when	a	message	is	received.	The	value	1	means	the
producer	receives	an	acknowledgment	once	the	lead	replica	has	received	the	data.
This	option	provides	better	durability	as	the	producer	waits	until	the	broker
acknowledges	the	request	as	successful.	By	default,	the	producer	works	in	the	“fire
and	forget”	mode	and	is	not	informed	in	the	case	of	message	loss.

Building	the	message	and	sending	it
As	the	final	step,	we	need	to	build	the	message	and	send	it	to	the	broker	as	shown	in	the
following	code:

String	runtime	=	new	Date().toString();;

String	msg	=	"Message	Publishing	Time	-	"	+	runtime;

KeyedMessage<String,	String>	data	=	new	KeyedMessage<String,	String>	

(topic,	msg);

producer.send(data);	

The	complete	program	will	look	as	follows:

package	kafka.examples.ch4;

import	java.util.Date;

import	java.util.Properties;

import	kafka.javaapi.producer.Producer;

import	kafka.producer.KeyedMessage;

import	kafka.producer.ProducerConfig;

public	class	SimpleProducer	{

		private	static	Producer<String,	String>	producer;

		public	SimpleProducer()	{

				Properties	props	=	new	Properties();

				

				//	Set	the	broker	list	for	requesting	metadata	to	find	the	lead	broker

				props.put("metadata.broker.list",

												"192.168.146.132:9092,	192.168.146.132:9093,	

192.168.146.132:9094");

				

				//This	specifies	the	serializer	class	for	keys	

				props.put("serializer.class",	"kafka.serializer.StringEncoder");

				

				//	1	means	the	producer	receives	an	acknowledgment	once	the	lead	

replica	

				//	has	received	the	data.	This	option	provides	better	durability	as	the		

				//	client	waits	until	the	server	acknowledges	the	request	as	

successful.

				props.put("request.required.acks",	"1");

				

				ProducerConfig	config	=	new	ProducerConfig(props);

				producer	=	new	Producer<String,	String>(config);

		}

		public	static	void	main(String[]	args)	{

				int	argsCount	=	args.length;

				if	(argsCount	==	0	||	argsCount	==	1)

						throw	new	IllegalArgumentException(

								"Please	provide	topic	name	and	Message	count	as	arguments");

				//	Topic	name	and	the	message	count	to	be	published	is	passed	from	the

				//	command	line	

				String	topic	=	(String)	args[0];

				String	count	=	(String)	args[1];

				int	messageCount	=	Integer.parseInt(count);

				System.out.println("Topic	Name	-	"	+	topic);

				System.out.println("Message	Count	-	"	+	messageCount);

				SimpleProducer	simpleProducer	=	new	SimpleProducer();

				simpleProducer.publishMessage(topic,	messageCount);

		}

		private	void	publishMessage(String	topic,	int	messageCount)	{

				for	(int	mCount	=	0;	mCount	<	messageCount;	mCount++)	{

						String	runtime	=	new	Date().toString();

						String	msg	=	"Message	Publishing	Time	-	"	+	runtime;

						System.out.println(msg);

						//	Creates	a	KeyedMessage	instance

						KeyedMessage<String,	String>	data	=	

								new	KeyedMessage<String,	String>(topic,	msg);

						

						//	Publish	the	message

						producer.send(data);

				}

				//	Close	producer	connection	with	broker.

				producer.close();

		}

}

Before	running	this,	make	sure	you	have	created	the	topic	kafkatopic	either	using	the
API	or	from	the	command	line,	as	follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#bin/kafka-topics.sh	--create	--

zookeeper	localhost:2181	--replication-factor	1	--partitions	3	--topic	

kafkatopic

Note
Before	compiling	and	running	the	Java-based	Kafka	program	in	the	console,	make	sure
you	download	the	slf4j-1.7.7.tar.gz	file	from	http://www.slf4j.org/download.html	and
copy	slf4j-log4j12-1.7.7.jar	contained	within	slf4j-1.7.7.tar.gz	to	the
/opt/kafka_2.9.2-0.8.1.1/libs	directory.	Add	the	KAFKA_LIB	environment	variable
and	also	add	all	the	libraries	available	in	/opt/kafka_2.9.2-0.8.1.1/libs	to	the
classpath	using	the	following	commands:

[root@localhost	kafka_2.9.2-0.8.1.1]#	export	KAFKA_LIB=/opt/kafka_2.9.2-

0.8.1.1/libs

[root@localhost	kafka_2.9.2-0.8.1.1]#	export	CLASSPATH=.:$KAFKA_LIB/jopt-

simple-3.2.jar:$KAFKA_LIB/kafka_2.9.2-0.8.1.1.jar:$KAFKA_LIB/log4j-

1.2.15.jar:$KAFKA_LIB/metrics-core-2.2.0.jar:$KAFKA_LIB/scala-library-

2.9.2.jar:$KAFKA_LIB/slf4j-api-1.7.2.jar:$KAFKA_LIB/slf4j-log4j12-

1.7.7.jar:$KAFKA_LIB/snappy-java-1.0.5.jar:$KAFKA_LIB/zkclient-

0.3.jar:$KAFKA_LIB/zookeeper-3.3.4.jar

Compile	the	preceding	program	using	the	following	command:

http://www.slf4j.org/download.html

[root@localhost	kafka_2.9.2-0.8.1.1]#	javac	-d	.	

kafka/examples/ch4/SimpleProducer.java

Run	the	simple	producer	using	the	following	command:

[root@localhost	kafka_2.9.2-0.8.1.1]#	java	

kafka.examples.ch4.SimpleProducer	kafkatopic	10

The	SimpleProducer	class	takes	two	arguments;	first,	the	topic	name	and	second,	the
number	of	messages	to	be	published.	Once	the	producer	is	successfully	executed	and
begins	publishing	the	messages	to	the	broker,	run	the	command	line	consumer	for
consuming	the	messages	as	it	subscribes	to	the	topic	created	in	the	Kafka	broker	as:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-console-consumer.sh	--

zookeeper	localhost:2181	--from-beginning	--topic	kafkatopic

Creating	a	Java	producer	with	custom
partitioning
The	previous	example	is	a	very	basic	example	of	a	Producer	class	running	on	a	single-
node,	multi-broker	cluster	with	no	explicit	partitioning	of	messages.	Jumping	to	the	next
level,	let’s	write	another	program	that	uses	customized	message	partitioning.	In	this
example,	a	log	message	for	a	website	visit	from	any	IP	address	is	captured	and	published.
This	log	message	has	three	parts:

The	timestamp	of	the	website	hit
The	name	of	website	itself
The	IP	address	from	where	the	website	is	being	accessed

Let’s	begin	with	the	coding.

Importing	classes
First	import	the	following	classes:

import	java.util.Date;

import	java.util.Properties;

import	java.util.Random;

import	kafka.javaapi.producer.Producer;

import	kafka.producer.KeyedMessage;

import	kafka.producer.ProducerConfig;

Defining	properties
As	the	next	step,	we	need	to	define	properties	for	making	a	connection	with	the	Kafka
broker,	as	shown	in	the	following	code,	and	pass	these	properties	to	the	Kafka	producer:

Properties	props	=	new	Properties();

props.put("metadata.broker.list","localhost:9092,	localhost:9093,	

localhost:9094");

props.put("serializer.class","kafka.serializer.StringEncoder");	

props.put("partitioner.class",	"kafka.examples.ch4.SimplePartitioner");

props.put("request.required.acks",	"1");

ProducerConfig	config	=	new	ProducerConfig(props);	

Producer<Integer,	String>	producer	=	new	Producer<Integer,	String>(config);

The	only	change	in	the	previous	property	list	is	the	addition	of	the	partitioner.class
configuration.

The	partitioner.class	property	defines	the	class	to	be	used	for	determining	the	partition
in	the	topic	where	the	message	needs	to	be	sent.	If	the	key	is	null,	Kafka	uses	the	hash
value	of	the	key.

Implementing	the	Partitioner	class
Next,	we	need	to	develop	a	custom	partitioner	class	SimplePartitioner	by	implementing
the	Partitioner	class	(an	abstract	class	written	in	Scala)	that	takes	the	key,	which	in	this
example	is	the	IP	address.	It	then	finds	the	last	octet	and	does	a	modulo	operation	on	the
number	of	partitions	defined	within	Kafka	for	the	topic.	The	following	is	the	code	for	the
SimplePartitioner	class:

package	kafka.examples.ch4;

import	kafka.producer.Partitioner;

public	class	SimplePartitioner	implements	Partitioner	{

		public	SimplePartitioner	(VerifiableProperties	props)	{

					

		}

		/*

			*	The	method	takes	the	key,	which	in	this	case	is	the	IP	address,	

			*	It	finds	the	last	octet	and	does	a	modulo	operation	on	the	number	

			*	of	partitions	defined	within	Kafka	for	the	topic.

			*	

			*	@see	kafka.producer.Partitioner#partition(java.lang.Object,	int)

			*/

		public	int	partition(Object	key,	int	a_numPartitions)	{

				int	partition	=	0;

				String	partitionKey	=	(String)	key;

				int	offset	=	partitionKey.lastIndexOf('.');

				if	(offset	>	0)	{

						partition	=	Integer.parseInt(partitionKey.substring(offset	+	1))

										%	a_numPartitions;

				}

				return	partition;

		}

}

Building	the	message	and	sending	it
As	the	final	step,	we	need	to	build	the	message	and	send	it	to	the	broker.	The	following	is
the	complete	listing	of	the	program:

package	kafka.examples.ch4;

import	java.util.Date;

import	java.util.Properties;

import	java.util.Random;

import	kafka.javaapi.producer.Producer;

import	kafka.producer.KeyedMessage;

import	kafka.producer.ProducerConfig;

public	class	CustomPartitionProducer	{

		private	static	Producer<String,	String>	producer;

		public	CustomPartitionProducer()	{

				Properties	props	=	new	Properties();

				//	Set	the	broker	list	for	requesting	metadata	to	find	the	lead	broker

				props.put("metadata.broker.list",

										"192.168.146.132:9092,	192.168.146.132:9093,	

192.168.146.132:9094");

				//	This	specifies	the	serializer	class	for	keys	

				props.put("serializer.class",	"kafka.serializer.StringEncoder");

				

				//	Defines	the	class	to	be	used	for	determining	the	partition	

				//	in	the	topic	where	the	message	needs	to	be	sent.

				props.put("partitioner.class",	"kafka.examples.ch4.SimplePartitioner");

				

				//	1	means	the	producer	receives	an	acknowledgment	once	the	lead	

replica	

				//	has	received	the	data.	This	option	provides	better	durability	as	the		

				//	client	waits	until	the	server	acknowledges	the	request	as	

successful.

				props.put("request.required.acks",	"1");

				

				ProducerConfig	config	=	new	ProducerConfig(props);

				producer	=	new	Producer<String,	String>(config);

		}

		public	static	void	main(String[]	args)	{

				int	argsCount	=	args.length;

				if	(argsCount	==	0	||	argsCount	==	1)

						throw	new	IllegalArgumentException(

								"Please	provide	topic	name	and	Message	count	as	arguments");

				//	Topic	name	and	the	message	count	to	be	published	is	passed	from	the

				//	command	line

				String	topic	=	(String)	args[0];

				String	count	=	(String)	args[1];

				int	messageCount	=	Integer.parseInt(count);

				

				System.out.println("Topic	Name	-	"	+	topic);

				System.out.println("Message	Count	-	"	+	messageCount);

				CustomPartitionProducer	simpleProducer	=	new	CustomPartitionProducer();

				simpleProducer.publishMessage(topic,	messageCount);

		}

		private	void	publishMessage(String	topic,	int	messageCount)	{

				Random	random	=	new	Random();

				for	(int	mCount	=	0;	mCount	<	messageCount;	mCount++)	{

				

				String	clientIP	=	"192.168.14."	+	random.nextInt(255);	

				String	accessTime	=	new	Date().toString();

				String	message	=	accessTime	+	",kafka.apache.org,"	+	clientIP;	

						System.out.println(message);

						

						//	Creates	a	KeyedMessage	instance

						KeyedMessage<String,	String>	data	=	

								new	KeyedMessage<String,	String>(topic,	clientIP,	message);

						

						//	Publish	the	message

						producer.send(data);

				}

				//	Close	producer	connection	with	broker.

				producer.close();

		}

}

Before	running	this,	make	sure	you	have	created	the	topic	website-hits	from	the
command	line:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--create	--

zookeeper	localhost:2181	--replication-factor	3	--partitions	5	--topic	

website-hits

Also,	as	specified	in	the	beginning	of	the	previous	example,	do	the	classpath	settings	if	not
already	done.	Now	compile	the	partitioner	class	and	the	preceding	producer	program	using
the	following	command:

[root@localhost	kafka_2.9.2-0.8.1.1]#	javac	-d	.	

kafka/examples/ch4/SimplePartitioner.java

[root@localhost	kafka_2.9.2-0.8.1.1]#	javac	-d	.	

kafka/examples/ch4/CustomPartitionProducer.java

Run	the	custom	partition	producer	using	the	following	command:

[root@localhost	kafka_2.9.2-0.8.1.1]#	java	

kafka.examples.ch4.CustomPartitionProducer	website-hits	100

The	CustomPartitionProducer	program	takes	two	arguments;	first,	the	topic	name	and
second,	the	number	of	log	messages	to	be	published.	Once	the	producer	is	successfully
executed	and	begins	publishing	the	messages	to	the	broker,	run	the	command	line
consumer	for	consuming	the	messages	as	it	subscribes	to	the	topic	created	in	the	Kafka

broker:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-console-consumer.sh	--

zookeeper	localhost:2181	--from-beginning	--topic	kafkatopic

In	the	preceding	example,	the	benefit	of	using	custom	partitioning	logic	is	that	all	the	log
messages	that	are	generated	for	the	same	client	IP	address	will	end	up	going	to	the	same
partition.	Also,	the	same	partition	may	have	batch	log	messages	for	different	IP	addresses.

Note
The	partitioning	logic	also	needs	to	be	known	to	the	consumer	so	that	the	consumer	can
consume	the	messages	published	for	the	desired	IPs.	This	part	is	covered	in	Chapter	5,
Writing	Consumers.

The	Kafka	producer	property	list
The	following	table	shows	a	list	of	a	few	important	properties	that	can	be	configured	for
Kafka	producer.	The	Scala	class	kafka.producer.ProducerConfig	provides
implementation-level	details	for	producer	configurations.	For	the	complete	list,	visit
http://kafka.apache.org/documentation.html#producerconfigs.

Property	name Description Default	value

metadata.broker.list

The	producer	uses	this	property	to	get	metadata
(topics,	partitions,	and	replicas).	The	socket
connections	for	sending	the	actual	data	will	be
established	based	on	the	broker	information
returned	in	the	metadata.	The	format	is
host1:port1,host2:port2.

	

serializer.class

This	specifies	the	serializer	class	for	the
messages.	The	default	encoder	accepts	a	byte	and
returns	the	same	byte.

kafka.serializer.DefaultEncoder

producer.type

This	property	specifies	how	the	messages	will	be
sent:

async	for	asynchronous	sending	(used	with
message	batching)
sync	for	synchronous	sending

sync

request.required.acks

This	value	controls	when	the	producer	request	is
considered	complete	and	whether	the	producer
receives	an	acknowledgment	from	the	broker:

0	means	the	producer	will	never	wait	for	an
acknowledgment	from	the	broker.	This	is
used	for	the	lowest	latency,	but	with	the
weakest	durability.
1	means	the	producer	receives	an
acknowledgment	once	the	lead	replica	has
received	the	data.	This	option	provides	better
durability	as	the	client	waits	until	the	server
acknowledges	the	request	as	successful.
-1	means	the	producer	will	receive	an
acknowledgment	once	all	the	in-sync	replicas
have	received	the	data.	This	option	provides
the	best	durability.

0

key.serializer.class This	specifies	the	serializer	class	for	keys. ${serializer.class}

partitioner.class

This	is	the	partitioner	class	for	partitioning
messages	among	subtopics.	The	default	partitioner
is	based	on	the	hash	value	of	the	key.

kafka.producer.DefaultPartitioner

compression.codec

This	parameter	specifies	the	compression	codec	for
all	data	generated	by	this	producer.	Valid	values	are
none,	gzip,	and	snappy.

none

This	specifies	the	number	of	messages	to	be	sent	in

http://kafka.apache.org/documentation.html#producerconfigs

batch.num.messages one	batch	when	using	async	mode.	The	producer
will	wait	until	this	quantity	of	messages	is	ready	to
be	sent	or	queue.buffer.max.ms	is	reached.

200

Summary
In	this	chapter	we	have	learned	how	to	write	basic	producers	and	some	advanced	Java
producers	that	use	message	partitioning.	We	have	also	covered	the	details	of	properties	for
Kafka	producers.

In	the	next	chapter,	we	will	learn	how	to	write	Java-based	consumers	for	message
consumption.

Chapter	5.	Writing	Consumers
Consumers	are	the	applications	that	consume	the	messages	published	by	Kafka	producers
and	process	the	data	extracted	from	them.	Like	producers,	consumers	can	also	be	different
in	nature,	such	as	applications	doing	real-time	or	near	real-time	analysis,	applications	with
NoSQL	or	data	warehousing	solutions,	backend	services,	consumers	for	Hadoop,	or	other
subscriber-based	solutions.	These	consumers	can	also	be	implemented	in	different
languages	such	as	Java,	C,	and	Python.

In	this	chapter,	we	will	focus	on	the	following	topics:

The	Kafka	Consumer	API
Java-based	Kafka	consumers
Java-based	Kafka	consumers	consuming	partitioned	messages

At	the	end	of	the	chapter,	we	will	explore	some	of	the	important	properties	that	can	be	set
for	a	Kafka	consumer.	So,	let’s	start.

The	preceding	diagram	explains	the	high-level	working	of	the	Kafka	consumer	when
consuming	the	messages.	The	consumer	subscribes	to	the	message	consumption	from	a
specific	topic	on	the	Kafka	broker.	The	consumer	then	issues	a	fetch	request	to	the	lead
broker	to	consume	the	message	partition	by	specifying	the	message	offset	(the	beginning
position	of	the	message	offset).	Therefore,	the	Kafka	consumer	works	in	the	pull	model
and	always	pulls	all	available	messages	after	its	current	position	in	the	Kafka	log	(the
Kafka	internal	data	representation).

While	subscribing,	the	consumer	connects	to	any	of	the	live	nodes	and	requests	metadata
about	the	leaders	for	the	partitions	of	a	topic.	This	allows	the	consumer	to	communicate
directly	with	the	lead	broker	receiving	the	messages.	Kafka	topics	are	divided	into	a	set	of
ordered	partitions	and	each	partition	is	consumed	by	one	consumer	only.	Once	a	partition
is	consumed,	the	consumer	changes	the	message	offset	to	the	next	partition	to	be
consumed.	This	represents	the	states	about	what	has	been	consumed	and	also	provides	the
flexibility	of	deliberately	rewinding	back	to	an	old	offset	and	re-consuming	the	partition.
In	the	next	few	sections,	we	will	discuss	the	API	provided	by	Kafka	for	writing	Java-
based	custom	consumers.

Note
All	the	Kafka	classes	referred	to	in	this	book	are	actually	written	in	Scala.

Kafka	consumer	APIs
Kafka	provides	two	types	of	API	for	Java	consumers:

High-level	API
Low-level	API

The	high-level	consumer	API
The	high-level	consumer	API	is	used	when	only	data	is	needed	and	the	handling	of
message	offsets	is	not	required.	This	API	hides	broker	details	from	the	consumer	and
allows	effortless	communication	with	the	Kafka	cluster	by	providing	an	abstraction	over
the	low-level	implementation.	The	high-level	consumer	stores	the	last	offset	(the	position
within	the	message	partition	where	the	consumer	left	off	consuming	the	message),	read
from	a	specific	partition	in	Zookeeper.	This	offset	is	stored	based	on	the	consumer	group
name	provided	to	Kafka	at	the	beginning	of	the	process.

The	consumer	group	name	is	unique	and	global	across	the	Kafka	cluster	and	any	new
consumers	with	an	in-use	consumer	group	name	may	cause	ambiguous	behavior	in	the
system.	When	a	new	process	is	started	with	the	existing	consumer	group	name,	Kafka
triggers	a	rebalance	between	the	new	and	existing	process	threads	for	the	consumer	group.
After	the	rebalance,	some	messages	that	are	intended	for	a	new	process	may	go	to	an	old
process,	causing	unexpected	results.	To	avoid	this	ambiguous	behavior,	any	existing
consumers	should	be	shut	down	before	starting	new	consumers	for	an	existing	consumer
group	name.

The	following	are	the	classes	that	are	imported	to	write	Java-based	basic	consumers	using
the	high-level	consumer	API	for	a	Kafka	cluster:

ConsumerConnector:	Kafka	provides	the	ConsumerConnector	interface	(interface
ConsumerConnector)	that	is	further	implemented	by	the
ZookeeperConsumerConnector	class
(kafka.javaapi.consumer.ZookeeperConsumerConnector).	This	class	is
responsible	for	all	the	interaction	a	consumer	has	with	ZooKeeper.

The	following	is	the	class	diagram	for	the	ConsumerConnector	class:

KafkaStream:	Objects	of	the	kafka.consumer.KafkaStream	class	are	returned	by	the
createMessageStreams	call	from	the	ConsumerConnector	implementation.	This	list
of	the	KafkaStream	objects	is	returned	for	each	topic,	which	can	further	create	an
iterator	over	messages	in	the	stream.	The	following	is	the	Scala-based	class
declaration:

class	KafkaStream[K,V](private	val	queue:	

																						BlockingQueue[FetchedDataChunk],

																						consumerTimeoutMs:	Int,

																						private	val	keyDecoder:	Decoder[K],

																						private	val	valueDecoder:	Decoder[V],

																						val	clientId:	String)

Here,	the	parameters	K	and	V	specify	the	type	for	the	partition	key	and	message	value,
respectively.

In	the	create	call	from	the	ConsumerConnector	class,	clients	can	specify	the	number
of	desired	streams,	where	each	stream	object	is	used	for	single-threaded	processing.
These	stream	objects	may	represent	the	merging	of	multiple	unique	partitions.

ConsumerConfig:	The	kafka.consumer.ConsumerConfig	class	encapsulates	the
property	values	required	for	establishing	the	connection	with	ZooKeeper,	such	as
ZooKeeper	URL,	ZooKeeper	session	timeout,	and	ZooKeeper	sink	time.	It	also
contains	the	property	values	required	by	the	consumer	such	as	group	ID	and	so	on.

A	high-level	API-based	working	consumer	example	is	discussed	after	the	next	section.

The	low-level	consumer	API
The	high-level	API	does	not	allow	consumers	to	control	interactions	with	brokers.	Also
known	as	“simple	consumer	API”,	the	low-level	consumer	API	is	stateless	and	provides
fine	grained	control	over	the	communication	between	Kafka	broker	and	the	consumer.	It
allows	consumers	to	set	the	message	offset	with	every	request	raised	to	the	broker	and
maintains	the	metadata	at	the	consumer’s	end.	This	API	can	be	used	by	both	online	as	well
as	offline	consumers	such	as	Hadoop.	These	types	of	consumers	can	also	perform	multiple
reads	for	the	same	message	or	manage	transactions	to	ensure	the	message	is	consumed
only	once.

Compared	to	the	high-level	consumer	API,	developers	need	to	put	in	extra	effort	to	gain
low-level	control	within	consumers	by	keeping	track	of	offsets,	figuring	out	the	lead
broker	for	the	topic	and	partition,	handling	lead	broker	changes,	and	so	on.

In	the	low-level	consumer	API,	consumers	first	query	the	live	broker	to	find	out	the	details
about	the	lead	broker.	Information	about	the	live	broker	can	be	passed	on	to	the	consumers
either	using	a	properties	file	or	from	the	command	line.	The	topicsMetadata()	method	of
the	kafka.javaapi.TopicMetadataResponse	class	is	used	to	find	out	metadata	about	the
topic	of	interest	from	the	lead	broker.	For	message	partition	reading,	the
kafka.api.OffsetRequest	class	defines	two	constants:	EarliestTime	and	LatestTime,
to	find	the	beginning	of	the	data	in	the	logs	and	the	new	messages	stream.	These	constants
also	help	consumers	to	track	which	messages	are	already	read.

The	main	class	used	within	the	low-level	consumer	API	is	the	SimpleConsumer
(kafka.javaapi.consumer.SimpleConsumer)	class.	The	following	is	the	class	diagram	for
the	SimpleConsumer	class:

A	simple	consumer	class	provides	a	connection	to	the	lead	broker	for	fetching	the
messages	from	the	topic	and	methods	to	get	the	topic	metadata	and	the	list	of	offsets.

A	few	more	important	classes	for	building	different	request	objects	are	FetchRequest
(kafka.api.FetchRequest),	OffsetRequest	(kafka.javaapi.OffsetRequest),
OffsetFetchRequest	(kafka.javaapi.OffsetFetchRequest),	OffsetCommitRequest
(kafka.javaapi.OffsetCommitRequest),	and	TopicMetadataRequest
(kafka.javaapi.TopicMetadataRequest).

Note
All	the	examples	in	this	chapter	are	based	on	the	high-level	consumer	API.	For	examples
based	on	the	low-level	consumer	API,	refer	to
https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+SimpleConsumer+Example.

https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+SimpleConsumer+Example

Simple	Java	consumers
Now	we	will	start	writing	a	single-threaded	simple	Java	consumer	developed	using	the
high-level	consumer	API	for	consuming	the	messages	from	a	topic.	This
SimpleHLConsumer	class	is	used	to	fetch	a	message	from	a	specific	topic	and	consume	it,
assuming	that	there	is	a	single	partition	within	the	topic.

Importing	classes
As	a	first	step,	we	need	to	import	the	following	classes:

import	kafka.consumer.ConsumerConfig;

import	kafka.consumer.ConsumerIterator;

import	kafka.consumer.KafkaStream;

import	kafka.javaapi.consumer.ConsumerConnector;

Defining	properties
As	a	next	step,	we	need	to	define	properties	for	making	a	connection	with	Zookeeper	and
pass	these	properties	to	the	Kafka	consumer	using	the	following	code:

Properties	props	=	new	Properties();

props.put("zookeeper.connect",	"localhost:2181");

props.put("group.id",	"testgroup");

props.put("zookeeper.session.timeout.ms",	"500");

props.put("zookeeper.sync.time.ms",	"250");

props.put("auto.commit.interval.ms",	"1000");

new	ConsumerConfig(props);

Now	let	us	see	the	major	properties	mentioned	in	the	code:

zookeeper.connect:	This	property	specifies	the	ZooKeeper	<node:port>	connection
detail	that	is	used	to	find	the	Zookeeper	running	instance	in	the	cluster.	In	the	Kafka
cluster,	Zookeeper	is	used	to	store	offsets	of	messages	consumed	for	a	specific	topic
and	partition	by	this	consumer	group.
group.id:	This	property	specifies	the	name	for	the	consumer	group	shared	by	all	the
consumers	within	the	group.	This	is	also	the	process	name	used	by	Zookeeper	to
store	offsets.
zookeeper.session.timeout.ms:	This	property	specifies	the	Zookeeper	session
timeout	in	milliseconds	and	represents	the	amount	of	time	Kafka	will	wait	for
Zookeeper	to	respond	to	a	request	before	giving	up	and	continuing	to	consume
messages.
zookeeper.sync.time.ms:	This	property	specifies	the	ZooKeeper	sync	time	in
milliseconds	between	the	ZooKeeper	leader	and	the	followers.
auto.commit.interval.ms:	This	property	defines	the	frequency	in	milliseconds	at
which	consumer	offsets	get	committed	to	Zookeeper.

Reading	messages	from	a	topic	and
printing	them
As	a	final	step,	we	need	to	read	the	message	using	the	following	code:

Map<String,	Integer>	topicMap	=	new	HashMap<String,	Integer>();

//	1	represents	the	single	thread

topicCount.put(topic,	new	Integer(1));

Map<String,	List<KafkaStream<byte[],	byte[]>>>	consumerStreamsMap	=	

consumer.createMessageStreams(topicMap);

//	Get	the	list	of	message	streams	for	each	topic,	using	the	default	

decoder.

List<KafkaStream<byte[],	byte[]>>streamList	=		

consumerStreamsMap.get(topic);

for	(final	KafkaStream	<byte[],	byte[]>	stream	:	streamList)	{

ConsumerIterator<byte[],	byte[]>	consumerIte	=	stream.iterator();

		while	(consumerIte.hasNext())

				System.out.println("Message	from	Single	Topic	::	"

				+	new	String(consumerIte.next().message()));

}	

So	the	complete	program	will	look	like	the	following	code:

package	kafka.examples.ch5;

import	java.util.HashMap;

import	java.util.List;

import	java.util.Map;

import	java.util.Properties;

import	kafka.consumer.ConsumerConfig;

import	kafka.consumer.ConsumerIterator;

import	kafka.consumer.KafkaStream;

import	kafka.javaapi.consumer.ConsumerConnector;

public	class	SimpleHLConsumer	{

		private	final	ConsumerConnector	consumer;

		private	final	String	topic;

		public	SimpleHLConsumer(String	zookeeper,	String	groupId,	String	topic)	{

				consumer	=	kafka.consumer.Consumer

								.createJavaConsumerConnector(createConsumerConfig(zookeeper,

												groupId));

				this.topic	=	topic;

		}

		private	static	ConsumerConfig	createConsumerConfig(String	zookeeper,

								String	groupId)	{

				Properties	props	=	new	Properties();

				props.put("zookeeper.connect",	zookeeper);

				props.put("group.id",	groupId);

				props.put("zookeeper.session.timeout.ms",	"500");

				props.put("zookeeper.sync.time.ms",	"250");

				props.put("auto.commit.interval.ms",	"1000");

				return	new	ConsumerConfig(props);

		}

		public	void	testConsumer()	{

				Map<String,	Integer>	topicMap	=	new	HashMap<String,	Integer>();

				//	Define	single	thread	for	topic

				topicMap.put(topic,	new	Integer(1));

				Map<String,	List<KafkaStream<byte[],	byte[]>>>	consumerStreamsMap	=	

								consumer.createMessageStreams(topicMap);

				List<KafkaStream<byte[],	byte[]>>	streamList	=	consumerStreamsMap

								.get(topic);

				for	(final	KafkaStream<byte[],	byte[]>	stream	:	streamList)	{

						ConsumerIterator<byte[],	byte[]>	consumerIte	=	stream.iterator();

						while	(consumerIte.hasNext())

								System.out.println("Message	from	Single	Topic	::	"

										+	new	String(consumerIte.next().message()));

				}

				if	(consumer	!=	null)

						consumer.shutdown();

		}

		public	static	void	main(String[]	args)	{

				String	zooKeeper	=	args[0];

				String	groupId	=	args[1];

				String	topic	=	args[2];

				SimpleHLConsumer	simpleHLConsumer	=	new	SimpleHLConsumer(

										zooKeeper,	groupId,	topic);

				simpleHLConsumer.testConsumer();

		}

}

Before	running	this,	make	sure	you	have	created	the	topic	kafkatopic	from	the	command
line:

[root@localhost	kafka_2.9.2-0.8.1.1]#bin/kafka-topics.sh	--create	--

zookeeper	localhost:2181	--replication-factor	1	--partitions	3	--topic	

kafkatopic

Note
Before	compiling	and	running	a	Java-based	Kafka	program	in	the	console,	make	sure	you
download	the	slf4j-1.7.7.tar.gz	file	from	http://www.slf4j.org/download.html	and
copy	slf4j-log4j12-1.7.7.jar	contained	within	slf4j-1.7.7.tar.gz	to	the

http://www.slf4j.org/download.html

/opt/kafka_2.9.2-0.8.1.1/libs	directory.	Also	add	all	the	libraries	available	in
/opt/kafka_2.9.2-0.8.1.1/libs	to	the	classpath	using	the	following	commands:

[root@localhost	kafka_2.9.2-0.8.1.1]#	export	KAFKA_LIB=/opt/kafka_2.9.2-

0.8.1.1/libs

[root@localhost	kafka_2.9.2-0.8.1.1]#	export	CLASSPATH=.:$KAFKA_LIB/jopt-

simple-3.2.jar:$KAFKA_LIB/kafka_2.9.2-0.8.1.1.jar:$KAFKA_LIB/log4j-

1.2.15.jar:$KAFKA_LIB/metrics-core-2.2.0.jar:$KAFKA_LIB/scala-library-

2.9.2.jar:$KAFKA_LIB/slf4j-api-1.7.2.jar:$KAFKA_LIB/slf4j-log4j12-

1.7.7.jar:$KAFKA_LIB/snappy-java-1.0.5.jar:$KAFKA_LIB/zkclient-

0.3.jar:$KAFKA_LIB/zookeeper-3.3.4.jar

Also	run	the	SimpleProducer	class	developed	in	Chapter	4,	Writing	Producers,	which
takes	two	arguments:	first,	the	topic	name	and	second,	the	number	of	messages	to	be
published	as	follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#	java	

kafka.examples.ch4.SimpleProducer	kafkatopic	100

Compile	the	preceding	SimpleHLConsumer	class	using	the	following	command:

[root@localhost	kafka_2.9.2-0.8.1.1]#	javac	-d	.	

kafka/examples/ch5/SimpleHLConsumer.java

Run	the	simple	high-level	consumer	using	the	following	command	in	a	separate	console
window:

[root@localhost	kafka_2.9.2-0.8.1.1]#	java	

kafka.examples.ch5.SimpleHLConsumer	localhost:2181	testgroup	kafkatopic

For	successful	execution,	the	SimpleHLConsumer	class	takes	three	arguments:	first,	the
Zookeeper	connection	string	<host:port>;	second,	the	unique	group	ID;	and	third,	the
Kafka	topic	name.

Multithreaded	Java	consumers
The	previous	example	is	a	very	basic	example	of	a	consumer	that	consumes	messages
from	a	single	broker	with	no	explicit	partitioning	of	messages	within	the	topic.	Let’s	jump
to	the	next	level	and	write	another	program	that	consumes	messages	from	multiple
partitions	connecting	to	single/multiple	topics.

A	multithreaded,	high-level,	consumer-API-based	design	is	usually	based	on	the	number
of	partitions	in	the	topic	and	follows	a	one-to-one	mapping	approach	between	the	thread
and	the	partitions	within	the	topic.	For	example,	if	four	partitions	are	defined	for	any
topic,	as	a	best	practice,	only	four	threads	should	be	initiated	with	the	consumer
application	to	read	the	data;	otherwise,	some	conflicting	behavior,	such	as	threads	never
receiving	a	message	or	a	thread	receiving	messages	from	multiple	partitions,	may	occur.
Also,	receiving	multiple	messages	will	not	guarantee	that	the	messages	will	be	placed	in
order.	For	example,	a	thread	may	receive	two	messages	from	the	first	partition	and	three
from	the	second	partition,	then	three	more	from	the	first	partition,	followed	by	some	more
from	the	first	partition,	even	if	the	second	partition	has	data	available.

Let’s	move	further	on.

Importing	classes
As	a	first	step,	we	need	to	import	the	following	classes:

import	kafka.consumer.ConsumerConfig;

import	kafka.consumer.ConsumerIterator;

import	kafka.consumer.KafkaStream;

import	kafka.javaapi.consumer.ConsumerConnector;

Defining	properties
As	the	next	step,	we	need	to	define	properties	for	making	a	connection	with	Zookeeper
and	pass	these	properties	to	the	Kafka	consumer	using	the	following	code:

Properties	props	=	new	Properties();

props.put("zookeeper.connect",	"localhost:2181");

props.put("group.id",	"testgroup");

props.put("zookeeper.session.timeout.ms",	"500");

props.put("zookeeper.sync.time.ms",	"250");

props.put("auto.commit.interval.ms",	"1000");

new	ConsumerConfig(props);

The	preceding	properties	have	already	been	discussed	in	the	previous	example.	For	more
details	on	Kafka	consumer	properties,	refer	to	the	last	section	of	this	chapter.

Reading	the	message	from	threads	and	printing	it
The	only	difference	in	this	section	from	the	previous	section	is	that	we	first	create	a	thread
pool	and	get	the	Kafka	streams	associated	with	each	thread	within	the	thread	pool,	as
shown	in	the	following	code:

//	Define	thread	count	for	each	topic

topicMap.put(topic,	new	Integer(threadCount));

//	Here	we	have	used	a	single	topic	but	we	can	also	add

//	multiple	topics	to	topicCount	MAP

Map<String,	List<KafkaStream<byte[],	byte[]>>>	consumerStreamsMap	

											=	consumer.createMessageStreams(topicMap);

List<KafkaStream<byte[],	byte[]>>	streamList	=	

consumerStreamsMap.get(topic);

//	Launching	the	thread	pool

executor	=	Executors.newFixedThreadPool(threadCount);

The	complete	program	listing	for	the	multithread	Kafka	consumer	based	on	the	Kafka
high-level	consumer	API	is	as	follows:

package	kafka.examples.ch5;

import	java.util.HashMap;

import	java.util.List;

import	java.util.Map;

import	java.util.Properties;

import	java.util.concurrent.ExecutorService;

import	java.util.concurrent.Executors;

import	kafka.consumer.ConsumerConfig;

import	kafka.consumer.ConsumerIterator;

import	kafka.consumer.KafkaStream;

import	kafka.javaapi.consumer.ConsumerConnector;

public	class	MultiThreadHLConsumer	{

		private	ExecutorService	executor;

		private	final	ConsumerConnector	consumer;

		private	final	String	topic;

		public	MultiThreadHLConsumer(String	zookeeper,	String	groupId,	String	

topic)	{

				consumer	=	kafka.consumer.Consumer

								.createJavaConsumerConnector(createConsumerConfig(zookeeper,	

groupId));

				this.topic	=	topic;

		}

		private	static	ConsumerConfig	createConsumerConfig(String	zookeeper,

								String	groupId)	{

				Properties	props	=	new	Properties();

				props.put("zookeeper.connect",	zookeeper);

				props.put("group.id",	groupId);

				props.put("zookeeper.session.timeout.ms",	"500");

				props.put("zookeeper.sync.time.ms",	"250");

				props.put("auto.commit.interval.ms",	"1000");

				return	new	ConsumerConfig(props);

		}

		public	void	shutdown()	{

				if	(consumer	!=	null)

						consumer.shutdown();

				if	(executor	!=	null)

						executor.shutdown();

		}

		public	void	testMultiThreadConsumer(int	threadCount)	{

				Map<String,	Integer>	topicMap	=	new	HashMap<String,	Integer>();

				//	Define	thread	count	for	each	topic

				topicMap.put(topic,	new	Integer(threadCount));

				//	Here	we	have	used	a	single	topic	but	we	can	also	add

				//	multiple	topics	to	topicCount	MAP

				Map<String,	List<KafkaStream<byte[],	byte[]>>>	consumerStreamsMap	=	

								consumer.createMessageStreams(topicMap);

				List<KafkaStream<byte[],	byte[]>>	streamList	=	consumerStreamsMap

								.get(topic);

				//	Launching	the	thread	pool

				executor	=	Executors.newFixedThreadPool(threadCount);

				//	Creating	an	object	messages	consumption

				int	count	=	0;

				for	(final	KafkaStream<byte[],	byte[]>	stream	:	streamList)	{

						final	int	threadNumber	=	count;

						executor.submit(new	Runnable()	{

						public	void	run()	{

						ConsumerIterator<byte[],	byte[]>	consumerIte	=	stream.iterator();

						while	(consumerIte.hasNext())

								System.out.println("Thread	Number	"	+	threadNumber	+	":	"

								+	new	String(consumerIte.next().message()));

								System.out.println("Shutting	down	Thread	Number:	"	+	

								threadNumber);

								}

						});

						count++;

				}

				if	(consumer	!=	null)

						consumer.shutdown();

				if	(executor	!=	null)

						executor.shutdown();

		}

		public	static	void	main(String[]	args)	{

				String	zooKeeper	=	args[0];

				String	groupId	=	args[1];

				String	topic	=	args[2];

				int	threadCount	=	Integer.parseInt(args[3]);

				MultiThreadHLConsumer	multiThreadHLConsumer	=	

								new	MultiThreadHLConsumer(zooKeeper,	groupId,	topic);

				multiThreadHLConsumer.testMultiThreadConsumer(threadCount);

				try	{

						Thread.sleep(10000);

				}	catch	(InterruptedException	ie)	{

				}

				multiThreadHLConsumer.shutdown();

		}

}

Compile	the	preceding	program,	and	before	running	it,	read	the	following	tip.

Tip
Before	we	run	this	program,	we	need	to	make	sure	our	cluster	is	running	as	a	multi-broker
cluster	(comprising	either	single	or	multiple	nodes).	For	more	information	on	how	to	set
up	single	node—multiple	broker	cluster,	refer	to	Chapter	2,	Setting	Up	a	Kafka	Cluster.

Once	your	multi-broker	cluster	is	up,	create	a	topic	with	four	partitions	and	set	the
replication	factor	to	2	before	running	this	program	using	the	following	command:

[root@localhost	kafka-0.8]#	bin/kafka-topics.sh	--zookeeper	localhost:2181	

--create	--topic	kafkatopic	--partitions	4	--replication-factor	2

Also,	run	the	SimpleProducer	class	developed	in	Chapter	4,	Writing	Producers,	which
takes	two	arguments:	first,	the	topic	name	and	second,	the	number	of	messages	to	be
published,	as	follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#	java	

kafka.examples.ch4.SimpleProducer	kafkatopic	100

Compile	the	preceding	MultiThreadHLConsumer	class	using	the	following	command:

[root@localhost	kafka_2.9.2-0.8.1.1]#	javac	-d	.	

kafka/examples/ch5/MultiThreadHLConsumer.java

Now	run	the	multithreaded	high-level	consumer	using	the	following	command	in	a
separate	console	window:

[root@localhost	kafka_2.9.2-0.8.1.1]#	java	

kafka.examples.ch5.MultiThreadHLConsumer	localhost:2181	testgroup	

kafkatopic	4

For	successful	execution,	the	SimpleHLConsumer	class	takes	four	arguments:

The	Zookeeper	connection	string	<host:port>
The	unique	group	ID

The	Kafka	topic	name
The	thread	count

This	program	will	print	all	partitions	of	messages	associated	with	each	thread.

The	Kafka	consumer	property	list
The	following	lists	of	a	few	important	properties	that	can	be	configured	for	high-level,
consumer-API-based	Kafka	consumers.	The	Scala	class
kafka.consumer.ConsumerConfig	provides	implementation-level	details	for	consumer
configurations.	For	a	complete	list,	visit
http://kafka.apache.org/documentation.html#consumerconfigs.

Property	name Description Default
value

group.id
This	property	defines	a	unique	identity	for	the	set	of	consumers
within	the	same	consumer	group.

	

consumer.id
This	property	is	specified	for	the	Kafka	consumer	and	generated
automatically	if	not	defined.

null

zookeeper.connect

This	property	specifies	the	Zookeeper	connection	string,	<
hostname:port/chroot/path>.	Kafka	uses	Zookeeper	to	store
offsets	of	messages	consumed	for	a	specific	topic	and	partition	by
the	consumer	group.	/chroot/path	defines	the	data	location	in	a
global	zookeeper	namespace.

	

client.id
The	client.id	value	is	specified	by	the	Kafka	client	with	each
request	and	is	used	to	identify	the	client	making	the	requests.

${group.id}

zookeeper.session.timeout.ms

This	property	defines	the	time	(in	milliseconds)	for	a	Kafka
consumer	to	wait	for	a	Zookeeper	pulse	before	it	is	declared	dead
and	rebalance	is	initiated.

6000

zookeeper.connection.timeout.ms
This	value	defines	the	maximum	waiting	time	(in	milliseconds)	for
the	client	to	establish	a	connection	with	ZooKeeper.

6000

zookeeper.sync.time.ms
This	property	defines	the	time	it	takes	to	sync	a	Zookeeper
follower	with	the	Zookeeper	leader	(in	milliseconds).

2000

auto.commit.enable

This	property	enables	a	periodical	commit	of	message	offsets	to
the	Zookeeper	that	are	already	fetched	by	the	consumer.	In	the
event	of	consumer	failures,	these	committed	offsets	are	used	as	a
starting	position	by	the	new	consumers.

true

auto.commit.interval.ms
This	property	defines	the	frequency	(in	milliseconds)	for	the
consumed	offsets	to	get	committed	to	ZooKeeper.

60	*	1000

auto.offset.reset

This	property	defines	the	offset	value	if	an	initial	offset	is
available	in	Zookeeper	or	the	offset	is	out	of	range.	Possible
values	are:

largest:	reset	to	largest	offset
smallest:	reset	to	smallest	offset
anything	else:	throw	an	exception

largest

consumer.timeout.ms
This	property	throws	an	exception	to	the	consumer	if	no	message
is	available	for	consumption	after	the	specified	interval.

-1

http://kafka.apache.org/documentation.html#consumerconfigs

Summary
In	this	chapter,	we	have	learned	how	to	write	basic	consumers	and	learned	about	some
advanced	levels	of	Java	consumers	that	consume	messages	from	partitions.

In	the	next	chapter,	we	will	learn	how	to	integrate	Kafka	with	Storm	and	Hadoop.

Chapter	6.	Kafka	Integrations
Consider	a	use	case	for	a	website	where	continuous	security	events,	such	as	user
authentication	and	authorization	to	access	secure	resources,	need	to	be	tracked,	and
decisions	need	to	be	taken	in	real	time	for	any	security	breach.	Using	any	typical	batch-
oriented	data	processing	systems,	such	as	Hadoop,	where	all	the	data	needs	to	be	collected
first	and	then	processed	to	reveal	patterns,	will	make	it	too	late	to	decide	whether	there	is
any	security	threat	to	the	web	application	or	not.	Hence,	this	is	the	classical	use	case	for
real-time	data	processing.

Let’s	consider	another	use	case,	where	raw	clickstreams	generated	by	customers	through
website	usage	are	captured	and	preprocessed.	Processing	these	clickstreams	provides
valuable	insight	into	customer	preferences	and	these	insights	can	be	coupled	later	with
marketing	campaigns	and	recommendation	engines	to	offer	an	analysis	of	consumers.
Hence,	we	can	simply	say	that	this	large	amount	of	clickstream	data	stored	on	Hadoop	will
get	processed	by	Hadoop	MapReduce	jobs	in	batch	mode,	not	in	real	time.

In	this	chapter,	we	shall	be	exploring	how	Kafka	can	be	integrated	with	the	following
technologies	to	address	different	use	cases,	such	as	real-time	processing	using	Storm,	as
Spark	Streaming,	and	batch	processing	using	Hadoop:

Kafka	integration	with	Storm
Kafka	integration	with	Hadoop

So	let’s	start.

Kafka	integration	with	Storm
Processing	small	amounts	of	data	in	real-time	was	never	a	challenge	using	technologies
such	as	Java	Messaging	Service	(JMS);	however,	these	processing	systems	show
performance	limitations	when	dealing	with	large	volumes	of	streaming	data.	Also,	these
systems	are	not	good	horizontally	scalable	solutions.

Introducing	Storm
Storm	is	an	open	source,	distributed,	reliable,	and	fault-tolerant	system	for	processing
streams	of	large	volumes	of	data	in	real-time.	It	supports	many	use	cases,	such	as	real-time
analytics,	online	machine	learning,	continuous	computation,	and	the	Extract
Transformation	Load	(ETL)	paradigm.

There	are	various	components	that	work	together	for	streaming	data	processing,	as
follows:

Spout:	This	is	a	continuous	stream	of	log	data.
Bolt:	The	spout	passes	the	data	to	a	component	called	bolt.	A	bolt	consumes	any
number	of	input	streams,	does	some	processing,	and	possibly	emits	new	streams.	For
example,	emitting	a	stream	of	trend	analysis	by	processing	a	stream	of	tweets.

The	following	diagram	shows	spout	and	bolt	in	the	Storm	architecture:

We	can	assume	a	Storm	cluster	to	be	a	chain	of	bolt	components,	where	each	bolt
performs	some	kind	of	transformation	on	the	data	streamed	by	the	spout.	Other	than	spout
and	bolts,	a	few	other	components	are	as	follows:

Tuple:	This	is	the	native	data	structure	(name	list	values	of	any	data	type)	used	by
Storm.
Stream:	This	represents	a	sequence	of	tuples.
Workers:	These	represent	the	Storm	process.
Executors:	A	Storm	thread	launched	by	a	Storm	worker.	Here,	workers	may	run	one
or	more	executors	and	executors	may	run	one	or	more	Storm	job(s)	from	a	spout	or

bolt.

Next	in	the	Storm	cluster,	jobs	are	typically	referred	to	as	topologies;	the	only	difference
is	that	these	topologies	run	forever.	For	real-time	computation	on	Storm,	topologies	that
are	nothing	but	graphs	of	computation	are	created.	Typically,	topologies	define	how	data
will	flow	from	spouts	through	bolts.	These	topologies	can	be	transactional	or	non-
transactional	in	nature.

Note
Complete	information	about	Storm	can	be	found	at	http://storm-project.net/.

The	following	section	is	useful	if	you	have	worked	with	Storm	or	have	working
knowledge	of	Storm.

http://storm-project.net/

Integrating	Storm
We	have	already	learned	in	the	previous	chapters	that	Kafka	is	a	high-performance
publisher-subscriber-based	messaging	system	with	highly	scalable	properties.	Kafka	spout
is	available	for	integrating	Storm	with	Kafka	clusters.

The	Kafka	spout	is	a	regular	spout	implementation	that	reads	the	data	from	a	Kafka
cluster.	This	Kafka	spout,	which	was	available	earlier	at
https://github.com/wurstmeister/storm-kafka-0.8-plus,	is	now	merged	into	the	core	Storm
project	version	0.9.2-incubating	and	can	be	found	at
https://github.com/apache/storm/tree/master/external/storm-kafka.	This	storm-kafka	spout
provides	the	key	features	such	as	support	for	dynamic	discovery	of	Kafka	brokers	and
“exactly	once”	tuple	processing.	Apart	from	the	regular	Storm	spout	for	Kafka,	it	also
provides	the	Trident	spout	implementation	for	Kafka.	In	this	section,	our	focus	will	remain
on	the	regular	storm-kafka	spout.

Note
Trident	is	a	high-level	abstraction	for	doing	real-time	computing	on	top	of	Storm.	It	allows
us	to	seamlessly	intermix	high	throughput	(millions	of	messages	per	second),	stateful
stream	processing	with	low-latency	distributed	querying.	For	more	information
https://storm.apache.org/documentation/Trident-tutorial.html.

Both	spout	implementations	use	the	BrokerHost	interface	that	tracks	Kafka	broker	host-
to-partition	mapping	and	KafkaConfig	parameters.	Two	implementations,	ZkHosts	and
StaticHosts,	are	provided	for	the	BrokerHost	interface.

The	ZkHosts	implementation	is	used	for	dynamically	tracking	Kafka	broker-to-partition
mapping	with	the	help	of	Kafka’s	zookeeper’s	entries:

public	ZkHosts(String	brokerZkStr,	String	brokerZkPath)	

public	ZkHosts(String	brokerZkStr)

The	preceding	constructors	are	used	to	create	the	instance	of	ZkHosts.	Here,	brokerZkStr
can	be	localhost:9092	and	brokerZkPath	is	the	root	directory	under	which	all	the	topic
and	partition	information	is	stored.	The	default	value	of	brokerZkPath	is	/brokers.

The	StaticHosts	implementation	is	used	for	static	partitioning	information	as:

//localhost:9092.	Uses	default	port	as	9092.

Broker	brokerPartition0	=	new	Broker("localhost");

//localhost:9092.	Takes	the	port	explicitly

Broker	brokerPartition1	=	new	Broker("localhost",	9092);				

//localhost:9092	specified	as	one	string.

Broker	brokerPartition2	=	new	Broker("localhost:9092");				

GlobalPartitionInformation	partitionInfo	=	new	

GlobalPartitionInformation();

//mapping	form	partition	0	to	brokerPartition0

https://github.com/wurstmeister/storm-kafka-0.8-plus
https://github.com/apache/storm/tree/master/external/storm-kafka
https://storm.apache.org/documentation/Trident-tutorial.html

partitionInfo.addPartition(0,	brokerPartition0);

//mapping	form	partition	1	to	brokerPartition1

partitionInfo.addPartition(1,	brokerPartition1);				

//mapping	form	partition	2	to	brokerPartition2

partitionInfo.addPartition(2,	brokerPartition2);

StaticHosts	hosts	=	new	StaticHosts(partitionInfo);

For	creating	the	StaticHosts	instance,	the	first	instance	of	GlobalPartitionInformation
is	created	as	shown	in	the	preceding	code.	Next,	the	KafkaConfig	instance	needs	to	be
created	for	constructing	the	Kafka	spout	as:

public	KafkaConfig(BrokerHosts	hosts,	String	topic)

public	KafkaConfig(BrokerHosts	hosts,	String	topic,	String	clientId)

The	preceding	constructors	take	the	following	parameters:

A	list	of	Kafka	brokers
The	topic	name	used	to	read	the	message
Client	ID,	used	as	a	part	of	the	Zookeeper	path	where	the	spout	as	a	consumer	stores
the	current	consumption	offset.

The	KafkaConfig	class	also	has	a	bunch	of	public	variables	for	controlling	the
application’s	behavior	and	how	spout	fetches	messages	from	the	Kafka	cluster:

		public	int	fetchSizeBytes	=	1024	*	1024;

		public	int	socketTimeoutMs	=	10000;

		public	int	fetchMaxWait	=	10000;

		public	int	bufferSizeBytes	=	1024	*	1024;

		public	MultiScheme	scheme	=	new	RawMultiScheme();

		public	boolean	forceFromStart	=	false;

		public	long	startOffsetTime	=	

								kafka.api.OffsetRequest.EarliestTime();

		public	long	maxOffsetBehind	=	Long.MAX_VALUE;

		public	boolean	useStartOffsetTimeIfOffsetOutOfRange	=	true;

		public	int	metricsTimeBucketSizeInSecs	=	60;

The	Spoutconfig	class	extends	the	KafkaConfig	class	to	support	two	additional	values	as
zkroot	and	id:

public	SpoutConfig(BrokerHosts	hosts,	String	topic,	String	zkRoot,	String	

id);

The	preceding	constructor	additionally	takes	the	following:

The	root	path	in	Zookeeper,	where	spout	stores	the	consumer	offset
The	unique	identity	of	the	spout

The	following	code	sample	shows	the	KafkaSpout	class	instance	initialization	with	the
previous	parameters:

//	Creating	instance	for	BrokerHosts	interface	implementation

BrokerHosts	hosts	=	new	ZkHosts(brokerZkConnString);

//	Creating	instance	of	SpoutConfig

SpoutConfig	spoutConfig	=	new	SpoutConfig(brokerHosts,	topicName,	"/"	+	

topicName,	UUID.randomUUID().toString());

//	Defines	how	the	byte[]	consumed	from	kafka	gets	transformed	into	//	a	

storm	tuple

spoutConfig.scheme	=	new	SchemeAsMultiScheme(new	StringScheme());

//	Creating	instance	of	KafkaSpout

KafkaSpout	kafkaSpout	=	new	KafkaSpout(spoutConfig);

The	following	diagram	shows	the	high-level	integration	view	of	what	a	Kafka	Storm
working	model	will	look	like:

The	Kafka	spout	uses	the	same	Zookeeper	instance	that	is	used	by	Apache	Storm,	to	store
the	states	of	the	message	offset	and	segment	consumption	tracking	if	it	is	consumed.
These	offsets	are	stored	at	the	root	path	specified	for	the	Zookeeper.	The	Kafka	spout	uses
these	offsets	to	replay	tuples	in	the	event	of	a	downstream	failure	or	timeout.	Although	it
also	has	a	provision	to	rewind	to	a	previous	offset	rather	than	starting	from	the	last	saved
offset,	Kafka	chooses	the	latest	offset	written	around	the	specified	timestamp:

spoutConfig.forceStartOffsetTime(TIMESTAMP);

Here	the	value	-1	forces	the	Kafka	spout	to	restart	from	the	latest	offset	and	-2	forces	the
spout	to	restart	from	the	earliest	offset.

This	storm-kafka	spout	also	has	a	as	it	has	no	support	for	Kafka	0.7x	brokers	and	only
supports	Kafka	0.8.1.x	onwards.

Note
To	run	Kafka	with	Storm,	clusters	for	both	Storm	and	Kafka	need	to	be	set	up	and	should
be	running.	A	Storm	cluster	setup	is	beyond	the	scope	of	this	book.

Kafka	integration	with	Hadoop
Resource	sharing,	stability,	availability,	and	scalability	are	a	few	of	the	many	challenges	of
distributed	computing.	Nowadays,	an	additional	challenge	is	to	process	extremely	large
volumes	of	data	in	TBs	or	PBs.

Introducing	Hadoop
Hadoop	is	a	large-scale	distributed	batch-processing	framework	that	parallelizes	data
processing	across	many	nodes	and	addresses	the	challenges	for	distributed	computing,
including	big	data.

Hadoop	works	on	the	principle	of	the	MapReduce	framework	(introduced	by	Google),
which	provides	a	simple	interface	for	the	parallelization	and	distribution	of	large-scale
computations.	Hadoop	has	its	own	distributed	data	filesystem	called	Hadoop	Distributed
File	System	(HDFS).	In	any	typical	Hadoop	cluster,	HDFS	splits	the	data	into	small
pieces	(called	blocks)	and	distributes	it	to	all	the	nodes.	HDFS	also	replicates	these	small
pieces	of	data	and	stores	them	to	make	sure	that,	if	any	node	is	down,	the	data	is	available
from	another	node.

The	following	diagram	shows	the	high-level	view	of	a	multi-node	Hadoop	cluster:

Hadoop	has	the	following	main	components:

Name	node:	This	is	a	single	point	of	interaction	for	HDFS.	A	name	node	stores
information	about	the	small	pieces	(blocks)	of	data	that	are	distributed	across	the
node.
Secondary	name	node:	This	node	stores	edit	logs,	which	are	helpful	to	for	restoring

the	latest	updated	state	of	HDFS	in	the	case	of	a	name	node	failure.
Data	node:	These	nodes	store	the	actual	data	distributed	by	the	name	node	in	blocks
and	also	store	the	replicated	copy	of	data	from	other	nodes.
Job	tracker:	This	is	responsible	for	splitting	the	MapReduce	jobs	into	smaller	tasks.
Task	tracker:	The	task	tracker	is	responsible	for	the	execution	of	tasks	split	by	the
job	tracker.

The	data	nodes	and	the	task	tracker	share	the	same	machines	and	the	MapReduce	job	split;
execution	of	tasks	is	done	based	on	the	data	store	location	information	provided	by	the
name	node.

Now	before	we	discuss	the	Kafka	integration	with	Hadoop	let’s	quickly	set	up	a	single
node	Hadoop	cluster	in	pseudo	distributed	mode.

Note
Hadoop	clusters	can	be	set	up	in	three	different	modes:

Local	mode
Pseudo	distributed	mode
Fully	distributed	mode

Local	mode	and	pseudo	distributed	mode	work	on	single-node	cluster.	In	local	mode,	all
the	Hadoop	main	components	run	in	the	single	JVM	instance;	whereas,	in	pseudo
distributed	mode,	each	component	runs	in	a	separate	JVM	instance	on	the	single	node.
Pseudo	distributed	mode	is	primarily	used	as	a	development	environment	by	developers.
In	fully	distributed	mode,	all	the	components	run	on	separate	nodes	and	are	used	in	test
and	production	environments.

The	following	are	the	steps	used	for	creating	pseudo	distributed	mode	cluster:

1.	 Install	and	configure	Java.	Refer	to	the	Installing	Java	1.7	or	higher	section	in
Chapter	1,	Introducing	Kafka.

2.	 Download	the	current	stable	Hadoop	distribution	from
http://www.apache.org/dyn/closer.cgi/hadoop/common/.

3.	 Unpack	the	downloaded	Hadoop	distribution	in	/opt	and	add	Hadoop’s	bin	directory
to	the	path	as:

	#	Assuming	your	installation	directory	is	/opt/Hadoop-2.6.0

	[root@localhost	opt]#export	HADOOP_HOME=/opt/hadoop-2.6.0

	[root@localhost	opt]#export	PATH=$PATH:$HADOOP_HOME/bin

4.	 Add	the	following	configurations:

etc/hadoop/core-site.xml:

<configuration>

				<property>

								<name>fs.defaultFS</name>

								<value>hdfs://localhost:9000</value>

				</property>

</configuration>

http://www.apache.org/dyn/closer.cgi/hadoop/common/

	etc/hadoop/hdfs-site.xml:

<configuration>

				<property>

								<name>dfs.replication</name>

								<value>1</value>

				</property>

</configuration>

5.	 Set	up	ssh	to	the	localhost	without	a	passphrase:

[root@localhost	opt]#	ssh	localhost

If	ssh-to-localhost	does	not	work	without	a	passphrase,	execute	the	following
commands:

[root@localhost	opt]#	ssh-keygen	-t	dsa	-P	''	-f	~/.ssh/id_dsa	

[root@localhost	opt]#	cat	~/.ssh/id_dsa.pub	>>	~/.ssh/authorized_keys

6.	 Format	the	filesystem:

[root@localhost	opt]#	bin/hdfs	namenode	-format

7.	 Start	the	NameNode	daemon	and	DataNode	daemon:

[root@localhost	opt]#	sbin/start-dfs.sh

Once	the	Hadoop	cluster	is	set	up	successfully,	browse	the	web	interface	for	the
NameNode	at	http://localhost:50070/.

Integrating	Hadoop
This	section	is	useful	if	you	have	worked	with	Hadoop	or	have	a	working	knowledge	of
Hadoop.

For	real-time	publish-subscribe	use	cases,	Kafka	is	used	to	build	a	pipeline	that	is
available	for	real-time	processing	or	monitoring	and	to	load	the	data	into	Hadoop,	NoSQL,
or	data	warehousing	systems	for	offline	processing	and	reporting.

Kafka	provides	the	source	code	for	both	the	Hadoop	producer	and	consumer,	under	its
contrib	directory.

Hadoop	producers
A	Hadoop	producer	provides	a	bridge	for	publishing	the	data	from	a	Hadoop	cluster	to
Kafka,	as	shown	in	the	following	diagram:

For	a	Kafka	producer,	Kafka	topics	are	considered	as	URIs	and,	to	connect	to	a	specific
Kafka	broker,	URIs	are	specified	as	follows:

kafka://<kafka-broker>/<kafka-topic>

The	Hadoop	producer	code	suggests	two	possible	approaches	for	getting	the	data	from
Hadoop:

Using	the	Pig	script	and	writing	messages	in	Avro	format:	In	this	approach,	Kafka
producers	use	Pig	scripts	for	writing	data	in	a	binary	Avro	format,	where	each	row
signifies	a	single	message.	For	pushing	the	data	into	the	Kafka	cluster,	the
AvroKafkaStorage	class	(it	extends	Pig’s	StoreFunc	class)	takes	the	Avro	schema	as
its	first	argument	and	connects	to	the	Kafka	URI.	Using	the	AvroKafkaStorage
producer,	we	can	also	easily	write	to	multiple	topics	and	brokers	in	the	same	Pig-
script-based	job.	While	writing	Pig	scripts,	required	Kafka	JAR	files	also	need	to	be
registered.	The	following	is	the	sample	Pig	script:

				REGISTER	hadoop-producer_2.8.0-0.8.0.jar;

				REGISTER	avro-1.4.0.jar;

				REGISTER	piggybank.jar;

				REGISTER	kafka-0.8.0.jar;

				REGISTER	jackson-core-asl-1.5.5.jar;

				REGISTER	jackson-mapper-asl-1.5.5.jar;

				REGISTER	scala-library.jar;

member_info	=	LOAD	'member_info.tsv'	AS	(member_id	:	int,	name	:	

chararray);

				

names	=	FOREACH	member_info	GENERATE	name;

				

STORE	member_info	INTO	'kafka://localhost:9092/member_info'	USING	

kafka.bridge.AvroKafkaStorage('"string"');

In	the	preceding	script,	the	Pig	StoreFunc	class	makes	use	of	AvroStorage	in
Piggybank	to	convert	from	Pig’s	data	model	to	the	specified	Avro	schema.

Using	the	Kafka	OutputFormat	class	for	jobs:	In	this	approach,	the	Kafka
OutputFormat	class	(it	extends	Hadoop’s	OutputFormat	class)	is	used	for	publishing
data	to	the	Kafka	cluster.	Using	the	0.20	MapReduce	API,	this	approach	publishes
messages	as	bytes	and	provides	control	over	output	by	using	low-level	methods	of
publishing.	The	Kafka	OutputFormat	class	uses	the	KafkaRecordWriter	class	(it
extends	Hadoop’s	RecordWriter	class)	for	writing	a	record	(message)	to	a	Hadoop
cluster.

For	Kafka	producers,	we	can	also	configure	Kafka	producer	parameters	by	prefixing	them
with	kafka.output	in	the	job	configuration.	For	example,	to	change	the	compression
codec,	add	the	kafka.output.compression.codec	parameter	(for	example,	SET
kafka.output.compression.codec	0	in	Pig	script	for	no	compression).	Along	with	these
values,	Kafka	broker	information	(kafka.metadata.broker.list),	the	topic
(kafka.output.topic),	and	the	schema	(kafka.output.schema)	are	injected	into	the	job’s
configuration.

Hadoop	consumers
A	Hadoop	consumer	is	a	Hadoop	job	that	pulls	data	from	the	Kafka	broker	and	pushes	it
into	HDFS.	The	following	diagram	shows	the	position	of	a	Kafka	consumer	in	the
architecture	pattern:

A	Hadoop	job	performs	parallel	loading	from	Kafka	to	HDFS,	and	the	number	of	mappers
for	loading	the	data	depends	on	the	number	of	files	in	the	input	directory.	The	output
directory	contains	data	coming	from	Kafka	and	the	updated	topic	offsets.	Individual
mappers	write	the	offset	of	the	last	consumed	message	to	HDFS	at	the	end	of	the	map
task.	If	a	job	fails	and	jobs	get	restarted,	each	mapper	simply	restarts	from	the	offsets
stored	in	HDFS.

The	ETL	example	provided	in	the	Kafka-0.8.1.1-src/contrib/hadoop-consumer
directory	demonstrates	the	extraction	of	Kafka	data	and	loading	it	to	HDFS.	It	requires	the
following	inputs	from	a	configuration	file,	for	example,	test/test.properties:

kafka.etl.topic:	The	topic	to	be	fetched.
kafka.server.uri:	The	Kafka	server	URI.
input:	Input	directory	containing	topic	offsets	that	can	be	generated	by
DataGenerator.	The	number	of	files	in	this	directory	determines	the	number	of
mappers	in	the	Hadoop	job.

output:	Output	directory	containing	Kafka	data	and	updated	topic	offsets.
kafka.request.limit:	It	is	used	to	limit	the	number	events	fetched.

In	the	Kafka	consumer,	the	KafkaETLRecordReader	instance	is	a	record	reader	associated
with	KafkaETLInputFormat.	It	fetches	Kafka	data	from	the	server	starting	from	the
provided	offsets	(specified	by	input)	and	stops	when	it	reaches	the	largest	available
offsets	or	the	specified	limit	(specified	by	kafka.request.limit).	KafkaETLJob	also
contains	some	helper	functions	to	initialize	job	configuration	and	SimpleKafkaETLJob	sets
up	job	properties	and	submits	the	Hadoop	job.	Once	the	job	is	started
SimpleKafkaETLMapper	dumps	Kafka	data	into	HDFS	(specified	by	output).

Summary
In	this	chapter,	we	have	primarily	learned	how	Kafka	can	be	integrated	with	existing	open
source	frameworks	in	the	area	of	real-time/batch	data	processing.	In	the	real-time	data
processing	area,	Kafka	is	integrated	with	Storm	using	the	existing	Storm	spout.	As	for
batch	data	processing,	Kafka	brings	Hadoop-based	data	producers	and	consumes,	so	that
data	can	be	published	onto	the	HDFS,	processed	using	MapReduce,	and	later	consumed.

In	the	next	chapter,	which	is	also	the	last	chapter	of	this	book,	we	will	look	at	some	of	the
other	important	facts	about	Kafka.

Chapter	7.	Operationalizing	Kafka
In	this	last	chapter,	we	will	be	exploring	tools	available	for	Kafka	cluster	administration
and	Kafka	topic	administration.	Additionally,	we	will	also	be	discussing	in	brief	Kafka
cluster	mirroring	and	Kafka’s	integration	with	third-party	tools.

The	main	focus	areas	for	this	chapter	are	as	follows:

Kafka	administration	tools
Kafka	cluster	mirroring
Integration	with	other	tools

Kafka	administration	tools
There	are	a	number	of	tools	or	utilities	provided	by	Kafka	0.8.x	to	administrate	features
such	as	cluster	management,	topic	tools,	cluster	mirroring,	and	so	on.	Let’s	have	a	quick
look	at	these	tools.

Kafka	cluster	tools
Cluster	management	is	one	of	the	prime	responsibilities	of	the	Kafka	administrator.	Once
the	cluster	is	started	successfully,	it	needs	to	be	maintained	for	activities	such	as	server
shutdown,	leader	balancing,	replication,	cluster	mirroring,	and	expanding	Kafka	clusters.
Let’s	talk	about	these	in	detail.

As	we	have	learned	from	Kafka’s	design,	in	replication	multiple	partitions	can	have
replicated	data,	and	out	of	these	multiple	replicas,	one	replica	acts	as	a	lead,	and	the	rest	of
the	replicas	act	as	in-sync	followers	of	the	lead	replica.	In	the	event	of	non-availability	of
a	lead	replica,	maybe	due	to	broker	shutdown,	a	new	lead	replica	needs	to	be	selected.

For	scenarios	such	as	shutting	down	the	Kafka	broker	for	maintenance	activity,	election	of
the	new	leader	is	done	sequentially,	and	this	causes	significant	read/write	operations	for
Zookeeper.	In	any	big	cluster	with	many	topics/partitions,	sequential	election	of	lead
replicas	causes	delay	in	availability.

To	ensure	high	availability,	Kafka	provides	tools	for	a	controlled	shutdown	of	Kafka
brokers.	If	the	broker	has	the	lead	partition	shut	down,	this	tool	transfers	the	leadership
proactively	to	other	in-sync	replicas	on	another	broker.	If	there	is	no	in-sync	replica
available,	the	tool	will	fail	to	shut	down	the	broker	in	order	to	ensure	no	data	is	lost.

The	following	is	the	format	for	using	this	tool:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-run-class.sh	

kafka.admin.ShutdownBroker	--zookeeper	<zookeeper_host:port/namespace>	--

broker	<brokerID>	--num.retries	3	--retry.interval.ms	100

The	ZooKeeper	host	and	the	broker	ID	that	need	to	be	shut	down	are	mandatory
parameters.	We	can	also	specify	optional	parameters,	the	number	of	retries	(--
num.retries,	default	value	0)	and	the	retry	interval	in	milliseconds	(--
retry.interval.ms,	default	value	1000)	with	a	controlled	shutdown	tool.

When	a	server	is	stopped	gracefully,	it	will	sync	all	its	logs	automatically	to	disk	to	avoid
any	log	recovery	whenever	it	is	restarted	again,	as	log	recovery	is	a	time-consuming
activity.	Before	shutting	down,	it	also	migrates	the	leader	partitions	on	the	server	to	other
replicas.	This	ensures	minimal	downtime	for	each	partition	(up	to	a	few	milliseconds).
Controlled	shutdown	of	a	server	also	needs	to	be	enabled	as	follows:

				controlled.shutdown.enable=true

Next,	in	any	big	Kafka	cluster	with	many	brokers,	topics,	and	partitions,	Kafka	ensures
that	the	preferred/lead	replicas	for	partitions	are	equally	distributed	among	the	brokers.
However,	if	a	shutdown	(controlled	as	well)	or	broker	failure	happens,	this	equal
distribution	of	lead	replicas	might	get	imbalanced	within	the	cluster.

Kafka	provides	a	tool	that	is	used	to	maintain	a	balanced	distribution	of	lead	replicas
within	the	Kafka	cluster	across	available	brokers.

The	following	is	the	format	for	using	this	tool:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-preferred-replica-

election.sh	--zookeeper	<zookeeper_host:port/namespace>

This	tool	updates	the	ZooKeeper	path	with	the	list	of	topic	partitions	whose	leader	needs
to	be	moved	to	the	preferred	replica	list.	Once	the	list	is	updated,	the	controller	retrieves
the	list	of	preferred	topic	partitions	from	ZooKeeper	asynchronously	and,	for	each	topic
partition,	controller	verifies	whether	the	preferred	replica	is	the	leader.	If	controller	finds
that	the	preferred	replica	is	not	the	leader	and	is	not	present	in	the	ISR	list,	it	raises	a
request	to	the	broker	to	make	the	preferred	replica	the	leader	for	the	partition	to	create	a
balanced	distribution.	If	the	preferred	replica	is	not	in	the	ISR	list,	the	controller	fails	the
operation	to	avoid	any	data	loss.	For	this	tool,	the	list	of	topic	partitions	in	a	JSON	file
format	can	also	be	provided	as	follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-preferred-replica-

election.sh	--zookeeper	<zookeeper_host:port/namespace>	--path-to-json-file	

topicPartitionList.json

The	following	is	the	format	of	the	topicPartitionList.json	file:

{

		"partitions":

		[

				{"topic":	"Kafkatopic",	"partition":	"0"},

				{"topic":	"Kafkatopic",	"partition":	"1"},

				{"topic":	"Kafkatopic",	"partition":	"2"},

	

				{"topic":	"Kafkatopic1",	"partition":	"0"},

				{"topic":	"Kafkatopic1",	"partition":	"1"},

				{"topic":	"Kafkatopic1",	"partition":	"2"},

]

}

Adding	servers
In	order	to	add	servers	to	a	Kafka	cluster,	a	unique	broker	ID	needs	to	be	assigned	to	the
new	server	to	set	up/start	Kafka	on	the	new	servers.	This	way	of	adding	a	new	server	does
not	automatically	assign	any	data	partitions.	Hence,	a	newly	added	server	will	not	perform
any	work	unless	existing	partitions	are	migrated	to	the	server	or	new	topics	are	created.

The	migration	process	for	existing	partitions	is	initiated	manually	by	the	Kafka
administrator,	as	admin	has	to	find	out	which	topics	or	partitions	should	be	moved.	Once
the	partitions	are	identified	by	the	administrator,	the	partition	reassignment	tool
(bin/kafka-reassign-partitions.sh)	is	used	to	move	partitions	across	brokers,	which
takes	care	of	everything.	As	a	migration	process,	Kafka	will	make	this	newly	added	server
a	follower	of	the	partition	it	is	migrating.	This	allows	the	new	server	to	fully	replicate	the
existing	data	in	that	partition.	Once	the	new	server	has	fully	replicated	the	partition’s
contents	and	has	become	a	part	of	the	in-sync	replica,	one	of	the	existing	replicas	will
delete	the	partition’s	data.	The	partition	reassignment	tool	(kafka-reassign-
partitions.sh)	runs	in	three	different	modes:

--generate:	In	this	mode,	the	tool	generates	a	candidate	reassignment	to	move	all
partitions	of	the	specified	topics	to	the	new	server	based	on	the	list	of	topics	and
brokers	shared	with	the	tool
—execute:	In	this	mode,	the	tool	starts	the	reassignment	of	partitions	based	on	the
user-provided	reassignment	plan	specified	with	the	--reassignment-json-file
option
--verify:	In	this	mode,	the	tool	verifies	the	status	(completed	successfully/failed/in
progress)	of	the	reassignment	for	all	partitions	listed	during	the	last	--execute

The	partition	reassignment	tool	can	be	used	to	move	selected	topics	from	the	current	set	of
brokers	to	newly	added	brokers	(servers).	Administrator	should	provide	a	list	of	topics	to
be	moved	to	the	new	server	and	a	target	list	of	new	broker	IDs.	This	tool	evenly	distributes
all	partitions	of	a	given	topic	across	the	new	brokers	and	also	moves	the	replicas	for	all
partitions	for	the	input	list	of	topics.

[root@localhost	kafka_2.9.2-0.8.1.1]#	cat	topics-for-new-server.json

{"partitions":

													[{"topic":	"kafkatopic",

													{"topic":	"kafkatopic1"}],

		"version":1

}

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-reassign-partitions.sh	--

zookeeper	localhost:2181	

--topics-to-move-json-file	topics-for-new-server.json	--broker-list	"4,5"	

-–generate	new-topic-reassignment.json

The	preceding	command	generates	the	assignment	(new-topic-reassignment.json)	plan
to	move	all	partitions	for	topics	kafkatopic	and	kafkatopic1	to	the	new	set	of	brokers
having	IDs	4	and	5.	At	the	end	of	this	move,	all	partitions	for	topics	foo1	and	foo2	will
only	exist	on	brokers	5	and	6.	To	initiate	the	assignment,	the	kafka-reassign-

partitions.sh	tool	is	used:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-reassign-partitions.sh	--

zookeeper	localhost:2181	--reassignment-json-file	new-topic-

reassignment.json	--execute

This	tool	can	also	be	used	to	selectively	move	the	partitions	from	the	existing	broker	to	the
new	broker:

[root@localhost	kafka_2.9.2-0.8.1.1]#	cat	partitions-reassignment.json

{"partitions":

													[{"topic":	"kafkatopic",

															"partition":	1,

															"replicas":	[1,2,4]	}],	

														}],

		"version":1

}

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-reassign-partitions.sh	--

zookeeper	localhost:2181

	--reassignment-json-file	partitions-reassignment.json	--execute

The	preceding	command	selectively	moves	some	replicas	for	certain	partitions	to	the	new
server.	Once	the	reassignment	is	done,	the	operation	can	be	verified:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-reassign-partitions.sh	--

zookeeper	localhost:2181	--reassignment-json-file	new-topic-

reassignment.json	--verify

Status	of	partition	reassignment:

Reassignment	of	partition	[kafkatopic,0]	completed	successfully

Reassignment	of	partition	[kafkatopic,1]	is	in	progress

Reassignment	of	partition	[kafkatopic,2]	completed	successfully

Reassignment	of	partition	[kafkatopic1,0]	completed	successfully

Reassignment	of	partition	[kafkatopic1,1]	completed	successfully

Reassignment	of	partition	[kafkatopic1,2]	is	in	progress	

To	decommission	any	server	from	the	Kafka	cluster,	the	admin	has	to	move	the	replica	for
all	partitions	hosted	on	the	broker	(server)	to	be	decommissioned,	to	the	remaining	brokers
with	even	distribution.	The	kafka-reassign-partitions.sh	tool	can	also	be	used	to
increase	the	replication	factor	of	the	partition	as	follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#	cat	increase-replication-factor.json

{"partitions":[{"topic":"kafkatopic","partition":0,"replicas":[2,3]}],

		"version":1

}

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-reassign-partitions.sh	--

zookeeper	localhost:2181

	--reassignment-json-file	increase-replication-factor.json	--execute

The	preceding	command	assumes	that	partition	0	of	the	kafkatopic	topic	has	replication
factor	1	that	existed	on	broker	2;	and	now	it	increases	the	replication	factor	from	1	to	2
and	also	creates	the	new	replica	on	broker	3.

Kafka	topic	tools
By	default,	Kafka	creates	topics	with	a	default	number	of	partitions	and	replication	factors
(the	default	value	is	1	for	both).	But,	in	real-life	scenarios,	we	may	need	to	define	the
number	of	partitions	and	replication	factors	more	than	once.

The	following	is	the	command	to	create	a	topic	with	specific	parameters:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--create	--

zookeeper	localhost:2181/chroot	--replication-factor	3	--partitions	10	--

topic	kafkatopic

In	the	preceding	command,	the	replication	factor	controls	how	many	servers	will	replicate
each	message	published	by	the	message	producer.	For	example,	replication	factor	3	means
that	up	to	two	servers	can	fail	before	access	is	lost	to	the	data.	The	partition	count	that
enables	parallelism	for	consumers	reflects	the	number	of	logs	the	topic	will	be	sharded
into.	Here,	each	partition	must	fit	entirely	on	a	single	server.	For	example,	if	10	partitions
are	defined	for	a	topic,	the	full	data	set	will	be	handled	by	no	more	than	10	servers
excluding	replicas.

The	Kafka	topic	utility	kafka-topics.sh	can	also	be	used	to	alter	the	Kafka	topic	as
follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--alter	--

zookeeper	localhost:2181/chroot	--partitions	20	--topic	kafkatopic

In	the	preceding	command,	10	more	partitions	are	added	to	the	Kafka	topic	created	in	the
previous	example.	Currently	Kafka	does	not	support	reducing	the	number	of	partitions	or
changing	the	replication	factor	for	topics.	To	delete	the	Kafka	topic,	the	following
command	is	used:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--delete	--

zookeeper	localhost:2181/chroot	--topic	kafkatopic

Using	the	kafka-topics.sh	Kafka	topic	utility,	configuration	can	also	be	added	to	the
Kafka	topic	as	follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--alter	--

zookeeper	localhost:2181/chroot	--topic	kafkatopic	--config	<key>=<value>

To	remove	configuration	from	the	Kafka	topic,	use	the	following	command:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--alter	--

zookeeper	localhost:2181/chroot	--topic	kafkatopic	--deleteconfig	<key>=

<value>

Kafka	also	provides	a	utility	to	search	for	the	list	of	topics	within	the	Kafka	server.	The
List	Topic	tool	provides	a	listing	of	topics	and	information	about	their	partitions,	replicas,
or	leaders	by	querying	Zookeeper.

The	following	command	obtains	a	list	of	topics:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-topics.sh	--list	--

zookeeper	localhost:2181

On	execution	of	the	preceding	command,	you	should	get	the	output	shown	in	the
following	screenshot:

The	preceding	console	output	shows	that	we	can	get	information	about	the	topic	and
partitions	that	have	replicated	data.	The	output	from	the	previous	screenshot	can	be
explained	as	follows:

leader:	This	is	a	randomly	selected	node	for	a	specific	portion	of	the	partitions	and	is
responsible	for	all	reads	and	writes	for	this	partition
replicas:	This	represents	the	list	of	nodes	that	holds	the	log	for	a	specified	partition
isr:	This	represents	the	subset	of	the	in-sync	replicas’	list	that	is	currently	alive	and
in	sync	with	the	leader

Note	that	kafkatopic	has	two	partitions	(partitions	0	and	1)	with	three	replications,
whereas	othertopic	has	just	one	partition	with	two	replications.

While	getting	a	list	of	Kafka	topics,	two	optional	arguments	can	also	be	provided	as:
under-replicated-partitions	and	unavailable-partitions.	The	under-replicated-
partitions	argument	is	used	to	get	details	of	those	topics/partitions	that	have	replicas	that
are	under-replicated.	The	unavailable-partitions	argument	is	used	to	get	details	of
those	topics/partitions	whose	leader	is	not	available.

Kafka	cluster	mirroring
The	Kafka	mirroring	feature	is	used	to	create	a	replication	of	an	existing	cluster—for
example,	replicating	an	active	datacenter	into	a	passive	datacenter.	Kafka	provides	a
mirror	maker	tool	for	mirroring	the	source	cluster	into	a	target	cluster.

The	following	diagram	depicts	the	mirroring	tool	placement	in	architectural	form:

In	this	architecture,	the	job	of	the	mirror	tool	is	to	consume	the	messages	from	the	source
cluster	and	republish	them	on	the	target	cluster	using	the	embedded	producer.	A	similar
approach	is	used	by	the	Kafka	migration	tool	to	migrate	from	the	0.7.x	Kafka	cluster	to
the	0.8.x	Kafka	cluster.

To	mirror	the	source	cluster,	bring	up	the	target	cluster	and	start	the	MirrorMaker
processes	as	follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#	bin/kafka-run-class.sh	

kafka.tools.MirrorMaker	--consumer.config	sourceClusterConsumer.config	--

num.streams	2	--producer.config	targetClusterProducer.config	--

whitelist=".*"

The	minimum	parameters	required	to	start	the	MirrorMaker	tool	successfully	are	one	or
more	consumer	configurations,	a	producer	configuration,	and	either	a	whitelist	or	a
blacklist	as	standard	Java	regex	patterns—for	example,	mirroring	two	topics	named	A	and
B	using	--whitelist	'A|B'	or	mirroring	all	topics	using	--whitelist	'*'.	The	--
blacklist	configuration	can	also	be	used	as	standard	Java	regex	patterns	to	specify	what
to	exclude	while	mirroring.	It	also	requires	the	consumer	of	the	mirror	tool	to	connect	to
the	source	cluster’s	ZooKeeper,	the	producer	to	the	mirror	cluster’s	ZooKeeper,	or	the
broker.list	parameter.

For	high	throughput,	an	asynchronous	embedded	producer	configured	in	blocking	mode	is
used.	This	ensures	that	messages	will	not	be	lost	and	the	blocking	producer	will	wait	till

the	messages	are	written	to	the	target	cluster	if	the	producer’s	queue	is	full.	The	producer’s
queue	being	full	consistently	indicates	that	the	MirrorMaker	is	bottle-necked	on
republishing	messages	to	the	target	mirror	cluster	and/or	flushing	messages	to	disk.	The	--
num.producers	option	can	also	be	used	to	represent	a	producer	pool	in	the	MirrorMaker	to
increase	throughput	as	multiple	producer	requests	can	be	handled	by	multiple
consumption	streams	of	the	target	cluster.	The	--num.streams	option	specifies	the	number
of	mirror	consumer	threads	to	create.

Mirroring	is	often	used	in	cross	data	center	scenarios	and,	in	general,	a	high	value	is	used
for	the	socket	buffer	size	(socket.buffersize)	on	the	MirrorMaker’s	consumer
configuration	and	socket.send.buffer	on	the	source	cluster	broker	configuration.	Also,
the	MirrorMaker	consumer’s	fetch	size	(fetch.size)	should	be	higher	than	the
consumer’s	socket	buffer	size.	If	broker.list	is	used	in	the	producer	configuration	along
with	the	hardware	load	balancer,	configuration	for	the	number	of	retry	attempts	on
producer	failures	can	also	be	provided.

Kafka	also	provides	tools	to	check	the	position	of	the	consumer	while	mirroring	or	in
general.	This	tool	shows	the	position	of	all	the	consumers	in	a	consumer	group	and	how
far	behind	the	end	of	the	log	consumers	are;	it	indicates	how	well	cluster	mirroring	is
performing.	This	tool	can	be	used	as	follows:

[root@localhost	kafka_2.9.2-0.8.1.1]#bin/kafka-run-class.sh	

kafka.tools.ConsumerOffsetChecker	--group	MirrorGroup	--zkconnect	

localhost:2181	--topic	kafkatopic

Group									Topic						Pid	Offset			logSize					Lag							Owner

MirrorGroup		kafkatopic			0				5									5									0								none

MirrorGroup	kafkatopic				1				3									4									1								none

MirrorGroup	kafkatopic				2				6									9									3								none

Here	the	--zkconnect	argument	points	to	the	source	cluster’s	ZooKeeper	(for	example,
the	source	data	center).	The	--topic	parameter	is	an	optional	parameter	and,	if	the	topic	is
not	specified,	then	the	tool	prints	information	for	all	topics	under	the	specified	consumer
group.

Integration	with	other	tools
This	section	discusses	the	contributions	by	many	contributors	providing	integration	with
Apache	Kafka	for	various	needs	such	as	logging,	packaging,	cloud	integration,	and
Hadoop	integration.

Camus	(https://github.com/linkedin/camus)	which	provides	a	pipeline	from	Kafka	to
HDFS.	Under	this	project,	a	single	MapReduce	job	performs	the	following	steps	to	load
data	to	HDFS	in	a	distributed	manner:

1.	 As	a	first	step,	it	discovers	the	latest	topics	and	partition	offsets	from	ZooKeeper.
2.	 Each	task	in	the	MapReduce	job	fetches	events	from	the	Kafka	broker	and	commits

the	pulled	data	along	with	the	audit	count	to	the	output	folders.
3.	 After	the	completion	of	the	job,	final	offsets	are	written	to	HDFS	and	can	be	further

consumed	by	subsequent	MapReduce	jobs.
4.	 Information	about	the	consumed	messages	is	also	updated	in	the	Kafka	cluster.

Some	other	useful	contributions	are:

Automated	deployment	and	configuration	of	Kafka	and	ZooKeeper	on	Amazon
(https://github.com/nathanmarz/kafka-deploy)
A	logging	utility	(https://github.com/leandrosilva/klogd2)
A	REST	service	for	Mozilla	Metrics	(https://github.com/mozilla-metrics/bagheera)
Apache	Camel-Kafka	integration	(https://github.com/BreizhBeans/camel-kafka/wiki)

Note
For	a	detailed	list	of	Kafka	ecosystem	tools,	please	refer	to
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem.

https://github.com/linkedin/camus
https://github.com/nathanmarz/kafka-deploy
https://github.com/leandrosilva/klogd2
https://github.com/mozilla-metrics/bagheera
https://github.com/BreizhBeans/camel-kafka/wiki
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem

Summary
In	this	chapter,	we	have	added	some	more	information	about	Kafka,	such	as	its
administrator	tools,	its	integration,	and	Kafka	non-Java	clients.

During	this	complete	journey	through	Apache	Kafka,	we	have	touched	upon	many
important	facts	about	Kafka.	You	have	learned	the	reason	why	Kafka	was	developed,	its
installation	procedures,	and	its	support	for	different	types	of	clusters.	We	also	explored	the
Kafka’s	design	approach,	and	wrote	a	few	basic	producers	and	consumers.

Finally,	we	discussed	Kafka’s	integration	with	technologies	such	as	Hadoop	and	Storm.

The	journey	of	evolution	never	ends.

Index
A

Apache	Kafka
integrating,	with	other	tools	/	Integration	with	other	tools
contributions	/	Integration	with	other	tools

Apache	Software	Foundation
URL	/	Introducing	Hadoop

asynchronous	replication
about	/	Replication	in	Kafka

auto.commit.interval.ms	property	/	The	Kafka	consumer	property	list
auto.create.topics.enable	property	/	The	Kafka	broker	property	list
auto.offset.reset	property	/	The	Kafka	consumer	property	list

B
blocks	/	Introducing	Hadoop
bolt	/	Introducing	Storm
broker.id	property	/	The	Kafka	broker	property	list
ByteBufferMessageSet	class	/	Message	compression	in	Kafka

C
Camus

URL	/	Integration	with	other	tools
client.id	property	/	The	Kafka	consumer	property	list
Complex	Event	Processing	(CEP)	/	Welcome	to	the	world	of	Apache	Kafka
compressed.topics	property	/	Message	compression	in	Kafka
compression.codec	property	/	Message	compression	in	Kafka
consumer.id	property	/	The	Kafka	consumer	property	list
consumer.timeout.ms	property	/	The	Kafka	consumer	property	list
consumer	groups	/	Kafka	design	fundamentals
custom	partitioning

used,	for	creating	Java	producer	/	Creating	a	Java	producer	with	custom
partitioning

D
DataSift

URL	/	Kafka	use	cases
default.replication.factor	property	/	The	Kafka	broker	property	list
design	fundamentals,	Kafka

about	/	Kafka	design	fundamentals

E
Extract	Transformation	Load	(ETL)	/	Introducing	Storm

F
Foursquare

URL	/	Kafka	use	cases

G
Gradle	tool	/	Installing	prerequisites
group.id	property	/	The	Kafka	consumer	property	list
GZIP	/	Message	compression	in	Kafka

H
Hadoop

Kafka	integration	/	Kafka	integration	with	Hadoop
about	/	Introducing	Hadoop
components	/	Introducing	Hadoop
pseudo	distributed	mode	cluster,	creating	/	Introducing	Hadoop
integrating	/	Integrating	Hadoop

Hadoop	cluster
local	mode	/	Introducing	Hadoop
pseudo	distributed	mode	/	Introducing	Hadoop
fully	distributed	mode	/	Introducing	Hadoop

Hadoop	components
name	node	/	Introducing	Hadoop
secondary	name	node	/	Introducing	Hadoop
data	node	/	Introducing	Hadoop
job	tracker	/	Introducing	Hadoop
task	tracker	/	Introducing	Hadoop

Hadoop	consumer
about	/	Hadoop	consumers

Hadoop	Distributed	File	System	(HDFS)	/	Introducing	Hadoop
Hadoop	producer

about	/	Hadoop	producers
approaches,	for	obtaining	data	/	Hadoop	producers

high-level	consumer	API,	Kafka	consumer
about	/	The	high-level	consumer	API
ConsumerConnector	class	/	The	high-level	consumer	API
KafkaStream	class	/	The	high-level	consumer	API
ConsumerConfig	class	/	The	high-level	consumer	API

high	watermark	(HW)	/	Replication	in	Kafka
host.name	property	/	The	Kafka	broker	property	list

I
in-sync	replicas	(ISR)	/	Kafka	design	fundamentals,	Replication	in	Kafka

J
Java	1.7

installing	/	Installing	Java	1.7	or	higher
URL	/	Installing	Java	1.7	or	higher

Java	generic
URL	/	The	Java	producer	API

Java	Messaging	Service	(JMS)	/	Kafka	integration	with	Storm
Java	producer

creating,	with	custom	partitioning	/	Creating	a	Java	producer	with	custom
partitioning

Java	producer,	creating	with	custom	partitioning
about	/	Creating	a	Java	producer	with	custom	partitioning
classes,	importing	/	Defining	properties
Partitioner	class,	implementing	/	Implementing	the	Partitioner	class
message,	building	/	Building	the	message	and	sending	it
message,	sending	/	Building	the	message	and	sending	it

Java	producer	API
about	/	The	Java	producer	API
Producer	class	/	The	Java	producer	API
KeyedMessage	class	/	The	Java	producer	API
ProducerConfig	class	/	The	Java	producer	API

K
Kafka

about	/	Welcome	to	the	world	of	Apache	Kafka
data	/	Welcome	to	the	world	of	Apache	Kafka
producers	/	Welcome	to	the	world	of	Apache	Kafka
consumers	/	Welcome	to	the	world	of	Apache	Kafka
need	for	/	Why	do	we	need	Kafka?
use	cases	/	Kafka	use	cases
URL	/	Kafka	use	cases,	Downloading	Kafka,	Building	Kafka
installing	/	Installing	Kafka
downloading	/	Downloading	Kafka
building	/	Building	Kafka
broker	property	list	/	The	Kafka	broker	property	list
design	fundamentals	/	Kafka	design	fundamentals
message	delivery	semantic	/	Kafka	design	fundamentals
log	compaction	/	Log	compaction
design	facts	/	Log	compaction
message	compression	/	Message	compression	in	Kafka
replication	/	Replication	in	Kafka
integration,	with	Storm	/	Kafka	integration	with	Storm
integration,	with	Hadoop	/	Kafka	integration	with	Hadoop,	Introducing	Hadoop,
Integrating	Hadoop,	Hadoop	producers,	Hadoop	consumers
administration	tools	/	Kafka	administration	tools
cluster	mirroring	/	Kafka	cluster	mirroring

Kafka,	characteristics
persistent	messaging	/	Welcome	to	the	world	of	Apache	Kafka
high	throughput	/	Welcome	to	the	world	of	Apache	Kafka
distributed	/	Welcome	to	the	world	of	Apache	Kafka
multiple	client	support	/	Welcome	to	the	world	of	Apache	Kafka
real	time	/	Welcome	to	the	world	of	Apache	Kafka

Kafka,	users
LinkedIn	/	Kafka	use	cases
DataSift	/	Kafka	use	cases
Twitter	/	Kafka	use	cases
Foursquare	/	Kafka	use	cases
Square	/	Kafka	use	cases

kafka-reassign-partitions.sh	tool	/	Adding	servers
Kafka	0.7	/	Message	compression	in	Kafka
Kafka	administration	tools

cluster	tools	/	Kafka	cluster	tools
servers,	adding	/	Adding	servers
topic	tools	/	Kafka	topic	tools

Kafka	broker	property

broker.id	/	The	Kafka	broker	property	list
log.dirs	/	The	Kafka	broker	property	list
zookeeper.connect	/	The	Kafka	broker	property	list
host.name	/	The	Kafka	broker	property	list
num.partitions	/	The	Kafka	broker	property	list
auto.create.topics.enable	/	The	Kafka	broker	property	list
default.replication.factor	/	The	Kafka	broker	property	list

Kafka	cluster
servers,	adding	/	Adding	servers

Kafka	cluster	mirroring	/	Kafka	cluster	mirroring
Kafka	cluster	tools	/	Kafka	cluster	tools
Kafka	consumer

property	list	/	The	Kafka	consumer	property	list
Kafka	consumer	API

types	/	Kafka	consumer	APIs
high-level	consumer	API	/	The	high-level	consumer	API
low-level	API	/	The	low-level	consumer	API

Kafka	consumer	property
URL	/	The	Kafka	consumer	property	list
group.id	/	The	Kafka	consumer	property	list
consumer.id	/	The	Kafka	consumer	property	list
zookeeper.connect	/	The	Kafka	consumer	property	list
client.id	/	The	Kafka	consumer	property	list
zookeeper.session.timeout.ms	/	The	Kafka	consumer	property	list
zookeeper.connection.timeout.ms	/	The	Kafka	consumer	property	list
zookeeper.sync.time.ms	/	The	Kafka	consumer	property	list
auto.commit.enable	/	The	Kafka	consumer	property	list
auto.commit.interval.ms	/	The	Kafka	consumer	property	list
auto.offset.reset	/	The	Kafka	consumer	property	list
consumer.timeout.ms	/	The	Kafka	consumer	property	list

Kafka	ecosystem	tools
URL	/	Integration	with	other	tools

Kafka	installation
prerequisites	/	Installing	prerequisites

Kafka	producer
property	/	The	Kafka	producer	property	list
URL	/	The	Kafka	producer	property	list

Kafka	producer	property
metadata.broker.list	/	The	Kafka	producer	property	list
serializer.class	/	The	Kafka	producer	property	list
producer.type	/	The	Kafka	producer	property	list
request.required.acks	/	The	Kafka	producer	property	list
key.serializer.class	/	The	Kafka	producer	property	list
partitioner.class	/	The	Kafka	producer	property	list

compression.codec	/	The	Kafka	producer	property	list
batch.num.messages	/	The	Kafka	producer	property	list

Kafka	replication
about	/	Replication	in	Kafka
URL	/	Replication	in	Kafka

Kafka	spout
URL	/	Integrating	Storm

Kafka	topic	tools	/	Kafka	topic	tools

L
LinkedIn

URL	/	Kafka	use	cases
log.dirs	property	/	The	Kafka	broker	property	list
log	compaction	/	Log	compaction
log	end	offset	(LEO)	/	Replication	in	Kafka
low-level	consumer	API,	Kafka	consumer

about	/	The	low-level	consumer	API
URL	/	The	low-level	consumer	API

M
message	compression,	Kafka	/	Message	compression	in	Kafka
multiple	node-multiple	broker	cluster	/	Multiple	nodes	–	multiple	broker	clusters
multithreaded	Java	consumer

about	/	Multithreaded	Java	consumers
classes,	importing	/	Importing	classes
properties,	defining	/	Defining	properties
messages,	reading	from	threads	/	Reading	the	message	from	threads	and	printing
it

N
num.partitions	property	/	The	Kafka	broker	property	list

O
Online	Transaction	Processing	(OLTP)	/	Log	compaction

P
Partitioner	class

implementing	/	Implementing	the	Partitioner	class
partition	reassignment	tool

—generate	mode	/	Adding	servers
—execute	mode	/	Adding	servers
—verify	mode	/	Adding	servers

properties,	simple	Java-based	producer
defining	/	Defining	properties
metadata.broker.list	/	Defining	properties
serializer.class	/	Defining	properties
request.required.acks	/	Defining	properties

properties,	simple	Java	consumer
zookeeper.connect	/	Defining	properties
group.id	/	Defining	properties
zookeeper.session.timeout.ms	/	Defining	properties
zookeeper.sync.time.ms	/	Defining	properties
auto.commit.interval.ms	/	Defining	properties

R
replication	modes,	Kafka

synchronous	replication	/	Replication	in	Kafka
asynchronous	replication	/	Replication	in	Kafka

S
simple	Java-based	producer

about	/	Simple	Java	producers
classes,	importing	/	Importing	classes
properties,	defining	/	Defining	properties
message,	building	/	Building	the	message	and	sending	it
message,	sending	/	Building	the	message	and	sending	it

simple	Java	consumer
about	/	Simple	Java	consumers
classes,	importing	/	Importing	classes
properties,	defining	/	Defining	properties
messages,	reading	from	topic	/	Reading	messages	from	a	topic	and	printing	them

single	node-multiple	broker	cluster
about	/	A	single	node	–	multiple	broker	clusters
ZooKeeper,	starting	/	Starting	ZooKeeper
Kafka	broker,	starting	/	Starting	the	Kafka	broker
Kafka	topic,	creating	/	Creating	a	Kafka	topic	using	the	command	line
producer,	starting	to	send	messages	/	Starting	a	producer	to	send	messages
consumer,	starting	to	consume	messages	/	Starting	a	consumer	to	consume
messages

single	node-single	broker	cluster
about	/	A	single	node	–	a	single	broker	cluster
ZooKeeper	server,	starting	/	Starting	the	ZooKeeper	server
Kafka	broker,	starting	/	Starting	the	Kafka	broker
Kafka	topic,	creating	/	Creating	a	Kafka	topic
producer,	starting	to	send	messages	/	Starting	a	producer	to	send	messages
consumer,	starting	to	consume	messages	/	Starting	a	consumer	to	consume
messages

slf4j-1.7.7.tar.gz	file
URL	/	Building	the	message	and	sending	it

Snappy	/	Message	compression	in	Kafka
spout	/	Introducing	Storm
Square

URL	/	Kafka	use	cases
Storm

Kafka	integration	/	Kafka	integration	with	Storm
about	/	Introducing	Storm
URL	/	Introducing	Storm
integrating	/	Integrating	Storm

storm-kafka	spout
URL	/	Integrating	Storm

Storm	architecture
spout	/	Introducing	Storm

bolt	/	Introducing	Storm
tuple	/	Introducing	Storm
workers	/	Introducing	Storm
executors	/	Introducing	Storm

synchronous	replication	/	Replication	in	Kafka

T
topicsMetadata()	method	/	The	low-level	consumer	API
topologies	/	Introducing	Storm
Trident

about	/	Integrating	Storm
URL	/	Integrating	Storm

Twitter
URL	/	Kafka	use	cases

U
use	cases,	Kafka

log	aggregation	/	Kafka	use	cases
stream	processing	/	Kafka	use	cases
commit	logs	/	Kafka	use	cases
click	streams	tracking	/	Kafka	use	cases
messaging	/	Kafka	use	cases

Z
ZooKeeper

URL	/	Starting	the	ZooKeeper	server
zookeeper.connection.timeout.ms	property	/	The	Kafka	consumer	property	list
zookeeper.connect	property	/	The	Kafka	broker	property	list,	The	Kafka	consumer
property	list
zookeeper.session.timeout.ms	property	/	The	Kafka	consumer	property	list
zookeeper.sync.time.ms	property	/	The	Kafka	consumer	property	list

	Learning Apache Kafka Second Edition
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Introducing Kafka
	Welcome to the world of Apache Kafka
	Why do we need Kafka?
	Kafka use cases
	Installing Kafka
	Installing prerequisites
	Installing Java 1.7 or higher
	Downloading Kafka
	Building Kafka
	Summary
	2. Setting Up a Kafka Cluster
	A single node – a single broker cluster
	Starting the ZooKeeper server
	Starting the Kafka broker
	Creating a Kafka topic
	Starting a producer to send messages
	Starting a consumer to consume messages
	A single node – multiple broker clusters
	Starting ZooKeeper
	Starting the Kafka broker
	Creating a Kafka topic using the command line
	Starting a producer to send messages
	Starting a consumer to consume messages
	Multiple nodes – multiple broker clusters
	The Kafka broker property list
	Summary
	3. Kafka Design
	Kafka design fundamentals
	Log compaction
	Message compression in Kafka
	Replication in Kafka
	Summary
	4. Writing Producers
	The Java producer API
	Simple Java producers
	Importing classes
	Defining properties
	Building the message and sending it
	Creating a Java producer with custom partitioning
	Importing classes
	Defining properties
	Implementing the Partitioner class
	Building the message and sending it
	The Kafka producer property list
	Summary
	5. Writing Consumers
	Kafka consumer APIs
	The high-level consumer API
	The low-level consumer API
	Simple Java consumers
	Importing classes
	Defining properties
	Reading messages from a topic and printing them
	Multithreaded Java consumers
	Importing classes
	Defining properties
	Reading the message from threads and printing it
	The Kafka consumer property list
	Summary
	6. Kafka Integrations
	Kafka integration with Storm
	Introducing Storm
	Integrating Storm
	Kafka integration with Hadoop
	Introducing Hadoop
	Integrating Hadoop
	Hadoop producers
	Hadoop consumers
	Summary
	7. Operationalizing Kafka
	Kafka administration tools
	Kafka cluster tools
	Adding servers
	Kafka topic tools
	Kafka cluster mirroring
	Integration with other tools
	Summary
	Index

