
Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Table of Contents

Preface
Chapter 1: Introduction to Networking
Chapter 2: Issues of TCP/IP Networking
Chapter 3: Configuring the Networking Hardware
Chapter 4: Configuring the Serial Hardware
Chapter 5: Configuring TCP/IP Networking
Chapter 6: Name Service and Resolver Configuration
Chapter 7: Serial Line IP
Chapter 8: The Point-to-Point Protocol
Chapter 9: TCP/IP Firewall
Chapter 10: IP Accounting
Chapter 11: IP Masquerade and Network Address Translation
Chapter 12: Important Network Features
Chapter 13: The Network Information System
Chapter 14: The Network File System
Chapter 15: IPX and the NCP Filesystem
Chapter 16: Managing Taylor UUCP
Chapter 17: Electronic Mail
Chapter 18: Sendmail
Chapter 19: Getting Exim Up and Running
Chapter 20: Netnews
Chapter 21: C News

Linux Network Administrator's Guide, 2nd Edition

http://www.oreilly.com/catalog/linag2/book/index.html (1 of 2) [2/20/2001 11:03:34 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/
http://www.oreilly.com/catalog/linag2/toc.html

Chapter 22: NNTP and the nntpd Daemon
Chapter 23: Internet News
Chapter 24: Newsreader Configuration

Appendix A: Example Network: The Virtual Brewery
Appendix B: Useful Cable Configurations
Appendix C: Copyright Information
Appendix D: SAGE: The System Administrators Guild

Index

Back to: Open Books Project
Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition

http://www.oreilly.com/catalog/linag2/book/index.html (2 of 2) [2/20/2001 11:03:34 AM]

http://www.oreilly.com/catalog/linag2/inx.html
http://www.oreilly.com/openbook/
http://www.oreilly.com/catalog/linag2/
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Preface
Contents:
Purpose and Audience for This Book
Sources of Information
File System Standards
Standard Linux Base
About This Book
The Official Printed Version
Overview
Conventions Used in This Book
Submitting Changes
Acknowledgments

The Internet is now a household term in many countries. With otherwise
serious people beginning to joyride along the Information Superhighway,
computer networking seems to be moving toward the status of TV sets and
microwave ovens. The Internet has unusually high media coverage, and social
science majors are descending on Usenet newsgroups, online virtual reality
environments, and the Web to conduct research on the new "Internet Culture."

Of course, networking has been around for a long time. Connecting computers
to form local area networks has been common practice, even at small
installations, and so have long-haul links using transmission lines provided by
telecommunications companies. A rapidly growing conglomerate of

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (1 of 19) [2/20/2001 11:03:39 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

world-wide networks has, however, made joining the global village a perfectly
reasonable option for even small non-profit organizations of private computer
users. Setting up an Internet host with mail and news capabilities offering
dialup and ISDN access has become affordable, and the advent of DSL
(Digital Subscriber Line) and Cable Modem technologies will doubtlessly
continue this trend.

Talking about computer networks often means talking about Unix. Of course,
Unix is not the only operating system with network capabilities, nor will it
remain a frontrunner forever, but it has been in the networking business for a
long time, and will surely continue to be for some time to come.

What makes Unix particularly interesting to private users is that there has been
much activity to bring free Unix-like operating systems to the PC, such as
386BSD, FreeBSD, and Linux.

Linux is a freely distributable Unix clone for personal computers. It currently
runs on a variety of machines that includes the Intel family of processors, but
also Motorola 680x0 machines, such as the Commodore Amiga and Apple
Macintosh; Sun SPARC and Ultra-SPARC machines; Compaq Alphas; MIPS;
PowerPCs, such as the new generation of Apple Macintosh; and StrongARM,
like the rebel.com Netwinder and 3Com Palm machines. Linux has been
ported to some relatively obscure platforms, like the Fujitsu AP-1000 and the
IBM System 3/90. Ports to other interesting architectures are currently in
progress in developers' labs, and the quest to move Linux into the embedded
controller space promises success.

Linux was developed by a large team of volunteers across the Internet. The
project was started in 1990 by Linus Torvalds, a Finnish college student, as an
operating systems course project. Since that time, Linux has snowballed into a
full-featured Unix clone capable of running applications as diverse as
simulation and modeling programs, word processors, speech recognition
systems, World Wide Web browsers, and a horde of other software, including
a variety of excellent games. A great deal of hardware is supported, and Linux
contains a complete implementation of TCP/IP networking, including SLIP,
PPP, firewalls, a full IPX implementation, and many features and some
protocols not found in any other operating system. Linux is powerful, fast, and
free, and its popularity in the world beyond the Internet is growing rapidly.

The Linux operating system itself is covered by the GNU General Public
License, the same copyright license used by software developed by the Free
Software Foundation. This license allows anyone to redistribute or modify the
software (free of charge or for a profit) as long as all modifications and
distributions are freely distributable as well. The term "free software" refers to
freedom of application, not freedom of cost.

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (2 of 19) [2/20/2001 11:03:39 AM]

Purpose and Audience for This Book
This book was written to provide a single reference for network administration
in a Linux environment. Beginners and experienced users alike should find the
information they need to cover nearly all important administration activities
required to manage a Linux network configuration. The possible range of
topics to cover is nearly limitless, so of course it has been impossible to
include everything there is to say on all subjects. We've tried to cover the most
important and common ones. We've found that beginners to Linux networking,
even those with no prior exposure to Unix-like operating systems, have found
this book good enough to help them successfully get their Linux network
configurations up and running and get them ready to learn more.

There are many books and other sources of information from which you can
learn any of the topics covered in this book (with the possible exception of
some of the truly Linux-specific features, such as the new Linux firewall
interface, which is not well documented elsewhere) in greater depth. We've
provided a bibliography for you to use when you are ready to explore more.

Sources of Information
If you are new to the world of Linux, there are a number of resources to
explore and become familiar with. Having access to the Internet is helpful, but
not essential.

Linux Documentation Project guides

The Linux Documentation Project is a group of volunteers who have
worked to produce books (guides), HOWTO documents, and manual
pages on topics ranging from installation to kernel programming. The
LDP works include:

Linux Installation and Getting Started

By Matt Welsh, et al. This book describes how to obtain, install,
and use Linux. It includes an introductory Unix tutorial and
information on systems administration, the X Window System,
and networking.

Linux System Administrators Guide

By Lars Wirzenius and Joanna Oja. This book is a guide to
general Linux system administration and covers topics such as
creating and configuring users, performing system backups,
configuration of major software packages, and installing and
upgrading software.

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (3 of 19) [2/20/2001 11:03:39 AM]

Linux System Adminstration Made Easy

By Steve Frampton. This book describes day-to-day
administration and maintenance issues of relevance to Linux
users.

Linux Programmers Guide

By B. Scott Burkett, Sven Goldt, John D. Harper, Sven van der
Meer, and Matt Welsh. This book covers topics of interest to
people who wish to develop application software for Linux.

The Linux Kernel

By David A. Rusling. This book provides an introduction to the
Linux Kernel, how it is constructed, and how it works. Take a
tour of your kernel.

The Linux Kernel Module Programming Guide

By Ori Pomerantz. This guide explains how to write Linux kernel
modules.

More manuals are in development. For more information about the LDP
you should consult their World Wide Web server at
http://www.linuxdoc.org/ or one of its many mirrors.

HOWTO documents

The Linux HOWTOs are a comprehensive series of papers detailing
various aspects of the system -- such as installation and configuration of
the X Window System software, or how to write in assembly language
programming under Linux. These are generally located in the HOWTO
subdirectory of the FTP sites listed later, or they are available on the
World Wide Web at one of the many Linux Documentation Project
mirror sites. See the Bibliography at the end of this book, or the file
HOWTO-INDEX for a list of what's available.

You might want to obtain the Installation HOWTO, which describes
how to install Linux on your system; the Hardware Compatibility
HOWTO, which contains a list of hardware known to work with Linux;
and the Distribution HOWTO, which lists software vendors selling
Linux on diskette and CD-ROM.

The bibliography of this book includes references to the HOWTO
documents that are related to Linux networking.

Linux Frequently Asked Questions

The Linux Frequently Asked Questions with Answers (FAQ) contains a
wide assortment of questions and answers about the system. It is a

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (4 of 19) [2/20/2001 11:03:39 AM]

http://www.linuxdoc.org/

must-read for all newcomers.

Documentation Available via FTP

If you have access to anonymous FTP, you can obtain all Linux
documentation listed above from various sites, including
metalab.unc.edu:/pub/Linux/docs and tsx-11.mit.edu:/pub/linux/docs.

These sites are mirrored by a number of sites around the world.

Documentation Available via WWW

There are many Linux-based WWW sites available. The home site for the
Linux Documentation Project can be accessed at http://www.linuxdoc.org/.

The Open Source Writers Guild (OSWG) is a project that has a scope that
extends beyond Linux. The OSWG, like this book, is committed to advocating
and facilitating the production of OpenSource documentation. The OSWG
home site is at http://www.oswg.org:8080/oswg.

Both of these sites contain hypertext (and other) versions of many Linux
related documents.

Documentation Available Commercially

A number of publishing companies and software vendors publish the works of
the Linux Documentation Project. Two such vendors are:

Specialized Systems Consultants, Inc. (SSC)
http://www.ssc.com/
P.O. Box 55549 Seattle, WA 98155-0549
1-206-782-7733
1-206-782-7191 (FAX)
sales@ssc.com

and:

Linux Systems Labs
http://www.lsl.com/
18300 Tara Drive
Clinton Township, MI 48036
1-810-987-8807
1-810-987-3562 (FAX)
sales@lsl.com

Both companies sell compendiums of Linux HOWTO documents and other

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (5 of 19) [2/20/2001 11:03:39 AM]

http://www.linuxdoc.org/
http://www.oswg.org:8080/oswg
http://www.ssc.com/
http://www.lsl.com/

Linux documentation in printed and bound form.

O'Reilly & Associates publishes a series of Linux books. This one is a work of
the Linux Documentation Project, but most have been independently authored.
Their range includes:

Running Linux

An installation and user guide to the system describing how to get the
most out of personal computing with Linux.

Learning Debian GNU/Linux

Learning Red Hat Linux

More basic than Running Linux, these books contain popular
distributions on CD-ROM and offer robust directions for setting them
up and using them.

Linux in a Nutshell

Another in the successful "in a Nutshell" series, this book focuses on
providing a broad reference text for Linux.

Linux Journal and Linux Magazine

Linux Journal and Linux Magazine are monthly magazines for the Linux
community, written and published by a number of Linux activists. They
contain articles ranging from novice questions and answers to kernel
programming internals. Even if you have Usenet access, these magazines are a
good way to stay in touch with the Linux community.

Linux Journal is the oldest magazine and is published by S.S.C. Incorporated,
for which details were listed previously. You can also find the magazine on
the World Wide Web at http://www.linuxjournal.com/.

Linux Magazine is a newer, independent publication. The home web site for
the magazine is http://www.linuxmagazine.com/.

Linux Usenet Newsgroups

If you have access to Usenet news, the following Linux-related newsgroups
are available:

comp.os.linux.announce

A moderated newsgroup containing announcements of new software,
distributions, bug reports, and goings-on in the Linux community. All
Linux users should read this group. Submissions may be mailed to
linux-announce@news.ornl.gov.

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (6 of 19) [2/20/2001 11:03:39 AM]

http://www.linuxjournal.com/
http://www.linuxmagazine.com/

comp.os.linux.help

General questions and answers about installing or using Linux.

comp.os.linux.admin

Discussions relating to systems administration under Linux.

comp.os.linux.networking

Discussions relating to networking with Linux.

comp.os.linux.development

Discussions about developing the Linux kernel and system itself.

comp.os.linux.misc

A catch-all newsgroup for miscellaneous discussions that don't fall
under the previous categories.

There are also several newsgroups devoted to Linux in languages other than
English, such as fr.comp.os.linux in French and de.comp.os.linux in German.

Linux Mailing Lists

There is a large number of specialist Linux mailing lists on which you will
find many people willing to help with questions you might have.

The best-known of these are the lists hosted by Rutgers University. You may
subscribe to these lists by sending an email message formatted as follows:

To: majordomo@vger.rutgers.edu
Subject: anything at all
Body:

subscribe listname

Some of the available lists related to Linux networking are:

linux-net

Discussion relating to Linux networking

linux-ppp

Discussion relating to the Linux PPP implementation

linux-kernel

Discussion relating to Linux kernel development

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (7 of 19) [2/20/2001 11:03:39 AM]

Online Linux Support

There are many ways of obtaining help online, where volunteers from around
the world offer expertise and services to assist users with questions and
problems.

The OpenProjects IRC Network is an IRC network devoted entirely to Open
Projects -- Open Source and Open Hardware alike. Some of its channels are
designed to provide online Linux support services. IRC stands for Internet
Relay Chat, and is a network service that allows you to talk interactively on
the Internet to other users. IRC networks support multiple channels on which
groups of people talk. Whatever you type in a channel is seen by all other
users of that channel.

There are a number of active channels on the OpenProjects IRC network
where you will find users 24 hours a day, 7 days a week who are willing and
able to help you solve any Linux problems you may have, or just chat. You
can use this service by installing an IRC client like irc-II, connecting to
servername irc.openprojects.org:6667, and joining the #linpeople
channel.

Linux User Groups

Many Linux User Groups around the world offer direct support to users. Many
Linux User Groups engage in activities such as installation days, talks and
seminars, demonstration nights, and other completely social events. Linux
User Groups are a great way of meeting other Linux users in your area. There
are a number of published lists of Linux User Groups. Some of the
better-known ones are:

Groups of Linux Users Everywhere

http://www.ssc.com/glue/groups/

LUG list project

http://www.nllgg.nl/lugww/

LUG registry

http://www.linux.org/users/

Obtaining Linux

There is no single distribution of the Linux software; instead, there are many
distributions, such as Debian, RedHat, Caldera, Corel, SuSE, and Slackware.
Each distribution contains everything you need to run a complete Linux

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (8 of 19) [2/20/2001 11:03:39 AM]

http://www.ssc.com/glue/groups/
http://www.nllgg.nl/lugww/
http://www.linux.org/users/

system: the kernel, basic utilities, libraries, support files, and applications
software.

Linux distributions may be obtained via a number of online sources, such as
the Internet. Each of the major distributions has its own FTP and web site.
Some of these sites are:

Caldera

http://www.caldera.com/ftp://ftp.caldera.com/

Corel

http://www.corel.com/ftp://ftp.corel.com/

Debian

http://www.debian.org/ftp://ftp.debian.org/

RedHat

http://www.redhat.com/ftp://ftp.redhat.com/

Slackware

http://www.slackware.com/ftp://ftp.slackware.com/

SuSE

http://www.suse.com/ftp://ftp.suse.com/

Many of the popular general FTP archive sites also mirror various Linux
distributions. The best-known of these sites are:

metalab.unc.edu:/pub/Linux/distributions/
ftp.funet.fi:/pub/Linux/mirrors/
tsx-11.mit.edu:/pub/linux/distributions/
mirror.aarnet.edu.au:/pub/linux/distributions/

Many of the modern distributions can be installed directly from the Internet.
There is a lot of software to download for a typical installation, though, so
you'd probably want to do this only if you have a high-speed, permanent
network connection, or if you just need to update an existing installation.[1]

[1] ... or you are extremely impatient and know that the 24 hours
it might take to download the software from the Internet is faster
than the 72 hours it might take to wait for a CD-ROM to be
delivered!

Linux may be purchased on CD-ROM from an increasing number of software
vendors. If your local computer store doesn't have it, perhaps you should ask
them to stock it! Most of the popular distributions can be obtained on

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (9 of 19) [2/20/2001 11:03:39 AM]

http://www.caldera.com/ftp://ftp.caldera.com/
http://www.corel.com/ftp://ftp.corel.com/
http://www.debian.org/ftp://ftp.debian.org/
http://www.redhat.com/ftp://ftp.redhat.com/
http://www.slackware.com/ftp://ftp.slackware.com/
http://www.suse.com/ftp://ftp.suse.com/
http://metalab.unc.edu/pub/Linux/distributions/
http://ftp.funet.fi/pub/Linux/mirrors/
http://tsx-11.mit.edu/pub/linux/distributions/
http://mirror.aarnet.edu.au/pub/linux/distributions/

CD-ROM. Some vendors produce products containing multiple CD-ROMs,
each of which provides a different Linux distribution. This is an ideal way to
try a number of different distributions before you settle on your favorite one.

File System Standards
In the past, one of the problems that afflicted Linux distributions, as well as
the packages of software running on Linux, was the lack of a single accepted
filesystem layout. This resulted in incompatibilities between different
packages, and confronted users and administrators with the task of locating
various files and programs.

To improve this situation, in August 1993, several people formed the Linux
File System Standard Group (FSSTND). After six months of discussion, the
group created a draft that presents a coherent file sytem structure and defines
the location of the most essential programs and configuration files.

This standard was supposed to have been implemented by most major Linux
distributions and packages. It is a little unfortunate that, while most
distributions have made some attempt to work toward the FSSTND, there is a
very small number of distributions that has actually adopted it fully.
Throughout this book, we will assume that any files discussed reside in the
location specified by the standard; alternative locations will be mentioned only
when there is a long tradition that conflicts with this specification.

The Linux FSSTND continued to develop, but was replaced by the Linux File
Hierarchy Standard (FHS) in 1997. The FHS addresses the multi-architecture
issues that the FSSTND did not. The FHS can be obtained from the Linux
documentation directory of all major Linux FTP sites and their mirrors, or at
its home site at http://www.pathname.com/fhs/. Daniel Quinlan, the
coordinator of the FHS group, can be reached at quinlan@transmeta.com.

Standard Linux Base
The vast number of different Linux distributions, while providing lots of
healthy choice for Linux users, has created a problem for software
developers -- particularly developers of non-free software.

Each distribution packages and supplies certain base libraries, configuration
tools, system applications, and configuration files. Unfortunately, differences
in their versions, names, and locations make it very difficult to know what will
exist on any distribution. This makes it hard to develop binary applications
that will work reliably on all Linux distribution bases.

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (10 of 19) [2/20/2001 11:03:39 AM]

http://www.pathname.com/fhs/

To help overcome this problem, a new project sprang up called the "Linux
Standard Base." It aims to describe a standard base distribution that complying
distributions will use. If a developer designs an application to work against the
standard base platform, the application will work, and be portable to, any
complying Linux distribution.

You can find information on the status of the Linux Standard Base project at
its home web site at http://www.linuxbase.org/.

If you're concerned about interoperability, particularly of software from
commercial vendors, you should ensure that your Linux distribution is making
an effort to participate in the standardization project.

About This Book
When Olaf joined the Linux Documentation Project in 1992, he wrote two
small chapters on UUCP and smail, which he meant to contribute to the
System Administrator's Guide. Development of TCP/IP networking was just
beginning, and when those "small chapters" started to grow, he wondered
aloud whether it would be nice to have a Networking Guide. "Great!"
everyone said. "Go for it!" So he went for it and wrote the first version of the
Networking Guide, which was released in September 1993.

Olaf continued work on the Networking Guide and eventually produced a
much enhanced version of the guide. Vince Skahan contributed the original
sendmail mail chapter, which was completely replaced in this edition because
of a new interface to the sendmail configuration.

The version of the guide that you are reading now is a revision and update
prompted by O'Reilly & Associates and undertaken by Terry Dawson.[2]
Terry has been an amateur radio operator for over 20 years and has worked in
the telecommunications industry for over 15 of those. He was co-author of the
original NET-FAQ, and has since authored and maintained various
networking-related HOWTO documents. Terry has always been an
enthusiastic supporter of the Network Administrators Guide project, and added
a few new chapters to this version describing features of Linux networking
that have been developed since the first edition, plus a bunch of changes to
bring the rest of the book up to date.

[2] Terry Dawson can be reached at terry@linux.org.au.

The exim chapter was contributed by Philip Hazel,[3] who is a lead developer
and maintainer of the package.

[3] Philip Hazel can be reached at ph10@cus.cam.ac.uk.

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (11 of 19) [2/20/2001 11:03:39 AM]

http://www.linuxbase.org/

The book is organized roughly along the sequence of steps you have to take to
configure your system for networking. It starts by discussing basic concepts of
networks, and TCP/IP-based networks in particular. It then slowly works its
way up from configuring TCP/IP at the device level to firewall, accounting,
and masquerade configuration, to the setup of common applications such as
rlogin and friends, the Network File System, and the Network Information
System. This is followed by a chapter on how to set up your machine as a
UUCP node. Most of the remaining sections is dedicated to two major
applications that run on top of TCP/IP and UUCP: electronic mail and news. A
special chapter has been devoted to the IPX protocol and the NCP filesystem,
because these are used in many corporate environments where Linux is finding
a home.

The email part features an introduction to the more intimate parts of mail
transport and routing, and the myriad of addressing schemes you may be
confronted with. It describes the configuration and management of exim, a
mail transport agent ideal for use in most situations not requiring UUCP, and
sendmail, which is for people who have to do more complicated routing
involving UUCP.

The news part gives you an overview of how Usenet news works. It covers
INN and C News, the two most widely used news transport software packages
at the moment, and the use of NNTP to provide newsreading access to a local
network. The book closes with a chapter on the care and feeding of the most
popular newsreaders on Linux.

Of course, a book can never exhaustively answer all questions you might have.
So if you follow the instructions in this book and something still does not
work, please be patient. Some of your problems may be due to mistakes on our
part (see the section ", later in this Preface), but they also may be caused by
changes in the networking software. Therefore, you should check the listed
information resources first. There's a good chance that you are not alone with
your problems, so a fix or at least a proposed workaround is likely to be
known. If you have the opportunity, you should also try to get the latest kernel
and network release from one of the Linux FTP sites or a BBS near you. Many
problems are caused by software from different stages of development, which
fail to work together properly. After all, Linux is a "work in progress."

The Official Printed Version
In Autumn 1993, Andy Oram, who had been around the LDP mailing list from
almost the very beginning, asked Olaf about publishing this book at O'Reilly
& Associates. He was excited about this book, never having imagined that it
would become this successful. He and Andy finally agreed that O'Reilly would

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (12 of 19) [2/20/2001 11:03:39 AM]

produce an enhanced Official Printed Version of the Networking Guide, while
Olaf retained the original copyright so that the source of the book could be
freely distributed. This means that you can choose freely: you can get the
various free forms of the document from your nearest Linux Documentation
Project mirror site and print it out, or you can purchase the official printed
version from O'Reilly.

Why, then, would you want to pay money for something you can get for free?
Is Tim O'Reilly out of his mind for publishing something everyone can print
and even sell themselves?[4] Is there any difference between these versions?

[4] Note that while you are allowed to print out the online
version, you may not run the O'Reilly book through a
photocopier, much less sell any of its (hypothetical) copies.

The answers are "it depends," "no, definitely not," and "yes and no." O'Reilly
& Associates does take a risk in publishing the Networking Guide, and it
seems to have paid off for them (they've asked us to do it again). We believe
this project serves as a fine example of how the free software world and
companies can cooperate to produce something both can benefit from. In our
view, the great service O'Reilly is providing to the Linux community (apart
from the book becoming readily available in your local bookstore) is that it has
helped Linux become recognized as something to be taken seriously: a viable
and useful alternative to other commercial operating systems. It's a sad
technical bookstore that doesn't have at least one shelf stacked with O'Reilly
Linux books.

Why are they publishing it? They see it as their kind of book. It's what they'd
hope to produce if they contracted with an author to write about Linux. The
pace, level of detail, and style fit in well with their other offerings.

The point of the LDP license is to make sure no one gets shut out. Other
people can print out copies of this book, and no one will blame you if you get
one of these copies. But if you haven't gotten a chance to see the O'Reilly
version, try to get to a bookstore or look at a friend's copy. We think you'll like
what you see, and will want to buy it for yourself.

So what about the differences between the printed and online versions? Andy
Oram has made great efforts at transforming our ramblings into something
actually worth printing. (He has also reviewed a few other books produced by
the Linux Documentation Project, contributing whatever professional skills he
can to the Linux community.)

Since Andy started reviewing the Networking Guide and editing the copies
sent to him, the book has improved vastly from its original form, and with
every round of submission and feedback it improves again. The opportunity to

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (13 of 19) [2/20/2001 11:03:39 AM]

take advantage of a professional editor's skill is one not to be wasted. In many
ways, Andy's contribution has been as important as that of the authors. The
same is also true of the copyeditors, who got the book into the shape you see
now. All these edits have been fed back into the online version, so there is no
difference in content.

Still, the O'Reilly version will be different. It will be professionally bound, and
while you may go to the trouble to print the free version, it is unlikely that you
will get the same quality result, and even then it is more unlikely that you'll do
it for the price. Secondly, our amateurish attempts at illustration will have
been replaced with nicely redone figures by O'Reilly's professional artists.
Indexers have generated an improved index, which makes locating
information in the book a much simpler process. If this book is something you
intend to read from start to finish, you should consider reading the official
printed version.

Overview
Chapter 1, Introduction to Networking, discusses the history of Linux and
covers basic networking information on UUCP, TCP/IP, various protocols,
hardware, and security. The next few chapters deal with configuring Linux for
TCP/IP networking and running some major applications. We examine IP a
little more closely in Chapter 2, Issues of TCP/IP Networking, before getting
our hands dirty with file editing and the like. If you already know how IP
routing works and how address resolution is performed, you can skip this
chapter.

Chapter 3, Configuring the Networking Hardware, deals with very basic
configuration issues, such as building a kernel and setting up your Ethernet
card. The configuration of your serial ports is covered separately in Chapter 4,
Configuring the Serial Hardware, because the discussion does not apply to
TCP/IP networking only, but is also relevant for UUCP.

Chapter 5, Configuring TCP/IP Networking, helps you set up your machine
for TCP/IP networking. It contains installation hints for standalone hosts with
loopback enabled only, and hosts connected to an Ethernet. It also introduces
you to a few useful tools you can use to test and debug your setup. Chapter 6,
Name Service and Resolver Configuration, discusses how to configure
hostname resolution and explains how to set up a name server.

Chapter 7, Serial Line IP, explains how to establish SLIP connections and
gives a detailed reference for dip, a tool that allows you to automate most of
the necessary steps. Chapter 8, The Point-to-Point Protocol, covers PPP and
pppd, the PPP daemon.

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (14 of 19) [2/20/2001 11:03:39 AM]

Chapter 9, TCP/IP Firewall, extends our discussion on network security and
describes the Linux TCP/IP firewall and its configuration tools: ipfwadm,
ipchains, and iptables. IP firewalling provides a means of controlling who can
access your network and hosts very precisely.

Chapter 10, IP Accounting, explains how to configure IP Accounting in Linux
so you can keep track of how much traffic is going where and who is
generating it.

Chapter 11, IP Masquerade and Network Address Translation, covers a feature
of the Linux networking software called IP masquerade, which allows whole
IP networks to connect to and use the Internet through a single IP address,
hiding internal systems from outsiders in the process.

Chapter 12, Important Network Features, gives a short introduction to setting
up some of the most important network applications, such as rlogin, ssh, etc.
This chapter also covers how services are managed by the inetd superuser, and
how you may restrict certain security-relevant services to a set of trusted hosts.

Chapter 13, The Network Information System, and Chapter 14, The Network
File System, discuss NIS and NFS. NIS is a tool used to distribute
administative information, such as user passwords in a local area network.
NFS allows you to share filesystems between several hosts in your network.

In Chapter 15, IPX and the NCP Filesystem, we discuss the IPX protocol and
the NCP filesystem. These allow Linux to be integrated into a Novell NetWare
environment, sharing files and printers with non-Linux machines.

Chapter 16, Managing Taylor UUCP, gives you an extensive introduction to
the administration of Taylor UUCP, a free implementation of the UUCP suite.

The remainder of the book is taken up by a detailed tour of electronic mail and
Usenet news. Chapter 17, Electronic Mail, introduces you to the central
concepts of electronic mail, like what a mail address looks like, and how the
mail handling system manages to get your message to the recipient.

Chapter 18, Sendmail, and Chapter 19, Getting Exim Up and Running, cover
the configuration of sendmail and exim, two mail transport agents you can use
for Linux. This book explains both of them, because exim is easier to install
for the beginner, while sendmail provides support for UUCP.

Chapter 20, Netnews, through Chapter 23, Internet News, explain the way
news is managed in Usenet and how you install and use C News, nntpd, and
INN: three popular software packages for managing Usenet news. After the
brief introduction in Chapter 20, you can read Chapter 21, C News, if you
want to transfer news using C News, a traditional service generally used with
UUCP. The following chapters discuss more modern alternatives to C News

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (15 of 19) [2/20/2001 11:03:39 AM]

that use the Internet-based protocol NNTP (Network News Transfer Protocol).
Chapter 22, NNTP and the nntpd Daemon covers how to set up a simple
NNTP daemon, nntpd, to provide news reading access for a local network,
while Chapter 23 describes a more robust server for more extensive NetNews
transfers, the InterNet News daemon (INN). And finally, Chapter 24,
Newsreader Configuration, shows you how to configure and maintain various
newsreaders.

Conventions Used in This Book
All examples presented in this book assume you are using a sh compatible
shell. The bash shell is sh compatible and is the standard shell of all Linux
distributions. If you happen to be a csh user, you will have to make
appropriate adjustments.

The following is a list of the typographical conventions used in this book:

Italic

Used for file and directory names, program and command names,
command-line options, email addresses and pathnames, URLs, and for
emphasizing new terms.

Boldface

Used for machine names, hostnames, site names, usernames and IDs,
and for occasional emphasis.

Constant Width

Used in examples to show the contents of code files or the output from
commands and to indicate environment variables and keywords that
appear in code.

Constant Width Italic

Used to indicate variable options, keywords, or text that the user is to
replace with an actual value.

Constant Width Bold

Used in examples to show commands or other text that should be typed
literally by the user.

WARNING: Text appearing in this manner offers a warning.
You can make a mistake here that hurts your system or is hard to
recover from.

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (16 of 19) [2/20/2001 11:03:39 AM]

Submitting Changes
We have tested and verified the information in this book to the best of our
ability, but you may find that features have changed (or even that we have
made mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (FAX)

You can send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any
plans for future editions. You can access this page at:

http://www.oreilly.com/catalog/linag2

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Acknowledgments
This edition of the Networking Guide owes almost everything to the
outstanding work of Olaf and Vince. It is difficult to appreciate the effort that
goes into researching and writing a book of this nature until you've had a
chance to work on one yourself. Updating the book was a challenging task, but
with an excellent base to work from, it was an enjoyable one.

This book owes very much to the numerous people who took the time to
proof-read it and help iron out many mistakes, both technical and grammatical
(never knew that there was such a thing as a dangling participle). Phil Hughes,
John Macdonald, and Erik Ratcliffe all provided very helpful (and on the
whole, quite consistent) feedback on the content of the book.

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (17 of 19) [2/20/2001 11:03:39 AM]

http://www.oreilly.com/catalog/linag2
http://www.oreilly.com/

We also owe many thanks to the people at O'Reilly we've had the pleasure to
work with: Sarah Jane Shangraw, who got the book into the shape you can see
now; Maureen Dempsey, who copyedited the text; Rob Romano, Rhon Porter,
and Chris Reilley, who created all the figures; Hanna Dyer, who designed the
cover; Alicia Cech, David Futato, and Jennifer Niedherst for the internal
layout; Lars Kaufman for suggesting old woodcuts as a visual theme; Judy
Hoer for the index; and finally, Tim O'Reilly for the courage to take up such a
project.

We are greatly indebted to Andres Sepúlveda, Wolfgang Michaelis, Michael
K. Johnson, and all developers who spared the time to check the information
provided in the Networking Guide. Phil Hughes, John MacDonald, and Eric
Ratcliffe contributed invaluable comments on the second edition. We also
wish to thank all those who read the first version of the Networking Guide and
sent corrections and suggestions. You can find a hopefully complete list of
contributors in the file Thanks in the online distribution. Finally, this book
would not have been possible without the support of Holger Grothe, who
provided Olaf with the Internet connectivity he needed to make the original
version happen.

Olaf would also like to thank the following groups and companies that printed
the first edition of the Networking Guide and have donated money either to
him or to the Linux Documentation Project as a whole: Linux Support Team,
Erlangen, Germany; S.u.S.E. GmbH, Fuerth, Germany; and Linux System
Labs, Inc., Clinton Twp., United States, RedHat Software, North Carolina,
United States.

Terry thanks his wife, Maggie, who patiently supported him throughout his
participation in the project despite the challenges presented by the birth of
their first child, Jack. Additionally, he thanks the many people of the Linux
community who either nurtured or suffered him to the point at which he could
actually take part and actively contribute. "I'll help you if you promise to help
someone else in return."

The Hall of Fame

Besides those we have already mentioned, a large number of people have
contributed to the Networking Guide, by reviewing it and sending us
corrections and suggestions. We are very grateful.

Here is a list of those whose contributions left a trace in our mail folders.

Al Longyear, Alan Cox, Andres Sepúlveda, Ben Cooper, Cameron Spitzer,
Colin McCormack, D.J. Roberts, Emilio Lopes, Fred N. van Kempen, Gert
Doering, Greg Hankins, Heiko Eissfeldt, J.P. Szikora, Johannes Stille, Karl
Eichwalder, Les Johnson, Ludger Kunz, Marc van Diest, Michael K. Johnson,

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (18 of 19) [2/20/2001 11:03:39 AM]

Michael Nebel, Michael Wing, Mitch D'Souza, Paul Gortmaker, Peter
Brouwer, Peter Eriksson, Phil Hughes, Raul Deluth Miller, Rich Braun, Rick
Sladkey, Ronald Aarts, Swen Thüemmler, Terry Dawson, Thomas Quinot, and
Yury Shevchuk.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Preface

http://www.oreilly.com/catalog/linag2/book/ch00.html (19 of 19) [2/20/2001 11:03:39 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 1
Introduction to Networking
Contents:
History
TCP/IP Networks
UUCP Networks
Linux Networking
Maintaining Your System

History
The idea of networking is probably as old as telecommunications itself. Consider
people living in the Stone Age, when drums may have been used to transmit
messages between individuals. Suppose caveman A wants to invite caveman B
over for a game of hurling rocks at each other, but they live too far apart for B to
hear A banging his drum. What are A's options? He could 1) walk over to B's
place, 2) get a bigger drum, or 3) ask C, who lives halfway between them, to
forward the message. The last option is called networking.

Of course, we have come a long way from the primitive pursuits and devices of
our forebears. Nowadays, we have computers talk to each other over vast
assemblages of wires, fiber optics, microwaves, and the like, to make an
appointment for Saturday's soccer match.[1] In the following description, we will
deal with the means and ways by which this is accomplished, but leave out the
wires, as well as the soccer part.

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (1 of 18) [2/20/2001 11:03:44 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

[1] The original spirit of which (see above) still shows on some
occasions in Europe.

We will describe three types of networks in this guide. We will focus on TCP/IP
most heavily because it is the most popular protocol suite in use on both Local
Area Networks (LANs) and Wide Area Networks (WANs), such as the Internet.
We will also take a look at UUCP and IPX. UUCP was once commonly used to
transport news and mail messages over dialup telephone connections. It is less
common today, but is still useful in a variety of situations. The IPX protocol is
used most commonly in the Novell NetWare environment and we'll describe how
to use it to connect your Linux machine into a Novell network. Each of these
protocols are networking protocols and are used to carry data between host
computers. We'll discuss how they are used and introduce you to their underlying
principles.

We define a network as a collection of hosts that are able to communicate with
each other, often by relying on the services of a number of dedicated hosts that
relay data between the participants. Hosts are often computers, but need not be;
one can also think of X terminals or intelligent printers as hosts. Small
agglomerations of hosts are also called sites.

Communication is impossible without some sort of language or code. In computer
networks, these languages are collectively referred to as protocols. However, you
shouldn't think of written protocols here, but rather of the highly formalized code
of behavior observed when heads of state meet, for instance. In a very similar
fashion, the protocols used in computer networks are nothing but very strict rules
for the exchange of messages between two or more hosts.

TCP/IP Networks
Modern networking applications require a sophisticated approach to carrying data
from one machine to another. If you are managing a Linux machine that has many
users, each of whom may wish to simultaneously connect to remote hosts on a
network, you need a way of allowing them to share your network connection
without interfering with each other. The approach that a large number of modern
networking protocols uses is called packet-switching. A packet is a small chunk of
data that is transferred from one machine to another across the network. The
switching occurs as the datagram is carried across each link in the network. A
packet-switched network shares a single network link among many users by
alternately sending packets from one user to another across that link.

The solution that Unix systems, and subsequently many non-Unix systems, have
adopted is known as TCP/IP. When talking about TCP/IP networks you will hear
the term datagram, which technically has a special meaning but is often used
interchangeably with packet. In this section, we will have a look at underlying
concepts of the TCP/IP protocols.

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (2 of 18) [2/20/2001 11:03:44 AM]

Introduction to TCP/IP Networks

TCP/IP traces its origins to a research project funded by the United States Defense
Advanced Research Projects Agency (DARPA) in 1969. The ARPANET was an
experimental network that was converted into an operational one in 1975 after it
had proven to be a success.

In 1983, the new protocol suite TCP/IP was adopted as a standard, and all hosts on
the network were required to use it. When ARPANET finally grew into the
Internet (with ARPANET itself passing out of existence in 1990), the use of
TCP/IP had spread to networks beyond the Internet itself. Many companies have
now built corporate TCP/IP networks, and the Internet has grown to a point at
which it could almost be considered a mainstream consumer technology. It is
difficult to read a newspaper or magazine now without seeing reference to the
Internet; almost everyone can now use it.

For something concrete to look at as we discuss TCP/IP throughout the following
sections, we will consider Groucho Marx University (GMU), situated somewhere
in Fredland, as an example. Most departments run their own Local Area Networks,
while some share one and others run several of them. They are all interconnected
and hooked to the Internet through a single high-speed link.

Suppose your Linux box is connected to a LAN of Unix hosts at the Mathematics
department, and its name is erdos. To access a host at the Physics department, say
quark, you enter the following command:

$ rlogin quark.physics
Welcome to the Physics Department at GMU
(ttyq2) login:

At the prompt, you enter your login name, say andres, and your password. You are
then given a shell[2] on quark, to which you can type as if you were sitting at the
system's console. After you exit the shell, you are returned to your own machine's
prompt. You have just used one of the instantaneous, interactive applications that
TCP/IP provides: remote login.

[2] The shell is a command-line interface to the Unix operating
system. It's similar to the DOS prompt in a Microsoft Windows
environment, albeit much more powerful.

While being logged into quark, you might also want to run a graphical user
interface application, like a word processing program, a graphics drawing
program, or even a World Wide Web browser. The X windows system is a fully
network-aware graphical user environment, and it is available for many different
computing systems. To tell this application that you want to have its windows
displayed on your host's screen, you have to set the DISPLAY environment
variable:

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (3 of 18) [2/20/2001 11:03:44 AM]

$ DISPLAY=erdos.maths:0.0
$ export DISPLAY

If you now start your application, it will contact your X server instead of quark's,
and display all its windows on your screen. Of course, this requires that you have
X11 runnning on erdos. The point here is that TCP/IP allows quark and erdos to
send X11 packets back and forth to give you the illusion that you're on a single
system. The network is almost transparent here.

Another very important application in TCP/IP networks is NFS, which stands for
Network File System. It is another form of making the network transparent,
because it basically allows you to treat directory hierarchies from other hosts as if
they were local file systems and look like any other directories on your host. For
example, all users' home directories can be kept on a central server machine from
which all other hosts on the LAN mount them. The effect is that users can log in to
any machine and find themselves in the same home directory. Similarly, it is
possible to share large amounts of data (such as a database, documentation or
application programs) among many hosts by maintaining one copy of the data on a
server and allowing other hosts to access it. We will come back to NFS in Chapter
14, The Network File System.

Of course, these are only examples of what you can do with TCP/IP networks. The
possibilities are almost limitless, and we'll introduce you to more as you read on
through the book.

We will now have a closer look at the way TCP/IP works. This information will
help you understand how and why you have to configure your machine. We will
start by examining the hardware, and slowly work our way up.

Ethernets

The most common type of LAN hardware is known as Ethernet. In its simplest
form, it consists of a single cable with hosts attached to it through connectors, taps,
or transceivers. Simple Ethernets are relatively inexpensive to install, which
together with a net transfer rate of 10, 100, or even 1,000 Megabits per second,
accounts for much of its popularity.

Ethernets come in three flavors: thick, thin, and twisted pair. Thin and thick
Ethernet each use a coaxial cable, differing in diameter and the way you may
attach a host to this cable. Thin Ethernet uses a T-shaped "BNC" connector, which
you insert into the cable and twist onto a plug on the back of your computer. Thick
Ethernet requires that you drill a small hole into the cable, and attach a transceiver
using a "vampire tap." One or more hosts can then be connected to the transceiver.
Thin and thick Ethernet cable can run for a maximum of 200 and 500 meters
respectively, and are also called 10base-2 and 10base-5. The "base" refers to
"baseband modulation" and simply means that the data is directly fed onto the
cable without any modem. The number at the start refers to the speed in Megabits

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (4 of 18) [2/20/2001 11:03:44 AM]

per second, and the number at the end is the maximum length of the cable in
hundreds of metres. Twisted pair uses a cable made of two pairs of copper wires
and usually requires additional hardware known as active hubs. Twisted pair is
also known as 10base-T, the "T" meaning twisted pair. The 100 Megabits per
second version is known as 100base-T.

To add a host to a thin Ethernet installation, you have to disrupt network service
for at least a few minutes because you have to cut the cable to insert the connector.
Although adding a host to a thick Ethernet system is a little complicated, it does
not typically bring down the network. Twisted pair Ethernet is even simpler. It
uses a device called a "hub," which serves as an interconnection point. You can
insert and remove hosts from a hub without interrupting any other users at all.

Many people prefer thin Ethernet for small networks because it is very
inexpensive; PC cards come for as little as US $30 (many companies are literally
throwing them out now), and cable is in the range of a few cents per meter.
However, for large-scale installations, either thick Ethernet or twisted pair is more
appropriate. For example, the Ethernet at GMU's Mathematics Department
originally chose thick Ethernet because it is a long route that the cable must take
so traffic will not be disrupted each time a host is added to the network. Twisted
pair installations are now very common in a variety of installations. The Hub
hardware is dropping in price and small units are now available at a price that is
attractive to even small domestic networks. Twisted pair cabling can be
significantly cheaper for large installations, and the cable itself is much more
flexible than the coaxial cables used for the other Ethernet systems. The network
administrators in GMU's mathematics department are planning to replace the
existing network with a twisted pair network in the coming finanical year because
it will bring them up to date with current technology and will save them significant
time when installing new host computers and moving existing computers around.

One of the drawbacks of Ethernet technology is its limited cable length, which
precludes any use of it other than for LANs. However, several Ethernet segments
can be linked to one another using repeaters, bridges, or routers. Repeaters simply
copy the signals between two or more segments so that all segments together will
act as if they are one Ethernet. Due to timing requirements, there may not be more
than four repeaters between any two hosts on the network. Bridges and routers are
more sophisticated. They analyze incoming data and forward it only when the
recipient host is not on the local Ethernet.

Ethernet works like a bus system, where a host may send packets (or frames) of up
to 1,500 bytes to another host on the same Ethernet. A host is addressed by a
six-byte address hardcoded into the firmware of its Ethernet network interface card
(NIC). These addresses are usually written as a sequence of two-digit hex numbers
separated by colons, as in aa:bb:cc:dd:ee:ff.

A frame sent by one station is seen by all attached stations, but only the destination
host actually picks it up and processes it. If two stations try to send at the same

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (5 of 18) [2/20/2001 11:03:44 AM]

time, a collision occurs. Collisions on an Ethernet are detected very quickly by the
electronics of the interface cards and are resolved by the two stations aborting the
send, each waiting a random interval and re-attempting the transmission. You'll
hear lots of stories about collisions on Ethernet being a problem and that
utilization of Ethernets is only about 30 percent of the available bandwidth
because of them. Collisions on Ethernet are a normal phenomenon, and on a very
busy Ethernet network you shouldn't be surprised to see collision rates of up to
about 30 percent. Utilization of Ethernet networks is more realistically limited to
about 60 percent before you need to start worrying about it.[3]

[3] The Ethernet FAQ at
http://www.faqs.org/faqs/LANs/ethernet-faq/ talks about this issue,
and a wealth of detailed historical and technical information is
available at Charles Spurgeon's Ethernet web site at
http://wwwhost.ots.utexas.edu/ethernet/.

Other Types of Hardware

In larger installations, such as Groucho Marx University, Ethernet is usually not
the only type of equipment used. There are many other data communications
protocols available and in use. All of the protocols listed are supported by Linux,
but due to space constraints we'll describe them briefly. Many of the protocols
have HOWTO documents that describe them in detail, so you should refer to those
if you're interested in exploring those that we don't describe in this book.

At Groucho Marx University, each department's LAN is linked to the campus
high-speed "backbone" network, which is a fiber optic cable running a network
technology called Fiber Distributed Data Interface (FDDI). FDDI uses an entirely
different approach to transmitting data, which basically involves sending around a
number of tokens, with a station being allowed to send a frame only if it captures a
token. The main advantage of a token-passing protocol is a reduction in collisions.
Therefore, the protocol can more easily attain the full speed of the transmission
medium, up to 100 Mbps in the case of FDDI. FDDI, being based on optical fiber,
offers a significant advantage because its maximum cable length is much greater
than wire-based technologies. It has limits of up to around 200 km, which makes it
ideal for linking many buildings in a city, or as in GMU's case, many buildings on
a campus.

Similarly, if there is any IBM computing equipment around, an IBM Token Ring
network is quite likely to be installed. Token Ring is used as an alternative to
Ethernet in some LAN environments, and offers the same sorts of advantages as
FDDI in terms of achieving full wire speed, but at lower speeds (4 Mbps or 16
Mbps), and lower cost because it is based on wire rather than fiber. In Linux,
Token Ring networking is configured in almost precisely the same way as
Ethernet, so we don't cover it specifically.

Although it is much less likely today than in the past, other LAN technologies,

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (6 of 18) [2/20/2001 11:03:44 AM]

http://www.faqs.org/faqs/LANs/ethernet-faq/
http://wwwhost.ots.utexas.edu/ethernet/

such as ArcNet and DECNet, might be installed. Linux supports these too, but we
don't cover them here.

Many national networks operated by Telecommunications companies support
packet switching protocols. Probably the most popular of these is a standard
named X.25. Many Public Data Networks, like Tymnet in the U.S., Austpac in
Australia, and Datex-P in Germany offer this service. X.25 defines a set of
networking protocols that describes how data terminal equipment, such as a host,
communicates with data communications equipment (an X.25 switch). X.25
requires a synchronous data link, and therefore special synchronous serial port
hardware. It is possible to use X.25 with normal serial ports if you use a special
device called a PAD (Packet Assembler Disassembler). The PAD is a standalone
device that provides asynchronous serial ports and a synchronous serial port. It
manages the X.25 protocol so that simple terminal devices can make and accept
X.25 connections. X.25 is often used to carry other network protocols, such as
TCP/IP. Since IP datagrams cannot simply be mapped onto X.25 (or vice versa),
they are encapsulated in X.25 packets and sent over the network. There is an
experimental implementation of the X.25 protocol available for Linux.

A more recent protocol commonly offered by telecommunications companies is
called Frame Relay. The Frame Relay protocol shares a number of technical
features with the X.25 protocol, but is much more like the IP protocol in behavior.
Like X.25, Frame Relay requires special synchronous serial hardware. Because of
their similarities, many cards support both of these protocols. An alternative is
available that requires no special internal hardware, again relying on an external
device called a Frame Relay Access Device (FRAD) to manage the encapsulation
of Ethernet packets into Frame Relay packets for transmission across a network.
Frame Relay is ideal for carrying TCP/IP between sites. Linux provides drivers
that support some types of internal Frame Relay devices.

If you need higher speed networking that can carry many different types of data,
such as digitized voice and video, alongside your usual data, ATM (Asynchronous
Transfer Mode) is probably what you'll be interested in. ATM is a new network
technology that has been specifically designed to provide a manageable,
high-speed, low-latency means of carrying data, and provide control over the
Quality of Service (Q.S.). Many telecommunications companies are deploying
ATM network infrastructure because it allows the convergence of a number of
different network services into one platform, in the hope of achieving savings in
management and support costs. ATM is often used to carry TCP/IP. The
Networking-HOWTO offers information on the Linux support available for ATM.

Frequently, radio amateurs use their radio equipment to network their computers;
this is commonly called packet radio. One of the protocols used by amateur radio
operators is called AX.25 and is loosely derived from X.25. Amateur radio
operators use the AX.25 protocol to carry TCP/IP and other protocols, too. AX.25,
like X.25, requires serial hardware capable of synchronous operation, or an
external device called a "Terminal Node Controller" to convert packets transmitted

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (7 of 18) [2/20/2001 11:03:45 AM]

via an asynchronous serial link into packets transmitted synchronously. There are a
variety of different sorts of interface cards available to support packet radio
operation; these cards are generally referred to as being "Z8530 SCC based," and
are named after the most popular type of communications controller used in the
designs. Two of the other protocols that are commonly carried by AX.25 are the
NetRom and Rose protocols, which are network layer protocols. Since these
protocols run over AX.25, they have the same hardware requirements. Linux
supports a fully featured implementation of the AX.25, NetRom, and Rose
protocols. The AX25-HOWTO is a good source of information on the Linux
implementation of these protocols.

Other types of Internet access involve dialing up a central system over slow but
cheap serial lines (telephone, ISDN, and so on). These require yet another protocol
for transmission of packets, such as SLIP or PPP, which will be described later.

The Internet Protocol

Of course, you wouldn't want your networking to be limited to one Ethernet or one
point-to-point data link. Ideally, you would want to be able to communicate with a
host computer regardless of what type of physical network it is connected to. For
example, in larger installations such as Groucho Marx University, you usually
have a number of separate networks that have to be connected in some way. At
GMU, the Math department runs two Ethernets: one with fast machines for
professors and graduates, and another with slow machines for students. Both are
linked to the FDDI campus backbone network.

This connection is handled by a dedicated host called a gateway that handles
incoming and outgoing packets by copying them between the two Ethernets and
the FDDI fiber optic cable. For example, if you are at the Math department and
want to access quark on the Physics department's LAN from your Linux box, the
networking software will not send packets to quark directly because it is not on the
same Ethernet. Therefore, it has to rely on the gateway to act as a forwarder. The
gateway (named sophus) then forwards these packets to its peer gateway niels at
the Physics department, using the backbone network, with niels delivering it to the
destination machine. Data flow between erdos and quark is shown in Figure 1.1.

Figure 1.1: The three steps of sending a datagram from erdos to
quark

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (8 of 18) [2/20/2001 11:03:45 AM]

This scheme of directing data to a remote host is called routing, and packets are
often referred to as datagrams in this context. To facilitate things, datagram
exchange is governed by a single protocol that is independent of the hardware
used: IP, or Internet Protocol. In Chapter 2, Issues of TCP/IP Networking, we will
cover IP and the issues of routing in greater detail.

The main benefit of IP is that it turns physically dissimilar networks into one
apparently homogeneous network. This is called internetworking, and the resulting
"meta-network" is called an internet. Note the subtle difference here between an
internet and the Internet. The latter is the official name of one particular global
internet.

Of course, IP also requires a hardware-independent addressing scheme. This is
achieved by assigning each host a unique 32-bit number called the IP address. An
IP address is usually written as four decimal numbers, one for each 8-bit portion,
separated by dots. For example, quark might have an IP address of 0x954C0C04,
which would be written as 149.76.12.4. This format is also called dotted decimal
notation and sometimes dotted quad notation. It is increasingly going under the
name IPv4 (for Internet Protocol, Version 4) because a new standard called IPv6
offers much more flexible addressing, as well as other modern features. It will be
at least a year after the release of this edition before IPv6 is in use.

You will notice that we now have three different types of addresses: first there is

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (9 of 18) [2/20/2001 11:03:45 AM]

the host's name, like quark, then there are IP addresses, and finally, there are
hardware addresses, like the 6-byte Ethernet address. All these addresses somehow
have to match so that when you type rlogin quark, the networking software can be
given quark's IP address; and when IP delivers any data to the Physics
department's Ethernet, it somehow has to find out what Ethernet address
corresponds to the IP address.

We will deal with these situations in Chapter 2. For now, it's enough to remember
that these steps of finding addresses are called hostname resolution, for mapping
hostnames onto IP addresses, and address resolution, for mapping the latter to
hardware addresses.

IP Over Serial Lines

On serial lines, a "de facto" standard exists known as SLIP, or Serial Line IP. A
modification of SLIP known as CSLIP, or Compressed SLIP, performs
compression of IP headers to make better use of the relatively low bandwidth
provided by most serial links. Another serial protocol is PPP, or the Point-to-Point
Protocol. PPP is more modern than SLIP and includes a number of features that
make it more attractive. Its main advantage over SLIP is that it isn't limited to
transporting IP datagrams, but is designed to allow just about any protocol to be
carried across it.

The Transmission Control Protocol

Sending datagrams from one host to another is not the whole story. If you log in to
quark, you want to have a reliable connection between your rlogin process on
erdos and the shell process on quark. Thus, the information sent to and fro must be
split up into packets by the sender and reassembled into a character stream by the
receiver. Trivial as it seems, this involves a number of complicated tasks.

A very important thing to know about IP is that, by intent, it is not reliable.
Assume that ten people on your Ethernet started downloading the latest release of
Netscape's web browser source code from GMU's FTP server. The amount of
traffic generated might be too much for the gateway to handle, because it's too
slow and it's tight on memory. Now if you happen to send a packet to quark,
sophus might be out of buffer space for a moment and therefore unable to forward
it. IP solves this problem by simply discarding it. The packet is irrevocably lost. It
is therefore the responsibility of the communicating hosts to check the integrity
and completeness of the data and retransmit it in case of error.

This process is performed by yet another protocol, Transmission Control Protocol
(TCP), which builds a reliable service on top of IP. The essential property of TCP
is that it uses IP to give you the illusion of a simple connection between the two
processes on your host and the remote machine, so you don't have to care about
how and along which route your data actually travels. A TCP connection works
essentially like a two-way pipe that both processes may write to and read from.

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (10 of 18) [2/20/2001 11:03:45 AM]

Think of it as a telephone conversation.

TCP identifies the end points of such a connection by the IP addresses of the two
hosts involved and the number of a port on each host. Ports may be viewed as
attachment points for network connections. If we are to strain the telephone
example a little more, and you imagine that cities are like hosts, one might
compare IP addresses to area codes (where numbers map to cities), and port
numbers to local codes (where numbers map to individual people's telephones). An
individual host may support many different services, each distinguished by its own
port number.

In the rlogin example, the client application (rlogin) opens a port on erdos and
connects to port 513 on quark, to which the rlogind server is known to listen. This
action establishes a TCP connection. Using this connection, rlogind performs the
authorization procedure and then spawns the shell. The shell's standard input and
output are redirected to the TCP connection, so that anything you type to rlogin on
your machine will be passed through the TCP stream and be given to the shell as
standard input.

The User Datagram Protocol

Of course, TCP isn't the only user protocol in TCP/IP networking. Although
suitable for applications like rlogin, the overhead involved is prohibitive for
applications like NFS, which instead uses a sibling protocol of TCP called UDP,
or User Datagram Protocol. Just like TCP, UDP allows an application to contact a
service on a certain port of the remote machine, but it doesn't establish a
connection for this. Instead, you use it to send single packets to the destination
service -- hence its name.

Assume you want to request a small amount of data from a database server. It
takes at least three datagrams to establish a TCP connection, another three to send
and confirm a small amount of data each way, and another three to close the
connection. UDP provides us with a means of using only two datagrams to achieve
almost the same result. UDP is said to be connectionless, and it doesn't require us
to establish and close a session. We simply put our data into a datagram and send
it to the server; the server formulates its reply, puts the data into a datagram
addressed back to us, and transmits it back. While this is both faster and more
efficient than TCP for simple transactions, UDP was not designed to deal with
datagram loss. It is up to the application, a name server for example, to take care
of this.

More on Ports

Ports may be viewed as attachment points for network connections. If an
application wants to offer a certain service, it attaches itself to a port and waits for
clients (this is also called listening on the port). A client who wants to use this

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (11 of 18) [2/20/2001 11:03:45 AM]

service allocates a port on its local host and connects to the server's port on the
remote host. The same port may be open on many different machines, but on each
machine only one process can open a port at any one time.

An important property of ports is that once a connection has been established
between the client and the server, another copy of the server may attach to the
server port and listen for more clients. This property permits, for instance, several
concurrent remote logins to the same host, all using the same port 513. TCP is able
to tell these connections from one another because they all come from different
ports or hosts. For example, if you log in twice to quark from erdos, the first rlogin
client will use the local port 1023, and the second one will use port 1022. Both,
however, will connect to the same port 513 on quark. The two connections will be
distinguished by use of the port numbers used at erdos.

This example shows the use of ports as rendezvous points, where a client contacts
a specific port to obtain a specific service. In order for a client to know the proper
port number, an agreement has to be reached between the administrators of both
systems on the assignment of these numbers. For services that are widely used,
such as rlogin, these numbers have to be administered centrally. This is done by
the IETF (Internet Engineering Task Force), which regularly releases an RFC
titled Assigned Numbers (RFC-1700). It describes, among other things, the port
numbers assigned to well-known services. Linux uses a file called /etc/services
that maps service names to numbers.

It is worth noting that although both TCP and UDP connections rely on ports,
these numbers do not conflict. This means that TCP port 513, for example, is
different from UDP port 513. In fact, these ports serve as access points for two
different services, namely rlogin (TCP) and rwho (UDP).

The Socket Library

In Unix operating systems, the software performing all the tasks and protocols
described above is usually part of the kernel, and so it is in Linux. The
programming interface most common in the Unix world is the Berkeley Socket
Library. Its name derives from a popular analogy that views ports as sockets and
connecting to a port as plugging in. It provides the bind call to specify a remote
host, a transport protocol, and a service that a program can connect or listen to
(using connect, listen, and accept). The socket library is somewhat more general in
that it provides not only a class of TCP/IP-based sockets (the AF_INET sockets),
but also a class that handles connections local to the machine (the AF_UNIX
class). Some implementations can also handle other classes, like the XNS (Xerox
Networking System) protocol or X.25.

In Linux, the socket library is part of the standard libc C library. It supports the
AF_INET and AF_INET6 sockets for TCP/IP and AF_UNIX for Unix domain
sockets. It also supports AF_IPX for Novell's network protocols, AF_X25 for the
X.25 network protocol, AF_ATMPVC and AF_ATMSVC for the ATM network

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (12 of 18) [2/20/2001 11:03:45 AM]

protocol and AF_AX25, AF_NETROM, and AF_ROSE sockets for Amateur Radio
protocol support. Other protocol families are being developed and will be added in
time.

UUCP Networks
Unix-to-Unix Copy (UUCP) started out as a package of programs that transferred
files over serial lines, scheduled those transfers, and initiated execution of
programs on remote sites. It has undergone major changes since its first
implementation in the late seventies, but it is still rather spartan in the services it
offers. Its main application is still in Wide Area Networks, based on periodic
dialup telephone links.

UUCP was first developed by Bell Laboratories in 1977 for communication
between their Unix development sites. In mid-1978, this network already
connected over 80 sites. It was running email as an application, as well as remote
printing. However, the system's central use was in distributing new software and
bug fixes. Today, UUCP is not confined solely to the Unix environment. There are
free and commercial ports available for a variety of platforms, including
AmigaOS, DOS, and Atari's TOS.

One of the main disadvantages of UUCP networks is that they operate in batches.
Rather than having a permanent connection established between hosts, it uses
temporary connections. A UUCP host machine might dial in to another UUCP
host only once a day, and then only for a short period of time. While it is
connected, it will transfer all of the news, email, and files that have been queued,
and then disconnect. It is this queuing that limits the sorts of applications that
UUCP can be applied to. In the case of email, a user may prepare an email
message and post it. The message will stay queued on the UUCP host machine
until it dials in to another UUCP host to transfer the message. This is fine for
network services such as email, but is no use at all for services such as rlogin.

Despite these limitations, there are still many UUCP networks operating all over
the world, run mainly by hobbyists, which offer private users network access at
reasonable prices. The main reason for the longtime popularity of UUCP was that
it was very cheap compared to having your computer directly connected to the
Internet. To make your computer a UUCP node, all you needed was a modem, a
working UUCP implementation, and another UUCP node that was willing to feed
you mail and news. Many people were prepared to provide UUCP feeds to
individuals because such connections didn't place much demand on their existing
network.

We cover the configuration of UUCP in a chapter of its own later in the book, but
we won't focus on it too heavily, as it's being replaced rapidly with TCP/IP, now
that cheap Internet access has become commonly available in most parts of the
world.

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (13 of 18) [2/20/2001 11:03:45 AM]

Linux Networking
As it is the result of a concerted effort of programmers around the world, Linux
wouldn't have been possible without the global network. So it's not surprising that
in the early stages of development, several people started to work on providing it
with network capabilities. A UUCP implementation was running on Linux almost
from the very beginning, and work on TCP/IP-based networking started around
autumn 1992, when Ross Biro and others created what has now become known as
Net-1.

After Ross quit active development in May 1993, Fred van Kempen began to work
on a new implementation, rewriting major parts of the code. This project was
known as Net-2. The first public release, Net-2d, was made in the summer of 1993
(as part of the 0.99.10 kernel), and has since been maintained and expanded by
several people, most notably Alan Cox.[4] Alan's original work was known as
Net-2Debugged. After heavy debugging and numerous improvements to the code,
he changed its name to Net-3 after Linux 1.0 was released. The Net-3 code was
further developed for Linux 1.2 and Linux 2.0. The 2.2 and later kernels use the
Net-4 version network support, which remains the standard official offering today.

[4] Alan can be reached at alan@lxorguk.ukuu.org.uk

The Net-4 Linux Network code offers a wide variety of device drivers and
advanced features. Standard Net-4 protocols include SLIP and PPP (for sending
network traffic over serial lines), PLIP (for parallel lines), IPX (for Novell
compatible networks, which we'll discuss in Chapter 15, IPX and the NCP
Filesystem), Appletalk (for Apple networks) and AX.25, NetRom, and Rose (for
amateur radio networks). Other standard Net-4 features include IP firewalling, IP
accounting (discussed later in Chapter 9, TCP/IP Firewall and Chapter 10, IP
Accounting), and IP Masquerade (discussed later in Chapter 11, IP Masquerade
and Network Address Translation. IP tunnelling in a couple of different flavors
and advanced policy routing are supported. A very large variety of Ethernet
devices is supported, in addition to support for some FDDI, Token Ring, Frame
Relay, and ISDN, and ATM cards.

Additionally, there are a number of other features that greatly enhance the
flexibility of Linux. These features include an implementation of the SMB
filesystem, which interoperates with applications like lanmanager and Microsoft
Windows, called Samba, written by Andrew Tridgell, and an implementation of
the Novell NCP (NetWare Core Protocol).[5]

[5] NCP is the protocol on which Novell file and print services are
based.

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (14 of 18) [2/20/2001 11:03:45 AM]

Different Streaks of Development

There have been, at various times, varying network development efforts active for
Linux.

Fred continued development after Net-2Debugged was made the official network
implementation. This development led to the Net-2e, which featured a much
revised design of the networking layer. Fred was working toward a standardized
Device Driver Interface (DDI), but the Net-2e work has ended now.

Yet another implementation of TCP/IP networking came from Matthias Urlichs,
who wrote an ISDN driver for Linux and FreeBSD. For this driver, he integrated
some of the BSD networking code in the Linux kernel. That project, too is no
longer being worked on.

There has been a lot of rapid change in the Linux kernel networking
implementation, and change is still the watchword as development continues.
Sometimes this means that changes also have to occur in other software, such as
the network configuration tools. While this is no longer as large a problem as it
once was, you may still find that upgrading your kernel to a later version means
that you must upgrade your network configuration tools, too. Fortunately, with the
large number of Linux distributions available today, this is a quite simple task.

The Net-4 network implementation is now quite mature and is in use at a very
large number of sites around the world. Much work has been done on improving
the performance of the Net-4 implementation, and it now competes with the best
implementations available for the same hardware platforms. Linux is proliferating
in the Internet Service Provider environment, and is often used to build cheap and
reliable World Wide Web servers, mail servers, and news servers for these sorts of
organizations. There is now sufficient development interest in Linux that it is
managing to keep abreast of networking technology as it changes, and current
releases of the Linux kernel offer the next generation of the IP protocol, IPv6, as a
standard offering.

Where to Get the Code

It seems odd now to remember that in the early days of the Linux network code
development, the standard kernel required a huge patch kit to add the networking
support to it. Today, network development occurs as part of the mainstream Linux
kernel development process. The latest stable Linux kernels can be found on
ftp.kernel.org in /pub/linux/kernel/v2.x/, where x is an even number. The latest
experimental Linux kernels can be found on ftp.kernel.org in
/pub/linux/kernel/v2.y/, where y is an odd number. There are Linux kernel source
mirrors all over the world. It is now hard to imagine Linux without standard
network support.

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (15 of 18) [2/20/2001 11:03:45 AM]

Maintaining Your System
Throughout this book, we will mainly deal with installation and configuration
issues. Administration is, however, much more than that -- after setting up a
service, you have to keep it running, too. For most services, only a little attendance
will be necessary, while some, like mail and news, require that you perform
routine tasks to keep your system up to date. We will discuss these tasks in later
chapters.

The absolute minimum in maintenance is to check system and per-application log
files regularly for error conditions and unusual events. Often, you will want to do
this by writing a couple of administrative shell scripts and periodically running
them from cron. The source distributions of some major applications, like inn or C
News, contain such scripts. You only have to tailor them to suit your needs and
preferences.

The output from any of your cron jobs should be mailed to an administrative
account. By default, many applications will send error reports, usage statistics, or
log file summaries to the root account. This makes sense only if you log in as root
frequently; a much better idea is to forward root's mail to your personal account by
setting up a mail alias as described in Chapter 19, Getting Exim Up and Running
or Chapter 18, Sendmail.

However carefully you have configured your site, Murphy's law guarantees that
some problem will surface eventually. Therefore, maintaining a system also means
being available for complaints. Usually, people expect that the system
administrator can at least be reached via email as root, but there are also other
addresses that are commonly used to reach the person responsible for a specific
aspect of maintenence. For instance, complaints about a malfunctioning mail
configuration will usually be addressed to postmaster, and problems with the news
system may be reported to newsmaster or usenet. Mail to hostmaster should be
redirected to the person in charge of the host's basic network services, and the
DNS name service if you run a name server.

System Security

Another very important aspect of system administration in a network environment
is protecting your system and users from intruders. Carelessly managed systems
offer malicious people many targets. Attacks range from password guessing to
Ethernet snooping, and the damage caused may range from faked mail messages to
data loss or violation of your users' privacy. We will mention some particular
problems when discussing the context in which they may occur and some common
defenses against them.

This section will discuss a few examples and basic techniques for dealing with
system security. Of course, the topics covered cannot treat all security issues you

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (16 of 18) [2/20/2001 11:03:45 AM]

may be faced with in detail; they merely serve to illustrate the problems that may
arise. Therefore, reading a good book on security is an absolute must, especially in
a networked system.

System security starts with good system administration. This includes checking the
ownership and permissions of all vital files and directories and monitoring use of
privileged accounts. The COPS program, for instance, will check your file system
and common configuration files for unusual permissions or other anomalies. It is
also wise to use a password suite that enforces certain rules on the users'
passwords that make them hard to guess. The shadow password suite, for instance,
requires a password to have at least five letters and to contain both upper- and
lowercase numbers, as well as non-alphabetic characters.

When making a service accessible to the network, make sure to give it "least
privilege"; don't permit it to do things that aren't required for it to work as
designed. For example, you should make programs setuid to root or some other
privileged account only when necessary. Also, if you want to use a service for only
a very limited application, don't hesitate to configure it as restrictively as your
special application allows. For instance, if you want to allow diskless hosts to boot
from your machine, you must provide Trivial File Transfer Protocol (TFTP) so
that they can download basic configuration files from the /boot directory.
However, when used unrestrictively, TFTP allows users anywhere in the world to
download any world-readable file from your system. If this is not what you want,
restrict TFTP service to the /boot directory.[6]

[6] We will come back to this topic in Chapter 12, Important Network
Features.

You might also want to restrict certain services to users from certain hosts, say
from your local network. In Chapter 12, we introduce tcpd, which does this for a
variety of network applications. More sophisticated methods of restricting access
to particular hosts or services will be explored later in Chapter 9.

Another important point is to avoid "dangerous" software. Of course, any software
you use can be dangerous because software may have bugs that clever people
might exploit to gain access to your system. Things like this happen, and there's no
complete protection against it. This problem affects free software and commercial
products alike.[7] However, programs that require special privilege are inherently
more dangerous than others, because any loophole can have drastic
consequences.[8] If you install a setuid program for network purposes, be doubly
careful to check the documentation so that you don't create a security breach by
accident.

[7] There have been commercial Unix systems (that you have to pay
lots of money for) that came with a setuid-root shell script, which
allowed users to gain root privilege using a simple standard trick.

[8] In 1988, the RTM worm brought much of the Internet to a

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (17 of 18) [2/20/2001 11:03:45 AM]

grinding halt, partly by exploiting a gaping hole in some programs
including the sendmail program. This hole has long since been fixed.

Another source of concern should be programs that enable login or command
execution with limited authentication. The rlogin, rsh, and rexec commands are all
very useful, but offer very limited authentication of the calling party.
Authentication is based on trust of the calling host name obtained from a name
server (we'll talk about these later), which can be faked. Today it should be
standard practice to disable the r commands completely and replace them with the
ssh suite of tools. The ssh tools use a much more reliable authentication method
and provide other services, such as encryption and compression, as well.

You can never rule out the possibility that your precautions might fail, regardless
of how careful you have been. You should therefore make sure you detect
intruders early. Checking the system log files is a good starting point, but the
intruder is probably clever enough to anticipate this action and will delete any
obvious traces he or she left. However, there are tools like tripwire, written by
Gene Kim and Gene Spafford, that allow you to check vital system files to see if
their contents or permissions have been changed. tripwire computes various strong
checksums over these files and stores them in a database. During subsequent runs,
the checksums are recomputed and compared to the stored ones to detect any
modifications.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking

http://www.oreilly.com/catalog/linag2/book/ch01.html (18 of 18) [2/20/2001 11:03:45 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 2
Issues of TCP/IP Networking
Contents:
Networking Interfaces
IP Addresses
Address Resolution
IP Routing
The Internet Control Message Protocol
Resolving Host Names

In this chapter we turn to the configuration decisions you'll need to make when
connecting your Linux machine to a TCP/IP network, including dealing with IP
addresses, hostnames, and routing issues. This chapter gives you the background
you need in order to understand what your setup requires, while the next chapters
cover the tools you will use.

To learn more about TCP/IP and the reasons behind it, refer to the three-volume
set Internetworking with TCP/IP, by Douglas R. Comer (Prentice Hall). For a
more detailed guide to managing a TCP/IP network, see TCP/IP Network
Administration by Craig Hunt (O'Reilly).

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (1 of 13) [2/20/2001 11:03:51 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

Networking Interfaces
To hide the diversity of equipment that may be used in a networking environment,
TCP/IP defines an abstract interface through which the hardware is accessed. This
interface offers a set of operations that is the same for all types of hardware and
basically deals with sending and receiving packets.

For each peripheral networking device, a corresponding interface has to be present
in the kernel. For example, Ethernet interfaces in Linux are called by such names
as eth0 and eth1; PPP (discussed in Chapter 8, The Point-to-Point Protocol)
interfaces are named ppp0 and ppp1; and FDDI interfaces are given names like
fddi0 and fddi1. These interface names are used for configuration purposes when
you want to specify a particular physical device in a configuration command, and
they have no meaning beyond this use.

Before being used by TCP/IP networking, an interface must be assigned an IP
address that serves as its identification when communicating with the rest of the
world. This address is different from the interface name mentioned previously; if
you compare an interface to a door, the address is like the nameplate pinned on it.

Other device parameters may be set, like the maximum size of datagrams that can
be processed by a particular piece of hardware, which is referred to as Maximum
Transfer Unit (MTU). Other attributes will be introduced later. Fortunately, most
attributes have sensible defaults.

IP Addresses
As mentioned in Chapter 1, Introduction to Networking, the IP networking
protocol understands addresses as 32-bit numbers. Each machine must be assigned
a number unique to the networking environment.[1] If you are running a local
network that does not have TCP/IP traffic with other networks, you may assign
these numbers according to your personal preferences. There are some IP address
ranges that have been reserved for such private networks. These ranges are listed
in Table 2.1. However, for sites on the Internet, numbers are assigned by a central
authority, the Network Information Center (NIC).[2]

[1] The version of the Internet Protocol most frequently used on the
Internet is Version 4. A lot of effort has been expended in designing a
replacement called IP Version 6. IPv6 uses a different addressing
scheme and larger addresses. Linux has an implementation of IPv6,
but it isn't ready to document it in this book yet. The Linux kernel
support for IPv6 is good, but a large number of network applications
need to be modified to support it as well. Stay tuned.

[2] Frequently, IP addresses will be assigned to you by the provider
from whom you buy your IP connectivity. However, you may also

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (2 of 13) [2/20/2001 11:03:51 AM]

apply to the NIC directly for an IP address for your network by
sending email to hostmaster@internic.net, or by using the form at
http://www.internic.net/.

IP addresses are split up into four eight-bit numbers called octets for readability.
For example, quark.physics.groucho.edu has an IP address of 0x954C0C04, which
is written as 149.76.12.4. This format is often referred to as dotted quad notation.

Another reason for this notation is that IP addresses are split into a network
number, which is contained in the leading octets, and a host number, which is the
remainder. When applying to the NIC for IP addresses, you are not assigned an
address for each single host you plan to use. Instead, you are given a network
number and allowed to assign all valid IP addresses within this range to hosts on
your network according to your preferences.

The size of the host part depends on the size of the network. To accommodate
different needs, several classes of networks, defining different places to split IP
addresses, have been defined. The class networks are described here:

Class A

Class A comprises networks 1.0.0.0 through 127.0.0.0. The network number
is contained in the first octet. This class provides for a 24-bit host part,
allowing roughly 1.6 million hosts per network.

Class B

Class B contains networks 128.0.0.0 through 191.255.0.0; the network
number is in the first two octets. This class allows for 16,320 nets with
65,024 hosts each.

Class C

Class C networks range from 192.0.0.0 through 223.255.255.0, with the
network number contained in the first three octets. This class allows for
nearly 2 million networks with up to 254 hosts.

Classes D, E, and F

Addresses falling into the range of 224.0.0.0 through 254.0.0.0 are either
experimental or are reserved for special purpose use and don't specify any
network. IP Multicast, which is a service that allows material to be
transmitted to many points on an internet at one time, has been assigned
addresses from within this range.

If we go back to the example in Chapter 1, we find that 149.76.12.4, the address of
quark, refers to host 12.4 on the class B network 149.76.0.0.

You may have noticed that not all possible values in the previous list were allowed
for each octet in the host part. This is because octets 0 and 255 are reserved for
special purposes. An address where all host part bits are 0 refers to the network,
and an address where all bits of the host part are 1 is called a broadcast address.

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (3 of 13) [2/20/2001 11:03:51 AM]

http://www.internic.net/

This refers to all hosts on the specified network simultaneously. Thus,
149.76.255.255 is not a valid host address, but refers to all hosts on network
149.76.0.0.

A number of network addresses are reserved for special purposes. 0.0.0.0 and
127.0.0.0 are two such addresses. The first is called the default route, and the latter
is the loopback address. The default route has to do with the way the IP routes
datagrams.

Network 127.0.0.0 is reserved for IP traffic local to your host. Usually, address
127.0.0.1 will be assigned to a special interface on your host, the loopback
interface, which acts like a closed circuit. Any IP packet handed to this interface
from TCP or UDP will be returned to them as if it had just arrived from some
network. This allows you to develop and test networking software without ever
using a "real" network. The loopback network also allows you to use networking
software on a standalone host. This may not be as uncommon as it sounds; for
instance, many UUCP sites don't have IP connectivity at all, but still want to run
the INN news system. For proper operation on Linux, INN requires the loopback
interface.

Some address ranges from each of the network classes have been set aside and
designated "reserved" or "private" address ranges. These addresses are reserved for
use by private networks and are not routed on the Internet. They are commonly
used by organizations building their own intranet, but even small networks often
find them useful. The reserved network addresses appear in Table 2.1.

Table 2.1: IP Address Ranges Reserved for
Private Use

Class Networks

A 10.0.0.0 through 10.255.255.255

B 172.16.0.0 through 172.31.0.0

C 192.168.0.0 through 192.168.255.0

Address Resolution
Now that you've seen how IP addresses are composed, you may be wondering how
they are used on an Ethernet or Token Ring network to address different hosts.
After all, these protocols have their own addresses to identify hosts that have
absolutely nothing in common with an IP address, don't they? Right.

A mechanism is needed to map IP addresses onto the addresses of the underlying
network. The mechanism used is the Address Resolution Protocol (ARP). In fact,
ARP is not confined to Ethernet or Token Ring, but is used on other types of
networks, such as the amateur radio AX.25 protocol. The idea underlying ARP is

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (4 of 13) [2/20/2001 11:03:51 AM]

exactly what most people do when they have to find Mr. X in a throng of 150
people: the person who wants him calls out loudly enough that everyone in the
room can hear them, expecting him to respond if he is there. When he responds,
we know which person he is.

When ARP wants to find the Ethernet address corresponding to a given IP address,
it uses an Ethernet feature called broadcasting, in which a datagram is addressed
to all stations on the network simultaneously. The broadcast datagram sent by
ARP contains a query for the IP address. Each receiving host compares this query
to its own IP address and if it matches, returns an ARP reply to the inquiring host.
The inquiring host can now extract the sender's Ethernet address from the reply.

You may wonder how a host can reach an Internet address that may be on a
different network halfway around the world. The answer to this question involves
routing, namely finding the physical location of a host in a network. We will
discuss this issue further in the next section.

Let's talk a little more about ARP. Once a host has discovered an Ethernet address,
it stores it in its ARP cache so that it doesn't have to query for it again the next
time it wants to send a datagram to the host in question. However, it is unwise to
keep this information forever; the remote host's Ethernet card may be replaced
because of technical problems, so the ARP entry becomes invalid. Therefore,
entries in the ARP cache are discarded after some time to force another query for
the IP address.

Sometimes it is also necessary to find the IP address associated with a given
Ethernet address. This happens when a diskless machine wants to boot from a
server on the network, which is a common situation on Local Area Networks. A
diskless client, however, has virtually no information about itself -- except for its
Ethernet address! So it broadcasts a message containing a request asking a boot
server to provide it with an IP address. There's another protocol for this situation
named Reverse Address Resolution Protocol (RARP). Along with the BOOTP
protocol, it serves to define a procedure for bootstrapping diskless clients over the
network.

IP Routing
We now take up the question of finding the host that datagrams go to based on the
IP address. Different parts of the address are handled in different ways; it is your
job to set up the files that indicate how to treat each part.

IP Networks

When you write a letter to someone, you usually put a complete address on the
envelope specifying the country, state, and Zip Code. After you put it in the
mailbox, the post office will deliver it to its destination: it will be sent to the

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (5 of 13) [2/20/2001 11:03:51 AM]

country indicated, where the national service will dispatch it to the proper state and
region. The advantage of this hierarchical scheme is obvious: wherever you post
the letter, the local postmaster knows roughly which direction to forward the letter,
but the postmaster doesn't care which way the letter will travel once it reaches its
country of destination.

IP networks are structured similarly. The whole Internet consists of a number of
proper networks, called autonomous systems. Each system performs routing
between its member hosts internally so that the task of delivering a datagram is
reduced to finding a path to the destination host's network. As soon as the
datagram is handed to any host on that particular network, further processing is
done exclusively by the network itself.

Subnetworks

This structure is reflected by splitting IP addresses into a host and network part, as
explained previously. By default, the destination network is derived from the
network part of the IP address. Thus, hosts with identical IP network numbers
should be found within the same network.[3]

[3] Autonomous systems are slightly more general. They may
comprise more than one IP network.

It makes sense to offer a similar scheme inside the network, too, since it may
consist of a collection of hundreds of smaller networks, with the smallest units
being physical networks like Ethernets. Therefore, IP allows you to subdivide an
IP network into several subnets.

A subnet takes responsibility for delivering datagrams to a certain range of IP
addresses. It is an extension of the concept of splitting bit fields, as in the A, B,
and C classes. However, the network part is now extended to include some bits
from the host part. The number of bits that are interpreted as the subnet number is
given by the so-called subnet mask, or netmask. This is a 32-bit number too, which
specifies the bit mask for the network part of the IP address.

The campus network of Groucho Marx University is an example of such a
network. It has a class B network number of 149.76.0.0, and its netmask is
therefore 255.255.0.0.

Internally, GMU's campus network consists of several smaller networks, such
various departments' LANs. So the range of IP addresses is broken up into 254
subnets, 149.76.1.0 through 149.76.254.0. For example, the department of
Theoretical Physics has been assigned 149.76.12.0. The campus backbone is a
network in its own right, and is given 149.76.1.0. These subnets share the same IP
network number, while the third octet is used to distinguish between them. They
will thus use a subnet mask of 255.255.255.0.

Figure 2.1 shows how 149.76.12.4, the address of quark, is interpreted differently

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (6 of 13) [2/20/2001 11:03:51 AM]

when the address is taken as an ordinary class B network and when used with
subnetting.

Figure 2.1: Subnetting a class B network

It is worth noting that subnetting (the technique of generating subnets) is only an
internal division of the network. Subnets are generated by the network owner (or
the administrators). Frequently, subnets are created to reflect existing boundaries,
be they physical (between two Ethernets), administrative (between two
departments), or geographical (between two locations), and authority over each
subnet is delegated to some contact person. However, this structure affects only
the network's internal behavior, and is completely invisible to the outside world.

Gateways

Subnetting is not only a benefit to the organization; it is frequently a natural
consequence of hardware boundaries. The viewpoint of a host on a given physical
network, such as an Ethernet, is a very limited one: it can only talk to the host of
the network it is on. All other hosts can be accessed only through special-purpose
machines called gateways. A gateway is a host that is connected to two or more
physical networks simultaneously and is configured to switch packets between
them.

Figure 2.2 shows part of the network topology at Groucho Marx University
(GMU). Hosts that are on two subnets at the same time are shown with both
addresses.

Figure 2.2: A part of the net topology at Groucho Marx University

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (7 of 13) [2/20/2001 11:03:51 AM]

Different physical networks have to belong to different IP networks for IP to be
able to recognize if a host is on a local network. For example, the network number
149.76.4.0 is reserved for hosts on the mathematics LAN. When sending a
datagram to quark, the network software on erdos immediately sees from the IP
address 149.76.12.4 that the destination host is on a different physical network,
and therefore can be reached only through a gateway (sophus by default).

sophus itself is connected to two distinct subnets: the Mathematics department and
the campus backbone. It accesses each through a different interface, eth0 and
fddi0, respectively. Now, what IP address do we assign it? Should we give it one
on subnet 149.76.1.0, or on 149.76.4.0?

The answer is: "both." sophus has been assigned the address 149.76.1.1 for use on
the 149.76.1.0 network and address 149.76.4.1 for use on the 149.76.4.0 network.

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (8 of 13) [2/20/2001 11:03:51 AM]

A gateway must be assigned one IP address for each network it belongs to. These
addresses -- along with the corresponding netmask -- are tied to the interface
through which the subnet is accessed. Thus, the interface and address mapping for
sophus would look like this:

Interface Address Netmask

eth0 149.76.4.1 255.255.255.0

fddi0 149.76.1.1 255.255.255.0

lo 127.0.0.1 255.0.0.0

The last entry describes the loopback interface lo, which we talked about earlier.

Generally, you can ignore the subtle difference between attaching an address to a
host or its interface. For hosts that are on one network only, like erdos, you would
generally refer to the host as having this-and-that IP address, although strictly
speaking, it's the Ethernet interface that has this IP address. The distinction is
really important only when you refer to a gateway.

The Routing Table

We now focus our attention on how IP chooses a gateway to use to deliver a
datagram to a remote network.

We have seen that erdos, when given a datagram for quark, checks the destination
address and finds that it is not on the local network. erdos therefore sends the
datagram to the default gateway sophus, which is now faced with the same task.
sophus recognizes that quark is not on any of the networks it is connected to
directly, so it has to find yet another gateway to forward it through. The correct
choice would be niels, the gateway to the Physics department. sophus thus needs
information to associate a destination network with a suitable gateway.

IP uses a table for this task that associates networks with the gateways by which
they may be reached. A catch-all entry (the default route) must generally be
supplied too; this is the gateway associated with network 0.0.0.0. All destination
addresses match this route, since none of the 32 bits are required to match, and
therefore packets to an unknown network are sent through the default route. On
sophus, the table might look like this:

Network Netmask Gateway Interface

149.76.1.0 255.255.255.0 - fddi0

149.76.2.0 255.255.255.0 149.76.1.2 fddi0

149.76.3.0 255.255.255.0 149.76.1.3 fddi0

149.76.4.0 255.255.255.0 - eth0

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (9 of 13) [2/20/2001 11:03:51 AM]

149.76.5.0 255.255.255.0 149.76.1.5 fddi0

...

0.0.0.0 0.0.0.0 149.76.1.2 fddi0

If you need to use a route to a network that sophus is directly connected to, you
don't need a gateway; the gateway column here contains a hyphen.

The process for identifying whether a particular destination address matches a
route is a mathematical operation. The process is quite simple, but it requires an
understanding of binary arithmetic and logic: A route matches a destination if the
network address logically ANDed with the netmask precisely equals the
destination address logically ANDed with the netmask.

Translation: a route matches if the number of bits of the network address specified
by the netmask (starting from the left-most bit, the high order bit of byte one of the
address) match that same number of bits in the destination address.

When the IP implementation is searching for the best route to a destination, it may
find a number of routing entries that match the target address. For example, we
know that the default route matches every destination, but datagrams destined for
locally attached networks will match their local route, too. How does IP know
which route to use? It is here that the netmask plays an important role. While both
routes match the destination, one of the routes has a larger netmask than the other.
We previously mentioned that the netmask was used to break up our address space
into smaller networks. The larger a netmask is, the more specifically a target
address is matched; when routing datagrams, we should always choose the route
that has the largest netmask. The default route has a netmask of zero bits, and in
the configuration presented above, the locally attached networks have a 24-bit
netmask. If a datagram matches a locally attached network, it will be routed to the
appropriate device in preference to following the default route because the local
network route matches with a greater number of bits. The only datagrams that will
be routed via the default route are those that don't match any other route.

You can build routing tables by a variety of means. For small LANs, it is usually
most efficient to construct them by hand and feed them to IP using the route
command at boot time (see Chapter 5, Configuring TCP/IP Networking). For
larger networks, they are built and adjusted at runtime by routing daemons; these
daemons run on central hosts of the network and exchange routing information to
compute "optimal" routes between the member networks.

Depending on the size of the network, you'll need to use different routing
protocols. For routing inside autonomous systems (such as the Groucho Marx
campus), the internal routing protocols are used. The most prominent one of these
is the Routing Information Protocol (RIP), which is implemented by the BSD
routed daemon. For routing between autonomous systems, external routing
protocols like External Gateway Protocol (EGP) or Border Gateway Protocol

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (10 of 13) [2/20/2001 11:03:51 AM]

(BGP) have to be used; these protocols, including RIP, have been implemented in
the University of Cornell's gated daemon.

Metric Values

We depend on dynamic routing to choose the best route to a destination host or
network based on the number of hops. Hops are the gateways a datagram has to
pass before reaching a host or network. The shorter a route is, the better RIP rates
it. Very long routes with 16 or more hops are regarded as unusable and are
discarded.

RIP manages routing information internal to your local network, but you have to
run gated on all hosts. At boot time, gated checks for all active network interfaces.
If there is more than one active interface (not counting the loopback interface), it
assumes the host is switching packets between several networks and will actively
exchange and broadcast routing information. Otherwise, it will only passively
receive RIP updates and update the local routing table.

When broadcasting information from the local routing table, gated computes the
length of the route from the so-called metric value associated with the routing
table entry. This metric value is set by the system administrator when configuring
the route, and should reflect the actual route cost.[4] Therefore, the metric of a
route to a subnet that the host is directly connected to should always be zero, while
a route going through two gateways should have a metric of two. You don't have
to bother with metrics if you don't use RIP or gated.

[4] The cost of a route can be thought of, in a simple case, as the
number of hops required to reach the destination. Proper calculation
of route costs can be a fine art in complex network designs.

The Internet Control Message Protocol
IP has a companion protocol that we haven't talked about yet. This is the Internet
Control Message Protocol (ICMP), used by the kernel networking code to
communicate error messages to other hosts. For instance, assume that you are on
erdos again and want to telnet to port 12345 on quark, but there's no process
listening on that port. When the first TCP packet for this port arrives on quark, the
networking layer will recognize this arrival and immediately return an ICMP
message to erdos stating "Port Unreachable."

The ICMP protocol provides several different messages, many of which deal with
error conditions. However, there is one very interesting message called the
Redirect message. It is generated by the routing module when it detects that
another host is using it as a gateway, even though a much shorter route exists. For
example, after booting, the routing table of sophus may be incomplete. It might
contain the routes to the Mathematics network, to the FDDI backbone, and the

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (11 of 13) [2/20/2001 11:03:51 AM]

default route pointing at the Groucho Computing Center's gateway (gcc1). Thus,
packets for quark would be sent to gcc1 rather than to niels, the gateway to the
Physics department. When receiving such a datagram, gcc1 will notice that this is
a poor choice of route and will forward the packet to niels, meanwhile returning an
ICMP Redirect message to sophus telling it of the superior route.

This seems to be a very clever way to avoid manually setting up any but the most
basic routes. However, be warned that relying on dynamic routing schemes, be it
RIP or ICMP Redirect messages, is not always a good idea. ICMP Redirect and
RIP offer you little or no choice in verifying that some routing information is
indeed authentic. This situation allows malicious good-for-nothings to disrupt your
entire network traffic, or even worse. Consequently, the Linux networking code
treats Network Redirect messages as if they were Host Redirects. This minimizes
the damage of an attack by restricting it to just one host, rather than the whole
network. On the flip side, it means that a little more traffic is generated in the
event of a legitimate condition, as each host causes the generation of an ICMP
Redirect message. It is generally considered bad practice to rely on ICMP redirects
for anything these days.

Resolving Host Names
As described previously, addressing in TCP/IP networking, at least for IP Version
4, revolves around 32-bit numbers. However, you will have a hard time
remembering more than a few of these numbers. Therefore, hosts are generally
known by "ordinary" names such as gauss or strange. It becomes the application's
duty to find the IP address corresponding to this name. This process is called
hostname resolution.

When an application needs to find the IP address of a given host, it relies on the
library functions gethostbyname(3) and gethostbyaddr(3). Traditionally, these and
a number of related procedures were grouped in a separate library called the
resolverlibrary; on Linux, these functions are part of the standard libc.
Colloquially, this collection of functions is therefore referred to as "the resolver."
Resolver name configuration is detailed in Chapter 6, Name Service and Resolver
Configuration.

On a small network like an Ethernet or even a cluster of Ethernets, it is not very
difficult to maintain tables mapping hostnames to addresses. This information is
usually kept in a file named /etc/hosts. When adding or removing hosts, or
reassigning addresses, all you have to do is update the hosts file on all hosts.
Obviously, this will become burdensome with networks that comprise more than a
handful of machines.

One solution to this problem is the Network Information System (NIS), developed
by Sun Microsystems, colloquially called YP or Yellow Pages. NIS stores the
hosts file (and other information) in a database on a master host from which clients

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (12 of 13) [2/20/2001 11:03:51 AM]

may retrieve it as needed. Still, this approach is suitable only for medium-sized
networks such as LANs, because it involves maintaining the entire hosts database
centrally and distributing it to all servers. NIS installation and configuration is
discussed in detail in Chapter 13, The Network Information System.

On the Internet, address information was initially stored in a single HOSTS.TXT
database, too. This file was maintained at the Network Information Center (NIC),
and had to be downloaded and installed by all participating sites. When the
network grew, several problems with this scheme arose. Besides the administrative
overhead involved in installing HOSTS.TXT regularly, the load on the servers that
distributed it became too high. Even more severe, all names had to be registered
with the NIC, which made sure that no name was issued twice.

This is why a new name resolution scheme was adopted in 1994: the Domain
Name System. DNS was designed by Paul Mockapetris and addresses both
problems simultaneously. We discuss the Domain Name System in detail in
Chapter 6.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch02.html (13 of 13) [2/20/2001 11:03:51 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 3
Configuring the Networking Hardware
Contents:
Kernel Configuration
A Tour of Linux Network Devices
Ethernet Installation
The PLIP Driver
The PPP and SLIP Drivers
Other Network Types

We've been talking quite a bit about network interfaces and general TCP/IP issues, but we haven't really
covered what happens when the "networking code" in the kernel accesses a piece of hardware. In order to
describe this accurately, we have to talk a little about the concept of interfaces and drivers.

First, of course, there's the hardware itself, for example an Ethernet, FDDI or Token Ring card: this is a slice of
Epoxy cluttered with lots of tiny chips with strange numbers on them, sitting in a slot of your PC. This is what
we generally call a physical device.

For you to use a network card, special functions have to be present in your Linux kernel that understand the
particular way this device is accessed. The software that implements these functions is called a device driver.
Linux has device drivers for many different types of network interface cards: ISA, PCI, MCA, EISA, Parallel
port, PCMCIA, and more recently, USB.

But what do we mean when we say a driver "handles" a device? Let's consider an Ethernet card. The driver has
to be able to communicate with the peripheral's on-card logic somehow: it has to send commands and data to
the card, while the card should deliver any data received to the driver.

In IBM-style personal computers, this communication takes place through a cluster of I/O addresses that are
mapped to registers on the card and/or through shared or direct memory transfers. All commands and data the
kernel sends to the card have to go to these addresses. I/O and memory addresses are generally described by
providing the starting or base address. Typical base addresses for ISA bus Ethernet cards are 0x280 or
0x300. PCI bus network cards generally have their I/O address automatically assigned.

Usually you don't have to worry about any hardware issues such as the base address because the kernel makes
an attempt at boot time to detect a card's location. This is called auto probing, which means that the kernel reads
several memory or I/O locations and compares the data it reads there with what it would expect to see if a
certain network card were installed at that location. However, there may be network cards it cannot detect
automatically; this is sometimes the case with cheap network cards that are not-quite clones of standard cards
from other manufacturers. Also, the kernel will normally attempt to detect only one network device when
booting. If you're using more than one card, you have to tell the kernel about the other cards explicitly.

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (1 of 12) [2/20/2001 11:03:59 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

Another parameter that you might have to tell the kernel about is the interrupt request line. Hardware
components usually interrupt the kernel when they need to be taken care of -- for example, when data has
arrived or a special condition occurs. In an ISA bus PC, interrupts may occur on one of 15 interrupt channels
numbered 0, 1, and 3 through 15. The interrupt number assigned to a hardware component is called its interrupt
request number (IRQ).[1]

[1] IRQs 2 and 9 are the same because the IBM PC design has two cascaded interrupt processors
with eight IRQs each; the secondary processor is connected to IRQ 2 of the primary one.

As described in Chapter 2, Issues of TCP/IP Networking, the kernel accesses a piece of network hardware
through a software construct called an interface. Interfaces offer an abstract set of functions that are the same
across all types of hardware, such as sending or receiving a datagram.

Interfaces are identified by means of names. In many other Unix-like operating systems, the network interface is
implemented as a special device file in the /dev/ directory. If you type the ls -las /dev/ command, you
will see what these device files look like. In the file permissions (second) column you will see that device files
begin with a letter rather than the hyphen seen for normal files. This character indicates the device type. The
most common device types are b, which indicates the device is a block device and handles whole blocks of data
with each read and write, and c, which indicates the device is a character device and handles data one character
at a time. Where you would normally see the file length in the ls output, you instead see two numbers, called the
major and minor device numbers. These numbers indicate the actual device with which the device file is
associated.

Each device driver registers a unique major number with the kernel. Each instance of that device registers a
unique minor number for that major device. The tty interfaces,/dev/tty*, are a character mode device indicated
by the "c", and each have a major number of 4, but /dev/tty1 has a minor number of 1, and /dev/tty2 has a minor
number of 2. Device files are very useful for many types of devices, but can be clumsy to use when trying to
find an unused device to open.

Linux interface names are defined internally in the kernel and are not device files in the /dev directory. Some
typical device names are listed later in "A Tour of Linux Network Devices"." The assignment of interfaces to
devices usually depends on the order in which devices are configured. For instance, the first Ethernet card
installed will become eth0, and the next will be eth1. SLIP interfaces are handled differently from others
because they are assigned dynamically. Whenever a SLIP connection is established, an interface is assigned to
the serial port.

Figure 3.1 illustrates the relationship between the hardware, device drivers, and interfaces.

Figure 3.1: The relationship between drivers, interfaces, and hardware

When booting, the kernel displays the devices it detects and the interfaces it installs. The following is an excerpt
from typical boot messages:

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (2 of 12) [2/20/2001 11:03:59 AM]

 .
 . This processor honors the WP bit even when in supervisor mode./
 Good.
Swansea University Computer Society NET3.035 for Linux 2.0
NET3: Unix domain sockets 0.13 for Linux NET3.035.
Swansea University Computer Society TCP/IP for NET3.034
IP Protocols: IGMP,ICMP, UDP, TCP
Swansea University Computer Society IPX 0.34 for NET3.035
IPX Portions Copyright (c) 1995 Caldera, Inc.
Serial driver version 4.13 with no serial options enabled
tty00 at 0x03f8 (irq = 4) is a 16550A
tty01 at 0x02f8 (irq = 3) is a 16550A
CSLIP: code copyright 1989 Regents of the University of California
PPP: Version 2.2.0 (dynamic channel allocation)
PPP Dynamic channel allocation code copyright 1995 Caldera, Inc.
PPP line discipline registered.
eth0: 3c509 at 0x300 tag 1, 10baseT port, address 00 a0 24 0e e4 e0,/
 IRQ 10.
3c509.c:1.12 6/4/97 becker@cesdis.gsfc.nasa.gov
Linux Version 2.0.32 (root@perf) (gcc Version 2.7.2.1)
#1 Tue Oct 21 15:30:44 EST 1997
 .
 .

This example shows that the kernel has been compiled with TCP/IP enabled, and it includes drivers for SLIP,
CSLIP, and PPP. The third line from the bottom says that a 3C509 Ethernet card was detected and installed as
interface eth0. If you have some other type of network card -- perhaps a D-Link pocket adaptor, for example --
the kernel will usually print a line starting with its device name -- dl0 in the D-Link example -- followed by the
type of card detected. If you have a network card installed but don't see any similar message, the kernel is
unable to detect your card properly. This situation will be discussed later in the section "Ethernet Autoprobing."

Kernel Configuration
Most Linux distributions are supplied with boot disks that work for all common types of PC hardware.
Generally, the supplied kernel is highly modularized and includes nearly every possible driver. This is a great
idea for boot disks, but is probably not what you'd want for long-term use. There isn't much point in having
drivers cluttering up your disk that you will never use. Therefore, you will generally roll your own kernel and
include only those drivers you actually need or want; that way you save a little disk space and reduce the time it
takes to compile a new kernel.

In any case, when running a Linux system, you should be familiar with building a kernel. Think of it as a right
of passage, an affirmation of the one thing that makes free software as powerful as it is -- you have the source. It
isn't a case of, "I have to compile a kernel," rather it's a case of, "I can compile a kernel." The basics of
compiling a Linux kernel are explained in Matt Welsh's book, Running Linux (O'Reilly). Therefore, we will
discuss only configuration options that affect networking in this section.

One important point that does bear repeating here is the way the kernel version numbering scheme works. Linux
kernels are numbered in the following format: 2.2.14. The first digit indicates the major version number. This
digit changes when there are large and significant changes to the kernel design. For example, the kernel
changed from major 1 to 2 when the kernel obtained support for machines other than Intel machines. The
second number is the minor version number. In many respects, this number is the most important number to
look at. The Linux development community has adopted a standard at which even minor version numbers
indicate production, or stable, kernels and odd minor version numbers indicate development, or unstable,
kernels. The stable kernels are what you should use on a machine that is important to you, as they have been
more thoroughly tested. The development kernels are what you should use if you are interested in
experimenting with the newest features of Linux, but they may have problems that haven't yet been found and
fixed. The third number is simply incremented for each release of a minor version.[2]

[2] People should use development kernels and report bugs if they are found; this is a very useful

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (3 of 12) [2/20/2001 11:03:59 AM]

thing to do if you have a machine you can use as a test machine. Instructions on how to report bugs
are detailed in /usr/src/linux/REPORTING-BUGS in the Linux kernel source.

When running make menuconfig, you are presented with a text-based menu that offers lists of configuration
questions, such as whether you want kernel math emulation. One of these queries asks you whether you want
TCP/IP networking support. You must answer this with y to get a kernel capable of networking.

Kernel Options in Linux 2.0 and Higher

After the general option section is complete, the configuration will go on to ask whether you want to include
support for various features, such as SCSI drivers or sound cards. The prompt will indicate what options are
available. You can press ? to obtain a description of what the option is actually offering. You'll always have the
option of yes (y) to statically include the component in the kernel, or no (n) to exclude the component
completely. You'll also see the module (m) option for those components that may be compiled as a run-time
loadable module. Modules need to be loaded before they can be used, and are useful for drivers of components
that you use infrequently.

The subsequent list of questions deal with networking support. The exact set of configuration options is in
constant flux due to ongoing development. A typical list of options offered by most kernel versions around 2.0
and 2.1 looks like this:

*
* Network device support
*
Network device support (CONFIG_NETDEVICES) [Y/n/?]

You must answer this question with y if you want to use any type of networking devices, whether they are
Ethernet, SLIP, PPP, or whatever. When you answer the question with y, support for Ethernet-type devices is
enabled automatically. You must answer additional questions if you want to enable support for other types of
network drivers:

PLIP (parallel port) support (CONFIG_PLIP) [N/y/m/?] y
PPP (point-to-point) support (CONFIG_PPP) [N/y/m/?] y
*
* CCP compressors for PPP are only built as modules.
*
SLIP (serial line) support (CONFIG_SLIP) [N/y/m/?] m
 CSLIP compressed headers (CONFIG_SLIP_COMPRESSED) [N/y/?] (NEW) y
 Keepalive and linefill (CONFIG_SLIP_SMART) [N/y/?] (NEW) y
 Six bit SLIP encapsulation (CONFIG_SLIP_MODE_SLIP6) [N/y/?] (NEW) y

These questions concern the various link layer protocols that Linux supports. Both PPP and SLIP allow you to
transport IP datagrams across serial lines. PPP is actually a suite of protocols used to send network traffic across
serial lines. Some of the protocols that form PPP manage the way that you authenticate yourself to the dial-in
server, while others manage the way certain protocols are carried across the link -- PPP is not limited to
carrying TCP/IP datagrams; it may also carry other protocol such as IPX.

If you answer y or m to SLIP support, you will be prompted to answer the three questions that appear below it.
The compressed header option provides support for CSLIP, a technique that compresses TCP/IP headers to as
little as three bytes. Note that this kernel option does not turn on CSLIP automatically; it merely provides the
necessary kernel functions for it. The Keepalive and linefill option causes the SLIP support to
periodically generate activity on the SLIP line to avoid it being dropped by an inactivity timer. The Six bit
SLIP encapsulation option allows you to run SLIP over lines and circuits that are not capable of
transmitting the whole 8-bit data set cleanly. This is similar to the uuencoding or binhex technique used to send
binary files by electronic mail.

PLIP provides a way to send IP datagrams across a parallel port connection. It is mostly used to communicate
with PCs running DOS. On typical PC hardware, PLIP can be faster than PPP or SLIP, but it requires much
more CPU overhead to perform, so while the transfer rate might be good, other tasks on the machine may be
slow.

The following questions address network cards from various vendors. As more drivers are being developed, you

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (4 of 12) [2/20/2001 11:03:59 AM]

are likely to see questions added to this section. If you want to build a kernel you can use on a number of
different machines, or if your machine has more than one type of network card installed, you can enable more
than one driver:

 .
 .
Ethernet (10 or 100Mbit) (CONFIG_NET_ETHERNET) [Y/n/?]
3COM cards (CONFIG_NET_VENDOR_3COM) [Y/n/?]
3c501 support (CONFIG_EL1) [N/y/m/?]
3c503 support (CONFIG_EL2) [N/y/m/?]
3c509/3c579 support (CONFIG_EL3) [Y/m/n/?]
3c590/3c900 series (592/595/597/900/905) "Vortex/Boomerang" support/
 (CONFIG_VORTEX) [N/y/m/?]
AMD LANCE and PCnet (AT1500 and NE2100) support (CONFIG_LANCE) [N/y/?]
AMD PCInet32 (VLB and PCI) support (CONFIG_LANCE32) [N/y/?] (NEW)
Western Digital/SMC cards (CONFIG_NET_VENDOR_SMC) [N/y/?]
WD80*3 support (CONFIG_WD80x3) [N/y/m/?] (NEW)
SMC Ultra support (CONFIG_ULTRA) [N/y/m/?] (NEW)
SMC Ultra32 support (CONFIG_ULTRA32) [N/y/m/?] (NEW)
SMC 9194 support (CONFIG_SMC9194) [N/y/m/?] (NEW)
Other ISA cards (CONFIG_NET_ISA) [N/y/?]
Cabletron E21xx support (CONFIG_E2100) [N/y/m/?] (NEW)
DEPCA, DE10x, DE200, DE201, DE202, DE422 support (CONFIG_DEPCA) [N/y/m/?]/
 (NEW)
EtherWORKS 3 (DE203, DE204, DE205) support (CONFIG_EWRK3) [N/y/m/?] (NEW)
EtherExpress 16 support (CONFIG_EEXPRESS) [N/y/m/?] (NEW)
HP PCLAN+ (27247B and 27252A) support (CONFIG_HPLAN_PLUS) [N/y/m/?] (NEW)
HP PCLAN (27245 and other 27xxx series) support (CONFIG_HPLAN) [N/y/m/?]/
 (NEW)
HP 10/100VG PCLAN (ISA, EISA, PCI) support (CONFIG_HP100) [N/y/m/?] (NEW)
NE2000/NE1000 support (CONFIG_NE2000) [N/y/m/?] (NEW)
SK_G16 support (CONFIG_SK_G16) [N/y/?] (NEW)
EISA, VLB, PCI and on card controllers (CONFIG_NET_EISA) [N/y/?]
Apricot Xen-II on card ethernet (CONFIG_APRICOT) [N/y/m/?] (NEW)
Intel EtherExpress/Pro 100B support (CONFIG_EEXPRESS_PRO100B) [N/y/m/?]/
 (NEW)
DE425, DE434, DE435, DE450, DE500 support (CONFIG_DE4X5) [N/y/m/?] (NEW)
DECchip Tulip (dc21x4x) PCI support (CONFIG_DEC_ELCP) [N/y/m/?] (NEW)
Digi Intl. RightSwitch SE-X support (CONFIG_DGRS) [N/y/m/?] (NEW)
Pocket and portable adaptors (CONFIG_NET_POCKET) [N/y/?]
AT-LAN-TEC/RealTek pocket adaptor support (CONFIG_ATP) [N/y/?] (NEW)
D-Link DE600 pocket adaptor support (CONFIG_DE600) [N/y/m/?] (NEW)
D-Link DE620 pocket adaptor support (CONFIG_DE620) [N/y/m/?] (NEW)
Token Ring driver support (CONFIG_TR) [N/y/?]
IBM Tropic chipset based adaptor support (CONFIG_IBMTR) [N/y/m/?] (NEW)
FDDI driver support (CONFIG_FDDI) [N/y/?]
Digital DEFEA and DEFPA adapter support (CONFIG_DEFXX) [N/y/?] (NEW)
ARCnet support (CONFIG_ARCNET) [N/y/m/?]
 Enable arc0e (ARCnet "Ether-Encap" packet format) (CONFIG_ARCNET_ETH)/
 [N/y/?] (NEW)
 Enable arc0s (ARCnet RFC1051 packet format) (CONFIG_ARCNET_1051)/
 [N/y/?] (NEW)
 .
 .

Finally, in the file system section, the configuration script will ask you whether you want support for NFS, the
networking file system. NFS lets you export file systems to several hosts, which makes the files appear as if
they were on an ordinary hard disk attached to the host:

NFS file system support (CONFIG_NFS_FS) [y]

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (5 of 12) [2/20/2001 11:03:59 AM]

We describe NFS in detail in Chapter 14, The Network File System.

Kernel Networking Options in Linux 2.0.0 and Higher

Linux 2.0.0 marked a significant change in Linux Networking. Many features were made a standard part of the
Kernel, such as support for IPX. A number of options were also added and made configurable. Many of these
options are used only in very special circumstances and we won't cover them in detail. The Networking
HOWTO probably addresses what is not covered here. We'll list a number of useful options in this section, and
explain when you'd want to use each one:

Basics

To use TCP/IP networking, you must answer this question with y. If you answer with n, however, you
will still be able to compile the kernel with IPX support:

Networking options --->
 [*] TCP/IP networking

Gateways

You have to enable this option if your system acts as a gateway between two networks or between a LAN
and a SLIP link, etc. It doesn't hurt to enable this by default, but you may want to disable it to configure a
host as a so-called firewall. Firewalls are hosts that are connected to two or more networks, but don't
route traffic between them. They're commonly used to provide users with Internet access at minimal risk
to the internal network. Users are allowed to log in to the firewall and use Internet services, but the
company's machines are protected from outside attacks because incoming connections can't cross the
firewall (firewalls are covered in detail in Chapter 9, TCP/IP Firewall):

 [*] IP: forwarding/gatewaying

Virtual hosting

These options together allow to you configure more than one IP address onto an interface. This is
sometimes useful if you want to do "virtual hosting," through which a single machine can be configured
to look and act as though it were actually many separate machines, each with its own network
personality. We'll talk more about IP aliasing in a moment:

 [*] Network aliasing
 <*> IP: aliasing support

Accounting

This option enables you to collect data on the volume of IP traffic leaving and arriving at your machine
(we cover this is detail in Chapter 10, IP Accounting):

 [*] IP: accounting

PC hug

This option works around an incompatibility with some versions of PC/TCP, a commercial TCP/IP
implementation for DOS-based PCs. If you enable this option, you will still be able to communicate with
normal Unix machines, but performance may be hurt over slow links:

 --- (it is safe to leave these untouched)
 [*] IP: PC/TCP compatibility mode

Diskless booting

This function enables Reverse Address Resolution Protocol (RARP). RARP is used by diskless clients
and X terminals to request their IP address when booting. You should enable RARP if you plan to serve
this sort of client. A small program called rarp, included with the standard networking utilities, is used to
add entries to the kernel RARP table:

 <*> IP: Reverse ARP

MTU

When sending data over TCP, the kernel has to break up the stream into blocks of data to pass to IP. The
size of the block is called the Maximum Transmission Unit, or MTU. For hosts that can be reached over a
local network such as an Ethernet, it is typical to use an MTU as large as the maximum length of an

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (6 of 12) [2/20/2001 11:03:59 AM]

Ethernet packet -- 1,500 bytes. When routing IP over a Wide Area Network like the Internet, it is
preferable to use smaller-sized datagrams to ensure that they don't need to be further broken down along
the route through a process called IP fragmentation.[3] The kernel is able to automatically determine the
smallest MTU of an IP route and to automatically configure a TCP connection to use it. This behavior is
on by default. If you answer y to this option this feature will be disabled.

[3] Remember, the IP protocol can be carried over many different types of network, and not
all network types will support packet sizes as large as Ethernet.

If you do want to use smaller packet sizes for data sent to specific hosts (because, for example, the data
goes through a SLIP link), you can do so using the mss option of the route command, which is briefly
discussed at the end of this chapter:

 [] IP: Disable Path MTU Discovery (normally enabled)

Security feature

The IP protocol supports a feature called Source Routing. Source routing allows you to specify the route a
datagram should follow by coding the route into the datagram itself. This was once probably useful
before routing protocols such as RIP and OSPF became commonplace. But today it's considered a
security threat because it can provide clever attackers with a way of circumventing certain types of
firewall protection by bypassing the routing table of a router. You would normally want to filter out
source routed datagrams, so this option is normally enabled:

 [*] IP: Drop source routed frames

Novell support

This option enables support for IPX, the transport protocol Novell Networking uses. Linux will function
quite happily as an IPX router and this support is useful in environments where you have Novell
fileservers. The NCP filesystem also requires IPX support enabled in your kernel; if you wish to attach to
and mount your Novell filesystems you must have this option enabled (we'll dicuss IPX and the NCP
filesystem in Chapter 15, IPX and the NCP Filesystem):

 <*> The IPX protocol

Amateur radio

These three options select support for the three Amateur Radio protocols supported by Linux: AX.25,
NetRom and Rose (we don't describe them in this book, but they are covered in detail in the AX25
HOWTO):

 <*> Amateur Radio AX.25 Level 2
 <*> Amateur Radio NET/ROM
 <*> Amateur Radio X.25 PLP (Rose)

Linux supports another driver type: the dummy driver. The following question appears toward the start of
the device-driver section:

 <*> Dummy net driver support

The dummy driver doesn't really do much, but it is quite useful on standalone or PPP/SLIP hosts. It is
basically a masqueraded loopback interface. On hosts that offer PPP/SLIP but have no other network
interface, you want to have an interface that bears your IP address all the time. This is discussed in a little
more detail in "The Dummy Interface"" in Chapter 5, Configuring TCP/IP Networking. Note that today
you can achieve the same result by using the IP alias feature and configuring your IP address as an alias
on the loopback interface.

A Tour of Linux Network Devices
The Linux kernel supports a number of hardware drivers for various types of equipment. This section gives a
short overview of the driver families available and the interface names they use.

There is a number of standard names for interfaces in Linux, which are listed here. Most drivers support more
than one interface, in which case the interfaces are numbered, as in eth0 and eth1:

lo

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (7 of 12) [2/20/2001 11:03:59 AM]

This is the local loopback interface. It is used for testing purposes, as well as a couple of network
applications. It works like a closed circuit in that any datagram written to it will immediately be returned
to the host's networking layer. There's always one loopback device present in the kernel, and there's little
sense in having more.

eth0, eth1, ...

These are the Ethernet card interfaces. They are used for most Ethernet cards, including many of the
parallel port Ethernet cards.

tr0, tr1, ...

These are the Token Ring card interfaces. They are used for most Token Ring cards, including non-IBM
manufactured cards.

sl0, sl1, ...

These are the SLIP interfaces. SLIP interfaces are associated with serial lines in the order in which they
are allocated for SLIP.

ppp0, ppp1, ...

These are the PPP interfaces. Just like SLIP interfaces, a PPP interface is associated with a serial line
once it is converted to PPP mode.

plip0, plip1, ...

These are the PLIP interfaces. PLIP transports IP datagrams over parallel lines. The interfaces are
allocated by the PLIP driver at system boot time and are mapped onto parallel ports. In the 2.0.x kernels
there is a direct relationship between the device name and the I/O port of the parallel port, but in later
kernels the device names are allocated sequentially, just as for SLIP and PPP devices.

ax0, ax1, ...

These are the AX.25 interfaces. AX.25 is the primary protocol used by amateur radio operators. AX.25
interfaces are allocated and mapped in a similar fashion to SLIP devices.

There are many other types of interfaces available for other network drivers. We've listed only the most
common ones.

During the next few sections, we will discuss the details of using the drivers described previously. The
Networking HOWTO provides details on how to configure most of the others, and the AX25 HOWTO explains
how to configure the Amateur Radio network devices.

Ethernet Installation
The current Linux network code supports a large variety of Ethernet cards. Most drivers were written by Donald
Becker, who authored a family of drivers for cards based on the National Semiconductor 8390 chip; these have
become known as the Becker Series Drivers. Many other developers have contributed drivers, and today there
are few common Ethernet cards that aren't supported by Linux. The list of supported Ethernet cards is growing
all the time, so if your card isn't supported yet, chances are it will be soon.

Sometime earlier in Linux's history we would have attempted to list all supported Ethernet cards, but that would
now take too much time and space. Fortunately, Paul Gortmaker maintains the Ethernet HOWTO, which lists
each of the supported cards and provides useful information about getting each of them running under Linux.[4]
It is posted monthly to the comp.os.linux.answers newsgroup, and is also available on any of the Linux
Documentation Project mirror sites.

[4] Paul can be reached at gpg109@rsphy1.anu.edu.au.

Even if you are confident you know how to install a particular type of Ethernet card in your machine, it is often
worthwhile taking a look at what the Ethernet HOWTO has to say about it. You will find information that
extends beyond simple configuration issues. For example, it could save you a lot of headaches to know the
behavior of some DMA-based Ethernet cards that use the same DMA channel as the Adaptec 1542 SCSI
controller by default. Unless you move one of them to a different DMA channel, you will wind up with the
Ethernet card writing packet data to arbitrary locations on your hard disk.

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (8 of 12) [2/20/2001 11:03:59 AM]

To use any of the supported Ethernet cards with Linux, you may use a precompiled kernel from one of the
major Linux distributions. These generally have modules available for all of the supported drivers, and the
installation process usually allows you to select which drivers you want loaded. In the long term, however, it's
better to build your own kernel and compile only those drivers you actually need; this saves disk space and
memory.

Ethernet Autoprobing

Many of the Linux Ethernet drivers are smart enough to know how to search for the location of your Ethernet
card. This saves you having to tell the kernel where it is manually. The Ethernet HOWTO lists whether a
particular driver uses autoprobing and in which order it searches the I/O address for the card.

There are three limitations to the autoprobing code. First, it may not recognize all cards properly. This is
especially true for some of the cheaper clones of common cards. Second, the kernel won't autoprobe for more
than one card unless specifically instructed. This was a conscious design decision, as it is assumed you will
want to have control over which card is assigned to which interface. The best way to do this reliably is to
manually configure the Ethernet cards in your machine. Third, the driver may not probe at the address that your
card is configured for. Generally speaking, the drivers will autoprobe at the addresses that the particular device
is capable of being configured for, but sometimes certain addresses are ignored to avoid hardware conflicts with
other types of cards that commonly use that same address.

PCI network cards should be reliably detected. But if you are using more than one card, or if the autoprobe
should fail to detect your card, you have a way to explicitly tell the kernel about the card's base address and
name.

At boot time you can supply arguments and information to the kernel that any of the kernel components may
read. This mechanism allows you to pass information to the kernel that Ethernet drivers can use to locate your
Ethernet hardware without making the driver probe.

If you use lilo to boot your system, you can pass parameters to the kernel by specifying them through the
append option in the lilo.conf file. To inform the kernel about an Ethernet device, you can pass the following
parameters:

ether=irq,base_addr,[param1,][param2,]name

The first four parameters are numeric, while the last is the device name. The irq, base_addr, and name
parameters are required, but the two param parameters are optional. Any of the numeric values may be set to
zero, which causes the kernel to determine the value by probing.

The first parameter sets the IRQ assigned to the device. By default, the kernel will try to autodetect the device's
IRQ channel. The 3c503 driver, for example, has a special feature that selects a free IRQ from the list 5, 9, 3, 4
and configures the card to use this line. The base_addr parameter gives the I/O base address of the card; a value
of zero tells the kernel to probe the addresses listed above.

Different drivers use the next two parameters differently. For shared-memory cards, such as the WD80x3, they
specify starting and ending addresses of the shared memory area. Other cards commonly use param1 to set the
level at which debugging information is displayed. Values of 1 through 7 denote increasing levels of verbosity,
while 8 turns them off altogether; 0 denotes the default. The 3c503 driver uses param2 to choose between the
internal transceiver (default) or an external transceiver (a value of 1). The former uses the card's BNC
connector; the latter uses its AUI port. The param arguments need not be included at all if you don't have
anything special to configure.

The first non-numeric argument is interpreted by the kernel as the device name. You must specify a device
name for each Ethernet card you describe.

If you have two Ethernet cards, you can have Linux autodetect one card and pass the second card's parameters
with lilo, but you'll probably want to manually configure both cards. If you decide to have the kernel probe for
one and manually configure the second, you must make sure the kernel doesn't accidentally find the second card
first, or else the other one won't be registered at all. You do this by passing lilo a reserve option, which
explicitly tells the kernel to avoid probing the I/O space taken up by the second card. For instance, to make
Linux install a second Ethernet card at 0x300 as eth1, you would pass the following parameters to the kernel:

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (9 of 12) [2/20/2001 11:03:59 AM]

reserve=0x300,32 ether=0,0x300,eth1

The reserve option makes sure no driver accesses the second card's I/O space when probing for some device.
You may also use the kernel parameters to override autoprobing for eth0:

reserve=0x340,32 ether=0,0x340,eth0

You can turn off autoprobing altogether. You might do this, for example, to stop a kernel probing for an
Ethernet card you might have temporarily removed. Disabling autoprobing is as simple as specifying a
base_addr argument of -1:

ether=0,-1,eth0

To supply these parameters to the kernel at boot time, you enter the parameters at the lilo "boot:" prompt. To
have lilo give you the "boot:" at the prompt, you must press any one of the Control, Alt or Shift keys while lilo
is booting. If you press the Tab key at the prompt, you will be presented with a list of kernels that you may boot.
To boot a kernel with parameters supplied, enter the name of the kernel you wish to boot, followed by a space,
then followed by the parameters you wish to supply. When you press the Enter key, lilo will load that kernel
and boot it with the parameters you've supplied.

To make this change occur automatically on each reboot, enter the parameters into the /etc/lilo.conf using the
append= keyword. An example might look like this:

boot=/dev/hda
root=/dev/hda2
install=/boot/boot.b
map=/boot/map
vga=normal
delay=20
append="ether=10,300,eth0"

image=/boot/vmlinuz-2.2.14
label=2.2.14
read-only

After you've edited lilo.conf, you must rerun the lilo command to activate the change.

The PLIP Driver
Parallel Line IP (PLIP) is a cheap way to network when you want to connect only two machines. It uses a
parallel port and a special cable, achieving speeds of 10 kilobytes per second to 20 kilobytes per second.

PLIP was originally developed by Crynwr, Inc. Its design at the time was rather ingenious (or, if you prefer, a
hack), because the original parallel ports on IBM PCs were designed to spend their time being unidirectional
printer ports; the eight data lines could be used only to send data from the PC to the peripheral device, but not
the other way around.[5] The Cyrnwr PLIP design worked around this limitation by using the port's five status
lines for input, which limited it to transferring all data as nibbles (half bytes) only, but allowed for bidirectional
transfer. This mode of operation was called PLIP "mode 0." Today, the parallel ports supplied on PC hardware
cater to full bidirectional 8-bit data transfer, and PLIP has been extended to accomodate this with the addition of
PLIP "mode 1."

[5] Fight to clear the hacking name! Always use "cracker" when you are referring to people who
are consciously trying to defeat the security of a system, and "hacker" when you are referring to
people who have found a clever way of solving a problem. Hackers can be crackers, but the two
should never be confused. Consult the New Hackers Dictionary (popularly found as the Jargon file)
for a more complete understanding of the terms.

Linux kernels up to and including Version 2.0 support PLIP mode 0 only, and an enhanced parallel port driver
exists as a patch against the 2.0 kernel and as a standard part of the 2.2 kernel code to provide PLIP mode 1
operation, too. [6] Unlike earlier versions of the PLIP code, the driver now attempts to be compatible with the
PLIP implementations from Crynwr, as well as the PLIP driver in NCSA telnet.[7] To connect two machines
using PLIP, you need a special cable sold at some shops as a Null Printer or Turbo Laplink cable. You can,

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (10 of 12) [2/20/2001 11:03:59 AM]

however, make one yourself fairly easily; Appendix B, Useful Cable Configurations shows you how.

[6] The enhanced parallel port adaptor patch for 2.0 kernel is available from
http://www.cyberelk.demon.co.uk/parport.html.

[7] NCSA telnet is a popular program for DOS that runs TCP/IP over Ethernet or PLIP, and
supports telnet and FTP.

The PLIP driver for Linux is the work of almost countless persons. It is currently maintained by Niibe
Yutaka.[8] If compiled into the kernel, it sets up a network interface for each of the possible printer ports, with
plip0 corresponding to parallel port lp0, plip1 corresponding to lp1, etc. The mapping of interfaces to ports
differs in the 2.0 kernels and the 2.2 kernels. In the 2.0 kernels, the mapping was hardwired in the
drivers/net/Spacd.c file in the kernel source. The default mappings in this file are:

[8] Niibe can be reached at gniibe@mri.co.jp.

Interface I/O Port IRQ

plip0 0x3BC 7

plip1 0x378 7

plip2 0x278 5

If you configured your printer port in a different way, you must change these values in drivers/net/Space.c in
the Linux kernel source and build a new kernel.

In the 2.2 kernels, the PLIP driver uses the "parport" parallel port sharing driver developed by Philip
Blundell.[9] The new driver allocates the PLIP network device names serially, just as for the Ethernet or PPP
drivers, so the first PLIP device created is plip0, the second is plip1, and so on. The physical parallel port
hardware is also allocated serially. By default, the parallel port driver will attempt to detect your parallel port
hardware with an autoprobe routine, recording the physical device information in the order found. It is better
practice to explicitly tell the kernel the physical I/O parameters. You can do this by supplying arguments to the
parport_pc.o module as you load it, or if you have compiled the driver into your kernel, using lilo to supply
arguments to the kernel at boot time. The IRQ setting of any device may be changed later by writing the new
IRQ value to the related /proc/parport/*/irq file.

[9] You can reach Philip at Philip.Blundell@pobox.com.

Configuring the physical I/O parameters in a 2.2 kernel when loading the module is straightforward. For
instance, to tell the driver that you have two PC-style parallel ports at I/O addresses 0x278 and 0c378 and
IRQs 5 and 7, respectively, you would load the module with the following arguments:

modprobe parport_pc io=0x278,0x378 irq=5,7

The corresponding arguments to pass to the kernel for a compiled-in driver are:

parport=0x278,5 parport=0x378,7

You would use the lilo append keyword to have these arguments passed to the kernel automatically at boot
time.

When the PLIP driver is initialized, either at boot time if it is built-in, or when the plip.o module is loaded, each
of the parallel ports will have a plip network device associated with it. plip0 will be assigned to the first parallel
port device, plip1 the second, and so on. You can manually override this automatic assignment using another set
of kernel arguments. For instance, to assign parport0 to network device plip0, and parport1 to network
device plip1, you would use kernel arguments of:

plip=parport1 plip=parport0

This mapping does not mean, however, that you cannot use these parallel ports for printing or other purposes.
The physical parallel port devices are used by the PLIP driver only when the corresponding interface is
configured up.

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (11 of 12) [2/20/2001 11:03:59 AM]

http://www.cyberelk.demon.co.uk/parport.html

The PPP and SLIP Drivers
Point-to-Point Protocol (PPP) and Serial Line IP (SLIP) are widely used protocols for carrying IP packets over a
serial link. A number of institutions offer dialup PPP and SLIP access to machines that are on the Internet, thus
providing IP connectivity to private persons (something that's otherwise hardly affordable).

No hardware modifications are necessary to run PPP or SLIP; you can use any serial port. Since serial port
configuration is not specific to TCP/IP networking, we have devoted a separate chapter to this. Please refer to
Chapter 4, Configuring the Serial Hardware, for more information. We cover PPP in detail in Chapter 8, The
Point-to-Point Protocol, and SLIP in Chapter 7, Serial Line IP.

Other Network Types
Most other network types are configured similarly to Ethernet. The arguments passed to the loadable modules
will be different and some drivers may not support more than one card, but just about everything else is the
same. Documentation for these cards is generally available in the /usr/src/linux/Documentation/networking/
directory of the Linux kernel source.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware

http://www.oreilly.com/catalog/linag2/book/ch03.html (12 of 12) [2/20/2001 11:03:59 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 4
Configuring the Serial Hardware
Contents:
Communications Software for Modem Links
Introduction to Serial Devices
Accessing Serial Devices
Serial Hardware
Using the Configuration Utilities
Serial Devices and the login: Prompt

The Internet is growing at an incredible rate. Much of this growth is attributed to Internet users who can't
afford high-speed permanent network connections and who use protocols such as SLIP, PPP, or UUCP to dial
in to a network provider to retrieve their daily dose of email and news.

This chapter is intended to help all people who rely on modems to maintain their link to the outside world. We
won't cover the mechanics of how to configure your modem (the manual that came with it will tell you more
about it than we can), but we will cover most of the Linux-specific aspects of managing devices that use serial
ports. Topics include serial communications software, creating the serial device files, serial hardware, and
configuring serial devices using the setserial and stty commands. Many other related topics are covered in the
Serial HOWTO by David Lawyer.[1]

[1] David can be reached at bf347@lafn.org.

Communications Software for Modem Links
There are a number of communications packages available for Linux. Many of these packages are terminal
programs, which allow a user to dial in to another computer as if she were sitting in front of a simple terminal.
The traditional terminal program for Unix-like environments is kermit. It is, however, fairly ancient now, and
would probably be considered difficult to use. There are more comfortable programs available that support
features, like telephone-dialing dictionaries, script languages to automate dialing and logging in to remote
computer systems, and a variety of file exchange protocols. One of these programs is minicom, which was
modeled after some of the most popular DOS terminal programs. X11 users are accommodated, too. seyon is a
fully featured X11-based communications program.

Terminal programs aren't the only type of serial communication programs available. Other programs let you
connect to a host and download news and email in a single bundle, to read and reply later at your leisure. This
can save a lot of time, and is especially useful if you are unfortunate enough to live in an area where your local
calls are time-charged. All of the reading and replying time can be spent offline, and when you are ready, you

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (1 of 10) [2/20/2001 11:04:03 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

can redial and upload your responses in a single bundle. This all consumes a bit more hard disk because all of
the messages have to be stored to your disk before you can read them, but this could be a reasonable trade-off
at today's hard drive prices.

UUCP epitomizes this communication software style. It is a program suite that copies files from one host to
another and executes programs on a remote host. It is frequently used to transport mail or news in private
networks. Ian Taylor's UUCP package, which also runs under Linux, is described in detail in Chapter 16,
Managing Taylor UUCP. Other noninteractive communications software is used throughout networks such as
Fidonet. Fidonet application ports like ifmail are also available, although we expect that not many people still
use them.

PPP and SLIP are in between, allowing both interactive and noninteractive use. Many people use PPP or SLIP
to dial in to their campus network or other Internet Service Provider to run FTP and read web pages. PPP and
SLIP are also, however, commonly used over permanent or semipermanent connections for LAN-to-LAN
coupling, although this is really only interesting with ISDN or other high-speed network connections.

Introduction to Serial Devices
The Unix kernel provides devices for accessing serial hardware, typically called tty devices (pronounced as it
is spelled: T-T-Y). This is an abbreviation for Teletype device, which used to be one of the major
manufacturers of terminal devices in the early days of Unix. The term is used now for any character-based
data terminal. Throughout this chapter, we use the term to refer exclusively to the Linux device files rather
than the physical terminal.

Linux provides three classes of tty devices: serial devices, virtual terminals (all of which you can access in
turn by pressing Alt-F1 through Alt-Fnn on the local console), and pseudo-terminals (similar to a two-way
pipe, used by applications such as X11). The former were called tty devices because the original
character-based terminals were connected to the Unix machine by a serial cable or telephone line and modem.
The latter two were named after the tty device because they were created to behave in a similar fashion from
the programmer's perspective.

SLIP and PPP are most commonly implemented in the kernel. The kernel doesn't really treat the tty device as a
network device that you can manipulate like an Ethernet device, using commands such as ifconfig. However,
it does treat tty devices as places where network devices can be bound. To do this, the kernel changes what is
called the "line discipline" of the tty device. Both SLIP and PPP are line disciplines that may be enabled on tty
devices. The general idea is that the serial driver handles data given to it differently, depending on the line
discipline it is configured for. In its default line discipline, the driver simply transmits each character it is
given in turn. When the SLIP or PPP line discipline is selected, the driver instead reads a block of data, wraps
a special header around it that allows the remote end to identify that block of data in a stream, and transmits
the new data block. It isn't too important to understand this yet; we'll cover both SLIP and PPP in later
chapters, and it all happens automatically for you anyway.

Accessing Serial Devices
Like all devices in a Unix system, serial ports are accessed through device special files, located in the /dev
directory. There are two varieties of device files related to serial drivers, and there is one device file of each
type for each port. The device will behave slightly differently, depending on which of its device files we open.
We'll cover the differences because it will help you understand some of the configurations and advice that you
might see relating to serial devices, but in practice you need to use only one of these. At some point in the
future, one of them may even disappear completely.

The most important of the two classes of serial device has a major number of 4, and its device special files are
named ttyS0, ttyS1, etc. The second variety has a major number of 5, and was designed for use when dialing
out (calling out) through a port; its device special files are called cua0, cua1, etc. In the Unix world, counting
generally starts at zero, while laypeople tend to start at one. This creates a small amount of confusion for
people because COM1: is represented by /dev/ttyS0, COM2: by /dev/ttyS1, etc. Anyone familiar with IBM
PC-style hardware knows that COM3: and greater were never really standardized anyway.

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (2 of 10) [2/20/2001 11:04:03 AM]

The cua, or "callout," devices were created to solve the problem of avoiding conflicts on serial devices for
modems that have to support both incoming and outgoing connections. Unfortunately, they've created their
own problems and are now likely to be discontinued. Let's briefly look at the problem.

Linux, like Unix, allows a device, or any other file, to be opened by more than one process simultaneously.
Unfortunately, this is rarely useful with tty devices, as the two processes will almost certainly interfere with
each other. Luckily, a mechanism was devised to allow a process to check if a tty device had already been
opened by another device before opening it. The mechanism uses what are called lock files. The idea was that
when a process wanted to open a tty device, it would check for the existence of a file in a special location,
named similarly to the device it intends to open. If the file does not exist, the process creates it and opens the
tty device. If the file does exist, the process assumes another process already has the tty device open and takes
appropriate action. One last clever trick to make the lock file management system work was writing the
process ID (pid) of the process that had created the lock file into the lock file itself; we'll talk more about that
in a moment.

The lock file mechanism works perfectly well in circumstances in which you have a defined location for the
lock files and all programs know where to find them. Alas, this wasn't always the case for Linux. It wasn't
until the Linux Filesystem Standard defined a standard location for lock files when tty lock files began to work
correctly. At one time there were at least four, and possibly more locations chosen by software developers to
store lock files: /usr/spool/locks/, /var/spool/locks/, /var/lock/, and /usr/lock/. Confusion caused chaos.
Programs were opening lock files in different locations that were meant to control a single tty device; it was as
if lock files weren't being used at all.

The cua devices were created to provide a solution to this problem. Rather than relying on the use of lock files
to prevent clashes between programs wanting to use the serial devices, it was decided that the kernel could
provide a simple means of arbitrating who should be given access. If the ttyS device were already opened, an
attempt to open the cua would result in an error that a program could interpret to mean the device was already
being used. If the cua device were already open and an attempt was made to open the ttyS, the request would
block; that is, it would be put on hold and wait until the cua device was closed by the other process. This
worked quite well if you had a single modem that you had configured for dial-in access and you occasionally
wanted to dial out on the same device. But it did not work very well in environments where you had multiple
programs wanting to call out on the same device. The only way to solve the contention problem was to use
lock files! Back to square one.

Suffice it to say that the Linux Filesystem Standard came to the rescue and now mandates that lock files be
stored in the /var/lock directory, and that by convention, the lock file name for the ttyS1 device, for instance, is
LCK..ttyS1. The cua lock files should also go in this directory, but use of cua devices is now discouraged.

The cua devices will probably still be around for some time to provide a period of backward compatibility, but
in time they will be retired. If you are wondering what to use, stick to the ttyS device and make sure that your
system is Linux FSSTND compliant, or at the very least that all programs using the serial devices agree on
where the lock files are located. Most software dealing with serial tty devices provides a compile-time option
to specify the location of the lock files. More often than not, this will appear as a variable called something
like LOCKDIR in the Makefile or in a configuration header file. If you're compiling the software yourself, it is
best to change this to agree with the FSSTND-specified location. If you're using a precompiled binary and
you're not sure where the program will write its lock files, you can use the following command to gain a hint:

strings binaryfile | grep lock

If the location found does not agree with the rest of your system, you can try creating a symbolic link from the
lock directory that the foreign executable wants to use back to /var/lock/. This is ugly, but it will work.

The Serial Device Special Files

Minor numbers are identical for both types of serial devices. If you have your modem on one of the ports
COM1: through COM4:, its minor number will be the COM port number plus 63. If you are using special
serial hardware, such as a high-performance multiple port serial controller, you will probably need to create
special device files for it; it probably won't use the standard device driver. The Serial-HOWTO should be able
to assist you in finding the appropriate details.

Assume your modem is on COM2:. Its minor number will be 65, and its major number will be 4 for normal

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (3 of 10) [2/20/2001 11:04:03 AM]

use. There should be a device called ttyS1 that has these numbers. List the serial ttys in the /dev/ directory. The
fifth and sixth columns show the major and minor numbers, respectively:

$ ls -l /dev/ttyS*
0 crw-rw---- 1 uucp dialout 4, 64 Oct 13 1997 /dev/ttyS0
0 crw-rw---- 1 uucp dialout 4, 65 Jan 26 21:55 /dev/ttyS1
0 crw-rw---- 1 uucp dialout 4, 66 Oct 13 1997 /dev/ttyS2
0 crw-rw---- 1 uucp dialout 4, 67 Oct 13 1997 /dev/ttyS3

If there is no device with major number 4 and minor number 65, you will have to create one. Become the
superuser and type:

mknod -m 666 /dev/ttyS1 c 4 65
chown uucp.dialout /dev/ttyS1

The various Linux distributions use slightly differing strategies for who should own the serial devices.
Sometimes they will be owned by root, and other times they will be owned by another user, such as uucp in
our example. Modern distributions have a group specifically for dial-out devices, and any users who are
allowed to use them are added to this group.

Some people suggest making /dev/modem a symbolic link to your modem device so that casual users don't
have to remember the somewhat unintuitive ttyS1. However, you cannot use modem in one program and the
real device file name in another. Their lock files would have different names and the locking mechanism
wouldn't work.

Serial Hardware
RS-232 is currently the most common standard for serial communications in the PC world. It uses a number of
circuits for transmitting single bits, as well as for synchronization. Additional lines may be used for signaling
the presence of a carrier (used by modems) and for handshaking. Linux supports a wide variety of serial cards
that use the RS-232 standard.

Hardware handshake is optional, but very useful. It allows either of the two stations to signal whether it is
ready to receive more data, or if the other station should pause until the receiver is done processing the
incoming data. The lines used for this are called "Clear to Send" (CTS) and "Ready to Send" (RTS),
respectively, which explains the colloquial name for hardware handshake: "RTS/CTS." The other type of
handshake you might be familiar with is called "XON/XOFF" handshaking. XON/XOFF uses two nominated
characters, conventionally Ctrl-S and Ctrl-Q, to signal to the remote end that it should stop and start
transmitting data, respectively. While this method is simple to implement and okay for use by dumb terminals,
it causes great confusion when you are dealing with binary data, as you may want to transmit those characters
as part of your data stream, and not have them interpreted as flow control characters. It is also somewhat
slower to take effect than hardware handshake. Hardware handshake is clean, fast, and recommended in
preference to XON/XOFF when you have a choice.

In the original IBM PC, the RS-232 interface was driven by a UART chip called the 8250. PCs around the
time of the 486 used a newer version of the UART called the 16450. It was slightly faster than the 8250.
Nearly all Pentium-based machines have been supplied with an even newer version of the UART called the
16550. Some brands (most notably internal modems equipped with the Rockwell chip set) use completely
different chips that emulate the behavior of the 16550 and can be treated similarly. Linux supports all of these
in its standard serial port driver.[2]

[2] Note that we are not talking about WinModem(TM) here! WinModems have very simple
hardware and rely completely on the main CPU of your computer instead of dedicated hardware
to do all of the hard work. If you're purchasing a modem, it is our strongest recommendation to
not purchase such a modem; get a real modem. You may find Linux support for WinModems, but
that makes them only a marginally more attractive solution.

The 16550 was a significant improvement over the 8250 and the 16450 because it offered a 16-byte FIFO
buffer. The 16550 is actually a family of UART devices, comprising the 16550, the 16550A, and the
16550AFN (later renamed PC16550DN). The differences relate to whether the FIFO actually works; the
16550AFN is the one that is sure to work. There was also an NS16550, but its FIFO never really worked

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (4 of 10) [2/20/2001 11:04:03 AM]

either.

The 8250 and 16450 UARTs had a simple 1-byte buffer. This means that a 16450 generates an interrupt for
every character transmitted or received. Each interrupt takes a short period of time to service, and this small
delay limits 16450s to a reliable maximum bit speed of about 9,600 bps in a typical ISA bus machine.

In the default configuration, the kernel checks the four standard serial ports, COM1: through COM4:. The
kernel is also able to automatically detect what UART is used for each of the standard serial ports, and will
make use of the enhanced FIFO buffer of the 16550, if it is available.

Using the Configuration Utilities
Now let's spend some time looking at the two most useful serial device configuration utilities: setserial and
stty.

The setserial Command

The kernel will make its best effort to correctly determine how your serial hardware is configured, but the
variations on serial device configuration makes this determination difficult to achieve 100 percent reliably in
practice. A good example of where this is a problem is the internal modems we talked about earlier. The
UART they use has a 16-byte FIFO buffer, but it looks like a 16450 UART to the kernel device driver: unless
we specifically tell the driver that this port is a 16550 device, the kernel will not make use of the extended
buffer. Yet another example is that of the dumb 4-port cards that allow sharing of a single IRQ among a
number of serial devices. We may have to specifically tell the kernel which IRQ port it's supposed to use, and
that IRQs may be shared.

setserial was created to configure the serial driver at runtime. The setserial command is most commonly
executed at boot time from a script called 0setserial on some distributions, and rc.serial on others. This script
is charged with the responsibility of initializing the serial driver to accommodate any nonstandard or unusual
serial hardware in the machine.

The general syntax for the setserial command is:

setserial device [parameters]

in which the device is one of the serial devices, such as ttyS0.

The setserial command has a large number of parameters. The most common of these are described in Table
4.1. For information on the remainder of the parameters, you should refer to the setserial manual page.

Table 4.1: setserial Command-Line Parameters

Parameter Description

port port_number Specify the I/O port address of the serial device. Port numbers should be specified in
hexadecimal notation, e.g., 0x2f8.

irq num Specify the interrupt request line the serial device is using.

uart uart_type Specify the UART type of the serial device. Common values are 16450, 16550, etc.
Setting this value to none will disable this serial device.

fourport Specifying this parameter instructs the kernel serial driver that this port is one port of
an AST Fourport card.

spd_hi Program the UART to use a speed of 57.6 kbps when a process requests 38.4 kbps.

spd_vhi Program the UART to use a speed of 115 kbps when a process requests 38.4 kbps.

spd_normal Program the UART to use the default speed of 38.4 kbps when requested. This
parameter is used to reverse the effect of a spd_hi or spd_vhi performed on the
specified serial device.

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (5 of 10) [2/20/2001 11:04:03 AM]

auto_irq This parameter will cause the kernel to attempt to automatically determine the IRQ of
the specified device. This attempt may not be completely reliable, so it is probably
better to think of this as a request for the kernel to guess the IRQ. If you know the IRQ
of the device, you should specify that it use the irq parameter instead.

autoconfig This parameter must be specified in conjunction with the port parameter. When this
parameter is supplied, setserial instructs the kernel to attempt to automatically
determine the UART type located at the supplied port address. If the auto_irq
parameter is also supplied, the kernel attempts to automatically determine the IRQ, too.

skip_test This parameter instructs the kernel not to bother performing the UART type test during
auto-configuration. This is necessary when the UART is incorrectly detected by the
kernel.

A typical and simple rc file to configure your serial ports at boot time might look something like that shown in
Example 4.1. Most Linux distributions will include something slightly more sophisticated than this one.

Example 4.1: Example rc.serial setserial Commands

/etc/rc.serial - serial line configuration script.
#
Configure serial devices
/sbin/setserial /dev/ttyS0 auto_irq skip_test autoconfig
/sbin/setserial /dev/ttyS1 auto_irq skip_test autoconfig
/sbin/setserial /dev/ttyS2 auto_irq skip_test autoconfig
/sbin/setserial /dev/ttyS3 auto_irq skip_test autoconfig
#
Display serial device configuration
/sbin/setserial -bg /dev/ttyS*

The -bg /dev/ttyS* argument in the last command will print a neatly formatted summary of the
hardware configuration of all active serial devices. The output will look like that shown in Example 4.2.

Example 4.2: Output of setserial -bg /dev/ttyS Command

/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A
/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A

The stty Command

The name stty probably means "set tty," but the stty command can also be used to display a terminal's
configuration. Perhaps even more so than setserial, the stty command provides a bewildering number of
characteristics you can configure. We'll cover the most important of these in a moment. You can find the rest
described in the stty manual page.

The stty command is most commonly used to configure terminal parameters, such as whether characters will
be echoed or what key should generate a break signal. We explained earlier that serial devices are tty devices
and the stty command is therefore equally applicable to them.

One of the more important uses of the stty for serial devices is to enable hardware handshaking on the device.
We talked briefly about hardware handshaking earlier. The default configuration for serial devices is for
hardware handshaking to be disabled. This setting allows "three wire" serial cables to work; they don't support
the necessary signals for hardware handshaking, and if it were enabled by default, they'd be unable to transmit
any characters to change it.

Surprisingly, some serial communications programs don't enable hardware handshaking, so if your modem
supports hardware handshaking, you should configure the modem to use it (check your modem manual for
what command to use), and also configure your serial device to use it. The stty command has a crtscts flag
that enables hardware handshaking on a device; you'll need to use this. The command is probably best issued

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (6 of 10) [2/20/2001 11:04:03 AM]

from the rc.serial file (or equivalent) at boot time using commands like those shown in Example 4.3.

Example 4.3: Example rc.serial stty Commands

#
stty crtscts < /dev/ttyS0
stty crtscts < /dev/ttyS1
stty crtscts < /dev/ttyS2
stty crtscts < /dev/ttyS3
#

The stty command works on the current terminal by default, but by using the input redirection ("<") feature of
the shell, we can have stty manipulate any tty device. It's a common mistake to forget whether you are
supposed to use "<" or ">"; modern versions of the stty command have a much cleaner syntax for doing this.
To use the new syntax, we'd rewrite our sample configuration to look like that shown in Example 4.4.

Example 4.4: Example rc.serial stty Commands Using Modern Syntax

#
stty crtscts -F /dev/ttyS0
stty crtscts -F /dev/ttyS1
stty crtscts -F /dev/ttyS2
stty crtscts -F /dev/ttyS3
#

We mentioned that the stty command can be used to display the terminal configuration parameters of a tty
device. To display all of the active settings on a tty device, use:

$ stty -a -F /dev/ttyS1

The output of this command, shown in Example 4.5, gives you the status of all flags for that device; a flag
shown with a preceding minus, as in -crtscts, means that the flag has been turned off.

Example 4.5: Output of stty -a Command

speed 19200 baud; rows 0; columns 0; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
 eol2 = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
 werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 hupcl -cstopb cread clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr -icrnl -ixon
 -ixoff -iuclc -ixany -imaxbel
-opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0
 bs0 vt0 ff0
-isig -icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop
 -echoprt echoctl echoke

A description of the most important of these flags is given in Table 4.2. Each of these flags is enabled by
supplying it to stty and disabled by supplying it to stty with the - character in front of it. Thus, to disable
hardware handshaking on the ttyS0 device, you would use:

$ stty -crtscts -F /dev/ttyS0

Table 4.2: stty Flags Most Relevant to Configuring Serial Devices

Flags Description

N Set the line speed to N bits per second.

crtsdts Enable/Disable hardware handshaking.

ixon Enable/Disable XON/XOFF flow control.

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (7 of 10) [2/20/2001 11:04:03 AM]

clocal Enable/Disable modem control signals such as DTR/DTS and DCD. This is
necessary if you are using a "three wire" serial cable because it does not supply
these signals.

cs5 cs6 cs7 cs8 Set number of data bits to 5, 6, 7, or 8, respectively.

parodd Enable odd parity. Disabling this flag enables even parity.

parenb Enable parity checking. When this flag is negated, no parity is used.

cstopb Enable use of two stop bits per character. When this flag is negated, one stop bit per
character is used.

echo Enable/Disable echoing of received characters back to sender.

The next example combines some of these flags and sets the ttyS0 device to 19,200 bps, 8 data bits, no parity,
and hardware handshaking with echo disabled:

$ stty 19200 cs8 -parenb crtscts -echo -F /dev/ttyS0

Serial Devices and the login: Prompt
It was once very common that a Unix installation involved one server machine and many "dumb" character
mode terminals or dial-up modems. Today that sort of installation is less common, which is good news for
many people interested in operating this way, because the "dumb" terminals are now very cheap to acquire.
Dial-up modem configurations are no less common, but these days they would probably be used to support a
SLIP or PPP login (discussed in Chapter 7, Serial Line IP and Chapter 8, The Point-to-Point Protocol) than to
be used for a simple login. Nevertheless, each of these configurations can make use of a simple program called
a getty program.

The term getty is probably a contraction of "get tty." A getty program opens a serial device, configures it
appropriately, optionally configures a modem, and waits for a connection to be made. An active connection on
a serial device is usually indicated by the Data Carrier Detect (DCD) pin on the serial device being raised.
When a connection is detected, the getty program issues a login: prompt, and then invokes the login
program to handle the actual system login. Each of the virtual terminals (e.g., /dev/tty1) in Linux has a getty
running against it.

There are a number of different getty implementations, each designed to suit some configurations better than
others. The getty that we'll describe here is called mgetty. It is quite popular because it has all sorts of features
that make it especially modem-friendly, including support for automatic fax programs and voice modems.
We'll concentrate on configuring mgetty to answer conventional data calls and leave the rest for you to explore
at your convenience.

Configuring the mgetty Daemon

The mgetty daemon is available in source form from ftp://alpha.greenie.net/pub/mgetty/source/, and is
available in just about all Linux distributions in prepackaged form. The mgetty daemon differs from most
other getty implementations in that it has been designed specifically for Hayes-compatible modems. It still
supports direct terminal connections, but is best suited for dialup applications. Rather than using the DCD line
to detect an incoming call, it listens for the RING message generated by modern modems when they detect an
incoming call and are not configured for auto-answer.

The main executable program is called /usr/sbin/mgetty, and its main configuration file is called
/etc/mgetty/mgetty.config. There are a number of other binary programs and configuration files that cover
other mgetty features.

For most installations, configuration is a matter of editing the /etc/mgetty/ mgetty.config file and adding
appropriate entries to the /etc/inittab file to execute mgetty automatically.

Example 4.6 shows a very simple mgetty configuration file. This example configures two serial devices. The
first, /dev/ttyS0, supports a Hayes-compatible modem at 38,400 bps. The second, /dev/ttyS0, supports a

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (8 of 10) [2/20/2001 11:04:03 AM]

ftp://alpha.greenie.net/pub/mgetty/source/

directly connected VT100 terminal at 19,200 bps.

Example 4.6: Sample /etc/mgetty/mgetty.config File

#
mgetty configuration file
#
this is a sample configuration file, see mgetty.info for details
#
comment lines start with a "#", empty lines are ignored
#
----- global section -----
#
In this section, you put the global defaults, per-port stuff is below
#
access the modem(s) with 38400 bps
speed 38400
#
set the global debug level to "4" (default from policy.h)
debug 4
#

----- port specific section -----

Here you can put things that are valid only for one line, not the others
#
#
Hayes modem connected to ttyS0: don't do fax, less logging
#
port ttyS0
 debug 3
 data-only y
#
direct connection of a VT100 terminal which doesn't like DTR drops
#
port ttyS1
 direct y
 speed 19200
 toggle-dtr n
#

The configuration file supports global and port-specific options. In our example we used a global option to set
the speed to 38,400 bps. This value is inherited by the ttyS0 port. Ports we apply mgetty to use this speed
setting unless it is overwritten by a port-specific speed setting, as we have done in the ttyS1 configuration.

The debug keyword controls the verbosity of mgetty logging. The data-only keyword in the ttyS0
configuration causes mgetty to ignore any modem fax features, to operate just as a data modem. The direct
keyword in the ttyS1 configuration instructs mgetty not to attempt any modem initialization on the port.
Finally, the toggle-dtr keyword instructs mgetty not to attempt to hang up the line by dropping the DTR
(Data Terminal Ready) pin on the serial interface; some terminals don't like this to happen.

You can also choose to leave the mgetty.config file empty and use command-line arguments to specify most of
the same parameters. The documentation accompanying the application includes a complete description of the
mgetty configuration file parameters and command-line arguments. See the following example.

We need to add two entries to the /etc/inittab file to activate this configuration. The inittab file is the
configuration file of the Unix System V init command. The init command is responsible for system
initialization; it provides a means of automatically executing programs at boot time and re-executing them
when they terminate. This is ideal for the goals of running a getty program.

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (9 of 10) [2/20/2001 11:04:03 AM]

T0:23:respawn:/sbin/mgetty ttyS0
T1:23:respawn:/sbin/mgetty ttyS1

Each line of the /etc/inittab file contains four fields, separated by colons. The first field is an identifier that
uniquely labels an entry in the file; traditionally it is two characters, but modern versions allow four. The
second field is the list of run levels at which this entry should be active. A run level is a means of providing
alternate machine configurations and is implemented using trees of startup scripts stored in directories called
/etc/rc1.d, /etc/rc2.d, etc. This feature is typically implemented very simply, and you should model your
entries on others in the file or refer to your system documentation for more information. The third field
describes when to take action. For the purposes of running a getty program, this field should be set to
respawn, meaning that the command should be re-executed automatically when it dies. There are several
other options, as well, but they are not useful for our purposes here. The fourth field is the actual command to
execute; this is where we specify the mgetty command and any arguments we wish to pass it. In our simple
example we're starting and restarting mgetty whenever the system is operating at either of run levels two or
three, and are supplying as an argument just the name of the device we wish it to use. The mgetty command
assumes the /dev/, so we don't need to supply it.

This chapter was a quick introduction to mgetty and how to offer login prompts to serial devices. You can find
more extensive information in the Serial-HOWTO.

After you've edited the configuration files, you need to reload init to make the changes take effect. Simply
send a hangup signal to the init process; it always has a process ID of one, so you can use the following
command safely:

kill -HUP 1

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware

http://www.oreilly.com/catalog/linag2/book/ch04.html (10 of 10) [2/20/2001 11:04:03 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 5
Configuring TCP/IP Networking
Contents:
Mounting the /proc Filesystem
Installing the Binaries
Setting the Hostname
Assigning IP Addresses
Creating Subnets
Writing hosts and networks Files
Interface Configuration for IP
All About ifconfig
The netstat Command
Checking the ARP Tables

In this chapter, we walk you through all the necessary steps to set up TCP/IP networking on your machine.
Starting with the assignment of IP addresses, we slowly work our way through the configuration of TCP/IP
network interfaces and introduce a few tools that come in handy when hunting down network installation
problems.

Most of the tasks covered in this chapter will generally have to be done only once. Afterward, you have to touch
most configuration files only when adding a new system to your network or when you reconfigure your system
entirely. Some of the commands used to configure TCP/IP, however, have to be executed each time the system
is booted. This is usually done by invoking them from the system /etc/rc* scripts.

Commonly, the network-specific part of this procedure is contained in a script. The name of this script varies in
different Linux distributions. In many older Linux distributions, it is known as rc.net or rc.inet. Sometimes you
will also see two scripts named rc.inet1 and rc.inet2; the former initializes the kernel part of networking and the
latter starts basic networking services and applications. In modern distributions, the rc files are structured in a
more sophisticated arrangement; here you may find scripts in the /etc/init.d/ (or /etc/rc.d/init.d/) directory that
create the network devices and other rc files that run the network application programs. This book's examples
are based on the latter arrangement.

This chapter discusses parts of the script that configure your network interfaces, while applications will be
covered in later chapters. After finishing this chapter, you should have established a sequence of commands that
properly configure TCP/IP networking on your computer. You should then replace any sample commands in
your configuration scripts with your commands, make sure the script is executed from the basic rc script at
startup time, and reboot your machine. The networking rc scripts that come along with your favorite Linux
distribution should provide a solid example from which to work.

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (1 of 16) [2/20/2001 11:04:09 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

Mounting the /proc Filesystem
Some of the configuration tools of the Linux NET-2 and NET-3 release rely on the /proc filesystem for
communicating with the kernel. This interface permits access to kernel runtime information through a
filesystem-like mechanism. When mounted, you can list its files like any other filesystem, or display their
contents. Typical items include the loadavg file, which contains the system load average, and meminfo, which
shows current core memory and swap usage.

To this, the networking code adds the net directory. It contains a number of files that show things like the kernel
ARP tables, the state of TCP connections, and the routing tables. Most network administration tools get their
information from these files.

The proc filesystem (or procfs, as it is also known) is usually mounted on /proc at system boot time. The best
method is to add the following line to /etc/fstab:

procfs mount point:
none /proc proc defaults

Then execute mount /proc from your /etc/rc script.

The procfs is now configured into most kernels by default. If the procfs is not in your kernel, you will get a
message such as: mount: fs type procfs not supported by kernel. You will then have to
recompile the kernel and answer "yes" when asked for procfs support.

Installing the Binaries
If you are using one of the prepackaged Linux distributions, it will contain the major networking applications
and utilities along with a coherent set of sample files. The only case in which you might have to obtain and
install new utilities is when you install a new kernel release. As they occasionally involve changes in the kernel
networking layer, you will need to update the basic configuration tools. This update at least involves
recompiling, but sometimes you may also be required to obtain the latest set of binaries. These binaries are
available at their official home site at ftp.inka.de/pub/comp/Linux/networking/NetTools/, packaged in an
archive called net-tools-XXX.tar.gz, where XXX is the version number. The release matching Linux 2.0 is
net-tools-1.45.

If you want to compile and install the standard TCP/IP network applications yourself, you can obtain the
sources from most Linux FTP servers. All modern Linux distributions include a fairly comprehensive range of
TCP/IP network applications, such as World Wide Web browsers, telnet and ftp programs, and other network
applications, such as talk. If you do find something that you do need to compile yourself, the chances are good
that it will compile under Linux from source quite simply if you follow the instructions included in the source
package.

Setting the Hostname
Most, if not all, network applications rely on you to set the local host's name to some reasonable value. This
setting is usually made during the boot procedure by executing the hostname command. To set the hostname to
name, enter:

hostname name

It is common practice to use the unqualified hostname without specifying the domain name. For instance, hosts
at the Virtual Brewery (described in Appendix A, Example Network: The Virtual Brewery) might be called
vale.vbrew.com or vlager.vbrew.com. These are their official fully qualified domain names (FQDNs). Their
local hostnames would be the first component of the name, such as vale. However, as the local hostname is
frequently used to look up the host's IP address, you have to make sure that the resolver library is able to look
up the host's IP address. This usually means that you have to enter the name in /etc/hosts.

Some people suggest using the domainname command to set the kernel's idea of a domain name to the
remaining part of the FQDN. This way you could combine the output from hostname and domainname to get
the FQDN again. However, this is at best only half correct. domainname is generally used to set the host's NIS
domain, which may be entirely different from the DNS domain to which your host belongs. Instead, to ensure

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (2 of 16) [2/20/2001 11:04:09 AM]

http://www.oreilly.com/catalog/linag2/book/ftp.inka.de/pub/comp/Linux/networking/NetTools/

that the short form of your hostname is resolvable with all recent versions of the hostname command, either add
it as an entry in your local Domain Name Server or place the fully qualified domain name in the /etc/hosts file.
You may then use the --fqdn argument to the hostname command, and it will print the fully qualifed domain
name.

Assigning IP Addresses
If you configure the networking software on your host for standalone operation (for instance, to be able to run
the INN Netnews software), you can safely skip this section, because the only IP address you will need is for
the loopback interface, which is always 127.0.0.1.

Things are a little more complicated with real networks like Ethernets. If you want to connect your host to an
existing network, you have to ask its administrators to give you an IP address on this network. When setting up
a network all by yourself, you have to assign IP addresses yourself.

Hosts within a local network should usually share addresses from the same logical IP network. Hence, you have
to assign an IP network address. If you have several physical networks, you have to either assign them different
network numbers, or use subnetting to split your IP address range into several subnetworks. Subnetting will be
revisited in the next section, "Creating Subnets".

When picking an IP network number, much depends on whether you intend to get on the Internet in the near
future. If so, you should obtain an official IP address now. Ask your network service provider to help you. If
you want to obtain a network number, just in case you might get on the Internet someday, request a Network
Address Application Form from hostmaster@internic.net, or your country's own Network Information Center, if
there is one.

If your network is not connected to the Internet and won't be in the near future, you are free to choose any legal
network address. Just make sure no packets from your internal network escape to the real Internet. To make sure
no harm can be done even if packets did escape, you should use one of the network numbers reserved for
private use. The Internet Assigned Numbers Authority (IANA) has set aside several network numbers from
classes A, B, and C that you can use without registering. These addresses are valid only within your private
network and are not routed between real Internet sites. The numbers are defined by RFC 1597 and are listed in
Table 2.1 in Chapter 2, Issues of TCP/IP Networking. Note that the second and third blocks contain 16 and 256
networks, respectively.

Picking your addresses from one of these network numbers is not only useful for networks completely
unconnected to the Internet; you can still implement a slightly more restricted access using a single host as a
gateway. To your local network, the gateway is accessible by its internal IP address, while the outside world
knows it by an officially registered address (assigned to you by your provider). We come back to this concept in
connection with the IP masquerade facility in Chapter 11, IP Masquerade and Network Address Translation.

Throughout the remainder of the book, we will assume that the brewery's network manager uses a class B
network number, say 172.16.0.0. Of course, a class C network number would definitely suffice to accommodate
both the Brewery's and the Winery's networks. We'll use a class B network here for the sake of simplicity; it
will make the subnetting examples in the next section of this chapter a little more intuitive.

Creating Subnets
To operate several Ethernets (or other networks, once a driver is available), you have to split your network into
subnets. Note that subnetting is required only if you have more than one broadcast network -- point-to-point
links don't count. For instance, if you have one Ethernet, and one or more SLIP links to the outside world, you
don't need to subnet your network. This is explained in more detail in Chapter 7, Serial Line IP.

To accommodate the two Ethernets, the Brewery's network manager decides to use 8 bits of the host part as
additional subnet bits. This leaves another 8 bits for the host part, allowing for 254 hosts on each of the subnets.
She then assigns subnet number 1 to the brewery, and gives the winery number 2. Their respective network
addresses are thus 172.16.1.0 and 172.16.2.0. The subnet mask is 255.255.255.0.

vlager, which is the gateway between the two networks, is assigned a host number of 1 on both of them, which
gives it the IP addresses 172.16.1.1 and 172.16.2.1, respectively.

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (3 of 16) [2/20/2001 11:04:09 AM]

Note that in this example we are using a class B network to keep things simple, but a class C network would be
more realistic. With the new networking code, subnetting is not limited to byte boundaries, so even a class C
network may be split into several subnets. For instance, you could use two bits of the host part for the netmask,
giving you 4 possible subnets with 64 hosts on each.[1]

[1] The first number on each subnet is the subnetwork address, and the last number on each subnet
is reserved as the broadcast address, so it's actually 62 hosts per subnet.

Writing hosts and networks Files
After you have subnetted your network, you should prepare for some simple sort of hostname resolution using
the /etc/hosts file. If you are not going to use DNS or NIS for address resolution, you have to put all hosts in the
hosts file.

Even if you want to run DNS or NIS during normal operation, you should have some subset of all hostnames in
/etc/hosts. You should have some sort of name resolution, even when no network interfaces are running, for
example, during boot time. This is not only a matter of convenience, but it allows you to use symbolic
hostnames in your network rc scripts. Thus, when changing IP addresses, you only have to copy an updated
hosts file to all machines and reboot, rather than edit a large number of rc files separately. Usually you put all
local hostnames and addresses in hosts, adding those of any gateways and NIS servers used.[2]

[2] You need the address of an NIS server only if you use Peter Eriksson's NYS. Other NIS
implementations locate their servers only at runtime by using ypbind.

You should make sure your resolver only uses information from the hosts file during initial testing. Sample files
that come with your DNS or NIS software may produce strange results. To make all applications use /etc/hosts
exclusively when looking up the IP address of a host, you have to edit the /etc/host.conf file. Comment out any
lines that begin with the keyword order by preceding them with a hash sign, and insert the line:

order hosts

The configuration of the resolver library is covered in detail in Chapter 6, Name Service and Resolver
Configuration.

The hosts file contains one entry per line, consisting of an IP address, a hostname, and an optional list of aliases
for the hostname. The fields are separated by spaces or tabs, and the address field must begin in the first
column. Anything following a hash sign (#) is regarded as a comment and is ignored.

Hostnames can be either fully qualified or relative to the local domain. For vale, you would usually enter the
fully qualified name, vale.vbrew.com, and vale by itself in the hosts file, so that it is known by both its official
name and the shorter local name.

This is an example how a hosts file at the Virtual Brewery might look. Two special names are included,
vlager-if1 and vlager-if2, which give the addresses for both interfaces used on vlager:

#
Hosts file for Virtual Brewery/Virtual Winery
#
IP FQDN aliases
#
127.0.0.1 localhost
#
172.16.1.1 vlager.vbrew.com vlager vlager-if1
172.16.1.2 vstout.vbrew.com vstout
172.16.1.3 vale.vbrew.com vale
#
172.16.2.1 vlager-if2
172.16.2.2 vbeaujolais.vbrew.com vbeaujolais
172.16.2.3 vbardolino.vbrew.com vbardolino
172.16.2.4 vchianti.vbrew.com vchianti

Just as with a host's IP address, you should sometimes use a symbolic name for network numbers, too.

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (4 of 16) [2/20/2001 11:04:09 AM]

Therefore, the hosts file has a companion called /etc/networks that maps network names to network numbers,
and vice versa. At the Virtual Brewery, we might install a networks file like this:[3]

/etc/networks for the Virtual Brewery
brew-net 172.16.1.0
wine-net 172.16.2.0

[3] Note that names in networks must not collide with hostnames from the hosts file, or else some
programs may produce strange results.

Interface Configuration for IP
After setting up your hardware as explained in Chapter 4, Configuring the Serial Hardware, you have to make
these devices known to the kernel networking software. A couple of commands are used to configure the
network interfaces and initialize the routing table. These tasks are usually performed from the network
initialization script each time you boot the system. The basic tools for this process are called ifconfig (where
"if" stands for interface) and route.

ifconfig is used to make an interface accessible to the kernel networking layer. This involves the assignment of
an IP address and other parameters, and activation of the interface, also known as "bringing up" the interface.
Being active here means that the kernel will send and receive IP datagrams through the interface. The simplest
way to invoke it is with:

ifconfig interface ip-address

This command assigns ip-address to interface and activates it. All other parameters are set to default values. For
instance, the default network mask is derived from the network class of the IP address, such as 255.255.0.0 for a
class B address. ifconfig is described in detail in the section "All About ifconfig".

route allows you to add or remove routes from the kernel routing table. It can be invoked as:

route [add|del] [-net|-host] target [if]

The add and del arguments determine whether to add or delete the route to target. The -net and -host arguments
tell the route command whether the target is a network or a host (a host is assumed if you don't specify). The if
argument is again optional, and allows you to specify to which network interface the route should be directed --
the Linux kernel makes a sensible guess if you don't supply this information. This topic will be explained in
more detail in succeeding sections.

The Loopback Interface

The very first interface to be activated is the loopback interface:

ifconfig lo 127.0.0.1

Occasionally, you will see the dummy hostname localhost being used instead of the IP address. ifconfig will
look up the name in the hosts file, where an entry should declare it as the hostname for 127.0.0.1:

Sample /etc/hosts entry for localhost
localhost 127.0.0.1

To view the configuration of an interface, you invoke ifconfig, giving it only the interface name as argument:

$ ifconfig lo
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 Collisions:0

As you can see, the loopback interface has been assigned a netmask of 255.0.0.0, since 127.0.0.1 is a class A
address.

Now you can almost start playing with your mini-network. What is still missing is an entry in the routing table

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (5 of 16) [2/20/2001 11:04:09 AM]

that tells IP that it may use this interface as a route to destination 127.0.0.1. This is accomplished by using:

route add 127.0.0.1

Again, you can use localhost instead of the IP address, provided you've entered it into your /etc/hosts.

Next, you should check that everything works fine, for example by using ping. ping is the networking
equivalent of a sonar device.[4] The command is used to verify that a given address is actually reachable, and to
measure the delay that occurs when sending a datagram to it and back again. The time required for this process
is often referred to as the "round-trip time":

[4] Anyone remember Pink Floyd's "Echoes"?

ping localhost
PING localhost (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=0.4 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=255 time=0.4 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=255 time=0.4 ms
^C
--- localhost ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.4/0.4 ms
#

When you invoke ping as shown here, it will continue emitting packets forever, unless interrupted by the user.
The ^C marks the place where we pressed Ctrl-C.

The previous example shows that packets for 127.0.0.1 are properly delivered and a reply is returned to ping
almost instantaneously. This shows that you have successfully set up your first network interface.

If the output you get from ping does not resemble that shown in the previous example, you are in trouble. Check
any errors if they indicate that some file hasn't been installed properly. Check that the ifconfig and route
binaries you use are compatible with the kernel release you run, and above all, that the kernel has been
compiled with networking enabled (you see this from the presence of the /proc/net directory). If you get an
error message saying "Network unreachable," you probably got the route command wrong. Make sure you use
the same address you gave to ifconfig.

The steps previously described are enough to use networking applications on a standalone host. After adding the
lines mentioned earlier to your network initialization script and making sure it will be executed at boot time,
you may reboot your machine and try out various applications. For instance, telnet localhost should establish a
telnet connection to your host, giving you a login: prompt.

However, the loopback interface is useful not only as an example in networking books, or as a test bed during
development, but is actually used by some applications during normal operation.[5] Therefore, you always have
to configure it, regardless of whether your machine is attached to a network or not.

[5] For example, all applications based on RPC use the loopback interface to register themselves
with the portmapper daemon at startup. These applications include NIS and NFS.

Ethernet Interfaces

Configuring an Ethernet interface is pretty much the same as the loopback interface; it just requires a few more
parameters when you are using subnetting.

At the Virtual Brewery, we have subnetted the IP network, which was originally a class B network, into class C
subnetworks. To make the interface recognize this, the ifconfig incantation would look like this:

ifconfig eth0 vstout netmask 255.255.255.0

This command assigns the eth0 interface the IP address of vstout (172.16.1.2). If we omitted the netmask,
ifconfig would deduce the netmask from the IP network class, which would result in an incorrect netmask of
255.255.0.0. Now a quick check shows:

ifconfig eth0
eth0 Link encap 10Mps Ethernet HWaddr 00:00:C0:90:B3:42

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (6 of 16) [2/20/2001 11:04:09 AM]

 inet addr 172.16.1.2 Bcast 172.16.1.255 Mask 255.255.255.0
 UP BROADCAST RUNNING MTU 1500 Metric 1
 RX packets 0 errors 0 dropped 0 overrun 0
 TX packets 0 errors 0 dropped 0 overrun 0

You can see that ifconfig automatically sets the broadcast address (the Bcast field) to the usual value, which is
the host's network number with all the host bits set. Also, the maximum transmission unit (the maximum size of
IP datagrams the kernel will generate for this interface) has been set to the maximum size of Ethernet packets:
1,500 bytes. The defaults are usually what you will use, but all these values can be overidden if required, with
special options that will be described under "All About ifconfig".

Just as for the loopback interface, you now have to install a routing entry that informs the kernel about the
network that can be reached through eth0. For the Virtual Brewery, you might invoke route as:

route add -net 172.16.1.0

At first this looks a little like magic, because it's not really clear how route detects which interface to route
through. However, the trick is rather simple: the kernel checks all interfaces that have been configured so far
and compares the destination address (172.16.1.0 in this case) to the network part of the interface address (that
is, the bitwise AND of the interface address and the netmask). The only interface that matches is eth0.

Now, what's that -net option for? This is used because route can handle both routes to networks and routes to
single hosts (as you saw before with localhost). When given an address in dotted quad notation, route attempts
to guess whether it is a network or a hostname by looking at the host part bits. If the address's host part is zero,
route assumes it denotes a network; otherwise, route takes it as a host address. Therefore, route would think that
172.16.1.0 is a host address rather than a network number, because it cannot know that we use subnetting. We
have to tell route explicitly that it denotes a network, so we give it the -net flag.

Of course, the route command is a little tedious to type, and it's prone to spelling mistakes. A more convenient
approach is to use the network names we defined in /etc/networks. This approach makes the command much
more readable; even the -net flag can be omitted because route knows that 172.16.1.0 denotes a network:

route add brew-net

Now that you've finished the basic configuration steps, we want to make sure that your Ethernet interface is
indeed running happily. Choose a host from your Ethernet, for instance vlager, and type:

ping vlager
PING vlager: 64 byte packets
64 bytes from 172.16.1.1: icmp_seq=0. time=11. ms
64 bytes from 172.16.1.1: icmp_seq=1. time=7. ms
64 bytes from 172.16.1.1: icmp_seq=2. time=12. ms
64 bytes from 172.16.1.1: icmp_seq=3. time=3. ms
^C
----vstout.vbrew.com PING Statistics----
4 packets transmitted, 4 packets received, 0
round-trip (ms) min/avg/max = 3/8/12

If you don't see similar output, something is broken. If you encounter unusual packet loss rates, this hints at a
hardware problem, like bad or missing terminators. If you don't receive any replies at all, you should check the
interface configuration with netstat described later in "The netstat Command". The packet statistics displayed
by ifconfig should tell you whether any packets have been sent out on the interface at all. If you have access to
the remote host too, you should go over to that machine and check the interface statistics. This way you can
determine exactly where the packets got dropped. In addition, you should display the routing information with
route to see if both hosts have the correct routing entry. route prints out the complete kernel routing table when
invoked without any arguments (-n just makes it print addresses as dotted quad instead of using the hostname):

route -n
Kernel routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.1 * 255.255.255.255 UH 1 0 112 lo
172.16.1.0 * 255.255.255.0 U 1 0 10 eth0

The detailed meaning of these fields is explained later in "The netstat Command". The Flags column contains a

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (7 of 16) [2/20/2001 11:04:09 AM]

list of flags set for each interface. U is always set for active interfaces, and H says the destination address
denotes a host. If the H flag is set for a route that you meant to be a network route, you have to reissue the route
command with the -net option. To check whether a route you have entered is used at all, check to see if the Use
field in the second to last column increases between two invocations of ping.

Routing Through a Gateway

In the previous section, we covered only the case of setting up a host on a single Ethernet. Quite frequently,
however, one encounters networks connected to one another by gateways. These gateways may simply link two
or more Ethernets, but may also provide a link to the outside world, such as the Internet. In order to use a
gateway, you have to provide additional routing information to the networking layer.

The Ethernets of the Virtual Brewery and the Virtual Winery are linked through such a gateway, namely the
host vlager. Assuming that vlager has already been configured, we just have to add another entry to vstout's
routing table that tells the kernel it can reach all hosts on the Winery's network through vlager. The appropriate
incantation of route is shown below; the gw keyword tells it that the next argument denotes a gateway:

route add wine-net gw vlager

Of course, any host on the Winery network you wish to talk to must have a routing entry for the Brewery's
network. Otherwise you would only be able to send data to the Winery network from the Brewery network, but
the hosts on the Winery would be unable to reply.

This example describes only a gateway that switches packets between two isolated Ethernets. Now assume that
vlager also has a connection to the Internet (say, through an additional SLIP link). Then we would want
datagrams to any destination network other than the Brewery to be handed to vlager. This action can be
accomplished by making it the default gateway for vstout:

route add default gw vlager

The network name default is a shorthand for 0.0.0.0, which denotes the default route. The default route matches
every destination and will be used if there is no more specific route that matches. You do not have to add this
name to /etc/networks because it is built into route.

If you see high packet loss rates when pinging a host behind one or more gateways, this may hint at a very
congested network. Packet loss is not so much due to technical deficiencies as to temporary excess loads on
forwarding hosts, which makes them delay or even drop incoming datagrams.

Configuring a Gateway

Configuring a machine to switch packets between two Ethernets is pretty straightforward. Assume we're back at
vlager, which is equipped with two Ethernet cards, each connected to one of the two networks. All you have to
do is configure both interfaces separately, giving them their respective IP addresses and matching routes, and
that's it.

It is quite useful to add information on the two interfaces to the hosts file as shown in the following example, so
we have handy names for them, too:

172.16.1.1 vlager.vbrew.com vlager vlager-if1
172.16.2.1 vlager-if2

The sequence of commands to set up the two interfaces is then:

ifconfig eth0 vlager-if1
route add brew-net
ifconfig eth1 vlager-if2
route add wine-net

If this sequence doesn't work, make sure your kernel has been compiled with support for IP forwarding enabled.
One good way to do this is to ensure that the first number on the second line of /proc/net/snmp is set to 1.

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (8 of 16) [2/20/2001 11:04:09 AM]

The PLIP Interface

A PLIP link used to connect two machines is a little different from an Ethernet. PLIP links are an example of
what are called point-to-point links, meaning that there is a single host at each end of the link. Networks like
Ethernet are called broadcast networks. Configuration of point-to-point links is different because unlike
broadcast networks, point-to-point links don't support a network of their own.

PLIP provides very cheap and portable links between computers. As an example, we'll consider the laptop
computer of an employee at the Virtual Brewery that is connected to vlager via PLIP. The laptop itself is called
vlite and has only one parallel port. At boot time, this port will be registered as plip1. To activate the link, you
have to configure the plip1 interface using the following commands:[6]

ifconfig plip1 vlite pointopoint vlager
route add default gw vlager

[6] Note that pointopoint is not a typo. It's really spelled like this.

The first command configures the interface, telling the kernel that this is a point-to-point link, with the remote
side having the address of vlager. The second installs the default route, using vlager as gateway. On vlager, a
similar ifconfig command is necessary to activate the link (a route invocation is not needed):

ifconfig plip1 vlager pointopoint vlite

Note that the plip1 interface on vlager does not need a separate IP address, but may also be given the address
172.16.1.1. Point-to-point networks don't support a network directly, so the interfaces don't require an address
on any supported network. The kernel uses the interface information in the routing table to avoid any possible
confusion.[7]

[7] As a matter of caution, you should configure a PLIP or SLIP link only after you have
completely set up the routing table entries for your Ethernets. With some older kernels, your
network route might otherwise end up pointing at the point-to-point link.

Now we have configured routing from the laptop to the Brewery's network; what's still missing is a way to route
from any of the Brewery's hosts to vlite. One particularly cumbersome way is to add a specific route to every
host's routing table that names vlager as a gateway to vlite:

route add vlite gw vlager

Dynamic routing offers a much better option for temporary routes. You could use gated, a routing daemon,
which you would have to install on each host in the network in order to distribute routing information
dynamically. The easiest option, however, is to use proxy ARP (Address Resolution Protocol). With proxy ARP,
vlager will respond to any ARP query for vlite by sending its own Ethernet address. All packets for vlite will
wind up at vlager, which then forwards them to the laptop. We will come back to proxy ARP in the section
"Checking the ARP Tables".

Current net-tools releases contain a tool called plipconfig, which allows you to set certain PLIP timing
parameters. The IRQ to be used for the printer port can be set using the ifconfig command.

The SLIP and PPP Interfaces

Although SLIP and PPP links are only simple point-to-point links like PLIP connections, there is much more to
be said about them. Usually, establishing a SLIP connection involves dialing up a remote site through your
modem and setting the serial line to SLIP mode. PPP is used in a similar fashion. We discuss SLIP and PPP in
detail in Chapter 7 and Chapter 8, The Point-to-Point Protocol.

The Dummy Interface

The dummy interface is a little exotic, but rather useful nevertheless. Its main benefit is with standalone hosts
and machines whose only IP network connection is a dialup link. In fact, the latter are standalone hosts most of
the time, too.

The dilemma with standalone hosts is that they only have a single network device active, the loopback device,
which is usually assigned the address 127.0.0.1. On some occasions, however, you must send data to the

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (9 of 16) [2/20/2001 11:04:09 AM]

"official" IP address of the local host. For instance, consider the laptop vlite, which was disconnected from a
network for the duration of this example. An application on vlite may now want to send data to another
application on the same host. Looking up vlite in /etc/hosts yields an IP address of 172.16.1.65, so the
application tries to send to this address. As the loopback interface is currently the only active interface on the
machine, the kernel has no idea that 172.16.1.65 actually refers to itself! Consequently, the kernel discards the
datagram and returns an error to the application.

This is where the dummy device steps in. It solves the dilemma by simply serving as the alter ego of the
loopback interface. In the case of vlite, you simply give it the address 172.16.1.65 and add a host route pointing
to it. Every datagram for 172.16.1.65 is then delivered locally. The proper invocation is:[8]

ifconfig dummy vlite
route add vlite

[8] The dummy device is called dummy0 if you have loaded it as a module rather than choosing it
as an inbuilt kernel option. This is because you are able to load multiple modules and have more
than one dummy device.

IP Alias

New kernels support a feature that can completely replace the dummy interface and serve other useful
functions. IP Alias allows you to configure multiple IP addresses onto a physical device. In the simplest case,
you could replicate the function of the dummy interface by configuring the host address as an alias onto the
loopback interface and completely avoid using the dummy interface. In more complex uses, you could
configure your host to look like many different hosts, each with its own IP address. This configuration is
sometimes called "Virtual Hosting," although technically it is also used for a variety of other techniques.[9]

[9] More correctly, using IP aliasing is known as network layer virtual hosting. It is more common
in the WWW and STMP worlds to use application layer virtual hosting, in which the same IP
address is used for each virtual host, but a different hostname is passed with each application layer
request. Services like FTP are not capable of operating in this way, and they demand network layer
virtual hosting.

To configure an alias for an interface, you must first ensure that your kernel has been compiled with support for
IP Alias (check that you have a /proc/net/ip_alias file; if not, you will have to recompile your kernel).
Configuration of an IP alias is virtually identical to configuring a real network device; you use a special name to
indicate it's an alias that you want. For example:

ifconfig lo:0 172.16.1.1

This command would produce an alias for the loopback interface with the address 172.16.1.1. IP aliases are
referred to by appending :n to the actual network device, in which "n" is an integer. In our example, the network
device we are creating the alias on is lo, and we are creating an alias numbered zero for it. This way, a single
physical device may support a number of aliases.

Each alias may be treated as though it is a separate device, and as far as the kernel IP software is concerned, it
will be; however, it will be sharing its hardware with another interface.

All About ifconfig
There are many more parameters to ifconfig than we have described so far. Its normal invocation is this:

ifconfig interface [address [parameters]]

interface is the interface name, and address is the IP address to be assigned to the interface. This may be either
an IP address in dotted quad notation or a name that ifconfig will look up in /etc/hosts.

If ifconfig is invoked with only the interface name, it displays that interface's configuration. When invoked
without any parameters, it displays all interfaces you have configured so far; a -a option forces it to show the
inactive ones as well. A sample invocation for the Ethernet interface eth0 may look like this:

ifconfig eth0
eth0 Link encap 10Mbps Ethernet HWaddr 00:00:C0:90:B3:42
 inet addr 172.16.1.2 Bcast 172.16.1.255 Mask 255.255.255.0

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (10 of 16) [2/20/2001 11:04:09 AM]

 UP BROADCAST RUNNING MTU 1500 Metric 0
 RX packets 3136 errors 217 dropped 7 overrun 26
 TX packets 1752 errors 25 dropped 0 overrun 0

The MTU and Metric fields show the current MTU and metric value for that interface. The metric value is
traditionally used by some operating systems to compute the cost of a route. Linux doesn't use this value yet,
but defines it for compatibility, nevertheless.

The RX and TX lines show how many packets have been received or transmitted error free, how many errors
occurred, how many packets were dropped (probably because of low memory), and how many were lost
because of an overrun. Receiver overruns usually occur when packets come in faster than the kernel can service
the last interrupt. The flag values printed by ifconfig roughly correspond to the names of its command-line
options; they will be explained later.

The following is a list of parameters recognized by ifconfig with the corresponding flag names. Options that
simply turn on a feature also allow it to be turned off again by preceding the option name by a dash (-).

up

This option makes an interface accessible to the IP layer. This option is implied when an address is given
on the command line. It may also be used to reenable an interface that has been taken down temporarily
using the down option.

This option corresponds to the flags UP and RUNNING.

down

This option marks an interface inaccessible to the IP layer. This effectively disables any IP traffic through
the interface. Note that this option will also automatically delete all routing entries that use this interface.

netmask mask

This option assigns a subnet mask to be used by the interface. It may be given as either a 32-bit
hexadecimal number preceded by 0x, or as a dotted quad of decimal numbers. While the dotted quad
format is more common, the hexadecimal representation is often easier to work with. Netmasks are
essentially binary, and it is easier to do binary-to-hexadecimal than binary-to-decimal conversion.

pointopoint address

This option is used for point-to-point IP links that involve only two hosts. This option is needed to
configure SLIP or PLIP interfaces, for example. If a point-to-point address has been set, ifconfig displays
the POINTOPOINT flag.

broadcast address

The broadcast address is usually made up from the network number by setting all bits of the host part.
Some IP implementations (systems derived from BSD 4.2, for instance) use a different scheme in which
all host part bits are cleared instead. The broadcast option adapts to these strange environments. If a
broadcast address has been set, ifconfig displays the BROADCAST flag.

irq

This option allows you to set the IRQ line used by certain devices. This is especially useful for PLIP, but
may also be useful for certain Ethernet cards.

metric number

This option may be used to assign a metric value to the routing table entry created for the interface. This
metric is used by the Routing Information Protocol (RIP) to build routing tables for the network.[10] The
default metric used by ifconfig is zero. If you don't run a RIP daemon, you don't need this option at all; if
you do, you will rarely need to change the metric value.

[10] RIP chooses the optimal route to a given host based on the "length" of the path. It is
computed by summing up the individual metric values of each host-to-host link. By default,
a hop has length 1, but this may be any positive integer less than 16. (A route length of 16 is
equal to infinity. Such routes are considered unusable.) The metric parameter sets this hop
cost, which is then broadcast by the routing daemon.

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (11 of 16) [2/20/2001 11:04:09 AM]

mtu bytes

This sets the Maximum Transmission Unit, which is the maximum number of octets the interface is able
to handle in one transaction. For Ethernets, the MTU defaults to 1,500 (the largest allowable size of an
Ethernet packet); for SLIP interfaces, it is 296. (There is no constraint on the MTU of SLIP links; this
value is a good compromise.)

arp

This is an option specific to broadcast networks such as Ethernets or packet radio. It enables the use of
the Address Resolution Protocol (ARP) to detect the physical addresses of hosts attached to the network.
For broadcast networks, it is on by default. If ARP is disabled, ifconfig displays the NOARP flag.

-arp

This option disables the use of ARP on this interface.

promisc

This option puts the interface in promiscuous mode. On a broadcast network, this makes the interface
receive all packets, regardless of whether they were destined for this host or not. This allows network
traffic analysis using packet filters and such, also called Ethernet snooping. Usually, this is a good
technique for hunting down network problems that are otherwise hard to detect. Tools such as tcpdump
rely on this.

On the other hand, this option allows attackers to do nasty things, such as skim the traffic of your network
for passwords. You can protect against this type of attack by prohibiting just anyone from plugging their
computers into your Ethernet. You could also use secure authentication protocols, such as Kerberos or the
secure shell login suite.[11] This option corresponds to the PROMISC flag.

[11] ssh can be obtained from ftp.cs.hut.fi in /pub/ssh.

-promisc

This option turns promiscuous mode off.

allmulti

Multicast addresses are like Ethernet broadcast addresses, except that instead of automatically including
everybody, the only people who receive packets sent to a multicast address are those programmed to
listen to it. This is useful for applications like Ethernet-based videoconferencing or network audio, to
which only those interested can listen. Multicast addressing is supported by most, but not all, Ethernet
drivers. When this option is enabled, the interface receives and passes multicast packets for processing.
This option corresponds to the ALLMULTI flag.

-allmulti

This option turns multicast addresses off.

The netstat Command
netstat is a useful tool for checking your network configuration and activity. It is in fact a collection of several
tools lumped together. We discuss each of its functions in the following sections.

Displaying the Routing Table

When you invoke netstat with the -r flag, it displays the kernel routing table in the way we've been doing with
route. On vstout, it produces:

netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.1 * 255.255.255.255 UH 0 0 0 lo
172.16.1.0 * 255.255.255.0 U 0 0 0 eth0
172.16.2.0 172.16.1.1 255.255.255.0 UG 0 0 0 eth0

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (12 of 16) [2/20/2001 11:04:09 AM]

The -n option makes netstat print addresses as dotted quad IP numbers rather than the symbolic host and
network names. This option is especially useful when you want to avoid address lookups over the network (e.g.,
to a DNS or NIS server).

The second column of netstat's output shows the gateway to which the routing entry points. If no gateway is
used, an asterisk is printed instead. The third column shows the "generality" of the route, i.e., the network mask
for this route. When given an IP address to find a suitable route for, the kernel steps through each of the routing
table entries, taking the bitwise AND of the address and the genmask before comparing it to the target of the
route.

The fourth column displays the following flags that describe the route:

G

The route uses a gateway.

U

The interface to be used is up.

H

Only a single host can be reached through the route. For example, this is the case for the loopback entry
127.0.0.1.

D

This route is dynamically created. It is set if the table entry has been generated by a routing daemon like
gated or by an ICMP redirect message (see "The Internet Control Message Protocol" in Chapter 2).

M

This route is set if the table entry was modified by an ICMP redirect message.

!

The route is a reject route and datagrams will be dropped.

The next three columns show the MSS, Window and irtt that will be applied to TCP connections established via
this route. The MSS is the Maximum Segment Size and is the size of the largest datagram the kernel will
construct for transmission via this route. The Window is the maximum amount of data the system will accept in
a single burst from a remote host. The acronym irtt stands for "initial round trip time." The TCP protocol
ensures that data is reliably delivered between hosts by retransmitting a datagram if it has been lost. The TCP
protocol keeps a running count of how long it takes for a datagram to be delivered to the remote end, and an
acknowledgement to be received so that it knows how long to wait before assuming a datagram needs to
retransmitted; this process is called the round-trip time. The initial round-trip time is the value that the TCP
protocol will use when a connection is first established. For most network types, the default value is okay, but
for some slow networks, notably certain types of amateur packet radio networks, the time is too short and
causes unnecessary retransmission. The irtt value can be set using the route command. Values of zero in
these fields mean that the default is being used.

Finally, the last field displays the network interface that this route will use.

Displaying Interface Statistics

When invoked with the -i flag, netstat displays statistics for the network interfaces currently configured. If the
-a option is also given, it prints all interfaces present in the kernel, not only those that have been configured
currently. On vstout, the output from netstat will look like this:

netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flags
lo 0 0 3185 0 0 0 3185 0 0 0 BLRU
eth0 1500 0 972633 17 20 120 628711 217 0 0 BRU

The MTU and Met fields show the current MTU and metric values for that interface. The RX and TX columns
show how many packets have been received or transmitted error-free (RX-OK/TX-OK) or damaged

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (13 of 16) [2/20/2001 11:04:09 AM]

(RX-ERR/TX-ERR); how many were dropped (RX-DRP/TX-DRP); and how many were lost because of an
overrun (RX-OVR/TX-OVR).

The last column shows the flags that have been set for this interface. These characters are one-character
versions of the long flag names that are printed when you display the interface configuration with ifconfig:

B

A broadcast address has been set.

L

This interface is a loopback device.

M

All packets are received (promiscuous mode).

O

ARP is turned off for this interface.

P

This is a point-to-point connection.

R

Interface is running.

U

Interface is up.

Displaying Connections

netstat supports a set of options to display active or passive sockets. The options -t, -u, -w, and -x show active
TCP, UDP, RAW, or Unix socket connections. If you provide the -a flag in addition, sockets that are waiting
for a connection (i.e., listening) are displayed as well. This display will give you a list of all servers that are
currently running on your system.

Invoking netstat -ta on vlager produces this output:

$ netstat -ta
Active Internet Connections
Proto Recv-Q Send-Q Local Address Foreign Address (State)
tcp 0 0 *:domain *:* LISTEN
tcp 0 0 *:time *:* LISTEN
tcp 0 0 *:smtp *:* LISTEN
tcp 0 0 vlager:smtp vstout:1040 ESTABLISHED
tcp 0 0 *:telnet *:* LISTEN
tcp 0 0 localhost:1046 vbardolino:telnet ESTABLISHED
tcp 0 0 *:chargen *:* LISTEN
tcp 0 0 *:daytime *:* LISTEN
tcp 0 0 *:discard *:* LISTEN
tcp 0 0 *:echo *:* LISTEN
tcp 0 0 *:shell *:* LISTEN
tcp 0 0 *:login *:* LISTEN

This output shows most servers simply waiting for an incoming connection. However, the fourth line shows an
incoming SMTP connection from vstout, and the sixth line tells you there is an outgoing telnet connection to
vbardolino.[12]

[12] You can tell whether a connection is outgoing from the port numbers. The port number shown
for the calling host will always be a simple integer. On the host being called, a well-known service
port will be in use for which netstat uses the symbolic name such as smtp, found in /etc/services.

Using the -a flag by itself will display all sockets from all families.

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (14 of 16) [2/20/2001 11:04:09 AM]

Checking the ARP Tables
On some occasions, it is useful to view or alter the contents of the kernel's ARP tables, for example when you
suspect a duplicate Internet address is the cause for some intermittent network problem. The arp tool was made
for situations like this. Its command-line options are:

arp [-v] [-t hwtype] -a [hostname]
arp [-v] [-t hwtype] -s hostname hwaddr
arp [-v] -d hostname [hostname...]

All hostname arguments may be either symbolic hostnames or IP addresses in dotted quad notation.

The first invocation displays the ARP entry for the IP address or host specified, or all hosts known if no
hostname is given. For example, invoking arp on vlager may yield:

arp -a
IP address HW type HW address
172.16.1.3 10Mbps Ethernet 00:00:C0:5A:42:C1
172.16.1.2 10Mbps Ethernet 00:00:C0:90:B3:42
172.16.2.4 10Mbps Ethernet 00:00:C0:04:69:AA

which shows the Ethernet addresses of vlager, vstout and vale.

You can limit the display to the hardware type specified using the -t option. This may be ether, ax25, or pronet,
standing for 10 Mbps Ethernet; AMPR AX.25, and IEEE 802.5 token ring equipment, respectively.

The -s option is used to permanently add hostname's Ethernet address to the ARP tables. The hwaddr argument
specifies the hardware address, which is by default expected to be an Ethernet address specified as six
hexadecimal bytes separated by colons. You may also set the hardware address for other types of hardware,
using the -t option.

For some reason, ARP queries for the remote host sometimes fail, for instance when its ARP driver is buggy or
there is another host in the network that erroneously identifies itself with that host's IP address; this problem
requires you to manually add an IP address to the ARP table. Hard-wiring IP addresses in the ARP table is also
a (very drastic) measure to protect yourself from hosts on your Ethernet that pose as someone else.

Invoking arp using the -d switch deletes all ARP entries relating to the given host. This switch may be used to
force the interface to re-attempt obtaining the Ethernet address for the IP address in question. This is useful
when a misconfigured system has broadcasted wrong ARP information (of course, you have to reconfigure the
broken host first).

The -s option may also be used to implement proxy ARP. This is a special technique through which a host, say
gate, acts as a gateway to another host named fnord by pretending that both addresses refer to the same host,
namely gate. It does so by publishing an ARP entry for fnord that points to its own Ethernet interface. Now
when a host sends out an ARP query for fnord, gate will return a reply containing its own Ethernet address. The
querying host will then send all datagrams to gate, which dutifully forwards them to fnord.

These contortions may be necessary when you want to access fnord from a DOS machine with a broken TCP
implementation that doesn't understand routing too well. When you use proxy ARP, it will appear to the DOS
machine as if fnord was on the local subnet, so it doesn't have to know about how to route through a gateway.

Another useful application of proxy ARP is when one of your hosts acts as a gateway to some other host only
temporarily, for instance, through a dial-up link. In a previous example, we encountered the laptop vlite, which
was connected to vlager through a PLIP link from time to time. Of course, this application will work only if the
address of the host you want to provide proxy ARP for is on the same IP subnet as your gateway. vstout could
proxy ARP for any host on the Brewery subnet (172.16.1.0), but never for a host on the Winery subnet
(172.16.2.0).

The proper invocation to provide proxy ARP for fnord is given below; of course, the given Ethernet address
must be that of gate:

arp -s fnord 00:00:c0:a1:42:e0 pub

The proxy ARP entry may be removed again by invoking:

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (15 of 16) [2/20/2001 11:04:09 AM]

arp -d fnord

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking

http://www.oreilly.com/catalog/linag2/book/ch05.html (16 of 16) [2/20/2001 11:04:09 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 6
Name Service and Resolver Configuration
Contents:
The Resolver Library
How DNS Works
Running named

As we discussed in Chapter 2, Issues of TCP/IP Networking, TCP/IP networking may rely on different schemes to
convert names into addresses. The simplest way is a host table stored in /etc/hosts. This is useful only for small LANs
that are run by one single administrator and otherwise have no IP traffic with the outside world. The format of the hosts
file has already been described in Chapter 5, Configuring TCP/IP Networking.

Alternatively, you can use the Berkeley Internet Name Domain service (BIND) for resolving hostnames to IP addresses.
Configuring BIND can be a real chore, but once you've done it, you can easily make changes in the network topology.
On Linux, as on many other Unixish systems, name service is provided through a program called named. At startup, it
loads a set of master files into its internal cache and waits for queries from remote or local user processes. There are
different ways to set up BIND, and not all require you to run a name server on every host.

This chapter can do little more than give a rough sketch of how DNS works and how to operate a name server. It should
be sufficient if you have a small LAN and an Internet uplink. For the most current information, you may want to check
the documentation contained in the BIND source package, which supplies manual pages, release notes, and the BIND
Operator's Guide (BOG). Don't let this name scare you off; it's actually a very useful document. For a more
comprehensive coverage of DNS and associated issues, you may find DNS and BIND by Paul Albitz and Cricket Liu
(O'Reilly) a useful reference. DNS questions may be answered in a newsgroup called comp.protocols.tcp-ip.domains.
For technical details, the Domain Name System is defined by RFC numbers 1033, 1034, and 1035.

The Resolver Library
The term resolver refers not to a special application, but to the resolver library. This is a collection of functions that can
be found in the standard C library. The central routines are gethostbyname(2) and gethostbyaddr(2), which look up all IP
addresses associated with a host name, and vice versa. They may be configured to simply look up the information in
hosts, to query a number of DNS name servers, or to use the hosts database of Network Information Service (NIS).

The resolver functions read configuration files when they are invoked. From these configuration files, they determine
what databases to query, in which order, and other details relevant to how you've configured your environment. The
older Linux standard library, libc, used /etc/host.conf as its master configuration file, but Version 2 of the GNU standard
library, glibc, uses /etc/nsswitch.conf. We'll describe each in turn, since both are commonly used.

The host.conf File

The /etc/host.conf tells the older Linux standard library resolver functions which services to use, and in what order.

Options in host.conf must appear on separate lines. Fields may be separated by white space (spaces or tabs). A hash sign

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (1 of 20) [2/20/2001 11:04:18 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

(#) introduces a comment that extends to the next newline. The following options are available:

order

This option determines the order in which the resolving services are tried. Valid options are bind for querying the
name server, hosts for lookups in /etc/hosts, and nis for NIS lookups. Any or all of them may be specified. The
order in which they appear on the line determines the order in which the respective services are tried.

multi

multi takes on or off as options. This determines if a host in /etc/hosts is allowed to have several IP addresses,
which is usually referred to as being "multi-homed." The default is off. This flag has no effect on DNS or NIS
queries.

nospoof

As we'll explain in the section "Reverse Lookups", DNS allows you to find the hostname belonging to an IP
address by using the in-addr.arpa domain. Attempts by name servers to supply a false hostname are called
spoofing. To guard against this, the resolver can be configured to check whether the original IP address is in fact
associated with the obtained hostname. If not, the name is rejected and an error is returned. This behavior is turned
on by setting nospoof on.

alert

This option takes on or off as arguments. If it is turned on, any spoof attempts will cause the resolver to log a
message to the syslog facility.

trim

This option takes an argument specifying a domain name that will be removed from hostnames before lookup.
This is useful for hosts entries, for which you might only want to specify hostnames without a local domain. If you
specify your local domain name here, it will be removed from a lookup of a host with the local domain name
appended, thus allowing the lookup in /etc/hosts to succeed. The domain name you add must end with the (.)
character (e.g., :linux.org.au.) if trim is to work correctly.

trim options accumulate; you can consider your host as being local to several domains.

A sample file for vlager is shown in Example 6.1.

Example 6.1: Sample host.conf File

/etc/host.conf
We have named running, but no NIS (yet)
order bind,hosts
Allow multiple addrs
multi on
Guard against spoof attempts
nospoof on
Trim local domain (not really necessary).
trim vbrew.com.

Resolver environment variables

The settings from host.conf may be overridden using a number of environment variables:

RESOLV_HOST_CONF

This variable specifies a file to be read instead of /etc/host.conf.

RESOLV_SERV_ORDER

This variable overrides the order option given in host.conf. Services are given as hosts, bind, and nis, separated by
a space, comma, colon, or semicolon.

RESOLV_SPOOF_CHECK

This variable determines the measures taken against spoofing. It is completely disabled by off. The values warn
and warn off enable spoof checking by turning logging on and off, respectively. A value of * turns on spoof
checks, but leaves the logging facility as defined in host.conf.

RESOLV_MULTI

This variable uses a value of on or off to override the multi options from host.conf.

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (2 of 20) [2/20/2001 11:04:18 AM]

RESOLV_OVERRIDE_TRIM_DOMAINS

This variable specifies a list of trim domains that override those given in host.conf. Trim domains were explained
earlier when we discussed the trim keyword.

RESOLV_ADD_TRIM_DOMAINS

This variable specifies a list of trim domains that are added to those given in host.conf.

The nsswitch.conf File

Version 2 of the GNU standard library includes a more powerful and flexible replacement for the older host.conf
mechanism. The concept of the name service has been extended to include a variety of different types of information.
Configuration options for all of the different functions that query these databases have been brought back into a single
configuration file; the nsswitch.conf file.

The nsswitch.conf file allows the system administrator to configure a wide variety of different databases. We'll limit our
discussion to options that relate to host and network IP address resolution. You can easily find more information about
the other features by reading the GNU standard library documentation.

Options in nsswitch.conf must appear on separate lines. Fields may be separated by whitespace (spaces or tabs). A hash
sign (#) introduces a comment that extends to the next newline. Each line describes a particular service; hostname
resolution is one of these. The first field in each line is the name of the database, ending with a colon. The database name
associated with host address resolution is hosts. A related database is networks, which is used for resolution of network
names into network addresses. The remainder of each line stores options that determine the way lookups for that
database are performed.

The following options are available:

dns

Use the Domain Name System (DNS) service to resolve the address. This makes sense only for host address
resolution, not network address resolution. This mechanism uses the /etc/resolv.conf file that we'll describe later in
the chapter.

files

Search a local file for the host or network name and its corresponding address. This option uses the traditional
/etc/hosts and /etc/network files.

nis or nisplus

Use the Network Information System (NIS) to resolve the host or network address. NIS and NIS+ are discussed in
detail in Chapter 13, The Network Information System.

The order in which the services to be queried are listed determines the order in which they are queried when attempting
to resolve a name. The query-order list is in the service description in the /etc/nsswitch.conf file. The services are queried
from left to right and by default searching stops when a resolution is successful.

A simple example of host and network database specification that would mimic our configuration using the older libc
standard library is shown in Example 6.2.

Example 6.2: Sample nsswitch.conf File

/etc/nsswitch.conf
#
Example configuration of GNU Name Service Switch functionality.
Information about this file is available in the `libc6-doc' package.

hosts: dns files
networks: files

This example causes the system to look up hosts first in the Domain Name System, and the /etc/hosts file, if that can't
find them. Network name lookups would be attempted using only the /etc/networks file.

You are able to control the lookup behavior more precisely using "action items" that describe what action to take given
the result of the previous lookup attempt. Action items appear between service specifications, and are enclosed within
square brackets, []. The general syntax of the action statement is:

[[!] status = action ...]

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (3 of 20) [2/20/2001 11:04:18 AM]

There are two possible actions:

return

Controls returns to the program that attempted the name resolution. If a lookup attempt was successful, the
resolver will return with the details, otherwise it will return a zero result.

continue

The resolver will move on to the next service in the list and attempt resolution using it.

The optional (!) character specifies that the status value should be inverted before testing; that is, it means "not."

The available status values on which we can act are:

success

The requested entry was found without error. The default action for this status is return.

notfound

There was no error in the lookup, but the target host or network could not be found. The default action for this
status is continue.

unavail

The service queried was unavailable. This could mean that the hosts or networks file was unreadable for the files
service or that a name server or NIS server did not respond for the dns or nis services. The default action for this
status is continue.

tryagain

This status means the service is temporarily unavailable. For the files files service, this would usually indicate that
the relevant file was locked by some process. For other services, it may mean the server was temporarily unable to
accept connections. The default action for this status is continue.

A simple example of how you might use this mechanism is shown in Example 6.3.

Example 6.3: Sample nsswitch.conf File Using an Action Statement

/etc/nsswitch.conf
#
Example configuration of GNU Name Service Switch functionality.
Information about this file is available in the `libc6-doc' package.

hosts: dns [!UNAVAIL=return] files
networks: files

This example attempts host resolution using the Domain Name Service system. If the return status is anything other than
unavailable, the resolver returns whatever it has found. If, and only if, the DNS lookup attempt returns an unavailable
status, the resolver attempts to use the local /etc/hosts. This means that we should use the hosts file only if our name
server is unavailable for some reason.

Configuring Name Server Lookups Using resolv.conf

When configuring the resolver library to use the BIND name service for host lookups, you also have to tell it which
name servers to use. There is a separate file for this called resolv.conf. If this file does not exist or is empty, the resolver
assumes the name server is on your local host.

To run a name server on your local host, you have to set it up separately, as will be explained in the following section. If
you are on a local network and have the opportunity to use an existing name server, this should always be preferred. If
you use a dialup IP connection to the Internet, you would normally specify the name server of your service provider in
the resolv.conf file.

The most important option in resolv.conf is name server, which gives the IP address of a name server to use. If you
specify several name servers by giving the name server option several times, they are tried in the order given. You
should therefore put the most reliable server first. The current implementation allows you to have up to three name
server statements in resolv.conf. If no name server option is given, the resolver attempts to connect to the name server on
the local host.

Two other options, domain and search, let you use shortcut names for hosts in your local domain. Usually, when just
telnetting to another host in your local domain, you don't want to type in the fully qualified hostname, but use a name

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (4 of 20) [2/20/2001 11:04:18 AM]

like gauss on the command line and have the resolver tack on the mathematics.groucho.edu part.

This is just the domain statement's purpose. It lets you specify a default domain name to be appended when DNS fails to
look up a hostname. For instance, when given the name gauss, the resolver fails to find gauss. in DNS, because there is
no such top-level domain. When given mathematics.groucho.edu as a default domain, the resolver repeats the query for
gauss with the default domain appended, this time succeeding.

That's just fine, you may think, but as soon you get out of the Math department's domain, you're back to those fully
qualified domain names. Of course, you would also want to have shorthands like quark.physics for hosts in the Physics
department's domain.

This is when the search list comes in. A search list can be specified using the search option, which is a generalization of
the domain statement. Where the latter gives a single default domain, the former specifies a whole list of them, each to
be tried in turn until a lookup succeeds. This list must be separated by blanks or tabs.

The search and domain statements are mutually exclusive and may not appear more than once. If neither option is given,
the resolver will try to guess the default domain from the local hostname using the getdomainname(2) system call. If the
local hostname doesn't have a domain part, the default domain will be assumed to be the root domain.

If you decide to put a search statement into resolv.conf, you should be careful about what domains you add to this list.
Resolver libraries prior to BIND 4.9 used to construct a default search list from the domain name when no search list
was given. This default list was made up of the default domain itself, plus all of its parent domains up to the root. This
caused some problems because DNS requests wound up at name servers that were never meant to see them.

Assume you're at the Virtual Brewery and want to log in to foot.groucho.edu. By a slip of your fingers, you mistype foot
as foo, which doesn't exist. GMU's name server will therefore tell you that it knows no such host. With the old-style
search list, the resolver would now go on trying the name with vbrew.com and com appended. The latter is problematic
because groucho.edu.com might actually be a valid domain name. Their name server might then even find foo in their
domain, pointing you to one of their hosts -- which clearly was not intended.

For some applications, these bogus host lookups can be a security problem. Therefore, you should usually limit the
domains on your search list to your local organization, or something comparable. At the Mathematics department of
Groucho Marx University, the search list would commonly be set to maths.groucho.edu and groucho.edu.

If default domains sound confusing to you, consider this sample resolv.conf file for the Virtual Brewery:

/etc/resolv.conf
Our domain
domain vbrew.com
#
We use vlager as central name server:
name server 172.16.1.1

When resolving the name vale, the resolver looks up vale and, failing this, vale.vbrew.com.

Resolver Robustness

When running a LAN inside a larger network, you definitely should use central name servers if they are available. The
name servers develop rich caches that speed up repeat queries, since all queries are forwarded to them. However, this
scheme has a drawback: when a fire destroyed the backbone cable at Olaf's university, no more work was possible on his
department's LAN because the resolver could no longer reach any of the name servers. This situation caused difficulties
with most network services, such as X terminal logins and printing.

Although it is not very common for campus backbones to go down in flames, one might want to take precautions against
cases like this.

One option is to set up a local name server that resolves hostnames from your local domain and forwards all queries for
other hostnames to the main servers. Of course, this is applicable only if you are running your own domain.

Alternatively, you can maintain a backup host table for your domain or LAN in /etc/hosts. This is very simple to do. You
simply ensure that the resolver library queries DNS first, and the hosts file next. In an /etc/host.conf file you'd use "order
bind,hosts", and in an /etc/nsswitch.conf file you'd use "hosts: dns files", to make the resolver fall back to the hosts file if
the central name server is unreachable.

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (5 of 20) [2/20/2001 11:04:18 AM]

How DNS Works
DNS organizes hostnames in a domain hierarchy. A domain is a collection of sites that are related in some sense --
because they form a proper network (e.g., all machines on a campus, or all hosts on BITNET), because they all belong to
a certain organization (e.g., the U.S. government), or because they're simply geographically close. For instance,
universities are commonly grouped in the edu domain, with each university or college using a separate subdomain,
below which their hosts are subsumed. Groucho Marx University have the groucho.edu domain, while the LAN of the
Mathematics department is assigned maths.groucho.edu. Hosts on the departmental network would have this domain
name tacked onto their hostname, so erdos would be known as erdos.maths.groucho.edu. This is called the fully
qualified domain name (FQDN), which uniquely identifies this host worldwide.

Figure 6.1 shows a section of the namespace. The entry at the root of this tree, which is denoted by a single dot, is quite
appropriately called the root domain and encompasses all other domains. To indicate that a hostname is a fully qualified
domain name, rather than a name relative to some (implicit) local domain, it is sometimes written with a trailing dot.
This dot signifies that the name's last component is the root domain.

Figure 6.1: A part of the domain namespace

Depending on its location in the name hierarchy, a domain may be called top-level, second-level, or third-level. More
levels of subdivision occur, but they are rare. This list details several top-level domains you may see frequently:

Domain Description

edu (Mostly U.S.) educational institutions like universities.

com Commercial organizations and companies.

org Non-commercial organizations. Private UUCP networks are often in this domain.

net Gateways and other administrative hosts on a network.

mil U.S. military institutions.

gov U.S. government institutions.

uucp Officially, all site names formerly used as UUCP names without domains have been moved to this domain.

Historically, the first four of these were assigned to the U.S., but recent changes in policy have meant that these domains,
named global Top Level Domains (gTLD), are now considered global in nature. Negotiations are currently underway to
broaden the range of gTLDs, which may result in increased choice in the future.

Outside the U.S., each country generally uses a top-level domain of its own named after the two-letter country code
defined in ISO-3166. Finland, for instance, uses the fi domain; fr is used by France, de by Germany, and au by Australia.
Below this top-level domain, each country's NIC is free to organize hostnames in whatever way they want. Australia has

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (6 of 20) [2/20/2001 11:04:18 AM]

second-level domains similar to the international top-level domains, named com.au and edu.au. Other countries, like
Germany, don't use this extra level, but have slightly long names that refer directly to the organizations running a
particular domain. It's not uncommon to see hostnames like ftp.informatik.uni-erlangen.de. Chalk that up to German
efficiency.

Of course, these national domains do not imply that a host below that domain is actually located in that country; it means
only that the host has been registered with that country's NIC. A Swedish manufacturer might have a branch in Australia
and still have all its hosts registered with the se top-level domain.

Organizing the namespace in a hierarchy of domain names nicely solves the problem of name uniqueness; with DNS, a
hostname has to be unique only within its domain to give it a name different from all other hosts worldwide.
Furthermore, fully qualified names are easy to remember. Taken by themselves, these are already very good reasons to
split up a large domain into several subdomains.

DNS does even more for you than this. It also allows you to delegate authority over a subdomain to its administrators.
For example, the maintainers at the Groucho Computing Center might create a subdomain for each department; we
already encountered the math and physics subdomains above. When they find the network at the Physics department too
large and chaotic to manage from outside (after all, physicists are known to be an unruly bunch of people), they may
simply pass control of the physics.groucho.edu domain to the administrators of this network. These administrators are
free to use whatever hostnames they like and assign them IP addresses from their network in whatever fashion they
desire, without outside interference.

To this end, the namespace is split up into zones, each rooted at a domain. Note the subtle difference between a zone and
a domain: the domain groucho.edu encompasses all hosts at Groucho Marx University, while the zone groucho.edu
includes only the hosts that are managed by the Computing Center directly; those at the Mathematics department, for
example. The hosts at the Physics department belong to a different zone, namely physics.groucho.edu. In Figure 6.1, the
start of a zone is marked by a small circle to the right of the domain name.

Name Lookups with DNS

At first glance, all this domain and zone fuss seems to make name resolution an awfully complicated business. After all,
if no central authority controls what names are assigned to which hosts, how is a humble application supposed to know?

Now comes the really ingenious part about DNS. If you want to find the IP address of erdos, DNS says, "Go ask the
people who manage it, and they will tell you."

In fact, DNS is a giant distributed database. It is implemented by so-called name servers that supply information on a
given domain or set of domains. For each zone there are at least two, or at most a few, name servers that hold all
authoritative information on hosts in that zone. To obtain the IP address of erdos, all you have to do is contact the name
server for the groucho.edu zone, which will then return the desired data.

Easier said than done, you might think. So how do I know how to reach the name server at Groucho Marx University? In
case your computer isn't equipped with an address-resolving oracle, DNS provides for this, too. When your application
wants to look up information on erdos, it contacts a local name server, which conducts a so-called iterative query for it.
It starts off by sending a query to a name server for the root domain, asking for the address of erdos.maths.groucho.edu.
The root name server recognizes that this name does not belong to its zone of authority, but rather to one below the edu
domain. Thus, it tells you to contact an edu zone name server for more information and encloses a list of all edu name
servers along with their addresses. Your local name server will then go on and query one of those, for instance, a.isi.edu.
In a manner similar to the root name server, a.isi.edu knows that the groucho.edu people run a zone of their own, and
points you to their servers. The local name server will then present its query for erdos to one of these, which will finally
recognize the name as belonging to its zone, and return the corresponding IP address.

This looks like a lot of traffic being generated for looking up a measly IP address, but it's really only miniscule compared
to the amount of data that would have to be transferred if we were still stuck with HOSTS.TXT. There's still room for
improvement with this scheme, however.

To improve response time during future queries, the name server stores the information obtained in its local cache. So
the next time anyone on your local network wants to look up the address of a host in the groucho.edu domain, your name
server will go directly to the groucho.edu name server.[1]

[1] If information weren't cached, then DNS would be as inefficient as any other method because each query
would involve the root name servers.

Of course, the name server will not keep this information forever; it will discard it after some time. The expiration
interval is called the time to live, or TTL. Each datum in the DNS database is assigned such a TTL by administrators of
the responsible zone.

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (7 of 20) [2/20/2001 11:04:18 AM]

Types of Name Servers

Name servers that hold all information on hosts within a zone are called authoritative for this zone, and sometimes are
referred to as master name servers. Any query for a host within this zone will end up at one of these master name
servers.

Master servers must be fairly well synchronized. Thus, the zone's network administrator must make one the primary
server, which loads its zone information from data files, and make the others secondary servers, which transfer the zone
data from the primary server at regular intervals.

Having several name servers distributes workload; it also provides backup. When one name server machine fails in a
benign way, like crashing or losing its network connection, all queries will fall back to the other servers. Of course, this
scheme doesn't protect you from server malfunctions that produce wrong replies to all DNS requests, such as from
software bugs in the server program itself.

You can also run a name server that is not authoritative for any domain.[2] This is useful, as the name server will still be
able to conduct DNS queries for the applications running on the local network and cache the information. Hence it is
called a caching-only server.

[2] Well, almost. A name server has to provide at least name service for localhost and reverse lookups of
127.0.0.1.

The DNS Database

We have seen that DNS not only deals with IP addresses of hosts, but also exchanges information on name servers. DNS
databases may have, in fact, many different types of entries.

A single piece of information from the DNS database is called a resource record (RR). Each record has a type associated
with it describing the sort of data it represents, and a class specifying the type of network it applies to. The latter
accommodates the needs of different addressing schemes, like IP addresses (the IN class), Hesiod addresses (used by
MIT's Kerberos system), and a few more. The prototypical resource record type is the A record, which associates a fully
qualified domain name with an IP address.

A host may be known by more than one name. For example you might have a server that provides both FTP and World
Wide Web servers, which you give two names: ftp.machine.org and www.machine.org. However, one of these names
must be identified as the official or canonical hostname, while the others are simply aliases referring to the official
hostname. The difference is that the canonical hostname is the one with an associated A record, while the others only
have a record of type CNAME that points to the canonical hostname.

We will not go through all record types here, but we will give you a brief example. Example 6.4 shows a part of the
domain database that is loaded into the name servers for the physics.groucho.edu zone.

Example 6.4: An Excerpt from the named.hosts File for the Physics Department

; Authoritative Information on physics.groucho.edu.
@ IN SOA niels.physics.groucho.edu. janet.niels.physics.groucho.edu. {
 1999090200 ; serial no
 360000 ; refresh
 3600 ; retry
 3600000 ; expire
 3600 ; default ttl
 }
;
; Name servers
 IN NS niels
 IN NS gauss.maths.groucho.edu.
gauss.maths.groucho.edu. IN A 149.76.4.23
;
; Theoretical Physics (subnet 12)
niels IN A 149.76.12.1
 IN A 149.76.1.12
name server IN CNAME niels
otto IN A 149.76.12.2
quark IN A 149.76.12.4

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (8 of 20) [2/20/2001 11:04:18 AM]

down IN A 149.76.12.5
strange IN A 149.76.12.6
...
; Collider Lab. (subnet 14)
boson IN A 149.76.14.1
muon IN A 149.76.14.7
bogon IN A 149.76.14.12
...

Apart from the A and CNAME records, you can see a special record at the top of the file, stretching several lines. This is
the SOA resource record signaling the Start of Authority, which holds general information on the zone the server is
authoritative for. The SOA record comprises, for instance, the default time to live for all records.

Note that all names in the sample file that do not end with a dot should be interpreted relative to the physics.groucho.edu
domain. The special name (@) used in the SOA record refers to the domain name by itself.

We have seen earlier that the name servers for the groucho.edu domain somehow have to know about the physics zone
so that they can point queries to their name servers. This is usually achieved by a pair of records: the NS record that
gives the server's FQDN, and an A record that associates an address with that name. Since these records are what holds
the namespace together, they are frequently called glue records. They are the only instances of records in which a parent
zone actually holds information on hosts in the subordinate zone. The glue records pointing to the name servers for
physics.groucho.edu are shown in Example 6.5.

Example 6.5: An Excerpt from the named.hosts File for GMU

 ; Zone data for the groucho.edu zone.
 @ IN SOA vax12.gcc.groucho.edu. joe.vax12.gcc.groucho.edu. {
 1999070100 ; serial no
 360000 ; refresh
 3600 ; retry
 3600000 ; expire
 3600 ; default ttl
 }

 ;
 ; Glue records for the physics.groucho.edu zone
 physics IN NS niels.physics.groucho.edu.
 IN NS gauss.maths.groucho.edu.
 niels.physics IN A 149.76.12.1
 gauss.maths IN A 149.76.4.23
 ...

Reverse Lookups

Finding the IP address belonging to a host is certainly the most common use for the Domain Name System, but
sometimes you'll want to find the canonical hostname corresponding to an address. Finding this hostname is called
reverse mapping, and is used by several network services to verify a client's identity. When using a single hosts file,
reverse lookups simply involve searching the file for a host that owns the IP address in question. With DNS, an
exhaustive search of the namespace is out of the question. Instead, a special domain, in-addr.arpa, has been created that
contains the IP addresses of all hosts in a reversed dotted quad notation. For instance, an IP address of 149.76.12.4
corresponds to the name 4.12.76.149.in-addr.arpa. The resource-record type linking these names to their canonical
hostnames is PTR.

Creating a zone of authority usually means that its administrators have full control over how they assign addresses to
names. Since they usually have one or more IP networks or subnets at their hands, there's a one-to-many mapping
between DNS zones and IP networks. The Physics department, for instance, comprises the subnets 149.76.8.0,
149.76.12.0, and 149.76.14.0.

Consequently, new zones in the in-addr.arpa domain have to be created along with the physics zone, and delegated to
the network administrators at the department: 8.76.149.in-addr.arpa, 12.76.149.in-addr.arpa, and
14.76.149.in-addr.arpa. Otherwise, installing a new host at the Collider Lab would require them to contact their parent
domain to have the new address entered into their in-addr.arpa zone file.

The zone database for subnet 12 is shown in Example 6.6. The corresponding glue records in the database of their parent

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (9 of 20) [2/20/2001 11:04:18 AM]

zone are shown in Example 6.7.

Example 6.6: An Excerpt from the named.rev File for Subnet 12

 ; the 12.76.149.in-addr.arpa domain.
 @ IN SOA niels.physics.groucho.edu. janet.niels.physics.groucho.edu. {
 1999090200 360000 3600 3600000 3600
 }
 2 IN PTR otto.physics.groucho.edu.
 4 IN PTR quark.physics.groucho.edu.
 5 IN PTR down.physics.groucho.edu.
 6 IN PTR strange.physics.groucho.edu.

Example 6.7: An Excerpt from the named.rev File for Network 149.76

 ; the 76.149.in-addr.arpa domain.
 @ IN SOA vax12.gcc.groucho.edu. joe.vax12.gcc.groucho.edu. {
 1999070100 360000 3600 3600000 3600
 }
 ...
 ; subnet 4: Mathematics Dept.
 1.4 IN PTR sophus.maths.groucho.edu.
 17.4 IN PTR erdos.maths.groucho.edu.
 23.4 IN PTR gauss.maths.groucho.edu.
 ...
 ; subnet 12: Physics Dept, separate zone
 12 IN NS niels.physics.groucho.edu.
 IN NS gauss.maths.groucho.edu.
 niels.physics.groucho.edu. IN A 149.76.12.1
 gauss.maths.groucho.edu. IN A 149.76.4.23
 ...

in-addr.arpa system zones can only be created as supersets of IP networks. An even more severe restriction is that these
networks' netmasks have to be on byte boundaries. All subnets at Groucho Marx University have a netmask of
255.255.255.0, hence an in-addr.arpa zone could be created for each subnet. However, if the netmask were
255.255.255.128 instead, creating zones for the subnet 149.76.12.128 would be impossible, because there's no way to tell
DNS that the 12.76.149.in-addr.arpa domain has been split into two zones of authority, with hostnames ranging from 1
through 127, and 128 through 255, respectively.

Running named
named (pronounced name-dee) provides DNS on most Unix machines. It is a server program originally developed for
BSD to provide name service to clients, and possibly to other name servers. BIND Version 4 was around for some time
and appeared in most Linux distributions. The new release, Version 8, has been introduced in most Linux distributions,
and is a big change from previous versions.[3] It has many new features, such as support for DNS dynamic updates,
DNS change notifications, much improved performance, and a new configuration file syntax. Please check the
documentation contained in the source distribution for details.

[3] BIND 4.9 was developed by Paul Vixie, paul@vix.com, but BIND is now maintained by the Internet
Software Consortium, bind-bugs@isc.org.

This section requires some understanding of the way DNS works. If the following discussion is all Greek to you, you
may want to reread the section "How DNS Works".

named is usually started at system boot time and runs until the machine goes down again. Implementations of BIND
prior to Version 8 take their information from a configuration file called /etc/named.boot and various files that map
domain names to addresses. The latter are called zone files. Versions of BIND from Version 8 onwards use
/etc/named.conf in place of /etc/named.boot.

To run named at the prompt, enter:

/usr/sbin/named

named will come up and read the named.boot file and any zone files specified therein. It writes its process ID to
/var/run/named.pid in ASCII, downloads any zone files from primary servers, if necessary, and starts listening on port 53

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (10 of 20) [2/20/2001 11:04:18 AM]

for DNS queries.

The named.boot File

The BIND configuration file prior to Version 8 was very simple in structure. BIND Version 8 has a very different
configuration file syntax to deal with many of the new features introduced. The name of the configuration file changed
from /etc/named.boot, in older versions of BIND, to /etc/named.conf in BIND Version 8. We'll focus on configuring the
older version because it is probably what most distributions are still using, but we'll present an equivalent named.conf to
illustrate the differences, and we'll talk about how to convert the old format into the new one.

The named.boot file is generally small and contains little but pointers to master files containing zone information and
pointers to other name servers. Comments in the boot file start with the (#) or (;) characters and extend to the next
newline. Before we discuss the format of named.boot in more detail, we will take a look at the sample file for vlager
given in Example 6.8.

Example 6.8: The named.boot File for vlager

;
; /etc/named.boot file for vlager.vbrew.com
;
directory /var/named
;
; domain file
;-----------------
cache . named.ca
primary vbrew.com named.hosts
primary 0.0.127.in-addr.arpa named.local
primary 16.172.in-addr.arpa named.rev

Let's look at each statement individually. The directory keyword tells named that all filenames referred to later in this
file, zone files for example, are located in the /var/named directory. This saves a little typing.

The primary keyword shown in this example loads information into named. This information is taken from the master
files specified as the last of the parameters. These files represent DNS resource records, which we will look at next.

In this example, we configured named as the primary name server for three domains, as indicated by the three primary
statements. The first of these statements instructs named to act as a primary server for vbrew.com, taking the zone data
from the file named.hosts.

The cache keyword is very special and should be present on virtually all machines running a name server. It instructs
named to enable its cache and to load the root name server hints from the cache file specified (named.ca in our
example). We will come back to the name server hints in the following list.

Here's a list of the most important options you can use in named.boot:

directory

This option specifies a directory in which zone files reside. Names of files in other options may be given relative
to this directory. Several directories may be specified by repeatedly using directory. The Linux file system
standard suggests this should be /var/named.

primary

This option takes a domain name and filename as an argument, declaring the local server authoritative for the
named domain. As a primary server, named loads the zone information from the given master file.

There will always be at least one primary entry in every boot file used for reverse mapping of network 127.0.0.0,
which is the local loopback network.

secondary

This statement takes a domain name, an address list, and a filename as an argument. It declares the local server a
secondary master server for the specified domain.

A secondary server holds authoritative data on the domain, too, but it doesn't gather it from files; instead, it tries to
download it from the primary server. The IP address of at least one primary server thus must be given to named in
the address list. The local server contacts each of them in turn until it successfully transfers the zone database,
which is then stored in the backup file given as the third argument. If none of the primary servers responds, the

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (11 of 20) [2/20/2001 11:04:19 AM]

zone data is retrieved from the backup file instead.

named then attempts to refresh the zone data at regular intervals. This process is explained later in connection with
the SOA resource record type.

cache

This option takes a domain name and filename as arguments. This file contains the root server hints, which is a list
of records pointing to the root name servers. Only NS and A records will be recognized. The domain should be the
root domain name, a simple period (.).

This information is absolutely crucial to named; if the cache statement does not occur in the boot file, named will
not develop a local cache at all. This situation/lack of development will severely degrade performance and
increase network load if the next server queried is not on the local net. Moreover, named will not be able to reach
any root name servers, and thus won't resolve any addresses except those it is authoritative for. An exception from
this rule involves forwarding servers (see the forwarders option that follows).

forwarders

This statement takes a whitespace-separated list of addresses as an argument. The IP addresses in this list specify a
list of name servers that named may query if it fails to resolve a query from its local cache. They are tried in order
until one of them responds to the query. Typically, you would use the name server of your network provider or
another well-known server as a forwarder.

slave

This statement makes the name server a slave server. It never performs recursive queries itself, but only forwards
them to servers specified in the forwarders statement.

There are two options that we will not describe here: sortlist and domain. Two other directives may also be used inside
these database files: $INCLUDE and $ORIGIN. Since they are rarely needed, we will not describe them here, either.

The BIND 8 host.conf File

BIND Version 8 introduced a range of new features, and with these came a new configuration file syntax. The
named.boot, with its simple single line statements, was replaced by the named.conf file, with a syntax like that of gated
and resembling C source syntax.

The new syntax is more complex, but fortunately a tool has been provided that automates conversion from the old syntax
to the new syntax. In the BIND 8 source package, a perl program called named-bootconf.pl is provided that will read
your existing named.boot file from stdin and convert it into the equivalent named.conf format on stdout. To use it,
you must have the perl interpreter installed.

You should use the script somewhat like this:

cd /etc
named-bootconf.pl <named.boot >named.conf

The script then produces a named.conf that looks like that shown in Example 6.9. We've cleaned out a few of the helpful
comments the script includes to help show the almost direct relationship between the old and the new syntax.

Example 6.9: The BIND 8 equivalent named.conf File for vlager

//
// /etc/named.boot file for vlager.vbrew.com
options {
 directory "/var/named";
};

zone "." {
 type hint;
 file "named.ca";
};

zone "vbrew.com" {
 type master;
 file "named.hosts";
};

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (12 of 20) [2/20/2001 11:04:19 AM]

zone "0.0.127.in-addr.arpa" {
 type master;
 file "named.local";
};

zone "16.172.in-addr.arpa" {
 type master;
 file "named.rev";
};

If you take a close look, you will see that each of the one-line statements in named.boot has been converted into a C-like
statement enclosed within {} characters in the named.conf file.

The comments, which in the named.boot file were indicated by a semicolon (;), are now indicated by two forward
slashes (//).

The directory statement has been translated into an options paragraph with a directory clause.

The cache and primary statements have been converted into zone paragraphs with type clauses of hint and master,
respectively.

The zone files do not need to be modified in any way; their syntax remains unchanged.

The new configuration syntax allows for many new options that we haven't covered here. If you'd like information on the
new options, the best source of information is the documentation supplied with the BIND Version 8 source package.

The DNS Database Files

Master files included with named, like named.hosts, always have a domain associated with them, which is called the
origin. This is the domain name specified with the cache and primary options. Within a master file, you are allowed to
specify domain and host names relative to this domain. A name given in a configuration file is considered absolute if it
ends in a single dot, otherwise it is considered relative to the origin. The origin by itself may be referred to using (@).

The data contained in a master file is split up in resource records(RRs). RRs are the smallest units of information
available through DNS. Each resource record has a type. A records, for instance, map a hostname to an IP address, and a
CNAME record associates an alias for a host with its official hostname. To see an example, look at Example 6.11, which
shows the named.hosts master file for the Virtual Brewery.

Resource record representations in master files share a common format:

[domain] [ttl] [class] type rdata

Fields are separated by spaces or tabs. An entry may be continued across several lines if an opening brace occurs before
the first newline and the last field is followed by a closing brace. Anything between a semicolon and a newline is
ignored. A description of the format terms follows:

domain

This term is the domain name to which the entry applies. If no domain name is given, the RR is assumed to apply
to the domain of the previous RR.

ttl

In order to force resolvers to discard information after a certain time, each RR is associated a time to live (ttl). The
ttl field specifies the time in seconds that the information is valid after it has been retrieved from the server. It is a
decimal number with at most eight digits.

If no ttl value is given, the field value defaults to that of the minimum field of the preceding SOA record.

class

This is an address class, like IN for IP addresses or HS for objects in the Hesiod class. For TCP/IP networking,
you have to specify IN.

If no class field is given, the class of the preceding RR is assumed.

type

This describes the type of the RR. The most common types are A, SOA, PTR, and NS. The following sections
describe the various types of RRs.

rdata

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (13 of 20) [2/20/2001 11:04:19 AM]

This holds the data associated with the RR. The format of this field depends on the type of RR. In the following
discussion, it will be described for each RR separately.

The following is partial list of RRs to be used in DNS master files. There are a couple more of them that we will not
explain; they are experimental and of little use, generally.

SOA

This RR describes a zone of authority (SOA means "Start of Authority"). It signals that the records following the
SOA RR contain authoritative information for the domain. Every master file included by a primary statement must
contain an SOA record for this zone. The resource data contains the following fields:

origin

This field is the canonical hostname of the primary name server for this domain. It is usually given as an
absolute name.

contact

This field is the email address of the person responsible for maintaining the domain, with the "@" sign
replaced by a dot. For instance, if the responsible person at the Virtual Brewery were janet, this field would
contain janet.vbrew.com.

serial

This field is the version number of the zone file, expressed as a single decimal number. Whenever data is
changed in the zone file, this number should be incremented. A common convention is to use a number that
reflects the date of the last update, with a version number appended to it to cover the case of multiple
updates occurring on a single day, e.g., 2000012600 being update 00 that occurred on January 26, 2000.

The serial number is used by secondary name servers to recognize zone information changes. To stay up to
date, secondary servers request the primary server's SOA record at certain intervals and compare the serial
number to that of the cached SOA record. If the number has changed, the secondary servers transfer the
whole zone database from the primary server.

refresh

This field specifies the interval in seconds that the secondary servers should wait between checking the
SOA record of the primary server. Again, this is a decimal number with at most eight digits.

Generally, the network topology doesn't change too often, so this number should specify an interval of
roughly a day for larger networks, and even more for smaller ones.

retry

This number determines the intervals at which a secondary server should retry contacting the primary server
if a request or a zone refresh fails. It must not be too low, or a temporary failure of the server or a network
problem could cause the secondary server to waste network resources. One hour, or perhaps one-half hour,
might be a good choice.

expire

This field specifies the time in seconds after which a secondary server should finally discard all zone data if
it hasn't been able to contact the primary server. You should normally set this field to at least a week
(604,800 seconds), but increasing it to a month or more is also reasonable.

minimum

This field is the default ttl value for resource records that do not explicitly contain one. The ttl value
specifies the maximum amount of time other name servers may keep the RR in their cache. This time
applies only to normal lookups, and has nothing to do with the time after which a secondary server should
try to update the zone information.

If the topology of your network does not change frequently, a week or even more is probably a good choice.
If single RRs change more frequently, you could still assign them smaller ttls individually. If your network
changes frequently, you may want to set minimum to one day (86,400 seconds).

A

This record associates an IP address with a hostname. The resource data field contains the address in dotted quad
notation.

For each hostname, there must be only one A record. The hostname used in this A record is considered the official
or canonical hostname. All other hostnames are aliases and must be mapped onto the canonical hostname using a

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (14 of 20) [2/20/2001 11:04:19 AM]

CNAME record. If the canonical name of our host were vlager, we'd have an A record that associated that
hostname with its IP address. Since we may also want another name associated with that address, say news, we'd
create a CNAME record that associates this alternate name with the canonical name. We'll talk more about
CNAME records shortly.

NS

NS records are used to specify a zone's primary server and all its secondary servers. An NS record points to a
master name server of the given zone, with the resource data field containing the hostname of the name server.

You will meet NS records in two situations: The first situation is when you delegate authority to a subordinate
zone; the second is within the master zone database of the subordinate zone itself. The sets of servers specified in
both the parent and delegated zones should match.

The NS record specifies the name of the primary and secondary name servers for a zone. These names must be
resolved to an address so they can be used. Sometimes the servers belong to the domain they are serving, which
causes a "chicken and egg" problem; we can't resolve the address until the name server is reachable, but we can't
reach the name server until we resolve its address. To solve this dilemma, we can configure special A records
directly into the name server of the parent zone. The A records allow the name servers of the parent domain to
resolve the IP address of the delegated zone name servers. These records are commonly called glue records
because they provide the "glue" that binds a delegated zone to its parent.

CNAME

This record associates an alias with a host's canonical hostname. It provides an alternate name by which users can
refer to the host whose canonical name is supplied as a parameter. The canonical hostname is the one the master
file provides an A record for; aliases are simply linked to that name by a CNAME record, but don't have any other
records of their own.

PTR

This type of record is used to associate names in the in-addr.arpa domain with hostnames. It is used for reverse
mapping of IP addresses to hostnames. The hostname given must be the canonical hostname.

MX

This RR announces a mail exchanger for a domain. Mail exchangers are discussed in "Mail Routing on the
Internet". The syntax of an MX record is:

[domain] [ttl] [class] MX preference host

host names the mail exchanger for domain. Every mail exchanger has an integer preference associated with it. A
mail transport agent that wants to deliver mail to domain tries all hosts who have an MX record for this domain
until it succeeds. The one with the lowest preference value is tried first, then the others, in order of increasing
preference value.

HINFO

This record provides information on the system's hardware and software. Its syntax is:

[domain] [ttl] [class] HINFO hardware software

The hardware field identifies the hardware used by this host. Special conventions are used to specify this. A list of
valid "machine names" is given in the Assigned Numbers RFC (RFC-1700). If the field contains any blanks, it
must be enclosed in double quotes. The software field names the operating system software used by the system.
Again, a valid name from the Assigned Numbers RFC should be chosen.

An HINFO record to describe an Intel-based Linux machine should look something like:

tao 36500 IN HINFO IBM-PC LINUX2.2

and HINFO records for Linux running on Motorola 68000-based machines might look like:

cevad 36500 IN HINFO ATARI-104ST LINUX2.0
jedd 36500 IN HINFO AMIGA-3000 LINUX2.0

Caching-only named Configuration

There is a special type of named configuration that we'll talk about before we explain how to build a full name server
configuration. It is called a caching-only configuration. It doesn't really serve a domain, but acts as a relay for all DNS
queries produced on your host. The advantage of this scheme is that it builds up a cache so only the first query for a
particular host is actually sent to the name servers on the Internet. Any repeated request will be answered directly from
the cache in your local name server. This may not seem useful yet, but it will when you are dialing in to the Internet, as

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (15 of 20) [2/20/2001 11:04:19 AM]

described in Chapter 7, Serial Line IP and Chapter 8, The Point-to-Point Protocol.

A named.boot file for a caching-only server looks like this:

; named.boot file for caching-only server
directory /var/named
primary 0.0.127.in-addr.arpa named.local ; localhost network
cache . named.ca ; root servers

In addition to this named.boot file, you must set up the named.ca file with a valid list of root name servers. You could
copy and use Example 6.10 for this purpose. No other files are needed for a caching-only server configuration.

Writing the Master Files

Example 6.10, Example 6.11, Example 6.12, and Example 6.13 give sample files for a name server at the brewery,
located on vlager. Due to the nature of the network discussed (a single LAN), the example is pretty straightforward.

The named.ca cache file shown in Example 6.10 shows sample hint records for a root name server. A typical cache file
usually describes about a dozen name servers. You can obtain the current list of name servers for the root domain using
the nslookup tool described in the next section.[4]

[4] Note that you can't query your name server for the root servers if you don't have any root server hints
installed. To escape this dilemma, you can either make nslookup use a different name server, or use the
sample file in Example 6.10 as a starting point, and then obtain the full list of valid servers.

Example 6.10: The named.ca File

;
; /var/named/named.ca Cache file for the brewery.
; We're not on the Internet, so we don't need
; any root servers. To activate these
; records, remove the semicolons.
;
;. 3600000 IN NS A.ROOT-SERVERS.NET.
;A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;. 3600000 NS B.ROOT-SERVERS.NET.
;B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;. 3600000 NS C.ROOT-SERVERS.NET.
;C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;. 3600000 NS D.ROOT-SERVERS.NET.
;D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
;. 3600000 NS E.ROOT-SERVERS.NET.
;E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;. 3600000 NS F.ROOT-SERVERS.NET.
;F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
;. 3600000 NS G.ROOT-SERVERS.NET.
;G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
;. 3600000 NS H.ROOT-SERVERS.NET.
;H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
;. 3600000 NS I.ROOT-SERVERS.NET.
;I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
;. 3600000 NS J.ROOT-SERVERS.NET.
;J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10
;. 3600000 NS K.ROOT-SERVERS.NET.
;K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
;. 3600000 NS L.ROOT-SERVERS.NET.
;L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
;. 3600000 NS M.ROOT-SERVERS.NET.
;M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
;

Example 6.11: The named.hosts File

;

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (16 of 20) [2/20/2001 11:04:19 AM]

; /var/named/named.hosts Local hosts at the brewery
; Origin is vbrew.com
;
@ IN SOA vlager.vbrew.com. janet.vbrew.com. (
 2000012601 ; serial
 86400 ; refresh: once per day
 3600 ; retry: one hour
 3600000 ; expire: 42 days
 604800 ; minimum: 1 week
)
 IN NS vlager.vbrew.com.
;
; local mail is distributed on vlager
 IN MX 10 vlager
;
; loopback address
localhost. IN A 127.0.0.1
;
; Virtual Brewery Ethernet
vlager IN A 172.16.1.1
vlager-if1 IN CNAME vlager
; vlager is also news server
news IN CNAME vlager
vstout IN A 172.16.1.2
vale IN A 172.16.1.3
;
; Virtual Winery Ethernet
vlager-if2 IN A 172.16.2.1
vbardolino IN A 172.16.2.2
vchianti IN A 172.16.2.3
vbeaujolais IN A 172.16.2.4
;
; Virtual Spirits (subsidiary) Ethernet
vbourbon IN A 172.16.3.1
vbourbon-if1 IN CNAME vbourbon

Example 6.12: The named.local File

;
; /var/named/named.local Reverse mapping of 127.0.0
; Origin is 0.0.127.in-addr.arpa.
;
@ IN SOA vlager.vbrew.com. joe.vbrew.com. (
 1 ; serial
 360000 ; refresh: 100 hrs
 3600 ; retry: one hour
 3600000 ; expire: 42 days
 360000 ; minimum: 100 hrs
)
 IN NS vlager.vbrew.com.
1 IN PTR localhost.

Example 6.13: The named.rev File

;
; /var/named/named.rev Reverse mapping of our IP addresses
; Origin is 16.172.in-addr.arpa.
;
@ IN SOA vlager.vbrew.com. joe.vbrew.com. (
 16 ; serial
 86400 ; refresh: once per day
 3600 ; retry: one hour

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (17 of 20) [2/20/2001 11:04:19 AM]

 3600000 ; expire: 42 days
 604800 ; minimum: 1 week
)
 IN NS vlager.vbrew.com.
; brewery
1.1 IN PTR vlager.vbrew.com.
2.1 IN PTR vstout.vbrew.com.
3.1 IN PTR vale.vbrew.com.
; winery
1.2 IN PTR vlager-if2.vbrew.com.
2.2 IN PTR vbardolino.vbrew.com.
3.2 IN PTR vchianti.vbrew.com.
4.2 IN PTR vbeaujolais.vbrew.com.

Verifying the Name Server Setup

nslookup is a great tool for checking the operation of your name server setup. It can be used both interactively with
prompts and as a single command with immediate output. In the latter case, you simply invoke it as:

$ nslookup
hostname

nslookup queries the name server specified in resolv.conf for hostname. (If this file names more than one server,
nslookup chooses one at random.)

The interactive mode, however, is much more exciting. Besides looking up individual hosts, you may query for any type
of DNS record and transfer the entire zone information for a domain.

When invoked without an argument, nslookup displays the name server it uses and enters interactive mode. At the >
prompt, you may type any domain name you want to query. By default, it asks for class A records, those containing the
IP address relating to the domain name.

You can look for record types by issuing:

> set type=type

in which type is one of the resource record names described earlier, or ANY.

You might have the following nslookup session:

$ nslookup
Default Server: tao.linux.org.au
Address: 203.41.101.121

> metalab.unc.edu
Server: tao.linux.org.au
Address: 203.41.101.121

Name: metalab.unc.edu
Address: 152.2.254.81

>

The output first displays the DNS server being queried, and then the result of the query.

If you try to query for a name that has no IP address associated with it, but other records were found in the DNS
database, nslookup returns with an error message saying "No type A records found." However, you can make it
query for records other than type A by issuing the set type command. To get the SOA record of unc.edu, you would
issue:

> unc.edu
Server: tao.linux.org.au
Address: 203.41.101.121

*** No address (A) records available for unc.edu
> set type=SOA
> unc.edu
Server: tao.linux.org.au

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (18 of 20) [2/20/2001 11:04:19 AM]

Address: 203.41.101.121

unc.edu
 origin = ns.unc.edu
 mail addr = host-reg.ns.unc.edu
 serial = 1998111011
 refresh = 14400 (4H)
 retry = 3600 (1H)
 expire = 1209600 (2W)
 minimum ttl = 86400 (1D)
unc.edu name server = ns2.unc.edu
unc.edu name server = ncnoc.ncren.net
unc.edu name server = ns.unc.edu
ns2.unc.edu internet address = 152.2.253.100
ncnoc.ncren.net internet address = 192.101.21.1
ncnoc.ncren.net internet address = 128.109.193.1
ns.unc.edu internet address = 152.2.21.1

In a similar fashion, you can query for MX records:

> set type=MX
> unc.edu
Server: tao.linux.org.au
Address: 203.41.101.121

unc.edu preference = 0, mail exchanger = conga.oit.unc.edu
unc.edu preference = 10, mail exchanger = imsety.oit.unc.edu
unc.edu name server = ns.unc.edu
unc.edu name server = ns2.unc.edu
unc.edu name server = ncnoc.ncren.net
conga.oit.unc.edu internet address = 152.2.22.21
imsety.oit.unc.edu internet address = 152.2.21.99
ns.unc.edu internet address = 152.2.21.1
ns2.unc.edu internet address = 152.2.253.100
ncnoc.ncren.net internet address = 192.101.21.1
ncnoc.ncren.net internet address = 128.109.193.1

Using a type of ANY returns all resource records associated with a given name.

A practical application of nslookup, besides debugging, is to obtain the current list of root name servers. You can obtain
this list by querying for all NS records associated with the root domain:

> set type=NS
> .
Server: tao.linux.org.au
Address: 203.41.101.121

Non-authoritative answer:
(root) name server = A.ROOT-SERVERS.NET
(root) name server = H.ROOT-SERVERS.NET
(root) name server = B.ROOT-SERVERS.NET
(root) name server = C.ROOT-SERVERS.NET
(root) name server = D.ROOT-SERVERS.NET
(root) name server = E.ROOT-SERVERS.NET
(root) name server = I.ROOT-SERVERS.NET
(root) name server = F.ROOT-SERVERS.NET
(root) name server = G.ROOT-SERVERS.NET
(root) name server = J.ROOT-SERVERS.NET
(root) name server = K.ROOT-SERVERS.NET
(root) name server = L.ROOT-SERVERS.NET
(root) name server = M.ROOT-SERVERS.NET

Authoritative answers can be found from:
A.ROOT-SERVERS.NET internet address = 198.41.0.4
H.ROOT-SERVERS.NET internet address = 128.63.2.53

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (19 of 20) [2/20/2001 11:04:19 AM]

B.ROOT-SERVERS.NET internet address = 128.9.0.107
C.ROOT-SERVERS.NET internet address = 192.33.4.12
D.ROOT-SERVERS.NET internet address = 128.8.10.90
E.ROOT-SERVERS.NET internet address = 192.203.230.10
I.ROOT-SERVERS.NET internet address = 192.36.148.17
F.ROOT-SERVERS.NET internet address = 192.5.5.241
G.ROOT-SERVERS.NET internet address = 192.112.36.4
J.ROOT-SERVERS.NET internet address = 198.41.0.10
K.ROOT-SERVERS.NET internet address = 193.0.14.129
L.ROOT-SERVERS.NET internet address = 198.32.64.12
M.ROOT-SERVERS.NET internet address = 202.12.27.33

To see the complete set of available commands, use the help command in nslookup.

Other Useful Tools

There are a few tools that can help you with your tasks as a BIND administrator. We will briefly describe two of them
here. Please refer to the documentation that comes with these tools for more information on how to use them.

hostcvt helps you with your initial BIND configuration by converting your /etc/hosts file into master files for named. It
generates both the forward (A) and reverse mapping (PTR) entries, and takes care of aliases. Of course, it won't do the
whole job for you, as you may still want to tune the timeout values in the SOA record, for example, or add MX records.
Still, it may help you save a few aspirins. hostcvt is part of the BIND source, but can also be found as a standalone
package on a few Linux FTP servers.

After setting up your name server, you may want to test your configuration. Some good tools that make this job much
simpler: the first is called dnswalk, which is a Perl-based package. The second is called nslint. They both walk your DNS
database looking for common mistakes and verify that the information they find is consistent. Two other useful tools are
host and dig, which are general purpose DNS database query tools. You can use these tools to manually inspect and
diagnose DNS database entries.

These tools are likely to be available in prepackaged form. dnswalk and nslint are available in source from
http://www.visi.com/~barr/dnswalk/ and ftp://ftp.ee.lbl.gov/nslint.tar.Z. The host and dig source codes can be found at
ftp://ftp.nikhef.nl/pub/network/ and ftp://ftp.is.co.za/networking/ip/dns/dig/.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration

http://www.oreilly.com/catalog/linag2/book/ch06.html (20 of 20) [2/20/2001 11:04:19 AM]

http://www.visi.com/~barr/dnswalk/
ftp://ftp.ee.lbl.gov/nslint.tar.Z
ftp://ftp.nikhef.nl/pub/network/
ftp://ftp.is.co.za/networking/ip/dns/dig/
http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 7
Serial Line IP
Contents:
General Requirements
SLIP Operation
Dealing with Private IP Networks
Using dip
Running in Server Mode

Packet protocols like IP or IPX rely upon the receiver host knowing where the start and end of each packet
are in the data stream. The mechanism used to mark and detect the start and end of packets is called
delimitation. The Ethernet protocol manages this mechanism in a LAN environment, and the SLIP and PPP
protocols manage it for serial communications lines.

The comparatively low cost of low-speed dialup modems and telephone circuits has made the serial line IP
protocols immensely popular, especially for providing connectivity to end users of the Internet. The
hardware required to run SLIP or PPP is simple and readily available. All that is required is a modem and a
serial port equipped with a FIFO buffer.

The SLIP protocol is very simple to implement and at one time was the more common of the two. Today
almost everyone uses the PPP protocol instead. The PPP protocol adds a host of sophisticated features that
contribute to its popularity today, and we'll look at the most important of these later.

Linux supports kernel-based drivers for both SLIP and PPP. The drivers have both been around for some
time and are stable and reliable. In this chapter and the next, we'll discuss both protocols and how to
configure them.

General Requirements
To use SLIP or PPP, you have to configure some basic networking features as described in the previous
chapters. You must set up the loopback interface and configure the name resolver. When connecting to the
Internet, you will want to use DNS. Your options here are the same as for PPP: you can perform your DNS
queries across your serial link by configuring your Internet Service Provider's IP address into your
/etc/resolv.conf file, or configure a caching-only name server as described under "Caching-only named
Configuration" in Chapter 6, "Name Service and Resolver Configuration."

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (1 of 9) [2/20/2001 11:04:22 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

SLIP Operation
Dialup IP servers frequently offer SLIP service through special user accounts. After logging in to such an
account, you are not dropped into the common shell; instead, a program or shell script is executed that
enables the server's SLIP driver for the serial line and configures the appropriate network interface. Then you
have to do the same at your end of the link.

On some operating systems, the SLIP driver is a user-space program; under Linux, it is part of the kernel,
which makes it a lot faster. This speed requires, however, that the serial line be converted to the SLIP mode
explicitly. This conversion is done by means of a special tty line discipline, SLIPDISC. While the tty is in
normal line discipline (DISC0), it exchanges data only with user processes, using the normal read(2) and
write(2) calls, and the SLIP driver is unable to write to or read from the tty. In SLIPDISC, the roles are
reversed: now any user-space processes are blocked from writing to or reading from the tty, while all data
coming in on the serial port is passed directly to the SLIP driver.

The SLIP driver itself understands a number of variations on the SLIP protocol. Apart from ordinary SLIP, it
also understands CSLIP, which performs the so-called Van Jacobson header compression (described in
RFC-1144) on outgoing IP packets. This compression improves throughput for interactive sessions
noticeably. There are also six-bit versions for each of these protocols.

A simple way to convert a serial line to SLIP mode is by using the slattach tool. Assume you have your
modem on /dev/ttyS3 and have logged in to the SLIP server successfully. You will then execute:

slattach /dev/ttyS3 &

This tool switches the line discipline of ttyS3 to SLIPDISC and attaches it to one of the SLIP network
interfaces. If this is your first active SLIP link, the line will be attached to sl0; the second will be attached to
sl1, and so on. The current kernels support a default maximum of 256 simultaneous SLIP links.

The default line discipline chosen by slattach is CSLIP. You may choose any other discipline using the -p
switch. To use normal SLIP (no compression), you use:

slattach -p slip /dev/ttyS3 &

The disciplines available are listed in Table 7.1. A special pseudo-discipline is available called adaptive,
which causes the kernel to automatically detect which type of SLIP encapsulation is being used by the
remote end.

Table 7.1: Linux Slip-Line Disciplines

Disclipline Description

slip Traditional SLIP encapsulation.

cslip SLIP encapsulation with Van Jacobsen header compression.

slip6 SLIP encapsulation with six-bit encoding. The encoding method is similar to that used by the
uuencode command, and causes the SLIP datagram to be converted into printable ASCII
characters. This conversion is useful when you do not have a serial link that is eight bit clean.

cslip6 SLIP encapsulation with Van Jacobsen header compression and six-bit encoding.

adaptive This is not a real line discipline; instead, it causes the kernel to attempt to identify the line
discipline being used by the remote machine and to match it.

Note that you must use the same encapsulation as your peer. For example, if cowslip uses CSLIP, you also
have to do so. If your SLIP connection doesn't work, the first thing you should do is ensure that both ends of
the link agree on whether to use header compression or not. If you are unsure what the remote end is using,
try configuring your host for adaptive slip. The kernel might figure out the right type for you.

slattach lets you enable not only SLIP, but other protocols that use the serial line, like PPP or KISS (another
protocol used by ham radio people). Doing this is not common, though, and there are better tools available to
support these protocols. For details, please refer to the slattach(8) manual page.

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (2 of 9) [2/20/2001 11:04:22 AM]

After turning over the line to the SLIP driver, you must configure the network interface. Again, you do this
using the standard ifconfig and route commands. Assume that we have dialed up a server named cowslip
from vlager. On vlager you would execute:

ifconfig sl0 vlager-slip pointopoint cowslip
route add cowslip
route add default gw cowslip

The first command configures the interface as a point-to-point link to cowslip, while the second and third add
the route to cowslip and the default route, using cowslip as a gateway.

Two things are worth noting about the ifconfig invocation: The pointopoint option that specifies the address
of the remote end of a point-to-point link and our use of vlager-slip as the address of the local SLIP interface.

We have mentioned that you can use the same address you assigned to vlager's Ethernet interface for your
SLIP link, as well. In this case, vlager-slip might just be another alias for address 172.16.1.1. However, it is
also possible that you have to use an entirely different address for your SLIP link. One such case is when
your network uses an unregistered IP network address, as the Brewery does. We will return to this scenario
in greater detail in the next section.

For the remainder of this chapter we will always use vlager-slip to refer to the address of the local SLIP
interface.

When taking down the SLIP link, you should first remove all routes through cowslip using route with the del
option, then take the interface down, and send slattach the hangup signal. The you must hang up the modem
using your terminal program again:

route del default
route del cowslip
ifconfig sl0 down
kill -HUP 516

Note that the 516 should be replaced with the process id (as shown in the output of ps ax) of the slattach
command controlling the slip device you wish to take down.

Dealing with Private IP Networks
You will remember from Chapter 5, Configuring TCP/IP Networking, that the Virtual Brewery has an
Ethernet-based IP network using unregistered network numbers that are reserved for internal use only.
Packets to or from one of these networks are not routed on the Internet; if we were to have vlager dial into
cowslip and act as a router for the Virtual Brewery network, hosts within the Brewery's network could not
talk to real Internet hosts directly because their packets would be dropped silently by the first major router.

To work around this dilemma, we will configure vlager to act as a kind of launch pad for accessing Internet
services. To the outside world, it will present itself as a normal SLIP-connected Internet host with a
registered IP address (probably assigned by the network provider running cowslip). Anyone logged in to
vlager can use text-based programs like ftp, telnet, or even lynx to make use of the Internet. Anyone on the
Virtual Brewery LAN can therefore telnet and log in to vlager and use the programs there. For some
applications, there may be solutions that avoid logging in to vlager. For WWW users, for example, we could
run a so-called proxy server on vlager, which would relay all requests from your users to their respective
servers.

Having to log in to vlager to make use of the Internet is a little clumsy. But apart from eliminating the
paperwork (and cost) of registering an IP network, it has the added benefit of going along well with a
firewall setup. Firewalls are dedicated hosts used to provide limited Internet access to users on your local
network without exposing the internal hosts to network attacks from the outside world. Simple firewall
configuration is covered in more detail in Chapter 9, TCP/IP Firewall. In Chapter 11, IP Masquerade and
Network Address Translation, we'll discuss a Linux feature called "IP masquerade" that provides a powerful
alternative to proxy servers.

Assume that the Brewery has been assigned the IP address 192.168.5.74 for SLIP access. All you have to do

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (3 of 9) [2/20/2001 11:04:22 AM]

to realize that the setup discussed above is to enter this address into your /etc/hosts file, naming it vlager-slip.
The procedure for bringing up the SLIP link itself remains unchanged.

Using dip
Now that was rather simple. Nevertheless, you might want to automate the steps previously described. It
would be much better to have a simple command that performs all the steps necessary to open the serial
device, cause the modem to dial the provider, log in, enable the SLIP line discipline, and configure the
network interface. This is what the dip command is for.

dip means Dialup IP. It was written by Fred van Kempen and has been patched very heavily by a number of
people. Today there is one strain that is used by almost everyone: Version dip337p-uri, which is
included with most modern Linux distributions, or is available from the metalab.unc.edu FTP archive.

dip provides an interpreter for a simple scripting language that can handle the modem for you, convert the
line to SLIP mode, and configure the interfaces. The script language is powerful enough to suit most
configurations.

To be able to configure the SLIP interface, dip requires root privilege. It would now be tempting to make dip
setuid to root so that all users can dial up some SLIP server without having to give them root access. This is
very dangerous, though, because setting up bogus interfaces and default routes with dip may disrupt routing
on your network. Even worse, this action would give your users power to connect to any SLIP server and
launch dangerous attacks on your network. If you want to allow your users to fire up a SLIP connection,
write small wrapper programs for each prospective SLIP server and have these wrappers invoke dip with the
specific script that establishes the connection. Carefully written wrapper programs can then safely be made
setuid to root.[1] An alternative, more flexible approach is to give trusted users root access to dip using a
program like sudo.

[1] diplogin must be run as setuid to root, too. See the section at the end of this chapter.

A Sample Script

Assume that the host to which we make our SLIP connection is cowslip, and that we have written a script for
dip to run called cowslip.dip that makes our connection. We invoke dip with the script name as argument:

dip cowslip.dip
DIP: Dialup IP Protocol Driver version 3.3.7 (12/13/93)
Written by Fred N. van Kempen, MicroWalt Corporation.
connected to cowslip.moo.com with addr 192.168.5.74
#

The script itself is shown in Example 7.1.

Example 7.1: A Sample dip Script

Sample dip script for dialing up cowslip
Set local and remote name and address
 get $local vlager-slip
 get $remote cowslip
 port ttyS3 # choose a serial port
 speed 38400 # set speed to max
 modem HAYES # set modem type
 reset # reset modem and tty
 flush # flush out modem response
Prepare for dialing.
 send ATQ0V1E1X1\r
 wait OK 2
 if $errlvl != 0 goto error
 dial 41988

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (4 of 9) [2/20/2001 11:04:22 AM]

 if $errlvl != 0 goto error
 wait CONNECT 60
 if $errlvl != 0 goto error
Okay, we're connected now
 sleep 3
 send \r\n\r\n
 wait ogin: 10
 if $errlvl != 0 goto error
 send Svlager\n
 wait ssword: 5
 if $errlvl != 0 goto error
 send knockknock\n
 wait running 30
 if $errlvl != 0 goto error
We have logged in, and the remote side is firing up SLIP.
 print Connected to $remote with address $rmtip
 default # Make this link our default route
 mode SLIP # We go to SLIP mode, too
fall through in case of error
error:
 print SLIP to $remote failed.

After connecting to cowslip and enabling SLIP, dip will detach from the terminal and go to the background.
You can then start using the normal networking services on the SLIP link. To terminate the connection,
simply invoke dip with the -k option. This sends a hangup signal to dip, using the process ID dip records in
/etc/dip.pid:

dip -k

In dip's scripting language, keywords prefixed with a dollar symbol denote variable names. dip has a
predefined set of variables, which will be listed below. $remote and $local, for instance, contain the
hostnames of the remote and local hosts involved in the SLIP link.

The first two statements in the sample script are get commands, which is dip's way to set a variable. Here,
the local and remote hostnames are set to vlager and cowslip, respectively.

The next five statements set up the terminal line and the modem. reset sends a reset string to the modem. The
next statement flushes out the modem response so that the login chat in the next few lines works properly.
This chat is pretty straightforward: it simply dials 41988, the phone number of cowslip, and logs in to the
account Svlager using the password knockknock. The wait command makes dip wait for the string given as
its first argument; the number given as its second argument makes the wait time out after that many seconds
if no such string is received. The if commands interspersed in the login procedure check that no error
occurred while executing the command.

The final commands executed after logging in are default, which makes the SLIP link the default route to all
hosts, and mode, which enables SLIP mode on the line and configures the interface and routing table for you.

A dip Reference

In this section, we will give a reference for most of dip's commands. You can get an overview of all the
commands it provides by invoking dip in test mode and entering the help command. To learn about the
syntax of a command, you may enter it without any arguments. Remember that this does not work with
commands that take no arguments. The following example illustrates the help command:

dip -t
DIP: Dialup IP Protocol Driver version 3.3.7p-uri (25 Dec 96)
Written by Fred N. van Kempen, MicroWalt Corporation.
Debian version 3.3.7p-2 (debian).

DIP> help

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (5 of 9) [2/20/2001 11:04:22 AM]

DIP knows about the following commands:

 beep bootp break chatkey config
 databits dec default dial echo
 flush get goto help if
 inc init mode modem netmask
 onexit parity password proxyarp print
 psend port quit reset securidfixed
 securid send shell skey sleep
 speed stopbits term timeout wait

DIP> echo
Usage: echo on|off
DIP>

Throughout the following section, examples that display the DIP> prompt show how to enter a command in
test mode and what output it produces. Examples lacking this prompt should be taken as script excerpts.

The modem commands

dip provides a number of commands that configure your serial line and modem. Some of these are obvious,
such as port, which selects a serial port, and speed, databits, stopbits, and parity, which set the common line
parameters. The modem command selects a modem type. Currently, the only type supported is HAYES
(capitalization required). You have to provide dip with a modem type, or else it will refuse to execute the
dial and reset commands. The reset command sends a reset string to the modem; the string used depends on
the modem type selected. For Hayes-compatible modems, this string is ATZ.

The flush code can be used to flush out all responses the modem has sent so far. Otherwise, a chat script
following reset might be confused because it reads the OK responses from earlier commands.

The init command selects an initialization string to be passed to the modem before dialing. The default for
Hayes modems is "ATE0 Q0 V1 X1", which turns on echoing of commands and long result codes, and selects
blind dialing (no checking of dial tone). Modern modems have a good factory default configuration, so this is
a little unnecessary, though it does no harm.

The dial command sends the initialization string to the modem and dials up the remote system. The default
dial command for Hayes modems is ATD.

The echo command

The echo command serves as a debugging aid. Calling echo on makes dip echo to the console everything it
sends to the serial device. This can be turned off again by calling echo off.

dip also allows you to leave script mode temporarily and enter terminal mode. In this mode, you can use dip
just like any ordinary terminal program, writing the characters you type to the serial line, reading data from
the serial line, and displaying the characters. To leave this mode, enter Ctrl-].

The get command

The get command is dip's way of setting a variable. The simplest form is to set a variable to a constant, as we
did in cowslip.dip. You may, however, also prompt the user for input by specifying the keyword ask instead
of a value:

DIP> get $local ask
Enter the value for $local: _

A third method is to obtain the value from the remote host. Bizarre as it seems at first, this is very useful in
some cases. Some SLIP servers will not allow you to use your own IP address on the SLIP link, but will
rather assign you one from a pool of addresses whenever you dial in, printing some message that informs you
about the address you have been assigned. If the message looks something like "Your address:
192.168.5.74", the following piece of dip code would let you pick up the address:

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (6 of 9) [2/20/2001 11:04:22 AM]

finish login
wait address: 10
get $locip remote

The print command

This is the command used to echo text to the console from which dip was started. Any of dip's variables may
be used in print commands. Here's an example:

DIP> print Using port $port at speed $speed
Using port ttyS3 at speed 38400

Variable names

dip understands only a predefined set of variables. A variable name always begins with a dollar symbol and
must be written in lowercase letters.

The $local and $locip variables contain the local host's name and IP address. When you store the canonical
hostname in $local, dip will automatically attempt to resolve the hostname to an IP address and to store it in
the $locip variable. A similar but backward process occurs when you assign an IP address to the $locip
variable; dip will attempt to perform a reverse lookup to identify the name of the host and store it in the
$local variable.

The $remote and $rmtip variables operate in the same way for the remote host's name and address. $mtu
contains the MTU value for the connection.

These five variables are the only ones that may be assigned values directly using the get command. A
number of other variables are set as a result of the configuration commands bearing the same name, but may
be used in print statements; these variables are $modem, $port, and $speed.

$errlvl is the variable through which you can access the result of the last command executed. An error level
of 0 indicates success, while a nonzero value denotes an error.

The if and goto commands

The if command is a conditional branch, rather than a full-featured programming if statement. Its syntax is:

if var op number goto label

The expression must be a simple comparison between one of the variables $errlvl, $locip, and $rmtip. var
must be an integer number; the operator op may be one of ==, !=, <, >, <=, and >=.

The goto command makes the execution of the script continue at the line following that bearing the label. A
label must be the first word on the line and must be followed immediately by a colon.

send, wait, and sleep

These commands help implement simple chat scripts in dip. The send command outputs its arguments to the
serial line. It does not support variables, but understands all C-style backslash character sequences, such as \n
for newline and \b for backspace. The tilde character (~) can be used as an abbreviation for carriage
return/newline.

The wait command takes a word as an argument and will read all input on the serial line until it detects a
sequence of characters that match this word. The word itself may not contain any blanks. Optionally, you
may give wait a timeout value as a second argument; if the expected word is not received within that many
seconds, the command will return with an $errlvl value of 1. This command is used to detect login and other
prompts.

The sleep command may be used to wait for a certain amount of time; for instance, to patiently wait for any
login sequence to complete. Again, the interval is specified in seconds.

mode and default

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (7 of 9) [2/20/2001 11:04:22 AM]

These commands are used to flip the serial line to SLIP mode and configure the interface.

The mode command is the last command executed by dip before going into daemon mode. Unless an error
occurs, the command does not return.

mode takes a protocol name as argument. dip currently recognizes SLIP, CSLIP, SLIP6, CSLIP6, PPP, and
TERM as valid names. The current version of dip does not understand adaptive SLIP, however.

After enabling SLIP mode on the serial line, dip executes ifconfig to configure the interface as a
point-to-point link, and invokes route to set the route to the remote host.

If, in addition, the script executes the default command before mode, dip creates a default route that points to
the SLIP link.

Running in Server Mode
Setting up your SLIP client was the hard part. Configuring your host to act as a SLIP server is much easier.

There are two ways of configuring a SLIP server. Both ways require that you set up one login account per
SLIP client. Assume you provide SLIP service to Arthur Dent at dent.beta.com. You might create an account
named dent by adding the following line to your passwd file:

dent:*:501:60:Arthur Dent's SLIP account:/tmp:/usr/sbin/diplogin

Afterwards, you would set dent's password using the passwd utility.

The dip command can be used in server mode by invoking it as diplogin. Usually diplogin is a link to dip. Its
main configuration file is /etc/diphosts, which is where you specify what IP address a SLIP user will be
assigned when he or she dials in. Alternatively, you can also use the sliplogin command, a BSD-derived tool
featuring a more flexible configuration scheme that lets you execute shell scripts whenever a host connects
and disconnects.

When our SLIP user dent logs in, dip starts up as a server. To find out if he is indeed permitted to use SLIP,
it looks up the username in /etc/diphosts. This file details the access rights and connection parameter for each
SLIP user. The general format for an /etc/diphosts entry looks like:

/etc/diphosts
user:password:rem-addr:loc-addr:netmask:comments:protocol,MTU#

Each of the fields is described in Table 7.2.

Table 7.2: /etc/diphosts Field Description

Field Description

user The username of the user invoking dip that this entry will apply to.

password Field 2 of the /etc/diphosts file is used to add an extra layer of password-based security on
the connection. You can place a password in encrypted form here (just as in /etc/passwd) and
diplogin will prompt for the user to enter the password before allowing SLIP access. Note
that this password is used in addition to the normal login-based password the user will enter.

rem-addr The address that will be assigned to the remote machine. This address may be specified either
as a hostname that will be resolved or an IP address in dotted quad notation.

loc-addr The IP address that will be used for this end of the SLIP link. This may also be specified as a
resolvable hostname or in dotted quad format.

netmask The netmask that will be used for routing purposes. Many people are confused by this entry.
The netmask doesn't apply to the SLIP link itself, but is used in combination with the
rem-addr field to produce a route to the remote site. The netmask should be that used by
the network supported by that of the remote host.

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (8 of 9) [2/20/2001 11:04:22 AM]

comments This field is free-form text that you may use to help document the /etc/diphosts file. It serves
no other purpose.

protocol This field is where you specify what protocol or line discipline you want applied to this
connection. Valid entries here are the same as those valid for the -p argument to the slattach
command.

MTU The maximum transmission unit that this link will carry. This field describes the largest
datagram that will be transmitted across the link. Any datagram routed to the SLIP device
that is larger than the MTU will be fragmented into datagrams no larger than this value.
Usually, the MTU is configured identically at both ends of the link.

A sample entry for dent could look like this:

dent::dent.beta.com:vbrew.com:255.255.255.0:Arthur Dent:CSLIP,296

Our example gives our user dent access to SLIP with no additional password required. He will be assigned
the IP address associated with dent.beta.com with a netmask of 255.255.255.0. His default route should
be directed to the IP address of vbrew.com, and he will use the CSLIP protocol with an MTU of 296 bytes.

When dent logs in, diplogin extracts the information on him from the diphosts file. If the second field
contains a value, diplogin will prompt for an "external security password." The string entered by the user is
encrypted and compared to the password from diphosts. If they do not match, the login attempt is rejected. If
the password field contains the string s/key, and dip was compiled with S/Key support, S/Key authentication
will take place. S/Key authentication is described in the documentation that comes in the dip source package.

After a successful login, diplogin proceeds by flipping the serial line to CSLIP or SLIP mode, and sets up the
interface and route. This connection remains established until the user disconnects and the modem drops the
line. diplogin then returns the line to normal line discipline and exits.

diplogin requires superuser privilege. If you don't have dip running setuid root, you should make diplogin a
separate copy of dip instead of a simple link. diplogin can then safely be made setuid without affecting the
status of dip itself.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP

http://www.oreilly.com/catalog/linag2/book/ch07.html (9 of 9) [2/20/2001 11:04:22 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 8
The Point-to-Point Protocol
Contents:
PPP on Linux
Running pppd
Using Options Files
Using chat to Automate Dialing
IP Configuration Options
Link Control Options
General Security Considerations
Authentication with PPP
Debugging Your PPP Setup
More Advanced PPP Configurations

Like SLIP, PPP is a protocol used to send datagrams across a serial connection; however, it addresses a
couple of the deficiencies of SLIP. First, it can carry a large number of protocols and is thus not limited to
the IP protocol. It provides error detection on the link itself, while SLIP accepts and forwards corrupted
datagrams as long as the corruption does not occur in the header. Equally important, it lets the
communicating sides negotiate options, such as the IP address and the maximum datagram size at startup
time, and provides client authorization. This built-in negotiation allows reliable automation of the connection
establishment, while the authentication removes the need for the clumsy user login accounts that SLIP
requires. For each of these capabilities, PPP has a separate protocol. In this chapter, we briefly cover these
basic building blocks of PPP. This discussion of PPP is far from complete; if you want to know more about
PPP, we urge you to read its RFC specification and the dozen or so companion RFCs.[1] There is also a
comprehensive O'Reilly book on the topic of Using & Managing PPP, by Andrew Sun.

[1] Relevant RFCs are listed in the Bibiliography at the end of this book.

At the very bottom of PPP is the High-Level Data Link Control (HDLC) protocol, which defines the
boundaries around the individual PPP frames and provides a 16-bit checksum.[2] As opposed to the more
primitive SLIP encapsulation, a PPP frame is capable of holding packets from protocols other than IP, such
as Novell's IPX or Appletalk. PPP achieves this by adding a protocol field to the basic HDLC frame that
identifies the type of packet carried by the frame.

[2] In fact, HDLC is a much more general protocol devised by the International Standards
Organization (ISO) and is also an essential component of the X.25 specification.

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (1 of 15) [2/20/2001 11:04:26 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

The Link Control Protocol, (LCP) is used on top of HDLC to negotiate options pertaining to the data link.
For instance, the Maximum Receive Unit (MRU), states the maximum datagram size that one side of the link
agrees to receive.

An important step at the configuration stage of a PPP link is client authorization. Although it is not
mandatory, it is really a must for dialup lines in order to keep out intruders. Usually the called host (the
server) asks the client to authorize itself by proving it knows some secret key. If the caller fails to produce
the correct secret, the connection is terminated. With PPP, authorization works both ways; the caller may
also ask the server to authenticate itself. These authentication procedures are totally independent of each
other. There are two protocols for different types of authorization, which we will discuss further in this
chapter: Password Authentication Protocol (PAP) and Challenge Handshake Authentication Protocol
(CHAP).

Each network protocol that is routed across the data link (like IP and AppleTalk) is configured dynamically
using a corresponding Network Control Protocol (NCP). To send IP datagrams across the link, both sides
running PPP must first negotiate which IP address each of them uses. The control protocol used for this
negotiation is the Internet Protocol Control Protocol (IPCP).

Besides sending standard IP datagrams across the link, PPP also supports Van Jacobson header compression
of IP datagrams. This technique shrinks the headers of TCP packets to as little as three bytes. It is also used
in CSLIP, and is more colloquially referred to as VJ header compression. The use of compression may be
negotiated at startup time through IPCP, as well.

PPP on Linux
On Linux, PPP functionality is split into two parts: a kernel component that handles the low-level protocols
(HDLC, IPCP, IPXCP, etc.) and the user space pppd daemon that handles the various higher-level protocols,
such as PAP and CHAP. The current release of the PPP software for Linux contains the PPP daemon pppd
and a program named chat that automates the dialing of the remote system.

The PPP kernel driver was written by Michael Callahan and reworked by Paul Mackerras. pppd was derived
from a free PPP implementation[3] for Sun and 386BSD machines that was written by Drew Perkins and
others, and is maintained by Paul Mackerras. It was ported to Linux by Al Longyear. chat was written by
Karl Fox.[4]

[3] If you have any general questions about PPP, ask the people on the Linux-net mailing list at
vger.rutgers.edu.

[4] Karl can be reached at karl@morningstar.com.

Like SLIP, PPP is implemented by a special line discipline. To use a serial line as a PPP link, you first
establish the connection over your modem as usual, and subsequently convert the line to PPP mode. In this
mode, all incoming data is passed to the PPP driver, which checks the incoming HDLC frames for validity
(each HDLC frame carries a 16-bit checksum), and unwraps and dispatches them. Currently, PPP is able to
transport both the IP protocol, optionally using Van Jacobson header compression, and the IPX protocol.

pppd aids the kernel driver, performing the initialization and authentication phase that is necessary before
actual network traffic can be sent across the link. pppd's behavior may be fine-tuned using a number of
options. As PPP is rather complex, it is impossible to explain all of them in a single chapter. This book
therefore cannot cover all aspects of pppd, but only gives you an introduction. For more information, consult
Using & Managing PPP or the pppd manual pages, and READMEs in the pppd source distribution, which
should help you sort out most questions this chapter fails to discuss. The PPP-HOWTO might also be of use.

Probably the greatest help you will find in configuring PPP will come from other users of the same Linux
distribution. PPP configuration questions are very common, so try your local usergroup mailing list or the
IRC Linux channel. If your problems persist even after reading the documentation, you could try the
comp.protocols.ppp newsgroup. This is the place where you can find most of the people involved in pppd
development.

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (2 of 15) [2/20/2001 11:04:26 AM]

Running pppd
When you want to connect to the Internet through a PPP link, you have to set up basic networking
capabilities, such as the loopback device and the resolver. Both have been covered in Chapter 5, Configuring
TCP/IP Networking, and Chapter 6, Name Service and Resolver Configuration. You can simply configure
the name server of your Internet Service Provider in the /etc/resolv.conf file, but this will mean that every
DNS request is sent across your serial link. This situation is not optimal; the closer (network-wise) you are to
your name server, the faster the name lookups will be. An alternative solution is to configure a caching-only
name server at a host on your network. This means that the first time you make a DNS query for a particular
host, your request will be sent across your serial link, but every subsequent request will be answered directly
by your local name server, and will be much faster. This configuration is described in Chapter 6, in
"Caching-only named Configuration".

As an introductory example of how to establish a PPP connection with pppd, assume you are at vlager again.
First, dial in to the PPP server c3po and log in to the ppp account. c3po will execute its PPP driver. After
exiting the communications program you used for dialing, execute the following command, substituting the
name of the serial device you used for the ttyS3 shown here:

pppd /dev/ttyS3 38400 crtscts defaultroute

This command flips the serial line ttyS3 to the PPP line discipline and negotiates an IP link with c3po. The
transfer speed used on the serial port will be 38,400 bps. The crtscts option turns on hardware handshake on
the port, which is an absolute must at speeds above 9,600 bps.

The first thing pppd does after starting up is negotiate several link characteristics with the remote end using
LCP. Usually, the default set of options pppd tries to negotiate will work, so we won't go into this here.
Expect to say that part of this negotiation involves requesting or assigning the IP addresses at each end of the
link.

For the time being, we also assume that c3po doesn't require any authentication from us, so the configuration
phase is completed successfully.

pppd will then negotiate the IP parameters with its peer using IPCP, the IP control protocol. Since we didn't
specify any particular IP address to pppd earlier, it will try to use the address obtained by having the resolver
look up the local hostname. Both will then announce their addresses to each other.

Usually, there's nothing wrong with these defaults. Even if your machine is on an Ethernet, you can use the
same IP address for both the Ethernet and the PPP interface. Nevertheless, pppd allows you to use a different
address, or even to ask your peer to use some specific address. These options are discussed later in the "IP
Configuration Options" section.

After going through the IPCP setup phase, pppd will prepare your host's networking layer to use the PPP
link. It first configures the PPP network interface as a point-to-point link, using ppp0 for the first PPP link
that is active, ppp1 for the second, and so on. Next, it sets up a routing table entry that points to the host at
the other end of the link. In the previous example, pppd made the default network route point to c3po,
because we gave it the defaultroute option.[5] The default route simplifies your routing by causing any IP
datagram destined to a nonlocal host to be sent to c3po; this makes sense since it is the only way they can be
reached. There are a number of different routing schemes pppd supports, which we will cover in detail later
in this chapter.

[5] The default network route is installed only if none is already present.

Using Options Files
Before pppd parses its command-line arguments, it scans several files for default options. These files may
contain any valid command-line arguments spread out across an arbitrary number of lines. Hash signs
introduce comments.

The first options file is /etc/ppp/options, which is always scanned when pppd starts up. Using it to set some
global defaults is a good idea, because it allows you to keep your users from doing several things that may

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (3 of 15) [2/20/2001 11:04:27 AM]

compromise security. For instance, to make pppd require some kind of authentication (either PAP or CHAP)
from the peer, you add the auth option to this file. This option cannot be overridden by the user, so it
becomes impossible to establish a PPP connection with any system that is not in your authentication
databases. Note, however, that some options can be overridden; the connect string is a good example.

The other options file, which is read after /etc/ppp/options, is .ppprc in the user's home directory. It allows
each user to specify her own set of default options.

A sample /etc/ppp/options file might look like this:

Global options for pppd running on vlager.vbrew.com
lock # use UUCP-style device locking
auth # require authentication
usehostname # use local hostname for CHAP
domain vbrew.com # our domain name

The lock keyword makes pppd comply to the standard UUCP method of device locking. With this
convention, each process that accesses a serial device, say /dev/ttyS3, creates a lock file with a name like
LCK..ttyS3 in a special lock-file directory to signal that the device is in use. This is necessary to prevent
signal other programs, such as minicom or uucico, from opening the serial device while it is used by PPP.

The next three options relate to authentication and, therefore, to system security. The authentication options
are best placed in the global configuration file because they are "privileged" and cannot be overridden by
users' ~/.ppprc options files.

Using chat to Automate Dialing
One of the things that may have struck you as inconvenient in the previous example is that you had to
establish the connection manually before you could fire up pppd. Unlike dip, pppd does not have its own
scripting language for dialing the remote system and logging in, but relies on an external program or shell
script to do this. The command to be executed can be given to pppd with the connect command-line option.
pppd will redirect the command's standard input and output to the serial line.

The pppd software package is supplied with a very simple program called chat, which is capable of being
used in this way to automate simple login sequences. We'll talk about this command in some detail.

If your login sequence is complex, you will need something more powerful than chat. One useful alternative
you might consider is expect, written by Don Libes. It has a very powerful language based on Tcl, and was
designed exactly for this sort of application. Those of you whose login sequence requires, for example,
challenge/response authentication involving calculator-like key generators will find expect powerful enough
to handle the task. Since there are so many possible variations on this theme, we won't describe how to
develop an appropriate expect script in this book. Suffice it to say, you'd call your expect script by specifying
its name using the pppd connect option. It's also important to note that when the script is running, the
standard input and output will be attached to the modem, not to the terminal that invoked pppd. If you
require user interaction, you should manage it by opening a spare virtual terminal, or arrange some other
means.

The chat command lets you specify a UUCP-style chat script. Basically, a chat script consists of an
alternating sequence of strings that we expect to receive from the remote system, and the answers we are to
send. We will call them expect and send strings, respectively. This is a typical excerpt from a chat script:

ogin: b1ff ssword: s3|<r1t

This script tells chat to wait for the remote system to send the login prompt and return the login name b1ff.
We wait only for ogin: so that it doesn't matter if the login prompt starts with an uppercase or lowercase l, or
if it arrives garbled. The following string is another expect string that makes chat wait for the password
prompt and send our response password.

This is basically what chat scripts are all about. A complete script to dial up a PPP server would, of course,
also have to include the appropriate modem commands. Assume that your modem understands the Hayes
command set, and the server's telephone number is 318714. The complete chat invocation to establish a

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (4 of 15) [2/20/2001 11:04:27 AM]

connection with c3po would then be:

$ chat -v '' ATZ OK ATDT318714 CONNECT '' ogin: ppp word: GaGariN

By definition, the first string must be an expect string, but as the modem won't say anything before we have
kicked it, we make chat skip the first expect by specifying an empty string. We then send ATZ, the reset
command for Hayes-compatible modems, and wait for its response (OK). The next string sends the dial
command along with the phone number to chat, and expects the CONNECT message in response. This is
followed by an empty string again because we don't want to send anything now, but rather wait for the login
prompt. The remainder of the chat script works exactly as described previously. This description probably
looks a bit confusing, but we'll see in a moment that there is a way to make chat scripts a lot easier to
understand.

The -v option makes chat log all activities to the syslog daemon local2 facility.[6]

[6] If you edit syslog.conf to redirect these log messages to a file, make sure this file isn't world
readable, as chat also logs the entire chat script by default -- including passwords.

Specifying the chat script on the command line bears a certain risk because users can view a process's
command line with the ps command. You can avoid this risk by putting the chat script in a file like
dial-c3po. You make chat read the script from the file instead of the command line by giving it the -f option,
followed by the filename. This action has the added benefit of making our chat expect sequences easier to
understand. To convert our example, our dial-c3po file would look like:

'' ATZ
OK ATDT318714
CONNECT ''
ogin: ppp
word: GaGariN

When we use a chat script file in this way, the string we expect to receive is on the left and the response we
will send is on the right. They are much easier to read and understand when presented this way.

The complete pppd incantation would now look like this:

pppd connect "chat -f dial-c3po" /dev/ttyS3 38400 -detach \
 crtscts modem defaultroute

Besides the connect option that specifies the dialup script, we have added two more options to the command
line: -detach, which tells pppd not to detach from the console and become a background process, and the
modem keyword, which makes it perform modem-specific actions on the serial device, like disconnecting the
line before and after the call. If you don't use this keyword, pppd will not monitor the port's DCD line and
will therefore not detect whether the remote end hangs up unexpectedly.

The examples we have shown are rather simple; chat allows for much more complex scripts. For instance, it
can specify strings on which to abort the chat with an error. Typical abort strings are messages like BUSY or
NO CARRIER that your modem usually generates when the called number is busy or doesn't answer. To
make chat recognize these messages immediately rather than timing out, you can specify them at the
beginning of the script using the ABORT keyword:

$ chat -v ABORT BUSY ABORT 'NO CARRIER' '' ATZ OK ...

Similarly, you can change the timeout value for parts of the chat scripts by inserting TIMEOUT options.

Sometimes you also need to have conditional execution for parts of the chat script: when you don't receive
the remote end's login prompt, you might want to send a BREAK or a carriage return. You can achieve this
by appending a subscript to an expect string. The subscript consists of a sequence of send and expect strings,
just like the overall script itself, which are separated by hyphens. The subscript is executed whenever the
expected string it is appended to is not received in time. In the example above, we would modify the chat
script as follows:

ogin:-BREAK-ogin: ppp ssword: GaGariN

When chat doesn't see the remote system send the login prompt, the subscript is executed by first sending a
BREAK, and then waiting for the login prompt again. If the prompt now appears, the script continues as

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (5 of 15) [2/20/2001 11:04:27 AM]

usual; otherwise, it will terminate with an error.

IP Configuration Options
IPCP is used to negotiate a number of IP parameters at link configuration time. Usually, each peer sends an
IPCP Configuration Request packet, indicating which values it wants to change from the defaults and the
new value. Upon receipt, the remote end inspects each option in turn and either acknowledges or rejects it.

pppd gives you a lot of control over which IPCP options it will try to negotiate. You can tune it through
various command-line options that we will discuss in this section.

Choosing IP Addresses

All IP interfaces require IP addresses assigned to them; a PPP device always has an IP address. The PPP
suite of protocols provides a mechanism that allows the automatic assignment of IP addresses to PPP
interfaces. It is possible for the PPP program at one end of a point-to-point link to assign an IP address for
the remote end to use, or each may use its own.

Some PPP servers that handle a lot of client sites assign addresses dynamically; addresses are assigned to
systems only when calling in and are reclaimed after they have logged off again. This allows the number of
IP addresses required to be limited to the number of dialup lines. While limitation is convenient for managers
of the PPP dialup server, it is often less convenient for users who are dialing in. We discussed the way that
hostnames are mapped to IP addresses by use of a database in Chapter 6. In order for people to connect to
your host, they must know your IP address or the hostname associated with it. If you are a user of a PPP
service that assigns you an IP address dynamically, this knowledge is difficult without providing some
means of allowing the DNS database to be updated after you are assigned an IP address. Such systems do
exist, but we won't cover them in detail here; instead, we will look at the more preferable approach, which
involves you being able to use the same IP address each time you establish your network connection.[7]

[7] More information on two dynamic host assignment mechanisms can be found at
http://www.dynip.com/ and http://www.justlinux.com/dynamic_dns.html.

In the previous example, we had pppd dial up c3po and establish an IP link. No provisions were taken to
choose a particular IP address on either end of the link. Instead, we let pppd take its default action. It
attempts to resolve the local hostname, vlager in our example, to an IP address, which it uses for the local
end, while letting the remote machine, c3po, provide its own. PPP supports several alternatives to this
arrangement.

To ask for particular addresses, you generally provide pppd with the following option:

local_addr:remote_addr

local_addr and remote_addr may be specified either in dotted quad notation or as hostnames.[8] This option
makes pppd attempt to use the first address supplied as its own IP address, and the second as the peer's. If the
peer rejects either of the addresses during IPCP negotiation, no IP link will be established.[9]

[8] Using hostnames in this option has consequences for CHAP authentication. Please refer to
the "Authentication with PPP" section later in this chapter.

[9] The ipcp-accept-local and ipcp-accept-remote options instruct your pppd to accept the local
and remote IP addresses being offered by the remote PPP, even if you've supplied some in your
configuration. If these options are not configured, your pppd will reject any attempt to negotiate
the IP addresses used.

If you are dialing in to a server and expect it to assign you an IP address, you should ensure that pppd does
not attempt to negotiate one for itself. To do this, use the noipdefault option and leave the local_addr blank.
The noipdefault option will stop pppd from trying to use the IP address associated with the hostname as the
local address.

If you want to set only the local address but accept any address the peer uses, simply leave out the

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (6 of 15) [2/20/2001 11:04:27 AM]

http://www.dynip.com/
http://www.justlinux.com/dynamic_dns.html

remote_addr part. To make vlager use the IP address 130.83.4.27 instead of its own, give it 130.83.4.27: on
the command line. Similarly, to set the remote address only, leave the local_addr field blank. By default,
pppd will then use the address associated with your hostname.

Routing Through a PPP Link

After setting up the network interface, pppd will usually set up a host route to its peer only. If the remote host
is on a LAN, you certainly want to be able to connect to hosts "behind" your peer as well; in that case, a
network route must be set up.

We have already seen that pppd can be asked to set the default route using the defaultroute option. This
option is very useful if the PPP server you dialed up acts as your Internet gateway.

The reverse case, in which your system acts as a gateway for a single host, is also relatively easy to
accomplish. For example, take some employee at the Virtual Brewery whose home machine is called
oneshot. Let's also assume that we've configured vlager as a dialin PPP server. If we've configured vlager to
dynamically assign an IP address that belongs to the Brewery's subnet, then we can use the proxyarp option
with pppd, which will install a proxy ARP entry for oneshot. This automatically makes oneshot accessible
from all hosts at the Brewery and the Winery.

However, things aren't always that simple. Linking two local area networks usually requires adding a
specific network route because these networks may have their own default routes. Besides, having both peers
use the PPP link as the default route would generate a loop, through which packets to unknown destinations
would ping-pong between the peers until their time to live expired.

Suppose the Virtual Brewery opens a branch in another city. The subsidiary runs an Ethernet of its own using
the IP network number 172.16.3.0, which is subnet 3 of the Brewery's class B network. The subsidiary wants
to connect to the Brewery's network via PPP to update customer databases. Again, vlager acts as the gateway
for the brewery network and will support the PPP link; its peer at the new branch is called vbourbon and has
an IP address of 172.16.3.1. This network is illustrated in Figure 24.2 in Appendix A, Example Network:
The Virtual Brewery.

When vbourbon connects to vlager, it makes the default route point to vlager as usual. On vlager, however,
we will have only the point-to-point route to vbourbon and will have to specially configure a network route
for subnet 3 that uses vbourbon as its gateway. We could do this manually using the route command by hand
after the PPP link is established, but this is not a very practical solution. Fortunately, we can configure the
route automatically by using a feature of pppd that we haven't discussed yet -- the ip-up command. This
command is a shell script or program located in /etc/ppp that is executed by pppd after the PPP interface has
been configured. When present, it is invoked with the following parameters:

ip-up iface device speed local_addr remote_addr

The following table summarizes the meaning of each of the arguments (in the first column, we show the
number used by the shell script to refer to each argument):

Argument Name Purpose

$1 iface The network interface used, e.g., ppp0

$2 device The pathname of the serial device file used (/dev/tty, if stdin/stdout are used)

$3 speed The speed of the serial device in bits per second

$4 local_addr The IP address of the link's remote end in dotted quad notation

$5 remote_addr The IP address of the remote end of the link in dotted quad notation

In our case, the ip-up script may contain the following code fragment:[10]

#!/bin/sh
case $5 in
172.16.3.1) # this is vbourbon
 route add -net 172.16.3.0 gw 172.16.3.1;;

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (7 of 15) [2/20/2001 11:04:27 AM]

...
esac
exit 0

[10] If we wanted to have routes for other sites created when they dial in, we'd add appropriate
case statements to cover those in which the ... appears in the example.

Similarly, /etc/ppp/ip-down can be used to undo any actions of ip-up after the PPP link has been taken down
again. So in our /etc/ppp/ip-down script we would have a route command that removed the route we created
in the /etc/ppp/ip-up script.

However, the routing scheme is not yet complete. We have set up routing table entries on both PPP hosts, but
so far none of the hosts on either network knows anything about the PPP link. This is not a big problem if all
hosts at the subsidiary have their default route pointing at vbourbon, and all Brewery hosts route to vlager by
default. If this is not the case, your only option is usually to use a routing daemon like gated. After creating
the network route on vlager, the routing daemon broadcasts the new route to all hosts on the attached
subnets.

Link Control Options
We already encountered the Link Control Protocol (LCP), which is used to negotiate link characteristics and
test the link.

The two most important options negotiated by LCP are the Asynchronous Control Character Map and the
Maximum Receive Unit. There are a number of other LCP configuration options, but they are far too
specialized to discuss here.

The Asynchronous Control Character Map, colloquially called the async map, is used on asynchronous links,
such as telephone lines, to identify control characters that must be escaped (replaced by a specific
two-character sequence) to avoid them being interpreted by equipment used to establish the link. For
instance, you may want to avoid the XON and XOFF characters used for software handshake because a
misconfigured modem might choke upon receipt of an XOFF. Other candidates include Ctrl-l (the telnet
escape character). PPP allows you to escape any of the characters with ASCII codes 0 through 31 by
specifying them in the async map.

The async map is a 32-bit-wide bitmap expressed in hexadecimal. The least significant bit corresponds to the
ASCII NULL character, and the most significant bit corresponds to ASCII 31 decimal. These 32 ASCII
characters are the control characters. If a bit is set in the bitmap, it signals that the corresponding character
must be escaped before it is transmitted across the link.

To tell your peer that it doesn't have to escape all control characters, but only a few of them, you can specify
an async map to pppd using the asyncmap option. For example, if only ^S and ^Q (ASCII 17 and 19,
commonly used for XON and XOFF) must be escaped, use the following option:

asyncmap 0x000A0000

The conversion is simple as long as you can convert binary to hex. Lay out 32 bits in front of you. The
right-most bit corresponds to ASCII 00 (NULL), and the left-most bit corresponds to ASCII 32 decimal. Set
the bits corresponding to the characters you want escaped to one, and all others to zero. To convert that into
the hexadecimal number pppd expects, simply take each set of 4 bits and convert them into hex. You should
end up with eight hexadecimal figures. String them all together and preprend "0x" to signify it is a
hexadecimal number, and you are done.

Initially, the async map is set to 0xffffffff -- that is, all control characters will be escaped. This is a safe
default, but is usually much more than you need. Each character that appears in the async map results in two
characters being transmitted across the link, so escaping comes at the cost of increased link utilization and a
corresponding performance reduction.

In most circumstances, an async map of 0x0 works fine. No escaping is performed.

The Maximum Receive Unit (MRU), signals to the peer the maximum size of HDLC frames we want to

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (8 of 15) [2/20/2001 11:04:27 AM]

receive. Although this may remind you of the Maximum Transfer Unit (MTU) value, these two have little in
common. The MTU is a parameter of the kernel networking device and describes the maximum frame size
the interface is able to transmit. The MRU is more of an advice to the remote end not to generate frames
larger than the MRU; the interface must nevertheless be able to receive frames of up to 1,500 bytes.

Choosing an MRU is therefore not so much a question of what the link is capable of transferring, but of what
gives you the best throughput. If you intend to run interactive applications over the link, setting the MRU to
values as low as 296 is a good idea, so that an occasional larger packet (say, from an FTP session) doesn't
make your cursor "jump." To tell pppd to request an MRU of 296, you give it the option mru 296. Small
MRUs, however, make sense only if you have VJ header compression (it is enabled by default), because
otherwise you'd waste a large amount of your bandwidth just carrying the IP header for each datagram.

pppd also understands a couple of LCP options that configure the overall behavior of the negotiation process,
such as the maximum number of configuration requests that may be exchanged before the link is terminated.
Unless you know exactly what you are doing, you should leave these options alone.

Finally, there are two options that apply to LCP echo messages. PPP defines two messages, Echo Request
and Echo Response. pppd uses this feature to check if a link is still operating. You can enable this by using
the lcp-echo-interval option together with a time in seconds. If no frames are received from the remote host
within this interval, pppd generates an Echo Request and expects the peer to return an Echo Response. If the
peer does not produce a response, the link is terminated after a certain number of requests are sent. This
number can be set using the lcp-echo-failure option. By default, this feature is disabled altogether.

General Security Considerations
A misconfigured PPP daemon can be a devastating security breach. It can be as bad as letting anyone plug
their machine into your Ethernet (and that can be very bad). In this section, we discuss a few measures that
should make your PPP configuration safe.

NOTE: Root privilege is required to configure the network device and routing table. You will
usually solve this by running pppd setuid root. However, pppd allows users to set various
security-relevant options.

To protect against any attacks a user may launch by manipulating pppd options, you should set a couple of
default values in the global /etc/ppp/options file, like those shown in the sample file in "Using Options
Files", earlier in this chapter. Some of them, such as the authentication options, cannot be overridden by the
user, and thus provide reasonable protection against manipulations. An important option to protect is the
connect option. If you intend to allow non-root users to invoke pppd to connect to the Internet, you should
always add the connect and noauth options to the global options file /etc/ppp/options. If you fail to do
this, users will be able to execute arbitrary commands with root privileges by specifying the command as
their connect command on the pppd line or in their personal options file.

Another good idea is to restrict which users may execute pppd by creating a group in /etc/group and adding
only those users who you wish to have the ability to execute the PPP daemon. You should then change group
ownership of the pppd daemon to that group and remove the world execute privileges. To do this, assuming
you've called your group dialout, you could use something like:

chown root /usr/sbin/pppd
chgrp dialout /usr/sbin/pppd
chmod 4750 /usr/sbin/pppd

Of course, you have to protect yourself from the systems you speak PPP with, too. To fend off hosts posing
as someone else, you should always require some sort of authentication from your peer. Additionally, you
should not allow foreign hosts to use any IP address they choose, but restrict them to at most a few. The
following section will deal with these topics in detail.

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (9 of 15) [2/20/2001 11:04:27 AM]

Authentication with PPP
With PPP, each system may require its peer to authenticate itself using one of two authentication protocols:
the Password Authentication Protocol (PAP), and the Challenge Handshake Authentication Protocol
(CHAP). When a connection is established, each end can request the other to authenticate itself, regardless of
whether it is the caller or the callee. In the description that follows, we will loosely talk of "client" and
"server" when we want to distinguish between the system sending authentication requests and the system
responding to them. A PPP daemon can ask its peer for authentication by sending yet another LCP
configuration request identifying the desired authentication protocol.

PAP Versus CHAP

PAP, which is offered by many Internet Service Providers, works basically the same way as the normal login
procedure. The client authenticates itself by sending a username and a (optionally encrypted) password to the
server, which the server compares to its secrets database.[11] This technique is vulnerable to eavesdroppers,
who may try to obtain the password by listening in on the serial line, and to repeated trial and error attacks.

[11] "Secret" is just the PPP name for passwords. PPP secrets don't have the same length
limitation as Linux login passwords.

CHAP does not have these deficiencies. With CHAP, the server sends a randomly generated "challenge"
string to the client, along with its hostname. The client uses the hostname to look up the appropriate secret,
combines it with the challenge, and encrypts the string using a one-way hashing function. The result is
returned to the server along with the client's hostname. The server now performs the same computation, and
acknowledges the client if it arrives at the same result.

CHAP also doesn't require the client to authenticate itself only at startup time, but sends challenges at regular
intervals to make sure the client hasn't been replaced by an intruder, for instance by switching phone lines, or
because of a modem configuration error that causes the PPP daemon not to notice that the original phone call
has dropped out and someone else has dialed in.

pppd keeps the secret keys for PAP and CHAP in two separate files called /etc/ppp/pap-secrets and
/etc/ppp/chap-secrets. By entering a remote host in one or the other file, you have fine control over whether
PAP or CHAP is used to authenticate yourself with your peer, and vice versa.

By default, pppd doesn't require authentication from the remote host, but it will agree to authenticate itself
when requested by the remote host. Since CHAP is so much stronger than PAP, pppd tries to use the former
whenever possible. If the peer does not support it, or if pppd can't find a CHAP secret for the remote system
in its chap-secrets file, it reverts to PAP. If it doesn't have a PAP secret for its peer either, it refuses to
authenticate altogether. As a consequence, the connection is shut down.

You can modify this behavior in several ways. When given the auth keyword, pppd requires the peer to
authenticate itself. pppd agrees to use either CHAP or PAP as long as it has a secret for the peer in its CHAP
or PAP database. There are other options to turn a particular authentication protocol on or off, but I won't
describe them here.

If all systems you talk to with PPP agree to authenticate themselves with you, you should put the auth option
in the global /etc/ppp/options file and define passwords for each system in the chap-secrets file. If a system
doesn't support CHAP, add an entry for it to the pap-secrets file. That way, you can make sure no
unauthenticated system connects to your host.

The next two sections discuss the two PPP secrets files, pap-secrets and chap-secrets. They are located in
/etc/ppp and contain triplets of clients, servers, and passwords, optionally followed by a list of IP addresses.
The interpretation of the client and server fields is different for CHAP and PAP, and also depends on
whether we authenticate ourselves with the peer, or whether we require the server to authenticate itself with
us.

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (10 of 15) [2/20/2001 11:04:27 AM]

The CHAP Secrets File

When it has to authenticate itself with a server using CHAP, pppd searches the chap-secrets file for an entry
with the client field equal to the local hostname, and the server field equal to the remote hostname sent in the
CHAP challenge. When requiring the peer to authenticate itself, the roles are simply reversed: pppd then
looks for an entry with the client field equal to the remote hostname (sent in the client's CHAP response),
and the server field equal to the local hostname.

The following is a sample chap-secrets file for vlager:[12]

[12] The double quotes are not part of the secret; they merely serve to protect the whitespace
within it.

CHAP secrets for vlager.vbrew.com
#
client server secret addrs
#---
vlager.vbrew.com c3po.lucas.com "Use The Source Luke" vlager.vbrew.com
c3po.lucas.com vlager.vbrew.com "arttoo! arttoo!" c3po.lucas.com
* vlager.vbrew.com "TuXdrinksVicBitter" pub.vbrew.com

When vlager establishes a PPP connection with c3po, c3po asks vlager to authenticate itself by sending a
CHAP challenge. pppd on vlager then scans chap-secrets for an entry with the client field equal to
vlager.vbrew.com and the server field equal to c3po.lucas.com, and finds the first line shown in the
example.[13] It then produces the CHAP response from the challenge string and the secret (Use The
Source Luke), and sends it off to c3po.

[13] This hostname is taken from the CHAP challenge.

pppd also composes a CHAP challenge for c3po containing a unique challenge string and its fully qualified
hostname, vlager.vbrew.com. c3po constructs a CHAP response in the way we discussed, and returns it to
vlager. pppd then extracts the client hostname (c3po.vbrew.com) from the response and searches the
chap-secrets file for a line matching c3po as a client and vlager as the server. The second line does this, so
pppd combines the CHAP challenge and the secret arttoo! arttoo!, encrypts them, and compares the
result to c3po's CHAP response.

The optional fourth field lists the IP addresses that are acceptable for the client named in the first field. The
addresses can be given in dotted quad notation or as hostnames that are looked up with the resolver. For
instance, if c3po asks to use an IP address during IPCP negotiation that is not in this list, the request is
rejected, and IPCP is shut down. In the sample file shown above, c3po is therefore limited to using its own
IP address. If the address field is empty, any addresses are allowed; a value of "-" prevents the use of IP with
that client altogether.

The third line of the sample chap-secrets file allows any host to establish a PPP link with vlager because a
client or server field of * is a wildcard matching any hostname. The only requirements are that the
connecting host must know the secret and that it must use the IP address associated with pub.vbrew.com.
Entries with wildcard hostnames may appear anywhere in the secrets file, since pppd will always use the best
match it can find for the server/client pair.

pppd may need some help forming hostnames. As explained before, the remote hostname is always provided
by the peer in the CHAP challenge or response packet. The local hostname is obtained by calling the
gethostname(2) function by default. If you have set the system name to your unqualified hostname, you also
have to provide pppd with the domain name using the domain option:

pppd ... domain vbrew.com

This provision appends the Brewery's domain name to vlager for all authentication related activities. Other
options that modify pppd's idea of the local hostname are usehostname and name. When you give the local
IP address on the command line using local:remote and local as a name instead of a dotted quad, pppd uses
this as the local hostname.

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (11 of 15) [2/20/2001 11:04:27 AM]

The PAP Secrets File

The PAP secrets file is very similar to CHAP's. The first two fields always contain a username and a server
name; the third holds the PAP secret. When the remote host sends its authentication information, pppd uses
the entry that has a server field equal to the local hostname, and a user field equal to the username sent in the
request. When it is necessary for us to send our credentials to the peer, pppd uses the secret that has a user
field equal to the local username and the server field equal to the remote hostname.

A sample PAP secrets file might look like this:

/etc/ppp/pap-secrets
#
user server secret addrs
vlager-pap c3po cresspahl vlager.vbrew.com
c3po vlager DonaldGNUth c3po.lucas.com

The first line is used to authenticate ourselves when talking to c3po. The second line describes how a user
named c3po has to authenticate itself with us.

The name vlager-pap in the first column is the username we send to c3po. By default, pppd picks the local
hostname as the username, but you can also specify a different name by giving the user option followed by
that name.

When picking an entry from the pap-secrets file to identify us to a remote host, pppd must know the remote
host's name. As it has no way of finding that out, you must specify it on the command line using the
remotename keyword followed by the peer's hostname. To use the above entry for authentication with c3po,
for example, we must add the following option to pppd's command line:

pppd ... remotename c3po user vlager-pap

In the fourth field of the PAP secrets file (and all following fields), you can specify what IP addresses are
allowed for that particular host, just as in the CHAP secrets file. The peer will be allowed to request only
addresses from that list. In the sample file, the entry that c3po will use when it dials in -- the line where c3po
is the client -- allows it to use its real IP address and no other.

Note that PAP is a rather weak authentication method, you should use CHAP instead whenever possible. We
will therefore not cover PAP in greater detail here; if you are interested in using it, you will find more PAP
features in the pppd(8) manual page.

Debugging Your PPP Setup
By default, pppd logs any warnings and error messages to syslog's daemon facility. You have to add an entry
to syslog.conf that redirects these messages to a file or even the console; otherwise, syslog simply discards
them. The following entry sends all messages to /var/log/ppp-log:

daemon.* /var/log/ppp-log

If your PPP setup doesn't work right away, you should look in this log file. If the log messages don't help,
you can also turn on extra debugging output using the debug option. This output makes pppd log the contents
of all control packets sent or received to syslog. All messages then go to the daemon facility.

Finally, the most drastic way to check a problem is to enable kernel-level debugging by invoking pppd with
the kdebug option. It is followed by a numeric argument that is the sum of the following values: 1 for general
debug messages, 2 for printing the contents of all incoming HDLC frames, and 4 to make the driver print all
outgoing HDLC frames. To capture kernel debugging messages, you must either run a syslogd daemon that
reads the /proc/kmsg file, or the klogd daemon. Either of them directs kernel debugging to the syslog kernel
facility.

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (12 of 15) [2/20/2001 11:04:27 AM]

More Advanced PPP Configurations
While configuring PPP to dial in to a network like the Internet is the most common application, there are
those of you who have more advanced requirements. In this section we'll talk about a few of the more
advanced configurations possible with PPP under Linux.

PPP Server

Running pppd as a server is just a matter of configuring a serial tty device to invoke pppd with appropriate
options when an incoming data call has been received. One way to do this is to create a special account, say
ppp, and give it a script or program as a login shell that invokes pppd with these options. Alternatively, if
you intend to support PAP or CHAP authentication, you can use the mgetty program to support your modem
and exploit its "/AutoPPP/" feature.

To build a server using the login method, you add a line similar to the following to your /etc/passwd file:[14]

ppp:x:500:200:Public PPP Account:/tmp:/etc/ppp/ppplogin

If your system supports shadow passwords, you also need to add an entry to the /etc/shadow file:

ppp:!:10913:0:99999:7:::

[14] The useradd or adduser utility, if you have it, will simplify this task.

Of course, the UID and GID you use depends on which user you wish to own the connection, and how
you've created it. You also have to set the password for the mentioned account using the passwd command.

The ppplogin script might look like this:

#!/bin/sh
ppplogin - script to fire up pppd on login
mesg n
stty -echo
exec pppd -detach silent modem crtscts

The mesg command disables other users from writing to the tty by using, for instance, the write command.
The stty command turns off character echoing. This command is necessary; otherwise, everything the peer
sends would be echoed back to it. The most important pppd option given is -detach because it prevents pppd
from detaching from the controlling tty. If we didn't specify this option, it would go to the background,
making the shell script exit. This in turn would cause the serial line to hang up and the connection to be
dropped. The silent option causes pppd to wait until it receives a packet from the calling system before it
starts sending. This option prevents transmit timeouts from occurring when the calling system is slow in
firing up its PPP client. The modem option makes pppd drive the modem control lines of the serial port. You
should always turn this option on when using pppd with a modem. The crtscts option turns on hardware
handshake.

Besides these options, you might want to force some sort of authentication, for example, by specifying auth
on pppd's command line or in the global options file. The manual page also discusses more specific options
for turning individual authentication protocols on and off.

If you wish to use mgetty, all you need to do is configure mgetty to support the serial device your modem is
connected to (see "Configuring the mgetty Daemon" for details), configure pppd for either PAP or CHAP
authentication with appropriate options in its options file, and finally, add a section similar to the following
to your /etc/mgetty/login.config file:

Configure mgetty to automatically detect incoming PPP calls and invoke
the pppd daemon to handle the connection.
#
/AutoPPP/ - ppp /usr/sbin/pppd auth -chap +pap login

The first field is a special piece of magic used to detect that an incoming call is a PPP one. You must not
change the case of this string; it is case sensitive. The third column is the username that appears in who
listings when someone has logged in. The rest of the line is the command to invoke. In our example, we've

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (13 of 15) [2/20/2001 11:04:27 AM]

ensured that PAP authentication is required, disabled CHAP, and specified that the system passwd file
should be used for authenticating users. This is probably similar to what you'll want. Remember, you can
specify the options in the options file or on the command line if you prefer.

Here is a small checklist of tasks to perform and the sequence you should perform them to get PPP dial in
working on your machine. Make sure each step works before moving on to the next:

Configure the modem for auto-answer mode. On Hayes-compatible modems, this is performed using a
command like ATS0=3. If you're going to be using the mgetty daemon, this isn't necessary.

1.

Configure the serial device with a getty type of command to answer incoming calls. A commonly used
getty variant is mgetty.

2.

Consider authentication. Will your callers authenticate using PAP, CHAP, or system login?3.

Configure pppd as server as described in this section.4.

Consider routing. Will you need to provide a network route to callers? Routing can be performed
using the ip-up script.

5.

Demand Dialing

When there is IP traffic to be carried across the link, demand dialing causes your telephone modem to dial
and to establish a connection to a remote host. Demand dialing is most useful when you can't leave your
telephone line permanently switched to your Internet provider. For example, you might have to pay timed
local calls, so it might be cheaper to have the telephone line switched on only when you need it and
disconnected when you aren't using the Internet.

Traditional Linux solutions have used the diald command, which worked well but was fairly tricky to
configure. Versions 2.3.0 and later of the PPP daemon have built-in support for demand dialing and make it
very simple to configure. You must use a modern kernel for this to work, too. Any of the later 2.0 kernels
will work just fine.

To configure pppd for demand dialing, all you need to do is add options to your options file or the pppd
command line. The following table summarizes the options related to demand dialing:

Option Description

demand This option specifies that the PPP link should be placed in demand dial
mode. The PPP network device will be created, but the connect
command will not be used until a datagram is transmitted by the local
host. This option is mandatory for demand dialing to work.

active-filter expression This option allows you to specify which data packets are to be considered
active traffic. Any traffic matching the specified rule will restart the
demand dial idle timer, ensuring that pppd waits again before closing the
link. The filter syntax has been borrowed from the tcpdump command.
The default filter matches all datagrams.

holdoff n This option allows you to specify the minimum amount of time, in
seconds, to wait before reconnecting this link if it terminates. If the
connection fails while pppd believes it is in active use, it will be
re-established after this timer has expired. This timer does not apply to
reconnections after an idle timeout.

idle n If this option is configured, pppd will disconnect the link whenever this
timer expires. Idle times are specified in seconds. Each new active data
packet will reset the timer.

A simple demand dialing configuration would therefore look something like this:

demand
holdoff 60

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (14 of 15) [2/20/2001 11:04:27 AM]

idle 180

This configuration would enable demand dialing, wait 60 seconds before re-establishing a failed connection,
and drop the link if 180 seconds pass without any active data on the link.

Persistent Dialing

Persistent dialing is what people who have permanent dialup connections to a network will want to use.
There is a subtle difference between demand dialing and persistent dialing. With persistent dialing, the
connection is automatically established as soon as the PPP daemon is started, and the persistent aspect comes
into play whenever the telephone call supporting the link fails. Persistent dialing ensures that the link is
always available by automatically rebuilding the connection if it fails.

You might be fortunate to not have to pay for your telephone calls; perhaps they are local and free, or
perhaps they're paid by your company. The persistent dialing option is extremely useful in this situation. If
you do have to pay for your telephone calls, then you have to be a little careful. If you pay for your telephone
calls on a time-charged basis, persistent dialing is almost certainly not what you want, unless you're very
sure you'll be using the connection fairly steadily twenty-four hours a day. If you do pay for calls, but they
are not time charged, you need to be careful to protect yourself against situations that might cause the
modem to endlessly redial. The pppd daemon provides an option that can help reduce the effects of this
problem.

To enable persistent dialing, you must include the persist option in one of your pppd options files. Including
this option alone is all you need to have pppd automatically invoke the command specified by the connect
option to rebuild the connection when the link fails. If you are concerned about the modem redialing too
rapidly (in the case of modem or server fault at the other end of the connection), you can use the holdoff
option to set the minimum amount of time that pppd will wait before attempting to reconnect. This option
won't solve the problem of a fault costing you money in wasted phone calls, but it will at least serve to
reduce the impact of one.

A typical configuration might have persistent dialing options that look like this:

persist
holdoff 600

The holdoff time is specified in seconds. In our example, pppd waits a full five minutes before redialing after
the call drops out.

It is possible to combine persistent dialing with demand dialing, using idle to drop the link if it has been idle
for a specified period of time. We doubt many users would want to do so, but this scenario is described
briefly in the pppd manual page, if you'd like to pursue it.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol

http://www.oreilly.com/catalog/linag2/book/ch08.html (15 of 15) [2/20/2001 11:04:27 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 9
TCP/IP Firewall
Contents:
Methods of Attack
What Is a Firewall?
What Is IP Filtering?
Setting Up Linux for Firewalling
Three Ways We Can Do Filtering
Original IP Firewall (2.0 Kernels)
IP Firewall Chains (2.2 Kernels)
Netfilter and IP Tables (2.4 Kernels)
TOS Bit Manipulation
Testing a Firewall Configuration
A Sample Firewall Configuration

Security is increasingly important for companies and individuals alike. The Internet has provided them with a powerful
tool to distribute information about themselves and obtain information from others, but it has also exposed them to
dangers that they have previously been exempt from. Computer crime, information theft, and malicious damage are all
potential dangers.

An unauthorized and unscrupulous person who gains access to a computer system may guess system passwords or exploit
the bugs and idiosyncratic behavior of certain programs to obtain a working account on that machine. Once they are able
to log in to the machine, they may have access to information that may be damaging, such as commercially sensitive
information like marketing plans, new project details, or customer information databases. Damaging or modifying this
type of data can cause severe setbacks to the company.

The safest way to avoid such widespread damage is to prevent unauthorized people from gaining network access to the
machine. This is where firewalls come in.

WARNING: Constructing secure firewalls is an art. It involves a good understanding of technology, but
equally important, it requires an understanding of the philosophy behind firewall designs. We won't cover
everything you need to know in this book; we strongly recommend you do some additional research before
trusting any particular firewall design, including any we present here.

There is enough material on firewall configuration and design to fill a whole book, and indeed there are some good
resources that you might like to read to expand your knowledge on the subject. Two of these are:

Building Internet Firewalls

by D. Chapman and E. Zwicky (O'Reilly). A guide explaining how to design and install firewalls for Unix, Linux,
and Windows NT, and how to configure Internet services to work with the firewalls.

Firewalls and Internet Security

by W. Cheswick and S. Bellovin (Addison Wesley). This book covers the philosophy of firewall design and
implementation.

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (1 of 33) [2/20/2001 11:04:45 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

We will focus on the Linux-specific technical issues in this chapter. Later we will present a sample firewall configuration
that should serve as a useful starting point in your own configuration, but as with all security-related matters, trust no one.
Double check the design, make sure you understand it, and then modify it to suit your requirements. To be safe, be sure.

Methods of Attack
As a network administrator, it is important that you understand the nature of potential attacks on computer security. We'll
briefly describe the most important types of attacks so that you can better understand precisely what the Linux IP firewall
will protect you against. You should do some additional reading to ensure that you are able to protect your network against
other types of attacks. Here are some of the more important methods of attack and ways of protecting yourself against
them:

Unauthorized access

This simply means that people who shouldn't use your computer services are able to connect and use them. For
example, people outside your company might try to connect to your company accounting machine or to your NFS
server.

There are various ways to avoid this attack by carefully specifying who can gain access through these services. You
can prevent network access to all except the intended users.

Exploitation of known weaknesses in programs

Some programs and network services were not originally designed with strong security in mind and are inherently
vulnerable to attack. The BSD remote services (rlogin, rexec, etc.) are an example.

The best way to protect yourself against this type of attack is to disable any vulnerable services or find alternatives.
With Open Source, it is sometimes possible to repair the weaknesses in the software.

Denial of service

Denial of service attacks cause the service or program to cease functioning or prevent others from making use of the
service or program. These may be performed at the network layer by sending carefully crafted and malicious
datagrams that cause network connections to fail. They may also be performed at the application layer, where
carefully crafted application commands are given to a program that cause it to become extremely busy or stop
functioning.

Preventing suspicious network traffic from reaching your hosts and preventing suspicious program commands and
requests are the best ways of minimizing the risk of a denial of service attack. It's useful to know the details of the
attack method, so you should educate yourself about each new attack as it gets publicized.

Spoofing

This type of attack causes a host or application to mimic the actions of another. Typically the attacker pretends to be
an innocent host by following IP addresses in network packets. For example, a well-documented exploit of the BSD
rlogin service can use this method to mimic a TCP connection from another host by guessing TCP sequence
numbers.

To protect against this type of attack, verify the authenticity of datagrams and commands. Prevent datagram routing
with invalid source addresses. Introduce unpredictablility into connection control mechanisms, such as TCP
sequence numbers and the allocation of dynamic port addresses.

Eavesdropping

This is the simplest type of attack. A host is configured to "listen" to and capture data not belonging to it. Carefully
written eavesdropping programs can take usernames and passwords from user login network connections. Broadcast
networks like Ethernet are especially vulnerable to this type of attack.

To protect against this type of threat, avoid use of broadcast network technologies and enforce the use of data
encryption.

IP firewalling is very useful in preventing or reducing unauthorized access, network layer denial of service, and IP
spoofing attacks. It not very useful in avoiding exploitation of weaknesses in network services or programs and
eavesdropping.

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (2 of 33) [2/20/2001 11:04:45 AM]

What Is a Firewall?
A firewall is a secure and trusted machine that sits between a private network and a public network.[1] The firewall
machine is configured with a set of rules that determine which network traffic will be allowed to pass and which will be
blocked or refused. In some large organizations, you may even find a firewall located inside their corporate network to
segregate sensitive areas of the organization from other employees. Many cases of computer crime occur from within an
organization, not just from outside.

[1] The term firewall comes from a device used to protect people from fire. The firewall is a shield of
material resistant to fire that is placed between a potential fire and the people it is protecting.

Firewalls can be constructed in quite a variety of ways. The most sophisticated arrangement involves a number of separate
machines and is known as a perimeter network. Two machines act as "filters" called chokes to allow only certain types of
network traffic to pass, and between these chokes reside network servers such as a mail gateway or a World Wide Web
proxy server. This configuration can be very safe and easily allows quite a great range of control over who can connect
both from the inside to the outside, and from the outside to the inside. This sort of configuration might be used by large
organizations.

Typically though, firewalls are single machines that serve all of these functions. These are a little less secure, because if
there is some weakness in the firewall machine itself that allows people to gain access to it, the whole network security
has been breached. Nevertheless, these types of firewalls are cheaper and easier to manage than the more sophisticated
arrangement just described. Figure 9.1 illustrates the two most common firewall configurations.

Figure 9.1: The two major classes of firewall design

The Linux kernel provides a range of built-in features that allow it to function quite nicely as an IP firewall. The network
implementation includes code to do IP filtering in a number of different ways, and provides a mechanism to quite
accurately configure what sort of rules you'd like to put in place. The Linux firewall is flexible enough to make it very
useful in either of the configurations illustrated in Figure 9.1. Linux firewall software provides two other useful features
that we'll discuss in separate chapters: IP Accounting (Chapter 10, IP Accounting) and IP masquerade (Chapter 11, IP
Masquerade and Network Address Translation).

What Is IP Filtering?
IP filtering is simply a mechanism that decides which types of IP datagrams will be processed normally and which will be
discarded. By discarded we mean that the datagram is deleted and completely ignored, as if it had never been received.
You can apply many different sorts of criteria to determine which datagrams you wish to filter; some examples of these
are:

Protocol type: TCP, UDP, ICMP, etc.●

Socket number (for TCP/UPD)●

Datagram type: SYN/ACK, data, ICMP Echo Request, etc.●

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (3 of 33) [2/20/2001 11:04:46 AM]

Datagram source address: where it came from●

Datagram destination address: where it is going to●

It is important to understand at this point that IP filtering is a network layer facility. This means it doesn't understand
anything about the application using the network connections, only about the connections themselves. For example, you
may deny users access to your internal network on the default telnet port, but if you rely on IP filtering alone, you can't
stop them from using the telnet program with a port that you do allow to pass trhough your firewall. You can prevent this
sort of problem by using proxy servers for each service that you allow across your firewall. The proxy servers understand
the application they were designed to proxy and can therefore prevent abuses, such as using the telnet program to get past
a firewall by using the World Wide Web port. If your firewall supports a World Wide Web proxy, their telnet connection
will always be answered by the proxy and will allow only HTTP requests to pass. A large number of proxy-server
programs exist. Some are free software and many others are commercial products. The Firewall-HOWTO discusses one
popular set of these, but they are beyond the scope of this book.

The IP filtering ruleset is made up of many combinations of the criteria listed previously. For example, let's imagine that
you wanted to allow World Wide Web users within the Virtual Brewery network to have no access to the Internet except
to use other sites' web servers. You would configure your firewall to allow forwarding of:

datagrams with a source address on Virtual Brewery network, a destination address of anywhere, and with a
destination port of 80 (WWW)

●

datagrams with a destination address of Virtual Brewery network and a source port of 80 (WWW) from a source
address of anywhere

●

Note that we've used two rules here. We have to allow our data to go out, but also the corresponding reply data to come
back in. In practice, as we'll see shortly, Linux simplifies this and allows us to specify this in one command.

Setting Up Linux for Firewalling
To build a Linux IP firewall, it is necessary to have a kernel built with IP firewall support and the appropriate
configuration utility. In all production kernels prior to the 2.2 series, you would use the ipfwadm utility. The 2.2.x kernels
marked the release of the third generation of IP firewall for Linux called IP Chains. IP chains use a program similar to
ipfwadm called ipchains. Linux kernels 2.3.15 and later support the fourth generation of Linux IP firewall called netfilter.
The netfilter code is the result of a large redesign of the packet handling flow in Linux. The netfilter is a multifaceted
creature, providing direct backward-compatible support for both ipfwadm and ipchains as well as a new alternative
command called iptables. We'll talk about the differences between the three in the next few sections.

Kernel Configured with IP Firewall

The Linux kernel must be configured to support IP firewalling. There isn't much more to it than selecting the appropriate
options when performing a make menuconfig of your kernel.[2] We described how to do this is in Chapter 3,
Configuring the Networking Hardware". In 2.2 kernels you should select the following options:

Networking options --->
 [*] Network firewalls
 [*] TCP/IP networking
 [*] IP: firewalling
 [*] IP: firewall packet logging

[2] Firewall packet logging is a special feature that writes a line of information about each datagram that
matches a particular firewall rule out to a special device so you can see them.

In kernels 2.4.0 and later you should select this option instead:

 Networking options --->
 [*] Network packet filtering (replaces ipchains)
 IP: Netfilter Configuration --->
 .
 <M> Userspace queueing via NETLINK (EXPERIMENTAL)
 <M> IP tables support (required for filtering/masq/NAT)
 <M> limit match support
 <M> MAC address match support
 <M> netfilter MARK match support
 <M> Multiple port match support
 <M> TOS match support

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (4 of 33) [2/20/2001 11:04:46 AM]

 <M> Connection state match support
 <M> Unclean match support (EXPERIMENTAL)
 <M> Owner match support (EXPERIMENTAL)
 <M> Packet filtering
 <M> REJECT target support
 <M> MIRROR target support (EXPERIMENTAL)
 .
 <M> Packet mangling
 <M> TOS target support
 <M> MARK target support
 <M> LOG target support
 <M> ipchains (2.2-style) support
 <M> ipfwadm (2.0-style) support

The ipfwadm Utility

The ipfwadm (IP Firewall Administration) utility is the tool used to build the firewall rules for all kernels prior to 2.2.0. Its
command syntax can be very confusing because it can do such a complicated range of things, but we'll provide some
common examples that will illustrate the most important variations of these.

The ipfwadm utility is included in most modern Linux distributions, but perhaps not by default. There may be a specific
software package for it that you have to install. If your distribution does not include it, you can obtain the source package
from ftp.xos.nl in the /pub/linux/ipfwadm/ directory, and compile it yourself.

The ipchains Utility

Just as for the ipfwadm utility, the ipchains utility can be somewhat baffling to use at first. It provides all of the flexibility
of ipfwadm with a simplified command syntax, and additionally provides a "chaining" mechanism that allows you to
manage multiple rulesets and link them together. We'll cover rule chaining in a separate section near the end of the
chapter, because for most situations it is an advanced concept.

The ipchains command appears in most Linux distributions based on the 2.2 kernels. If you want to compile it yourself,
you can find the source package from its developer's site at http://www.rustcorp.com/linux/ipchains/. Included in the
source package is a wrapper script called ipfwadm-wrapper that mimics the ipfwadm command, but actually invokes the
ipchains command. Migration of an existing firewall configuration is much more painless with this addition.

The iptables Utility

The syntax of the iptables utility is quite similar to that of the ipchains syntax. The changes are improvements and a result
of the tool being redesigned to be extensible through shared libraries. Just as for ipchains, we'll present iptables
equivalents of the examples so you can compare and contrast its syntax with the others.

The iptables utility is included in the netfilter source package available at http://www.samba.org/netfilter/. It will also be
included in any Linux distribution based on the 2.4 series kernels.

We'll talk a bit about netfilter's huge step forward in a section of its own later in this chapter.

Three Ways We Can Do Filtering
Consider how a Unix machine, or in fact any machine capable of IP routing, processes IP datagrams. The basic steps,
shown in Figure 9.2 are:

Figure 9.2: The stages of IP datagram processing

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (5 of 33) [2/20/2001 11:04:46 AM]

http://www.rustcorp.com/linux/ipchains/
http://www.samba.org/netfilter/

The IP datagram is received. (1)●

The incoming IP datagram is examined to determine if it is destined for a process on this machine.●

If the datagram is for this machine, it is processed locally. (2)●

If it is not destined for this machine, a search is made of the routing table for an appropriate route and the datagram
is forwarded to the appropriate interface or dropped if no route can be found. (3)

●

Datagrams from local processes are sent to the routing software for forwarding to the appropriate interface. (4)●

The outgoing IP datagram is examined to determine if there is a valid route for it to take, if not, it is dropped.●

The IP datagram is transmitted. (5)●

In our diagram, the flow 1 3 5 represents our machine routing data between a host on our Ethernet network to a host
reachable via our PPP link. The flows 1 2 and 4 5 represent the data input and output flows of a network program
running on our local host. The flow 4 3 2 would represent data flow via a loopback connection. Naturally data flows
both into and out of network devices. The question marks on the diagram represent the points where the IP layer makes
routing decisions.

The Linux kernel IP firewall is capable of applying filtering at various stages in this process. That is, you can filter the IP
datagrams that come in to your machine, filter those datagrams being forwarded across your machine, and filter those
datagrams that are ready to be transmitted.

In ipfwadm and ipchains, an Input rule applies to flow 1 on the diagram, a Forwarding rule to flow 3, and an Output rule
to flow 5. We'll see when we discuss netfilter later that the points of interception have changed so that an Input rule is
applied at flow 2, and an Output rule is applied at flow 4. This has important implications for how you structure your
rulesets, but the general principle holds true for all versions of Linux firewalling.

This may seem unnecessarily complicated at first, but it provides flexibility that allows some very sophisticated and
powerful configurations to be built.

Original IP Firewall (2.0 Kernels)
The first generation IP firewall support for Linux appeared in the 1.1 series kernel. It was a port of the BSD ipfw firewall
support to Linux by Alan Cox. The firewall support that appeared in the 2.0 series kernels and is the second generation
was enhanced by Jos Vos, Pauline Middelink, and others.

Using ipfwadm

The ipfwadm command was the configuration tool for the second generation Linux IP firewall. Perhaps the simplest way
to describe the use of the ipfwadm command is by example. To begin, let's code the example we presented earlier.

A naïve example

Let's suppose that we have a network in our organization and that we are using a Linux-based firewall machine to connect
our network to the Internet. Additionally, let's suppose that we wish the users of that network to be able to access web
servers on the Internet, but to allow no other traffic to be passed.

We will put in place a forwarding rule to allow datagrams with a source address on our network and a destination socket

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (6 of 33) [2/20/2001 11:04:46 AM]

of port 80 to be forwarded out, and for the corresponding reply datagrams to be forwarded back via the firewall.

Assume our network has a 24-bit network mask (Class C) and an address of 172.16.1.0. The rules we might use are:

ipfwadm -F -f
ipfwadm -F -p deny
ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80
ipfwadm -F -a accept -P tcp -S 0/0 80 -D 172.16.1.0/24

The -F command-line argument tells ipfwadm that this is a forwarding rule. The first command instructs ipfwadm to
"flush" all of the forwarding rules. This ensures we are working from a known state before we begin adding specific rules.

The second rule sets our default forwarding policy. We tell the kernel to deny or disallow forwarding of IP datagrams. It is
very important to set the default policy, because this describes what will happen to any datagrams that are not specifically
handled by any other rule. In most firewall configurations, you will want to set your default policy to "deny," as shown, to
be sure that only the traffic you specifically allow past your firewall is forwarded.

The third and fourth rules are the ones that implement our requirement. The third command allows our datagrams out, and
the fourth rule allows the responses back.

Let's review each of the arguments:

-F

This is a Forwarding rule.

-a accept

Append this rule with the policy set to "accept," meaning we will forward any datagrams that match this rule.

-P tcp

This rule applies to tcp datagrams (as opposed to UDP or ICMP).

-S 172.16.1.0/24

The Source address must have the first 24 bits matching those of the network address 172.16.1.0.

-D 0/0 80

The destination address must have zero bits matching the address 0.0.0.0. This is really a shorthand notation for
"anything." The 80 is the destination port, in this case WWW. You may also use any entry that appears in the
/etc/services file to describe the port, so -D 0/0 www would have worked just as well.

ipfwadm accepts network masks in a form with which you may not be familiar. The /nn notation is a means of describing
how many bits of the supplied address are significant, or the size of the mask. The bits are always counted from left to
right; some common examples are listed in Table 9.1.

Table 9.1: Common
Netmask Bit Values

Netmask Bits

255.0.0.0 8

255.255.0.0 16

255.255.255.0 24

255.255.255.128 25

255.255.255.192 26

255.255.255.224 27

255.255.255.240 28

255.255.255.248 29

255.255.255.252 30

We mentioned earlier that ipfwadm implements a small trick that makes adding these sorts of rules easier. This trick is an
option called -b, which makes the command a bidirectional rule.

The bidirectional flag allows us to collapse our two rules into one as follows:

ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80 -b

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (7 of 33) [2/20/2001 11:04:46 AM]

An important refinement

Take a closer look at our ruleset. Can you see that there is still one method of attack that someone outside could use to
defeat our firewall?

Our ruleset allows all datagrams from outside our network with a source port of 80 to pass. This will include those
datagrams with the SYN bit set! The SYN bit is what declares a TCP datagram to be a connection request. If a person on
the outside had privileged access to a host, they could make a connection through our firewall to any of our hosts,
provided they use port 80 at their end. This is not what we intended.

Fortunately there is a solution to this problem. The ipfwadm command provides another flag that allows us to build rules
that will match datagrams with the SYN bit set. Let's change our example to include such a rule:

ipfwadm -F -a deny -P tcp -S 0/0 80 -D 172.16.10.0/24 -y
ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80 -b

The -y flag causes the rule to match only if the SYN flag is set in the datagram. So our new rule says: "Deny any TCP
datagrams destined for our network from anywhere with a source port of 80 and the SYN bit set," or "Deny any
connection requests from hosts using port 80."

Why have we placed this special rule before the main rule? IP firewall rules operate so that the first match is the rule that
is used. Both rules would match the datagrams we want to stop, so we must be sure to put the deny rule before the
accept rule.

Listing our rules

After we've entered our rules, we ask ipfwadm to list them for us using the command:

ipfwadm -F -l

This command will list all of the configured forwarding rules. The output should look something like this:

ipfwadm -F -l
IP firewall forward rules, default policy: accept
type prot source destination ports
deny tcp anywhere 172.16.10.0/24 www -> any
acc tcp 172.16.1.0/24 anywhere any -> www

The ipfwadm command will attempt to translate the port number into a service name using the /etc/services if an entry
exists there.

The default output is lacking in some important detail for us. In the default listing output, we can't see the effect of the -y
argument. The ipfwadm command is able to produce a more detailed listing output if you specify the -e (extended output)
argument too. We won't show the whole output here because it is too wide for the page, but it includes an opt (options)
column that shows the -y option controlling SYN packets:

ipfwadm -F -l -e
P firewall forward rules, default policy: accept
 pkts bytes type prot opt tosa tosx ifname ifaddress source ...
 0 0 deny tcp --y- 0xFF 0x00 any any anywhere ...
 0 0 acc tcp b--- 0xFF 0x00 any any 172.16.1.0/24 ...

A More Complex Example

The previous example was a simple one. Not all network services are as simple as the WWW service to configure; in
practice, a typical firewall configuration would be much more complex. Let's look at another common example, this time
FTP. We want our internal network users to be able to log into FTP servers on the Internet to read and write files. But we
don't want people on the Internet to be able to log into our FTP servers.

We know that FTP uses two TCP ports: port 20 (ftp-data) and port 21 (ftp), so:

ipfwadm -a deny -P tcp -S 0/0 20 -D 172.16.1.0/24 -y
ipfwadm -a accept -P tcp -S 172.16.1.0/24 -D 0/0 20 -b
#
ipfwadm -a deny -P tcp -S 0/0 21 -D 172.16.1.0/24 -y
ipfwadm -a accept -P tcp -S 172.16.1.0/24 -D 0/0 21 -b

Right? Well, not necessarily. FTP servers can operate in two different modes: passive mode and active mode.[3] In
passive mode, the FTP server listens for a connection from the client. In active mode, the server actually makes the
connection to the client. Active mode is usually the default. The differences are illustrated in Figure 9.3.

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (8 of 33) [2/20/2001 11:04:46 AM]

[3] FTP active mode is somewhat nonintuitively enabled using the PORT command. FTP passive mode is
enabled using the PASV command.

Figure 9.3: FTP server modes

Many FTP servers make their data connection from port 20 when operating in active mode, which simplifies things for us
a little, but unfortunately not all do.[4]

[4] The ProFTPd daemon is a good example of an FTP server that doesn't, at least in older versions.

But how does this affect us? Take a look at our rule for port 20, the FTP-data port. The rule as we have it now assumes
that the connection will be made by our client to the server. This will work if we use passive mode. But it is very difficult
for us to configure a satisfactory rule to allow FTP active mode, because we may not know in advance what ports will be
used. If we open up our firewall to allow incoming connections on any port, we are exposing our network to attack on all
services that accept connections.

The dilemna is most safely resolved by insisting that our users operate in passive mode. Most FTP servers and many FTP
clients will operate this way. The popular ncftp client also supports passive mode, but it may require a small configuration
change to make it default to passive mode. Many World Wide Web browsers such as the Netscape browser also support
passive mode FTP, so it shouldn't be too hard to find appropriate software to use. Alternatively, you can avoid the issue
entirely by using an FTP proxy server that accepts a connection from the internal network and establishes connections to
the outside network.

In building your firewall, you will probably find a number of these sorts of problems. You should always give careful
thought to how a service actually operates to be sure you have put in place an appropriate ruleset for it. A real firewall
configuration can be quite complex.

Summary of ipfwadm Arguments

The ipfwadm has many different arguments that relate to IP firewall configuration. The general syntax is:

ipfwadm category command parameters [options]

Let's take a look at each of these.

Categories

One and only one of the following must be supplied. The category tells the firewall what sort of firewall rule you are
configuring:

-I

Input rule

-O

Output rule

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (9 of 33) [2/20/2001 11:04:46 AM]

-F

Forwarding rule

Commands

At least one of the following must be supplied and applies only to those rules that relate to the supplied category. The
command tells the firewall what action to take.

-a [policy]

Append a new rule

-i [policy]

Insert a new rule

-d [policy]

Delete an existing rule

-p policy

Set the default policy

-l

List all existing rules

-f

Flush all existing rules

The policies relevant to IP firewall and their meanings are:

accept

Allows matching datagrams to be received, forwarded, or transmitted

deny

Blocks matching datagrams from being received, forwarded, or transmitted

reject

Blocks matching datagrams from being received, forwarded, or transmitted, and sends the host that sent the
datagram and ICMP error message

Parameters

At least one of the following must be supplied. Use the parameters to specify to which datagrams this rule applies:

-P protocol

Can be TCP, UDP, ICMP, or all. Example:

-P tcp

-S address[/mask] [port]

Source IP address that this rule will match. A netmask of "/32" will be assumed if you don't supply one. You may
optionally specify which ports this rule will apply to. You must also specify the protocol using the -P argument
described above for this to work. If you don't specify a port or port range, "all" ports will be assumed to match.
Ports may be specified by name, using their /etc/services entry if you wish. In the case of the ICMP protocol, the
port field is used to indicate the ICMP datagram types. Port ranges may be described; use the general syntax:
lowport:highport. Here is an example:

-S 172.29.16.1/24 ftp:ftp-data

-D address[/mask] [port]

Specify the destination IP address that this rule will match. The destination address is coded with the same rules as
the source address described previously. Here is an example:

-D 172.29.16.1/24 smtp

-V address

Specify the address of the network interface on which the packet is received (-I) or is being sent (-O). This allows us
to create rules that apply only to certain network interfaces on our machine. Here is an example:

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (10 of 33) [2/20/2001 11:04:46 AM]

-V 172.29.16.1

-W name

Specify the name of the network interface. This argument works in the same way as the -V argument, except you
supply the device name instead of its address. Here is an example:

-W ppp0

Optional arguments

These arguments are sometimes very useful:

-b

This is used for bidirectional mode. This flag matches traffic flowing in either direction between the specified
source and destination. This saves you from having to create two rules: one for the forward direction of a
connection and one for the reverse.

-o

This enables logging of matching datagrams to the kernel log. Any datagram that matches this rule will be logged as
a kernel message. This is useful to enable you to detect unauthorized access.

-y

This is used to match TCP connect datagrams. The option causes the rule to match only datagrams that attempt to
establish TCP connections. Only datagrams that have their SYN bit set, but their ACK bit unset, will match. This is
useful to filter TCP connection attempts and is ignored for other protocols.

-k

This is used to match TCP acknowledgement datagrams. This option causes the rule to match only datagrams that
are acknowledgements to packets attempting to establish TCP connections. Only datagrams that have their ACK bit
set will match. This is useful to filter TCP connection attempts and is ignored for all other protocols.

ICMP datagram types

Each of the firewall configuration commands allows you to specify ICMP datagram types. Unlike TCP and UDP ports,
there is no convenient configuration file that lists the datagram types and their meanings. The ICMP datagram types are
defined in RFC-1700, the Assigned Numbers RFC. The ICMP datagram types are also listed in one of the standard C
library header files. The /usr/include/netinet/ip_icmp.h file, which belongs to the GNU standard library package and is
used by C programmers when writing network software that uses the ICMP protocol, also defines the ICMP datagram
types. For your convenience, we've listed them in Table 9.2. The iptables command interface allows you to specify ICMP
types by name, so we've listed the mnemonics it uses, as well.

Table 9.2: ICMP Datagram Types

Type Number iptables Mnemonic Type Description

0 echo-reply Echo Reply

3 destination-unreachable Destination Unreachable

4 source-quench Source Quench

5 redirect Redirect

8 echo-request Echo Request

11 time-exceeded Time Exceeded

12 parameter-problem Parameter Problem

13 timestamp-request Timestamp Request

14 timestamp-reply Timestamp Reply

15 none Information Request

16 none Information Reply

17 address-mask-request Address Mask Request

18 address-mask-reply Address Mask Reply

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (11 of 33) [2/20/2001 11:04:46 AM]

IP Firewall Chains (2.2 Kernels)
Most aspects of Linux are evolving to meet the increasing demands of its users; IP firewall is no exception. The traditional
IP firewall implementation is fine for most applications, but can be clumsy and inefficient to configure for complex
environments. To solve this problem, a new method of configuring IP firewall and related features was developed. This
new method was called "IP Firewall Chains" and was first released for general use in the 2.2.0 Linux kernel.

The IP Firewall Chains support was developed by Paul Russell and Michael Neuling.[5] Paul has documented the IP
Firewall Chains software in the IPCHAINS-HOWTO.

[5] Paul can be reached at Paul.Russell@rustcorp.com.au.

IP Firewall Chains allows you to develop classes of firewall rules to which you may then add and remove hosts or
networks. An artifact of firewall rule chaining is that it may improve firewall performance in configurations in which there
are lots of rules.

IP Firewall Chains are supported by the 2.2 series kernels and are also available as a patch against the 2.0.* kernels. The
HOWTO describes where to obtain the patch and provides lots of useful hints about how to effectively use the ipchains
configuration utility.

Using ipchains

There are two ways you can use the ipchains utility. The first way is to make use of the ipfwadm-wrapper shell script,
which is mostly a drop-in replacement for ipfwadm that drives the ipchains program in the background. If you want to do
this, then read no further. Instead, reread the previous sections describing ipfwadm, and substitute ipfwadm-wrapper in its
place. This will work, but there is no guarantee that the script will be maintained, and you will not be taking advantage of
any of the advanced features that the IP Firewall Chains have to offer.

The second way to use ipchains is to learn its new syntax and modify any existing configurations you have to use the new
syntax instead of the old. With some careful consideration, you may find you can optimize your configuration as you
convert. The ipchains syntax is easier to learn than the ipfwadm, so this is a good option.

The ipfwadm manipulated three rulesets for the purpose of configuring firewalling. With IP Firewall Chains you can
create arbitrary numbers of rulesets, each linked to one another, but there are three rulesets related to firewalling that are
always present. The standard rulesets are direct equivalents of those used with ipfwadm, except they have names: input,
forward and output.

Let's first look at the general syntax of the ipchains command, then we'll look at how we'd use ipchains instead of
ipfwadm without worrying about any of the advanced chaining features. We'll do this by revisiting our previous examples.

ipchains Command Syntax

The ipchains command syntax is straightforward. We'll now look at the most important of those. The general syntax of
most ipchains commands is:

ipchains command rule-specification options

Commands

There are a number of ways we can manipulate rules and rulesets with the ipchains command. Those relevant to IP
firewalling are:

-A chain

Append one or more rules to the end of the nominated chain. If a hostname is supplied as either source or
destination and it resolves to more than one IP address, a rule will be added for each address.

-I chain rulenum

Insert one or more rules to the start of the nominated chain. Again, if a hostname is supplied in the rule
specification, a rule will be added for each of the addresses it resolves to.

-D chain

Delete one or more rules from the specified chain that matches the rule specification.

-D chain rulenum

Delete the rule residing at position rulenum in the specified chain. Rule positions start at one for the first rule in the

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (12 of 33) [2/20/2001 11:04:46 AM]

chain.

-R chain rulenum

Replace the rule residing at position rulenum in the specific chain with the supplied rule specification.

-C chain

Check the datagram described by the rule specification against the specific chain. This command will return a
message describing how the datagram was processed by the chain. This is very useful for testing your firewall
configuration, and we look at it in detail a little later.

-L [chain]

List the rules of the specified chain, or for all chains if no chain is specified.

-F [chain]

Flush the rules of the specified chain, or for all chains if no chain is specified.

-Z [chain]

Zero the datagram and byte counters for all rules of the specified chain, or for all chains if no chain is specified.

-N chain

Create a new chain with the specified name. A chain of the same name must not already exist. This is how
user-defined chains are created.

-X [chain]

Delete the specified user-defined chain, or all user-defined chains if no chain is specified. For this command to be
successful, there must be no references to the specified chain from any other rules chain.

-P chain policy

Set the default policy of the specified chain to the specified policy. Valid firewalling policies are ACCEPT, DENY,
REJECT, REDIR, or RETURN. ACCEPT, DENY, and REJECT have the same meanings as those for the tradition IP
firewall implementation. REDIR specifies that the datagram should be transparently redirected to a port on the
firewall host. The RETURN target causes the IP firewall code to return to the Firewall Chain that called the one
containing this rule and continues starting at the rule after the calling rule.

Rule specification parameters

A number of ipchains parameters create a rule specification by determining what types of packets match. If any of these
parameters is omitted from a rule specification, its default is assumed:

-p [!]protocol

Specifies the protocol of the datagram that will match this rule. Valid protocol names are tcp, udp, icmp, or all.
You may also specify a protocol number here to match other protocols. For example, you might use 4 to match the
ipip encapsulation protocol. If the ! is supplied, the rule is negated and the datagram will match any protocol
other than the protocol specified. If this parameter isn't supplied, it will default to all.

-s [!]address[/mask] [!] [port]

Specifies the source address and port of the datagram that will match this rule. The address may be supplied as a
hostname, a network name, or an IP address. The optional mask is the netmask to use and may be supplied either in
the traditional form (e.g., /255.255.255.0) or the modern form (e.g., /24). The optional port specifies the TCP or
UDP port, or the ICMP datagram type that will match. You may supply a port specification only if you've supplied
the -p parameter with one of the tcp, udp, or icmp protocols. Ports may be specified as a range by specifying the
upper and lower limits of the range with a colon as a delimiter. For example, 20:25 described all of the ports
numbered from 20 up to and including 25. Again, the ! character may be used to negate the values.

-d [!]address[/mask] [!] [port]

Specifies the destination address and port of the datagram that will match this rule. The coding of this parameter is
the same as that of the -s parameter.

-j target

Specifies the action to take when this rule matches. You can think of this parameter as meaning "jump to." Valid
targets are ACCEPT, DENY, REJECT, REDIR, and RETURN. We described the meanings of each of these targets
earlier. However, you may also specify the name of a user-defined chain where processing will continue. If this
parameter is omitted, no action is taken on matching rule datagrams at all other than to update the datagram and
byte counters.

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (13 of 33) [2/20/2001 11:04:46 AM]

-i [!]interface-name

Specifies the interface on which the datagram was received or is to be transmitted. Again, the ! inverts the result of
the match. If the interface name ends with +, then any interface that begins with the supplied string will match. For
example, -i ppp+ would match any PPP network device and -i ! eth+ would match all interfaces except
Ethernet devices.

[!] -f

Specifies that this rule applies to everything but the first fragment of a fragmented datagram.

Options

The following ipchains options are more general in nature. Some of them control rather esoteric features of the IP chains
software:

-b

Causes the command to generate two rules. One rule matches the parameters supplied, and the other rule added
matches the corresponding parameters in the reverse direction.

-v

Causes ipchains to be verbose in its output. It will supply more information.

-n

Causes ipchains to display IP address and ports as numbers without attempting to resolve them to their
corresponding names.

-l

Enables kernel logging of matching datagrams. Any datagram that matches the rule will be logged by the kernel
using its printk() function, which is usually handled by the sysklogd program and written to a log file. This is useful
for making unusual datagrams visible.

-o[maxsize]

Causes the IP chains software to copy any datagrams matching the rule to the userspace "netlink" device. The
maxsize argument limits the number of bytes from each datagram that are passed to the netlink device. This option
is of most use to software developers, but may be exploited by software packages in the future.

-m markvalue

Causes matching datagrams to be marked with a value. Mark values are unsigned 32-bit numbers. In existing
implementations this does nothing, but at some point in the future, it may determine how the datagram is handled by
other software such as the routing code. If a markvalue begins with a + or -, the value is added or subtracted from
the existing markvalue.

-t andmask xormask

Enables you to manipulate the "type of service" bits in the IP header of any datagram that matches this rule. The
type of service bits are used by intelligent routers to prioritize datagrams before forwarding them. The Linux routing
software is capable of this sort prioritization. The andmask and xormask represent bit masks that will be logically
ANDed and ORed with the type of service bits of the datagram respectively. This is an advanced feature that is
discussed in more detail in the IPCHAINS-HOWTO.

-x

Causes any numbers in the ipchains output to be expanded to their exact values with no rounding.

-y

Causes the rule to match any TCP datagram with the SYN bit set and the ACK and FIN bits clear. This is used to
filter TCP connection requests.

Our Naïve Example Revisited

Let's again suppose that we have a network in our organization and that we are using a Linux-based firewall machine to
allow our users access to WWW servers on the Internet, but to allow no other traffic to be passed.

If our network has a 24-bit network mask (class C) and has an address of 172.16.1.0, we'd use the following ipchains
rules:

ipchains -F forward
ipchains -P forward DENY

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (14 of 33) [2/20/2001 11:04:46 AM]

ipchains -A forward -s 0/0 80 -d 172.16.1.0/24 -p tcp -y -j DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 80 -p tcp -b -j ACCEPT

The first of the commands flushes all of the rules from the forward rulesets and the second set of commands sets the
default policy of the forward ruleset to DENY. Finally, the third and fourth commands do the specific filtering we want.
The fourth command allows datagrams to and from web servers on the outside of our network to pass, and the third
prevents incoming TCP connections with a source port of 80.

If we now wanted to add rules that allowed passive mode only access to FTP servers in the outside network, we'd add
these rules:

ipchains -A forward -s 0/0 20 -d 172.16.1.0/24 -p tcp -y -j DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 20 -p tcp -b -j ACCEPT
ipchains -A forward -s 0/0 21 -d 172.16.1.0/24 -p tcp -y -j DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 21 -p tcp -b -j ACCEPT

Listing Our Rules with ipchains

To list our rules with ipchains, we use its -L argument. Just as with ipfwadm, there are arguments that control the amount
of detail in the output. In its simplest form, ipchains produces output that looks like:

ipchains -L -n
Chain input (policy ACCEPT):
Chain forward (policy DENY):
target prot opt source destination ports
DENY tcp -y---- 0.0.0.0/0 172.16.1.0/24 80 -> *
ACCEPT tcp ------ 172.16.1.0/24 0.0.0.0/0 * -> 80
ACCEPT tcp ------ 0.0.0.0/0 172.16.1.0/24 80 -> *
ACCEPT tcp ------ 172.16.1.0/24 0.0.0.0/0 * -> 20
ACCEPT tcp ------ 0.0.0.0/0 172.16.1.0/24 20 -> *
ACCEPT tcp ------ 172.16.1.0/24 0.0.0.0/0 * -> 21
ACCEPT tcp ------ 0.0.0.0/0 172.16.1.0/24 21 -> *

Chain output (policy ACCEPT):

If you don't supply the name of a chain to list, ipchains will list all rules in all chains. The -n argument in our example
tells ipchains not to attempt to convert any address or ports into names. The information presented should be
self-explanatory.

A verbose form, invoked by the -u option, provides much more detail. Its output adds fields for the datagram and byte
counters, Type of Service AND and XOR flags, the interface name, the mark, and the outsize.

All rules created with ipchains have datagram and byte counters associated with them. This is how IP Accounting is
implemented and will be discussed in detail in Chapter 10. By default these counters are presented in a rounded form
using the suffixes K and M to represent units of one thousand and one million, respectively. If the -x argument is supplied,
the counters are expanded to their full unrounded form.

Making Good Use of Chains

You now know that the ipchains command is a replacement for the ipfwadm with a simpler command-line syntax and
some interesting enhancements, but you're no doubt wanting to know where you'd use the user-defined chains and why.
You'll also probably want to know how to use the support scripts that accompany the ipchains command in its software
package. We'll now explore these subjects and address the questions.

User-defined chains

The three rulesets of the traditional IP firewall code provided a mechanism for building firewall configurations that were
fairly simple to understand and manage for small networks with simple firewalling requirements. When the configuration
requirements are not simple, a number of problems become apparent. Firstly, large networks often require much more than
the small number of firewalling rules we've seen so far; inevitably needs arise that require firewalling rules added to cover
special case scenarios. As the number of rules grows, the performance of the firewall deterioriates as more and more tests
are conducted on each datagram and managability becomes an issue. Secondly, it is not possible to enable and disable sets
of rules atomically; instead, you are forced to expose yourself to attack while you are in the middle of rebuilding your
ruleset.

The design of IP Firewall Chains helps to alleviate these problems by allowing the network administrator to create
arbitrary sets of firwewall rules that we can link to the three inbuilt rulesets. We can use the -N option of ipchains to create

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (15 of 33) [2/20/2001 11:04:46 AM]

a new chain with any name we please of eight characters or less. (Restricting the name to lowercase letters only is
probably a good idea.) The -j option configures the action to take when a datagram matches the rule specification. The -j
option specifies that if a datagram matches a rule, further testing should be performed against a user-defined chain. We'll
illustrate this with a diagram.

Consider the following ipchains commands:

ipchains -P input DENY
ipchains -N tcpin
ipchains -A tcpin -s ! 172.16.0.0/16
ipchains -A tcpin -p tcp -d 172.16.0.0/16 ssh -j ACCEPT
ipchains -A tcpin -p tcp -d 172.16.0.0/16 www -j ACCEPT
ipchains -A input -p tcp -j tcpin
ipchains -A input -p all

We set the default input chain policy to deny. The second command creates a user-defined chain called "tcpin." The third
command adds a rule to the tcpin chain that matches any datagram that was sourced from outside our local network; the
rule takes no action. This rule is an accounting rule and will be discussed in more detail in Chapter 10. The next two rules
match any datagram that is destined for our local network and either of the ssh or www ports; datagrams matching these
rules are accepted. The next rule is when the real ipchains magic begins. It causes the firewall software to check any
datagram of protocol TCP against the tcpin user-defined chain. Lastly, we add a rule to our input chain that matches any
datagram; this is another accounting rule. They will produce the following Firewall Chains shown in Figure 9-4.

Figure 9.4: A simple IP chain ruleset

Our input and tcpin chains are populated with our rules. Datagram processing always beings at one of the inbuilt
chains. We'll see how our user-defined chain is called into play by following the processing path of different types of
datagrams.

First, let's look at what happens when a UDP datagram for one of our hosts is received. Figure 9.5 illustrates the flow
through the rules.

Figure 9.5: The sequence of rules tested for a received UDP datagram

The datagram is received by the input chain and falls through the first two rules because they match ICMP and TCP
protocols, respectively. It matches the third rule in the input chain, but it doesn't specify a target, so its datagram and
byte counters are updated, but no other action takes place. The datagram reaches the end of the input chain, meets with
the default input chain policy, and is denied.

To see our user-defined chain in operation, let's now consider what happens when we receive a TCP datagram destined for

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (16 of 33) [2/20/2001 11:04:46 AM]

the ssh port of one of our hosts. The sequence is shown in Figure 9.6.

Figure 9.6: The rules flow for a received TCP datagram for ssh

This time the second rule in the input chain does match and it specifies a target of tcpin, our user-defined chain.
Specifying a user-defined chain as a target causes the datagram to be tested against the rules in that chain, so the next rule
tested is the first rule in the tcpin chain. The first rule matches any datagram that has a source address outside our local
network and specifies no target, so it too is an accounting rule and testing falls through to the next rule. The second rule in
our tcpin chain does match and specifies a target of ACCEPT. We have arrived at target, so no further firewall
processing occurs. The datagram is accepted.

Finally, let's look at what happens when we reach the end of a user-defined chain. To see this, we'll map the flow for a
TCP datagram destined for a port other than than the two we are handling specifically, as shown in Figure 9.7.

Figure 9.7: The rules flow for a received TCP datagram for telnet

The user-defined chains do not have default policies. When all rules in a user-defined chain have been tested, and none
have matched, the firewall code acts as though a RETURN rule were present, so if this isn't what you want, you should
ensure you supply a rule at the end of the user-defined chain that takes whatever action you wish. In our example, our
testing returns to the rule in the input ruleset immediately following the one that moved us to our user-defined chain.
Eventually we reach the end of the input chain, which does have a default policy and our datagram is denied.

This example is very simple, but illustrates our point. A more practical use of IP chains would be much more complex. A
slightly more sophisticated example is provided in the following list of commands:

#
Set default forwarding policy to REJECT
ipchains -P forward REJECT
#
create our user-defined chains
ipchains -N sshin
ipchains -N sshout
ipchains -N wwwin
ipchains -N wwwout
#
Ensure we reject connections coming the wrong way
ipchains -A wwwin -p tcp -s 172.16.0.0/16 -y -j REJECT
ipchains -A wwwout -p tcp -d 172.16.0.0/16 -y -j REJECT
ipchains -A sshin -p tcp -s 172.16.0.0/16 -y -j REJECT

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (17 of 33) [2/20/2001 11:04:46 AM]

ipchains -A sshout -p tcp -d 172.16.0.0/16 -y -j REJECT
#
Ensure that anything reaching the end of a user-defined chain is rejected.
ipchains -A sshin -j REJECT
ipchains -A sshout -j REJECT
ipchains -A wwwin -j REJECT
ipchains -A wwwout -j REJECT
#
divert www and ssh services to the relevant user-defined chain
ipchains -A forward -p tcp -d 172.16.0.0/16 ssh -b -j sshin
ipchains -A forward -p tcp -s 172.16.0.0/16 -d 0/0 ssh -b -j sshout
ipchains -A forward -p tcp -d 172.16.0.0/16 www -b -j wwwin
ipchains -A forward -p tcp -s 172.16.0.0/16 -d 0/0 www -b -j wwwout
#
Insert our rules to match hosts at position two in our user-defined chains.
ipchains -I wwwin 2 -d 172.16.1.2 -b -j ACCEPT
ipchains -I wwwout 2 -s 172.16.1.0/24 -b -j ACCEPT
ipchains -I sshin 2 -d 172.16.1.4 -b -j ACCEPT
ipchains -I sshout 2 -s 172.16.1.4 -b -j ACCEPT
ipchains -I sshout 2 -s 172.16.1.6 -b -j ACCEPT
#

In this example, we've used a selection of user-defined chains both to simplify management of our firewall configuration
and improve the efficiency of our firewall as compared to a solution involving only the built-in chains.

Our example creates user-defined chains for each of the ssh and www services in each connection direction. The chain
called wwwout is where we place rules for hosts that are allowed to make outgoing World Wide Web connections, and
sshin is where we define rules for hosts to which we want to allow incoming ssh connections. We've assumed that we
have a requirement to allow and deny individual hosts on our network the ability to make or receive ssh and www
connections. The simplication occurs because the user-defined chains allow us to neatly group the rules for the host
incoming and outgoing permissions rather than muddling them all together. The improvement in efficiency occurs because
for any particular datagram, we have reduced the average number of tests required before a target is found. The efficiency
gain increases as we add more hosts. If we hadn't used user-defined chains, we'd potentially have to search the whole list
of rules to determine what action to take with each and every datagram received. Even if we assume that each of the rules
in our list matches an equal proportion of the total number of datagrams processed, we'd still be searching half the list on
average. User-defined chains allow us to avoid testing large numbers of rules if the datagram being tested doesn't match
the simple rule in the built-in chain that jumps to them.

The ipchains support scripts

The ipchains software package is supplied with three support scripts. The first of these we've discussed briefly already,
while the remaining two provide an easy and convenient means of saving and restoring your firewall configuration.

The ipfwadm-wrapper script emulates the command-line syntax of the ipfwadm command, but drives the ipchains
command to build the firewall rules. This is a convenient way to migrate your existing firewall configuration to the kernel
or an alternative to learning the ipchains syntax. The ipfwadm-wrapper script behaves differently from the ipfwadm
command in two ways: firstly, because the ipchains command doesn't support specification of an interface by address, the
ipfwadm-wrapper script accepts an argument of -V but attempts to convert it into the ipchains equivalent of a -W by
searching for the interface name configured with the supplied address. The ipfwadm-wrapper script will always provide a
warning when you use the -V option to remind you of this. Secondly, fragment accounting rules are not translated
correctly.

The ipchains-save and ipchains-restore scripts make building and modifying a firewall configuration much simpler. The
ipchains-save command reads the current firewall configuration and writes a simplified form to the standard output. The
ipchains-restore command reads data in the output format of the ipchains-save command and configures the IP firewall
with these rules. The advantage of using these scripts over directly modifying your firewall configuration script and
testing the configuration is the ability to dynamically build your configuration once and then save it. You can then restore
that configuration, modify it, and resave it as you please.

To use the scripts, you'd enter something like:

ipchains-save >/var/state/ipchains/firewall.state

to save your current firewall configuration. You'd restore it, perhaps at boot time, with:

ipchains-restore </var/state/ipchains/firewall.state

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (18 of 33) [2/20/2001 11:04:46 AM]

The ipchains-restore script checks if any user-defined chain listed in its input already exists. If you've supplied the -f
argument, it will automatically flush the rules from the user-defined chain before configuring those in the input. The
default behavior asks you whether to skip this chain or to flush it.

Netfilter and IP Tables (2.4 Kernels)
While developing IP Firewall Chains, Paul Russell decided that IP firewalling should be less difficult; he soon set about
the task of simplifying aspects of datagram processing in the kernel firewalling code and produced a filtering framework
that was both much cleaner and much more flexible. He called this new framework netfilter.

NOTE: At the time of preparation of this book the netfilter design had not yet stabilized. We hope you'll
forgive any errors in the description of netfilter or its associated configuration tools that result from changes
that occurred after preparation of this material. We considered the netfilter work important enough to justify
the inclusion of this material, despite parts of it being speculative in nature. If you're in any doubt, the
relevant HOWTO documents will contain the most accurate and up-to-date information on the detailed issues
associated with the netfilter configuration.

So what was wrong with IP chains? They vastly improved the efficiency and management of firewall rules. But the way
they processed datagrams was still complex, especially in conjunction with firewall-related features like IP masquerade
(discussed in Chapter 11) and other forms of address translation. Part of this complexity existed because IP masquerade
and Network Address Translation were developed independently of the IP firewalling code and integrated later, rather
than having been designed as a true part of the firewall code from the start. If a developer wanted to add yet more features
in the datagram processing sequence, he would have had difficulty finding a place to insert the code and would have been
forced to make changes in the kernel in order to do so.

Still, there were other problems. In particular, the "input" chain described input to the IP networking layer as a whole. The
input chain affected both datagrams to be destined for this host and datagrams to be routed by this host. This was
somewhat counterintuitive because it confused the function of the input chain with that of the forward chain, which
applied only to datagrams to be forwarded, but which always followed the input chain. If you wanted to treat datagrams
for this host differently from datagrams to be forwarded, it was necessary to build complex rules that excluded one or the
other. The same problem applied to the output chain.

Inevitably some of this complexity spilled over into the system administrator's job because it was reflected in the way that
rulesets had to be designed. Moreover, any extensions to filtering required direct modifications to the kernel, because all
filtering policies were implemented there and there was no way of providing a transparent interface into it. netfilter
addresses both the complexity and the rigidity of older solutions by implementing a generic framework in the kernel that
streamlines the way datagrams are processed and provides a capability to extend filtering policy without having to modify
the kernel.

Let's take a look at two of the key changes made. Figure 9.8 illustrates how datagrams are processed in the IP chains
implementation, while Figure 9.9 illustrates how they are processed in the netfilter implementation. The key differences
are the removal of the masquerading function from the core code and a change in the locations of the input and output
chains. To accompany these changes, a new and extensible configuration tool called iptables was created.

In IP chains, the input chain applies to all datagrams received by the host, irrespective of whether they are destined for the
local host or routed to some other host. In netfilter, the input chain applies only to datagrams destined for the local host,
and the forward chain applies only to datagrams destined for another host. Similarly, in IP chains, the output chain applies
to all datagrams leaving the local host, irrespective of whether the datagram is generated on the local host or routed from
some other host. In netfilter, the output chain applies only to datagrams generated on this host and does not apply to
datagrams being routed from another host. This change alone offers a huge simplification of many firewall configurations.

Figure 9.8: Datagram processing chain in IP chains

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (19 of 33) [2/20/2001 11:04:46 AM]

In Figure 9.8, the components labeled "demasq" and "masq" are separate kernel components responsible for the incoming
and outgoing processing of masqueraded datagrams. These have been reimplemented as netfilter modules.

Consider the case of a configuration for which the default policy for each of the input, forward, and output chains is
deny. In IP chains, six rules would be needed to allow any session through a firewall host: two each in the input, forward,
and output chains (one would cover each forward path and one would cover each return path). You can imagine how this
could easily become extremely complex and difficult to manage when you want to mix sessions that could be routed and
sessions that could connect to the local host without being routed. IP chains allow you to create chains that would simplify
this task a little, but the design isn't obvious and requires a certain level of expertise.

In the netfilter implementation with iptables, this complexity disappears completely. For a service to be routed across the
firewall host, but not terminate on the local host, only two rules are required: one each for the forward and the reverse
directions in the forward chain. This is the obvious way to design firewalling rules, and will serve to simplify the design of
firewall configurations immensely.

Figure 9.9: Datagram processing chain in netfilter

The PACKET-FILTERING-HOWTO offers a detailed list of the changes that have been made, so let's focus on the more
practical aspects here.

Backward Compatability with ipfwadm and ipchains

The remarkable flexibility of Linux netfilter is illustrated by its ability to emulate the ipfwadm and ipchains interfaces.
Emulation makes transition to the new generation of firewall software a little easier.

The two netfilter kernel modules called ipfwadm.o and ipchains.o provide backward compatibility for ipfwadm and
ipchains. You may load only one of these modules at a time, and use one only if the ip_tables.o module is not loaded.
When the appropriate module is loaded, netfilter works exactly like the former firewall implementation.

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (20 of 33) [2/20/2001 11:04:46 AM]

netfilter mimics the ipchains interface with the following commands:

rmmod ip_tables
modprobe ipchains
ipchains ...

Using iptables

The iptables utility is used to configure netfilter filtering rules. Its syntax borrows heavily from the ipchains command, but
differs in one very significant respect: it is extensible. What this means is that its functionality can be extended without
recompiling it. It manages this trick by using shared libraries. There are standard extensions and we'll explore some of
them in a moment.

Before you can use the iptables command, you must load the netfilter kernel module that provides support for it. The
easiest way to do this is to use the modprobe command as follows:

modprobe ip_tables

The iptables command is used to configure both IP filtering and Network Address Translation. To facilitate this, there are
two tables of rules called filter and nat. The filter table is assumed if you do not specify the -t option to override it. Five
built-in chains are also provided. The INPUT and FORWARD chains are available for the filter table, the
PREROUTING and POSTROUTING chains are available for the nat table, and the OUTPUT chain is available for both
tables. In this chapter we'll discuss only the filter table. We'll look at the nat table in Chapter 11

The general syntax of most iptables commands is:

iptables command rule-specification extensions

Now we'll take a look at some options in detail, after which we'll review some examples.

Commands

There are a number of ways we can manipulate rules and rulesets with the iptables command. Those relevant to IP
firewalling are:

-A chain

Append one or more rules to the end of the nominated chain. If a hostname is supplied as either a source or
destination and it resolves to more than one IP address, a rule will be added for each address.

-I chain rulenum

Insert one or more rules to the start of the nominated chain. Again, if a hostname is supplied in the rule
specification, a rule will be added for each of the addresses to which it resolves.

-D chain

Delete one or more rules from the specified chain matching the rule specification.

-D chain rulenum

Delete the rule residing at position rulenum in the specified chain. Rule positions start at 1 for the first rule in the
chain.

-R chain rulenum

Replace the rule residing at position rulenum in the specific chain with the supplied rule specification.

-C chain

Check the datagram described by the rule specification against the specific chain. This command will return a
message describing how the chain processed the datagram. This is very useful for testing your firewall
configuration and we will look at it in detail later.

-L [chain]

List the rules of the specified chain, or for all chains if no chain is specified.

-F [chain]

Flush the rules of the specified chain, or for all chains if no chain is specified.

-Z [chain]

Zero the datagram and byte counters for all rules of the specified chain, or for all chains if no chain is specified.

-N chain

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (21 of 33) [2/20/2001 11:04:46 AM]

Create a new chain with the specified name. A chain of the same name must not already exist. This is how
user-defined chains are created.

-X [chain]

Delete the specified user-defined chain, or all user-defined chains if no chain is specified. For this command to be
successful, there must be no references to the specified chain from any other rules chain.

-P chain policy

Set the default policy of the specified chain to the specified policy. Valid firewalling policies are ACCEPT, DROP,
QUEUE, and RETURN. ACCEPT allows the datagram to pass. DROP causes the datagram to be discarded. QUEUE
causes the datagram to be passed to userspace for further processing. The RETURN target causes the IP firewall
code to return to the Firewall Chain that called the one containing this rule, and continue starting at the rule after the
calling rule.

Rule specification parameters

There are a number of iptables parameters that constitute a rule specification. Wherever a rule specification is required,
each of these parameters must be supplied or their default will be assumed.

-p [!]protocol

Specifies the protocol of the datagram that will match this rule. Valid protocol names are tcp, udp, icmp, or a
number, if you know the IP protocol number.[6] For example, you might use 4 to match the ipip encapsulation
protocol. If the ! character is supplied, the rule is negated and the datagram will match any protocol other than the
specified protocol. If this parameter isn't supplied, it will default to match all protocols.

[6] Take a look at /etc/protocols for protocol names and numbers.

-s [!]address[/mask]

Specifies the source address of the datagram that will match this rule. The address may be supplied as a hostname, a
network name, or an IP address. The optional mask is the netmask to use and may be supplied either in the
traditional form (e.g., /255.255.255.0) or in the modern form (e.g., /24).

-d [!]address[/mask]

Specifies the destination address and port of the datagram that will match this rule. The coding of this parameter is
the same as that of the -s parameter.

-j target

Specifies what action to take when this rule matches. You can think of this parameter as meaning "jump to." Valid
targets are ACCEPT, DROP, QUEUE, and RETURN. We described the meanings of each of these previously in the
"Commands" section. You may also specify the name of a user-defined chain where processing will continue. You
may also supply the name of a target supplied by an extension. We'll talk about extensions shortly. If this parameter
is omitted, no action is taken on matching datagrams at all, other than to update the datagram and byte counters of
this rule.

-i [!]interface-name

Specifies the interface on which the datagram was received. Again, the ! inverts the result of the match. If the
interface name ends with "+" then any interface that begins with the supplied string will match. For example, -i
ppp+ would match any PPP network device and -i ! eth+ would match all interfaces except ethernet devices.

-o [!]interface-name

Specifies the interface on which the datagram is to be transmitted. This argument has the same coding as the -i
argument.

[!] -f

Specifies that this rule applies only to the second and later fragments of a fragmented datagram, not to the first
fragment.

Options

The following iptables options are more general in nature. Some of them control rather esoteric features of the netfilter
software.

-v

causes iptables to be verbose in its output; it will supply more information.

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (22 of 33) [2/20/2001 11:04:46 AM]

-n

causes iptables to display IP address and ports as numbers without attempting to resolve them to their corresponding
names.

-x

causes any numbers in the iptables output to be expanded to their exact values with no rounding.

- -line-numbers

causes line numbers to be displayed when listing rulesets. The line number will correspond to the rule's position
within the chain.

Extensions

We said earlier that the iptables utility is extensible through optional shared library modules. There are some standard
extensions that provide some of the features ipchains provided. To make use of an extension, you must specify its name
through the -m name argument to iptables. The following list shows the -m and -p options that set up the extension's
context, and the options provided by that extension.

TCP Extensions: used with -m tcp -p tcp

- -sport [!] [port[:port]]

Specifies the port that the datagram source must be using to match this rule. Ports may be specified as a range by
specifying the upper and lower limits of the range using the colon as a delimiter. For example, 20:25 described all
of the ports numbered 20 up to and including 25. Again, the ! character may be used to negate the values.

- -dport [!] [port[:port]]

Specifies the port that the datagram destination must be using to match this rule. The argument is coded identically
to the - -sport option.

- -tcp-flags [!] mask comp

Specifies that this rule should match when the TCP flags in the datagram match those specified by mask and comp.
mask is a comma-separated list of flags that should be examined when making the test. comp is a comma-separated
list of flags that must be set for the rule to match. Valid flags are: SYN, ACK, FIN, RST, URG, PSH, ALL or NONE.
This is an advanced option: refer to a good description of the TCP protocol, such as RFC-793, for a description of
the meaning and implication of each of these flags. The ! character negates the rule.

[!] - -syn

Specifies the rule to match only datagrams with the SYN bit set and the ACK and FIN bits cleared. Datagrams with
these options are used to open TCP connections, and this option can therefore be used to manage connection
requests. This option is shorthand for:

- -tcp-flags SYN,RST,ACK SYN

When you use the negation operator, the rule will match all datagrams that do not have both the SYN and ACK bits
set.

UDP Extensions: used with -m udp -p udp

- -sport [!] [port[:port]]

Specifies the port that the datagram source must be using to match this rule. Ports may be specified as a range by
specifying the upper and lower limits of the range using the colon as a delimiter. For example, 20:25 describes all
of the ports numbered 20 up to and including 25. Again, the ! character may be used to negate the values.

- -dport [!] [port[:port]]

Specifies the port that the datagram destination must be using to match this rule. The argument is coded identically
to the - -sport option.

ICMP Extensions: used with -m icmp -p icmp

- -icmp-type [!] typename

Specifies the ICMP message type that this rule will match. The type may be specified by number or name. Some
valid names are: echo-request, echo-reply, source-quench, time-exceeded,
destination-unreachable, network-unreachable, host-unreachable,

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (23 of 33) [2/20/2001 11:04:46 AM]

protocol-unreachable, and port-unreachable.

MAC Extensions: used with -m mac

- -mac-source [!] address

Specifies the host's Ethernet address that transmitted the datagram that this rule will match. This only makes sense
in a rule in the input or forward chains because we will be transmitting any datagram that passes the output chain.

Our Naïve Example Revisited, Yet Again

To implement our naïve example using the netfilter, you could simply load the ipchains.o module and pretend it is the
ipchains version. Instead, we'll reimplement it using iptables to illustrate how similar it is.

Yet again, let's suppose that we have a network in our organization and that we are using a Linux-based firewall machine
to allow our users to be able to access WWW servers on the Internet, but to allow no other traffic to be passed.

If our network has a 24-bit network mask (class C) and has an address of 172.16.1.0, then we'd use the following iptables
rules:

modprobe ip_tables
iptables -F FORWARD
iptables -P FORWARD DROP
iptables -A FORWARD -m tcp -p tcp -s 0/0 --sport 80 -d 172.16.1.0/24 /
 --syn -j DROP
iptables -A FORWARD -m tcp -p tcp -s 172.16.1.0/24 --sport /
 80 -d 0/0 -j ACCEPT
iptables -A FORWARD -m tcp -p tcp -d 172.16.1.0/24 --dport 80 -s 0/0 -j /
 ACCEPT

In this example the iptables commands are interpreted exactly as the equivalent ipchains commands. The major exception
that the ip_tables.o module must load. Note that iptables doesn't support the -b option, so we must supply a rule for each
direction.

TOS Bit Manipulation
The Type Of Service (TOS) bits are a set of four-bit flags in the IP header. When any one of these bit flags is set, routers
may handle the datagram differently than datagrams with no TOS bits set. Each of the four bits has a different purpose and
only one of the TOS bits may be set at any time, so combinations are not allowed. The bit flags are called Type of Service
bits because they enable the application transmitting the data to tell the network the type of network service it requires.

The classes of network service available are:

Minimum delay

Used when the time it takes for a datagram to travel from the source host to destination host (latency) is most
important. A network provider might, for example, use both optical fiber and satellite network connections. Data
carried across satellite connections has farther to travel and their latency is generally therefore higher than for
terrestrial-based network connections between the same endpoints. A network provider might choose to ensure that
datagrams with this type of service set are not carried by satellite.

Maximum throughput

Used when the volume of data transmitted in any period of time is important. There are many types of network
applications for which latency is not particularly important but the network throughput is; for example, bulk-file
transfers. A network provider might choose to route datagrams with this type of service set via high-latency,
high-bandwidth routes, such as satellite connections.

Maximum reliability

Used when it is important that you have some certainty that the data will arrive at the destination without
retransmission being required. The IP protocol may be carried over any number of underlying transmission
mediums. While SLIP and PPP are adequate datalink protocols, they are not as reliable as carrying IP over some
other network, such as an X.25 network. A network provider might make an alternate network available, offering
high reliability, to carry IP that would be used if this type of service is selected.

Minimum cost

Used when it is important to minimize the cost of data transmission. Leasing bandwidth on a satellite for a

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (24 of 33) [2/20/2001 11:04:46 AM]

transpacific crossing is generally less costly than leasing space on a fiber-optical cable over the same distance, so
network providers may choose to provide both and charge differently depending on which you use. In this scenario,
your "minimum cost" type of service bit may cause your datagrams to be routed via the lower-cost satellite route.

Setting the TOS Bits Using ipfwadm or ipchains

The ipfwadm and ipchains commands deal with the TOS bits in much the same manner. In both cases you specify a rule
that matches the datagrams with particular TOS bits set, and use the -t argument to specify the change you wish to make.

The changes are specified using two-bit masks. The first of these bit masks is logically ANDed with the IP options field of
the datagram and the second is logically eXclusive-ORd with it. If this sounds complicated, we'll give you the recipes
required to enable each of the types of service in a moment.

The bit masks are specified using eight-bit hexadecimal values. Both ipfwadm and ipchains use the same argument syntax:

-t andmask xormask

Fortunately the same mask arguments can be used each time you wish to set a particular type of service, to save you
having to work them out. They are presented with some suggested uses in Table 9.3.

Table 9.3: Suggested Uses for TOS Bitmasks

TOS ANDmask XORmask Suggested Use

Minimum Delay 0x01 0x10 ftp, telnet, ssh

Maximum Throughput 0x01 0x08 ftp-data, www

Maximum Reliability 0x01 0x04 snmp, dns

Minimum Cost 0x01 0x02 nntp, smtp

Setting the TOS Bits Using iptables

The iptables tool allows you to specify rules that capture only datagrams with TOS bits matching some predetermined
value using the -m tos option, and for setting the TOS bits of IP datagrams matching a rule using the -j TOS target. You
may set TOS bits only on the FORWARD and OUTPUT chains. The matching and the setting occur quite independently.
You can configure all sort of interesting rules. For example, you can configure a rule that discads all datagrams with
certain TOS bit combinations, or a rule that sets the TOS bits of datagrams only from certain hosts. Most often you will
use rules that contain both matching and setting to perform TOS bit translations, just as you could for ipfwadm or
ipchains.

Rather than the complicated two-mask configuration of ipfwadm and ipchains, iptables uses the simpler approach of
plainly specifying what the TOS bits should match, or to what the TOS bits should be set. Additionally, rather than having
to remember and use the hexadecimal value, you may specify the TOS bits using the more friendly mnemonics listed in
the upcoming table.

The general syntax used to match TOS bits looks like:

-m tos --tos mnemonic [other-args] -j target

The general syntax used to set TOS bits looks like:

[other-args] -j TOS --set mnemonic

Remember that these would typically be used together, but they can be used quite independently if you have a
configuration that requires it.

Mnemonic Hexadecimal

Normal-Service 0x00

Minimize-Cost 0x02

Maximize-Reliability 0x04

Maximize-Throughput 0x08

Minimize-Delay 0x10

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (25 of 33) [2/20/2001 11:04:46 AM]

Testing a Firewall Configuration
After you've designed an appropriate firewall configuration, it's important to validate that it does in fact do what you want
it to do. One way to do this is to use a test host outside your network to attempt to pierce your firewall: this can be quite
clumsy and slow, though, and is limited to testing only those addresses that you can actually use.

A faster and easier method is available with the Linux firewall implementation. It allows you to manually generate tests
and run them through the firewall configuration just as if you were testing with actual datagrams. All varieties of the
Linux kernel firewall software, ipfwadm, ipchains, and iptables, provide support for this style of testing. The
implementation involves use of the relevant check command.

The general test procedure is as follows:

Design and configure your firewall using ipfwadm, ipchains, or iptables.1.

Design a series of tests that will determine whether your firewall is actually working as you intend. For these tests
you may use any source or destination address, so choose some address combinations that should be accepted and
some others that should be dropped. If you're allowing or disallowing only certain ranges of addresses, it is a good
idea to test addresses on either side of the boundary of the range -- one address just inside the boundary and one
address just outside the boundary. This will help ensure that you have the correct boundaries configured, because it
is sometimes easy to specify netmasks incorrectly in your configuration. If you're filtering by protocol and port
number, your tests should also check all important combinations of these parameters. For example, if you intend to
accept only TCP under certain circumstances, check that UDP datagrams are dropped.

2.

Develop ipfwadm, ipchains, or iptables rules to implement each test. It is probably worthwhile to write all the rules
into a script so you can test and re-test easily as you correct mistakes or change your design. Tests use almost the
same syntax as rule specifications, but the arguments take on slightly differing meanings. For example, the source
address argument in a rule specification specifies the source address that datagrams matching this rule should have.
The source address argument in test syntax, in contrast, specifies the source address of the test datagram that will be
generated. For ipfwadm, you must use the -c option to specify that this command is a test, while for ipchains and
iptables, you must use the -C option. In all cases you must always specify the source address, destination address,
protocol, and interface to be used for the test. Other arguments, such as port numbers or TOS bit settings, are
optional.

3.

Execute each test command and note the output. The output of each test will be a single word indicating the final
target of the datagram after running it through the firewall configuration -- that is, where the processing ended. For
ipchains and iptables, user-specified chains will be tested in addition to the built-in ones.

4.

Compare the output of each test against the desired result. If there are any discrepancies, you will need to analyse
your ruleset to determine where you've made the error. If you've written your test commands into a script file, you
can easily rerun the test after correcting any errors in your firewall configuration. It's a good practice to flush your
rulesets completely and rebuild them from scratch, rather than to make changes dynamically. This helps ensure that
the active configuration you are testing actually reflects the set of commands in your configuration script.

5.

Let's take a quick look at what a manual test transcript would look like for our naïve example with ipchains. You will
remember that our local network in the example was 172.16.1.0 with a netmask of 255.255.255.0, and we were to allow
TCP connections out to web servers on the net. Nothing else was to pass our forward chain. Start with a transmission that
we know should work, a connection from a local host to a web server outside:

ipchains -C forward -p tcp -s 172.16.1.0 1025 -d 44.136.8.2 80 -i eth0
accepted

Note the arguments had to be supplied and the way they've been used to describe a datagram. The output of the command
indicates that that the datagram was accepted for forwarding, which is what we hoped for.

Now try another test, this time with a source address that doesn't belong to our network. This one should be denied:

ipchains -C forward -p tcp -s 172.16.2.0 1025 -d 44.136.8.2 80 -i eth0
denied

Try some more tests, this time with the same details as the first test, but with different protocols. These should be denied,
too:

ipchains -C forward -p udp -s 172.16.1.0 1025 -d 44.136.8.2 80 -i eth0
denied
ipchains -C forward -p icmp -s 172.16.1.0 1025 -d 44.136.8.2 80 -i eth0
denied

Try another destination port, again expecting it to be denied:

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (26 of 33) [2/20/2001 11:04:46 AM]

ipchains -C forward -p tcp -s 172.16.1.0 1025 -d 44.136.8.2 23 -i eth0
denied

You'll go a long way toward achieving peace of mind if you design a series of exhaustive tests. While this can sometimes
be as difficult as designing the firewall configuration, it's also the best way of knowing that your design is providing the
security you expect of it.

A Sample Firewall Configuration
We've discussed the fundamentals of firewall configuration. Let's now look at what a firewall configuration might actually
look like.

The configuration in this example has been designed to be easily extended and customized. We've provided three versions.
The first version is implemented using the ipfwadm command (or the ipfwadm-wrapper script), the second uses ipchains,
and the third uses iptables. The example doesn't attempt to exploit user-defined chains, but it will show you the similarities
and differences between the old and new firewall configuration tool syntaxes:

#!/bin/bash
##
IPFWADM VERSION
This sample configuration is for a single host firewall configuration
with no services supported by the firewall machine itself.
##

USER CONFIGURABLE SECTION

The name and location of the ipfwadm utility. Use ipfwadm-wrapper for
2.2.* kernels.
IPFWADM=ipfwadm

The path to the ipfwadm executable.
PATH="/sbin"

Our internal network address space and its supporting network device.
OURNET="172.29.16.0/24"
OURBCAST="172.29.16.255"
OURDEV="eth0"

The outside address and the network device that supports it.
ANYADDR="0/0"
ANYDEV="eth1"

The TCP services we wish to allow to pass - "" empty means all ports
note: space separated
TCPIN="smtp www"
TCPOUT="smtp www ftp ftp-data irc"

The UDP services we wish to allow to pass - "" empty means all ports
note: space separated
UDPIN="domain"
UDPOUT="domain"

The ICMP services we wish to allow to pass - "" empty means all types
ref: /usr/include/netinet/ip_icmp.h for type numbers
note: space separated
ICMPIN="0 3 11"
ICMPOUT="8 3 11"

Logging; uncomment the following line to enable logging of datagrams
that are blocked by the firewall.
LOGGING=1

END USER CONFIGURABLE SECTION

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (27 of 33) [2/20/2001 11:04:46 AM]

###
Flush the Incoming table rules
$IPFWADM -I -f

We want to deny incoming access by default.
$IPFWADM -I -p deny

SPOOFING
We should not accept any datagrams with a source address matching ours
from the outside, so we deny them.
$IPFWADM -I -a deny -S $OURNET -W $ANYDEV

SMURF
Disallow ICMP to our broadcast address to prevent "Smurf" style attack.
$IPFWADM -I -a deny -P icmp -W $ANYDEV -D $OURBCAST

TCP
We will accept all TCP datagrams belonging to an existing connection
(i.e. having the ACK bit set) for the TCP ports we're allowing through.
This should catch more than 95 % of all valid TCP packets.
$IPFWADM -I -a accept -P tcp -D $OURNET $TCPIN -k -b

TCP - INCOMING CONNECTIONS
We will accept connection requests from the outside only on the
allowed TCP ports.
$IPFWADM -I -a accept -P tcp -W $ANYDEV -D $OURNET $TCPIN -y

TCP - OUTGOING CONNECTIONS
We accept all outgoing tcp connection requests on allowed TCP ports.
$IPFWADM -I -a accept -P tcp -W $OURDEV -D $ANYADDR $TCPOUT -y

UDP - INCOMING
We will allow UDP datagrams in on the allowed ports.
$IPFWADM -I -a accept -P udp -W $ANYDEV -D $OURNET $UDPIN

UDP - OUTGOING
We will allow UDP datagrams out on the allowed ports.
$IPFWADM -I -a accept -P udp -W $OURDEV -D $ANYADDR $UDPOUT

ICMP - INCOMING
We will allow ICMP datagrams in of the allowed types.
$IPFWADM -I -a accept -P icmp -W $ANYDEV -D $OURNET $UDPIN

ICMP - OUTGOING
We will allow ICMP datagrams out of the allowed types.
$IPFWADM -I -a accept -P icmp -W $OURDEV -D $ANYADDR $UDPOUT

DEFAULT and LOGGING
All remaining datagrams fall through to the default
rule and are dropped. They will be logged if you've
configured the LOGGING variable above.
#
if ["$LOGGING"]
then
 # Log barred TCP
 $IPFWADM -I -a reject -P tcp -o

 # Log barred UDP
 $IPFWADM -I -a reject -P udp -o

 # Log barred ICMP
 $IPFWADM -I -a reject -P icmp -o
fi

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (28 of 33) [2/20/2001 11:04:46 AM]

#
end.

Now we'll reimplement it using the ipchains command:

#!/bin/bash
##
IPCHAINS VERSION
This sample configuration is for a single host firewall configuration
with no services supported by the firewall machine itself.
##

USER CONFIGURABLE SECTION

The name and location of the ipchains utility.
IPCHAINS=ipchains

The path to the ipchains executable.
PATH="/sbin"

Our internal network address space and its supporting network device.
OURNET="172.29.16.0/24"
OURBCAST="172.29.16.255"
OURDEV="eth0"

The outside address and the network device that supports it.
ANYADDR="0/0"
ANYDEV="eth1"

The TCP services we wish to allow to pass - "" empty means all ports
note: space separated
TCPIN="smtp www"
TCPOUT="smtp www ftp ftp-data irc"

The UDP services we wish to allow to pass - "" empty means all ports
note: space separated
UDPIN="domain"
UDPOUT="domain"

The ICMP services we wish to allow to pass - "" empty means all types
ref: /usr/include/netinet/ip_icmp.h for type numbers
note: space separated
ICMPIN="0 3 11"
ICMPOUT="8 3 11"

Logging; uncomment the following line to enable logging of datagrams
that are blocked by the firewall.
LOGGING=1

END USER CONFIGURABLE SECTION
##
Flush the Input table rules
$IPCHAINS -F input

We want to deny incoming access by default.
$IPCHAINS -P input deny

SPOOFING
We should not accept any datagrams with a source address matching ours
from the outside, so we deny them.
$IPCHAINS -A input -s $OURNET -i $ANYDEV -j deny

SMURF
Disallow ICMP to our broadcast address to prevent "Smurf" style attack.

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (29 of 33) [2/20/2001 11:04:46 AM]

$IPCHAINS -A input -p icmp -w $ANYDEV -d $OURBCAST -j deny

We should accept fragments, in ipchains we must do this explicitly.
$IPCHAINS -A input -f -j accept

TCP
We will accept all TCP datagrams belonging to an existing connection
(i.e. having the ACK bit set) for the TCP ports we're allowing through.
This should catch more than 95 % of all valid TCP packets.
$IPCHAINS -A input -p tcp -d $OURNET $TCPIN ! -y -b -j accept

TCP - INCOMING CONNECTIONS
We will accept connection requests from the outside only on the
allowed TCP ports.
$IPCHAINS -A input -p tcp -i $ANYDEV -d $OURNET $TCPIN -y -j accept

TCP - OUTGOING CONNECTIONS
We accept all outgoing TCP connection requests on allowed TCP ports.
$IPCHAINS -A input -p tcp -i $OURDEV -d $ANYADDR $TCPOUT -y -j accept

UDP - INCOMING
We will allow UDP datagrams in on the allowed ports.
$IPCHAINS -A input -p udp -i $ANYDEV -d $OURNET $UDPIN -j accept

UDP - OUTGOING
We will allow UDP datagrams out on the allowed ports.
$IPCHAINS -A input -p udp -i $OURDEV -d $ANYADDR $UDPOUT -j accept

ICMP - INCOMING
We will allow ICMP datagrams in of the allowed types.
$IPCHAINS -A input -p icmp -w $ANYDEV -d $OURNET $UDPIN -j accept

ICMP - OUTGOING
We will allow ICMP datagrams out of the allowed types.
$IPCHAINS -A input -p icmp -i $OURDEV -d $ANYADDR $UDPOUT -j accept

DEFAULT and LOGGING
All remaining datagrams fall through to the default
rule and are dropped. They will be logged if you've
configured the LOGGING variable above.
#
if ["$LOGGING"]
then
 # Log barred TCP
 $IPCHAINS -A input -p tcp -l -j reject

 # Log barred UDP
 $IPCHAINS -A input -p udp -l -j reject

 # Log barred ICMP
 $IPCHAINS -A input -p icmp -l -j reject
fi
#
end.

In our iptables example, we've switched to using the FORWARD ruleset because of the difference in meaning of the INPUT
ruleset in the netfilter implementation. This has implications for us; it means that none of the rules protect the firewall host
itself. To accurately mimic our ipchains example, we would replicate each of our rules in the INPUT chain. For clarity,
we've dropped all incoming datagrams received from our outside interface instead.

#!/bin/bash
##
IPTABLES VERSION
This sample configuration is for a single host firewall configuration

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (30 of 33) [2/20/2001 11:04:46 AM]

with no services supported by the firewall machine itself.
##

USER CONFIGURABLE SECTION

The name and location of the ipchains utility.
IPTABLES=iptables

The path to the ipchains executable.
PATH="/sbin"

Our internal network address space and its supporting network device.
OURNET="172.29.16.0/24"
OURBCAST="172.29.16.255"
OURDEV="eth0"

The outside address and the network device that supports it.
ANYADDR="0/0"
ANYDEV="eth1"

The TCP services we wish to allow to pass - "" empty means all ports
note: comma separated
TCPIN="smtp,www"
TCPOUT="smtp,www,ftp,ftp-data,irc"

The UDP services we wish to allow to pass - "" empty means all ports
note: comma separated
UDPIN="domain"
UDPOUT="domain"

The ICMP services we wish to allow to pass - "" empty means all types
ref: /usr/include/netinet/ip_icmp.h for type numbers
note: comma separated
ICMPIN="0,3,11"
ICMPOUT="8,3,11"

Logging; uncomment the following line to enable logging of datagrams
that are blocked by the firewall.
LOGGING=1

END USER CONFIGURABLE SECTION
###
Flush the Input table rules
$IPTABLES -F FORWARD

We want to deny incoming access by default.
$IPTABLES -P FORWARD deny

Drop all datagrams destined for this host received from outside.
$IPTABLES -A INPUT -i $ANYDEV -j DROP

SPOOFING
We should not accept any datagrams with a source address matching ours
from the outside, so we deny them.
$IPTABLES -A FORWARD -s $OURNET -i $ANYDEV -j DROP

SMURF
Disallow ICMP to our broadcast address to prevent "Smurf" style attack.
$IPTABLES -A FORWARD -m multiport -p icmp -i $ANYDEV -d $OURNET -j DENY

We should accept fragments, in iptables we must do this explicitly.
$IPTABLES -A FORWARD -f -j ACCEPT

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (31 of 33) [2/20/2001 11:04:47 AM]

TCP
We will accept all TCP datagrams belonging to an existing connection
(i.e. having the ACK bit set) for the TCP ports we're allowing through.
This should catch more than 95 % of all valid TCP packets.
$IPTABLES -A FORWARD -m multiport -p tcp -d $OURNET --dports $TCPIN /
 ! --tcp-flags SYN,ACK ACK -j ACCEPT
$IPTABLES -A FORWARD -m multiport -p tcp -s $OURNET --sports $TCPIN /
 ! --tcp-flags SYN,ACK ACK -j ACCEPT

TCP - INCOMING CONNECTIONS
We will accept connection requests from the outside only on the
allowed TCP ports.
$IPTABLES -A FORWARD -m multiport -p tcp -i $ANYDEV -d $OURNET $TCPIN /
 --syn -j ACCEPT

TCP - OUTGOING CONNECTIONS
We will accept all outgoing tcp connection requests on the allowed /
 TCP ports.
$IPTABLES -A FORWARD -m multiport -p tcp -i $OURDEV -d $ANYADDR /
 --dports $TCPOUT --syn -j ACCEPT
UDP - INCOMING
We will allow UDP datagrams in on the allowed ports and back.
$IPTABLES -A FORWARD -m multiport -p udp -i $ANYDEV -d $OURNET /
 --dports $UDPIN -j ACCEPT
$IPTABLES -A FORWARD -m multiport -p udp -i $ANYDEV -s $OURNET /
 --sports $UDPIN -j ACCEPT
UDP - OUTGOING
We will allow UDP datagrams out to the allowed ports and back.
$IPTABLES -A FORWARD -m multiport -p udp -i $OURDEV -d $ANYADDR /
 --dports $UDPOUT -j ACCEPT
$IPTABLES -A FORWARD -m multiport -p udp -i $OURDEV -s $ANYADDR /
 --sports $UDPOUT -j ACCEPT
ICMP - INCOMING
We will allow ICMP datagrams in of the allowed types.
$IPTABLES -A FORWARD -m multiport -p icmp -i $ANYDEV -d $OURNET /
 --dports $ICMPIN -j ACCEPT
ICMP - OUTGOING
We will allow ICMP datagrams out of the allowed types.
$IPTABLES -A FORWARD -m multiport -p icmp -i $OURDEV -d $ANYADDR /
 --dports $ICMPOUT -j ACCEPT
DEFAULT and LOGGING
All remaining datagrams fall through to the default
rule and are dropped. They will be logged if you've
configured the LOGGING variable above.
#
if ["$LOGGING"]
then
 # Log barred TCP
 $IPTABLES -A FORWARD -m tcp -p tcp -j LOG
 # Log barred UDP
 $IPTABLES -A FORWARD -m udp -p udp -j LOG
 # Log barred ICMP
 $IPTABLES -A FORWARD -m udp -p icmp -j LOG
fi
#
end.

In many simple situations, to use the sample all you have to do is edit the top section of the file labeled "USER
CONFIGURABLE section" to specify which protocols and datagrams type you wish to allow in and out. For more
complex configurations, you will need to edit the section at the bottom, as well. Remember, this is a simple example, so
scrutinize it very carefully to ensure it does what you want while implementing it.

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (32 of 33) [2/20/2001 11:04:47 AM]

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall

http://www.oreilly.com/catalog/linag2/book/ch09.html (33 of 33) [2/20/2001 11:04:47 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 10
IP Accounting
Contents:
Configuring the Kernel for IP Accounting
Configuring IP Accounting
Using IP Accounting Results
Resetting the Counters
Flushing the Ruleset
Passive Collection of Accounting Data

In today's world of commercial Internet service, it is becoming increasingly important to know how much data
you are transmitting and receiving on your network connections. If you are an Internet Service Provider and you
charge your customers by volume, this will be essential to your business. If you are a customer of an Internet
Service Provider that charges by data volume, you will find it useful to collect your own data to ensure the
accuracy of your Internet charges.

There are other uses for network accounting that have nothing to do with dollars and bills. If you manage a server
that offers a number of different types of network services, it might be useful to you to know exactly how much
data is being generated by each one. This sort of information could assist you in making decisions, such as what
hardware to buy or how many servers to run.

The Linux kernel provides a facility that allows you to collect all sorts of useful information about the network
traffic it sees. This facility is called IP accounting.

Configuring the Kernel for IP Accounting
The Linux IP accounting feature is very closely related to the Linux firewall software. The places you want to
collect accounting data are the same places that you would be interested in performing firewall filtering: into and
out of a network host, and in the software that does the routing of datagrams. If you haven't read the section on
firewalls, now is probably a good time to do so, as we will be using some of the concepts described in Chapter 9,
TCP/IP Firewall.

To activate the Linux IP accounting feature, you should first see if your Linux kernel is configured for it. Check
to see if the /proc/net/ip_acct file exists. If it does, your kernel already supports IP accounting. If it doesn't, you
must build a new kernel, ensuring that you answer "Y" to the options in 2.0 and 2.2 series kernels:

Networking options --->
 [*] Network firewalls
 [*] TCP/IP networking
 ...

Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting

http://www.oreilly.com/catalog/linag2/book/ch10.html (1 of 8) [2/20/2001 11:04:49 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

 [*] IP: accounting

or in 2.4 series kernels:

Networking options --->
 [*] Network packet filtering (replaces ipchains)

Configuring IP Accounting
Because IP accounting is closely related to IP firewall, the same tool was designated to configure it, so ipfwadm,
ipchains or iptables are used to configure IP accounting. The command syntax is very similar to that of the
firewall rules, so we won't focus on it, but we will discuss what you can discover about the nature of your
network traffic using this feature.

The general syntax for IP accounting with ipfwadm is:

ipfwadm -A [direction] [command] [parameters]

The direction argument is new. This is simply coded as in, out, or both. These directions are from the
perspective of the linux machine itself, so in means data coming into the machine from a network connection
and out means data that is being transmitted by this host on a network connection. The both direction is the
sum of both the incoming and outgoing directions.

The general command syntax for ipchains and iptables is:

ipchains -A chain rule-specification
iptables -A chain rule-specification

The ipchains and iptables commands allow you to specify direction in a manner more consistent with the firewall
rules. IP Firewall Chains doesn't allow you to configure a rule that aggregates both directions, but it does allow
you to configure rules in the forward chain that the older implementation did not. We'll see the difference that
makes in some examples a little later.

The commands are much the same as firewall rules, except that the policy rules do not apply here. We can add,
insert, delete, and list accounting rules. In the case of ipchains and iptables, all valid rules are accounting rules,
and any command that doesn't specify the -j option performs accounting only.

The rule specification parameters for IP accounting are the same as those used for IP firewall. These are what we
use to define precisely what network traffic we wish to count and total.

Accounting by Address

Let's work with an example to illustrate how we'd use IP accounting.

Imagine we have a Linux-based router that serves two departments at the Virtual Brewery. The router has two
Ethernet devices, eth0 and eth1, each of which services a department; and a PPP device, ppp0, that connects us
via a high-speed serial link to the main campus of the Groucho Marx University.

Let's also imagine that for billing purposes we want to know the total traffic generated by each of the departments
across the serial link, and for management purposes we want to know the total traffic generated between the two
departments.

The following table shows the interface addresses we will use in our example:

iface address netmask

eth0 172.16.3.0 255.255.255.0

eth1 172.16.4.0 255.255.255.0

To answer the question, "How much data does each department generate on the PPP link?", we could use a rule
that looks like this:

ipfwadm -A both -a -W ppp0 -S 172.16.3.0/24 -b
ipfwadm -A both -a -W ppp0 -S 172.16.4.0/24 -b

or:

Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting

http://www.oreilly.com/catalog/linag2/book/ch10.html (2 of 8) [2/20/2001 11:04:49 AM]

ipchains -A input -i ppp0 -d 172.16.3.0/24
ipchains -A output -i ppp0 -s 172.16.3.0/24
ipchains -A input -i ppp0 -d 172.16.4.0/24
ipchains -A output -i ppp0 -s 172.16.4.0/24

and with iptables:

iptables -A FORWARD -i ppp0 -d 172.16.3.0/24
iptables -A FORWARD -o ppp0 -s 172.16.3.0/24
iptables -A FORWARD -i ppp0 -d 172.16.4.0/24
iptables -A FORWARD -o ppp0 -s 172.16.4.0/24

The first half of each of these set of rules say, "Count all data traveling in either direction across the interface
named ppp0 with a source or destination (remember the function of the -b flag in ipfwadm and iptables) address
of 172.16.3.0/24." The second half of each ruleset is the same, but for the second Ethernet network at our
site.

To answer the second question, "How much data travels between the two departments?", we need a rule that
looks like this:

ipfwadm -A both -a -S 172.16.3.0/24 -D 172.16.4.0/24 -b

or:

ipchains -A forward -s 172.16.3.0/24 -d 172.16.4.0/24 -b

or:

iptables -A FORWARD -s 172.16.3.0/24 -d 172.16.4.0/24
iptables -A FORWARD -s 172.16.4.0/24 -d 172.16.3.0/24

These rules will count all datagrams with a source address belonging to one of the department networks and a
destination address belonging to the other.

Accounting by Service Port

Okay, let's suppose we also want a better idea of exactly what sort of traffic is being carried across our PPP link.
We might, for example, want to know how much of the link the FTP, smtp, and World Wide Web services are
consuming.

A script of rules to enable us to collect this information might look like:

#!/bin/sh
Collect FTP, smtp and www volume statistics for data carried on our
PPP link using ipfwadm
#
ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 ftp ftp-data
ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 smtp
ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 www

or:

#!/bin/sh
Collect ftp, smtp and www volume statistics for data carried on our
PPP link using ipchains
#
ipchains -A input -i ppp0 -p tcp -s 0/0 ftp-data:ftp
ipchains -A output -i ppp0 -p tcp -d 0/0 ftp-data:ftp
ipchains -A input -i ppp0 -p tcp -s 0/0 smtp
ipchains -A output -i ppp0 -p tcp -d 0/0 smtp
ipchains -A input -i ppp0 -p tcp -s 0/0 www
ipchains -A output -i ppp0 -p tcp -d 0/0 www

or:

#!/bin/sh
Collect ftp, smtp and www volume statistics for data carried on our
PPP link using iptables.
#
iptables -A FORWARD -i ppp0 -m tcp -p tcp --sport ftp-data:ftp

Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting

http://www.oreilly.com/catalog/linag2/book/ch10.html (3 of 8) [2/20/2001 11:04:49 AM]

iptables -A FORWARD -o ppp0 -m tcp -p tcp --dport ftp-data:ftp
iptables -A FORWARD -i ppp0 -m tcp -p tcp --sport smtp
iptables -A FORWARD -o ppp0 -m tcp -p tcp --dport smtp
iptables -A FORWARD -i ppp0 -m tcp -p tcp --sport www
iptables -A FORWARD -o ppp0 -m tcp -p tcp --dport www

There are a couple of interesting features to this configuration. Firstly, we've specified the protocol. When we
specify ports in our rules, we must also specify a protocol because TCP and UDP provide separate sets of ports.
Since all of these services are TCB-based, we've specified it as the protocol. Secondly, we've specified the two
services ftp and ftp-data in one command. ipfwadm allows you to specify single ports, ranges of ports, or
arbitrary lists of ports. The ipchains command allows either single ports or ranges of ports, which is what we've
used here. The syntax "ftp-data:ftp" means "ports ftp-data (20) through ftp (21)," and is how we encode
ranges of ports in both ipchains and iptables. When you have a list of ports in an accounting rule, it means that
any data received for any of the ports in the list will cause the data to be added to that entry's totals.
Remembering that the FTP service uses two ports, the command port and the data transfer port, we've added
them together to total the FTP traffic. Lastly, we've specified the source address as "0/0," which is special
notation that matches all addresses and is required by both the ipfwadm and ipchains commands in order to
specify ports.

We can expand on the second point a little to give us a different view of the data on our link. Let's now imagine
that we class FTP, SMTP, and World Wide Web traffic as essential traffic, and all other traffic as nonessential. If
we were interested in seeing the ratio of essential traffic to nonessential traffic, we could do something like:

ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 ftp ftp-data smtp www
ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 1:19 22:24 26:79 81:32767

If you have already examined your /etc/services file, you will see that the second rule covers all ports except
(ftp, ftp-data, smtp, and www).

How do we do this with the ipchains or iptables commands, since they allow only one argument in their port
specification? We can exploit user-defined chains in accounting just as easily as in firewall rules. Consider the
following approach:

ipchains -N a-essent
ipchains -N a-noness
ipchains -A a-essent -j ACCEPT
ipchains -A a-noness -j ACCEPT
ipchains -A forward -i ppp0 -p tcp -s 0/0 ftp-data:ftp -j a-essent
ipchains -A forward -i ppp0 -p tcp -s 0/0 smtp -j a-essent
ipchains -A forward -i ppp0 -p tcp -s 0/0 www -j a-essent
ipchains -A forward -j a-noness

Here we create two user-defined chains, one called a-essent, where we capture accounting data for essential
services and another called a-noness, where we capture accounting data for nonessential services. We then add
rules to our forward chain that match our essential services and jump to the a-essent chain, where we have
just one rule that accepts all datagrams and counts them. The last rule in our forward chain is a rule that jumps to
our a-noness chain, where again we have just one rule that accepts all datagrams and counts them. The rule
that jumps to the a-noness chain will not be reached by any of our essential services, as they will have been
accepted in their own chain. Our tallies for essential and nonessential services will therefore be available in the
rules within those chains. This is just one approach you could take; there are others. Our iptables implementation
of the same approach would look like:

iptables -N a-essent
iptables -N a-noness
iptables -A a-essent -j ACCEPT
iptables -A a-noness -j ACCEPT
iptables -A FORWARD -i ppp0 -m tcp -p tcp --sport ftp-data:ftp -j a-essent
iptables -A FORWARD -i ppp0 -m tcp -p tcp --sport smtp -j a-essent
iptables -A FORWARD -i ppp0 -m tcp -p tcp --sport www -j a-essent
iptables -A FORWARD -j a-noness

This looks simple enough. Unfortunately, there is a small but unavoidable problem when trying to do accounting
by service type. You will remember that we discussed the role the MTU plays in TCP/IP networking in an earlier
chapter. The MTU defines the largest datagram that will be transmitted on a network device. When a datagram is

Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting

http://www.oreilly.com/catalog/linag2/book/ch10.html (4 of 8) [2/20/2001 11:04:49 AM]

received by a router that is larger than the MTU of the interface that needs to retransmit it, the router performs a
trick called fragmentation. The router breaks the large datagram into small pieces no longer than the MTU of the
interface and then transmits these pieces. The router builds new headers to put in front of each of these pieces,
and these are what the remote machine uses to reconstruct the original data. Unfortunately, during the
fragmentation process the port is lost for all but the first fragment. This means that the IP accounting can't
properly count fragmented datagrams. It can reliably count only the first fragment, or unfragmented datagrams.
There is a small trick permitted by ipfwadm that ensures that while we won't be able to know exactly what port
the second and later fragments were from, we can still count them. An early version of Linux accounting
software assigned the fragments a fake port number, 0xFFFF, that we could count. To ensure that we capture the
second and later fragments, we could use a rule like:

ipfwadm -A both -a -W ppp0 -P tcp -S 0/0 0xFFFF

The IP chains implementation has a slightly more sophisticated solution, but the result is much the same. If using
the ipchains command we'd instead use:

ipchains -A forward -i ppp0 -p tcp -f

and with iptables we'd use:

iptables -A FORWARD -i ppp0 -m tcp -p tcp -f

These won't tell us what the original port for this data was, but at least we are able to see how much of our data is
fragments, and be able to account for the volume of traffic they consume.

In 2.2 kernels you can select a kernel compile-time option that negates this whole issue if your Linux machine is
acting as the single access point for a network. If you enable the IP: always defragment option when you compile
your kernel, all received datagrams will be reassembled by the Linux router before routing and retransmission.
This operation is performed before the firewall and accounting software sees the datagram, and thus you will
have no fragments to deal with. In 2.4 kernels you compile and load the netfilter forward-fragment module.

Accounting of ICMP Datagrams

The ICMP protocol does not use service port numbers and is therefore a little bit more difficult to collect details
on. ICMP uses a number of different types of datagrams. Many of these are harmless and normal, while others
should only be seen under special circumstances. Sometimes people with too much time on their hands attempt to
maliciously disrupt the network access of a user by generating large numbers of ICMP messages. This is
commonly called ping flooding. While IP accounting cannot do anything to prevent this problem (IP firewalling
can help, though!) we can at least put accounting rules in place that will show us if anybody has been trying.

ICMP doesn't use ports as TCP and UDP do. Instead ICMP has ICMP message types. We can build rules to
account for each ICMP message type. To do this, we place the ICMP message and type number in place of the
port field in the ipfwadm accounting commands. We listed the ICMP message types in "ICMP datagram types",
so refer to it if you need to remember what they are.

An IP accounting rule to collect information about the volume of ping data that is being sent to you or that you
are generating might look like:

ipfwadm -A both -a -P icmp -S 0/0 8
ipfwadm -A both -a -P icmp -S 0/0 0
ipfwadm -A both -a -P icmp -S 0/0 0xff

or, with ipchains:

ipchains -A forward -p icmp -s 0/0 8
ipchains -A forward -p icmp -s 0/0 0
ipchains -A forward -p icmp -s 0/0 -f

or, with iptables:

iptables -A FORWARD -m icmp -p icmp --sports echo-request
iptables -A FORWARD -m icmp -p icmp --sports echo-reply
iptables -A FORWARD -m icmp -p icmp -f

The first rule collects information about the "ICMP Echo Request" datagrams (ping requests), and the second rule
collects information about the "ICMP Echo Reply" datagrams (ping replies). The third rule collects information
about ICMP datagram fragments. This is a trick similar to that described for fragmented TCP and UDP
datagrams.

Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting

http://www.oreilly.com/catalog/linag2/book/ch10.html (5 of 8) [2/20/2001 11:04:49 AM]

If you specify source and/or destination addresses in your rules, you can keep track of where the pings are
coming from, such as whether they originate inside or outside your network. Once you've determined where the
rogue datagrams are coming from, you can decide whether you want to put firewall rules in place to prevent them
or take some other action, such as contacting the owner of the offending network to advise them of the problem,
or perhaps even legal action if the problem is a malicious act.

Accounting by Protocol

Let's now imagine that we are interested in knowing how much of the traffic on our link is TCP, UDP, and
ICMP. We would use rules like the following:

ipfwadm -A both -a -W ppp0 -P tcp -D 0/0
ipfwadm -A both -a -W ppp0 -P udp -D 0/0
ipfwadm -A both -a -W ppp0 -P icmp -D 0/0

or:

ipchains -A forward -i ppp0 -p tcp -d 0/0
ipchains -A forward -i ppp0 -p udp -d 0/0
ipchains -A forward -i ppp0 -p icmp -d 0/0

or:

iptables -A FORWARD -i ppp0 -m tcp -p tcp
iptables -A FORWARD -o ppp0 -m tcp -p tcp
iptables -A FORWARD -i ppp0 -m udp -p udp
iptables -A FORWARD -o ppp0 -m udp -p udp
iptables -A FORWARD -i ppp0 -m icmp -p icmp
iptables -A FORWARD -o ppp0 -m icmp -p icmp

With these rules in place, all of the traffic flowing across the ppp0 interface will be analyzed to determine
whether it is TCP, UDP, or IMCP traffic, and the appropriate counters will be updated for each. The iptables
example splits incoming flow from outgoing flow as its syntax demands it.

Using IP Accounting Results
It is all very well to be collecting this information, but how do we actually get to see it? To view the collected
accounting data and the configured accounting rules, we use our firewall configuration commands, asking them
to list our rules. The packet and byte counters for each of our rules are listed in the output.

The ipfwadm, ipchains, and iptables commands differ in how accounting data is handled, so we will treat them
independently.

Listing Accounting Data with ipfwadm

The most basic means of listing our accounting data with the ipfwadm command is to use it like this:

ipfwadm -A -l
IP accounting rules
 pkts bytes dir prot source destination ports
 9833 2345K i/o all 172.16.3.0/24 anywhere n/a
56527 33M i/o all 172.16.4.0/24 anywhere n/a

This will tell us the number of packets sent in each direction. If we use the extended output format with the -e
option (not shown here because the output is too wide for the page), we are also supplied the options and
applicable interface names. Most of the fields in the output will be self-explanatory, but the following may not:

dir

The direction in which the rule applies. Expected values here are in, out, or i/o, meaning both ways.

prot

The protocols to which the rule applies.

opt

Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting

http://www.oreilly.com/catalog/linag2/book/ch10.html (6 of 8) [2/20/2001 11:04:49 AM]

A coded form of the options we use when invoking ipfwadm.

ifname

The name of the interface to which the rule applies.

ifaddress

The address of the interface to which the rule applies.

By default, ipfwadm displays the packet and byte counts in a shortened form, rounded to the nearest thousand (K)
or million (M). We can ask it to display the collected data in exact units by using the expanded option as follows:

ipfwadm -A -l -e -x

Listing Accounting Data with ipchains

The ipchains command will not display our accounting data (packet and byte counters) unless we supply it the -v
argument. The simplest means of listing our accounting data with the ipchains is to use it like this:

ipchains -L -v

Again, just as with ipfwadm, we can display the packet and byte counters in units by using the expanded output
mode. The ipchains uses the -x argument for this:

ipchains -L -v -x

Listing Accounting Data with iptables

The iptables command behaves very similarly to the ipchains command. Again, we must use the -v when listing
tour rules to see the accounting counters. To list our accounting data, we would use:

iptables -L -v

Just as for the ipchains command, you can use the -x argument to show the output in expanded format with unit
figures.

Resetting the Counters
The IP accounting counters will overflow if you leave them long enough. If they overflow, you will have
difficulty determining the value they actually represent. To avoid this problem, you should read the accounting
data periodically, record it, and then reset the counters back to zero to begin collecting accounting information for
the next accounting interval.

The ipfwadm and ipchains commands provide you with a means of doing this quite simply:

ipfwadm -A -z

or:

ipchains -Z

or:

iptables -Z

You can even combine the list and zeroing actions together to ensure that no accounting data is lost in between:

ipfwadm -A -l -z

or:

ipchains -L -Z

or:

iptables -L -Z -v

These commands will first list the accounting data and then immediately zero the counters and begin counting
again. If you are interested in collecting and using this information regularly, you would probably want to put this
command into a script that recorded the output and stored it somewhere, and execute the script periodically using
the cron command.

Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting

http://www.oreilly.com/catalog/linag2/book/ch10.html (7 of 8) [2/20/2001 11:04:49 AM]

Flushing the Ruleset
One last command that might be useful allows you to flush all the IP accounting rules you have configured. This
is most useful when you want to radically alter your ruleset without rebooting the machine.

The -f argument in combination with the ipfwadm command will flush all of the rules of the type you specify.
ipchains supports the -F argument, which does the same:

ipfwadm -A -f

or:

ipchains -F

or:

iptables -F

This flushes all of your configured IP accounting rules, removing them all and saving you having to remove each
of them individually. Note that flushing the rules with ipchains does not cause any user-defined chains to be
removed, only the rules within them.

Passive Collection of Accounting Data
One last trick you might like to consider: if your Linux machine is connected to an Ethernet, you can apply
accounting rules to all of the data from the segment, not only that which it is transmitted by or destined for it.
Your machine will passively listen to all of the data on the segment and count it.

You should first turn IP forwarding off on your Linux machine so that it doesn't try to route the datagrams it
receives.[1] In the 2.0.36 and 2.2 kernels, this is a matter of:

echo 0 >/proc/sys/net/ipv4/ip_forward

[1] This isn't a good thing to do if your Linux machine serves as a router. If you disable IP
forwarding, it will cease to route! Do this only on a machine with a single physical network
interface.

You should then enable promiscuous mode on your Ethernet interface using the ifconfig command. Now you can
establish accounting rules that allow you to collect information about the datagrams flowing across your Ethernet
without involving your Linux in the route at all.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting

http://www.oreilly.com/catalog/linag2/book/ch10.html (8 of 8) [2/20/2001 11:04:49 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 11
IP Masquerade and Network Address Translation
Contents:
Side Effects and Fringe Benefits
Configuring the Kernel for IP Masquerade
Configuring IP Masquerade
Handling Name Server Lookups
More About Network Address Translation

You don't have to have a good memory to remember a time when only large organizations could afford to have a
number of computers networked together by a LAN. Today network technology has dropped so much in price
that two things have happened. First, LANs are now commonplace, even in many household environments.
Certainly many Linux users will have two or more computers connected by some Ethernet. Second, network
resources, particularly IP addresses, are now a scarce resource and while they used to be free, they are now being
bought and sold.

Most people with a LAN will probably also want an Internet connection that every computer on the LAN can
use. The IP routing rules are quite strict in how they deal with this situation. Traditional solutions to this problem
would have involved requesting an IP network address, perhaps a class C address for small sites, assigning each
host on the LAN an address from this network and using a router to connect the LAN to the Internet.

In a commercialized Internet environment, this is quite an expensive proposition. First, you'd be required to pay
for the network address that is assigned to you. Second, you'd probably have to pay your Internet Service
Provider for the privilege of having a suitable route to your network put in place so that the rest of the Internet
knows how to reach you. This might still be practical for companies, but domestic installations don't usually
justify the cost.

Fortunately, Linux provides an answer to this dilemma. This answer involves a component of a group of
advanced networking features called Network Address Translation (NAT). NAT describes the process of
modifying the network addresses contained with datagram headers while they are in transit. This might sound
odd at first, but we'll show that it is ideal for solving the problem we've just described and many have
encountered. IP masquerade is the name given to one type of network address translation that allows all of the
hosts on a private network to use the Internet at the price of a single IP address.

IP masquerading allows you to use a private (reserved) IP network address on your LAN and have your
Linux-based router perform some clever, real-time translation of IP addresses and ports. When it receives a
datagram from a computer on the LAN, it takes note of the type of datagram it is, "TCP," "UDP," "ICMP," etc.,
and modifies the datagram so that it looks like it was generated by the router machine itself (and remembers that
it has done so). It then transmits the datagram onto the Internet with its single connected IP address. When the
destination host receives this datagram, it believes the datagram has come from the routing host and sends any

Linux Network Administrator's Guide, 2nd Edition: Chapter 11: IP Masquerade and Network Address Translation

http://www.oreilly.com/catalog/linag2/book/ch11.html (1 of 6) [2/20/2001 11:04:52 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

reply datagrams back to that address. When the Linux masquerade router receives a datagram from its Internet
connection, it looks in its table of established masqueraded connections to see if this datagram actually belongs to
a computer on the LAN, and if it does, it reverses the modification it did on the forward path and transmits the
datagram to the LAN computer.

A simple example is illustrated in Figure 11.1.

Figure 11.1: A typical IP masquerade configuration

We have a small Ethernet network using one of the reserved network addresses. The network has a Linux-based
masquerade router providing access to the Internet. One of the workstations on the network (192.168.1.3) wishes
to establish a connection to the remote host 209.1.106.178 on port 8888. The workstation routes its datagram to
the masquerade router, which identifies this connection request as requiring masquerade services. It accepts the
datagram and allocates a port number to use (1035), substitutes its own IP address and port number for those of
the originating host, and transmits the datagram to the destination host. The destination host believes it has
received a connection request from the Linux masquerade host and generates a reply datagram. The masquerade
host, upon receiving this datagram, finds the association in its masquerade table and reverses the substution it
performed on the outgoing datagram. It then transmits the reply datagram to the originating host.

The local host believes it is speaking directly to the remote host. The remote host knows nothing about the local
host at all and believes it has received a connection from the Linux masquerade host. The Linux masquerade host
knows these two hosts are speaking to each other, and on what ports, and performs the address and port
translations necessary to allow communication.

This might all seem a little confusing, and it can be, but it works and is really quite simple to configure. So don't
worry if you don't understand all the details yet.

Side Effects and Fringe Benefits
The IP masquerade facility comes with its own set of side effects, some of which are useful and some of which
might become bothersome.

None of the hosts on the supported network behind the masquerade router are ever directly seen; consequently,
you need only one valid and routable IP address to allow all hosts to make network connections out onto the
Internet. This has a downside; none of those hosts are visible from the Internet and you can't directly connect to
them from the Internet; the only host visible on a masqueraded network is the masquerade machine itself. This is
important when you consider services such as mail or FTP. It helps determine what services should be provided
by the masquerade host and what services it should proxy or otherwise treat specially.

Second, because none of the masqueraded hosts are visible, they are relatively protected from attacks from
outside; this could simplify or even remove the need for firewall configuration on the masquerade host. You
shouldn't rely too heavily on this, though. Your whole network will be only as safe as your masquerade host, so

Linux Network Administrator's Guide, 2nd Edition: Chapter 11: IP Masquerade and Network Address Translation

http://www.oreilly.com/catalog/linag2/book/ch11.html (2 of 6) [2/20/2001 11:04:52 AM]

you should use firewall to protect it if security is a concern.

Third, IP masquerade will have some impact on the performance of your networking. In typical configurations
this will probably be barely measurable. If you have large numbers of active masquerade sessions, though, you
may find that the processing required at the masquerade machine begins to impact your network throughput. IP
masquerade must do a good deal of work for each datagram compared to the process of conventional routing.
That 386SX16 machine you have been planning on using as a masquerade machine supporting a dial-up link to
the Internet might be fine, but don't expect too much if you decide you want to use it as a router in your corporate
network at Ethernet speeds.

Last, some network services just won't work through masquerade, or at least not without a lot of help. Typically,
these are services that rely on incoming sessions to work, such as some types of Direct Communications
Channels (DCC), features in IRC, or certain types of video and audio multicasting services. Some of these
services have specially developed kernel modules to provide solutions for these, and we'll talk about those in a
moment. For others, it is possible that you will find no support, so be aware,it won't be suitable in all situations.

Configuring the Kernel for IP Masquerade
To use the IP masquerade facility, your kernel must be compiled with masquerade support. You must select the
following options when configuring a 2.2 series kernel:

Networking options --->
 [*] Network firewalls
 [*] TCP/IP networking
 [*] IP: firewalling
 [*] IP: masquerading
 --- Protocol-specific masquerading support will be built as modules.
 [*] IP: ipautofw masq support
 [*] IP: ICMP masquerading

Note that some of the masquerade support is available only as a kernel module. This means that you must ensure
that you "make modules" in addition to the usual "make zImage" when building your kernel.

The 2.4 series kernels no longer offer IP masquerade support as a kernel compile time option. Instead, you should
select the network packet filtering option:

Networking options --->
 [M] Network packet filtering (replaces ipchains)

In the 2.2 series kernels, a number of protocol-specific helper modules are created during kernel compilation.
Some protocols begin with an outgoing request on one port, and then expect an incoming connection on another.
Normally these cannot be masqueraded, as there is no way of associating the second connection with the first
without peering inside the protocols themselves. The helper modules do just that; they actually look inside the
datagrams and allow masquerading to work for supported protocols that otherwise would be impossible to
masquerade. The supported protocols are:

Module Protocol

ip_masq_ftp FTP

ip_masq_irc IRC

ip_masq_raudio RealAudio

ip_masq_cuseeme CU-See-Me

ip_masq_vdolive For VDO Live

ip_masq_quake IdSoftware's Quake

You must load these modules manually using the insmod command to implement them. Note that these modules
cannot be loaded using the kerneld daemon. Each of the modules takes an argument specifying what ports it will
listen on. For the RealAudio(TM) module you might use:[1]

insmod ip_masq_raudio.o ports=7070,7071,7072

Linux Network Administrator's Guide, 2nd Edition: Chapter 11: IP Masquerade and Network Address Translation

http://www.oreilly.com/catalog/linag2/book/ch11.html (3 of 6) [2/20/2001 11:04:52 AM]

The ports you need to specify depend on the protocol. An IP masquerade mini-HOWTO written by Ambrose Au
explains more about the IP masquerade modules and how to configure them.[2]

[1] RealAudio is a trademark of the Progressive Networks Corporation.

[2] You can contact Ambrose at ambrose@writeme.com.

The netfilter package includes modules that perform similar functions. For example, to provide connection
tracking of FTP sessions, you'd load and use the ip_conntrack_ftp and ip_nat_ftp.o modules.

Configuring IP Masquerade
If you've already read the firewall and accounting chapters, it probably comes as no surprise that the ipfwadm,
ipchains, and iptables commands are used to configure the IP masquerade rules as well.

Masquerade rules are a special class of filtering rule. You can masquerade only datagrams that are received on
one interface that will be routed to another interface. To configure a masquerade rule you construct a rule very
similar to a firewall forwarding rule, but with special options that tell the kernel to masquerade the datagram. The
ipfwadm command uses the -m option, ipchains uses -j MASQ, and iptables uses -j MASQUERADE to indicate
that datagrams matching the rule specification should be masqueraded.

Let's look at an example. A computing science student at Groucho Marx University has a number of computers at
home internetworked onto a small Ethernet-based local area network. She has chosen to use one of the reserved
private Internet network addresses for her network. She shares her accomodation with other students, all of whom
have an interest in using the Internet. Because student living conditions are very frugal, they cannot afford to use
a permanent Internet connection, so instead they use a simple dial-up PPP Internet connection. They would all
like to be able to share the connection to chat on IRC, surf the Web, and retrieve files by FTP directly to each of
their computers -- IP masquerade is the answer.

The student first configures a Linux machine to support the dial-up link and to act as a router for the LAN. The IP
address she is assigned when she dials up isn't important. She configures the Linux router with IP masquerade
and uses one of the private network addresses for her LAN: 192.168.1.0. She ensures that each of the hosts
on the LAN has a default route pointing at the Linux router.

The following ipfwadm commands are all that are required to make masquerading work in her configuration:

ipfwadm -F -p deny
ipfwadm -F -a accept -m -S 192.168.1.0/24 -D 0/0

or with ipchains:

ipchains -P forward -j deny
ipchains -A forward -s 192.168.1.0/24 -d 0/0 -j MASQ

or with iptables:

iptables -t nat -P POSTROUTING DROP
iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

Now whenever any of the LAN hosts try to connect to a service on a remote host, their datagrams will be
automatically masqueraded by the Linux masquerade router. The first rule in each example prevents the Linux
machine from routing any other datagrams and also adds some security.

To list the masquerade rules you have created, use the -l argument to the ipfwadm command, as we described in
earlier while discussing firewalls.

To list the rule we created earlier we use:

ipfwadm -F -l -e

which should display something like:

ipfwadm -F -l -e
IP firewall forward rules, default policy: accept
 pkts bytes type prot opt tosa tosx ifname ifaddress ...
 0 0 acc/m all ---- 0xFF 0x00 any any ...

The "/m" in the output indicates this is a masquerade rule.

Linux Network Administrator's Guide, 2nd Edition: Chapter 11: IP Masquerade and Network Address Translation

http://www.oreilly.com/catalog/linag2/book/ch11.html (4 of 6) [2/20/2001 11:04:52 AM]

To list the masquerade rules with the ipchains command, use the -L argument. If we list the rule we created
earlier with ipchains, the output will look like:

ipchains -L
Chain input (policy ACCEPT):
Chain forward (policy ACCEPT):
target prot opt source destination ports
MASQ all ------ 192.168.1.0/24 anywhere n/a

Chain output (policy ACCEPT):

Any rules with a target of MASQ are masquerade rules.

Finally, to list the rules using iptables you need to use:

iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy DROP)
target prot opt source destination
MASQUERADE all -- anywhere anywhere MASQUERADE

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Again, masquerade rules appear with a target of MASQUERADE.

Setting Timing Parameters for IP Masquerade

When each new connection is established, the IP masquerade software creates an association in memory between
each of the hosts involved in the connection. You can view these associations at any time by looking at the
/proc/net/ip_masquerade file. These associations will timeout after a period of inactivity, though.

You can set the timeout values using the ipfwadm command. The general syntax for this is:

ipfwadm -M -s <tcp> <tcpfin> <udp>

and for the ipchains command it is:

ipchains -M -S <tcp> <tcpfin> <udp>

The iptables implementation uses much longer default timers and does not allow you to set them.

Each of these values represents a timer used by the IP masquerade software and are in units of seconds. The
following table summarizes the timers and their meanings:

Name Description

tcp TCP session timeout. How long a TCP connection may remain idle before the association for it is
removed.

tcpfin TCP timeout after FIN. How long an association will remain after a TCP connection has been
disconnected.

udp UDP session timeout. How long a UDP connection may remain idle before the association for it is
removed.

Handling Name Server Lookups
Handling domain name server lookups from the hosts on the LAN with IP masquerading has always presented a
problem. There are two ways of accomodating DNS in a masquerade environment. You can tell each of the hosts
that they use the same DNS that the Linux router machine does, and let IP masquerade do its magic on their DNS
requests. Alternatively, you can run a caching name server on the Linux machine and have each of the hosts on
the LAN use the Linux machine as their DNS. Although a more aggressive action, this is probably the better

Linux Network Administrator's Guide, 2nd Edition: Chapter 11: IP Masquerade and Network Address Translation

http://www.oreilly.com/catalog/linag2/book/ch11.html (5 of 6) [2/20/2001 11:04:52 AM]

option because it reduces the volume of DNS traffic travelling on the Internet link and will be marginally faster
for most requests, since they'll be served from the cache. The downside to this configuration is that it is more
complex. "Caching-only named Configuration" in Chapter 6 describes how to configure a caching name server.

More About Network Address Translation
The netfilter software is capable of many different types of Network Address Translation. IP Masquerade is one
simple application of it.

It is possible, for example, to build NAT rules that translate only certain addresses or ranges of addresses and
leave all others untouched, or to translate addresses into pools of addresses rather than just a single address, as
masquerade does. You can in fact use the iptables command to generate NAT rules that map just about anything,
with combinations of matches using any of the standard attributes, such as source address, destination address,
protocol type, port number, etc.

Translating the Source Address of a datagram is referred to as "Source NAT," or SNAT, in the netfilter
documentation. Translating the Destination Address of a datagram is known as "Destination NAT," or DNAT.
Translating the TCP or UDP port is known by the term REDIRECT. SNAT, DNAT, and REDIRECT are targets
that you may use with the iptables command to build more complex and sophisticated rules.

The topic of Network Address Translation and its uses warrants at least a whole chapter of its own.[3]
Unfortunately we don't have the space in this book to cover it in any greater depth. You should read the
IPTABLES-HOWTO for more information, if you're interested in discovering more about how you might use
Network Address Translation.

[3] ... and perhaps even a whole book!

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 11: IP Masquerade and Network Address Translation

http://www.oreilly.com/catalog/linag2/book/ch11.html (6 of 6) [2/20/2001 11:04:52 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 12
Important Network Features
Contents:
The inetd Super Server
The tcpd Access Control Facility
The Services and Protocols Files
Remote Procedure Call
Configuring Remote Login and Execution

After successfully setting up IP and the resolver, you then must look at the services you want to provide over
the network. This chapter covers the configuration of a few simple network applications, including the inetd
server and the programs from the rlogin family. We'll also deal briefly with the Remote Procedure Call
interface, upon which services like the Network File System (NFS) and the Network Information System (NIS)
are based. The configuration of NFS and NIS, however, is more complex and are described in separate chapters,
as are electronic mail and network news.

Of course, we can't cover all network applications in this book. If you want to install one that's not discussed
here, like talk, gopher, or http, please refer to the manual pages of the server for details.

The inetd Super Server
Programs that provide application services via the network are called network daemons. A daemon is a program
that opens a port, most commonly a well-known service port, and waits for incoming connections on it. If one
occurs, the daemon creates a child process that accepts the connection, while the parent continues to listen for
further requests. This mechanism works well, but has a few disadvantages; at least one instance of every
possible service you wish to provide must be active in memory at all times. In addition, the software routines
that do the listening and port handling must be replicated in every network daemon.

To overcome these inefficiencies, most Unix installations run a special network daemon, what you might
consider a "super server." This daemon creates sockets on behalf of a number of services and listens on all of
them simultaneously. When an incoming connection is received on any of these sockets, the super server
accepts the connection and spawns the server specified for this port, passing the socket across to the child to
manage. The server then returns to listening.

The most common super server is called inetd, the Internet Daemon. It is started at system boot time and takes
the list of services it is to manage from a startup file named /etc/inetd.conf. In addition to those servers, there are
a number of trivial services performed by inetd itself called internal services. They include chargen, which
simply generates a string of characters, and daytime, which returns the system's idea of the time of day.

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (1 of 12) [2/20/2001 11:04:55 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

An entry in this file consists of a single line made up of the following fields:

service type protocol wait user server cmdline

Each of the fields is described in the following list:

service

Gives the service name. The service name has to be translated to a port number by looking it up in the
/etc/services file. This file will be described later in this chapter in the section "The Services and
Protocols Files".

type

Specifies a socket type, either stream (for connection-oriented protocols) or dgram (for datagram
protocols). TCP-based services should therefore always use stream, while UDP-based services should
always use dgram.

protocol

Names the transport protocol used by the service. This must be a valid protocol name found in the
protocols file, explained later.

wait

This option applies only to dgram sockets. It can be either wait or nowait. If wait is specified, inetd
executes only one server for the specified port at any time. Otherwise, it immediately continues to listen
on the port after executing the server.

This is useful for "single-threaded" servers that read all incoming datagrams until no more arrive, and
then exit. Most RPC servers are of this type and should therefore specify wait. The opposite type,
"multi-threaded" servers, allow an unlimited number of instances to run concurrently. These servers
should specify nowait.

stream sockets should always use nowait.

user

This is the login ID of the user who will own the process when it is executing. This will frequently be the
root user, but some services may use different accounts. It is a very good idea to apply the principle of
least privilege here, which states that you shouldn't run a command under a privileged account if the
program doesn't require this for proper functioning. For example, the NNTP news server runs as news,
while services that may pose a security risk (such as tftp or finger) are often run as nobody.

server

Gives the full pathname of the server program to be executed. Internal services are marked by the
keyword internal.

cmdline

This is the command line to be passed to the server. It starts with the name of the server to be executed
and can include any arguments that need to be passed to it. If you are using the TCP wrapper, you specify
the full pathname to the server here. If not, then you just specify the server name as you'd like it to appear
in a process list. We'll talk about the TCP wrapper shortly.

This field is empty for internal services.

A sample inetd.conf file is shown in Example 12.1. The finger service is commented out so that it is not
available. This is often done for security reasons, because it can be used by attackers to obtain names and other
details of users on your system.

Example 12.1: A Sample /etc/inetd.conf File

inetd services
ftp stream tcp nowait root /usr/sbin/ftpd in.ftpd -l
telnet stream tcp nowait root /usr/sbin/telnetd in.telnetd -b/etc/issue
#finger stream tcp nowait bin /usr/sbin/fingerd in.fingerd

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (2 of 12) [2/20/2001 11:04:55 AM]

#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd
#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd /boot/diskless
#login stream tcp nowait root /usr/sbin/rlogind in.rlogind
#shell stream tcp nowait root /usr/sbin/rshd in.rshd
#exec stream tcp nowait root /usr/sbin/rexecd in.rexecd
#
inetd internal services
#
daytime stream tcp nowait root internal
daytime dgram udp nowait root internal
time stream tcp nowait root internal
time dgram udp nowait root internal
echo stream tcp nowait root internal
echo dgram udp nowait root internal
discard stream tcp nowait root internal
discard dgram udp nowait root internal
chargen stream tcp nowait root internal
chargen dgram udp nowait root internal

The tftp daemon is shown commented out as well. tftp implements the Trivial File Transfer Protocol (TFTP),
which allows someone to transfer any world-readable files from your system without password checking. This
is especially harmful with the /etc/passwd file, and even more so when you don't use shadow passwords.

TFTP is commonly used by diskless clients and Xterminals to download their code from a boot server. If you
need to run tftpd for this reason, make sure to limit its scope to those directories from which clients will retrieve
files; you will need to add those directory names to tftpd's command line. This is shown in the second tftp line
in the example.

The tcpd Access Control Facility
Since opening a computer to network access involves many security risks, applications are designed to guard
against several types of attacks. Some security features, however, may be flawed (most drastically demonstrated
by the RTM Internet worm, which exploited a hole in a number of programs, including old versions of the
sendmail mail daemon), or do not distinguish between secure hosts from which requests for a particular service
will be accepted and insecure hosts whose requests should be rejected. We've already briefly discussed the
finger and tftp services. Network Administrator would want to limit access to these services to "trusted hosts"
only, which is impossible with the usual setup, for which inetd provides this service either to all clients or not at
all.

A useful tool for managing host-specific access is tcpd, often called the daemon "wrapper."[1] For TCP services
you want to monitor or protect, it is invoked instead of the server program. tcpd checks if the remote host is
allowed to use that service, and only if this succeeds will it execute the real server program. tcpd also logs the
request to the syslog daemon. Note that this does not work with UDP-based services.

[1] Written by Wietse Venema, wietse@wzv.win.tue.nl.

For example, to wrap the finger daemon, you have to change the corresponding line in inetd.conf from this:

unwrapped finger daemon
finger stream tcp nowait bin /usr/sbin/fingerd in.fingerd

to this:

wrap finger daemon
finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

Without adding any access control, this will appear to the client as the usual finger setup, except that any
requests are logged to syslog's auth facility.

Two files called /etc/hosts.allow and /etc/hosts.deny implement access control. They contain entries that allow
and deny access to certain services and hosts. When tcpd handles a request for a service such as finger from a
client host named biff.foobar.com, it scans hosts.allow and hosts.deny (in this order) for an entry matching both

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (3 of 12) [2/20/2001 11:04:55 AM]

the service and client host. If a matching entry is found in hosts.allow, access is granted and tcpd doesn't consult
the hosts.deny file. If no match is found in the hosts.allow file, but a match is found in hosts.deny, the request is
rejected by closing down the connection. The request is accepted if no match is found at all.

Entries in the access files look like this:

servicelist: hostlist [:shellcmd]

servicelist is a list of service names from /etc/services, or the keyword ALL. To match all services except finger
and tftp, use ALL EXCEPT finger, tftp.

hostlist is a list of hostnames, IP addresses, or the keywords ALL, LOCAL, UNKNOWN or PARANOID. ALL
matches any host, while LOCAL matches hostnames that don't contain a dot.[2] UNKNOWN matches any hosts
whose name or address lookup failed. PARANOID matches any host whose hostname does not resolve back to
its IP address.[3] A name starting with a dot matches all hosts whose domain is equal to this name. For
example, .foobar.com matches biff.foobar.com, but not nurks.fredsville.com. A pattern that ends with a dot
matches any host whose IP address begins with the supplied pattern, so 172.16. matches 172.16.32.0, but not
172.15.9.1. A pattern of the form n.n.n.n/m.m.m.m is treated as an IP address and network mask, so we
could specify our previous example as 172.16.0.0/255.255.0.0 instead. Lastly, any pattern beginning with a "/"
character allows you to specify a file that is presumed to contain a list of hostname or IP address patterns, any of
which are allowed to match. So a pattern that looked like /var/access/trustedhosts would cause the tcpd daemon
to read that file, testing if any of the lines in it matched the connecting host.

[2] Usually only local hostnames obtained from lookups in /etc/hosts contain no dots.

[3] While its name suggests it is an extreme measure, the PARANOID keyword is a good default,
as it protects you against mailicious hosts pretending to be someone they are not. Not all tcpd are
supplied with PARANOID compiled in; if yours is not, you need to recompile tcpd to use it.

To deny access to the finger and tftp services to all but the local hosts, put the following in /etc/hosts.deny and
leave /etc/hosts.allow empty:

in.tftpd, in.fingerd: ALL EXCEPT LOCAL, .your.domain

The optional shellcmd field may contain a shell command to be invoked when the entry is matched. This is
useful to set up traps that may expose potential attackers. The following example creates a log file listing the
user and host connecting, and if the host is not vlager.vbrew.com it will append the output of a finger to that
host:

in.ftpd: ALL EXCEPT LOCAL, .vbrew.com : \
 echo "request from %d@%h: >> /var/log/finger.log; \
 if [%h != "vlager.vbrew.com:"]; then \
 finger -l @%h >> /var/log/finger.log \
 fi

The %h and %d arguments are expanded by tcpd to the client hostname and service name, respectively. Please
refer to the hosts_access(5) manual page for details.

The Services and Protocols Files
The port numbers on which certain "standard" services are offered are defined in the Assigned Numbers RFC.
To enable server and client programs to convert service names to these numbers, at least part of the list is kept
on each host; it is stored in a file called /etc/services. An entry is made up like this:

service port/protocol [aliases]

Here, service specifies the service name, port defines the port the service is offered on, and protocol defines
which transport protocol is used. Commonly, the latter field is either udp or tcp. It is possible for a service to be
offered for more than one protocol, as well as offering different services on the same port as long as the
protocols are different. The aliases field allows you to specify alternative names for the same service.

Usually, you don't have to change the services file that comes along with the network software on your Linux
system. Nevertheless, we give a small excerpt from that file in Example 12.2.

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (4 of 12) [2/20/2001 11:04:55 AM]

Example 12.2: A Sample /etc/services File

The services file:
#
well-known services
echo 7/tcp # Echo
echo 7/udp #
discard 9/tcp sink null # Discard
discard 9/udp sink null #
daytime 13/tcp # Daytime
daytime 13/udp #
chargen 19/tcp ttytst source # Character Generator
chargen 19/udp ttytst source #
ftp-data 20/tcp # File Transfer Protocol (Data)
ftp 21/tcp # File Transfer Protocol (Control)
telnet 23/tcp # Virtual Terminal Protocol
smtp 25/tcp # Simple Mail Transfer Protocol
nntp 119/tcp readnews # Network News Transfer Protocol
#
UNIX services
exec 512/tcp # BSD rexecd
biff 512/udp comsat # mail notification
login 513/tcp # remote login
who 513/udp whod # remote who and uptime
shell 514/tcp cmd # remote command, no passwd used
syslog 514/udp # remote system logging
printer 515/tcp spooler # remote print spooling
route 520/udp router routed # routing information protocol

Note that the echo service is offered on port 7 for both TCP and UDP, and that port 512 is used for two different
services: remote execution (rexec) using TCP, and the COMSAT daemon, which notifies users of new mail,
over UDP (see xbiff(1x)).

Like the services file, the networking library needs a way to translate protocol names -- for example, those used
in the services file -- to protocol numbers understood by the IP layer on other hosts. This is done by looking up
the name in the /etc/protocols file. It contains one entry per line, each containing a protocol name, and the
associated number. Having to touch this file is even more unlikely than having to meddle with /etc/services. A
sample file is given in Example 12.3.

Example 12.3: A Sample /etc/protocols File

#
Internet (IP) protocols
#
ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
igmp 2 IGMP # internet group multicast protocol
tcp 6 TCP # transmission control protocol
udp 17 UDP # user datagram protocol
raw 255 RAW # RAW IP interface

Remote Procedure Call
The general mechanism for client-server applications is provided by the Remote Procedure Call (RPC)
package. RPC was developed by Sun Microsystems and is a collection of tools and library functions. Important
applications built on top of RPC are NIS, the Network Information System (described in Chapter 13, The
Network Information System), and NFS, the Network File System (described in Chapter 14, The Network File
System), which are both described in this book.

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (5 of 12) [2/20/2001 11:04:55 AM]

An RPC server consists of a collection of procedures that a client can call by sending an RPC request to the
server along with the procedure parameters. The server will invoke the indicated procedure on behalf of the
client, handing back the return value, if there is any. In order to be machine-independent, all data exchanged
between client and server is converted to the External Data Representation format (XDR) by the sender, and
converted back to the machine-local representation by the receiver. RPC relies on standard UDP and TCP
sockets to transport the XDR formatted data to the remote host. Sun has graciously placed RPC in the public
domain; it is described in a series of RFCs.

Sometimes improvements to an RPC application introduce incompatible changes in the procedure call interface.
Of course, simply changing the server would crash all applications that still expect the original behavior.
Therefore, RPC programs have version numbers assigned to them, usually starting with 1, and with each new
version of the RPC interface, this counter will be bumped up. Often, a server may offer several versions
simultaneously; clients then indicate by the version number in their requests which implementation of the
service they want to use.

The communication between RPC servers and clients is somewhat peculiar. An RPC server offers one or more
collections of procedures; each set is called a program and is uniquely identified by a program number. A list
that maps service names to program numbers is usually kept in /etc/rpc, an excerpt of which is shown in
Example 12.4.

Example 12.4: A Sample /etc/rpc File

#
/etc/rpc - miscellaneous RPC-based services
#
portmapper 100000 portmap sunrpc
rstatd 100001 rstat rstat_svc rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
bootparam 100026
ypupdated 100028 ypupdate

In TCP/IP networks, the authors of RPC faced the problem of mapping program numbers to generic network
services. They designed each server to provide both a TCP and a UDP port for each program and each version.
Generally, RPC applications use UDP when sending data, and fall back to TCP only when the data to be
transferred doesn't fit into a single UDP datagram.

Of course, client programs need to find out to which port a program number maps. Using a configuration file
for this would be too unflexible; since RPC applications don't use reserved ports, there's no guarantee that a port
originally meant to be used by our database application hasn't been taken by some other process. Therefore,
RPC applications pick any port they can get and register it with a special program called the portmapper
daemon. The portmapper acts as a service broker for all RPC servers running on its machine. A client that
wishes to contact a service with a given program number first queries the portmapper on the server's host, which
returns the TCP and UDP port numbers the service can be reached at.

This method introduces a single point of failure, much like the inetd daemon does for the standard Berkeley
services. However, this case is even a little worse because when the portmapper dies, all RPC port information
is lost; this usually means you have to restart all RPC servers manually or reboot the entire machine.

On Linux, the portmapper is called /sbin/portmap, or sometimes /usr/sbin/rpc.portmap. Other than making sure
it is started from your network boot scripts, the portmapper doesn't require any configuration.

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (6 of 12) [2/20/2001 11:04:55 AM]

Configuring Remote Login and Execution
It's often very useful to execute a command on a remote host and have input or output from that command be
read from, or written to, a network connection.

The traditional commands used for executing commands on remote hosts are rlogin, rsh and rcp. We saw an
example of the rlogin command in Chapter 1, Introduction to Networking in the section "Introduction to TCP/IP
Networks". We briefly discussed the security issues associated with it in "System Security" and suggested ssh
as a replacement. The ssh package provides replacements called slogin, ssh, and scp.

Each of these commands spawns a shell on the remote host and allows the user to execute commands. Of
course, the client needs to have an account on the remote host where the command is to be executed. Thus, all
these commands use an authentication process. The r commands use a simple username and password exchange
between the hosts with no encryption, so anyone listening could easily intercept the passwords. The ssh
command suite provides a higher level of security: it uses a technique called Public Key Cryptography, which
provides authentication and encryption between the hosts to ensure that neither passwords nor session data are
easily intercepted by other hosts.

It is possible to relax authentication checks for certain users even further. For instance, if you frequently have to
log into other machines on your LAN, you might want to be admitted without having to type your password
every time. This was always possible with the r commands, but the ssh suite allows you to do this a little more
easily. It's still not a great idea because it means that if an account on one machine is breached, access can be
gained to all other accounts that user has configured for password-less login, but it is very convenient and
people will use it.

Let's talk about removing the r commands and getting ssh to work instead.

Disabling the r; Commands

Start by removing the r commands if they're installed. The easiest way to disable the old r commands is to
comment out (or remove) their entries in the /etc/inetd.conf file. The relevant entries will look something like
this:

Shell, login, exec and talk are BSD protocols.
shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd
login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind
exec stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rexecd

You can comment them by placing a # character at the start of each line, or delete the lines completely.
Remember, you need to restart the inetd daemon for this change to take effect. Ideally, you should remove the
daemon programs themselves, too.

Installing and Configuring ssh

OpenSSH is a free version of the ssh suite of programs; the Linux port can be found at
http://violet.ibs.com.au/openssh/ and in most modern Linux distributions.[4] We won't describe compilation
here; good instructions are included in the source. If you can install it from a precompiled package, then it's
probably wise to do so.

[4] OpenSSH was developed by the OpenBSD project and is a fine example of the benefit of free
software.

There are two parts to an ssh session. There is an ssh client that you need to configure and run on the local host
and an ssh daemon that must be running on the remote host.

The ssh daemon

The sshd daemon is the program that listens for network connections from ssh clients, manages authentication,
and executes the requested command. It has one main configuration file called /etc/ssh/sshd_config and a
special file containing a key used by the authentication and encryption processes to represent the host end. Each
host and each client has its own key.

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (7 of 12) [2/20/2001 11:04:56 AM]

http://violet.ibs.com.au/openssh/

A utility called ssh-keygen is supplied to generate a random key. This is usually used once at installation time to
generate the host key, which the system administrator usually stores in a file called /etc/ssh/ssh_host_key. Keys
can be of any length of 512 bits or greater. By default, ssh-keygen generates keys of 1024 bits in length, and
most people use the default. To generate a random key, you would invoke the ssh-keygen command like this:

ssh-keygen -f /etc/ssh/ssh_host_key

You will be prompted to enter a passphrase. However, host keys must not use a passphrase, so just press the
return key to leave it blank. The program output will look something like:

Generating RSA keys: oooooO...............................oooooO
Key generation complete.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /etc/ssh/ssh_host_key
Your public key has been saved in /etc/ssh/ssh_host_key.pub
The key fingerprint is:
1024 3a:14:78:8e:5a:a3:6b:bc:b0:69:10:23:b7:d8:56:82 root@moria

You will find at the end that two files have been created. The first is called the private key, which must be kept
secret and will be in /etc/ssh/ssh_host_key. The second is called the public key and is one that you can share; it
will be in /etc/ssh/ssh_host_key.pub.

Armed with the keys for ssh communication, you need to create a configuration file. The ssh suite is very
powerful and the configuration file may contain many options. We'll present a simple example to get you
started; you should refer to the ssh documentation to enable other features. The following code shows a safe and
minimal sshd configuration file. The rest of the configuration options are detailed in the sshd(8) manpage:

/etc/ssh/sshd_config
#

The IP adddresses to listen for connections on. 0.0.0.0 means all
local addresses.
ListenAddress 0.0.0.0

The TCP port to listen for connections on. The default is 22.
Port 22

The name of the host key file.
HostKey /etc/ssh/ssh_host_key

The length of the key in bits.
ServerKeyBits 1024

Should we allow root logins via ssh?
PermitRootLogin no

Should the ssh daemon check users' home directory and files permissions?
are safe before allowing login?
StrictModes yes

Should we allow old ~/.rhosts and /etc/hosts.equiv authentication method?
RhostsAuthentication no
Should we allow pure RSA authentication?
RSAAuthentication yes
Should we allow password authentication?
PasswordAuthentication yes

Should we allow /etc/hosts.equiv combined with RSA host authentication?
RhostsRSAAuthentication no
Should we ignore ~/.rhosts files?

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (8 of 12) [2/20/2001 11:04:56 AM]

IgnoreRhosts yes
Should we allow logins to accounts with empty passwords?
PermitEmptyPasswords no

It's important to make sure the permissions of the configuration files are correct to ensure that system security is
maintained. Use the following commands:

chown -R root:root /etc/ssh
chmod 755 /etc/ssh
chmod 600 /etc/ssh/ssh_host_key
chmod 644 /etc/ssh/ssh_host_key.pub
chmod 644 /etc/ssh/sshd_config

The final stage of sshd administration daemon is to run it. Normally you'd create an rc file for it or add it to an
existing one, so that it is automatically executed at boot time. The daemon runs standalone and doesn't require
any entry in the /etc/inetd.conf file. The daemon must be run as the root user. The syntax is very simple:

/usr/sbin/sshd

The sshd daemon will automatically place itself into the background when being run. You are now ready to
accept ssh connections.

The ssh client

There are a number of ssh client programs: slogin, scp and ssh. They each read the same configuration file,
usually called /etc/ssh/ssh_config. They each also read configuration files from the .ssh directory in the home
directory of the user executing them. The most important of these files is the .ssh/config file, which may contain
options that override those specified in the /etc/ssh/ssh_config file, the .ssh/identity file, which contains the
user's own private key, and the corresponding .ssh/identity.pub file, containing the user's public key. Other
important files are .ssh/known_hosts and .ssh/authorized_keys; we'll talk about those later in "Using ssh". First,
let's create the global configuration file and the user key file.

/etc/ssh/ssh_config is very similar to the server configuration file. Again, there are lots of features you can
configure, but a minimal configuration looks like that presented in Example 12.5. The rest of the configuration
options are detailed in the sshd(8) manpage. You can add sections that match specific hosts or groups of hosts.
The parameter to the "Host" statement may be either the full name of a host or a wildcard specification, as
we've used in our example, to match all hosts. We could create an entry that used, for example, Host
*.vbrew.com to match any host in the vbrew.com domain.

Example 12.5: Example ssh Client Configuration File

/etc/ssh/ssh_config

Default options to use when connecting to a remote host
Host *
 # Compress the session data?
 Compression yes
 # .. using which compression level? (1 - fast/poor, 9 - slow/good)
 CompressionLevel 6

 # Fall back to rsh if the secure connection fails?
 FallBackToRsh no

 # Should we send keep-alive messages? Useful if you use IP masquerade
 KeepAlive yes

 # Try RSA authentication?
 RSAAuthentication yes
 # Try RSA authentication in combination with .rhosts authentication?
 RhostsRSAAuthentication yes

We mentioned in the server configuration section that every host and user has a key. The user's key is stored in

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (9 of 12) [2/20/2001 11:04:56 AM]

his or her ~/.ssh/indentity file. To generate the key, use the same ssh-keygen command as we used to generate
the host key, except this time you do not need to specify the name of the file in which you save the key. The
ssh-keygen defaults to the correct location, but it prompts you to enter a filename in case you'd like to save it
elsewhere. It is sometimes useful to have multiple identity files, so ssh allows this. Just as before, ssh-keygen
will prompt you to entry a passphrase. Passphrases add yet another level of security and are a good idea. Your
passphrase won't be echoed on the screen when you type it.

WARNING: There is no way to recover a passphrase if you forget it. Make sure it is something
you will remember, but as with all passwords, make it something that isn't obvious, like a proper
noun or your name. For a passphrase to be truly effective, it should be between 10 and 30
characters long and not be plain English prose. Try to throw in some unusual characters. If you
forget your passphrase, you will be forced to generate a new key.

You should ask each of your users to run the ssh-keygen command just once to ensure their key file is created
correctly. The ssh-keygen will create their ~/.ssh/ directories for them with appropriate permissions and create
their private and public keys in .ssh/identity and .ssh/identity.pub, respectively. A sample session should look
like:

$ ssh-keygen
Generating RSA keys: oooooO..............................
Key generation complete.
Enter file in which to save the key (/home/maggie/.ssh/identity):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/maggie/.ssh/identity.
Your public key has been saved in /home/maggie/.ssh/identity.pub.
The key fingerprint is:
1024 85:49:53:f4:8a:d6:d9:05:d0:1f:23:c4:d7:2a:11:67 maggie@moria
$

Now ssh is ready to run.

Using ssh

We should now have the ssh command and it's associated programs installed and ready to run. Let's now take a
quick look at how to run them.

First, we'll try a remote login to a host. We can use the slogin program in much the same way as we used the
rlogin program in our example earlier in the book. The first time you attempt a connection to a host, the ssh
client will retrieve the public key of the host and ask you to confirm its identity by prompting you with a
shortened version of the public key called a fingerprint.

The administrator at the remote host should have supplied you in advance with its public key fingerprint, which
you should add to your .ssh/known_hosts file. If the remote administrator has not supplied you the appropriate
key, you can connect to the remote host, but ssh will warn you that it does have a key and prompt you whether
you wish to accept the one offered by the remote host. Assuming that you're sure no one is engaging in DNS
spoofing and you are in fact talking to the correct host, answer yes to the prompt. The relevant key is then
stored automatically in your .ssh/known_hosts and you will not be prompted for it again. If, on a future
connection attempt, the public key retrieved from that host does not match the one that is stored, you will be
warned, because this represents a potential security breach.

A first-time login to a remote host will look something like:

$ slogin vchianti.vbrew.com
The authenticity of host 'vchianti.vbrew.com' can't be established.
Key fingerprint is 1024 7b:d4:a8:28:c5:19:52:53:3a:fe:8d:95:dd:14:93:f5.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'vchianti.vbrew.com,172.16.2.3' to the list of/
 known hosts.
maggie@vchianti.vbrew.com's password:
Last login: Tue Feb 1 23:28:58 2000 from vstout.vbrew.com
$

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (10 of 12) [2/20/2001 11:04:56 AM]

You will be prompted for a password, which you should answer with the password belonging to the remote
account, not the local one. This password is not echoed when you type it.

Without any special arguments, slogin will attempt to log in with the same userid used on the local machine.
You can override this using the -l argument, supplying an alternate login name on the remote host. This is
what we did in our example earlier in the book.

We can copy files to and from the remote host using the scp program. Its syntax is similar to the conventional
cp with the exception that you may specify a hostname before a filename, meaning that the file path is on the
specified host. The following example illustrates scp syntax by copying a local file called /tmp/fred to the
/home/maggie/ of the remote host chianti.vbrew.com:

$ scp /tmp/fred vchianti.vbrew.com:/home/maggie/
maggie@vchianti.vbrew.com's password:
fred 100% |*****************************| 50165 00:01 ETA

Again, you'll be prompted for a password. The scp command displays useful progress messages by default. You
can copy a file from a remote host with the same ease; simply specify its hostname and filepath as the source
and the local path as the destination. It's even possible to copy a file from a remote host to some other remote
host, but it is something you wouldn't normally want to do, because all of the data travels via your host.

You can execute commands on remote hosts using the ssh command. Again, its syntax is very simple. Let's
have our user maggie retrieve the root directory of the remote host vchianti.vbrew.com. She'd do this with:

$ ssh vchianti.vbrew.com ls -CF /
maggie@vchianti.vbrew.com's password:
bin/ console@ dos/ home/ lost+found/ pub@ tmp/ vmlinuz@
boot/ dev/ etc/ initrd/ mnt/ root/ usr/ vmlinuz.old@
cdrom/ disk/ floppy/ lib/ proc/ sbin/ var/

You can place ssh in a command pipeline and pipe program input/output to or from it just like any other
command, except that the input or output is directed to or from the remote host via the ssh connection. Here is
an example of how you might use this capability in combination with the tar command to copy a whole
directory with subdirectories and files from a remote host to the local host:

$ ssh vchianti.vbrew.com "tar cf - /etc/" | tar xvf -
maggie@vchianti.vbrew.com's password:
etc/GNUstep
etc/Muttrc
etc/Net
etc/X11
etc/adduser.conf
..
..

Here we surrounded the command we will execute with quotation marks to make it clear what is passed as an
argument to ssh and what is used by the local shell. This command executes the tar command on the remote
host to archive the /etc/ directory and write the output to standard output. We've piped to an instance of the tar
command running on our local host in extract mode reading from standard input.

Again, we were prompted for the password. Now you can see why we encouraged you to configure ssh so that it
doesn't prompt you for passwords all the time! Let's now configure our local ssh client so that it won't prompt
for a password when connecting to the vchianti.vbrew.com host. We mentioned the .ssh/authorized_keys file
earlier; this is where it is used. The .ssh/authorized_keys file contains the public keys on any remote user
accounts that we wish to automatically log in to. You can set up automatic logins by copying the contents of the
.ssh/identity.pub from the remote account into our local .ssh/authorized_keys file. It is vital that the file
permissions of .ssh/authorized_keys allow only that you read and write it; anyone may steal and use the keys to
log in to that remote account. To ensure the permissions are correct, change .ssh/authorized_keys, as shown:

$ chmod 600 ~/.ssh/authorized_keys

The public keys are a long single line of plain text. If you use copy and paste to duplicate the key into your local
file, be sure to remove any end of line characters that might have been introduced along the way. The
.ssh/authorized_keys file may contain many such keys, each on a line of its own.

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (11 of 12) [2/20/2001 11:04:56 AM]

The ssh suite of tools is very powerful and there are many other useful features and options that you will be
interested in exploring. Please refer to the manual pages and other documentation that is supplied with the
package for more information.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features

http://www.oreilly.com/catalog/linag2/book/ch12.html (12 of 12) [2/20/2001 11:04:56 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 13
The Network Information System
Contents:
Getting Acquainted with NIS
NIS Versus NIS+
The Client Side of NIS
Running an NIS Server
NIS Server Security
Setting Up an NIS Client with GNU libc
Choosing the Right Maps
Using the passwd and group Maps
Using NIS with Shadow Support

When you're running a local area network, your overall goal is usually to provide an environment for
your users that makes the network transparent. An important stepping stone is keeping vital data such
as user account information synchronized among all hosts. This provides users with the freedom to
move from machine to machine without the inconvenience of having to remember different
passwords and copy data from one machine to another. Data that is centrally stored doesn't need to be
replicated, so long as there is some convenient means of accessing it from a network-connected host.
By storing important administrative information centrally, you can make ensure consistency of that
data, increase flexibility for the users by allowing them to move from host to host in a transparent
way, and make the system administrator's life much easier by maintaining a single copy of
information to maintain when required.

We previously discussed an important example of this concept that is used on the Internet -- the
Domain Name System (DNS). DNS serves a limited range of information, the most important being
the mapping between hostname and IP address. For other types of information, there is no such
specialized service. Moreover, if you manage only a small LAN with no Internet connectivity, setting
up DNS may not seem to be worth the trouble.

This is why Sun developed the Network Information System (NIS). NIS provides generic database
access facilities that can be used to distribute, for example, information contained in the passwd and
groups files to all hosts on your network. This makes the network appear as a single system, with the
same accounts on all hosts. Similarly, you can use NIS to distribute the hostname information from

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (1 of 12) [2/20/2001 11:04:59 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

/etc/hosts to all machines on the network.

NIS is based on RPC, and comprises a server, a client-side library, and several administrative tools.
Originally, NIS was called Yellow Pages, or YP, which is still used to refer to it. Unfortunately, the
name is a trademark of British Telecom, which required Sun to drop that name. As things go, some
names stick with people, and so YP lives on as a prefix to the names of most NIS-related commands
such as ypserv and ypbind.

Today, NIS is available for virtually all Unixes, and there are even free implementations. BSD Net-2
released one that has been derived from a public domain reference implementation donated by Sun.
The library client code from this release had been in the Linux libc for a long time, and the
administrative programs were ported to Linux by Swen Th[UNHANDLED SDATA: [uuml
]]mmler.[1] An NIS server is missing from the reference implementation, though.

[1] Swen can be reached at swen@uni-paderborn.de. The NIS clients are available as
yp-linux.tar.gz from metalab.unc.edu in system/Network.

Peter Eriksson developed a new implementation called NYS.[2] It supports both plain NIS and Sun's
much enhanced NIS+. NYS not only provides a set of NIS tools and a server, but also adds a whole
new set of library functions that need to be compiled into your libc if you wish to use it. This includes
a new configuration scheme for hostname resolution that replaces the current scheme using host.conf.

[2] Peter may be reached at pen@lysator.liu.se. The current version of NYS is 1.2.8.

The GNU libc, known as libc6 in the Linux community, includes an updated version of the traditional
NIS support developed by Thorsten Kukuk.[3] It supports all of the library functions that NYS
provided and also uses the enhanced configuration scheme of NYS. You still need the tools and
server, but using GNU libc saves you the trouble of having to meddle with patching and recompiling
the library.

[3] Thorsten may be reached at kukuk@uni-paderborn.de.

This chapter focuses on the NIS support included in the GNU libc rather than the other two packages.
If you do want to run any of these packages, the instructions in this chapter may or may not be
enough. For additional information, refer to the NIS-HOWTO or a book such as Managing NFS and
NIS by Hal Stern (O'Reilly).

Getting Acquainted with NIS
NIS keeps database information in files called maps, which contain key-value pairs. An example of a
key-value pair is a user's login name and the encrypted form of their login password. Maps are stored
on a central host running the NIS server, from which clients may retrieve the information through
various RPC calls. Quite frequently, maps are stored in DBM files.[4]

[4] DBM is a simple database management library that uses hashing techniques to speed
up search operations. There's a free DBM implementation from the GNU project called
gdbm, which is part of most Linux distributions.

The maps themselves are usually generated from master text files such as /etc/hosts or /etc/passwd.
For some files, several maps are created, one for each search key type. For instance, you may search
the hosts file for a hostname as well as for an IP address. Accordingly, two NIS maps are derived
from it, called hosts.byname and hosts.byaddr. Table 13.1 lists common maps and the files from
which they are generated.

Table 13.1: Some Standard NIS Maps and Corresponding Files

Master File Map(s) Description

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (2 of 12) [2/20/2001 11:04:59 AM]

/etc/hosts hosts.byname, hosts.byaddr Maps IP addresses to host names

/etc/networks networks.byname, networks.byaddr Maps IP network addresses to network
names

/etc/passwd passwd.byname, passwd.byuid Maps encrypted passwords to user login
names

/etc/group group.byname, group.bygid Maps Group IDs to group names

/etc/services services.byname, services.bynumber Maps service descriptions to service
names

/etc/rpc rpc.byname, rpc.bynumber Maps Sun RPC service numbers to RPC
service names

/etc/protocols protocols.byname, protocols.bynumber Maps protocol numbers to protocol names

/usr/lib/aliases mail.aliases Maps mail aliases to mail alias names

You may find support for other files and maps in other NIS packages. These usually contain
information for applications not discussed in this book, such as the bootparams map that is used by
Sun's bootparamd server.

For some maps, people commonly use nicknames, which are shorter and therefore easier to type.
Note that these nicknames are understood only by ypcat and ypmatch, two tools for checking your
NIS configuration. To obtain a full list of nicknames understood by these tools, run the following
command:

$ ypcat -x
Use "passwd" for "passwd.byname"
Use "group" for "group.byname"
Use "networks" for "networks.byaddr"
Use "hosts" for "hosts.byaddr"
Use "protocols" for "protocols.bynumber"
Use "services" for "services.byname"
Use "aliases" for "mail.aliases"
Use "ethers" for "ethers.byname"

The NIS server program is traditionally called ypserv. For an average network, a single server usually
suffices; large networks may choose to run several of these on different machines and different
segments of the network to relieve the load on the server machines and routers. These servers are
synchronized by making one of them the master server, and the others slave servers. Maps are
created only on the master server's host. From there, they are distributed to all slaves.

We have been talking very vaguely about "networks." There's a distinctive term in NIS that refers to
a collection of all hosts that share part of their system configuration data through NIS: the NIS
domain. Unfortunately, NIS domains have absolutely nothing in common with the domains we
encountered in DNS. To avoid any ambiguity throughout this chapter, we will therefore always
specify which type of domain we mean.

NIS domains have a purely administrative function. They are mostly invisible to users, except for the
sharing of passwords between all machines in the domain. Therefore, the name given to an NIS
domain is relevant only to the administrators. Usually, any name will do, as long as it is different
from any other NIS domain name on your local network. For instance, the administrator at the Virtual
Brewery may choose to create two NIS domains, one for the Brewery itself, and one for the Winery,
which she names brewery and winery respectively. Another quite common scheme is to simply use
the DNS domain name for NIS as well.

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (3 of 12) [2/20/2001 11:04:59 AM]

To set and display the NIS domain name of your host, you can use the domainname command. When
invoked without any argument, it prints the current NIS domain name; to set the domain name, you
must become the superuser:

domainname brewery

NIS domains determine which NIS server an application will query. For instance, the login program
on a host at the Winery should, of course, query only the Winery's NIS server (or one of them, if
there are several) for a user's password information, while an application on a Brewery host should
stick with the Brewery's server.

One mystery now remains to be solved: how does a client find out which server to connect to? The
simplest approach would use a configuration file that names the host on which to find the server.
However, this approach is rather inflexible because it doesn't allow clients to use different servers
(from the same domain, of course) depending on their availability. Therefore, NIS implementations
rely on a special daemon called ypbind to detect a suitable NIS server in their NIS domain. Before
performing any NIS queries, an application first finds out from ypbind which server to use.

ypbind probes for servers by broadcasting to the local IP network; the first to respond is assumed to
be the fastest one and is used in all subsequent NIS queries. After a certain interval has elapsed, or if
the server becomes unavailable, ypbind probes for active servers again.

Dynamic binding is useful only when your network provides more than one NIS server. Dynamic
binding also introduces a security problem. ypbind blindly believes whoever answers, whether it be a
humble NIS server or a malicious intruder. Needless to say, this becomes especially troublesome if
you manage your password databases over NIS. To guard against this, the Linux ypbind program
provides you with the option of probing the local network to find the local NIS server, or configuring
the NIS server hostname in a configuration file.

NIS Versus NIS+
NIS and NIS+ share little more than their name and a common goal. NIS+ is structured entirely
differently from NIS. Instead of a flat namespace with disjoint NIS domains, NIS+ uses a hierarchical
namespace similar to that of DNS. Instead of maps, so-called tables are used that are made up of
rows and columns, in which each row represents an object in the NIS+ database and the columns
cover properties of the objects that NIS+ knows and cares about. Each table for a given NIS+ domain
comprises those of its parent domains. In addition, an entry in a table may contain a link to another
table. These features make it possible to structure information in many ways.

NIS+ additionally supports secure and encrypted RPC, which helps greatly to solve the security
problems of NIS.

Traditional NIS has an RPC Version number of 2, while NIS+ is Version 3. At the time we're writing,
there isn't yet a good working implementation of NIS+ for Linux, so it isn't covered here.

The Client Side of NIS
If you are familiar with writing or porting network applications, you may notice that most of the NIS
maps listed previously correspond to library functions in the C library. For instance, to obtain passwd
information, you generally use the getpwnam and getpwuid functions, which return the account
information associated with the given username or numerical user ID, respectively. Under normal
circumstances, these functions perform the requested lookup on the standard file, such as /etc/passwd.

An NIS-aware implementation of these functions, however, modifies this behavior and places an
RPC call to the NIS server, which looks up the username or user ID. This happens transparently to
the application. The function may treat the NIS data as though it has been appended to the original

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (4 of 12) [2/20/2001 11:04:59 AM]

passwd file so both sets of information are available to the application and used, or as though it has
completely replaced it so that the information in the local passwd is ignored and only the NIS data is
used.

For traditional NIS implementations, there were certain conventions for which maps were replaced
and which were appended to the original information. Some, like the passwd maps, required kludgy
modifications of the passwd file which, when done incorrectly, would open up security holes. To
avoid these pitfalls, NYS and the GNU libc use a general configuration scheme that determines
whether a particular set of client functions uses the original files, NIS, or NIS+, and in which order.
This scheme will be described later in this chapter.

Running an NIS Server
After so much theoretical techno-babble, it's time to get our hands dirty with actual configuration
work. In this section, we will cover the configuration of an NIS server. If an NIS server is running on
your network, you won't have to set up your own; in this case, you may safely skip this section.

Note that if you are just going to experiment with the server, make sure you don't set it up for an NIS
domain name that is already in use on your network. This may disrupt the entire network service and
make a lot of people very unhappy and very angry.

There are two possible NIS server configurations: master and slave. The slave configuration provides
a live backup machine, should your master server fail. We will cover the configuration only for a
master server here. The server documentation will explain the differences, should you wish to
configure a slave server.

There are currently two NIS servers freely available for Linux: one contained in Tobias Reber's yps
package, and the other in Peter Eriksson's ypserv package. It doesn't matter which one you run.

After installing the server program (ypserv) in /usr/sbin, you should create the directory that is going
to hold the map files your server is to distribute. When setting up an NIS domain for the brewery
domain, the maps would go to /var/yp/brewery. The server determines whether it is serving a
particular NIS domain by checking if the map directory is present. If you are disabling service for
some NIS domain, make sure to remove the directory as well.

Maps are usually stored in DBM files to speed up lookups. They are created from the master files
using a program called makedbm (for Tobias's server) or dbmload (for Peter's server).

Transforming a master file into a form that dbmload can parse usually requires some awk or sed
magic, which tends to be a little tedious to type and hard to remember. Therefore, Peter Eriksson's
ypserv package contains a Makefile (called ypMakefile) that manages the conversion of the most
common master files for you. You should install it as Makefile in your map directory and edit it to
reflect the maps you want the NIS server to share. Towards the top of the file, you'll find the all target
that lists the services ypserv offers. By default, the line looks something like this:

all: ethers hosts networks protocols rpc services passwd group netid

If you don't want to produce, for example, the ethers.byname and ethers.byaddr maps, simply remove
the ethers prerequisite from this rule. To test your setup, you can start with just one or two maps, like
the services.* maps.

After editing the Makefile, while in the map directory, type make. This will automatically generate
and install the maps. You have to make sure to update the maps whenever you change the master
files, otherwise the changes will remain invisible to the network.

The section "Setting Up an NIS Client with GNU libc" will explain how to configure the NIS client
code. If your setup doesn't work, you should try to find out whether requests are arriving at your

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (5 of 12) [2/20/2001 11:04:59 AM]

server. If you specify the --debug command-line flag to ypserv, it prints debugging messages to the
console about all incoming NIS queries and the results returned. These should give you a hint as to
where the problem lies. Tobias's server doesn't have this option.

NIS Server Security
NIS used to have a major security flaw: it left your password file readable by virtually anyone in the
entire Internet, which made for quite a number of possible intruders. As long as an intruder knew
your NIS domain name and the address of your server, he could simply send it a request for the
passwd.byname map and instantly receive all your system's encrypted passwords. With a fast
password-cracking program like crack and a good dictionary, guessing at least a few of your users'
passwords is rarely a problem.

This is what the securenets option is all about. It simply restricts access to your NIS server to certain
hosts, based on their IP addresses or network numbers. The latest version of ypserv implements this
feature in two ways. The first relies on a special configuration file called /etc/ypserv.securenets and
the second conveniently uses the /etc/hosts.allow and /etc/hosts.deny files we already encountered in
Chapter 12, Important Network Features.[5] Thus, to restrict access to hosts from within the Brewery,
their network manager would add the following line to hosts.allow:

ypserv: 172.16.2.

[5] To enable use of the /etc/hosts.allow method, you may have to recompile the server.
Please read the instructions in the README included in the distribution.

This would let all hosts from IP network 172.16.2.0 access the NIS server. To shut out all other hosts,
a corresponding entry in hosts.deny would have to read:

ypserv: ALL

IP numbers are not the only way you can specify hosts or networks in hosts.allow and hosts.deny.
Please refer to the hosts_access(5) manual page on your system for details. However, be warned that
you cannot use host or domain names for the ypserv entry. If you specify a hostname, the server tries
to resolve this hostname -- but the resolver in turn calls ypserv, and you fall into an endless loop.

To configure securenets security using the /etc/ypserv.securenets method, you need to create its
configuration file, /etc/ypserv.securenets. This configuration file is simple in structure. Each line
describes a host or network of hosts that will be allowed access to the server. Any address not
described by an entry in this file will be refused access. A line beginning with a # will be treated as a
comment. Example 13-1 shows what a simple /etc/ypserv.securenets would look like:

Example 13.1: Sample ypserv.securenets File

allow connections from local host -- necessary
host 127.0.0.1
same as 255.255.255.255 127.0.0.1
#
allow connections from any host on the Virtual Brewery network
255.255.255.0 172.16.1.0
#

The first entry on each line is the netmask to use for the entry, with host being treated as a special
keyword meaning "netmask 255.255.255.255." The second entry on each line is the IP address to
which to apply the netmask.

A third option is to use the secure portmapper instead of the securenets option in ypserv. The secure
portmapper (portmap-5.0) uses the hosts.allow scheme as well, but offers this for all RPC servers, not

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (6 of 12) [2/20/2001 11:05:00 AM]

just ypserv.[6] However, you should not use both the securenets option and the secure portmapper at
the same time, because of the overhead this authorization incurs.

[6] The secure portmapper is available via anonymous FTP from ftp.win.tue.nl below the
/pub/security/ directory.

Setting Up an NIS Client with GNU libc
We will now describe and discuss the configuration of an NIS client using the GNU libc library
support.

Your first step should be to tell the GNU libc NIS client which server to use for NIS service. We
mentioned earlier that the Linux ypbind allows you to configure the NIS server to use. The default
behavior is to query the server on the local network. If the host you are configuring is likely to move
from one domain to another, such as a laptop, you would leave the /etc/yp.conf file empty and it
would query on the local network for the local NIS server wherever it happens to be.

A more secure configuration for most hosts is to set the server name in the /etc/yp.conf configuration
file. A very simple file for a host on the Winery's network may look like this:

yp.conf - YP configuration for GNU libc library.
#
ypserver vbardolino

The ypserver statement tells your host to use the host supplied as the NIS server for the local domain.
In this example we've specified the NIS server as vbardolino. Of course, the IP address
corresponding to vbardolino must be set in the hosts file; alternatively, you may use the IP address
itself with the server argument.

In the form shown in the example, the ypserver command tells ypbind to use the named server
regardless of what the current NIS domain may be. If, however, you are moving your machine
between different NIS domains frequently, you may want to keep information for several domains in
the yp.conf file. You can have information on the servers for various NIS domains in yp.conf by
specifying the information using the domain statement. For instance, you might change the previous
sample file to look like this for a laptop:

yp.conf - YP configuration for GNU libc library.

domain winery server vbardolino
domain brewery server vstout

This lets you bring up the laptop in either of the two domains by simply setting the desired NIS
domain at boot time using the domainname command. The NIS client then uses whichever server is
relevant for the current domain.

There is a third option you may want to use. It covers the case when you don't know the name or IP
address of the server to use in a particular domain, but still want the ability use a fixed server on
certain domains. Imagine we want to insist on using a specified server while operating within the
Winery domain, but want to probe for the server to use while in the Brewery domain. We would
modify our yp.conf file again to look like this instead:

yp.conf - YP configuration for GNU libc library.

domain winery server vbardolino
domain brewery broadcast

The broadcast keyword tells ypbind to use whichever NIS server it finds for the domain.

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (7 of 12) [2/20/2001 11:05:00 AM]

After creating this basic configuration file and making sure it is world-readable, you should run your
first test to connect to your server. Make sure to choose a map your server distributes, like
hosts.byname, and try to retrieve it by using the ypcat utility:

ypcat hosts.byname
172.16.2.2 vbeaujolais.vbrew.com vbeaujolais
172.16.2.3 vbardolino.vbrew.com vbardolino
172.16.1.1 vlager.vbrew.com vlager
172.16.2.1 vlager.vbrew.com vlager
172.16.1.2 vstout.vbrew.com vstout
172.16.1.3 vale.vbrew.com vale
172.16.2.4 vchianti.vbrew.com vchianti

The output you get should resemble that just shown. If you get an error message instead that says:
Can't bind to server which serves domain, then either the NIS domain name you've
set doesn't have a matching server defined in yp.conf, or the server is unreachable for some reason. In
the latter case, make sure that a ping to the host yields a positive result, and that it is indeed running
an NIS server. You can verify the latter by using rpcinfo, which should produce the following output:

rpcinfo -u serverhost ypserv
program 100004 version 1 ready and waiting
program 100004 version 2 ready and waiting

Choosing the Right Maps
Having made sure you can reach the NIS server, you have to decide which configuration files to
replace or augment with NIS maps. Commonly, you will want to use NIS maps for the host and
password lookup functions. The former is especially useful if you do not have the BIND name
service. The password lookup lets all users log into their accounts from any system in the NIS
domain; this usually goes along with sharing a central /home directory among all hosts via NFS. The
password map is explained detail in the next section.

Other maps, like services.byname, don't provide such dramatic gains, but do save you some editing
work. The services.byname map is valuable if you install any network applications that use a service
name not in the standard services file.

Generally, you want to have some choice of when a lookup function uses the local files, when it
queries the NIS server, and when it uses other servers such as DNS. GNU libc allows you to
configure the order in which a function accesses these services. This is controlled through the
/etc/nsswitch.conf file, which stands for Name Service Switch, but of course isn't limited to the name
service. For any of the data lookup functions supported by GNU libc, the file contains a line naming
the services to use.

The right order of services depends on the type of data each service is offering. It is unlikely that the
services.byname map will contain entries differing from those in the local services file; it will only
contain additional entries. So it appears reasonable to query the local files first and check NIS only if
the service name isn't found. Hostname information, on the other hand, may change very frequently,
so DNS or the NIS server should always have the most accurate account, while the local hosts file is
only kept as a backup if DNS and NIS should fail. For hostnames, therefore, you normally want to
check the local file last.

The following example shows how to force gethostbyname and gethostbyaddr to look in NIS and
DNS before the hosts file and how to have the getservbyname function look in the local files before
querying NIS. These resolver functions will try each of the listed services in turn; if a lookup
succeeds, the result is returned; otherwise, they will try the next service in the list. The file setting for
these priorities is:

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (8 of 12) [2/20/2001 11:05:00 AM]

small sample /etc/nsswitch.conf
#
hosts: nis dns files
services: files nis

The following is a complete list of services and locations that may be used with an entry in the
nsswitch.conf file. The actual maps, files, servers, and objects queried depend on the entry name. The
following can appear to the right of a colon:

nis

Use the current domain NIS server. The location of the server queried is configured in the
yp.conf file, as shown in the previous section. For the hosts entry, the hosts.byname and
hosts.byaddr maps are queried.

nisplus or nis+

Use the NIS+ server for this domain. The location of the server is obtained from the
/etc/nis.conf file.

dns

Use the DNS name server. This service type is useful only with the hosts entry. The name
servers queried are still determined by the standard resolv.conf file.

files

Use the local file, such as the /etc/hosts file for the hosts entry.

compat

Be compatible with older file formats. This option can be used when either NYS or glibc 2.x is
used for NIS or NIS+ lookups. While these versions normally can't interpret older NIS entries
in passwd and group files, compat option allows them to work with those formats.

db

Look up the information from DBM files located in the /var/db directory. The corresponding
NIS map name is used for that file.

Currently, the NIS support in GNU libc caters to the following nsswitch.conf databases: aliases,
ethers.group, hosts, netgroup, network, passwd, protocols, publickey, rpc, services, and shadow.
More entries are likely to be added.

Example 13.2 shows a more complete example that introduces another feature of nsswitch.conf. The
[NOTFOUND=return] keyword in the hosts entry tells the NIS client to return if the desired item
couldn't be found in the NIS or DNS database. That is, the NIS client will continue searching the
local files only if calls to the NIS and DNS servers fail for some other reason. The local files will then
be used only at boot time and as a backup when the NIS server is down.

Example 13.2: Sample nsswitch.conf File

/etc/nsswitch.conf
#
hosts: nis dns [NOTFOUND=return] files
networks: nis [NOTFOUND=return] files
services: files nis
protocols: files nis
rpc: files nis

GNU libc provides some other actions that are described in the nsswitch manpage.

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (9 of 12) [2/20/2001 11:05:00 AM]

Using the passwd and group Maps
One of the major applications of NIS is synchronizing user and account information on all hosts in an
NIS domain. Consequently, you usually keep only a small local /etc/passwd file, to which site-wide
information from the NIS maps is appended. However, simply enabling NIS lookups for this service
in nsswitch.conf is not nearly enough.

When relying on the password information distributed by NIS, you first have to make sure that the
numeric user IDs of any users you have in your local passwd file match the NIS server's idea of user
IDs. Consistency in user IDs is important for other purposes as well, like mounting NFS volumes
from other hosts in your network.

If any of the numeric IDs in /etc/passwd or /etc/group differ from those in the maps, you have to
adjust file ownerships for all files that belong to that user. First, you should change all uids and gids
in passwd and group to the new values, then find that all files that belong to the users just changed
and change their ownership. Assume news used to have a user ID of 9 and okir had a user ID of 103,
which were changed to some other value; you could then issue the following commands as root:

find / -uid 9 -print >/tmp/uid.9
find / -uid 103 -print >/tmp/uid.103
cat /tmp/uid.9 | xargs chown news
cat /tmp/uid.103 | xargs chown okir

It is important that you execute these commands with the new passwd file installed, and that you
collect all filenames before you change the ownership of any of them. To update the group
ownerships of files, use a similar method with the gid instead of the uid, and chgrp instead of chown.

Once you do this, the numerical uids and gids on your system will agree with those on all other hosts
in your NIS domain. The next step is to add configuration lines to nsswitch.conf that enable NIS
lookups for user and group information:

/etc/nsswitch.conf - passwd and group treatment
passwd: nis files
group: nis files

This affects where the login command and all its friends look for user information. When a user tries
to log in, login queries the NIS maps first, and if this lookup fails, falls back to the local files.
Usually, you will remove almost all users from your local files, and only leave entries for root and
generic accounts like mail in it. This is because some vital system tasks may have to map uids to
usernames or vice versa. For example, administrative cron jobs may execute the su command to
temporarily become news, or the UUCP subsystem may mail a status report. If news and uucp don't
have entries in the local passwd file, these jobs will fail miserably during an NIS brownout.

Lastly, if you are using either the old NIS implementation (supported by the compat mode for the
passwd and group files in the NYS or glibc implementations), you must insert the unwieldy special
entries into them. These entries represent where the NIS derived records will be inserted into the
database of information. The entries can be added anywhere, but are usually just added to the end.
The entries to add for the /etc/passwd file are:

+::::::

and for the /etc/groups file:

+:::

With both glibc 2.x and NYS you can override parameters in a user's record received from the NIS
server by creating entries with a "+" prepended to the login name, and exclude specified users by
creating entries with a "-" prepended to the login name. For example the entries:

+stuart::::::/bin/jacl

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (10 of 12) [2/20/2001 11:05:00 AM]

-jedd::::::

would override the shell specified for the user stuart supplied by the NIS server, and would disallow
the user jedd from logging in on this machine. Any fields left blank use the information supplied by
the NIS server.

There are two big caveats in order here. First, the setup as described up to here works only for login
suites that don't use shadow passwords. The intricacies of using shadow passwords with NIS will be
discussed in the next section. Second, the login commands are not the only ones that access the
passwd file -- look at the ls command, which most people use almost constantly. Whenever
compiling a long listing, ls displays the symbolic names for user and group owners of a file; that is,
for each uid and gid it encounters, it has to query the NIS server. An NIS query takes slightly longer
to perform than the equivalent lookup in a local file. You may find that sharing your passwd and
group information using NIS causes a noticable reduction in the performance of some programs that
use this information frequently.

Still, this is not the whole story. Imagine what happens if a user wants to change her password.
Usually, she will invoke passwd, which reads the new password and updates the local passwd file.
This is impossible with NIS, since that file isn't available locally anymore, but having users log into
the NIS server whenever they want to change their passwords is not an option, either. Therefore, NIS
provides a drop-in replacement for passwd called yppasswd, which handles password changes under
NIS. To change the password on the server host, it contacts the yppasswdd daemon on that host via
RPC, and provides it with the updated password information. Usually you install yppasswd over the
normal program by doing something like this:

cd /bin
mv passwd passwd.old
ln yppasswd passwd

At the same time, you have to install rpc.yppasswdd on the server and start it from a network script.
This will effectively hide any of the contortions of NIS from your users.

Using NIS with Shadow Support
Using NIS in conjunction with shadow password files is somewhat problematic. First we have some
bad news: using NIS defeats the goals of shadow passwords. The shadow password scheme was
designed to prevent nonroot users from having access to the encrypted form of the login passwords.
Using NIS to share shadow data by necessity makes the encrypted passwords available to any user
who can listen to the NIS server replies on the network. A policy to enforce users to choose "good"
passwords is arguably better than trying to shadow passwords in an NIS environment. Let's take a
quick look at how you do it, should you decide to forge on ahead.

In libc5 there is no real solution to sharing shadow data using NIS. The only way to distribute
password and user information by NIS is through the standard passwd.* maps. If you do have shadow
passwords installed, the easiest way to share them is to generate a proper passwd file from
/etc/shadow using tools like pwuncov, and create the NIS maps from that file.

Of course, there are some hacks necessary to use NIS and shadow passwords at the same time, for
instance, by installing an /etc/shadow file on each host in the network, while distributing user
information, through NIS. However, this hack is really crude and defies the goal of NIS, which is to
ease system administration.

The NIS support in the GNU libc library (libc6) provides support for shadow password databases. It
does not provide any real solution to making your passwords accessible, but it does simplify
password management in environments in which you do want to use NIS with shadow passwords. To
use it, you must create a shadow.byname database and add the following line to your
/etc/nsswitch.conf:

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (11 of 12) [2/20/2001 11:05:00 AM]

Shadow password support
shadow: compat

If you use shadow passwords along with NIS, you must try to maintain some security by restricting
access to your NIS database. See "NIS Server Security" earlier in this chapter.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System

http://www.oreilly.com/catalog/linag2/book/ch13.html (12 of 12) [2/20/2001 11:05:00 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 14
The Network File System
Contents:
Preparing NFS
Mounting an NFS Volume
The NFS Daemons
The exports File
Kernel-Based NFSv2 Server Support
Kernel-Based NFSv3 Server Support

The Network File System (NFS) is probably the most prominent network service using
RPC. It allows you to access files on remote hosts in exactly the same way you would
access local files. A mixture of kernel support and user-space daemons on the client
side, along with an NFS server on the server side, makes this possible. This file access
is completely transparent to the client and works across a variety of server and host
architectures.

NFS offers a number of useful features:

Data accessed by all users can be kept on a central host, with clients mounting
this directory at boot time. For example, you can keep all user accounts on one
host and have all hosts on your network mount /home from that host. If NFS is
installed beside NIS, users can log into any system and still work on one set of
files.

●

Data consuming large amounts of disk space can be kept on a single host. For
example, all files and programs relating to LaTeX and METAFONT can be kept
and maintained in one place.

●

Linux Network Administrator's Guide, 2nd Edition: Chapter 14: The Network File System

http://www.oreilly.com/catalog/linag2/book/ch14.html (1 of 9) [2/20/2001 11:05:02 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

Administrative data can be kept on a single host. There is no need to use rcp to
install the same stupid file on 20 different machines.

●

It's not too hard to set up basic NFS operation on both the client and server; this chapter
tells you how.

Linux NFS is largely the work of Rick Sladkey, who wrote the NFS kernel code and
large parts of the NFS server.[1] The latter is derived from the unfsd user space NFS
server, originally written by Mark Shand, and the hnfs Harris NFS server, written by
Donald Becker.

[1] Rick can be reached at jrs@world.std.com.

Let's have a look at how NFS works. First, a client tries to mount a directory from a
remote host on a local directory just the same way it does a physical device. However,
the syntax used to specify the remote directory is different. For example, to mount
/home from host vlager to /users on vale, the administrator issues the following
command on vale:[2]

mount -t nfs vlager:/home /users

[2] Actually, you can omit the -t nfs argument because mount sees
from the colon that this specifies an NFS volume.

mount will try to connect to the rpc.mountd mount daemon on vlager via RPC. The
server will check if vale is permitted to mount the directory in question, and if so, return
it a file handle. This file handle will be used in all subsequent requests to files below
/users.

When someone accesses a file over NFS, the kernel places an RPC call to rpc.nfsd (the
NFS daemon) on the server machine. This call takes the file handle, the name of the file
to be accessed, and the user and group IDs of the user as parameters. These are used in
determining access rights to the specified file. In order to prevent unauthorized users
from reading or modifying files, user and group IDs must be the same on both hosts.

On most Unix implementations, the NFS functionality of both client and server is
implemented as kernel-level daemons that are started from user space at system boot.
These are the NFS Daemon (rpc.nfsd) on the server host, and the Block I/O Daemon
(biod) on the client host. To improve throughput, biod performs asynchronous I/O using
read-ahead and write-behind; also, several rpc.nfsd daemons are usually run
concurrently.

The current NFS implementation of Linux is a little different from the classic NFS in
that the server code runs entirely in user space, so running multiple copies
simultaneously is more complicated. The current rpc.nfsd implementation offers an
experimental feature that allows limited support for multiple servers. Olaf Kirch
developed kernel-based NFS server support featured in 2.2 Version Linux kernels. Its
performance is significantly better than the existing userspace implementation. We'll
describe it later in this chapter.

Linux Network Administrator's Guide, 2nd Edition: Chapter 14: The Network File System

http://www.oreilly.com/catalog/linag2/book/ch14.html (2 of 9) [2/20/2001 11:05:02 AM]

Preparing NFS
Before you can use NFS, be it as server or client, you must make sure your kernel has
NFS support compiled in. Newer kernels have a simple interface on the proc filesystem
for this, the /proc/filesystems file, which you can display using cat:

$ cat /proc/filesystems
 minix
 ext2
 msdos
nodev proc
nodev nfs

If nfs is missing from this list, you have to compile your own kernel with NFS enabled,
or perhaps you will need to load the kernel module if your NFS support was compiled
as a module. Configuring the kernel network options is explained in the "Kernel
Configuration" section of Chapter 3, Configuring the Networking Hardware.

Mounting an NFS Volume
The mounting of NFS volumes closely resembles regular file systems. Invoke mount
using the following syntax:[3]

mount -t nfs nfs_volume local_dir options

[3] One doesn't say filesystem because these are not proper filesystems.

nfs_volume is given as remote_host:remote_dir. Since this notation is unique to NFS
filesystems, you can leave out the -t nfs option.

There are a number of additional options that you can specify to mount upon mounting
an NFS volume. These may be given either following the -o switch on the command
line or in the options field of the /etc/fstab entry for the volume. In both cases, multiple
options are separated by commas and must not contain any whitespace characters.
Options specified on the command line always override those given in the fstab file.

Here is a sample entry from /etc/fstab:

volume mount point type options
news:/var/spool/news /var/spool/news nfs timeo=14,intr

This volume can then be mounted using this command:

mount news:/var/spool/news

In the absence of an fstab entry, NFS mount invocations look a lot uglier. For instance,
suppose you mount your users' home directories from a machine named moonshot,
which uses a default block size of 4 K for read/write operations. You might increase the
block size to 8 K to obtain better performance by issuing the command:

mount moonshot:/home /home -o rsize=8192,wsize=8192

The list of all valid options is described in its entirety in the nfs(5) manual page. The

Linux Network Administrator's Guide, 2nd Edition: Chapter 14: The Network File System

http://www.oreilly.com/catalog/linag2/book/ch14.html (3 of 9) [2/20/2001 11:05:02 AM]

following is a partial list of options you would probably want to use:

rsize=n and wsize=n

These specify the datagram size used by the NFS clients on read and write
requests, respectively. The default depends on the version of kernel, but is
normally 1,024 bytes.

timeo=n

This sets the time (in tenths of a second) the NFS client will wait for a request to
complete. The default value is 7 (0.7 seconds). What happens after a timeout
depends on whether you use the hard or soft option.

hard

Explicitly mark this volume as hard-mounted. This is on by default. This option
causes the server to report a message to the console when a major timeout occurs
and continues trying indefinitely.

soft

Soft-mount (as opposed to hard-mount) the driver. This option causes an I/O
error to be reported to the process attempting a file operation when a major
timeout occurs.

intr

Allow signals to interrupt an NFS call. Useful for aborting when the server
doesn't respond.

Except for rsize and wsize, all of these options apply to the client's behavior if the server
should become temporarily inaccessible. They work together in the following way:
Whenever the client sends a request to the NFS server, it expects the operation to have
finished after a given interval (specified in the timeout option). If no confirmation is
received within this time, a so-called minor timeout occurs, and the operation is retried
with the timeout interval doubled. After reaching a maximum timeout of 60 seconds, a
major timeout occurs.

By default, a major timeout causes the client to print a message to the console and start
all over again, this time with an initial timeout interval twice that of the previous
cascade. Potentially, this may go on forever. Volumes that stubbornly retry an operation
until the server becomes available again are called hard-mounted. The opposite variety,
called soft-mounted, generate an I/O error for the calling process whenever a major
timeout occurs. Because of the write-behind introduced by the buffer cache, this error
condition is not propagated to the process itself before it calls the write function the
next time, so a program can never be sure that a write operation to a soft-mounted
volume has succeeded at all.

Whether you hard- or soft-mount a volume depends partly on taste but also on the type
of information you want to access from a volume. For example, if you mount your X
programs by NFS, you certainly would not want your X session to go berserk just
because someone brought the network to a grinding halt by firing up seven copies of
Doom at the same time or by pulling the Ethernet plug for a moment. By hard-mounting

Linux Network Administrator's Guide, 2nd Edition: Chapter 14: The Network File System

http://www.oreilly.com/catalog/linag2/book/ch14.html (4 of 9) [2/20/2001 11:05:02 AM]

the directory containing these programs, you make sure that your computer waits until it
is able to re-establish contact with your NFS server. On the other hand, non-critical data
such as NFS-mounted news partitions or FTP archives may also be soft-mounted, so if
the remote machine is temporarily unreachable or down, it doesn't hang your session. If
your network connection to the server is flaky or goes through a loaded router, you may
either increase the initial timeout using the timeo option or hard-mount the volumes.
NFS volumes are hard-mounted by default.

Hard mounts present a problem because, by default, the file operations are not
interruptible. Thus, if a process attempts, for example, a write to a remote server and
that server is unreachable, the user's application hangs and the user can't do anything to
abort the operation. If you use the intr option in conjuction with a hard mount, any
signals received by the process interrupt the NFS call so that users can still abort
hanging file accesses and resume work (although without saving the file).

Usually, the rpc.mountd daemon in some way or other keeps track of which directories
have been mounted by what hosts. This information can be displayed using the
showmount program, which is also included in the NFS server package:

showmount -e moonshot
Export list for localhost:
/home <anon clnt>

showmount -d moonshot
Directories on localhost:
/home

showmount -a moonshot
All mount points on localhost:
localhost:/home

The NFS Daemons
If you want to provide NFS service to other hosts, you have to run the rpc.nfsd and
rpc.mountd daemons on your machine. As RPC-based programs, they are not managed
by inetd, but are started up at boot time and register themselves with the portmapper;
therefore, you have to make sure to start them only after rpc.portmap is running.
Usually, you'd use something like the following example in one of your network boot
scripts:

if [-x /usr/sbin/rpc.mountd]; then
 /usr/sbin/rpc.mountd; echo -n " mountd"
fi
if [-x /usr/sbin/rpc.nfsd]; then
 /usr/sbin/rpc.nfsd; echo -n " nfsd"
fi

The ownership information of the files an NFS daemon provides to its clients usually
contains only numerical user and group IDs. If both client and server associate the same
user and group names with these numerical IDs, they are said to their share uid/gid

Linux Network Administrator's Guide, 2nd Edition: Chapter 14: The Network File System

http://www.oreilly.com/catalog/linag2/book/ch14.html (5 of 9) [2/20/2001 11:05:02 AM]

[1] Other possible locations are /etc/rc.d/init.d and rc.inet2. The latter is common on systems
using a BSD-style structure for system administration files in the /etc directory.

Exim has a complicated set of command-line options, including many that match those of sendmail. Instead
of trying to put together exactly the right options for your needs, you can implement the most common
types of operation by invoking traditional commands like rmail or rsmtp. These are symbolic links to Exim
(or if they're not, you can easily link them to it). When you run one of the commands, Exim checks the
name you used to invoke it and sets the proper options itself.

There are two links to Exim that you should have under all circumstances: /usr/bin/rmail and
/usr/sbin/sendmail.[2] When you compose and send a mail message with a user agent like elm, the message
is piped to sendmail or rmail for delivery, which is why both /usr/sbin/sendmail and /usr/bin/rmail should
point to Exim. The list of recipients for the message is passed to Exim on the command line.[3] The same
happens with mail coming in via UUCP. You can set up the required pathnames to point to Exim by typing
the following at a shell prompt:

$ ln -s /usr/sbin/exim /usr/bin/rmail
$ ln -s /usr/sbin/exim /usr/sbin/sendmail

[2] This is the new standard location of sendmail according to the Linux File System Standard.
Another common location is /usr/lib/sendmail, which is likely to be used by mail programs
that are not specially configured for Linux. You can define both filenames as symbolic links to
Exim so that programs and scripts invoking sendmail will instead invoke Exim to do the same
things.

[3] Some user agents, however, use the SMTP protocol to pass messages to the transport
agent, calling it with the -bs option.

If you want to dig further into the details of configuring Exim, you should consult the full Exim
specification. If this isn't included in your favorite Linux distribution, you can get it from the source to
Exim, or read it online from Exim's web site at http://www.exim.org.

Running Exim
To run Exim, you must first decide whether you want it to handle incoming SMTP messages by running as
a separate daemon, or whether to have inetd manage the SMTP port and invoke Exim only whenever an
SMTP connection is requested from a client. Usually, you will prefer daemon operation on the mail server
because it loads the machine far less than spawning Exim over and over again for each connection. As the
mail server also delivers most incoming mail directly to the users, you should choose inetd operation on
most other hosts.

Whatever mode of operation you choose for each individual host, you have to make sure you have the
following entry in your /etc/services file:

smtp 25/tcp # Simple Mail Transfer Protocol

This defines the TCP port number that is used for SMTP conversations. Port number 25 is the standard
defined by the "Assigned Numbers" RFC (RFC-1700).

When run in daemon mode, Exim puts itself in the background and waits for connections on the SMTP
port. When a connection occurs, it forks, and the child process conducts an SMTP conversation with the
peer process on the calling host. The Exim daemon is usually started by invoking it from the rc script at
boot time using the following command:

/usr/sbin/exim -bd -q15m

The -bd flag turns on daemon mode, and -q15m makes it process whatever messages have accumulated in
the message queue every 15 minutes.

If you want to use inetd instead, your /etc/inetd.conf file should contain a line like this:

smtp stream tcp nowait root /usr/sbin/exim in.exim -bs

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (2 of 10) [2/20/2001 11:05:29 AM]

http://www.exim.org/

Remember you have to make inetd re-read inetd.conf by sending it an HUP signal after making any
changes.[4]

[4] Use kill HUP pid, for which pid is the process ID of the inetd process retrieved from a
ps listing.

Daemon and inetd modes are mutually exclusive. If you run Exim in daemon mode, you should make sure
to comment out any line in inetd.conf for the smtp service. Equivalently, when having inetd manage Exim,
make sure that no rc script starts the Exim daemon.

You can check that Exim is correctly set up for receiving incoming SMTP messages by telnetting to the
SMTP port on your machine. This is what a successful connect to the SMTP server looks like:

$ telnet localhost smtp
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 richard.vbrew.com ESMTP Exim 3.13 #1 Sun, 30 Jan 2000 16:23:55 +0600
quit
221 richard.brew.com closing connection
Connection closed by foreign host.

If this test doesn't produce the SMTP banner (the line starting with the 220 code), check that you are either
running an Exim daemon process or have inetd correctly configured. If that doesn't reveal the problem,
look in the Exim log files (described next) in case there is an error in Exim's configuration file.

If Your Mail Doesn't Get Through
A number of features are available for troubleshooting installation problems. The first place to check is
Exim's log files. On Linux systems they are normally kept in /var/log/exim/log and are named
exim_mainlog, exim_rejectlog, and exim_paniclog. On other operating systems, they are often kept in
/var/spool/exim/log. You can find out where the log files are by running the command:

exim -bP log_file_path

The main log lists all transactions, the reject log contains details of messages that were rejected for policy
reasons, and the panic log is for messages related to configuration errors and the like.

Typical entries in the main log are shown below. Each entry in the log itself is a single line of text, starting
with a date and time. They have been split into several lines here in order to fit them on the page:

2000-01-30 15:46:37 12EwYe-0004WO-00 <= jack@vstout.vbrew.com
 H=vstout.vbrew.com [192.168.131.111] U=exim P=esmtp S=32100
 id=38690D72.286F@vstout.vbrew.com
2000-01-30 15:46:37 12EwYe-0004WO-00 => jill <jill@vbrew.com>
 D=localuser T=local_delivery
2000-01-30 15:46:37 12EwYe-0004WO-00 Completed

These entries show that a message from jack@vstout.vbrew.com to jill@vbrew.com was successfully
delivered to a mailbox on the local host. Message arrivals are flagged with <=, and deliveries with =>.

There are two kinds of delivery errors: permanent and temporary. A permanent delivery error is recorded in
a log entry like this, flagged with "**":

2000-01-30 14:48:28 12EvcH-0003rC-00 ** bill@lager.vbrew.com
 R=lookuphost T=smtp: SMTP error from remote mailer after RCPT TO:
 <bill@lager.vbrew.com>: host lager.vbrew.com [192.168.157.2]:
 550 <bill@lager.vbrew.com>... User unknown

After a failure like this, Exim sends a delivery failure report, often called a bounce message back to the
sender.

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (3 of 10) [2/20/2001 11:05:29 AM]

Temporary errors are flagged with "==":

2000-01-30 12:50:50 12E9Un-0004Wq-00 == jim@bitter.vbrew.com
 T=smtp defer (145): Connection timed out

This error is typical for a situation in which Exim properly recognizes that the message should be delivered
to a remote host, but is not able to connect to the SMTP service on that host. The host may be down or
there could be a network problem. Whenever a message is deferred like this, it remains on Exim's queue
and is retried at intervals. However, if it fails to be delivered for a sufficiently long time (usually several
days), a permanent error occurs and the message is bounced.

If you are unable to locate your problem from the error message Exim generates, you may want to turn on
debugging messages. You can do this using the -d flag, optionally followed by a number specifying the
level of verbosity (a value of 9 gives maximum information). Exim then displays a report of its operation
on the screen, which may give you more hints about what is going wrong.

Compiling Exim
Exim is still under active development; the version of Exim included in Linux distributions is probably not
the latest release. If you need a feature or a bugfix found in a later release, you have to obtain a copy of the
source code and compile it yourself. The latest release can be found via Exim's web page at
http://www.exim.org.

Linux is one of the many operating systems supported by the Exim source. To compile Exim for Linux,
you should edit the src/EDITME file and put the result in a file called Local/Makefile. There are comments
in src/EDITME that tell you what the various settings are used for. Then run make. See the Exim manual
for detailed information on building Exim from source.

Mail Delivery Modes
As noted previously, Exim is able to deliver messages immediately or queue them for later processing. All
incoming mail is stored in the input directory below /var/spool/exim. When queueing is not in operation, a
delivery process is started for each message as soon as it arrives. Otherwise, it is left on the queue until a
queue-runner process picks it up. Queueing can be made unconditional by setting queue_only in the
configuration file, or it can be conditional on the 1-minute system load by a setting such as:

queue_only_load = 4

which causes messages to be queued if the system load exceeds 4.[5]

[5] The system load is a standard Unix measure of the average number of processes that are
queued up, waiting to run. The uptime shows load averages taken over the previous 1, 5, and
15 minutes.

If your host is not permanently connected to the Internet, you may want to turn on queueing for remote
addresses, while allowing Exim to perform local deliveries immediately. You can do this by setting:

queue_remote_domains = *

in the configuration file.

If you turn on any form of queuing, you have to make sure the queues are checked regularly, probably
every 10 or 15 minutes. Even without any explicit queueing options, the queues need to be checked for
messages that have been deferred because of temporary delivery failures. If you run Exim in daemon mode,
you must add the -q15m option on the command line to process the queue every 15 minutes. You can also
invoke exim -q from cron at these intervals.

You can display the current mail queue by invoking Exim with the -bp option. Equivalently, you can make
mailq a link to Exim, and invoke mailq:

$ mailq
 2h 52K 12EwGE-0005jD-00 <sam@vbrew.com>

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (4 of 10) [2/20/2001 11:05:29 AM]

http://www.exim.org/

 D bob@vbrew.com
 harry@example.net

This shows a single message from sam@vbrew.com to two recipients sitting in the message queue. It has
been successfully delivered to bob@vbrew.com, but has not yet been delivered to harry@example.net,
though it has been on the queue for two hours. The size of the message is 52K, and the ID by which Exim
identifies this message is 12EwGE-0005jD-00. You can find out why the delivery is not yet complete by
looking at the message's individual log file, which is kept in the msglog directory in Exim's spool directory.
The -Mvl option is an easy way of doing this:

$ exim -Mvl 12EwGE-0005jD-00
2000-01-30 17:28:13 example.net [192.168.8.2]: Connection timed out
2000-01-30 17:28:13 harry@example.net: remote_smtp transport deferred:
 Connection timed out

Individual log files keep a copy of log entries for each message so you can easily inspect them. The same
information could have been extracted from the main log file using the exigrep utility:

$ exigrep 12EwGE-0005jD-00 /var/log/exim/exim_mainlog

That would take longer, especially on a busy system where the log files can get quite big. The exigrep
utility comes into its own when looking for information about more than one message. Its first argument is
a regular expression, and it picks out all the log lines concerned with any messages that have at least one
log line that matches the expression. Thus it can be used to pick out all messages for one specific address,
or all those to or from a specific host.

You can keep a general watch on what a running Exim is doing by running tail on its main log file. Another
way of doing this is to run the eximon utility that comes with Exim. This is an X11 application that puts up
a scrolling display of the main log, and also shows a list of messages that are awaiting delivery, as well as
some stripcharts about delivery activity.

Miscellaneous config Options
Here are a few of the more useful options you can set in the configuration file:

message_size_limit

Setting this option limits the size of message that Exim will accept.

return_size_limit

Setting this option limits the amount of an incoming message that Exim will return as part of a
bounce message.

deliver_load_max

If the system load exceeds the value given for this option, all mail delivery is suspended, though
messages are still accepted.

smtp_accept_max

This is the maximum number of simultaneous incoming SMTP calls Exim is prepared to accept.

log_level

This option controls the amount of material that is written to the log. There are also some options
with names beginning with log_ that control the logging of specific information.

Message Routing and Delivery
Exim splits up mail delivery into three different tasks: routing, directing, and transporting. There are a
number of code modules of each type, and each is separately configurable. Usually a number of different
routers, directors, and transports are set up in the configuration file.

Routers resolve remote addresses, determining which host the message should be sent to and which

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (5 of 10) [2/20/2001 11:05:29 AM]

transport should be used. In Internet-connected hosts there is often just one router, which does the
resolution by looking up the domain in the DNS. Alternatively, there may be one router that handles
addresses destined for hosts on a local LAN, and a second to send any other addresses to a single smart
host; for example, an ISP's mail server.

Local addresses are given to the directors, of which there are normally several, to handle aliasing and
forwarding as well as identifying local mailboxes. Mailing lists can be handled by aliasing or forwarding
directors. If an address gets aliased or forwarded, any generated addresses are handled independently by the
routers or directors, as necessary. By far the most common case will be delivery to a mailbox, but messages
may also be piped into a command or appended to a file other than the default mailbox.

A transport is responsible for implementing a method of delivery; for example, sending the message over
an SMTP connection or adding it to a specific mailbox. Routers and directors select which transport to use
for each recipient address. If a transport fails, Exim either generates a bounce message or defers the address
for a later retry.

With Exim, you have a lot of freedom in configuring these tasks. For each of them, a number of drivers are
available, from which you can choose those you need. You describe them to Exim in different sections of
its configuration file. The transports are defined first, followed by the directors, and then the routers. There
are no built-in defaults, though Exim is distributed with a default configuration file that covers simple
cases. If you want to change Exim's routing policy or modify a transport, it is easiest to start from the
default configuration and make changes rather than attempt to set up a complete configuration from
scratch.

Routing Messages

When given an address to deliver, Exim first checks whether the domain is one that is handled on the local
host by matching it against a list in the local_domains configuration variable. If this option is not set,
the local host name is used as the only local domain. If the domain is local, the address is handed to the
directors. Otherwise, it is handed to the routers to find out which host to forward a message to.[6]

[6] This is a simplification. It is possible for directors to pass addresses to transports that
deliver to remote hosts, and similarly, it is possible for routers to pass addresses to local
transports that write the messsage to a file or a pipe. It is also possible for routers to pass
addresses to the directors in some circumstances.

Delivering Messages to Local Addresses

Most commonly, a local address is just a user's login name, in which case the message is delivered to the
user's mailbox, /var/spool/mail/user-name. Other cases include aliases, mailing list names, and mail
forwarding by the user. In these cases, the local address expands to a new list of addresses, which may be
either local or remote.

Apart from these "normal" addresses, Exim can handle other types of local message destinations, like
filenames and pipe commands. When delivering to a file, Exim appends the message, creating the file if
necessary. File and pipe destinations are not addresses in their own right, so you can't send mail to, say,
/etc/passwd@vbrew.com and expect to overwrite the password file; deliveries to a specific file are valid
only if they come from forwarding or alias files. Note, however, that /etc/passwd@vbrew.com is a
syntactically valid email address, but if Exim received it, it would (typically) search for a user whose login
name was /etc/passwd, fail to find one, and bounce the message.

In an alias list or forwarding file, a filename is anything that begins with a slash (/) that does not parse as a
fully qualified email address. For example, /tmp/junk in a forwarding or alias file is interpreted as a file
name, but /tmp/junk@vbrew.com is an email address, though it is not likely to be a very useful one.
However, valid addresses of this type are seen when sending mail through X.400 gateways, because X.400
addresses start with a slash.

Similarly, a pipe command may be any Unix command preceded by the pipe symbol (|), unless the string
parses as a valid email address complete with domain. Unless you have changed the configuration, Exim

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (6 of 10) [2/20/2001 11:05:29 AM]

does not use a shell to run the command; instead, it splits it up into a command name, arguments itself, and
runs it directly. The message is fed to the command on its standard input.

For example, to gate a mailing list into a local newsgroup, you might use a shell script named gateit, and set
up a local alias that delivers all messages from this mailing list to the script using |gateit. If the
command line contains a comma, it and the preceding pipe symbol must be enclosed in double quotes.

Local users

A local address most commonly denotes a user's mailbox. This is normally located in /var/spool/mail and
has the name of the user, who also owns the file. If it does not exist, it is created by Exim.

In some configurations, the group is set to the user's group and the mode is 0600. In these cases, delivery
processes are run as the user, and the user may delete the mailbox entirely. In other configurations, the
mailbox's group is mail, and it has mode 660; delivery processes are run under a system uid and group
mail, and users cannot delete their mailbox files, though they can empty them.

Note that although /var/spool/mail is currently the standard place to put the mailbox files, some mail
software may be compiled to use different paths, for example, /usr/spool/mail. If delivery to users on your
machine fails consistently, you should see if it helps to make this a symbolic link to /var/spool/mail.

The addresses MAILER-DAEMON and postmaster should normally appear in your alias file, expanding
into the email address of the system administrator. MAILER-DAEMON is used by Exim as the sender
address in bounce messages. It is also recommended that root be set up as an alias for an administrator,
especially when deliveries are being run under the permissions of the recipient users, in order to avoid
running any delivery as root.

Forwarding

Users can redirect their mail to alternative addresses by creating a .forward file in their home directories.
This contains a list of recipients separated by commas and/or newlines. All lines of the file are read and
interpreted. Any type of address may be used. A practical example of a .forward file for vacations might
be:

janet, "|vacation"

In other descriptions of .forward files, you might see the username at the start preceded by a backslash.
This was necessary in some older MTAs to stop a search for a .forward for the new name, which could lead
to looping. The backslash is not necessary in Exim, which automatically avoids loops of this kind.[7]
However, a backslash is permitted, and in fact it does make a difference in configurations where several
domains are being handled at once. Without a backslash, an unqualified username is qualified with a
default domain; with a backslash the incoming domain is preserved.

[7] A director is skipped if the address it is about to process is one that it has previously
processed in the course of generating the present address.

The first address in the forward file delivers the incoming message to janet's mailbox, while the vacation
command returns a short notification to the sender.[8]

[8] Please, if you choose to use a vacation program, make sure it will not reply to messages
sent from mailing lists! It is very annoying to discover that someone has gone on vacation and
find a vacation message for every message they've received. Mailing list administrators: this is
a good example of why it is bad practice to force the Reply-To: field of mailing list
messages to that of the list submission address.

In addition to supporting "traditional" forwarding files, Exim can be configured to allow more complex
files called filters. Instead of being just a list of forwarding addresses, a filter file can contain tests on the
contents of the incoming message so that, for example, messages could be forwarded only if the subject
contained the message "urgent." The system administrator must decide whether to allow users this
flexibility.

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (7 of 10) [2/20/2001 11:05:29 AM]

Alias Files

Exim is able to handle alias files compatible with Berkeley's sendmail alias files. Entries in the alias file
can have the following form:

alias: recipients

recipients is a comma-separated list of addresses that will be substituted for the alias. The recipient list may
be continued across newlines if the next line begins with whitespace.

A special feature allows Exim to handle mailing lists that are held separately from the alias file: if you
specify :include:filename as a recipient, Exim reads the specified file and substitutes its contents as a
list of recipients. An alternative to handling mailing lists is shown later in this chapter in "Mailing Lists".

The main aliases file is /etc/aliases. If you make this file world-writable or group-writeable, Exim will
refuse to use it and will defer local deliveries. You can control the test it applies to the file's permissions by
setting modemask in the system_aliases director.

This is a sample aliases file:

vbrew.com /etc/aliases file
hostmaster: janet
postmaster: janet
usenet: phil
The development mailing list.
development: joe, sue, mark, biff,
 /var/mail/log/development
owner-development: joe
Announcements of general interest are mailed to all
of the staff
announce: :include: /etc/Exim/staff,
 /var/mail/log/announce
owner-announce: root
gate the ppp mailing list to a local newsgroup
ppp-list: "|/usr/local/bin/gateit local.lists.ppp"

When there are file names and pipe commands in an alias file, as here, Exim needs to be told which userid
to run the deliveries under. The user option (and possibly group, too) must be set in Exim's configuration
file, either on the director that is handling the aliases, or on the transports to which it directs these items.

If an error occurs while delivering to an address generated from the aliases file, Exim will send a bounce
message to the sender of the message, as usual, but this might not be appropriate. The errors_to option can
be used to specify that bounce messages are to be sent elsewhere; for example, to the postmaster.

Mailing Lists

Instead of the aliases file, mailing lists may also be managed by means a forwardfile director. The lists are
all kept in a single directory such as /etc/exim/lists/, and a mailing list named nag-bugs is described by the
file lists/nag-bugs. This should contain the members' addresses separated by commas or newlines. Lines
beginning with a hash sign (#) are treated as comments. A simple director to use such data is as follows:

lists:
 driver = forwardfile
 file = /etc/exim/lists/${local_part}
 no_check_local_user
 errors_to = ${local_part}-request

When this director runs, the values of the file and errors_to options are expanded. Expansion causes certain
portions of the strings beginning with dollar characters to be replaced every time the string is used. The
simplest kind of expansion is the insertion of the value of one of Exim's variables, and this is what is
happening here. The substring ${local_part} substitutes the value of the $local_part, which is

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (8 of 10) [2/20/2001 11:05:29 AM]

the local part of the address that is being processed.

For each mailing list, a user (or alias or mailing list) named listname-request should exist; any errors
occurring when resolving an address or delivering to a list member are reported to this address.

Protecting Against Mail Spam
Mail spam, or unsolicited email advertising, is an annoying problem for many users. A project has been
formed to address this problem called the Mail Abuse Protection System (MAPS), and a mechanism has
been built that reduces the problem, called the Real Time Blackhole List (RBL). Information on how the
MAPS RBL works can be obtained from its online documentation at http://maps.vix.com/rbl/. The idea is
simple. Sites that are caught generating mail spam are added into the database and mail transfer agents like
Exim are able to query the database to confirm that a source is not a spammer before accepting mail from
it.

Since the advent of the RBL, several other similar lists have been created. One of the most useful is the
Dial-Up List (DUL), which lists the IP addresses of dial-up hosts. These should normally send outgoing
mail only to their ISP's mail servers. Many sites block mail from external dial-ups because when such a
host avoids its own ISP's server, it is usually up to no good.

Exim provides support for the real-time and other blacklists. It is very easily configured. To enable it, add
the following lines to your /etc/exim.conf file:

Vixie / MAPS RBL (http://maps.vix.com/rbl)
rbl_domains = rbl.maps.vix.com : dul.maps.vix.com

This example checks both the RBL and the DUL, rejecting any messages from hosts that are on either list.
The rbl_hosts option allows you to specify groups of hosts to which RBL checking does (or does not)
apply. The default setting is:

rbl_hosts = *

which means that all hosts are subject to RBL checking. If you wanted to override blacklisting and accept
mail from a specific host without performing the RBL checking you could, for example, use:

rbl_hosts = ! nocheck.example.com : *

The exclamation mark before the first item in this list indicates a negated item: if the calling host is
nocheck.example.com, it will match this item. But because of the negation, RBL checking is not
performed. Any other host matches the second item in the list.

UUCP Setup
Exim does not have any specific code for transporting mail via UUCP, nor does it support UUCP bang path
addresses. However, if domain addressing is being used, Exim can be interfaced to UUCP fairly simply.
Here is a configuration fragment for sending certain domains to UUCP, taken from a real installation:

Transport
uucp:
 driver = pipe
 user = nobody
 command = "/usr/local/bin/uux -r - \
 ${substr_-5:$host}!rmail ${local_part}"
 return_fail_output = true

Router
uucphost:
 transport = uucp
 driver = domainlist
 route_file = /usr/exim/uucphosts
 search_type = lsearch

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (9 of 10) [2/20/2001 11:05:29 AM]

http://maps.vix.com/rbl/

In a complete configuration file, the transport would be inserted among the other transports, and the router
probably defined as the first router. The file /usr/exim/uucphosts contains entries like this:

darksite.example.com: darksite.UUCP

which is interpreted to mean, "Send mail addressed to the domain darksite.example.com to the UUCP host
darksite." This configuration could be set up more simply without the router adding the suffix .UUCP to
darksite only to have the transport take it off again, but this way is useful because it makes clear the
distinction between the domain name darksite.example.com and the UUCP host name darksite.

Whenever the router comes across a domain that is in the route file, it will send the address to the UUCP
transport, which subsequently pipes it to the uux command (described in Chapter 16, Managing Taylor
UUCP). If there is a problem, uux will generate some output and terminate with a non-zero error code. The
setting of return_fail_output makes sure that the output is returned to the sender.

If incoming UUCP messages are grouped into files in batched SMTP format, they can be passed directly to
Exim using a command like this:

exim -bS </var/uucp/incoming/001

However, there is one catch. When Exim receives a message locally, it insists that the sender is the
logged-in user that calls it, but for a UUCP batch we want the senders to be taken from the incoming
messages. Exim will do this if the process that calls it is running as a trusted user. If you arrange for
incoming UUCP to be handled by a user called uucp, for example, you need to specify:

trusted_users = uucp

in the Exim configuration file to ensure that sender addresses are correctly handled.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running

http://www.oreilly.com/catalog/linag2/book/ch19.html (10 of 10) [2/20/2001 11:05:29 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 20
Netnews
Contents:
Usenet History
What Is Usenet, Anyway?
How Does Usenet Handle News?

Netnews, or Usenet news, remains one of the most important and highly valued
services on computer networks today. Dismissed by some as a mire of unsolicited
commercial email and pornography, Netnews still maintains several cases of the
high-quality discussion groups that made it a critical resource in pre-web days.
Even in these times of a billion web pages, Netnews is still a source for online help
and community on many topics.

Usenet History
The idea of network news was born in 1979 when two graduate students, Tom
Truscott and Jim Ellis, thought of using UUCP to connect machines for
information exchange among Unix users. They set up a small network of three
machines in North Carolina.

Initially, traffic was handled by a number of shell scripts (later rewritten in C), but
they were never released to the public. They were quickly replaced by "A News,"
the first public release of news software.

A News was not designed to handle more than a few articles per group and day.

Linux Network Administrator's Guide, 2nd Edition: Chapter 20: Netnews

http://www.oreilly.com/catalog/linag2/book/ch20.html (1 of 6) [2/20/2001 11:05:32 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

When the volume continued to grow, it was rewritten by Mark Horton and Matt
Glickman, who called it the "B" release (a.k.a. B News). The first public release of
B News was version 2.1 in 1982. It was expanded continuously, with several new
features added. Its current version is B News 2.11. It is slowly becoming obsolete;
its last official maintainer switched to INN.

Geoff Collyer and Henry Spencer rewrote B News and released it in 1987; this is
release "C," or C News. Since its release, there have been a number of patches to C
News, the most prominent being the C News Performance Release. On sites that
carry a large number of groups, the overhead involved in frequently invoking
relaynews, which is responsible for dispatching incoming articles to other hosts, is
significant. The Performance Release adds an option to relaynews that allows it to
run in daemon mode, through which the program puts itself in the background.
The Performance Release is the C News version currently included in most Linux
releases. We describe C News in detail in Chapter 21, C News.

All news releases up to C were primarily targeted for UUCP networks, although
they could be used in other environments, as well. Efficient news transfer over
networks like TCP/IP or DECNet required a new scheme. So in 1986, the Network
News Transfer Protocol (NNTP) was introduced. It is based on network
connections and specifies a number of commands to interactively transfer and
retrieve articles.

There are a number of NNTP-based applications available from the Net. One of
them is the nntpd package by Brian Barber and Phil Lapsley, which you can use to
provide newsreading service to a number of hosts inside a local network. nntpd
was designed to complement news packages, such as B News or C News, to give
them NNTP features. If you want to use NNTP with the C News server, you
should read Chapter 22, NNTP and the nntpd Daemon, which explains how to
configure the nntpd daemon and run it with C News.

An alternative package supporting NNTP is INN, or Internet News. It is not just a
frontend, but a news system in its own right. It comprises a sophisticated news
relay daemon that can maintain several concurrent NNTP links efficiently, and is
therefore the news server of choice for many Internet sites. We discuss it in detail
in Chapter 23, Internet News.

What Is Usenet, Anyway?
One of the most astounding facts about Usenet is that it isn't part of any
organization, nor does it have any sort of centralized network management
authority. In fact, it's part of Usenet lore that except for a technical description,
you cannot define what it is; at the risk of sounding stupid, one might define
Usenet as a collaboration of separate sites that exchange Usenet news. To be a
Usenet site, all you have to do is find another Usenet site and strike an agreement
with its owners and maintainers to exchange news with you. Providing another site

Linux Network Administrator's Guide, 2nd Edition: Chapter 20: Netnews

http://www.oreilly.com/catalog/linag2/book/ch20.html (2 of 6) [2/20/2001 11:05:32 AM]

with news is called feeding it, whence another common axiom of Usenet
philosophy originates: "Get a feed, and you're on it."

The basic unit of Usenet news is the article. This is a message a user writes and
"posts" to the net. In order to enable news systems to deal with it, it is prepended
with administrative information, the so-called article header. It is very similar to
the mail header format laid down in the Internet mail standard RFC-822, in that it
consists of several lines of text, each beginning with a field name terminated by a
colon, which is followed by the field's value.[1]

[1] The format of Usenet news messages is specified in RFC-1036,
"Standard for interchange of USENET messages."

Articles are submitted to one or more newsgroup. One may consider a newsgroup
a forum for articles relating to a common topic. All newsgroups are organized in a
hierarchy, with each group's name indicating its place in the hierarchy. This often
makes it easy to see what a group is all about. For example, anybody can see from
the newsgroup name that comp.os.linux.announce is used for announcements
concerning a computer operating system named Linux.

These articles are then exchanged between all Usenet sites that are willing to carry
news from this group. When two sites agree to exchange news, they are free to
exchange whatever newsgroups they like, and may even add their own local news
hierarchies. For example, groucho.edu might have a news link to barnyard.edu,
which is a major news feed, and several links to minor sites which it feeds news.
Now Barnyard College might receive all Usenet groups, while GMU only wants to
carry a few major hierarchies like sci, comp, or rec. Some of the downstream sites,
say a UUCP site called brewhq, will want to carry even fewer groups, because
they don't have the network or hardware resources. On the other hand, brewhq
might want to receive newsgroups from the fj hierarchy, which GMU doesn't
carry. It therefore maintains another link with gargleblaster.com, which carries all
fj groups and feeds them to brewhq. The news flow is shown in Figure 20.1.

Figure 20.1: Usenet newsflow through Groucho Marx University

Linux Network Administrator's Guide, 2nd Edition: Chapter 20: Netnews

http://www.oreilly.com/catalog/linag2/book/ch20.html (3 of 6) [2/20/2001 11:05:32 AM]

The labels on the arrows originating from brewhq may require some explanation,
though. By default, it wants all locally generated news to be sent to groucho.edu.
However, as groucho.edu does not carry the fj groups, there's no point in sending
it any messages from those groups. Therefore, the feed from brewhq to GMU is
labeled all,!fj, meaning that all groups except those below fj are sent to it.

How Does Usenet Handle News?
Today, Usenet has grown to enormous proportions. Sites that carry the whole of
Netnews usually transfer something like a paltry 60 MB a day.[2] Of course, this
requires much more than pushing files around. So let's take a look at the way most
Unix systems handle Usenet news.

[2] Wait a minute: 60 Megs at 9,600 bps, that's 60 million multiplied
by 1,024, that is... mutter, mutter... Hey! That's 34 hours!

News begins when users create and post articles. Each user enters a message into a
special application called a newsreader, which formats it appropriately for
transmission to the local news server. In Unix environments the newsreader
commonly uses the inews command to transmit articles to the newsserver using
the TCP/IP protocol. But it's also possible to write the article directly into a file in
a special directory called the news spool. Once the posting is delivered to the local
news server, it takes responsibility for delivering the article to other news users.

Linux Network Administrator's Guide, 2nd Edition: Chapter 20: Netnews

http://www.oreilly.com/catalog/linag2/book/ch20.html (4 of 6) [2/20/2001 11:05:32 AM]

News is distributed through the net by various transports. The medium used to be
UUCP, but today the main traffic is carried by Internet sites. The routing algorithm
used is called flooding. Each site maintains a number of links (news feeds) to other
sites. Any article generated or received by the local news system is forwarded to
them, unless it has already been at that site, in which case it is discarded. A site
may find out about all other sites the article has already traversed by looking at the
Path: header field. This header contains a list of all systems through which the
article has been forwarded in bang path notation.

To distinguish articles and recognize duplicates, Usenet articles have to carry a
message ID (specified in the Message-Id: header field), which combines the
posting site's name and a serial number into <serial@site>. For each article
processed, the news system logs this ID into a history file, against which all newly
arrived articles are checked.

The flow between any two sites may be limited by two criteria. For one, an article
is assigned a distribution (in the Distribution: header field), which may be
used to confine it to a certain group of sites. On the other hand, the newsgroups
exchanged may be limited by both the sending and receiving systems. The set of
newsgroups and distributions allowed to be transmitted to a site are usually kept in
the sys file.

The sheer number of articles usually requires that improvements be made to the
above scheme. On UUCP networks, systems collect articles over a period of time
and combine them into a single file, which is compressed and sent to the remote
site. This is called batching.

An alternative technique is the ihave/sendme protocol that prevents duplicate
articles from being transferred, thus saving net bandwidth. Instead of putting all
articles in batch files and sending them along, only the message IDs of articles are
combined into a giant "ihave" message and sent to the remote site. The remote site
reads this message, compares it to its history file, and returns the list of articles it
wants in a "sendme" message. Only the requested articles are sent.

Of course, ihave/sendme makes sense only if it involves two big sites that receive
news from several independent feeds each, and that poll each other often enough
for an efficient flow of news.

Sites that are on the Internet generally rely on TCP/IP-based software that uses the
Network News Transfer Protocol (NNTP). NNTP is described in RFC-977; it is
responsible for the transfer of news between news servers and provides Usenet
access to single users on remote hosts.

NNTP knows three different ways to transfer news. One is a real-time version of
ihave/sendme, also referred to as pushing news. The second technique is called
pulling news, in which the client requests a list of articles in a given newsgroup or
hierarchy that have arrived at the server's site after a specified date, and chooses
those it cannot find in its history file. The third technique is for interactive

Linux Network Administrator's Guide, 2nd Edition: Chapter 20: Netnews

http://www.oreilly.com/catalog/linag2/book/ch20.html (5 of 6) [2/20/2001 11:05:32 AM]

newsreading and allows you or your newsreader to retrieve articles from specified
newgroups, as well as post articles with incomplete header information.

At each site, news is kept in a directory hierarchy below /var/spool/news, each
article in a separate file, and each newsgroup in a separate directory. The directory
name is made up of the newsgroup name, with the components being the path
components. Thus, comp.os.linux.misc articles are kept in
/var/spool/news/comp/os/linux/misc. The articles in a newsgroup are assigned
numbers in the order they arrive. This number serves as the file's name. The range
of numbers of articles currently online is kept in a file called active, which at the
same time serves as a list of newsgroups your site knows.

Since disk space is a finite resource, you have to start throwing away articles after
some time.[3] This is called expiring. Usually, articles from certain groups and
hierarchies are expired at a fixed number of days after they arrive. This may be
overridden by the poster by specifying a date of expiration in the Expires: field
of the article header.

[3] Some people claim that Usenet is a conspiracy by modem and
hard disk vendors.

You now have enough information to choose what to read next. UUCP users
should read about C-News in Chapter 21. If you're using a TCP/IP network, read
about NNTP in Chapter 22. If you need to transfer moderate amounts of news over
TCP/IP, the server described in that chapter may be enough for you. To install a
heavy-duty news server that can handle huge volumes of material, go on to read
about InterNet News in Chapter 23.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 20: Netnews

http://www.oreilly.com/catalog/linag2/book/ch20.html (6 of 6) [2/20/2001 11:05:32 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 21
C News
Contents:
Delivering News
Installation
The sys File
The active File
Article Batching
Expiring News
Miscellaneous Files
Control Messages
C News in an NFS Environment
Maintenance Tools and Tasks

One of the most popular software packages for Netnews is C News. It was designed for sites that carry news
over UUCP links. This chapter will discuss the central concepts of C News, basic installation, and
maintenance tasks.

C News stores its configuration files in /etc/news, and most of its binaries are kept below the /usr/lib/news/
directory. Articles are kept below /var/spool/news. You should make sure that virtually all files in these
directories are owned by user news or group news. Most problems arise from files being inaccessible to C
News. Use su to become the user news before you touch anything in the directory. The only exception is the
setnewsids command, which is used to set the real user ID of some news programs. It must be owned by root
and have the setuid bit set.

In this chapter, we describe all C News configuration files in detail and show you what you have to do to keep
your site running.

Delivering News
Articles can be fed to C News in several ways. When a local user posts an article, the newsreader usually
hands it to the inews command, which completes the header information. News from remote sites, be it a
single article or a whole batch, is given to the rnews command, which stores it in the
/var/spool/news/in.coming directory, from where it will be picked up at a later time by newsrun. With any of
these two techniques, however, the article will eventually be handed to the relaynews command.

For each article, the relaynews command first checks if the article has already been seen at the local site by

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (1 of 15) [2/20/2001 11:05:36 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

looking up the message ID in the history file. Duplicate articles are dropped. Then relaynews looks at the
Newsgroups: header line to find out if the local site requests articles from any of these groups. If it does,
and the newsgroup is listed in the active file, relaynews tries to store the article in the corresponding directory
in the news spool area. If this directory does not exist, it is created. The article's message ID is then logged to
the history file. Otherwise, relaynews drops the article.

Sometimes relaynews fails to store an incoming article because a group to which it has been posted is not
listed in your active file. In this case, the article is moved to the junk group.[1] relaynews also checks for stale
or misdated articles and reject them. Incoming batches that fail for any other reason are moved to
/var/spool/news/in.coming/bad, and an error message is logged.

[1] There may be a difference between the groups that exist at your site and those that your site is
willing to receive. For example, the subscription list might specify comp.all, which should send
all newsgroups below the comp hierarchy, but at your site you might not list several of the comp
newsgroups in the active file. Articles posted to those groups will be moved to junk.

After this, the article is relayed to all other sites that request news from these groups, using the transport
specified for each particular site. To make sure an article isn't sent to a site that has already seen it, each
destination site is checked against the article's Path: header field, which contains the list of sites the article
has traversed so far, written in the UUCP-style bang-path source-routing style described in Chapter 17,
Electronic Mail. If the destination site's name does not appear in this list, the article is sent to it.

C News is commonly used to relay news between UUCP sites, although it is also possible to use it in an
NNTP environment. To deliver news to a remote UUCP site, either in single articles or whole batches, uux is
used to execute the rnews command on the remote site and feed the article or batch to it on standard input.
Refer to Chapter 16, Managing Taylor UUCP, for more information on UUCP.

Batching is the term used to describe sending large bundles of individual articles all in one transmission.
When batching is enabled for a given site, C News does not send any incoming article immediately; instead, it
appends its path name to a file, usually called out.going/site/togo. Periodically, a program is executed from a
crontab entry by the cron program, which reads this file and bundles all of the listed articles into one or more
file, optionally compressing them and sending them to rnews at the remote site.[2]

[2] Note that this should be the crontab of news; file permissions will not be mangled.

Figure 21.1 shows the news flow through relaynews. Articles may be relayed to the local site (denoted by
ME), to a site named ponderosa via email, and a site named moria, for which batching is enabled.

Figure 21.1: News flow through relaynews

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (2 of 15) [2/20/2001 11:05:36 AM]

Installation
C News should be available in a prepackaged format for any modern Linux distribution, so installation will be
easy. If not, or if you want to install from the original source distribution, then of course you can.[3] No matter
how you install it, you will need to edit the C News configuration files. Their formats are described in the
following list:

[3] You can obtain the C News source distribution from its home site at ftp.cs.toronto.edu
/pub/c-news/c-news.tar.Z

sys

The sys file controls which newsgroups your site receives and forwards. We discuss it in detail in the
following section.

active

Not usually edited by the administration; contains directions for handling articles in each newsgroup the
site handles.

organization

This file should contain your organization's name, for example, "Virtual Brewery, Inc." On your home
machine, enter "private site," or anything else you like. Most people will not consider your site properly
configured if you haven't customized this file.

newsgroups

This file is a list of all newsgroups, with a one-line description of each one's purpose. These descriptions
are frequently used by your newsreader when displaying the list of all groups to which you are
subscribed.

mailname

Your site's mail name, e.g., vbrew.com.

whoami

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (3 of 15) [2/20/2001 11:05:36 AM]

Your site's name for news purposes. Quite often, the UUCP site name is used, e.g., vbrew.

explist

You should probably edit this file to reflect your preferred expiration times for special newsgroups.
Disk space may play an important role in your choices.

To create an initial hierarchy of newsgroups, obtain active and newsgroups files from the site that feeds you.
Install them in /etc/news, making sure they are owned by news and have a mode of 644, using the chmod
command. Remove all to.* groups from the active file, and add to.my-site, to.feed-site, junk, and control. The
to.* groups are normally used for exchanging ihave/sendme messages, but you should list them regardless of
whether you plan to use ihave/sendme or not. Next, replace all article numbers in the second and third field of
active using the following commands:

cp active active.old
sed 's/ [0-9]* [0-9]* / 0000000000 00001 /' active.old > active
rm active.old

The second command invokes the sed stream editor. This invocation replaces two strings of digits with a
string of zeroes and the string 000001, respectively.

Finally, create the news spool directory and the subdirectories used for incoming and outgoing news:

cd /var/spool
mkdir news news/in.coming news/out.going news/out.master
chown -R news.news news
chmod -R 755 news

If you're using precompiled newsreaders sourced from a different distribution to the C News server you have
running, you may find that some expect the news spool in /usr/spool/news rather than /var/spool/news. If your
newsreader doesn't seem to find any articles, create a symbolic link from /usr/spool/news to /var/spool/news
like this:

ln -sf /usr/spool/news /var/spool/news

Now you are ready to receive news. Note that you don't have to create the individual newsgroup spool
directories. C News automatically creates spool directories for any newsgroup it receives an article for, if one
doesn't already exist.

In particular, this happens to all groups to which an article has been cross-posted. So, after a while, you will
find your news spool cluttered with directories for newsgroups you have never subscribed to, like
alt.lang.teco. You may prevent this by either removing all unwanted groups from active, or by regularly
running a shell script that removes all empty directories below /var/spool/news (except out.going and
in.coming, of course).

C News needs a user to send error messages and status reports to. By default, this is usenet. If you use the
default, you have to set up an alias for it that forwards all of its mail to one or more responsible person. You
may also override this behavior by setting the environment variable NEWSMASTER to the appropriate name.
You have to do so in news's crontab file, as well as every time you invoke an administrative tool manually, so
installing an alias is probably easier. Mail aliases are described in Chapter 18, Sendmail, and Chapter 19,
Getting Exim Up and Running.

While you're hacking /etc/passwd, make sure that every user has her real name in the pw_gecos field of the
password file (this is the fourth field). It is a question of Usenet netiquette that the sender's real name appears
in the From: field of the article. Of course, you will want to do so anyway when you use mail.

The sys File
The sys file, located in /etc/news, controls which hierarchies you receive and forward to other sites. Although
there are maintenance tools named addfeed and delfeed, we think it's better to maintain this file by hand.

The sys file contains entries for each site to which you forward news, as well as a description of the groups
you will accept. The first line is a ME entry that describes your system. It's a safe bet to use the following:

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (4 of 15) [2/20/2001 11:05:36 AM]

ME:all/all::

You also have to add a line for each site to which you feed news. Each line looks like this:

site[/exclusions]:grouplist[/distlist][:flags[:cmds]]

Entries may be continued across newlines using a backslash (\) at the end of the line to be continued. A hash
sign (#) denotes a comment.

site

This is the name of the site the entry applies to. One usually chooses the site's UUCP name for this.
There has to be an entry for your site in the sys file too, or you will not receive any articles yourself.

The special site name ME denotes your site. The ME entry defines all groups you are willing to store
locally. Articles that aren't matched by the ME line will go to the junk group.

C News rejects any articles that have already passed through this site to prevent loops. C News does this
by ensuring that the local site name does not appear in the Path: of the article. Some sites may be
known by a number of valid names. For example, some sites use their fully qualified domain name in
this field, or an alias like news.site.domain. To ensure the loop prevention mechanism works, it is
important to add all aliases to the exclusion list, separating them by commas.

For the entry applying to site moria, for instance, the site field would contain moria/moria.orcnet.org. If
moria were also by an alias of news.orcnet.org, then our site field would contain
moria/moria.orcnet.org,news.orcnet.org.

grouplist

This is a comma-separated subscription list of groups and hierarchies for this particular site. A hierarchy
may be specified by giving the hierarchy's prefix (such as comp.os for all groups whose names start
with this prefix), optionally followed by the keyword all (e.g., comp.os.all).

You can exclude a hierarchy or group from forwarding by preceding it with an exclamation mark. If a
newsgroup is checked against the list, the longest match applies. For example, if grouplist contains this
list:

!comp,comp.os.linux,comp.folklore.computers

no groups from the comp hierarchy except comp.folklore.computers and all groups below comp.os.linux
will be fed to that site.

If the site requests to be forwarded all news you receive yourself, enter all as grouplist.

distlist

This value is offset from the grouplist by a slash and contains a list of distributions to be forwarded.
Again, you may exclude certain distributions by preceding them with an exclamation mark. All
distributions are denoted by all. Omitting distlist implies a list of all.

For example, you may use a distribution list of all,!local to prevent news meant only for local use from
being sent to remote sites.

There are usually at least two distributions: world, which is often the default distribution used when
none is specified by the user, and local. There may be other distributions that apply to a certain region,
state, country, etc. Finally, there are two distributions used by C News only; these are sendme and ihave,
and are used for the sendme/ihave protocol.

The use of distributions is a subject of debate. The distribution field in a news article can be created
arbitrarily, but for a distribution to be effective, the news servers in the network must know it. Some
misbehaving newsreaders create bogus distributions by simply assuming the top-level newsgroup
hierarchy of the article destination is a reasonable distribution. For example, one might assume comp to
be a reasonable distribution to use when posting to the comp.os.linux.networking newsgroup.
Distributions that apply to regions are often questionable, too, because news may travel outside of your
region when sent across the Internet.[4] Distributions applying to an organization, however, are very
meaningful; e.g., to prevent confidential information from leaving the company network. This purpose,
however, is generally served better by creating a separate newsgroup or hierarchy.

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (5 of 15) [2/20/2001 11:05:36 AM]

[4] It is not uncommon for an article posted in say, Hamburg, to go to Frankfurt via
reston.ans.net in the Netherlands, or even via some site in the U.S.

flags

This option describes certain parameters for the feed. It may be empty or a combination of the
following:

F

This flag enables batching.

f

This is almost identical to the F flag, but allows C News to calculate the size of outgoing batches
more precisely, and should probably be used in preference.

I

This flag makes C News produce an article list suitable for use by ihave/sendme. Additional
modifications to the sys and the batchparms file are required to enable ihave/sendme.

n

This creates batch files for active NNTP transfer clients like nntpxmit (see Chapter 22, NNTP and
the nntpd Daemon). The batch files contain the article's filename along with its message ID.

L

This tells C News to transmit only articles posted at your site. This flag may be followed by a
decimal number n, which makes C News transfer articles posted only within n hops from your
site. C News determines the number of hops from the Path: field.

u

This tells C News to batch only articles from unmoderated groups.

m

This tells C News to batch only articles from moderated groups.

You may use at most one of F, f, I, or n.

cmds

This field contains a command that will be executed for each article, unless you enable batching. The
article will be fed to the command on standard input. This should be used for very small feed only;
otherwise, the load on both systems will be too high.

The default command is:

uux - -r -z remote-system!rnews

This invokes rnews on the remote system, feeding it the article on standard input.

The default search path for commands given in this field is /bin:/usr/bin:/usr/lib/news/batch. The latter
directory contains a number of shell scripts whose names start with via; they are briefly described later
in this chapter.

If batching is enabled using one of the F, f, I, or n flags, C News expects to find a filename in this field
rather than a command. If the filename does not begin with a slash (/), it is assumed to be relative to
/var/spool/news/out.going. If the field is empty, it defaults to remote-system/togo. The file is expected to
be in the same format as the remote-system/togo file and contain a list of articles to transmit.

When setting up C News, you will most probably have to write your own sys file. Here is a sample file for
vbrew.com, from which you may copy what you need:

We take whatever they give us.
ME:all/all::
We send everything we receive to moria, except for local and
brewery-related articles. We use batching.

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (6 of 15) [2/20/2001 11:05:36 AM]

moria/moria.orcnet.org:all,!to,to.moria/all,!local,!brewery:f:
We mail comp.risks to jack@ponderosa.uucp
ponderosa:comp.risks/all::rmail jack@ponderosa.uucp
swim gets a minor feed
swim/swim.twobirds.com:comp.os.linux,rec.humor.oracle/all,!local:f:
Log mail map articles for later processing
usenet-maps:comp.mail.maps/all:F:/var/spool/uumaps/work/batch

The active File
The active file is located in /etc/, and lists all groups known at your site and the articles currently online. You
will rarely have to touch it, but we explain it nevertheless for sake of completion. Entries take the following
form:

newsgroup high low perm

newsgroup is the group's name. low and high are the lowest and highest numbers of articles currently
available. If none are available at the moment, low is equal to high+1.

At least that's what the low field is meant to do. However, for efficiency, C News doesn't update this field.
This wouldn't be such a big loss if there weren't newsreaders that depend on it. For instance, trn checks this
field to see if it can purge any articles from its thread database. To update the low field, you therefore have to
run the updatemin command regularly (or, in earlier versions of C News, the upact script).

perm is a parameter detailing the access users are granted to the group. It takes one of the following values:

y

Users are allowed to post to this group.

n

Users are not allowed to post to this group. However, the group may still be read.

x

This group has been disabled locally. This happens sometimes when news administrators (or their
superiors) take offense at articles posted to certain groups.

Articles received for this group are not stored locally, although they are forwarded to the sites that
request them.

m

This denotes a moderated group. When a user tries to post to this group, an intelligent newsreader
notifies her of this and send the article to the moderator instead. The moderator's address is taken from
the moderators file in /var/lib/news.

=real-group

This marks newsgroup as being a local alias for another group, namely real-group. All articles posted to
newsgroup will be redirected to it.

In C News, you will generally not have to access this file directly. Groups can be added or deleted locally
using addgroup and delgroup (see the section "Maintenance Tools and Tasks" later in this chapter). A
newgroup control message adds a group for the whole of Usenet, while a rmgroup message deletes a group.
Never send such a message yourself! For instructions on how to create a newsgroup, read the monthly postings
in news.announce.newusers.

The active.times file is closely related to the active file. Whenever a group is created, C News logs a message
to this file containing the name of the group created, the date of creation, whether it was done by a newgroup
control message or locally, and who did it. This is convenient for newsreaders that may notify the user of any
recently created groups. It is also used by the NEWGROUPS command of NNTP.

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (7 of 15) [2/20/2001 11:05:37 AM]

Article Batching
News batches follow a particular format that is the same for B News, C News, and INN. Each article is
preceded by a line like this:

#! rnews count

count is the number of bytes in the article. When you use batch compression, the resulting file is compressed
as a whole and preceded by another line, indicated by the message to be used for unpacking. The standard
compression tool is compress, which is marked by:

#! cunbatch

Sometimes, when the news server sends batches via mail software that removes the eighth bit from all data, a
compressed batch may be protected using what is called c7-encoding; these batches will be marked by
c7unbatch.

When a batch is fed to rnews on the remote site, it checks for these markers and processes the batch
appropriately. Some sites also use other compression tools, like gzip, and precede their gzipped files with the
word zunbatch instead. C News does not recognize nonstandard headers like these; you have to modify the
source to support them.

In C News, article batching is performed by /usr/lib/news/batch/sendbatches, which takes a list of articles
from the site/togo file and puts them into several newsbatches. It should be executed once per hour, or even
more frequently, depending on the volume of traffic. Its operation is controlled by the batchparms file in
/var/lib/news. This file describes the maximum batch size allowed for each site, the batching and optional
compression program to be used, and the transport for delivering it to the remote site. You may specify
batching parameters on a per-site basis, as well as a set of default parameters for sites not explicitly
mentioned.

When installing C News, you will most likely find a batchparms file in your distribution that contains a
reasonable default entry, so there's a good chance that you won't have to touch the file. Just in case, we
describe its format. Each line consists of six fields, separated by spaces or tabs:

site size max batcher muncher transport

site

site is the name of the site to which the entry applies. The togo file for this site must reside in
out.going/togo below the news spool. A site name of /default/ denotes the default entry and is to match
any site not directly specified with an entry unique to it.

size

size is the maximum size of article batches created (before compression). For single articles larger than
this, C News makes an exception and puts each in a single batch by itself.

max

max is the maximum number of batches created and scheduled for transfer before batching stalls for this
particular site. This is useful in case the remote site should be down for a long time, because it prevents
C News from cluttering your UUCP spool directories with zillions of newsbatches.

C News determines the number of queued batches using the queuelen script in /usr/lib/news/. If you've
installed C News in a prepackaged format, the script should not need any editing, but if you choose to
use a different flavor of spool directories, for example, Taylor UUCP, you might have to write your
own. If you don't care about the number of spool files (because you're the only person using your
computer and you don't write articles by the megabyte), you may replace the script's contents by a
simple exit 0 statement.

batcher

The batcher field contains the command used for producing a batch from the list of articles in the togo
file. For regular feeds, this is usually batcher. For other purposes, alternative batchers may be provided.
For instance, the ihave/sendme protocol requires the article list to be turned into ihave or sendme control
messages, which are posted to the newsgroup to.site. This is performed by batchih and batchsm.

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (8 of 15) [2/20/2001 11:05:37 AM]

muncher

The muncher field specifies the compression command. Usually, this is compcun, a script that produces
a compressed batch.[5] Alternatively, suppose you create a muncher that uses gzip, say gzipcun (note
that you have to write it yourself). You have to make sure that uncompress on the remote site is patched
to recognize files compressed with gzip.

[5] As shipped with C News, compcun uses compress with the 12-bit option, since this is
the lowest common denominator for most sites. You may produce a copy of the script, say
compcun16, for which you use 16-bit compression. The improvement is not too
impressive, though.

If the remote site does not have an uncompress command, you may specify nocomp, which does not do
any compression.

transport

The last field, transport, describes the transport to be used. A number of standard commands for
different transports are available; their names begin with via. sendbatches passes them the destination
sitename on the command line. If the batchparms entry is not /default/, sendbatches derives the
sitename from the site field by stripping it of anything after and including the first dot or slash. If the
batchparms entry is /default/, the directory names in out.going are used.

To perform batching for a specific site, use the following command:

su news -c "/usr/lib/news/batch/sendbatches site"

When invoked without arguments, sendbatches handles all batch queues. The interpretation of "all" depends
on the presence of a default entry in batchparms. If one is found, all directories in /var/spool/news/out.going
are checked; otherwise, sendbatches cycles through all entries in batchparms, processing just the sites found
there. Note that sendbatches, when scanning the out.going directory, takes only those directories that contain
no dots or at signs (@) as sitenames.

There are two commands that use uux to execute rnews on the remote system: viauux and viauuxz. The latter
sets the -z flag for uux to keep older versions from returning success messages for each article delivered.
Another command, viamail, sends article batches to the user rnews on the remote system via mail. Of course,
this requires that the remote system somehow feeds all mail for rnews to its local news system. For a complete
list of these transports, refer to the newsbatch manual page.

All commands from the last three fields must be located in either out.going/site or /usr/lib/news/batch. Most of
them are scripts; you can easily tailor new tools for your personal needs. They are invoked through pipes. The
list of articles is fed to the batcher on standard input, which produces the batch on standard output. This is
piped into the muncher, and so on.

Here is a sample file:

batchparms file for the brewery
site | size |max |batcher |muncher |transport
#-------------+--------+-------+---------+-----------+-----------
/default/ 100000 22 batcher compcun viauux
swim 10000 10 batcher nocomp viauux

Expiring News
In B News, expiration needs to be performed by a program called expire, which took a list of newsgroups as
arguments, along with a time specification after which articles had to be expired. To have different hierarchies
expire at different times, you had to write a script that invoked expire for each of them separately. C News
offers a more convenient solution. In a file called explist, you may specify newsgroups and expiration
intervals. A command called doexpire is usually run once a day from cron and processes all groups according
to this list.

Occasionally, you may want to retain articles from certain groups even after they have been expired; for
example, you might want to keep programs posted to comp.sources.unix. This is called archiving. explist

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (9 of 15) [2/20/2001 11:05:37 AM]

permits you to mark groups for archiving.

An entry in explist looks like this:

grouplist perm times archive

grouplist is a comma-separated list of newsgroups to which the entry applies. Hierarchies may be specified by
giving the group name prefix, optionally appended with all. For example, for an entry applying to all groups
below comp.os, enter either comp.os or comp.os.all.

When expiring news from a group, the name is checked against all entries in explist in the order given. The
first matching entry applies. For example, to throw away the majority of comp after four days, except for
comp.os.linux.announce, which you want to keep for a week, you simply have an entry for the latter, which
specifies a seven-day expiration period, followed by an expiration period for comp, which specifies four days.

The perm field details if the entry applies to moderated, unmoderated, or any groups. It may take the values m,
u, or x, which denote moderated, unmoderated, or any type.

The third field, times, usually contains only a single number. This is the number of days after which articles
expire if they haven't been assigned an artificial expiration date in an Expires: field in the article header.
Note that this is the number of days counting from its arrival at your site, not the date of posting.

The times field may, however, be more complex than that. It may be a combination of up to three numbers
separated from one another by dashes. The first denotes the number of days that have to pass before the article
is considered a candidate for expiration, even if the Expires: field would have it expire already. It is rarely
useful to use a value other than zero. The second field is the previously mentioned default number of days
after which it will be expired. The third is the number of days after which an article will be expired
unconditionally, regardless of whether it has an Expires: field or not. If only the middle number is given,
the other two take default values. These may be specified using the special entry /bounds/, which is described
a little later.

The fourth field, archive, denotes whether the newsgroup is to be archived and where. If no archiving is
intended, a dash should be used. Otherwise, you either use a full pathname (pointing to a directory) or an at
sign (@). The at sign denotes the default archive directory, which must then be given to doexpire by using the
-a flag on the command line. An archive directory should be owned by news. When doexpire archives an
article from say, comp.sources.unix, it stores it in the directory comp/sources/unix below the archive directory,
creating it if necessary. The archive directory itself, however, will not be created.

There are two special entries in your explist file that doexpire relies on. Instead of a list of newsgroups, they
have the keywords /bounds/ and /expired/. The /bounds/ entry contains the default values for the three values
of the times field described previously.

The /expired/ field determines how long C News will hold onto lines in the history file. C News will not
remove a line from the history file once the corresponding article(s) have been expired, but will hold onto it in
case a duplicate should arrive after this date. If you are fed by only one site, you can keep this value small.
Otherwise, a couple of weeks is advisable on UUCP networks, depending on the delays you experience with
articles from these sites.

Here is a sample explist file with rather tight expiry intervals:

keep history lines for two weeks. No article gets more than three months
/expired/ x 14 -
/bounds/ x 0-1-90 -
groups we want to keep longer than the rest
comp.os.linux.announce m 10 -
comp.os.linux x 5 -
alt.folklore.computers u 10 -
rec.humor.oracle m 10 -
soc.feminism m 10 -
Archive *.sources groups
comp.sources,alt.sources x 5 @
defaults for tech groups
comp,sci x 7 -

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (10 of 15) [2/20/2001 11:05:37 AM]

enough for a long weekend
misc,talk x 4 -
throw away junk quickly
junk x 1 -
control messages are of scant interest, too
control x 1 -
catch-all entry for the rest of it
all x 2 -

Expiring presents several potential problems. One is that your newsreader might rely on the third field of the
active file described earlier, which contains the number of the lowest article online. When expiring articles, C
News does not update this field. If you need (or want) to have this field represent the real situation, you need
to run a program called updatemin after each run of doexpire. (In older versions of C News, a script called
upact did this.)

C News does not expire by scanning the newsgroup's directory, but simply checks the history file if the article
is due for expiration.[6] If your history file somehow gets out of sync, articles may be around on your disk
forever because C News has literally forgotten them.[7] You can repair this by using the addmissing script in
/usr/lib/news/maint, which will add missing articles to the history file or mkhistory, which rebuilds the entire
file from scratch. Don't forget to become user news before invoking it, or else you will wind up with a history
file unreadable by C News.

[6] The article's date of arrival is kept in the middle field of the history line and given in seconds
since January 1, 1970.

[7] I don't know why this happens, but it does from time to time.

Miscellaneous Files
There are a number of files that control the behavior of C News, but are not essential. All of them reside in
/etc/news. We describe them briefly here:

newsgroups

This is a companion file of active that contains a list of each newsgroup name along with a one-line
description of its main topic. This file is automatically updated when C News receives a checknews
control message.

localgroups

If you have a lot of local groups, you can keep C News from complaining about them each time you
receive a checkgroups message by putting their names and descriptions in this file, just as they
would appear in newsgroups.

mailpaths

This file contains the moderator's address for each moderated group. Each line contains the group name
followed by the moderator's email address (offset by a tab).

Two special entries are provided as defaults: backbone and internet. Both provide, in bang-path
notation, the path to the nearest backbone site and the site that understands RFC-822 style addresses
(user@host). The default entries are:

internet backbone

You do not have to change the internet entry if you have exim or sendmail installed; they understand
RFC-822 addressing.

The backbone entry is used whenever a user posts to a moderated group whose moderator is not listed
explicitly. If the newsgroup's name is alt.sewer and the backbone entry contains path!%s, C News will
mail the article to path!alt-sewer, hoping that the backbone machine is able to forward the article. To
find out which path to use, ask the news-admin at the site that feeds you. As a last resort, you can also
use uunet.uu.net!%s.

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (11 of 15) [2/20/2001 11:05:37 AM]

distributions

This file is not really a C News file, but is used by some newsreaders and nntpd. It contains the list of
distributions recognized by your site and a description of their (intended) effects. For example, Virtual
Brewery has the following file:

world everywhere in the world
local Only local to this site
nl Netherlands only
mugnet MUGNET only
fr France only
de Germany only
brewery Virtual Brewery only

log

This file contains a log of all C News activities. It is culled regularly by running newsdaily; copies of
the old log files are kept in log.o, log.oo, etc.

errlog

This is a log of all error messages created by C News. These messages do not include logs of articles
junked due to being sent to an invalid wrong group or other user errors. This file is mailed to the
newsmaster (usenet by default) automatically by newsdaily if it is not found empty.

errlog is cleared by newsdaily. errlog.o keeps old copies and companions.

batchlog

This file logs all runs of sendbatches. It is usually of scant interest. It is also attended by newsdaily.

watchtime

This is an empty file created each time newswatch runs.

Control Messages
The Usenet news protocol knows a special category of articles that evoke certain responses or actions by the
news system. These are called control messages. They are recognized by the presence of a Control: field in
the article header, which contains the name of the control operation to be performed. There are several types
of them, all of which are handled by shell scripts located in /usr/lib/news/ctl.

Most of these messages perform their action automatically at the time the article is processed by C News
without notifying the newsmaster. By default, only checkgroups messages will be handed to the newsmaster,
but you may change this by editing the scripts.

The cancel Message

The most widely known message is cancel, with which a user can cancel an article sent earlier. This
effectively removes the article from the spool directories, if it exists. The cancel message is forwarded to all
sites that receive news from the groups affected, regardless of whether the article has been seen already. This
takes into account the possibility that the original article has been delayed over the cancellation message.
Some news systems allow users to cancel other people's messages; this is, of course, a definite no-no.

newgroup and rmgroup

Two messages dealing with creation or removal of newsgroups are the newgroup and rmgroup messages.
Newsgroups below the "usual" hierarchies may be created only after a discussion and voting has been held
among Usenet readers. The rules applying to the alt hierarchy allow for something close to anarchy. For more
information, see the regular postings in news.announce.newusers and news.announce.newgroups. Never send
a newgroup or rmgroup message yourself unless you definitely know that you are allowed to.

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (12 of 15) [2/20/2001 11:05:37 AM]

The checkgroups Message

checkgroups messages are sent by news administrators to make all sites within a network synchronize their
active files with the realities of Usenet. For example, commercial Internet Service Providers might send out
such a message to their customers' sites. Once a month, the "official" checkgroups message for the major
hierarchies is posted to comp.announce.newgroups by its moderator. However, it is posted as an ordinary
article, not as a control message. To perform the checkgroups operation, save this article to a file, say
/tmp/check, remove everything up to the beginning of the control message itself, and feed it to the
checkgroups script using the following command:

su news -c "/usr/lib/news/ctl/checkgroups" < /tmp/check

This will update your newsgroups file from the new list of groups, adding the groups listed in localgroups.
The old newsgroups file will be moved to newsgroups.bac. Note that posting the message locally rarely
works, because inews, the command that accepts and posts articles from users, refuses to accept that large an
article.

If C News finds mismatches between the checkgroups list and the active file, it produces a list of commands
that would bring your site up to date and mails it to the news administrator.

The output typically looks like this:

From news Sun Jan 30 16:18:11 1994
Date: Sun, 30 Jan 94 16:18 MET
From: news (News Subsystem)
To: usenet
Subject: Problems with your active file
The following newsgroups are not valid and should be removed.
 alt.ascii-art
 bionet.molbio.gene-org
 comp.windows.x.intrisics
 de.answers
You can do this by executing the commands:
 /usr/lib/news/maint/delgroup alt.ascii-art
 /usr/lib/news/maint/delgroup bionet.molbio.gene-org
 /usr/lib/news/maint/delgroup comp.windows.x.intrisics
 /usr/lib/news/maint/delgroup de.answers
The following newsgroups were missing.
 comp.binaries.cbm
 comp.databases.rdb
 comp.os.geos
 comp.os.qnx
 comp.unix.user-friendly
 misc.legal.moderated
 news.newsites
 soc.culture.scientists
 talk.politics.crypto
 talk.politics.tibet

When you receive a message like this from your news system, don't believe it automatically. Depending on
who sent the checkgroups message, it may lack a few groups or even entire hierarchies; you should be careful
about removing any groups. If you find groups are listed as missing that you want to carry at your site, you
have to add them using the addgroup script. Save the list of missing groups to a file and feed it to the
following little script:

#!/bin/sh
#
WHOIAM=`whoami`
if ["$WHOIAM" != "news"]
then
 echo "You must run $0 as user 'news'" >&2

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (13 of 15) [2/20/2001 11:05:37 AM]

 exit 1
fi
#
cd /usr/lib/news
while read group; do
 if grep -si "^$group[[:space:]].*moderated" newsgroup; then
 mod=m
 else
 mod=y
 fi
 /usr/lib/news/maint/addgroup $group $mod
done

sendsys, version, and senduuname

Finally, there are three messages that can be used to find out about the network's topology. These are sendsys,
version, and senduuname. They cause C News to return the sys file to the sender, as well as a software version
string and the output of uuname, respectively. C News is very laconic about version messages; it returns a
simple, unadorned C.

Again, you should never issue such a message unless you have made sure that it cannot leave your (regional)
network. Replies to sendsys messages can quickly bring down a UUCP network.[8]

[8] I wouldn't try this on the Internet, either.

C News in an NFS Environment
A simple way to distribute news within a local network is to keep all news on a central host and export the
relevant directories via NFS so that newsreaders may scan the articles directly. The overhead involved in
retrieving and threading articles is significantly lower than NNTP. NNTP, on the other hand, wins in a
heterogeneous network where equipment varies widely among hosts, or where users don't have equivalent
accounts on the server machine.

When you use NFS, articles posted on a local host have to be forwarded to the central machine because
accessing adminstrative files might otherwise expose the system to race conditions that leave the files
inconsistent. Also, you might want to protect your news spool area by exporting it read-only, which also
requires forwarding to the central machine.

C News handles this central machine configuration transparently to the user. When you post an article, your
newsreader usually invokes inews to inject the article into the news system. This command runs a number of
checks on the article, completes the header, and checks the file server in /etc/news. If this file exists and
contains a hostname different from the local host's name, inews is invoked on that server host via rsh. Since
the inews script uses a number of binary commands and support files from C News, you have to either have C
News installed locally or mount the news software from the server.

For the rsh invocation to work properly, each user who posts news must have an equivalent account on the
server system, i.e., one to which she can log in without being asked for a password.

Make sure that the hostname given in server literally matches the output of the hostname command on the
server machine, or else C News will loop forever in an attempt to deliver the article. We discuss NFS is detail
in Chapter 14, The Network File System.

Maintenance Tools and Tasks
Despite the complexity of C News, a news administrator's life can be fairly easy; C News provides you with a
wide variety of maintenance tools. Some of these are intended to be run regularly from cron, like newsdaily.
Using these scripts greatly reduces daily care and feeding requirements of your C News installation.

Unless stated otherwise, these commands are located in /usr/lib/news/maint. (Note that you must become user

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (14 of 15) [2/20/2001 11:05:37 AM]

news before invoking these commands. Running them as a superuser may render critical newsfiles
inaccessible to C News.):

newsdaily

The name already says it: run this once a day. It is an important script that helps you keep log files
small, retaining copies of each from the last three runs. It also tries to sense anomalies, like stale batches
in the incoming and outgoing directories, postings to unknown or moderated newsgroups, etc. Resulting
error messages are mailed to the newsmaster.

newswatch

This script should be run regularly to look for anomalies in the news system, once an hour or so. It is
intended to detect problems that will have an immediate effect on the operability of your news system,
in which case it mails a trouble report to the newsmaster. Things checked include stale lock files that
don't get removed, unattended input batches, and disk space shortage.

addgroup

This script adds a group to your site locally. The proper invocation is:

addgroup groupname y|n|m|=realgroup

The second argument has the same meaning as the flag in the active file, meaning that anyone may post
to the group (y), that no one may post (n), that it is moderated (m), or that it is an alias for another group
(=realgroup). You might also want to use addgroup when the first articles in a newly created group
arrive earlier than the newgroup control message that is intended to create it.

delgroup

This script allows you to delete a group locally. Invoke it as:

delgroup groupname

You still have to delete the articles that remain in the newsgroup's spool directory. Alternatively, you
might leave it to the natural course of events (i.e., expiration) to make them go away.

addmissing

This script adds missing articles to the history file. Run it when there are articles that seem to hang
around forever.

newsboot

This script should be run at system boot time. It removes any lock files left over when news processes
were killed at shutdown, and closes and executes any batches left over from NNTP connections that
were terminated when shutting down the system.

newsrunning

This script resides in /usr/lib/news/input and may be used to disable unbatching of incoming news, for
instance during work hours. You may turn off unbatching by invoking:

/usr/lib/news/input/newsrunning off

It is turned on by using on instead of off.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News

http://www.oreilly.com/catalog/linag2/book/ch21.html (15 of 15) [2/20/2001 11:05:37 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 22
NNTP and the nntpd Daemon
Contents:
The NNTP Protocol
Installing the NNTP Server
Restricting NNTP Access
NNTP Authorization
nntpd Interaction with C News

Network News Transfer Protocol (NNTP) provides for a vastly different approach to news exchange from
C News and other news servers without native NNTP support. Rather than rely on a batch technology like
UUCP to transfer news articles between machines, it allows articles to be exchanged via an interactive
network connection. NNTP is not a particular software package, but an Internet standard described in
RFC-977. It is based on a stream-oriented connection, usually over TCP, between a client anywhere in the
network and a server on a host that keeps Netnews on disk storage. The stream connection allows the client
and server to interactively negotiate article transfer with nearly no turnaround delay, thus keeping the
number of duplicate articles low. Together with the Internet's high-transfer rates, this adds up to a news
transport that surpasses the original UUCP networks by far. While some years ago it was not uncommon
for an article to take two weeks or more before it arrived in the last corner of Usenet; it is now often less
than two days. On the Internet itself, it is even within the range of minutes.

Various commands allow clients to retrieve, send, and post articles. The difference between sending and
posting is that the latter may involve articles with incomplete header information; it generally means that
the user has just written the article.[1] Article retrieval may be used by news transfer clients as well as
newsreaders. This makes NNTP an excellent tool for providing news access to many clients on a local
network without going through the contortions that are necessary when using NFS.

[1] When posting an article over NNTP, the server always adds at least one header field,
NNTP-Posting-Host:. The field contains the client's hostname.

NNTP also provides for an active and a passive way to transfer news, colloquially called "pushing" and
"pulling." Pushing is basically the same as the ihave/sendme protocol used by C News (described in
Chapter 21, C News). The client offers an article to the server through the IHAVE msgid command, and the
server returns a response code that indicates whether it already has the article or if it wants it. If the server
wants the article, the client sends the article, terminated by a single dot on a separate line.

Pushing news has the single disadvantage that it places a heavy load on the server system, since the system
has to search its history database for every single article.

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (1 of 10) [2/20/2001 11:05:41 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

The opposite technique is pulling news, in which the client requests a list of all (available) articles from a
group that have arrived after a specified date. This query is performed by the NEWNEWS command. From
the returned list of message IDs, the client selects those articles it does not yet have, using the ARTICLE
command for each of them in turn.

Pulling news needs tight control by the server over which groups and distributions it allows a client to
request. For example, it has to make sure that no confidential material from newsgroups local to the site is
sent to unauthorized clients.

There are also a number of convenience commands for newsreaders that permit them to retrieve the article
header and body separately, or even single header lines from a range of articles. This lets you keep all news
on a central host, with all users on the (presumably local) network using NNTP-based client programs for
reading and posting. This is an alternative to exporting the news directories via NFS, as described in
Chapter 21.

An overall problem of NNTP is that it allows a knowledgeable person to insert articles into the news stream
with false sender specification. This is called news faking or spoofing.[2] An extension to NNTP allows
you to require user authentication for certain commands, providing some measure of protection against
people abusing your news server in this way.

[2] The same problem exists with the Simple Mail Transfer Protocol (SMTP), although most
mail transport agents now provide mechanisms to prevent spoofing.

There are a number of NNTP packages. One of the more widely known is the NNTP daemon, also known
as the reference implementation. Originally, it was written by Stan Barber and Phil Lapsley to illustrate the
details of RFC-977. As with much of the good software available today, you may find it prepackaged for
your Linux distribution, or you can obtain the source and compile it yourself. If you choose to compile it
yourself, you will need to be quite familiar with your distribution to ensure you configure all of the file
paths correctly.

The nntpd package has a server, two clients for pulling and pushing news, and an inews replacement. They
live in a B News environment, but with a little tweaking, they will be happy with C News, too. However, if
you plan to use NNTP for more than offering newsreaders access to your news server, the reference
implementation is not really an option. We will therefore discuss only the NNTP daemon contained in the
nntpd package and leave out the client programs.

If you wish to run a large news site, you should look at the InterNet News package, or INN, that was
written by Rich Salz. It provides both NNTP and UUCP-based news transport. News transport is definitely
better than nntpd. We discuss INN in detail in Chapter 23, Internet News.

The NNTP Protocol
We've mentioned two NNTP commands that are key to how news articles are pushed or pulled between
servers. Now we'll look at these in the context of an actual NNTP session to show you how simple the
protocol is. For the purposes of our illustration, we'll use a simple telnet client to connect to an INN-based
news server at the Virtual Brewery called news.vbrew.com. The server is running a minimal configuration
to keep the examples short. We'll look at how to complete the configuration of this server in Chapter 23. In
our testing we'll be very careful to generate articles in the junk newsgroup only, to avoid disturbing anyone
else.

Connecting to the News Server

Connecting to the news server is a simple as opening a TCP connection to its NNTP port. When you are
connected, you will be greeted with a welcome banner. One of the first commands you might try is help.
The response you get generally depends upon whether the server believes you are a remote NNTP server or
a newsreader, as there are different command sets required. You can change your operating mode using the
mode command; we'll look at that in a moment:

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (2 of 10) [2/20/2001 11:05:41 AM]

$ telnet news.vbrew.com nntp
Trying 172.16.1.1...
Connected to localhost.
Escape character is '^]'.
200 news.vbrew.com InterNetNews server INN 1.7.2 08-Dec-1997 ready
help
100 Legal commands
 authinfo
 help
 ihave
 check
 takethis
 list
 mode
 xmode
 quit
 head
 stat
 xbatch
 xpath
 xreplic
For more information, contact "usenet" at this machine.
.

The responses to NNTP commands always end with a period (.) on a line by itself. The numbers you see in
the output listing are response codes and are used by the server to indicate success or failure of a command.
The response codes are described in RFC-977; we'll talk about the most important ones as we proceed.

Pushing a News Article onto a Server

We mentioned the IHAVE command when we talked about pushing news articles onto a news server. Let's
now have a look at how the IHAVE command actually works:

ihave <123456@gw.vk2ktj.ampr.org>
335
From: terry@gw.vk2ktj.ampr.org
Subject: test message sent with ihave
Newsgroups: junk
Distribution: world
Path: gw.vk2ktj.ampr.org
Date: 26 April 1999
Message-ID: <123456@gw.vk2ktj.ampr.org>
Body:

This is a test message sent using the NNTP IHAVE command.

.
235

All NNTP commands are case insensitive, so you may enter them in either upper- or lowercase. The
IHAVE command takes one mandatory argument, it being the Message ID of the article that is being
pushed. Every news article is assigned a unique message ID when it is created. The IHAVE command
provides a way of the NNTP server to say which articles it has when it wants to push articles to another
server. The sending server will issue an IHAVE command for each article it wishes to push. If the
command response code generated by the receiving NNTP server is in the "3xx" range, the sending NNTP
server will transmit the complete article, including it's full header, terminating the article with a period on a
line by itself. If the response code was in the "4xx" range, the receiving server has chosen not to accept this
article, possibly because it already has it, or because of some problem, such as running out of disk space.

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (3 of 10) [2/20/2001 11:05:41 AM]

When the article has been transmitted, the receiving serve issues another response code indicating whether
the article transmission was successful.

Changing to NNRP Reader Mode

Newsreaders use their own set of commands when talking to a news server. To activate these commands,
the news server has to be operating in reader mode. Most news servers default to reader mode, unless the
IP address of the connecting host is listed as a news-forwarding peer. In any case, NNTP provides a
command to explicitly switch into reader mode:

mode reader
200 news.vbrew.com InterNetNews NNRP server INN 1.7.2 08-Dec-1997 ready/
 (posting ok).
help
100 Legal commands
 authinfo user Name|pass Password|generic <prog> <args>
 article [MessageID|Number]
 body [MessageID|Number]
 date
 group newsgroup
 head [MessageID|Number]
 help
 ihave
 last
 list [active|active.times|newsgroups|distributions|distrib.pats|/
 overview.fmt|subscriptions]
 listgroup newsgroup
 mode reader
 newgroups yymmdd hhmmss ["GMT"] [<distributions>]
 newnews newsgroups yymmddhhmmss ["GMT"] [<distributions>]
 next
 post
 slave
 stat [MessageID|Number]
 xgtitle [group_pattern]
 xhdr header [range|MessageID]
 xover [range]
 xpat header range|MessageID pat [morepat...]
 xpath MessageID
Report problems to <usenet@vlager.vbrew.com>
.

NNTP reader mode has a lot of commands. Many of these are designed to make the life of a newsreader
easier. We mentioned earlier that there are commands that instruct the server to send the head and the body
of articles separately. There are also commands that list the available groups and articles, and others that
allow posting, an alternate means of sending news articles to the server.

Listing Available Groups

The list command lists a number of different types of information; notably the groups supported by the
server:

list newsgroups
215 Descriptions in form "group description".
control News server internal group
junk News server internal group
local.general General local stuff

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (4 of 10) [2/20/2001 11:05:41 AM]

local.test Local test group
.

Listing Active Groups

list active shows each supported group and provides information about them. The two numbers in each line
of the output are the high-water mark and the low-water mark -- that is, the highest numbered article and
lowest numbered article in each group. The newsreader is able to form an idea of the number of articles in
the group from these. We'll talk a little more about these numbers in a moment. The last field in the output
displays flags that control whether posting is allowed to the group, whether the group is moderated, and
whether articles posted are actually stored or just passed on. These flags are described in detail in Chapter
23. An example looks like this:

list active
215 Newsgroups in form "group high low flags".
control 0000000000 0000000001 y
junk 0000000003 0000000001 y
alt.test 0000000000 0000000001 y
.

Posting an Article

We mentioned there was a difference between pushing an article and posting an article. When you are
pushing an article, there is an implicit assumption that the article already exists, that it has a message
identifier that has been uniquely assigned to it by the server to which it was originally posted, and that it
has a complete set of headers. When posting an article, you are creating the article for the first time and the
only headers you supply are those that are meaningful to you, such as the Subject and the Newgroups to
which you are posting the article. The news server you post the article on will add all the other headers for
you and create a message ID that it will use when pushing the article onto other servers.

All of this means that posting an article is even easier than pushing one. An example posting looks like this:

post
340 Ok
From: terry@richard.geek.org.au
Subject: test message number 1
Newsgroups: junk
Body:

This is a test message, please feel free to ignore it.

.
240 Article posted

We've generated two more messages like this one to give our following examples some realism.

Listing New Articles

When a newsreader first connects to a new server and the user chooses a newsgroup to browse, the
newsreader will want to retrieve a list of new articles, those posted or received since the last login by the
user. The newnews command is used for this purpose. Three mandatory arguments must be supplied: the
name of the group or groups to query, the start date, and the start time from which to list. The date and time
are each specified as six-digit numbers, with the most significant information first; yymmdd and hhmmss,
respectively:

newnews junk 990101 000000
230 New news follows
<7g2o5raa6@news.vbrew.com>
<7g5bhm$8f$2@news.vbrew.com>

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (5 of 10) [2/20/2001 11:05:41 AM]

<7g5bk5$8f$3@news.vbrew.com>
.

Selecting a Group on Which to Operate

When the user selects a newsgroup to browse, the newsreader may tell the news server that the group was
selected. This simplifies the interaction between newsreader and news server; it removes the need to
constantly send the name of the newsgroup with each command. The group command simply takes the
name of the selected group as an argument. Many following commands use the group selected as the
default, unless another newsgroup is specified explicitly:

group junk
211 3 1 3 junk

The group command returns a message indicating the number of active messages, the low-water mark, the
high-water mark, and the name of the group, respectively. Note that while the number of active messages
and the high-water mark are the same in our example, this is not often the case; in an active news server,
some articles may have expired or been deleted, lowering the number of active messages but leaving the
high-water mark untouched.

Listing Articles in a Group

To address newsgroup articles, the newsreader must know which article numbers represent active articles.
The listgroup command offers a list of the active article numbers in the current group, or an explicit group
if the group name is supplied:

listgroup junk
211 Article list follows
1
2
3
.

Retrieving an Article Header Only

The user must have some information about an article before she can know whether she wishes to read it.
We mentioned earlier that some commands allow the article header and body to be transferred separately.
The head command is used to request that the server transmit just the header of the specified article to the
newsreader. If the user doesn't want to read this article, we haven't wasted time and network bandwidth
transferring a potentially large article body unnecessarily.

Articles may be referenced using either their number (from the listgroup command) or their message
identifier:

head 2
221 2 <7g5bhm$8f$2@news.vbrew.com> head
Path: news.vbrew.com!not-for-mail
From: terry@richard.geek.org.au
Newsgroups: junk
Subject: test message number 2
Date: 27 Apr 1999 21:51:50 GMT
Organization: The Virtual brewery
Lines: 2
Message-ID: <7g5bhm$8f$2@news.vbrew.com>
NNTP-Posting-Host: localhost
X-Server-Date: 27 Apr 1999 21:51:50 GMT
Body:
Xref: news.vbrew.com junk:2
.

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (6 of 10) [2/20/2001 11:05:41 AM]

Retrieving an Article Body Only

If, on the other hand, the user decides she does want to read the article, her newsreader needs a way of
requesting that the message body be transmitted. The body command is used for this purpose. It operates in
much the same way as the head command, except that only the message body is returned:

body 2
222 2 <7g5bhm$8f$2@news.vbrew.com> body
This is another test message, please feel free to ignore it too.

.

Reading an Article from a Group

While it is normally most efficient to separately transfer the headers and bodies of selected articles, there
are occasions when we are better off transferring the complete article. A good example of this is in
applications through which we want to transfer all of the artices in a group without any sort of preselection,
such as when we are using an NNTP cache program like leafnode.[3]

[3] leafnode is available by anonymous FTP from wpxx02.toxi.uni-wuerzburg.de in the /pub/
directory.

Naturally, NNTP provides a means of doing this, and not surprisingly, it operates almost identically to the
head command as well. The article command also accepts an article number or message ID as an argument,
but returns the whole article including its header:

article 1
220 1 <7g2o5raa6@news.vbrew.com> article
Path: news.vbrew.com!not-for-mail
From: terry@richard.geek.org.au
Newsgroups: junk
Subject: test message number 1
Date: 26 Apr 1999 22:08:59 GMT
Organization: The Virtual brewery
Lines: 2
Message-ID: <7g2o5raa6@news.vbrew.com>
NNTP-Posting-Host: localhost
X-Server-Date: 26 Apr 1999 22:08:59 GMT
Body:
Xref: news.vbrew.com junk:1

This is a test message, please feel free to ignore it.

.

If you attempt to retrieve an unknown article, the server will return a message with an appropriately coded
response code and perhaps a readable text message:

article 4
423 Bad article number

We've described how the most important NNTP commands are used in this section. If you're interested in
developing software that implements the NNTP protocol, you should refer to the relevant RFC documents;
they provide a great deal of detail that we couldn't include here.

Let's now look at NNTP in action through the nntpd server.

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (7 of 10) [2/20/2001 11:05:41 AM]

Installing the NNTP Server
The NNTP server (nntpd) may be compiled in two ways, depending on the expected load on the news
system. There are no compiled versions available, because of some site-specific defaults that are hardcoded
into the executable. All configuration is done through macros defined in common/conf.h.

nntpd may be configured as either a standalone server that is started at system boot time from an rc file, or
a daemon managed by inetd. In the latter case, you have to have the following entry in /etc/inetd.conf:

nntp stream tcp nowait news /usr/etc/in.nntpd nntpd

The inetd.conf syntax is described in detail in Chapter 12, Important Network Features. If you configure
nntpd as standalone, make sure that any such line in inetd.conf is commented out. In either case, you have
to make sure the following line appears in /etc/services:

nntp 119/tcp readnews untp # Network News Transfer Protocol

To temporarily store any incoming articles, nntpd also needs a .tmp directory in your news spool. You
should create it using the following commands:

mkdir /var/spool/news/.tmp
chown news.news /var/spool/news/.tmp

Restricting NNTP Access
Access to NNTP resources is governed by the file nntp_access in /etc/news. Lines in this file describe the
access rights granted to foreign hosts. Each line has the following format:

site read|xfer|both|no post|no [!exceptgroups]

If a client connects to the NNTP port, nntpd attempts to obtain the host's fully qualified domain name from
its IP address using reverse lookup. The client's hostname and IP address are checked against the site field
of each entry in the order in which they appear in the file. Matches may be either partial or exact. If an
entry matches exactly, it applies; if the match is partial, it applies only if there is no other match following
it that is at least as good. site may be specified in one of the following ways:

Hostname

This is a fully qualified domain name of a host. If this matches the client's canonical hostname
literally, the entry applies, and all following entries are ignored.

IP address

This is an IP address in dotted quad notation. If the client's IP address matches this, the entry applies,
and all following entries are ignored.

Domain name

This is a domain name, specified as *.domain. If the client's hostname matches the domain name, the
entry matches.

Network name

This is the name of a network as specified in /etc/networks. If the network number of the client's IP
address matches the network number associated with the network name, the entry matches.

Default

The string default matches any client.

Entries with a more general site specification should be specified earlier, because any matches will be
overridden by later, more exact matches.

The second and third fields describe the access rights granted to the client. The second field details the
permissions to retrieve news by pulling (read), and transmit news by pushing (xfer). A value of both
enables both; no denies access altogether. The third field grants the client the right to post articles, i.e.,

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (8 of 10) [2/20/2001 11:05:41 AM]

deliver articles with incomplete header information, which is completed by the news software. If the second
field contains no, the third field is ignored.

The fourth field is optional and contains a comma-separated list of groups to which the client is denied
access.

This is a sample nntp_access file:

#
by default, anyone may transfer news, but not read or post
default xfer no
#
public.vbrew.com offers public access via modem. We allow
them to read and post to any but the local.* groups
public.vbrew.com read post !local
#
all other hosts at the brewery may read and post
*.vbrew.com read post

NNTP Authorization
The nntpd daemon provides a simple authorization scheme. If you capitalize any of the access tokens in the
nntp_access file, nntpd requires authorization from the client for the respective operation. For instance,
when specifying a permission of Xfer or XFER, (as opposed to xfer), nntpd will not let the client transfer
articles to your site unless it passes authorization.

The authorization procedure is implemented by means of a new NNTP command named AUTHINFO.
Using this command, the client transmits a username and a password to the NNTP server. nntpd validates
them by checking them against the /etc/passwd database and verifies that the user belongs to the nntp
group.

The current implementation of NNTP authorization is only experimental and has therefore not been
implemented very portably. The result of this is that it works only with plain-style password databases;
shadow passwords are not recognized. If you are compiling from source and have the PAM package
installed, the password check is fairly simple to change.

nntpd Interaction with C News
When nntpd receives an article, it has to deliver it to the news subsystem. Depending on whether it was
received as a result of an IHAVE or POST command, the article is handed to rnews or inews, respectively.
Instead of invoking rnews, you may also configure it (at compile time), to batch the incoming articles and
move the resulting batches to /var/spool/news/in.coming, where they are left for relaynews to pick them up
at the next queue run.

nntpd has to have access to the history file to be able to properly perform the ihave/sendme protocol. At
compile time, you have to make sure the path to that file is set correctly. If you use C News, make sure that
C News and nntpd agree on the format of your history file. C News uses dbm hashing functions to access it;
however, there are quite a number of different and slightly incompatible implementations of the dbm
library. If C News has been linked with a different dbm library than you have in your standard libc, you
have to link nntpd with this library, too.

nntpd and C news disagreement sometimes produces error messages in the system log that nntpd can not
open it properly, or you might see duplicate articles being received via NNTP. A good test of a
malfunctioning news transfer is to pick an article from your spool area, telnet to the nntp port, and offer it
to nntpd as shown in the next example. Of course, you have to replace msg@id with the message ID of the
article you want to feed to nntpd:

$ telnet localhost nntp
Trying 127.0.0.1...

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (9 of 10) [2/20/2001 11:05:41 AM]

Connected to localhost
Escape characters is '^]'.
201 vstout NNTP[auth] server version 1.5.11t (16 November 1991) ready at
Sun Feb 6 16:02:32 1194 (no posting)
IHAVE msg@id435 Got it.
QUIT

This conversation shows nntpd's proper reaction; the message Got it tells you that it already has this
article. If you get a message of 335 Ok instead, the lookup in the history file failed for some reason.
Terminate the conversation by typing Ctrl-D. You can check what has gone wrong by checking the system
log; nntpd logs all kinds of messages to the daemon facility of syslog. An incompatible dbm library usually
manifests itself in a message complaining that dbminit failed.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon

http://www.oreilly.com/catalog/linag2/book/ch22.html (10 of 10) [2/20/2001 11:05:41 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 23
Internet News
Contents:
Some INN Internals
Newsreaders and INN
Installing INN
Configuring INN: the Basic Setup
INN Configuration Files
Running INN
Managing INN: The ctlinnd Command

The Internet News daemon (INN) is arguably the most popular Netnews server in use today. INN is extremely flexible
and is suitable for all but the smallest news sites.[1] INN scales well and is suited to large news server configurations.

[1] Very small news sites should consider a caching NNTP server program like leafnode, which is
available at http://wpxx02.toxi.uni-wuerzburg.de/~krasel/leafnode.html.

The INN server comprises a number of components, each with their own configuration files that we will discuss in
turn. Configuration of INN can be a little involved, but we'll describe each of the stages in this chapter and arm you
with enough information to make sense of the INN manual pages and documentation and build configurations for just
about any application.

Some INN Internals
INN's core program is the innd daemon. innd's task is to handle all incoming articles, storing them locally, and to pass
them on to any outgoing newsfeeds if required. It is started at boot time and runs continually as a background process.
Running as a daemon improves performance because it has to read its status files only once when starting. Depending
on the volume of your news feed, certain files such as history (which contain a list of all recently processed articles)
may range from a few megabytes to tens of megabytes.

Another important feature of INN is that there is always only one instance of innd running at any time. This is also very
beneficial to performance, because the daemon can process all articles without having to worry about synchronizing its
internal states with other copies of innd rummaging around the news spool at the same time. However, this choice
affects the overall design of the news system. Because it is so important that incoming news is processed as quickly as
possible, it is unacceptable that the server be tied up with such mundane tasks as serving newsreaders accessing the
news spool via NNTP, or decompressing newsbatches arriving via UUCP. Therefore, these tasks have been broken out
of the main server and implemented in separate support programs. Figure 23.1 attempts to illustrate the relationships
between innd, the other local tasks, and remote news servers and newsreaders.

Today, NNTP is the most common means of transporting news articles around, and innd doesn't directly support
anything else. This means that innd listens on a TCP socket (port 119) for connections and accepts news articles using
the "ihave" protocol.

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (1 of 17) [2/20/2001 11:05:46 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/
http://wpxx02.toxi.uni-wuerzburg.de/~krasel/leafnode.html

Articles arriving by transports other than NNTP are supported indirectly by having another process accept the articles
and forward them to innd via NNTP. Newsbatches coming in over a UUCP link, for instance, are traditionally handled
by the rnews program. INN's rnews decompresses the batch if necessary, and breaks it up into individual articles; it
then offers them to innd one by one.

Newsreaders can deliver news when a user posts an article. Since the handling of newsreaders deserves special
attention, we will come back to this a little later.

Figure 23.1: INN architecture (simplified for clarity)

When receiving an article, innd first looks up its message ID in the history file. Duplicate articles are dropped and the
occurrences are optionally logged. The same goes for articles that are too old or lack some required header field, such
as Subject:.[2] If innd finds that the article is acceptable, it looks at the Newsgroups: header line to find out what
groups it has been posted to. If one or more of these groups are found in the active file, the article is filed to disk.
Otherwise, it is filed to the special group junk.

[2] This is indicated by the Date: header field; the limit is usually two weeks.

Individual articles are kept below /var/spool/news, also called the news spool. Each newsgroup has a separate directory,
in which each article is stored in a separate file. The file names are consecutive numbers, so that an article in
comp.risks may be filed as comp/risks/217, for instance. When innd finds that the directory it wants to store the article
in does not exist, it creates it automatically.

Apart from storing articles locally, you may also want to pass them on to outgoing feeds. This is governed by the
newsfeeds file that lists all downstream sites along with the newsgroups that should be fed to them.

Just like innd's receiving end, the processing of outgoing news is handled by a single interface, too. Instead of doing all
the transport-specific handling itself, innd relies on various backends to manage the transmission of articles to other
news servers. Outgoing facilities are collectively dubbed channels. Depending on its purpose, a channel can have
different attributes that determine exactly what information innd passes on to it.

For an outgoing NNTP feed, for instance, innd might fork the innxmit program at startup, and, for each article that
should be sent across that feed, pass its message ID, size, and filename to innxmit's standard input. For an outgoing
UUCP feed, on the other hand, it might write the article's size and file name to a special logfile, which is head by a
different process at regular intervals in order to create batches and queue them to the UUCP subsystem.

Besides these two examples, there are other types of channels that are not strictly outgoing feeds. These are used, for
instance, when archiving certain newsgroups, or when generating overview information. Overview information is
intended to help newsreaders thread articles more efficiently. Old-style newsreaders had to scan all articles separately
in order to obtain the header information required for threading. This would put an immense strain on the server
machine, especially when using NNTP; furthermore, it was very slow.[3] The overview mechanism alleviates this
problem by prerecording all relevant headers in a separate file (called .overview) for each newsgroup. This information
can then be picked up by newsreaders either by reading it directly from the spool directory, or by using the XOVER
command when connected via NNTP. INN has the innd daemon feed all articles to the overchan command, which is
attached to the daemon through a channel. We'll see how this is done when we discuss configuring news feeds later.

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (2 of 17) [2/20/2001 11:05:46 AM]

[3] Threading 1,000 articles when talking to a loaded server could easily take around five minutes, which
only the most dedicated Usenet addict would find acceptable.

Newsreaders and INN
Newsreaders running on the same machine as the server (or having mounted the server's news spool via NFS) can read
articles from the spool directly. To post an article composed by the user, they invoke the inews program, which adds
any header fields that are missing and forwards them to the daemon via NNTP.

Alternatively, newsreaders can access the server remotely via NNTP. This type of connection is handled differently
from NNTP-based news feeds, to avoid tying up the daemon. Whenever a newsreader connects to the NNTP server,
innd forks a separate program called nnrpd, which handles the session while innd returns to the more important things
(receiving incoming news, for example).[4] You may be wondering how the innd process can distinguish between an
incoming news feed and a connecting newsreader. The answer is quite simple: the NNTP protocol requires that an
NNTP-based newsreader issue a mode reader command after connecting to the server; when this command is received,
the server starts the nnrpd process, hands the connection to it, and returns to listening for connections from another
news server. There used to be at least one DOS-based newsreader which was not configured to do this, and hence failed
miserably when talking to INN, because innd itself does not recognize any of the commands used to read news if it
doesn't know the connection is from a news reader.

[4] The name apparently stands for NetNews Read & Post Daemon.

We'll talk a little more about newsreader access to INN under "Controlling Newsreader Access," later in the chapter.

Installing INN
Before diving into INN's configuration, let's talk about its installation. Read this section, even if you've installed INN
from one of the various Linux distributions; it contains some hints about security and compatibility.

Linux distributions included Verson INN-1.4sec for quite some time. Unfortunately, this version had two subtle
security problems. Modern versions don't have these problems and most distributions include a precompiled Linux
binary of INN Version 2 or later.

If you choose, you can build INN yourself. You can obtain the source from ftp.isc.org in the /isc/inn/ directory.
Building INN requires that you edit a configuration file that tells INN some detail about your operating system, and
some features may require minor modifications to the source itself.

Compiling the package itself is pretty simple; there's a script called BUILD that will guide you through the process.
The source also contains extensive documentation on how to install and configure INN.

After installing all binaries, some manual fixups may be required to reconcile INN with any other applications that may
want to access its rnews or inews programs. UUCP, for instance, expects to find the rnews program in /usr/bin or /bin,
while INN installs it in /usr/lib/bin by default. Make sure /usr/lib/bin/ is in the default search path, or that there are
symbolic links pointing to the actual location of the rnews and inews commands.

Configuring INN: the Basic Setup
One of the greatest obstacles beginners may face is that INN requires a working network setup to function properly,
even when running on a standalone host. Therefore, it is essential that your kernel supports TCP/IP networking when
running INN, and that you have set up the loopback interface as explained in Chapter 5, Configuring TCP/IP
Networking.

Next, you have to make sure that innd is started at boot time. The default INN installation provides a script file called
boot in the /etc/news/ directory. If your distribution uses the SystemV-style init package, all you have to do is create a
symbolic link from your /etc/init.d/inn file pointing to /etc/news/boot. For other flavors of init, you have to make sure
/etc/news/boot is executed from one of your rc scripts. Since INN requires networking support, the startup script should
be run after the network interfaces are configured.

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (3 of 17) [2/20/2001 11:05:46 AM]

INN Configuration Files
Having completed these general tasks, you can now turn to the really interesting part of INN: its configuration files. All
these files reside in /etc/news. Some changes to configurations files were introduced in Version 2, and it is Version 2
that we describe here. If you're running an older version, you should find this chapter useful to guide you in upgrading
your configuration. During the next few sections, we will discuss them one by one, building the Virtual Brewery's
configuration as an example.

If you want to find out more about the features of individual configuration files, you can also consult the manual pages;
the INN distribution contains individual manual pages for each of them.

Global Parameters

There are a number of INN parameters that are global in nature; they are relevant to all newsgroups carried.

The inn.conf file

INN's main configuration file is inn.conf. Among other things, it determines the name by which your machine is known
on Usenet. Version 2 of INN allows a baffling number of parameters to be configured in this file. Fortunately, most
parameters have default values that are reasonable for most sites. The inn.conf(5) file details all of the parameters, and
you should read it carefully if you experience any problems.

A simple example inn.conf might look like:

Sample inn.conf for the Virtual Brewery
server: vlager.vbrew.com
domain: vbrew.com
fromhost: vbrew.com
pathhost: news.vbrew.com
organization: The Virtual Brewery
mta: /usr/sbin/sendmail -oi %s
moderatormailer: %s@uunet.uu.net
#
Paths to INN components and files.
#
pathnews: /usr/lib/news
pathbin: /usr/lib/news/bin
pathfilter: /usr/lib/news/bin/filter
pathcontrol: /usr/lib/news/bin/control
pathdb: /var/lib/news
pathetc: /etc/news
pathrun: /var/run/news
pathlog: /var/log/news
pathhttp: /var/log/news
pathtmp: /var/tmp
pathspool: /var/spool/news
patharticles: /var/spool/news/articles
pathoverview: /var/spool/news/overview
pathoutgoing: /var/spool/news/outgoing
pathincoming: /var/spool/news/incoming
patharchive: /var/spool/news/archive
pathuniover: /var/spool/news/uniover
overviewname: .overview

The first line tells the programs rnews and inews which host to contact when delivering articles. This entry is absolutely
crucial; to pass articles to innd, they have to establish an NNTP connection with the server.

The domain keyword should specify the domain portion of the host's fully qualified domain name. A couple of
programs must look up your host's fully qualified domain name; if your resolver library returns the unqualified
hostname only, the name given in the domain attribute is tacked onto it. It's not a problem to configure it either way, so
it's best to define domain.

The next line defines what hostname inews is going to use when adding a From: line to articles posted by local users.
Most newsreaders use the From: field when composing a reply mail message to the author of an article. If you omit this

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (4 of 17) [2/20/2001 11:05:46 AM]

field, it will default to your news host's fully qualifed domain name. This is ot always the best choice. You might, for
example, have news and mail handled by two different hosts. In this case, you would supply the fully qualified domain
name of your mail host after the fromhost statement.

The pathhost line defines the hostname INN is to add to the Path: header field whenever it receives an article. In
most cases, you will want to use the fully qualified domain name of your news server; you can then omit this field since
that is the default. Occasionally you may want to use a generic name, such as news.vbrew.com, when serving a large
domain. Doing this allows you to move the news system easily to a different host, should you choose to at some time.

The next line contains the organization keyword. This statement allows you to configure what text inews will put into
the Organization: line of articles posted by your local users. Formally, you would place a description of your
organization or your organization's name in full here. Should you not wish to be so formal, it is fashionable for
organizations with a sense of humor to exhibit it here.

The organization keyword is mandatory and specifies the pathname of the mail transport agent that will be used for
posting moderator messages. %s is replaced by the moderator email address.

The moderatormailer entry defines a default address used when a user tries to post to a moderated newsgroup. The list
of moderator addresses for each newsgroup is usually kept in a separate file, but you will have a hard time keeping
track of all of them. The moderatormailer entry is therefore consulted as a last resort; if it is defined, inews will replace
the %s string with the (slightly transformed) newsgroup name and send the entire article to this address. For instance,
when posting to soc.feminism, the article is mailed to soc-feminism@uunet.uu.net, given the above configuration. At
UUNET, there should be a mail alias installed for each of these submissions addresses that automatically forwards all
messages to the appropriate moderator.

Finally, each of the remaining entries specifies the location of some component file or executable belonging to INN. If
you've installed INN from a package, these paths should have been configured for you. If you're installing from source,
you'll need to ensure that they reflect where you've installed INN.

Configuring Newsgroups

The news administrator on a system is able to control which newsgroups users have access to. INN provides two
configuration files that allow the administrator to decide which newsgroups to support and provide descriptions for
them.

The active and newsgroups files

The active and newsgroups files are used to store and describe the newsgroups hosted by this news server. They list
which newsgroups we are interested in receiving and serving articles for, and administrative information about them.
These files are found in the /var/lib/news/ directory.

The active file determines which newsgroups this server supports. Its syntax is straightforward. Each line in the active
file has four fields delimited by whitespace:

name himark lomark flags

The name field is the name of the newsgroup. The himark field is the highest number that has been used for an article
in that newsgroup. The lomark field is the lowest active number in use in the newsgroup. To illustrate how this works,
consider the follow scenario. Imagine that we have a newly created newsgroup: himark and lowmark are both 0
because there are no articles. If we post 5 articles, they will be numbered 1 through 5. himark will now equal 5, the
highest numbered article, and lowmark will equal 1, the lowest active article. If article 5 is cancelled there will be no
change; himark will remain at 5 to ensure that that article number is not reallocated and lowmark will remain at 1, the
lowest active article. If we now cancel article 1, himark will remain unchanged, but lowmark will now equal 2, because
1 is no longer active. If we now post a new article, it will be assigned article number 6, so himark will now equal 6.
Article 5 has been in use, so we won't reassign it. lowmark remains at 2. This mechanism allows us to easily allocate
unique article numbers for new articles and to calculate approximately how many active articles there are in the group:
himark-lowmark.

The field may contain one of the following:

y

Posting directly to this news server is allowed.

n

Posting directly to this news server is not allowed. This prevents newsreaders from posting directly to this news

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (5 of 17) [2/20/2001 11:05:46 AM]

server. New articles may only be received from other news servers.

m

The group is moderated. Any articles posted to this newsgroup are forwarded to the newsgroup moderator for
approval before they enter the newsgroup. Most newsgroups are unmoderated.

j

Articles in this group are not kept, but only passed on. This causes the news server to accept the article, but all it
will do with it is pass it to the "up-stream" news servers. It will not make the articles available to newsreaders
reading from this server.

x

Articles cannot be posted to this newsgroup. The only way that news articles are delivered to this server is by
feeding them from another news server. Newsreaders may not directly write articles to this server.

=foo.bar

Articles are locally filed into the ``foo.bar'' group.

In our simple server configuration we'll carry a small number of newsgroups, so our /var/lib/news/active file will look
like:

control 0000000000 0000000001 y
junk 0000000000 0000000001 y
rec.crafts.brewing 0000000000 0000000001 y
rec.crafts.brewing.ales 0000000000 0000000001 y
rec.crafts.brewing.badtaste 0000000000 0000000001 y
rec.crafts.brewing.brandy 0000000000 0000000001 y
rec.crafts.brewing.champagne 0000000000 0000000001 y
rec.crafts.brewing.private 0000000000 0000000001 y

The himark and lomark numbers in this example are those you would use when creating new newsgroups. The himark
and lomark numbers will look quite different for a newsgroup that has been active for some time.

The newsgroups file is even simpler. It provides one-line descriptions of newsgroups. Some newsreaders are able to
read and present this information to a user to help them decide whether they want to subscribe.

The format of the newsgroups file is simply:

name description

The name field is the name of a newsgroup, and the <description is a single line description of that newsgroup.

We want to describe the newsgroups that our server supports, so we'll build our newsgroups file as follows:

rec.crafts.brewing.ales Home brewing Ales and Lagers
rec.crafts.brewing.badtaste Home brewing foul tasting brews
rec.crafts.brewing.brandy Home brewing your own Brandy
rec.crafts.brewing.champagne Home brew your own Champagne
rec.crafts.brewing.private The Virtual Brewery home brewers group

Configuring Newsfeeds

INN provides the news administrator the ability to control which newsgroups are forwarded on to other news servers
and how they will be forwarded. The most common method uses the NNTP protocol described earlier, but INN also
allows newsfeeds via other protocols, such as UUCP.

The newsfeeds file

The newsfeeds file determines where news articles will be sent. It normally resides in the /etc/news/ directory.

The format of the newsfeeds is a little complicated at first. We'll describe the general layout here, and the newsfeeds(5)
manual page describes what we leave out. The format is as follows:

newsfeeds file format
site:pattern:flags:param
site2:pattern2\
 :flags2:param2

Each news feed to a site is described by a single line, or may be spread across multiple lines using the \ continuation
character. The : characters delimit the fields in each line. The # character at the start of a line marks that line as a

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (6 of 17) [2/20/2001 11:05:46 AM]

comment.

The site field names the site to which this feed description relates. The sitename can be coded any way you like and
doesn't have to be the domain name of the site. The site name will be used later and will refer to an entry in a table that
supplies the hostname to the innxmit program that transmits the news articles by NNTP to the remote server. You may
have multiple entries for each site; each entry will be treated individually.

The pattern field specifies which news groups are to be sent to this site. The default is to send all groups, so if that is
what you want, just make this field empty. This field is usually a comma-delimited list of pattern-matching expressions.
The * character matches zero or more of any character, the . character has no special significance, the ! character (if
used at the start of an expression) performs a logical NOT, and the @ character at the start of a newsgroup name means
"Do not forward any articles that are posted or crossposted to this group." The list is read and parsed from left to right,
so you should ensure that you place the more specific rules first. The pattern:

rec.crafts.brewing*,!rec.crafts.brewing.poison,@rec.crafts.brewing.private

would send all of the rec.crafts.brewing news heirarchy except the rec.crafts.brewing.poison. It would not feed any
articles that were either posted or crossposted to the rec.crafts.brewing.private newsgroup; these articles will be trapped
and available only to those people who use this server. If you reversed the first two patterns, the first pattern would be
overridden by the second and you would end up feeding articles for the rec.crafts.brewing.poison newsgroup. The same
is true of the first and last patterns; you must always place the more specific patterns before any less specific patterns
for them to take effect.

flags controls and places constraints on the feed of news articles to this site. The flags field is a comma delimited list
can contain any of the items from the following list, delimited by commands:

<size

Article must be less then size bytes.

Aitems

Article checks. items can be one or more of d (must have Distribution header) or p (don't check for site in Path
header).

Bhigh/low

Internal buffer size before writing to output.

H[count]

Article must have less then count hops; the default is 1.

Isize

Internal buffer size (for a file feed).

Mpattern

Only moderated groups that match the pattern.

Npattern

Only unmoderated groups that match the pattern.

Ssize

Start spooling if more than size bytes get queued.

Ttype

Feed types: f (file), m (funnel; the param field names the entry that articles will be funneled to), p (pipe to
program), c (send to stdin channel of the param field's subprocess), and x (like c, but handles commands on
stdin).

Witems

What to write: b (article bytesize), f (full path), g (first newsgroup), m (Message ID), n (relative path), s (site
that fed article), t (time received), * (names of funnel feed-ins or all sites that get the article), N (newsgroups
header), D (distribution header), H (all headers), O (overview data), and R (replication data).

The param field has special coding that is dependent on the type of feed. In the most common configuration it is
where you specify the name of the output file to which you will write the outgoing feed. In other configurations you
can leave it out. In yet other configurations it takes on different meanings. If you want to do something unusual, the
newsfeeds(5) manual page will explain the use of the param field in some detail.

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (7 of 17) [2/20/2001 11:05:46 AM]

There is a special site name that should be coded as ME and should be the first entry in the file. This entry is used to
control the default settings for your news feeds. If the ME entry has a distribution list associated with it, this list will be
prepended to each of the other site entries before they are sent. This allows you to, for example, declare some
newsgroups to be automatically fed, or automatically blocked from feeding, without having to repeat the pattern in each
site entry.

We mentioned earlier that it was possible to use some special feeds to generate thread data that makes the newsreader's
job easier. We'll do this by exploiting the overchan command that is part of the INN distribution. To do this, we've
created a special local feed called overview that will pass the news articles to the overchan command for processing
into overview data.

Our news server will provide only one external news feed, which goes to the Groucho Marx University, and they
receive articles for all newsgroups except the control and junk newsgroups, the rec.crafts.brewing.private newsgroup,
which will be kept locally, and the rec.crafts.brewing.poison newsgroup, which we don't want people from our brewery
seen posting to.

We'll use the nntpsend command to transport the news via NNTP to the news.groucho.edu server. nntpsend requires us
to use the "file" delivery method and to write the article's pathname and article ID. Note that we've set the param field
to the name of the output file. We'll talk a little more about the nntpsend command in a moment. Our resulting
newsfeed's configuration is:

/etc/news/newsfeeds file for the Virtual Brewery
#
Send all newsgroups except the control and junk ones by default
ME:!control,!junk::
#
Generate overview data for any newsreaders to use.
overview::Tc,WO:/usr/lib/news/bin/overchan
#
Feed the Groucho Marx University everything except our private newsgroup
and any articles posted to the rec.crafts.brewing.poison newsgroup.
gmarxu:!rec.crafts.brewing.poison,@rec.crafts.brewing.private:\
 Tf,Wnm:news.groucho.edu
#

The nntpsend.ctl file

The nntpsend program manages the transmission of news articles using the NNTP protocol by calling the innxmit
command. We saw a simple use of the nntpsend command earlier, but it too has a configuration file that provides us
with some flexibility in how we configure our news feeds.

The nntpsend command expects to find batch files for the sites it will feed. It expects those batch files to be named
/var/spool/news/out.going/sitename. innd creates these batch files when acting on an entry in the newsfeeds, which we
saw in the previous sections. We specified the sitename as the filename in the param field, and that satisfies the
nntpsend command's input requirements.

The nntpsend command has a configuration file called nntpsend.ctl that is usually stored in the /etc/news/ directory.

The nntpsend.ctl file allows us to associate a fully qualified domain name, some news feed size constraints, and a
number of transmission parameters with a news feed site name. The sitename is a means of uniquely identifying a
logical feed of articles. The general format of the file is:

sitename:fqdn:max_size:[args]

The following list describes the elements of this format:

sitename

The sitename as supplied in the newsfeeds file

fqdn

The fully qualified domain name of the news server to which we will be feeding the news articles

max_size

The maximum volume of news to feed in any single transfer

args

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (8 of 17) [2/20/2001 11:05:47 AM]

Additional arguments to pass to the innxmit command

Our sample configuration requires a very simple nntpsend.ctl file. We have only one news feed. We'll restrict the feed
to a maximum of 2 MB of traffic and we'll pass an argument to the innxmit that sets a 3-minute (180 second) timeout.
If we were a larger site and had many news feeds, we'd simply create new entries for each new feed site that looked
much the same as this one:

/etc/news/nntpsend.ctl
#
gmarxu:news.groucho.edu:2m:-t 180
#

Controlling Newsreader Access

Not so many years ago, it was common for organizations to provide public access to their news servers. Today it is
difficult to locate public news servers; most organizations carefully control who has access to their servers, typically
restricting access to users supported on their network. INN provides configuration files to control this access.

The incoming.conf file

We mentioned in our introduction to INN that it achieves some of its efficiency and size by separating the news feed
mechanism from the newsreading mechanism. The /etc/news/incoming.conf file is where you specify which hosts will
be feeding you news using the NNTP protocol, as well as where you define some parameters that control the way
articles are fed to you from these hosts. Any host not listed in this file that connects to the news socket will not be
handled by the innd daemon; instead, it will be handled by the nnrpd daemon.

The /etc/news/incoming.conf file syntax is very simple, but it takes a moment to come to terms with. Three types of
valid entries are allowed: key/value pairs, which are how you specify attributes and their values; peers, which is how
you specify the name of a host allowed to send articles to us using NNTP; and groups, a means of applying key/value
pairs to groups of peers. Key/value pairs can have three different types of scope. Global pairs apply to every peer
defined in the file. Group pairs apply to all peers defined within that group. Peer pairs apply only to that one peer.
Specific definitions override less specific ones: therefore, peer definitions override group definitions, which in turn
override global pairs.

Curly brace characters ({}) are used to delimit the start and end of the group and peer specifications. The #
character marks the rest of the line it appears on as a comment. Key/value pairs are separated by the colon character
and appear one to a line.

A number of different keys may be specified. The more common and useful are:

hostname

This key specifies a comma-separated list of fully qualifed names or IP addresses of the peers that we'll allow to
send us articles. If this key is not supplied, the hostname defaults to the label of the peer.

streaming

This key determines whether streaming commands are allowed from this host. It is a Boolean value that defaults
to true.

max-connections

This key specifies the maximum number of connections allowed from this group or peer. A value of zero means
unlimited (which can also be specified using none).

password

This key allows you to specify the password that must be used by a peer if it is to be allowed to transfer news.
The default is to not require a password.

patterns

This key specifies the newsgroups that we accept from the associated peer. This field is coded according to
precisely the same rules as we used in our newsfeeds file.

In our example we have only one host that we are expecting to feed us news: our upstream news provider at Groucho
Marx University. We'll have no password, but we will ensure that we don't accept any articles for our private
newsgroup from outside. Our hosts.nntp looks like:

Virtual Brewery incoming.conf file.

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (9 of 17) [2/20/2001 11:05:47 AM]

Global settings
streaming: true
max-connections: 5

Allow NNTP posting from our local host.
peer ME {
 hostname: "localhost, 127.0.0.1"
}

Allow groucho to send us all newsgroup except our local ones.
peer groucho {
 hostname: news.groucho.edu
 patterns: !rec.crafts.brewing.private
}

The nnrp.access file

We mentioned earlier that newsreaders, and in fact any host not listed in the hosts.nntp, that connect to the INN news
server are handled by the nnrpd program. nnrpd uses the /etc/news/nnrp.access file to determine who is allowed to
make use of the news server, and what permissions they should have.

The nnrp.access file has a similar structure to the other configuration files we've looked at. It comprises a set of
patterns used to match against the connecting host's domain name or IP address, and fields that determine what access
and permission it should be given. Each entry should appear on a line by itself, and fields are separated by colons. The
last entry in this file that matches the connecting host will be the one used, so again, you should put general patterns
first and follow them with more specific ones later in the file. The five fields of each entry in the order they should
appear are:

Hostname or IP address

This field conforms to wildmat(3) pattern-matching rules. It is a pattern that describes the connecting host's name
or IP address.

Permissions

This field determines what permissions the matching host should be granted. There are two permissons you may
configure: R gives read permissions, and P gives posting permissions.

Username

This field is optional and allows you to specify a username that an NNTP client must log into the server before
being allowed to post news articles. This field may be left blank. No user authentication is required to read
articles.

Password

This field is optional and is the password accompanying the username field. Leaving this field blank means that
no password is required to post articles.

Newsgroups

This field is a pattern specifying which newsgroups the client is allowed to access. The pattern follows the same
rules as those used in the newsfeeds file. The default for this field is no newsgroups, so you would normally have
a pattern configured here.

In the virtual brewery example, we will allow any NNTP client in the Virtual Brewery domain to both read and post to
all newsgroups. We will allow any NNTP client read-only access to all newsgroups except our private internal
newsgroup. Our nnrp.access file will look like this:

Virtual Brewery - nnrp.access
We will allow public reading of all newsgroups except our private one.
:R:::,!rec.crafts.brewing.private

Any host with the Virtual Brewery domain may Read and Post to all
newsgroups
.vbrew.com:RP::

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (10 of 17) [2/20/2001 11:05:47 AM]

Expiring News Articles

When news articles are received by a news server, they are stored to disk. News articles need to be available to users
for some period of time to be useful, so a large operating news server can consume lots of disk space. To ensure that
the disk space is used effectively, you can opt to delete news articles automatically after a period of time. This is called
article expiration. Naturally, INN provides a means of automatically expiring news articles.

The expire.ctl file

The INN server uses a program called expire to delete expired news articles. The expire program in turn uses a file
called /etc/news/expire.ctl to configure the rules that govern article expiration.

The syntax of /etc/news/expire.ctl is fairly simple. As with most configuration files, empty lines or lines beginning with
the # character are ignored. The general idea is that you specify one rule per line. Each rule defines how article
expiration will be performed on newsgroups matching a supplied pattern. The rule syntax looks like this:

pattern:modflag:keep:default:purge

The following list describes the fields:

pattern

This field is a comma-delimited list of patterns matching names of newsgroups. The wildmat(3) routine is used
to match these patterns. The last rule matching a newsgroup name is the one that is applied, so if you want to
specify wildcard (*) rules, they should be listed first in this file.

modflag

This flag describes how this rule applies to moderated newsgroups. It can be coded with an M to mean that this
rule applies only to moderated newsgroups, a U to mean that this rule applies only to unmoderated newsgroups,
or an A to mean that this rule ignores the moderated status and applies to all groups.

keep

This field allows you to specify the minimum time an article with an "Expires" header will be kept before it is
expired. The units are days, and are a floating point, so you may specify values like 7.5 for seven-and-a-half
days. You may also specify never if you wish articles to stay in a newsgroup forever.

default

This field is the most important. This field allows you to specify the time an article without an Expires header
will be kept. Most articles won't have an Expires header. This field is coded in the same way as the keep field,
with never meaning that articles without Expires headers will never be expired.

purge

This field allows you to specify the maximum time an article with an Expires header will be kept before it is
expired. The coding of this field is the same as for the keep field.

Our requirements are simple. We will keep all articles in all newsgroups for 14 days by default, and between 7 and 21
days for articles that have an Expires header. The rec.crafts.brewing.private newsgroup is our internal newsgroup,
so we'll make sure we don't expire any articles from it:

expire.ctl file for the Virtual Brewery

Expire all articles in 14 days by default, 7-21 days for those with
Expires: headers
*:A:7:14:21

This is a special internal newsgroup, which we will never expire.
rec.crafts.brewing.private:A:never:never:never

We will mention one special type of entry you may have in your /etc/news/expires.ctl file. You may have exactly one
line that looks like this:

/remember/:days

This entry allows you to specify the minimum number of days that an article will be remembered in the history file,
irrespective of whether the article itself has been expired or not. This might be useful if one of the sites that is feeding
you articles is infrequent and has a habit of sending you old articles every now and again. Setting the /remember/ field
helps to prevent the upstream server from sending you the article again, even if it has already been expired from your
server. If your server remembers it has already received the article, it will reject attempts to resend it. It is important to

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (11 of 17) [2/20/2001 11:05:47 AM]

remember that this setting has no effect at all on article expiration; it affects only the time that details of an article are
kept in the history database.

Handling Control Messages

Just as with C News, INN can automatically process control messages. INN provides a powerful configuration
mechanism to control what action will occur for each of a variety of control messages, and an access control
mechanism to control who can initiate actions against which newsgroups.

The control.ctl file

The control.ctl file is fairly simple in structure. The syntax rules for this file are much the same as for the other INN
configuration files. Lines beginning with # are ignored, lines may be continued using /, and fields are delimited by :.

When a control message is received, it is tested against each rule in turn. The last rule in the file that matches the
message is the rule that will be used, so you should put any generic rules at the start of the file and more specific rules
at the end of the file. The general syntax of the file is:

message:from:newsgroups:action

The meanings of each of the fields are:

message

This is the name of the control message. Typical control messages are described later.

from

This is a shell-style pattern matching the email address of the person sending the message. The email address is
converted to lowercase before comparison.

newsgroups

If the control message is newgroup or rmgroup, this field is a shell-style pattern matching the newsgroup
created or removed.

action

This field specifies what action to take for any message matching the rule. There are quite a number of actions
we can take; they are described in the next list.

The message field of each line can have one of the following values:

checkgroups

This message requests that news administrators resynchonrize their active newsgroups database against the list of
newsgroups supplied in the control message.

newgroup

This message requests the creation of a new newsgroup. The body of the control message should contain a short
description of the purpose of the newsgroup to be created.

rmgroup

requests that a newsgroup be removed.

sendsys

This message requests that the sys file of this news server be transmitted by mail to the originator of the control
message. RFC-1036 states that it is a requirement of Usenet membership that this information be publicly
available because it is used to keep the map of Usenet up to date.

version

This message requests that the hostname and version of news server software be returned to the originator of the
control message.

all

This is a special coding that will match any control message.

The message field may include the following actions:

doit

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (12 of 17) [2/20/2001 11:05:47 AM]

The requested command is performed. In many cases, a mail message will be sent to the administrator to advise
them that the action has taken place.

doit=file

This is the same as the doit action except that a log message will be written to the file log file. If the specified
file is mail, the log entry is sent by email. If the specified file is the null string, the log message is written to
/dev/null and is equivalent to using the unqualified doit action. If the file name begins with a / character, the
name is taken to be an absolute filename for the logfile; otherwise, the specified name is translated to
/var/log/news/file.log.

doifarg

The requested command is performed if the command has an argument. If the command has no argument, the
control message is ignored.

drop

The requested command is ignored.

log

A log message is sent to the stderr output of the innd process. This is normally directed out to the
/var/log/news/errlog file.

log=file

This is the same as a log action, except the logfile is specified as per the rules given for the doit=file action.

mail

An email message is sent to the news administrator containing the requested command details. No other action
takes place.

verify-*

If an action begins with the string "verify-", then the control message is authenticated using PGP (or
GPG).[5]

[5] PGP and GPG are tools designed to authenticate or encrypt messages using public key
techniques. GPG is the GNU free version of PGP. GPG may be found at http://www.gnupg.org/,
and PGP may be found at http://www.pgp.com/.

So that you can see what a control.ctl file would look like in practice, here is a very short illustrative sample:

Sample /etc/news/control.ctl
##
Warning: You should not use this file, it is illustrative only.

Control Message Handling
all:*:*:mail
checkgroups:*:*:mail
ihave:*:*:drop
sendme:*:*:drop
sendsys:*:*:log=sendsys
senduuname:*:*:log=senduuname
version:*:*:log=version
newgroup:*:*:mail
rmgroup:*:*:mail

Handle control messages for the eight most important news heirarchies
COMP, HUMANITIES, MISC, NEWS, REC, SCI, SOC, TALK
checkgroups:*:comp.*|humanities.*|misc.*|news.*|rec.*|sci.*|soc.*|talk.*:drop
newgroup:*:comp.*|humanities.*|misc.*|news.*|rec.*|sci.*|soc.*|talk.*:drop
rmgroup:*:comp.*|humanities.*|misc.*|news.*|rec.*|sci.*|soc.*|talk.*:drop
checkgroups:group-admin@isc.org:*:verify-news.announce.newgroups
newgroup:group-admin@isc.org:comp.*|misc.*|news.*:verify-news.announce.newgroups
newgroup:group-admin@isc.org:rec.*|sci.*|soc.*:verify-news.announce.newgroups
newgroup:group-admin@isc.org:talk.*|humanities.*:verify-news.announce.newgroups
rmgroup:group-admin@isc.org:comp.*|misc.*|news.*:verify-news.announce.newgroups

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (13 of 17) [2/20/2001 11:05:47 AM]

http://www.gnupg.org/
http://www.pgp.com/

rmgroup:group-admin@isc.org:rec.*|sci.*|soc.*:verify-news.announce.newgroups
rmgroup:group-admin@isc.org:talk.*|humanities.*:verify-news.announce.newgroups

GNU (Free Software Foundation)
newgroup:gnu@prep.ai.mit.edu:gnu.*:doit
newgroup:news@*ai.mit.edu:gnu.*:doit
rmgroup:gnu@prep.ai.mit.edu:gnu.*:doit
rmgroup:news@*ai.mit.edu:gnu.*:doit

LINUX (Newsfeed from news.lameter.com)
checkgroups:christoph@lameter.com:linux.*:doit
newgroup:christoph@lameter.com:linux.*:doit
rmgroup:christoph@lameter.com:linux.*:doit

Running INN
The inn source package provides a script suitable for starting inn at boot time. The script is usually called
/usr/lib/news/bin/rc.news. The script reads arguments from another script, usually called /usr/lib/news/innshellvars,
which contains definitions of the filenames and filepaths that inn will use to locate components it needs. It is generally
considered a good idea to execute inn with the permissions of a non-root user, such as news.

To ensure that inn is started at boot time, you should check that /usr/lib/news/innshellvars is configured correctly and
then call the /usr/lib/news/bin/rc.news script from a script executed at boot time.

Additionally, there are administrative tasks that must be performed periodically. These tasks are usually configured to
be executed by the cron command. The best way to do this is to add the appropriate commands to your /etc/crontab
file, or even better, create a file suitable for the /etc/cron.d directory, if your distribution provides one. An example of
such a file might look like:

Example /etc/cron.d/inn file, as used in the Debian distribution.
#
SHELL=/bin/sh
PATH=/usr/lib/news/bin:/sbin:/bin:/usr/sbin:/usr/bin

Expire old news and overview entries nightly, generate reports.

15 0 * * * news news.daily expireover lowmark delayrm

Every hour, run an rnews -U. This is not only for UUCP sites, but
also to process queued up articles put there by in.nnrpd in case
innd wasn't accepting any articles.

10 * * * * news rnews -U

These commands will ensure that old news is automatically expired each day, and that any queued articles are
processed each hour. Note also that they are executed with the permissions of the news user.

Managing INN: The ctlinnd Command
The INN news server comes with a command to manage its day-to-day operation. The ctlinnd command can be used to
manipulate newsgroups and newsgroup feeds, to obtain the status, of the server, and to reload, stop, and start the server.

You'd normally get a summary of the ctlinnd command syntax using:

ctlinnd -h

We'll cover some of the more important uses of ctlinnd here; please consult the ctlinnd manual page for more detail.

Add a New Group

Use the following syntax to add a new group:

ctlinnd newgroup group rest creator

The arguments are defined as follows:

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (14 of 17) [2/20/2001 11:05:47 AM]

group

The name of the group to create.

rest

This argument should be coded in the same way as the flags field of the active file. It defaults to y if not
supplied.

creator

The name of the person creating the group. Enclose it in quotes if there are any spaces in the name.

Change a Group

Use the following syntax to change a group:

ctlinnd changegroup group rest

The arguments are defined as follows:

group

The name of the group to change.

rest

This argument should be coded in the same way as the flags field of the active file.

This command is useful to change the moderation status of a group.

Remove a Group

Use the following syntax to remove a group:

ctlinnd rmgroup group

The argument is defined as follows:

group

The name of the group to remove.

This command removes the specified newsgroup from the active file. It has no effect on the news spool. All articles in
the spool for the specified group will be expired in the usual fashion, but no new articles will be accepted.

Renumber a Group

Use the following syntax to renumber a group:

ctlinnd renumber group

The argument is defined as follows:

group

The name of the group to renumber. If a group is an empty string, all groups are renumbered.

This command updates the low-water mark for the specified group.

Allow/Disallow Newsreaders

Use the following syntax to allow or disallow newsreaders:

ctlinnd readers flag text

The arguments are defined as follows:

flag

Specifying n causes all newsreader connections to be disallowed. Specifying y allows newsreader connections.

text

The text supplied will be given to newsreaders who attempt to connect, and usually describes the reason for
disabling newsreader access. When reenabling newsreader access, this field must be either an empty string or a

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (15 of 17) [2/20/2001 11:05:47 AM]

copy of the text supplied when the newsreader was disabled.

This command does not affect incoming newsfeeds. It only controls connections from newsreaders.

Reject Newsfeed Connections

Use the following syntax to reject newsfeed connections:

ctlinnd reject reason

The argument is defined as follows:

reason

The text supplied should explain why incoming connections to innd are rejected.

This command does not affect connections that are handed off to nnrpd (i.e., newsreaders); it only affects connections
that would be handled by innd directly, such as remote newsfeeds.

Allow Newsfeed Connections

Use the following syntax to allow newsfeed connections:

ctlinnd allow reason

The argument is defined as follows:

reason

The supplied text must be the same as that supplied to the preceding reject command or an empty string.

This command reverses the effect of a reject command.

Disable News Server

Use the following syntax to disable the news server:

ctlinnd throttle reason

The argument is defined as follows:

reason

The reason for throttling the server.

This command is simultaneously equivalent to a newsreaders no and a reject, and is useful when emergency
work is performed on the news database. It ensures that nothing attempts to update it while you are working on it.

Restart News Server

Use the following syntax to restart the news server:

ctlinnd go reason

The argument is defined as follows:

reason

The reason given when stopping the server. If this field is an empty string, the server will be reenabled
unconditionally. If a reason is given, only those functions disabled with a reason matching the supplied text will
be restarted.

This command is used to restart a server function after a throttle, pause, or reject command.

Display Status of a Newsfeed

Use the following syntax to display the status of a newsfeed:

ctlinnd feedinfo site

The argument is defined as follows:

site

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (16 of 17) [2/20/2001 11:05:47 AM]

The site name (taken from the newsfeeds file) for which you wish to display the newsfeed's status.

Drop a Newsfeed

Use the following syntax to drop a newsfeed:

ctlinnd drop site

The argument is defined as follows:

site

The name of the site (taken from the newsfeeds file) to which feeds are dropped. If this field is an empty string,
all active feeds will be dropped.

Dropping a newsfeed to a site halts any active feeds to the site. It is not a permanent change. This command would be
useful if you've modified the feed details for a site and a feed to that site is active.

Begin a Newsfeed

Use the following syntax to begin a newsfeed:

ctlinnd begin site

The argument is defined as follows:

site

The name of the site from the newsfeeds file to which feeds are started. If a feed to the site is already active, a
drop command is done first automatically.

This command causes the server to reread the newsfeeds file, locate the matching entry, and commence a newsfeed to
the named site using the details found. You can use this command to test a new news feed to a site after you've added
or modified its entry in the newsfeeds file.

Cancel an Article

Use the following syntax to cancel an article:

ctlinnd cancel Message-Id

The argument is defined as follows:

Message-ID

The ID of the article to be cancelled.

This command causes the specified article to be deleted from the server. It does not generate a cancel message.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News

http://www.oreilly.com/catalog/linag2/book/ch23.html (17 of 17) [2/20/2001 11:05:47 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Chapter 24
Newsreader Configuration
Contents:
tin Configuration
trn Configuration
nn Configuration

A newsreader is a program that users invoke to view, store, and create news articles.
Several newsreaders have been ported to Linux. We will describe the basic setup for the
three most popular newsreaders: tin, trn, and nn.

One of the most effective newsreaders is:

$ find /var/spool/news -name '[0-9]*' -exec cat {} \; | more

This is the way Unix die-hards read their news.

Most newsreaders, however, are much more sophisticated. They usually offer a
full-screen interface with separate levels for displaying all groups the user has subscribed
to, an overview of all articles in each group, and individual articles. Many web browsers
double as newsreaders, but if you want to use a standalone newsreader, this chapter
explains how to configure two classic ones: trn and nn.

At the newsgroup level, most newsreaders display a list of articles, showing their subject
lines and authors. In big groups, it is difficult for the user to keep track of articles relating
to each other, although it is possible to identify responses to earlier articles.

A response usually repeats the original article's subject, prepending it with Re:.
Additionally, the References: header line should include the message ID of the
article on which the response is directly following up. Sorting articles by these two
criteria generates small clusters (in fact, trees) of articles, which are called threads. One

Linux Network Administrator's Guide, 2nd Edition: Chapter 24: Newsreader Configuration

http://www.oreilly.com/catalog/linag2/book/ch24.html (1 of 5) [2/20/2001 11:05:49 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

of the tasks of writing a newsreader is devising an efficient scheme of threading, because
the time required for this is proportional to the square of the number of articles.

We will not go into how the user interfaces are built here. All newsreaders currently
available for Linux have a good help function; please refer to it for more details.

In the following sections, we will deal only with administrative tasks. Most of these relate
to the creation of threads databases and accounting.

tin Configuration
The most versatile newsreader with respect to threading is tin. It was written by Iain Lea
and is loosely modeled on an older newsreader named tass (written by Rich Skrenta). It
does its threading when the user enters the newsgroup, and it is pretty fast unless you're
getting posts via NNTP.

On a 486DX50, it takes roughly 30 seconds to thread 1,000 articles when reading directly
from disk. It would take more than 5 minutes over NNTP to reach a loaded news
server.[1] You may improve this time by regularly updating your index file by invoking
tin with the -u option, so that when you next start tin to read news the threads already
exist. Alternatively, you can invoke tin with the -U option to read news. When invoked
this way, tin forks a background process to build the index files while you are reading
news.

[1] Things improve drastically if the NNTP server does the threading itself
and lets the client retrieve the threads databases; INN does this, for instance.

Usually, tin dumps its threading databases in the user's home directory below .tin/index.
This may be costly in terms of resources, however, so you should keep a single copy of
them in a central location. This may be achieved by making tin setuid to news, for
example. tin will then keep all thread databases below /var/spool/news/.index. For any
file access or shell escape, it will reset its effective uid to the real uid of the user who
invoked it.[2]

[2] This is the reason why you will get ugly error messages when invoking
tin as superuser. But you shouldn't do routine work as root, anyway.

The version of tin included in some Linux distributions is compiled without NNTP
support, but most do have it now. When invoked as rtin or with the -r option, tin tries to
connect to the NNTP server specified in the file /etc/nntpserver or in the NNTPSERVER
environment variable. The nntpserver file simply contains the server's name on a single
line.

trn Configuration
trn is also the successor to an older newsreader, namely rn (which means read news). The
"t" in its name stands for "threaded." It was written by Wayne Davidson.

Unlike tin, trn has no provision for generating its threading database at runtime. Instead,
it uses those prepared by a program called mthreads that has to be invoked regularly from

Linux Network Administrator's Guide, 2nd Edition: Chapter 24: Newsreader Configuration

http://www.oreilly.com/catalog/linag2/book/ch24.html (2 of 5) [2/20/2001 11:05:49 AM]

cron to update the index files.

You can still access new articles if you're not running mthreads, but you will have all
those "A GENUINE INVESTMENT OPPORTUNITY" articles scattered across your
article selection menu, instead of a single thread you may easily skip.

To turn on threading for particular newsgroups, invoke mthreads with the list of
newsgroups on the command line. The format of the list is the same as the one in the C
News sys file:

$ mthreads 'comp,rec,!rec.games.go'

This command enables threading for all of comp and rec, except for rec.games.go (people
who play Go don't need fancy threads). After that, you simply invoke mthreads with no
options at all to make it thread any newly arrived articles. Threading of all groups found
in your active file can be turned on by invoking mthreads with a group list of all.

If you're receiving news during the night, you will customarily run mthreads once in the
morning, but you can also to do so more frequently if necessary. Sites that have very
heavy traffic may want to run mthreads in daemon mode. When it is started at boot time
using the -d option, it puts itself in the background, wakes up every ten minutes to check
if there are any newly arrived articles, and threads them. To run mthreads in daemon
mode, put the following line in your rc.news script:

/usr/local/bin/rn/mthreads -deav

The -a option makes mthreads automatically turn on threading for new groups as they are
created; -v enables verbose log messages to the mthreads log file mt.log in the directory
where you have trn installed.

Old articles that are no longer available must be removed from the index files regularly.
By default, only articles with a number below the low-water mark will be removed.[3]
Articles above this number that have been expired (because the oldest article has been
assigned a long expiration date by an Expires: header field) may nevertheless be removed
by giving mthreads the -e option to force an "enhanced" expiry run. When mthreads is
running in daemon mode, the -e option makes mthreads put in such an enhanced expiry
run once a day, shortly after midnight.

[3] Note that C News (described in Chapter 21, C News) doesn't update this
low-water mark automatically; you have to run updatemin to do so.

nn Configuration
nn, written by Kim F. Storm, claims to be a newsreader whose ultimate goal is not to read
news. Its name stands for "No News," and its motto is "No news is good news. nn is
better."

To achieve this ambitious goal, nn comes with a large assortment of maintenance tools
that not only allow thread generation, but also extensive database consistency checks,
accounting, gathering of usage statistics, and access restrictions. There is also an
administration program called nnadmin, which allows you to perform these tasks
interactively. It is very intuitive, so we will not dwell on these aspects, but deal only with

Linux Network Administrator's Guide, 2nd Edition: Chapter 24: Newsreader Configuration

http://www.oreilly.com/catalog/linag2/book/ch24.html (3 of 5) [2/20/2001 11:05:49 AM]

the generation of the index files.

The nn threads database manager is called nnmaster. It is usually run as a daemon, started
from an rc file at boot time. It is invoked as:

/usr/local/lib/nn/nnmaster -l -r -C

This enables threading for all newsgroups present in your active file.

Equivalently, you may invoke nnmaster periodically from cron, giving it a list of groups
to act upon. This list is very similar to the subscription list in the sys file, except that it
uses blanks instead of commas. Instead of the fake group name all, an empty argument of
"" should be used to denote all groups. A sample invocation looks like this:

/usr/local/lib/nn/nnmaster !rec.games.go rec comp

Note that the order is significant. The leftmost group specification that matches always
wins. Thus, if we had put !rec.games.go after rec, all articles from this group would have
been threaded nevertheless.

nn offers several methods to remove expired articles from its databases. The first is to
update the database by scanning the newsgroup directories and discarding the entries
whose corresponding article has exceeded its expiration date. This is the default operation
obtained by invoking nnmaster with the -E option. It is reasonably quick, unless you're
doing this via NNTP.

The second method behaves exactly like a default expiration run of mthreads; it removes
only those entries that refer to articles with numbers below the low-water mark in the
active file. It may be enabled using the -e option.

Finally, the third strategy discards the entire database and recollects all articles. It may be
enabled using the -E3 option.

The list of groups to be expired is given by the -F option in the same fashion as above.
However, if you have nnmaster running as daemon, you must kill it (using -k) before
expiration can take place, and restart it with the original options afterward. Thus the
proper command to run expiration on all groups using the first method is:

nnmaster -kF ""
nnmaster -lrC

There are many more flags that fine-tune the nn's behavior. If you are concerned about
removing bad articles or assembling article digests, read the nnmaster manual page.

nnmaster relies on a file named GROUPS, which is located in /var/lib/nn. If it does not
exist when nnmaster is first run, it is created. For each newsgroup, it contains a line that
begins with the group's name, optionally followed by a time stamp and flags. You may
edit these flags to enable certain behavior for the group in question, but you may not
change the order in which the groups appear.[4] The flags allowed and their effects are
detailed in the nnmaster manual page, too.

[4] Their order has to agree with that of the entries in the (binary) MASTER
file.

Back to: Sample Chapter Index

Linux Network Administrator's Guide, 2nd Edition: Chapter 24: Newsreader Configuration

http://www.oreilly.com/catalog/linag2/book/ch24.html (4 of 5) [2/20/2001 11:05:49 AM]

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Chapter 24: Newsreader Configuration

http://www.oreilly.com/catalog/linag2/book/ch24.html (5 of 5) [2/20/2001 11:05:49 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Appendix A
Example Network: The Virtual Brewery
Contents:
Connecting the Virtual Subsidiary Network

Throughout this book we've used the following example that is a little less
complex than Groucho Marx University and may be closer to the tasks you will
actually encounter.

The Virtual Brewery is a small company that brews, as the name suggests, virtual
beer. To manage their business more efficiently, the virtual brewers want to
network their computers, which all happen to be PCs running the brightest and
shiniest production Linux kernel. Figure A.1 shows the network configuration.

On the same floor, just across the hall, there's the Virtual Winery, which works
closely with the brewery. The vintners run an Ethernet of their own. Quite
naturally, the two companies want to link their networks once they are operational.
As a first step, they want to set up a gateway host that forwards datagrams between
the two subnets. Later, they also want to have a UUCP link to the outside world,
through which they exchange mail and news. In the long run, they also want to set
up PPP connections to connect to offsite locations and to the Internet.

The Virtual Brewery and the Virtual Winery each have a class C subnet of the
Brewery's class B network, and gateway to each other via the host vlager, which
also supports the UUCP connection. Figure A.2 shows the configuration.

Figure A.1: The Virtual Brewery and Virtual Winery subnets

Linux Network Administrator's Guide, 2nd Edition: Appendix A: Example Network: The Virtual Brewery

http://www.oreilly.com/catalog/linag2/book/appa.html (1 of 3) [2/20/2001 11:05:51 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

Figure A.2: The Virtual Brewery Network

Connecting the Virtual Subsidiary
Network
The Virtual Brewery grows and opens a branch in another city. The subsidiary
runs an Ethernet of its own using the IP network number 172.16.3.0, which is
subnet 3 of the Brewery's class B network. The host vlager acts as the gateway for
the Brewery network and will support the PPP link; its peer at the new branch is
called vbourbon and has an IP address of 172.16.3.1. This network is illustrated in
Figure A.2.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

Linux Network Administrator's Guide, 2nd Edition: Appendix A: Example Network: The Virtual Brewery

http://www.oreilly.com/catalog/linag2/book/appa.html (2 of 3) [2/20/2001 11:05:51 AM]

http://www.oreilly.com/catalog/linag2/noframes.html

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Appendix A: Example Network: The Virtual Brewery

http://www.oreilly.com/catalog/linag2/book/appa.html (3 of 3) [2/20/2001 11:05:51 AM]

http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Appendix B
Useful Cable Configurations
Contents:
A PLIP Parallel Cable
A Serial NULL Modem Cable

If you wish to connect two computers together and you don't have an Ethernet
network, you will need either a serial null modem cable, or a PLIP parallel cable.

These cables can be bought off the shelf, but are much cheaper and fairly simple to
make yourself.

A PLIP Parallel Cable
To make a parallel cable to use for PLIP, you will need two 25-pin connectors
(called DB-25) and a cable with at least eleven conductors. The cable must not be
any longer than 15 meters (50 feet). The cable may or may not have a shield, but if
you are building a long cable, it is probably a good idea to have one.

If you look at the connector, you should be able to read tiny numbers at the base of
each pin -- from 1 for the pin at the top left (if you hold the broader side up) to 25
for the pin at the bottom right. For the null printer cable, you have to connect the
following pins of both connectors with each other, as shown in Figure B.1.

All remaining pins remain unconnected. If the cable is shielded, the shield should
be connected to the DB-25's metallic shell on just one end.

Linux Network Administrator's Guide, 2nd Edition: Appendix B: Useful Cable Configurations

http://www.oreilly.com/catalog/linag2/book/appb.html (1 of 3) [2/20/2001 11:05:53 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

A Serial NULL Modem Cable
A serial null modem cable will work for both SLIP and PPP. Again, you will need
two DB-25 connectors. This time your cable requires only eight conductors.

You may have seen other NULL modem cable designs, but this one allows you to
use hardware flow control -- which is far superior to XON/XOFF flow control --
or none at all. The conductor configuration is shown in Figure B.2:

Again, if you have a shield, you should connect it to the first pin at one end only.

Figure B.1: Parallel PLIP cable

Figure B.2: Serial NULL-Modem cable

Linux Network Administrator's Guide, 2nd Edition: Appendix B: Useful Cable Configurations

http://www.oreilly.com/catalog/linag2/book/appb.html (2 of 3) [2/20/2001 11:05:53 AM]

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Appendix B: Useful Cable Configurations

http://www.oreilly.com/catalog/linag2/book/appb.html (3 of 3) [2/20/2001 11:05:53 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Appendix C
Copyright Information
Contents:
Preamble
Applicability and Definitions
Verbatim Copying
Copying in Quantity
Modifications
Combining Documents
Collections of Documents
Aggregation with Independent Works
Translation
Termination
Future Revisions of this License

Copyright © 1993 Olaf Kirch Copyright © 2000 Terry Dawson Copyright on
O'Reilly printed version © 2000 O'Reilly & Associates

The online version of this book, which at this time of printing contains exactly
the same text as the O'Reilly printed version, is available under the GNU FDL.
Rights to reprint the document under the FDL include the right to print and
distribute printed copies of the online version. Rights to copy the O'Reilly
printed version are reserved. You can find the online copy of the license at

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (1 of 9) [2/20/2001 11:05:55 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

http://www.oreilly.com/catalog/linag2/book/copyright.html. The book is
available at http://www.linuxdoc.org/LDP/nag/nag.html and
http://www.oreilly.com/catalog/linag2/, and may be reposted by others at other
locations.

Permission is granted to copy, print, distribute, and modify the online
document under the terms of the GNU Free Documentation License, Version
1.1, or any later version published by the Free Software Foundation; with the
Invariant Sections being the Acknowledgments (in the Preface) and Appendix
C, Linux Network Administrator's Guide, Second Edition, Copyright
Information. Further acknowledgments can be added outside the Invariant
Section. The Front-Cover Text must read:

Linux Network Administrator's Guide
by Olaf Kirch and Terry Dawson
Copyright © 1993 Olaf Kirch
Copyright © 2000 Terry Dawson
Copyright on O'Reilly printed version © 2000 O'Reilly &
Associates

The following is a copy of the GNU Free Documentation License, which is
also at http://www.gnu.org/copyleft/fdl.html.

Version 1.1, March 2000
Copyright © 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other written
document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft," which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (2 of 9) [2/20/2001 11:05:55 AM]

http://www.oreilly.com/catalog/linag2/book/copyright.html
http://www.linuxdoc.org/LDP/nag/nag.html
http://www.oreilly.com/catalog/linag2/
http://www.gnu.org/copyleft/fdl.html

with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

Applicability and Definitions
This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The "Document," below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you."

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document's overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is not
"Transparent" is called "Opaque."

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (3 of 9) [2/20/2001 11:05:55 AM]

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats that do not have any
title page as such, "Title Page" means the text near the most prominent
appearance of the work's title, preceding the beginning of the body of the text.

Verbatim Copying
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

Copying in Quantity
If you publish printed copies of the Document numbering more than 100, and
the Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (4 of 9) [2/20/2001 11:05:55 AM]

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

Modifications
You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

1.

List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has less than five).

2.

State on the Title page the name of the publisher of the Modified
Version, as the publisher.

3.

Preserve all the copyright notices of the Document.4.

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (5 of 9) [2/20/2001 11:05:55 AM]

Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

5.

Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

6.

Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document's license notice.

7.

Include an unaltered copy of this License.8.

Preserve the section entitled "History," and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled
"History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

9.

Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

10.

In any section entitled "Acknowledgements" or "Dedications," preserve
the section's title, and preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or dedications given
therein.

11.

Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

12.

Delete any section entitled "Endorsements." Such a section may not be
included in the Modified Version.

13.

Do not retitle any existing section as "Endorsements" or to conflict in
title with any Invariant Section.

14.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (6 of 9) [2/20/2001 11:05:55 AM]

section titles.

You may add a section entitled "Endorsements," provided it contains nothing
but endorsements of your Modified Version by various parties -- for example,
statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

Combining Documents
You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the
various original documents, forming one section entitled "History"; likewise
combine any sections entitled "Acknowledgements," and any sections entitled
"Dedications." You must delete all sections entitled "Endorsements."

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (7 of 9) [2/20/2001 11:05:55 AM]

Collections of Documents
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

Aggregation with Independent Works
A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation.
Such a compilation is called an "aggregate," and this License does not apply to
the other self-contained works thus compiled with the Document, on account
of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire
aggregate, the Document's Cover Texts may be placed on covers that surround
only the Document within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

Translation
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include
a translation of this License provided that you also include the original English
version of this License. In case of a disagreement between the translation and
the original English version of this License, the original English version will
prevail.

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (8 of 9) [2/20/2001 11:05:55 AM]

Termination
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

Future Revisions of this License
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any
later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software Foundation.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information

http://www.oreilly.com/catalog/linag2/book/appc.html (9 of 9) [2/20/2001 11:05:55 AM]

http://www.gnu.org/copyleft/
http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Linux Network Administrator's
Guide, 2nd Edition
By Olaf Kirch & Terry Dawson
2nd Edition June 2000
1-56592-400-2, Order Number: 4002
506 pages, $34.95

Appendix D
SAGE: The System Administrators
Guild
If you are not getting everything you need from posting to comp.os.linux.*
groups and reading documentation, maybe it's time to consider joining SAGE,
the System Administrators Guild, sponsored by USENIX. The main goal of
SAGE is to advance system administration as a profession. SAGE brings
together system and network administrators to foster professional and
technical development, share problems and solutions, and communicate with
users, management, and vendors on system administration topics.

Current SAGE initiatives include:

Co-sponsoring the highly successful annual System Administration
Conferences (LISA) with USENIX.

●

Publishing Job Descriptions for System Administrators, edited by Tina
Darmohray, the first in a series of very practical booklets and resource
guides covering system administration issues and techniques.

●

Creating an archive site, ftp.sage.usenix.org, for papers from the System
Administration Conferences and sysadmin-related documentation.

●

Establishing working groups in areas important to system
administrators, such as jobs, publications, policies, electronic

●

Linux Network Administrator's Guide, 2nd Edition: Appendix D: SAGE: The System Administrators Guild

http://www.oreilly.com/catalog/linag2/book/appd.html (1 of 2) [2/20/2001 11:05:58 AM]

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/linag2/

information distribution, education, vendors, and standards.

To learn more about the USENIX Association and its Special Technical
Group, SAGE, contact the USENIX Association office at (510) 528-8649 in
the U.S., or by email to office@usenix.org. To receive information
electronically, contact info@usenix.org. Annual SAGE membership is $25
(you must also be a member of USENIX). Members enjoy free subscriptions
to login: and Computing Systems, a quarterly refereed technical journal;
discounts on conference and symposia registration; and savings on SAGE
publication purchases and other services.

Back to: Sample Chapter Index

Back to: Linux Network Administrator's Guide, 2nd Edition

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Linux Network Administrator's Guide, 2nd Edition: Appendix D: SAGE: The System Administrators Guild

http://www.oreilly.com/catalog/linag2/book/appd.html (2 of 2) [2/20/2001 11:05:58 AM]

http://www.oreilly.com/catalog/linag2/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

	oreilly.com
	Linux Network Administrator's Guide, 2nd Edition
	Linux Network Administrator's Guide, 2nd Edition: Preface
	Linux Network Administrator's Guide, 2nd Edition: Chapter 1: Introduction to Networking
	Linux Network Administrator's Guide, 2nd Edition: Chapter 2: Issues of TCP/IP Networking
	Linux Network Administrator's Guide, 2nd Edition: Chapter 3: Configuring the Networking Hardware
	Linux Network Administrator's Guide, 2nd Edition: Chapter 4: Configuring the Serial Hardware
	Linux Network Administrator's Guide, 2nd Edition: Chapter 5: Configuring TCP/IP Networking
	Linux Network Administrator's Guide, 2nd Edition: Chapter 6: Name Service and Resolver Configuration
	Linux Network Administrator's Guide, 2nd Edition: Chapter 7: Serial Line IP
	Linux Network Administrator's Guide, 2nd Edition: Chapter 8: The Point-to-Point Protocol
	Linux Network Administrator's Guide, 2nd Edition: Chapter 9: TCP/IP Firewall
	Linux Network Administrator's Guide, 2nd Edition: Chapter 10: IP Accounting
	Linux Network Administrator's Guide, 2nd Edition: Chapter 11: IP Masquerade and Network Address Translation
	Linux Network Administrator's Guide, 2nd Edition: Chapter 12: Important Network Features
	Linux Network Administrator's Guide, 2nd Edition: Chapter 13: The Network Information System
	Linux Network Administrator's Guide, 2nd Edition: Chapter 14: The Network File System
	Linux Network Administrator's Guide, 2nd Edition: Chapter 15: IPX and the NCP Filesystem
	Linux Network Administrator's Guide, 2nd Edition: Chapter 16: Managing Taylor UUCP
	Linux Network Administrator's Guide, 2nd Edition: Chapter 17: Electronic Mail
	Linux Network Administrator's Guide, 2nd Edition: Chapter 18: Sendmail
	Linux Network Administrator's Guide, 2nd Edition: Chapter 19: Getting Exim Up and Running
	Linux Network Administrator's Guide, 2nd Edition: Chapter 20: Netnews
	Linux Network Administrator's Guide, 2nd Edition: Chapter 21: C News
	Linux Network Administrator's Guide, 2nd Edition: Chapter 22: NNTP and the nntpd Daemon
	Linux Network Administrator's Guide, 2nd Edition: Chapter 23: Internet News
	Linux Network Administrator's Guide, 2nd Edition: Chapter 24: Newsreader Configuration
	Linux Network Administrator's Guide, 2nd Edition: Appendix A: Example Network: The Virtual Brewery
	Linux Network Administrator's Guide, 2nd Edition: Appendix B: Useful Cable Configurations
	Linux Network Administrator's Guide, 2nd Edition: Appendix C: Linux Network Administrator's Guide, Second Edition Copyright Information
	Linux Network Administrator's Guide, 2nd Edition: Appendix D: SAGE: The System Administrators Guild

