

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Edward Whalen, Marcilina Garcia, Burzin Patel, Stacia Misner, and Victor
Isakov

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2006934391

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 1 0 9 8 7 6

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, Visual Studio, Windows, Windows NT, and
Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Martin DelRe
Developmental Editor: Jenny Moss Benson
Project Editor: Melissa von Tschudi-Sutton
Production: Custom Editorial Productions, Inc.

Body Part No. X12-64017

Contents at a Glance

Part I

Introduction to Microsoft SQL Server 2005

1 What’s New in Microsoft SQL Server . 3

2 Microsoft SQL Server 2005 Editions, Capacity Limits,
and Licensing . 17

3 Roles and Responsibilities of the Microsoft SQL Server DBA 43

Part II
System Design and Architecture

4 I/O Subsystem Planning and RAID Configuration 65

5 32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005 . . 95

6 Capacity Planning . 107

7 Choosing a Storage System for Microsoft SQL Server 2005 133

8 Installing and Upgrading Microsoft SQL Server 2005 157

9 Configuring Microsoft SQL Server 2005 on the Network 203

Part III

Microsoft SQL Server 2005 Administration

10 Creating Databases and Database Snapshots 241

11 Creating Tables and Views . 283

12 Creating Indexes for Performance . 315

13 Enforcing Data Integrity . 343

14 Backup Fundamentals . 369

15 Restoring Data . 405

16 User and Security Management . 423
iii

iv Contents at a Glance
Part IV

Microsoft SQL Server 2005 Architecture and Features

17 Transactions and Locking . 455

18 Microsoft SQL Server 2005 Memory Configuration 497

19 Data Partitioning . 507

Part V

Microsoft SQL Server 2005 Business Intelligence

20 Replication . 543

21 Integration Services . 607

22 Analysis Services . 659

23 Reporting Services . 711

24 Notification Services and Service Broker . 757

Part VI

High Availability

25 Disaster Recovery Solutions . 815

26 Failover Clustering Installation and Configuration 831

27 Log Shipping and Database Mirroring . 871

Part VII

Performance Tuning and Troubleshooting

28 Troubleshooting, Problem Solving, and Tuning Methodologies . 923

29 Database System Tuning . 939

30 Using Profiler, Management Studio, and Database Engine
Tuning Advisor . 981

31 Dynamic Management Views . 1041

32 Microsoft SQL Server 2005 Scalability Options 1085

33 Tuning Queries Using Hints and Plan Guides 1113

 this publication so we can
 for you. To participate in a brief
/booksurvey/
Table of Contents
Acknowledgments . xxvii

Introduction .xxix

Part I

Introduction to Microsoft SQL Server 2005

1 What’s New in Microsoft SQL Server . 3

New Hardware Support . 5

Native 64-Bit Support . 5

NUMA Support . 5

Data Availability . 6

Online Restore . 6

Online Index Operations . 6

Database Snapshot . 7

Fast Recovery . 7

Mirrored Backups . 8

Database Mirroring . 8

Read Committed Snapshot and Snapshot Isolation 8

Performance . 9

Data Partitioning . 9

Plan Guides . 9

Forced Parameterization . 10

Dynamic Management Views . 10

Enhancements to Existing Features . 10

SNAC . 10

Failover Clustering . 10

Replication . 11

Indexes . 11

Full-Text Search . 11

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about
continually improve our books and learning resources
online survey, please visit: www.microsoft.com/learning
v

vi Table of Contents
Tools and Utilities . 12

SQL Server Management Studio . 12

Query Editor . 12

SQL Configuration Manager . 13

Surface Area Configuration . 13

SQL Server Profiler . 13

Database Engine Tuning Advisor . 13

SQL Server Upgrade Advisor . 14

sqlcmd Utility . 14

tablediff Utility . 14

Business Intelligence Features . 14

Business Intelligence Development Studio . 15

Integration Services . 15

Analysis Services . 15

Reporting Services . 16

Notification and Broker Services . 16

Summary . 16

2 Microsoft SQL Server 2005 Editions, Capacity Limits,
and Licensing . 17

SQL Server 2005 Editions . 18

Mobile Edition . 18

Express Edition . 18

Workgroup Edition . 19

Standard Edition . 19

Enterprise Edition . 20

Developer Edition . 20

Understanding Windows Platform Support . 21

Understanding Processors and Memory Limits . 25

Factoring in Head-Room . 27

Comparing SQL Server 2005 Editions . 27

Database Engine Features . 27

Analysis Services . 28

Reporting Services . 30

Notification Services . 31

Table of Contents vii
Integration Services . 31

Replication . 32

SQL Server 2005 Capacity Limits . 33

Understanding SQL Server 2005 Licensing . 35

User Client Access Licensing . 36

Device Client Access Licensing . 37

Processor Licensing . 38

Licensing Considerations for High-Availability Environments 40

SQL Server 2005 Pricing . 41

Summary . 42

3 Roles and Responsibilities of the Microsoft SQL Server DBA 43

Different Kinds of DBA . 43

Production DBA . 43

Development DBA . 44

Architect DBA . 44

ETL DBA . 45

OLAP DBA . 46

Basic Duties of a DBA . 47

Installation and Configuration . 47

Security . 50

Operations . 51

Service Levels . 52

System Monitoring . 52

Performance Tuning . 53

Routine Maintenance . 53

Reliability . 54

Disaster Recovery . 54

Planning and Scheduling Downtime . 55

Capacity Planning . 56

Documentation . 56

Development and Design . 57

Scalability . 58

Replication . 58

Named Instances . 58

viii Table of Contents
DBA Tips, Guidelines, and Advice . 59

Know Your Operating System . 59

Help Desk . 59

Purchasing Input . 59

Know Your Versions . 60

Don’t Panic . 60

Summary . 61

Part II
System Design and Architecture

4 I/O Subsystem Planning and RAID Configuration 65

I/O Fundamentals . 66

Disk Drive Basics . 66

Disk Drive Performance Characteristics . 68

Disk Drive Specifications . 70

Disk Drive Performance . 71

Solutions to the Disk Performance Limitation Problem 74

Redundant Array of Independent Disks (RAID) . 74

RAID Basics . 75

RAID Levels . 76

RAID Performance . 83

Disk Calculations . 85

RAID Comparison . 86

Which RAID Level Is Right for You? . 87

SQL Server I/O Overview . 88

SQL Server Reads . 89

SQL Server Writes . 89

Transaction Log . 90

Backup and Recovery . 90

Planning the SQL Server Disk Layout . 90

Determine I/O Requirements . 90

Plan the Disk Layout . 92

Implement the Configuration . 93

Summary . 94

Table of Contents ix
5 32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005 . . 95

CPU Basics . 95

64-Bit Versus 32-Bit Addressing . 96

Hardware Platforms . 97

Windows Versions . 100

Windows 2000 . 100

Windows Server 2003 . 101

Windows Server 2003 64-Bit editions . 101

Windows Comparis on . 102

SQL Server 2005 Options . 102

SQL Server 32-Bit Edition . 102

SQL Server 64-Bit . 103

Taking Advantage of 64-Bit SQL Server . 104

Utilizing Large Memory with the 32-Bit Version of SQL Server 2005 . 105

Utilizing Large Memory with the 64-Bit Version of SQL Server 2005 . 106

Summary . 106

6 Capacity Planning . 107

Principles of Capacity Planning . 108

Capacity Planning Versus Sizing . 108

Service Level Agreements . 109

Mathematics of Capacity Planning . 110

CPU Capacity Planning . 112

Sizing CPUs . 112

Monitoring CPU Usage . 113

Memory Capacity Planning . 117

Sizing Memory . 118

Monitoring Memory . 119

I/O Capacity Planning . 120

Sizing the I/O Subsystem . 120

Monitoring the I/O Subsystem . 121

Network Capacity Planning . 123

Sizing the Network . 123

Monitoring the Network . 124

x Table of Contents
Growth Considerations . 126

Calculating Growth . 126

Planning for Future Growth . 127

Benchmarking and Load Testing . 128

Load Testing the Application . 129

Benchmarking the I/O Subsystem . 129

Benchmarking the Network . 131

Using MOM for Capacity Planning . 132

Summary . 132

7 Choosing a Storage System for Microsoft SQL Server 2005 133

Interconnect and Protocol Technologies . 135

Understanding Data Transfer: Block Form Versus File Format 135

SCSI Protocol over Parallel SCSI Interconnect . 136

Ethernet Interconnect . 140

iSCSI . 142

Fibre Channel (FC) Interconnect . 143

Interconnect Bandwidth Comparison . 145

Storage Systems . 146

DAS . 146

SAN . 148

NAS . 153

Storage Considerations for SQL Server 2005 . 154

Summary . 156

8 Installing and Upgrading Microsoft SQL Server 2005 157

Preinstallation Planning . 157

Minimum Hardware Requirements . 158

Selecting the Processor Architecture . 159

Installing Internet Information Services . 160

Components to Be Installed . 160

Service Accounts . 161

Multiple Instances and Side-by-Side Installation 162

Licensing Mode . 163

Collation . 163

Table of Contents xi
Authentication Modes . 164

Security Considerations . 164

Installing SQL Server 2005 . 165

Installing SQL Server 2005 Using the Installation Wizard 165

Installing SNAC Using the Installation Wizard . 176

Installing SQL Server 2005 Using the Command Prompt 177

Upgrading to SQL Server 2005 . 183

SQL Server Upgrade Advisor . 185

Upgrade Procedure . 191

Post-Upgrade Steps . 192

Reading the SQL Server 2005 Setup Log Files . 193

Uninstalling SQL Server 2005 . 194

Uninstalling SQL Server 2005 Using the Uninstall Wizard 194

Uninstalling SQL Server 2005 Using the Command Prompt 196

Using SQL Server Surface Area Configuration . 197

sac Utility . 200

Summary . 201

9 Configuring Microsoft SQL Server 2005 on the Network 203

Understanding the SQL Server Network Services . 204

SQL Server APIs . 205

SQL Server Network Libraries . 208

Selecting a Network Library . 209

SQL Native Client (SNAC) . 210

Using SQL Native Client . 211

Tracing and Debugging . 212

Configuring Network Protocols . 213

Configuring Server and Client Protocols . 214

Using ODBC Data Source Names (DSN) . 221

Creating an ODBC DSN . 222

Using Aliases . 228

SQL Server Browser Service . 230

SQL Browser Working . 230

Hiding a SQL Server 2005 Instance . 232

Network Components and Performance . 233

xii Table of Contents
The Software Layer . 234

The Hardware Layer . 234

Network Monitoring . 236

Monitoring Network Performance . 236

Finding Solutions to Network Problems . 237

Summary . 238

Part III

Microsoft SQL Server 2005 Administration

10 Creating Databases and Database Snapshots 241

Understanding the Database Structure . 242

Database Files . 242

Database Filegroups . 243

Understanding System Databases . 244

master . 245

model . 245

msdb . 246

resource . 246

tempdb . 247

AdventureWorks and AdventureWorksDW . 249

Creating User Databases . 249

Creating a Database . 250

Setting Database Options . 258

Viewing Database Details . 268

Viewing Database Details with SQL Server Management Studio 268

Viewing Database Details with the sp_helpdb Command 269

Deleting a Database . 270

Deleting a Database Using SQL Server Management Studio 270

Deleting a Database Using the DROP DATABASE Command 271

Real-World Database Layouts . 271

Simple Application Workload . 272

Moderately Complex Application Workload . 273

Complex Application Workload . 274

Table of Contents xiii
Using Database Snapshots . 276

How Database Snapshots Work . 276

Managing Database Snapshots . 277

Common Uses . 280

Database Snapshots Limitations . 281

Summary . 282

11 Creating Tables and Views . 283

Table Fundamentals . 283

Data Types . 285

Nulls . 293

IDENTITY Column . 294

Creating, Modifying, and Dropping Tables . 296

Creating Tables . 296

Modifying Tables . 299

Dropping Tables . 302

Views . 303

Advantages of Views . 304

Data Security with Views . 304

Creating, Modifying, and Dropping Views . 304

View Source . 309

Modifying Views . 309

Dropping Views . 310

System Views . 310

Summary . 314

12 Creating Indexes for Performance . 315

Index Fundamentals . 315

How to Optimally Take Advantage of Indexes . 320

Index Types . 321

Clustered Index . 321

Nonclustered Index . 323

Included Columns Index . 324

Indexed Views . 324

Full-Text Index . 325

XML Index . 325

xiv Table of Contents
Designing Indexes . 326

Index Best Practices . 326

Index Restrictions . 327

Using the Index Fill Factor . 328

Partitioned Indexes . 329

Creating Indexes . 329

Index Creation Examples . 330

Normal Index Creation Logging . 335

Minimally Logged Operations . 335

Index Maintenance and Tuning . 335

Monitoring Indexes . 336

Rebuilding Indexes . 338

Disabling Indexes . 339

Tuning Indexes . 340

Online Index Operations . 340

Summary . 341

13 Enforcing Data Integrity . 343

What Is Data Integrity? . 343

Enforcing Integrity with Constraints . 344

PRIMARY KEY Constraints . 344

UNIQUE Constraints . 348

FOREIGN KEY Constraints . 351

CHECK Constraints . 359

NULL and NOT NULL Constraints . 364

DEFAULT Definitions . 365

Summary . 367

14 Backup Fundamentals . 369

Why Perform Backups with a Highly Available System? 370

System Failures That Require Backups . 371

Hardware Failures . 371

Software Failures . 372

Purpose of the Transaction Log . 372

Microsoft SQL Server Automatic Recovery . 374

Table of Contents xv
Recovery Models and Logging . 375

Simple Recovery Model . 375

Full Recovery Model . 376

Bulk-Logged Recovery Model . 377

Viewing and Changing the Recovery Model . 378

Types of Backups . 379

Data Backups . 380

Differential Backups . 385

Log Backups . 386

Copy-Only Backups . 387

Full-Text Catalog Backups . 387

Backup and Media Fundamentals . 387

Understanding Backup Devices and Media Sets 388

Mirrored Media Sets . 393

Overview of Backup History Tables . 393

Viewing Backup Sets in Management Studio . 396

Backup Strategy . 398

Backing Up System Databases . 402

Summary . 403

15 Restoring Data . 405

Practicing and Documenting Restore Procedures . 405

Restore and Recovery Concepts . 406

Restoring Data from Backups . 409

Complete Database, Differential Database, and Log Restores 410

Point-in-Time Restore . 413

File and Filegroup Restore . 415

Page Restore . 417

Partial and Piecemeal Restore . 418

Revert to Database Snapshot . 420

Onine Restore . 421

Fast Recovery . 422

Summary . 422

xvi Table of Contents
16 User and Security Management . 423

Principals . 424

Logins . 424

Users . 430

Roles . 433

Securables . 438

Schemas . 439

Permissions . 441

Server Permissions . 442

Database Object Permissions . 442

Statement Permissions . 447

Summary . 451

Part IV

Microsoft SQL Server 2005 Architecture and Features

17 Transactions and Locking . 455

What Is a Transaction? . 455

ACID Properties . 456

Atomicity . 456

Consistency . 457

Isolation . 457

Durability . 458

Committing Transactions . 458

Transaction Commit Modes . 459

Transaction Performance . 467

Transaction Rollbacks . 468

Automatic Rollbacks . 468

Programmed Rollbacks . 469

Using Savepoints . 472

Transaction Locking . 473

Locking Management Features . 474

Lockable Resources . 475

Lock Modes . 475

Table of Contents xvii
Viewing Locks . 478

Locking Hints . 480

Blocking and Deadlocks . 483

Isolation Levels . 485

Concurrent Transaction Behavior . 487

Row Versioning . 488

Summary . 495

18 Microsoft SQL Server 2005 Memory Configuration 497

Buffer Cache . 497

Lazy Writer Process . 498

Checkpoint Process . 499

SQL Server Memory Allocation . 502

Dynamic Memory Allocation . 502

Static Memory Allocation . 504

Setting Max and Min Server Memory . 504

Summary . 506

19 Data Partitioning . 507

Partitioning Fundamentals . 508

Data Partitioning Basics . 508

Partitioning Benefits . 509

Performance Benefits of Partitioning . 510

Designing Partitions . 512

Partitioning Design Fundamentals . 513

Creating Partitions . 513

Create the Partition Function . 513

Create the Partition Scheme . 516

Create the Partitioned Table . 517

Create the Partitioned Index . 518

Viewing Partition Information . 519

Viewing Partition Information with SQL Statements 519

Viewing Partition Information with SQL Server Management Studio . 525

Maintaining Partitions . 526

Adding Partitions . 526

xviii Table of Contents
Archiving Partitions . 528

Deleting Partitions . 531

Repartitioning Tables . 534

Partitioning a Nonpartitioned Table . 534

Unpartitioning a Table . 534

Dropping Partition Functions and Schemes . 535

Using Partitions . 535

Inserting Data into Partitioned Tables . 535

Selecting Data from Partitioned Tables . 535

Selecting Data from a Specific Partition . 535

Partitioning Scenarios . 536

Scenario 1: Partitioning Historical Data . 536

Scenario 2: Storage Partitioning . 537

Scenario 3: Partitioning for Maintenance Optimization 537

Scenario 4: Spatial Partitioning . 537

Scenario 5: Account Partitioning . 538

Scenario 6: Join Partitioning . 538

Scenario Summary . 539

Summary . 539

Part V

Microsoft SQL Server 2005 Business Intelligence

20 Replication . 543

Replication Fundamentals . 544

Uses of Replication . 545

Scaling Out Applications . 545

Data Warehousing . 546

Distributing and Consolidating Data . 546

Offloading Report Processing . 547

Replication Concepts . 547

Replication Components . 547

Types of Replication . 549

Snapshot Replication . 549

Transactional Replication . 549

Merge Replication . 550

Table of Contents xix
Components of Replication . 550

Replication Data . 550

Push and Pull Subscriptions . 551

Replication Agents . 551

Configuring Replication . 553

Configure the Distributor . 554

Configure Publications . 557

Creating a Publication with SQL Statements . 565

Configure Subscribers . 567

Creating a Subscription with SQL Statements . 573

Configuring an Oracle Publication . 574

Managing Replication . 579

Publisher Properties . 580

Distributor Properties . 580

Disable Publishing and Distribution . 583

Launch Replication Monitor . 583

Generate Scripts . 583

Update Replication Passwords . 584

New . 585

Refresh . 585

Monitoring and Tuning Replication . 585

Monitoring Replication with perfmon . 585

Monitoring Replication with the Replication Monitor 586

Tuning for Snapshot Replication . 589

Tuning the Distributor . 592

Tuning for Transactional Replication . 594

Monitoring and Tuning the Merge Replication System 601

Monitoring the Merge Replication System . 604

Tuning the Merge Replication System . 604

Summary . 606

21 Integration Services . 607

What Is Integration Services? . 607

Integration Services Versus Data Transformation Services 608

Integration Services Fundamentals . 612

Integration Services Components Overview . 613

xx Table of Contents
Designing Packages . 614

The Development Environment . 614

Control Flow Components . 623

Connection Managers . 630

Data Flow Components . 631

Debugging Tools . 642

Logging . 647

Advanced Integration Services Features . 649

Deploying Packages . 650

Package Configuration . 650

Package Deployment . 653

Package Security . 654

Package Execution . 656

Package Management . 657

Monitoring Packages . 658

Summary . 658

22 Analysis Services . 659

What Is Analysis Services? . 659

Analysis Services 2005 Versus Analysis Services 2000 660

Analysis Services Fundamentals . 665

Integration with SQL Server 2005 Components 667

Analysis Services Components Overview . 667

Designing Analysis Services Projects . 668

Data Preparation . 669

Starting an Analysis Services Project . 670

Dimension Design . 676

Cube Design . 682

Managing Analysis Services . 689

Analysis Server Configuration . 690

Deployment Options . 691

Partitions . 694

Processing Data . 702

Security Management . 705

Performance Management . 707

Table of Contents xxi
SQL Server Profiler . 707

Performance Counters . 708

Summary . 709

23 Reporting Services . 711

What Is Reporting Services? . 711

Reporting Services 2005 Versus Reporting Services 2000 712

Reporting Services Fundamentals . 714

Reporting Services Components Overview . 715

Authoring Reports . 716

Enterprise Reports . 717

Ad Hoc Reports . 730

Managing Reporting Services . 739

Report Server Configuration . 739

Content Management . 742

Security Management . 749

Performance Management . 752

Summary . 756

24 Notification Services and Service Broker . 757

What Is Notification Services? . 757

Notification Services 2005 Versus Notification Services 2.0 758

Notification Services Fundamentals . 759

Notification Services Components Overview . 760

Developing Notification Services Applications . 761

Creating an Instance Configuration File . 761

Creating an Application Definition File . 767

Creating an XSLT File . 791

Using Notification Services Applications . 792

Deploying a Notification Services Application . 792

Testing a Notification Services Application . 798

Adding Subscriptions . 800

Submitting Events . 800

Viewing Notifications . 801

xxii Table of Contents
What Is Service Broker? . 803

Service Broker Fundamentals . 803

Service Broker Components Overview . 804

Implementing Service Broker Applications . 805

Creating Service Broker Objects . 805

Managing Conversations . 808

Managing Service Broker Applications . 810

Stopping a Service Broker Application . 810

Starting a Service Broker Application . 810

Backing Up and Restoring a Service Broker Application 811

Querying a Queue . 811

Summary . 811

Part VI

High Availability

25 Disaster Recovery Solutions . 815

What Are High Availability and Disaster Recovery? . 816

Fundamentals of Disaster Recovery and Disaster Survival 817

Microsoft SQL Server Disaster Recovery Solutions . 820

Using Database Backups for Disaster Recovery . 820

Log Shipping . 821

Database Mirroring . 823

Replication . 824

SQL Server Clusters . 825

Overview of High Availability and Disaster Recovery Technologies . . . 828

Summary . 829

26 Failover Clustering Installation and Configuration 831

What Is a Cluster? . 831

Clustering Concepts . 832

Overview of MSCS . 832

Basic Concepts . 834

Cluster Components . 835

Cluster Application Types . 842

MSCS Modes . 843

Table of Contents xxiii
Examples of Clustered Systems . 845

Example 1—High-Availability System with Static Load Balancing 845

Example 2—Hot Spare System with Maximum Availability 846

Example 3—Partial Server Cluster . 847

Example 4—Virtual Server Only, with No Failover 847

Planning Your Configuration . 848

Installing and Configuring Windows 2003 and SQL Server 2005 Clustering 850

Creating the Windows Cluster . 850

Creating the SQL Server Cluster . 858

Additional Steps . 865

Using a Three-Tier Application . 867

Summary . 868

27 Log Shipping and Database Mirroring . 871

Types of Data Loss . 872

Log Shipping . 872

Configuring Security for Log Shipping and Database Mirroring 874

Configuring Log Shipping . 876

Monitoring Log Shipping . 881

Log Shipping Failover . 883

Removing Log Shipping . 886

Tuning Log Shipping: Operations and Considerations 886

Practical Log Shipping Advice . 889

Database Mirroring . 893

Configuring Database Mirroring . 894

Planning and Considerations for Database Mirroring 894

Tuning Database Mirroring . 899

Configuring Database Mirroring . 907

Monitoring Database Mirroring . 914

Using Mirroring and Snapshots for Reporting Servers 918

Summary . 920

xxiv Table of Contents
Part VII

Performance Tuning and Troubleshooting

28 Troubleshooting, Problem Solving, and Tuning
Methodologies . 923

Troubleshooting and Problem Solving . 923

The Problem Solving Attitude . 924

Troubleshooting Techniques . 926

The Search for Knowledge . 930

Performance Tuning and Optimization . 932

Tuning and Optimization Basics . 932

Troubleshooting and Tuning Methodology . 933

Developing a Methodology . 933

The Need for Documentation . 937

Summary . 938

29 Database System Tuning . 939

Monitoring and Tuning Hardware . 940

Tools for Monitoring and Tuning Hardware . 941

Determining Hardware Bottlenecks . 951

Monitoring and Tuning SQL Server . 954

Tools for Monitoring and Tuning SQL Server . 955

Determining SQL Server Performance Bottlenecks 959

Tuning Microsoft SQL Server Configuration Options 967

Tuning the Database Layout . 974

Database Layout . 974

Database Options . 975

Tuning the tempdb System Database . 978

Summary . 979

30 Using Profiler, Management Studio, and Database
Engine Tuning Advisor . 981

Overview of SQL Server Tools . 981

Performance Tools . 982

Configuration Tools . 982

External Tools . 985

Table of Contents xxv
Using SQL Server Management Studio . 987

SQL Server Management Studio Environment . 987

Using Object Explorer . 990

Using the Summary Report Pane . 992

Analysing SQL Server Logs . 995

Viewing Current Activity . 999

Generating SQL Server Agent Alerts . 1007

Executing T-SQL Statements . 1017

Viewing Execution Plans . 1021

Using SQL Server Profiler . 1025

Capturing a SQL Server Profile Trace . 1026

Using the Database Engine Tuning . 1034

Summary . 1039

31 Dynamic Management Views . 1041

Understanding Dynamic Management Views . 1041

Using Dynamic Management Views . 1043

Common Language Runtime–Related DMVs . 1044

Database-Related DMVs . 1045

Database Mirroring-Related DMV . 1047

Execution-Related DMVs and Functions . 1048

Full-Text Search–Related DMVs . 1055

Input/Output Related DMVs and Functions . 1056

Index Related DMVs and Functions . 1058

Query Notifications-Related DMVs . 1063

Replication-Related DMVs . 1064

Service Broker-Related DMVs . 1064

SQL Server Operating System-Related DMVs . 1066

Transaction-Related DMVs and Functions . 1073

Creating a Performance Data Warehouse . 1075

Summary . 1083

32 Microsoft SQL Server 2005 Scalability Options 1085

Scalability Options . 1086

Scaling Up . 1086

xxvi Table of Contents

 this publication so we can
 for you. To participate in a brief
/booksurvey/
Processor Subsystem . 1086

Memory Subsystem . 1090

I/O Subsystems . 1091

Scaling Out . 1092

Multiple SQL Server Instances . 1093

Clustering . 1094

Database Mirroring . 1096

Log Shipping . 1098

Replication . 1101

Shared Scalable Databases . 1109

Summary . 1112

33 Tuning Queries Using Hints and Plan Guides 1113

Understanding the Need for Hints . 1113

Microsoft SQL Server 2005 Hints . 1114

Join Hints . 1115

Query Hints . 1116

Table Hints . 1121

Plan Guides . 1124

Creating and Administering Plan Guides . 1126

Creating Template-Based Plan Guides . 1129

Best Practices . 1132

Verifying Plan Guides Usage . 1133

Example Usage Scenarios for Plan Guides . 1133

Summary . 1136

Glossary . 1137

Index . 1151

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about
continually improve our books and learning resources
online survey, please visit: www.microsoft.com/learning

Acknowledgments

Edward Whalen It is not easy to acknowledge all the people who have made this book
possible. I would like to thank the contributing authors, our editors Jenny Moss Benson
and Melissa von Tschudi-Sutton, and the technical and copy editors Robert Brunner and
Matthew Dewald. Without a strong technical staff, this book would not be possible. Writ-
ing a book involves a lot of time and effort. I would like to thank my wife, Felicia, for put-
ting up with the sacrifices necessary to write this book.

Marcilina Garcia I would like to thank the editors for their thorough review and helpful
comments. Special thanks to Melissa von Tschudi-Sutton for her quick response to my
many inquiries about help on logistical issues, and for her proactive management of the
submission and editing process.

Burzin Patel I would like to thank everyone at Microsoft Press who made this book pos-
sible, especially Melissa von Tschudi-Sutton, Jenny Moss Benson, Martin DelRe, and the
technical and copy editors. Their dedication and thoroughness has a lot to do with the
completeness and quality of this book. I would also like to thank my wife Dianne and
children, Carl and Natasha, for their untiring support and putting up with my virtually
never-ending work schedule.

Stacia Misner I would like to thank fellow authors Ed Whalen, Marci Garcia, Burzin
Patel, and Victor Isakov, as well as the Microsoft Press team of Martin DelRe, Melissa von
Tschudi-Sutton, and Jenny Moss Benson, for allowing me the opportunity to work with
them to produce this book. I also appreciate the efforts of the copy editor and technical
reviewer who helped find me find the right words to express complex ideas concisely and
accurately. Finally, I especially want to thank my husband and best friend, Gerry Misner,
who patiently endured yet another book project.

Victor Isakov I would like to first and foremost thank the thousands of people around
the globe I have had the privilege to train over the past decade or so. Your boundless
enthusiasm and endless questions have very much inspired me and helped me over-
come my “dislike” of writing books. The people at Microsoft Press have been wonder-
ful, as have a number of people in the SQL Server product team. So thanks to all
concerned. Finally, and most importantly, to Marc, Larissa, Natalie, and Alex. There is
no need for words!
xxvii

xxviii Acknowledgments
Contributing Authors
We would like to thank the following authors for contributing to this book:

Charlie Wancio We would like to thank Charlie Wancio for contributing to this book
with Chapter 11, “Creating Tables and Views,” and Chapter 13, “Enforcing Data Integ-
rity.” Charlie has been developing database applications for over 15 years. He has worked
with Microsoft SQL Server since version 6.5. His company, Wancio Consulting, Inc., spe-
cializes in database applications and legacy data conversions. You can find him at
www.wancioconsulting.com.

Frank McBath We would like to thank Frank McBath for contributing to this book with
Chapter 27, “Log Shipping and Database Mirroring.” Frank is an expert in both SQL
Server and Oracle and is currently working at Microsoft in the Oracle-Microsoft Alliance
group. He was one of the early adopters of SQL Server 2005 Database Mirroring. You can
find his blog at www.databasediskperf.com.

Arnel Sinchongco We would like to thank Arnel Sinchongco for contributing to this
book with Chapter 25, “Disaster Recovery Solutions.” Arnel is a long-time SQL Server
DBA and long-time colleague, who is currently working as a DBA-Manager at Pilot Online
in Norfolk, VA.

Nicholas Cain We would like to thank Nicholas Cain for contributing to this book with
Chapter 3, “Roles and Responsibilities of the SQL Server DBA.” Nic started working as a
DBA at the now defunct Microwarehouse and is now working at T-Mobile managing a
team of SQL Server and Oracle DBAs.

Introduction

Microsoft SQL Server 2005 is a major new release of SQL Server with a wealth of new fea-
tures and enhancements from previous versions that provide improved database scalabil-
ity, reliability, security, administration, and performance, to name a few. If you are
currently a SQL Server database administrator (DBA), you have probably either already
made the upgrade to SQL Server 2005 and are learning to use the new tools and features,
or you should be in the process of considering the upgrade. Application support for all
applications that will run against SQL Server 2005 should be verified and applications
should be tested before going into production.

This book will help guide you in the learning curve with SQL Server 2005 and assist with
implementing and performing DBA-related tasks. There are a lot of new SQL Server 2005
areas to consider including new and improved user interfaces, new system and database
performance analysis tools, new features for database performance, new business intel-
ligence tools, and more. It will take some time and research to get a good handle on SQL
Server 2005—but it will be worth the effort. This book is a good place to begin if you are
new to SQL Server and a good guide and reference for the current SQL Server 7.0 or
2000 DBA.

How to Use this Book
Microsoft SQL Server 2005 Administrator’s Companion is a handy guide and reference for
the busy DBA. Look for these helpful elements throughout the book:

Real World Everyone can benefit from the experiences of others. Real World
sidebars contain elaboration on a particular theme or background based on the
adventures of other users of SQL Server 2005.

Note Notes include tips, alternate ways to perform a task, and other informa-
tion highlighted for your benefit.
xxix

xxx
Important Boxes marked Important shouldn’t be skipped. (That’s why they’re
called Important.) Here you’ll find security notes, cautions, and warnings to keep
you and your SQL Server 2005 database system out of trouble.

Best Practices Best Practices boxes call attention to the authors’ advice for
best practices based upon our own technical experience.

More Info Often there are excellent sources for additional information on key
topics. These boxes point you to additional recommended resources.

On the CD On the CD boxes point to additional information or tools that are
provided on this book’s companion CD.

What’s in This Book
Microsoft SQL Server 2005 Administrator’s Companion is divided into seven sections.
The first three sections provide the foundation for understanding and designing a SQL
Server 2005 database system, from choosing, configuring, and sizing server and storage
hardware to installing the database software, creating databases, and database adminis-
tration. The next two sections build on the foundation to cover more in-depth SQL Server
2005 architectural topics and use of new features. The fifth section is dedicated to busi-
ness intelligence features. The last two sections cover in-depth high availability solutions,
troubleshooting methodologies, and performance tuning topics that every DBA should
know. Each section is described further below.

■ Part I: Introduction to Microsoft SQL Server 2005 The first three chapters of this
book provide fundamental information for the DBA. This includes an overview of
SQL Server 2005 features, information about the editions of SQL Server 2005 and
licensing to help you determine which is appropriate for your system, and a review
of typical tasks and responsibilities of the DBA.

■ Part II: System Design and Architecture This section focuses on the underlying
hardware architecture for the SQL Server database server. It covers system design
topics from server hardware to SQL Server network configuration. This includes
choosing between 32-bit and 64-bit systems (regarding hardware, Windows, and
SQL Server 2005), choosing disk storage, understanding disk configuration and

xxxi
disk performance, capacity planning, installing SQL Server, and configuring the
network for SQL Server.

■ Part III: Microsoft SQL Server Administration The administration section of the
book provides the foundation for building and maintaining databases. It covers
how to create databases, tables, views, and indexes. The very important DBA task of
protecting data with backup and restore methods are described. User management,
security, and other database maintenance tasks are also covered. This section pre-
sents the essential tasks that are the primary responsibility of the SQL Server DBA.

■ Part IV: Microsoft SQL Server 2005 Architecture and Features This section cov-
ers in greater depth concurrent data access topics including transaction manage-
ment, understanding transactions, locking, blocking, and isolation levels. The new
data partitioning feature, which allows tables and indexes to be horizontally parti-
tioned, is also described.

■ Part V: Microsoft SQL Server 2005 Business Intelligence This sect ion covers
introductions to each of the business intelligence features for SQL Server 2005.
These include SQL Server Integration Services, Analysis Services, Reporting Ser-
vices, Notification Services, and Service Broker.

■ Part VI: High Availability This part of the book provides high availability and
disaster recovery solutions for SQL Server 2005. These include database mirroring,
log shipping, clustering, and replication.

■ Part VII: Performance Tuning and Troubleshooting This part focuses on perfor-
mance topics to help you monitor, troubleshoot, scale, and tune SQL Server 2005.
This may be one of the more interesting parts of the book for advanced DBAs. It
covers tuning methodologies, monitoring for performance, system tuning, scaling
up/scaling out, database tuning, and query tuning. It covers how to use the tools
available in Windows and SQL Server 2005, including the SQL Server Profiler,
Database Engine Tuning Advisor, and the new dynamic management views to
assist with database tuning.

About the CD
The companion CD that ships with this book contains a fully searchable electronic ver-
sion of this book. You can view the eBook on-screen using Adobe Acrobat or Adobe
Reader. The CD also contains lengthy code samples from Chapters 24 and 31 for your
convenience.

xxxii
Computer System Requirements
Be sure your computer meets the following system requirements:

■ Windows Server 2003 or Windows XP operating system

■ SQL Server 2005 Developer Edition or Enterprise Edition (to use all the features
mentioned in this book because many of them are available only in these versions.)

■ For minimum hardware requirements for installing SQL Server 2005, see
Chapter 8, “Installing and Upgrading Microsoft SQL Server 2005.”

Support
Every effort has been made to ensure the accuracy of this book and companion CD con-
tent. Microsoft Press provides corrections for books through the Web at the following
address:

http://www.microsoft.com/learning/support

To connect directly to the Microsoft Knowledge Base and enter a query regarding a ques-
tion or issue that you may have, go to the following address:

http://www.microsoft/learning/support/search.asp

If you have comments, questions, or ideas regarding the book or companion CD content,
or if you have questions that are not answered by querying the Knowledge Base, please
send them to Microsoft Press using either of the following methods:

■ E-Mail:

mspinput@microsoft.com

■ Postal Mail:

Microsoft Press

Attn: Microsoft SQL Server 2005 Administrator’s Companion Editor

One Microsoft Way

Redmond, Washington 98052-6399

Please note that product support is not offered through the preceding mail addresses. For
support information, please visit the Microsoft Product Support Web site at the following
address:

http://support.microsoft.com

xxxiii
Talk to Us
We’ve done our best to make this book as accurate and complete as a single-volume ref-
erence can be. However, SQL Server 2005 is a major upgrade from previous versions with
a wealth of new features and enhancements, and as service packs are released some of the
details may change. We’re sure that alert readers will find omissions and even errors
(though we fervently hope not too many of those). If you have suggestions, corrections,
or tips, please write or contact us and let us know. You can find the authors’ contact infor-
mation on the About the Authors page in the back of the book. We really do appreciate
hearing from you.

Part I
Introduction to Microsoft
SQL Server 2005

Chapter 1
What’s New in Microsoft SQL Server. 3

Chapter 2
Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 17

Chapter 3
Roles and Responsibilities of the Microsoft SQL Server 2005 DBA 43

Chapter 1

What’s New in Microsoft SQL
Server

New Hardware Support. 5

Data Availability . 6

Performance . 9

Enhancements to Existing Features . 10

Tools and Utilities . 12

Business Intelligence Features . 14

Summary . 16

Microsoft SQL Server 2005 is Microsoft’s new release of its relational database manage-
ment system. It has been highly anticipated since SQL Server 2000 and is well worth the
wait. Officially released in November of 2005, it is focused on making it easier to create,
deploy, and manage enterprise database systems and applications, while increasing scal-
ability, availability, performance, reliability, security, and programmability. SQL Server
2005 is a major new release with many major and minor product changes from earlier
editions, such as SQL Server 7.0 and SQL Server 2000. It includes a number of new fea-
tures and substantial enhancements to existing features that were inspired by customer
feedback.

If you are just starting out as a database administrator (DBA) with SQL Server 2005, this
book will provide the foundation you need to understand what tasks a DBA is respon-
sible for, how to perform these tasks, and what SQL Server 2005 has to offer. If you are
already familiar with SQL 7.0 or 2000, you will have a great foundation on which to
build an understanding of the changes in SQL Server 2005 and of the significant ways
that its new features can be used to improve your current SQL Server systems. SQL
Server 2005 provides many new and enhanced features that you will want to know
about, and this book will guide you through the learning curve. For example, the pre-
sentation and usability of the database tools and utilities user interfaces have been
improved for convenience and productivity. It may take some time to get used to these
3

4 Part I Introduction to Microsoft SQL Server 2005
new interfaces, so plan time for a small learning curve there as well—it is well worth the
effort of checking out all the new tools, menus, and options.

This chapter provides an overview of the new features and enhanced support for existing
features that SQL Server 2005 offers. This is not a comprehensive list of all the features
SQL Server 2005 provides, as there are too many to all be covered in detail in this book.
Because this book is focused on the work of the database administrator, it covers the top-
ics that are the most relevant to this audience.

There are numerous enhancements for developers and programmers that will not be cov-
ered in this book but are referenced here. These include the ability to program database
objects—including triggers, functions, stored procedures, user-defined data types, and
user-defined aggregates—in .NET languages, such as Microsoft Visual C# and Visual Basic
.NET. The use of .NET languages supports programming with more features and more
complex logic than with the Transact-SQL language. The T-SQL language has been
extended with several new features and enhancements as well, such as recursive queries
and a new xml data type. In addition, the TOP operator now accepts a numeric expres-
sion, such as a variable name instead of only an integer, to specify the number of rows to
return, and it can be used in INSERT, UPDATE, and DELETE statements and SELECT
queries.

More Info For information on the new features and enhancements for devel-
opers, see the SQL Server Books Online topic “Database Engine Programmability
Enhancements.”

It is important to notice that several new features and enhancements are available only
with SQL Server 2005 Enterprise Edition, as noted throughout this chapter and through-
out the book. You should be aware of this and consider the features supported by each
edition of SQL Server when choosing which one to use. Also, there are many small
changes in behavior from previous versions of SQL Server that are referenced below,
which are not covered in detail in this book.

More Info There are numerous detailed changes within SQL Server 2005 that
can affect the behavior of your current SQL Server 7.0 or 2000 applications. See
the SQL Server Books Online topic “Behavior Changes to Database Engine Fea-
tures in SQL Server 2005” for some of these very specific changes in behavior.
This article also references several other SQL Server Books Online topics that
cover more of these details.

Chapter 1 What’s New in Microsoft SQL Server 5
New Hardware Support
As hardware architecture has continued to improve for better performance and scalabil-
ity, Windows 2003 Server and SQL Server SQL Server 2005 provide software versions to
support these new architectures. Windows and SQL Server provide support for the new
Intel and AMD 64-bit hardware platforms and for NUMA systems. Support for these plat-
forms by the combination of Windows Server 2003 and SQL Server 2005 has greatly
improved the method and capacity for memory access.

Native 64-Bit Support
There are specific versions of SQL Server 2005 software that provide support for specific
hardware processor architectures. These include support for both the Intel Itanium-2
and the x64 processor architecture (both Intel and AMD provide an x64 architecture)
running on the Windows Server 2003 64-bit operating system. Windows Server 2003
for the 64-bit Itanium-2 platform supports running only 64-bit applications, while the
Windows 2003 x64 platform supports both 32-bit and 64-bit applications on the same
system. There are specific versions of SQL Server 2005 for each of these platforms. The
previous version of SQL Server, SQL Server 2000, provides a 64-bit version only for the
Itanium or Itanium-2 architecture. There is no version of SQL Server 2000 for the new
x64 architecture.

With native 64-bit, the memory access limitations of 32-bit addressing are eliminated.
More data can be processed per clock cycle, and much larger amounts of memory can
be accessed with direct memory addressing (without AWE memory access overhead).
See Chapter 5, “32-Bit versus. 64-Bit Platforms and Microsoft SQL Server 2005,” for
more details on these platforms, the difference between 32-bit and 64-bit memory
access, and AWE.

NUMA Support
Windows Server 2003 and SQL Server 2005 also support Non-Uniform Memory
Access (NUMA) server architecture. This architecture provides a scale out solution by
grouping CPU and memory into units, or nodes, that can perform together as one
server. Each node has its own CPUs, memory, and system bus, while the individual
nodes connect to each other via an external bus to access memory on another node
when needed. Windows Server 2003 and SQL Server 2005 have been enhanced to take
advantage of this architecture by increasing the ability of a thread running on a CPU
within a certain unit to use memory located in that same node, thus avoiding overhead
of crossing the external bus.

6 Part I Introduction to Microsoft SQL Server 2005
More Info See the SQL Server Books Online topic “NUMA Support in SQL
Server” for a description of the NUMA architecture and how SQL Server is
designed to take advantage of NUMA hardware with no database or application
changes necessary.

Data Availability
SQL Server 2005 provides several completely new features that help minimize down
time, allow greater and faster data access, and provide additional data protection. These
new features include online restore, online index operations, database snapshot, fast
recovery, mirrored backups, database mirroring, snapshot isolation, and read committed
snapshot. The online index operations, snapshot isolation, and read committed snapshot
features are all based on another new feature called row versioning, which is a method of
storing a copy of a row of data in memory or tempdb so that the data can be read by one
process at the same time that it is being modified by another process without causing
blocking. These new features are described briefly here and in more detail throughout
this book.

Online Restore
The new online restore feature allows individual files and filegroups to be restored and
brought online for access while the remaining files in the database remain offline, thus
allowing faster access to restored data. Using online restore, you can restore an individual
file or filegroup and then bring that data online and access it while the other files or file-
groups remain offline. The data that resides in the restored files can be accessed by users,
while the data in the files that remain offline cannot be accessed. When a user attempts
to access data that resides in a file that is still offline, SQL Server returns an error message.
This allows at least some data to be accessible before the entire database is restored.

You can restore one file or filegroup at a time, bringing each online as soon as the file or
filegroup is restored without having to wait for the entire database to be restored. This
may be a factor to consider when determining how to place database data within file-
groups. See more details on online restore in Chapter 15, “Restoring Data.” This feature
is available only in SQL Server 2005 Enterprise Edition.

Online Index Operations
Online index operations is also a new feature that allows greater data accessibility.
Without using the online option, underlying table data is locked and thus blocked

Chapter 1 What’s New in Microsoft SQL Server 7
from user access when an index is created, altered (includes rebuilding the index), or
dropped. With the new online option, these operations are performed online so that
users can still access the table data and other indexes on the table while the operation
is occurring. This feature uses a new process called row versioning to allow table and
index data to be accessed while an index on that table is being created, deleted, or
altered. This will be an important factor in allowing users greater data access when
rebuilding indexes for database maintenance. For more details on indexes and online
index building see Chapter 12, “Creating Indexes for Performance.” This feature is also
available only with SQL Server 2005 Enterprise Edition.

Database Snapshot
Database Snapshot is a new feature with SQL Server 2005 that provides the ability to cre-
ate a snapshot of a database, a static view of the database that remains intact and acces-
sible until the snapshot is deleted. A database snapshot can be accessed directly by name,
as if it were a separate database. This can be very useful for providing a static view of data
for report queries; consistent results are guaranteed because any changes made to the
base database from which the snapshot was created are not visible through the database
snapshot. A database can also be reverted back to a database snapshot, reverting the base
database back to the point in time when the snapshot was created. This can be useful, for
example, when data is accidentally deleted or updated and the changes must be undone.
In this case, reverting to a database snapshot could potentially be faster than restoring
the entire database.

Database Snapshots can also be created from a mirrored database on a standby server,
providing a separate read-only database against which reports and queries can be run
without using resources or causing contention on the primary database server. The Data-
base Snapshot feature is available only with SQL Server 2005 Enterprise Edition. See
Chapter 10, “Creating Databases and Database Snapshots,” for details on creating and
using database snapshots.

Fast Recovery
With previous versions of SQL Server, users could not access a database that was in the
process of being restored until the entire recovery process was complete, which included
both the redo (roll forward) and the undo (rollback) phases. With the new fast recovery
feature, the database is made partially accessible to users as soon as the redo phase is
complete but before the undo phase completes. This allows earlier access to the database
during a restore. Fast recovery is available only in SQL Server 2005 Enterprise Edition.
See Chapter 15 for more information about restoring data.

8 Part I Introduction to Microsoft SQL Server 2005
Mirrored Backups
The new mirrored backup feature allows a backup to be created on more than one device
at the same time when a backup is performed. Having mirrored sets of backed up data
provides a safety net in case one backup set or a part of the set becomes corrupted or
damaged. A backup device from one backup set can be interchanged with the corre-
sponding backup device from a mirrored set, thus allowing more possibilities to ensure
successful restores of data. See Chapter 14, “Backup Fundamentals,” for details on how to
perform a mirrored backup and other data backup topics.

Database Mirroring
The new database mirroring feature provides a new method for maintaining a standby
server that provides failover capabilities. A copy of a principal database can be mir-
rored to another instance of SQL Server. This is done by SQL Server automatically writ-
ing and replaying transaction log records on the mirrored system. There are two modes
for database mirroring—synchronous and asynchronous. The mirrored database can
be on the same physical server as the principal, but it should reside on a separate phys-
ical server in order to serve as a standby server for failover. By having them on separate
servers, both the server hardware and the data are protected from failure. It is an alter-
native to failover clustering, which protects only the server hardware but does not pro-
vide a copy of the data. See Chapter 27, “Log Shipping and Database Mirroring” for
details on setting up and using database mirroring and how failover works. Database
mirroring is fully supported with SQL Server 2005 Enterprise Edition Service Pack 1
and partial support is provided with SQL Server 2005 Standard Edition Service Pack 1
(limited to a single redo thread and safety setting enabled). It is not available with
other editions.

Read Committed Snapshot and Snapshot Isolation
There are two new ways to effect process blocking behavior within SQL Server that pro-
vide greater data availability and may also provide performance improvements. They are
the new read-committed snapshot option for the read-committed isolation level and the
new snapshot isolation level setting. These new locking behaviors are built on the new
feature called row-versioning, which stores a consistent view of a row of data in memory
or tempdb so that users can access that versioned row without blocking on a modification
of that same row by another process. This reduces locking contention and reduces the
problem of blocked processes waiting for lock resources to modify data. See Chapter 17,
“Transactions and Locking,” for details on row-versioning and how these two new
options work and when to use them.

Chapter 1 What’s New in Microsoft SQL Server 9
Performance
There are several new features and built-in support within SQL Server 2005 that provide
potential for improved system performance and for monitoring performance. Data parti-
tioning, the ability to partition table data and indexes into horizontal partitions, can help
with performance and manageability of data. There are new query hints and query plan
guides available to help improve performance and to improve query plan reuse. There are
also new dynamic management system views for monitoring performance information.
Each of these is described in the following sections.

Data Partitioning
Native table and index partitioning capabilities are new for SQL Server 2005 Enterprise
Edition only. Partitioning can significantly improve query performance against very large
tables by allowing data to be accessed through a part (partition) of the table instead of the
whole base table. Partitioning a table divides the data into partitions based on a particular
column value, such as date. For example, a table may be partitioned so that each month’s
worth of data is separated into its own partition. This reduces the amount of data that
must be searched to find a particular row or rows. Indexes can be created per partition as
well, thus reducing the size of the indexes.

Partitioning also provides for more capabilities in managing table data. For example,
many table and index operations (such as index rebuilds) can be performed per partition
rather than on the entire table at once, thus reducing the time to complete the operation
and the contention on the data. Also, partitions can be moved from one table to another
without physically moving the data. This is useful when archiving data from the active
table to a history table for example. See Chapter 19, “Data Partitioning,” for details on
how to partition tables and indexes.

Plan Guides
Plan guides are a new feature in SQL Server 2005 Standard and Enterprise Editions that
provide users a mechanism to inject query hints into a query without having to modify it.
This mechanism is very powerful for tuning queries that originate in third-party applica-
tions and cannot be trivially modified with the hints directly in the application code. Plan
guides can be applied to any SELECT, UPDATE, DELETE, or INSERT…SELECT state-
ment. This feature is explained in detail in Chapter 33, “Tuning Queries Using Query
Hints and Plan Guides.”

10 Part I Introduction to Microsoft SQL Server 2005
Forced Parameterization
Forced parameterization is a new feature that can be used to improve performance in
cases where repeated compilations of the same SQL statement occur because of nonpa-
rameterization. By specifying the FORCED query hint, SQL Server 2005 attempts to
force parameterization of the query, thereby effectively reusing an existing compiled
plan and eliminating the need to compile different invocations of the same query with
differing parameter values. The FORCED parameterization query hint is covered in
Chapter 33.

Dynamic Management Views
Dynamic management views, also called DMVs, are new in SQL Server 2005. They provide
a new method for accessing a wide range information on database performance and
resource usage and allow greater visibility into the database than previous versions of SQL
Server, providing easier and more substantive monitoring of database health, diagnosing
problems, and tuning performance. See Chapter 31, “Using Dynamic Management
Views,” for details on the available DMVs and examples of how to use them.

Enhancements to Existing Features
SQL Server 2005 has many enhancements to existing features that improve ease of use
and manageability. These include enhancements for data access, failover clustering, rep-
lication, indexed views, and full-text search.

SNAC
SQL Native Client (SNAC) is a new data access technology in Microsoft SQL Server
2005. SNAC is a stand-alone data access application programming interface (API)
library that combines the SQL OLE DB provider and the ODBC driver, which were pre-
viously available via the Microsoft Data Access Components (MDAC) library, into one
native dynamic-link library while also providing new functionality above and beyond
what is supplied by MDAC.

SQL Native Client introduces a simplified architecture by way of a single library (SQLN-
CLI.DLL) for all the APIs and can conceptually be viewed as a conglomerate of four
components: ODBC, OLEDB, TDS Parser plus Data Access Runtime Services, and SNI
functionality.

Failover Clustering
SQL Server 2005 failover clustering, as with previous versions of SQL Server, is a high
availability solution built on Windows Clustering Services to provide protection from a

Chapter 1 What’s New in Microsoft SQL Server 11
database server failure. New with SQL Server 2005, clustering support has been
extended to include Analysis Services, Notification Services, and SQL Server replication.
The number of nodes supported in Enterprise Edition has also been increased to eight,
and the Standard Edition of SQL Server 2005 supports up to a 2-node cluster. (Standard
Edition of previous versions of SQL Server did not support clustering at all.) See Chap-
ter 26, “Failover Clustering—Installation and Configuration,” for a detailed description
of failover clustering and the process of implementing a SQL Server 2005 cluster.

Replication
There are many new enhancements to replication that improve manageability, scalabil-
ity, security, and availability. Some examples include a new Replication Monitor, the abil-
ity to initialize transactional subscriptions from a backup of the database, the ability to
make schema changes to published tables, and improved support for non-SQL Server
subscribers.

One of the major enhancements to transactional replication is the new peer-to-peer trans-
actional replication capability. This allows two-way replication that works well for situa-
tions in which a subset of the data can be modified on one SQL Server while a different
subset of the data is modified on the other SQL Server, such that each server can act as a
publisher and subscriber to the other without running into many update conflicts, yet
still maintaining the full data set on both servers. A similar capability in SQL Server 2000
was known as bi-directional transactional replication, which had to be implemented man-
ually. See Chapter 20, “Replication,” for more on the different types of replication.

Indexes
Several index-related enhancements have been made to improve index and query perfor-
mance. These include a new database option to update statistics asynchronously (both
indexed and nonindexed column statistics), the ability to include non-key columns as
part of a nonclustered index, new options to control index locking granularity, the ability
to index an XML data type column, and improved usage of indexed views by the query
optimizer to resolve queries. For details on indexing topics see Chapter 12.

Full-Text Search
There have been several enhancements to full-text indexing and search capabilities in the
areas of programmability, manageability, and performance. These include the following:

■ The ability to back up and restore full-text catalogs without having to repopulate
the data

■ The preservation of full-text catalogs with the database data when a database is
detached and re-attached

12 Part I Introduction to Microsoft SQL Server 2005
■ Support for full-text indexes on and full-text queries against XML data

■ The use of Microsoft Search technology to build the new Microsoft Full-Text Engine
for SQL Server (MSFTESQL) service, providing significantly improved perfor-
mance during full-text index population

■ A dedicated instance of MSFTESQL for each SQL Server 2005 instance

These capabilities make managing full-text catalogs a much easier task than with previ-
ous versions of SQL Server. To find details on these and additional programmability
enhancements to full-text see the SQL Server Books Online topic “Full-Text Search
Enhancements.”

Tools and Utilities
Enhancements have been made to many of the SQL Server administration tools and util-
ities. The previous Enterprise Manager has been replaced with the SQL Server Manage-
ment Studio, Query Analyzer replaced with Query Editor (part of SQL Server
Management Studio), and the osql command line utility with sqlcmd. In addition, the
new configuration utility called SQL Server Configuration Manager rolls three previous
tools—Server Network Utility, Client Network Utility, and Service Manager—into one.
Also, the previous Index Tuning Wizard has been replaced by the new Database Engine
Tuning Advisor tool. The SQL Profiler tool still exists but with several enhancements and
a different look, and there is a new tool called SQL Server Surface Area Configuration.
There is also a new utility called tablediff for comparing the data in two tables. These
tools and utilities are briefly described here and in more detail throughout the book. It
may take some time to become familiar with these new tools and utilities.

SQL Server Management Studio
The SQL Server Management Studio replaces the previous Enterprise Manager and more.
From the Management Studio you can access all of the other utilities. SQL Server Man-
agement Studio is used in examples throughout this book and its uses for tuning are cov-
ered in Chapter 30, “Using Profiler, Management Studio, and Database Tuning Advisor.”

Query Editor
Query Editor is the replacement for the previous Query Analyzer. It is a graphical inter-
face used to write, open, save, and execute T-SQL statements, and to view the results.
Query Editor is built into the SQL Server Management Studio; it is not a separate console,
such as Query Analyzer.

Chapter 1 What’s New in Microsoft SQL Server 13
SQL Configuration Manager
The SQL Configuration Manager tool is new for SQL Server 2005 and replaces the three
previous tools—Server Network Utility, Client Network Utility, and Service Manager—by
rolling them all into one tool. This tool allows you to manage all operating system services
for SQL Server services and networking. See Chapter 9, “Configuring Microsoft SQL
Server 2005 on the Network,” for details on using the SQL Configuration Manager.

Surface Area Configuration
The Surface Area Configuration tool is new for SQL Server 2005. It provides the capabil-
ity to enable, disable, stop, or start services (including SQL Server, SQL Server Agent,
Reporting Services, and more), features (including Database Engine, Analysis Services,
and Reporting Services features), and remote connectivity. Disabling or stopping unused
services or components helps to reduce the “surface area” of SQL Server 2005 and, thus,
helps to secure the system by keeping tighter control of what services or processes are
running on the server. Some features, services, and connections are disabled by default
on installation and must be explicitly enabled. See Chapter 8, “Installing and Upgrading
Microsoft SQL Server 2005,” and Chapter 9, “ Configuring Microsoft SQL Server 2005 on
the Network” for information about using this tool.

SQL Server Profiler
The SQL Server Profiler remains a separate tool with SQL Server 2005, as with previous
versions. It has been enhanced with a different interface and lots of new features. The Pro-
filer tool can be used to trace numerous events that occur on the server along with data
relating to the event. For example, T-SQL batches or stored procedure events that are exe-
cuted on the server can be traced, and data can be collected about the event such as the
user name, how many reads and writes were performed, and how long the execution
took. The Profiler allows you to save that data to a file or a database table for further anal-
ysis and sorting. See Chapter 30, “Using Profiler, Management Studio, and Database Tun-
ing Advisor,” for information about using the SQL Profiler for monitoring database
activity and tuning.

Database Engine Tuning Advisor
The Database Engine Tuning Advisor is a new tuning tool that replaces the previous
Index Tuning Wizard and provides more capabilities. This tool allows you to analyze a
workload file or table (a Profiler trace saved to a table) and provides tuning recommmen-
dations that can include indexing, partioning data, and using non-key columns in a non-
clustered index. See Chapter 30 for details on using the Database Tuning Advisor.

14 Part I Introduction to Microsoft SQL Server 2005
SQL Server Upgrade Advisor
The Upgrade Advisor tool is a free downloadable tool that can be run on any SQL
Server 7.0 or SQL Server 2000 system to analyze the effort and issues that may be
encountered when upgrading to SQL Server 2005. The tool outputs a report of the find-
ings, warnings, and recommendations, and how to resolve or further research the
potential issues encountered. This tool should be run before upgrading to SQL Server
2005 and the results analyzed to help point out issues that need to be addressed before
upgrading.

sqlcmd Utility
The sqlcmd utility replaces the command line utilities isql and osql and allows T-SQL
commands and a set of specific sqlcmd commands to be executed. When run by com-
mand line, sqlcmd uses the OLE DB provider. (The previous osql utility used ODBC.)
When running sqlcmd via the SQL Server Management Studio in sqlcmd mode, the .NET
SqlClient is used. Note that because these two connectivity methods have different
default options, it is possible to get different results from executing the same query by
command line versus through Management Studio.

tablediff Utility
The new tablediff utility can be run by command line or in a batch file and is used to com-
pare the data in two tables. This is particularly useful in replication topologies where
there is a need to verify consistent data between the publisher and one or more subscrib-
ers. There are many options for this tool, such as specifying a row-by-row comparison or
only a row count and schema comparison.

Business Intelligence Features
Many of the business intelligence capabilities of SQL Server 2000 have been improved
in SQL Server 2005, and in some cases these capabilities have been completely re-
architected. (SQL Server 2005 Enterprise Edition is required to support most of the
advanced functionality.) An important new feature is the addition of Business Intelli-
gence Development Studio, which supplies a set of templates for developing business
intelligence projects in an integrated development environment. Integration Services
replaces Data Transformation Services with better performance, greater flexibility and
portability, and improved support for complex data management and integration
activities. While Analysis Services did not undergo a name change, it did get quite an
architectural make-over to support a wider variety of analytical requirements, as well as

Chapter 1 What’s New in Microsoft SQL Server 15
to provide more options for managing data latency. Of all the business intelligence fea-
tures in SQL Server 2005, Reporting Services has changed the least from its counter-
part in SQL Server 2000, but there are plenty of new features that make the transition
well worth the relatively minimal effort required to upgrade to SQL Server 2005,
whether you’re responsible for developing reports, administering a report server, or
accessing Reporting Services as an end user. Notification Services in general conforms
to the application principles introduced in Notification Services 2.0, a downloadable
add-in for SQL Server 2000, but it has been improved to simplify development and
administrative tasks and to boost performance and scalability. Lastly, Service Broker is
a new feature included with SQL Server 2005 as a framework for the development and
management of asynchronous messaging applications.

Business Intelligence Development Studio
Because tasks related to developing a business intelligence solution are quite different
from tasks required to administer those solutions in production, SQL Server 2005 pro-
vides two separate environments for each set of tasks—Business Intelligence Develop-
ment Studio for development and SQL Server Management Studio for administration.
Business Intelligence Development Studio is, in fact, a version of Microsoft Visual Studio
2005 that you use to create Integration Services, Analysis Services, or Reporting Services
projects. If you’re already using Visual Studio 2005 for application development, the busi-
ness intelligence templates are simply added to your existing version. You can learn about
using this integrated development environment in Chapter 21, “Integration Services,”
Chapter 22, “Analysis Services, and Chapter 23, “Reporting Services.”

Integration Services
Integration Services is not an enhanced version of Data Transformation Services (DTS)
from SQL Server 2000 but a completely redesigned set of tools you can use to develop
scalable, flexible, and high performing data integration solutions. In Chapter 21, you
learn how Integration Services compares to Data Transformation Services. You also learn
the basic processes required to build, monitor, and manage packages that extract data
from a variety of sources, optionally transform that data, and then load the results into
one or more destinations.

Analysis Services
Analysis Services in SQL Server 2005 frees developers of online analytical processing
(OLAP) solutions from traditional, rigid cube structures by enabling flexible designs that
support a variety of analytical requirements. After reading Chapter 22, you’ll understand
how Analysis Services in SQL Server 2005 differs from Analysis Services in SQL Server

16 Part I Introduction to Microsoft SQL Server 2005
2000 and how to build a simple database to explore the new features in the current ver-
sion of the product.

Reporting Services
In SQL Server 2005, Reporting Services includes new interactive features that can be
implemented by report authors, additional management tools available to report server
administrators, and ad hoc report writing capabilities for nontechnical users, to name a
few. You can learn about these new capabilities in Chapter 23.

Notification and Broker Services
Notification Services is a platform for developing and maintaining messaging applica-
tions used to send alerts to subscribers, typically in the form of an e-mail message, when
specific events occur or on a scheduled basis. Service Broker is also a messaging applica-
tion platform, but one which facilitates the asynchronous exchange of messages between
applications. See Chapter 24, “Notification and Broker Services,” for an introduction to
these two technologies.

Summary
This chapter provided an overview of the major new features and enhancements of SQL
Server 2005 that will be most interesting to the DBA. References to information for devel-
oper topics were provided, as there are many new features for development which are not
covered in this book. This book focuses on installation, configuration, administration,
high availability, scalability, business intelligence capabilities, and performance topics for
SQL Server 2005, as well as how to use some of the new features that will be important
for the DBA.

Chapter 2

Microsoft SQL Server 2005
Editions, Capacity Limits,
and Licensing

SQL Server 2005 Editions . 18

Understanding Windows Platform Support. 21

Understanding Processors and Memory Limits . 25

Factoring in Head-Room . 25

Comparing SQL Server 2005 Editions . 27

SQL Server 2005 Capacity Limits . 33

Understanding SQL Server 2005 Licensing. 35

Licensing Considerations for High-Availability Environments 40

SQL Server 2005 Pricing . 41

Summary . 42

Much like its predecessors, Microsoft SQL Server 2005 is available in a number of edi-
tions that can be installed on a variety of hardware platforms using different licensing
models. Evaluating the needs of your environment and deciding on the appropriate edi-
tion, platform architecture, and licensing model are the first steps to getting started with
SQL Server 2005 and are crucial to ensuring long-term success.

This chapter introduces you to the different SQL Server 2005 editions and provides
examples of the environments for which each is best suited. It also compares the editions
based on features and platforms supported. In addition, you will learn about the various
capacity limits and the considerations for high availability. Lastly, it provides detailed
information about the SQL Server 2005 licensing models, including multicore processor
and high-availability licensing considerations, and presents example scenarios in which
each is best suited.
17

18 Part I Introduction to Microsoft SQL Server 2005
SQL Server 2005 Editions
This section explains each of the six editions of SQL Server 2005 and typical usage sce-
narios in which each is best used. Details about the editions, including the features, plat-
forms supported, and capacity limits, are presented later in this chapter.

Mobile Edition
As the name suggests, SQL Server 2005 Mobile Edition is a compact database with a very
small footprint (2 MB) designed specifically for mobile devices. This edition is a succes-
sor to the CE Edition that shipped with SQL Server 2000.

Mobile Edition supports a subset of the features supported by other editions of SQL
Server 2005, such as replication (subscriber only) and transaction support, and has the
advantage of supporting a subset of the same popular T-SQL language you may already
be familiar with from using other editions of SQL Server. This familiar development plat-
form can help you leverage your existing skills. Mobile Edition integrates with the
Microsoft .Net Compact Framework using Microsoft Visual Studio 2005, making appli-
cation development easier and more efficient. It also integrates with SQL Server Manage-
ment Studio, which simplifies the process of building, deploying, and managing the SQL
Server 2005 Mobile databases. SQL Server Management Studio is explained in detail in
Chapter 31 “Dynamic Management Views.” Overall, SQL Server 2005 Mobile Edition
provides you with a powerful database that enables simple access to enterprise data for
devices that are intermittently or continuously connected to the master SQL Server data-
base system. SQL Server 2005 Mobile Edition can be used on any device that runs
Microsoft Windows CE 5.0, Microsoft Windows XP Tablet PC Edition, Windows Mobile
2003 Software for Pocket PC, or Windows Mobile 5.0.

Because Mobile Edition is a specialized edition intended just for mobile devices, it will
not be covered in detail in this book.

More Info For more information about SQL Server 2005 Mobile Edition, refer
to http://www.microsoft.com/sql/editions/sqlmobile.

Express Edition
SQL Server 2005 Express Edition is a free, easy-to-use, and redistributable version of SQL
Server 2005 that offers developers a robust database for building reliable applications.
Although there are some capacity limits, SQL Server Express is a full-fledged and power-
ful database offering many of the same features as the other SQL Server 2005 editions
explained later, including support for transactions, replication (subscriber only), OSQL

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 19
command-line tool and Common Language Runtime (CLR). It also has the ability to
serve as a witness in SQL Server 2005 database mirroring, as explained in Chapter 27,
“Log Shipping and Database Mirroring.”

SQL Server Express can make use of only a single processor and 1 GB of RAM. In addi-
tion, it has a database size limit of 4 GB, which limits its use for larger business applica-
tions. Unlike its predecessor, Microsoft SQL Server Desktop Edition (MSDE) that
shipped with SQL Server 2000, SQL Server Express does not use a workload governor to
degrade performance if there are more than five concurrent batch workloads executing
simultaneously. This is a huge benefit over MSDE, as it makes the performance predict-
able and scalable.

SQL Server 2005 Express Edition is primarily targeted to developers looking to embed a
redistributable database engine in their application. These developers no longer need to
develop their own data repository and can rely on the powerful set of features, perfor-
mance, and the well-defined T-SQL programming language offered by SQL Server
Express. This edition is also well-suited for supporting basic Web sites.

Workgroup Edition
SQL Server 2005 Workgroup Edition is an ideal entry-level database targeted at small
organizations that need a database with no limits on database size or number of users. It
is a fast, easy-to-use, and affordable database solution that provides most of what you
need to run applications.

The Workgroup Edition supports most of the features in Standard Edition, explained in the
following section, but does not include Analysis Services, Reporting Services or Notification
Services. In addition, it is limited to being able to use only two processors and 3 GB of mem-
ory. This limitation means that even if the system contains more than two processors and
greater than 3 GB of memory, Workgroup Edition will not be able to make use of the addi-
tional capacity.

SQL Server 2005 Workgroup Edition is best suited for departmental or branch office
operations. It includes the core database features of SQL Server and can be upgraded
directly to Standard Edition or Enterprise Edition.

Standard Edition
SQL Server 2005 Standard Edition is targeted for departmental usage in medium-sized
businesses and infrastructures that require a highly available data management and anal-
ysis platform. In SQL Server 2005, Standard Edition moves into the higher end of the
spectrum with support for high-availability features such as two-node failover clustering,
database mirroring, and, in theory, support for an unlimited amount of memory. It also

20 Part I Introduction to Microsoft SQL Server 2005
offers enhanced business intelligence functionality and SQL Server Integration Services,
SQL Server Analysis Services, and SQL Server Reporting Services.

Standard Edition is ideal for users looking for an affordable enterprise-class database. It
is one of the most popular editions of SQL Server.

Enterprise Edition
Enterprise Edition is the most robust edition of SQL Server 2005 and is best suited for
critical enterprise online transaction processing (OLTP) workloads, highly complex data
analysis, and data warehousing workloads in large organizations with complex require-
ments. This edition supports the complete set of enterprise data management and busi-
ness intelligence features and offers the highest level of availability with full support for
database mirroring and failover clustering. Enterprise Edition provides user-ready
advanced business intelligence and reporting features, making it a very competitively
priced comprehensive enterprise solution.

SQL Server 2005 Enterprise Edition is the most expensive edition, making all the features
of SQL Server available for use. It is targeted to the larger customers with more critical and
complex processing requirements and includes enhanced features such as advanced busi-
ness analysis, proactive caching, scale-out report servers, and data-driven subscriptions.

Developer Edition
SQL Server 2005 Developer Edition includes all of the features and functionality of the
Enterprise Edition but is designed for individual database developer or tester use solely
for the purpose of building and testing applications. The special development and test
license agreement for this edition disallows users from using it in a production environ-
ment. Developer Edition can be directly upgraded for production use to SQL Server 2005
Standard or Enterprise Edition, providing users with an easy upgrade path. Using the
SQL Server Developer Edition is also an excellent way for developers to sample the com-
plete set of features and functionality of Enterprise Edition and prepare to deploy it.

Unlike the other editions, SQL Server 2005 Developer Edition is licensed to individual
users and is solely for development and test purposes.

Real World What About SQL Server 2005 Datacenter Edition?

I have often come across customers who want to purchase SQL Server 2005 Data-
center Edition to meet their mission-critical and high-availability needs. This search
is futile because there is no such SQL Server edition. What these customers are
often looking for and referring to is the Windows Server Datacenter Edition oper-
ating system.

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 21
Users looking for the highest levels of scalability and reliability should consider using
Windows Server 2003 Datacenter Edition with SQL Server 2005 Enterprise Edition.
This is the recommended solution for all mission-critical database applications, ERP
(Enterprise Resource Planning) software, high-volume, and real-time transaction pro-
cessing applications.

Understanding Windows Platform Support
The Windows operating system comes in several variants, each targeted towards a partic-
ular size and type of business. Understanding and determining the most appropriate one
for your SQL Server 2005 deployment is almost as important as selecting the correct edi-
tion of SQL Server 2005.

SQL Server 2005 can be installed and run on Windows 2000, Windows 2003, and Win-
dows XP. These three operating systems are described briefly in the following list:

■ Windows 2000

Windows 2000, also referred to as Win2K, W2K, or Windows NT 5.0, was released
in February 2000 as a successor to Windows NT 4.0. It is designed to work with
uniprocessor and Symmetric Multi Processor (SMP) systems, with editions tar-
geted specifically for the desktop and server systems. SQL Server 2005 is supported
on four versions of Windows 2000: Professional, Server, Advanced Server, and
Datacenter Server (IA-32 only).

Windows 2000 has since been succeeded by Windows Server 2003 (described later
in this list), which has many feature and performance enhancements, including a
better I/O and TCP/IP stack. Whenever possible, I recommend you use one of the
editions of Windows Server 2003 instead of Windows 2000.

More Info More information about Windows 2000 can be found at
http://www.microsoft.com/windows2000.

■ Windows XP

Windows XP is a general-purpose operating system intended for use primarily with
notebook, desktop, and business computer systems. It was released in October
2001 and ships in four editions: Home, Professional, Tablet, and Media Center.
While some of the SQL Server 2005 editions, like Standard Edition, are supported
on Windows XP, I recommend you use this operating system only for development
and test activity and light database workloads.

22 Part I Introduction to Microsoft SQL Server 2005
More Info More information about Windows XP can be found at http://
www.microsoft.com/windowsXP.

■ Windows Server 2003

The successor to Windows 2000, Windows Server 2003 is currently Microsoft’s flag-
ship server operating system. It was released in April 2003, and is the only operating
system to support the IA-32 as well as the IA-64 and x64 platforms. Windows Server
2003 boasts enhanced security, increased reliability, simplified administration, higher
scalability, and better performance and is ideally suited for large mission-critical appli-
cations. Windows Server 2003 ships in four editions: Web, Standard, Enterprise, and
Datacenter. It is the preferred operating system for running SQL Server 2005 databases.

More Info More information about Windows Server 2003 can be found
at http://www.microsoft.com/windowsserver2003.

Note Windows Small Business Server 2003 is not a separate operating
system; it is a Windows bundle that includes Windows Server 2003 and
other technologies to provide a small business with a complete technology
solution. The technologies are integrated to enable a small business with
targeted solutions that are easily deployed. SQL Server 2005 is supported
on the Windows Small Business Server 2003 Standard and Premium Editions.

More Info More information about Windows Small Business Server 2003
can be found at http://www.microsoft.com/windowsserver2003/sbs.

The SQL Server 2005 support for these operating systems varies based on four factors:

1. Edition of SQL Server 2005 (Express, Workgroup, Standard, Enterprise, or Developer)

2. Operating system version (Windows 2000, Windows XP, Windows Server 2003, or
Windows Small Business Server 2003)

3. Edition of the operating system version (Standard, Enterprise, Datacenter, and so on)

4. Platform (IA-32, IA-64, or x64)

The supported combinations of the Windows versions for the five different SQL Server
2005 32-bit (IA-32) editions are presented in Table 2-1.

More Info WOW64 in Table 2-1 refers to the Windows on Windows 32-bit
subsystem of a 64-bit (x64) server. For additional information on WOW64, refer to
the MSDN article “Running 32-bit Applications” at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/win64/win64/running_32_bit_applications.asp.

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 23
Table 2-1 Supported Operating Systems for SQL Server 2005 (IA-32)
Editions

Operating
System

Enterprise
Edition
(IA-32)

Developer
Edition
(IA-32)

Standard
Edition
(IA-32)

Workgroup
Edition
(IA-32)

Express
Edition
(IA-32)

Windows 2000
Professional
Edition SP4

No Yes Yes Yes Yes

Windows 2000
Server SP4

Yes Yes Yes Yes Yes

Windows 2000
Advanced Server
SP4

Yes Yes Yes Yes Yes

Windows 2000
Datacenter
Edition SP4

Yes Yes Yes Yes Yes

Windows XP
Home Edition
SP2

No Yes No No Yes

Windows XP
Professional
Edition SP2

No Yes Yes Yes Yes

Windows XP
Media Edition
SP2

No Yes Yes Yes Yes

Windows XP
Tablet Edition
SP2

No Yes Yes Yes Yes

Windows Server
2003 Server
SP1

Yes Yes Yes Yes Yes

Windows Server
2003 Enterprise
Edition SP1

Yes Yes Yes Yes Yes

Windows Server
2003 Datacenter
Edition SP1

Yes Yes Yes Yes Yes

Windows Server
2003 Web Edition
SP1

No No No No Yes

24 Part I Introduction to Microsoft SQL Server 2005
Table 2-2 lists the supported combinations of Windows versions and editions for the
three SQL Server 2005 (IA-64) 64-bit editions used with the Intel Itanium-based servers.
The 64-bit platform is explained in detail in Chapter 5, “32-Bit versus 64-Bit Platforms
and Microsoft SQL Server 2005.”

Windows Small
Business Server
2003 Standard
Edition SP1

Yes Yes Yes Yes Yes

Windows Small
Business Server
2003 Premium
Edition SP1

Yes Yes Yes Yes Yes

Windows Server
2003 64-Bit x64
Standard
Edition SP1

WOW64 WOW64 WOW64 WOW64 WOW64

Windows Server
2003 64-Bit x64
Datacenter
Edition SP1

WOW64 WOW64 WOW64 WOW64 WOW64

Windows Server
2003 64-Bit x64
Enterprise
Edition SP1

WOW64 WOW64 WOW64 WOW64 WOW64

Table 2-2 Supported Operating Systems for SQL Server 2005 (IA-64) Editions

Enterprise
Edition (IA64)

Developer
Edition (IA64)

Standard
Edition (IA64)

Windows Server 2003 64-Bit Itanium
Datacenter Edition SP1

Yes Yes Yes

Windows Server 2003 64-Bit Itanium
Enterprise Edition SP1

Yes Yes Yes

Table 2-1 Supported Operating Systems for SQL Server 2005 (IA-32)
Editions (continued)

Operating
System

Enterprise
Edition
(IA-32)

Developer
Edition
(IA-32)

Standard
Edition
(IA-32)

Workgroup
Edition
(IA-32)

Express
Edition
(IA-32)

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 25
Table 2-3 lists the supported Windows versions and editions for the four SQL Server
2005 editions for x64 (EM64T and Opteron) systems. The x64 platform is explained in
detail in Chapter 5.

SQL Server 2005 Express Edition does not have an x64 version; however, you can use the
IA-32 version running in WOW64 mode, implying that it will run on the Windows 32-bit
sub-system of the 64-bit server.

Understanding Processors and Memory Limits
Each SQL Server 2005 edition has different limits for the number of processors and amount
of memory it supports. After you have completed sizing your environment as explained in
Chapter 6, “Capacity Planning,” and have a reasonably accurate estimate of the number of
processors and the amount of memory you will need in the database server, you should
determine which SQL Server 2005 edition best fits your needs using the following tables.

Table 2-4 lists the maximum amount of memory supported by each of the SQL Server
2005 editions for both the 32-bit (IA-32) and the 64-bit (IA-64 and x64) platforms.

Table 2-3 Supported Operating Systems for SQL Server 2005 Editions for x64
Systems

Enterprise
Edition (x64)

Developer
Edition (x64)

Standard
Edition (x64)

Express
Edition (IA-32)

Windows Server 2003
64-Bit x64 Standard
Edition SP1

Yes Yes Yes WOW64

Windows Server 2003
64-Bit x64 Datacenter
Edition SP1

Yes Yes Yes WOW64

Windows Server 2003
64-Bit x64 Enterprise
Edition SP1

Yes Yes Yes WOW64

Table 2-4 Maximum Amount of Memory Supported

SQL Server 2005 Edition
Maximum Memory
Supported (IA-32)

Maximum Memory Supported
(IA-64 and x64)

Enterprise Edition OS maximum OS maximum

Developer Edition OS maximum 32 terabytes

26 Part I Introduction to Microsoft SQL Server 2005
The cells that state “OS maximum” indicate that the maximum amount of memory sup-
ported by the particular SQL Server 2005 edition is based on what the underlying oper-
ating system supports. For example, SQL Server 2005 Standard Edition (IA-32) running
on Windows Server 2003 Enterprise Edition (IA-32) will support 32 GB of memory,
while the same edition of SQL Server 2005 running on Windows Server 2003 Standard
Edition (IA-32) supports only 4 GB of memory because Windows Server 2003 Standard
Edition (IA-32) supports only 4 GB of memory. The Workgroup and Express Editions are
not natively supported on the 64-bit platform, and therefore, the values are listed as “Not
applicable.”

Table 2-5 lists the maximum number of processors supported by each of the SQL Server
2005 editions for both the 32-bit (IA-32) and the 64-bit (IA-64 and x64) platforms.

For SQL Server 2005 Enterprise Edition, the “OS maximum” implies that the number of
processors supported by SQL Server 2005 is based on what the underlying operating sys-
tem supports. For example, SQL Server 2005 Enterprise Edition (32-bit) running on
Windows Server 2003 Standard Edition (IA-32) supports a maximum of four processors,
while the same SQL Server edition running on Windows Server 2003 Enterprise Edition
(IA-32) supports a maximum of eight processors.

Standard Edition OS maximum 32 terabytes

Workgroup Edition 3 GB Not applicable

Express Edition 1 GB Not applicable

Table 2-5 Maximum Number of Processors Supported

SQL Server 2005 Edition
Number of Processors
Supported (IA-32)

Number of Processors
Supported (IA-64 and x64)

Enterprise Edition OS maximum OS maximum

Developer Edition OS maximum OS maximum

Standard Edition 4 4

Workgroup Edition 2 Not applicable

Express Edition 1 Not applicable

Table 2-4 Maximum Amount of Memory Supported (continued)

SQL Server 2005 Edition
Maximum Memory
Supported (IA-32)

Maximum Memory Supported
(IA-64 and x64)

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 27
Factoring in Head-Room
I strongly recommend that you factor in some room for growth for both the number of
processors and the amount of memory when selecting your SQL Server 2005 edition.
For example, if your sizing reveals that SQL Server 2005 requires 3 GB of memory and
two processors to run your application, you should select the SQL Server 2005 Stan-
dard Edition, budget permitting, instead of the Workgroup Edition. This choice will
ensure that the deployment will not be at its limits from the start and will provide you
some flexibility to add more memory or additional processors if your sizing estimates
were not perfectly accurate or your application workload grows, both of which are very
probable.

Comparing SQL Server 2005 Editions
In addition to considering the amount of memory supported, the number of proces-
sors supported, and so on, also consider the features that are supported by the SQL
Server 2005 edition to make sure they meet your needs. The features supported vary
based on the SQL Server 2005 edition and, in some cases, the platform (IA-32, IA-64,
or x64), but they are independent of the underlying operating system on which SQL
Server 2005 runs.

The following sections present the key differences for the Database Engine, Analysis Ser-
vices, Reporting Services, Notification Services, Integration Services, and Replication
features supported by the various editions of SQL Server 2005.

Note Components that are common across the editions are not listed. For a
complete list of differences, refer to: http://msdn2.microsoft.com/en-us/library/
ms143761.aspx.

Database Engine Features
Table 2-6 lists the differences in the database engine features supported by SQL Server
2005 Enterprise Edition (IA-32, IA-64, and x64), Developer Edition (IA-32, IA-64, and
x64), Standard Edition (IA-32, IA-64, and x64), and Workgroup Edition (IA-32).

28 Part I Introduction to Microsoft SQL Server 2005
Analysis Services
Table 2-7 lists the differences in the SQL Server Analysis Services (SSAS) features sup-
ported by SQL Server 2005 Enterprise Edition (IA-32, IA-64, and x64), Developer Edi-
tion (IA-32, IA-64, and x64), Standard Edition (IA-32), and Standard Edition (IA-64,
and x64).

Table 2-6 Database Engine Feature Comparison by Edition

Feature

Enterprise
Edition (IA-32,
IA-64, and x64)
and Developer
Edition (IA-32,
IA-64, and x64)

Standard
Edition (IA-32,
IA-64, and x64)

Workgroup
Edition (IA-32)

Microsoft .NET Framework Yes Yes No

Failover clustering Yes 2-node only No

Multi-instance support 50 16 16

Database snapshot Yes No No

Database mirroring Yes Safety FULL only No

Dynamic AWE Yes No No

Database available during
recovery undo

Yes No No

Highly-available upgrade Yes No No

Hot-add memory Yes No No

Mirrored backup media Yes No No

Online index operations Yes No No

Online page and file restore Yes No No

Parallel index operations Yes No No

Updateable distributed
partitioned views

Yes No No

Enhanced read-ahead and scan Yes No No

Table and index partitioning Yes No No

VIA support Yes No No

Parallel DBCC Yes No No

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 29
Table 2-7 Analysis Services Feature Comparison by Edition

Feature

Enterprise Edition
(IA-32, IA-64, and
x64) and Developer
Edition (IA-32,
IA-64, and x64)

Standard Edition
(IA-32)

Standard Edition
(IA-64 and x64)

Failover clustering Yes Yes No

Multi-instances 50 16 16

Parallelism for model
processing

Yes No No

Parallelism for model
prediction

Yes No No

Text-mining Term Extrac-
tion Transformation (SSIS)

Yes No No

Text-mining Term Lookup
Transform (SSIS)

Yes No No

Data Mining Query
 Transformation (SSIS)

Yes No No

Data Mining Processing
Destination (SSIS)

Yes No No

Algorithm Plug-in API Yes No No

Advanced configuration
and tuning options for
 Data Mining algorithms

Yes No No

Account intelligence Yes No No

Cross-database/cross-
server linked measures
and dimensions

Yes No No

Metadata translations Yes No No

Perspectives Yes No No

Semi-additive measures Yes No No

Writeback dimensions Yes No No

Create cubes without
database

Yes Yes No

Auto-generate staging and
data warehouse schema

Yes Yes No

Auto-generate DTS pack-
ages for updating data
warehouse data

Yes Yes No

30 Part I Introduction to Microsoft SQL Server 2005
Reporting Services
Table 2-8 lists the differences in the SQL Server Reporting Services (SSRS) features sup-
ported by SQL Server 2005 Enterprise Edition (IA-32, IA-64, and x64), Developer Edi-
tion (IA-32, IA-64, and x64), Standard Edition (IA-32, IA-64, and x64), and Workgroup
Edition (IA-32).

Proactive caching Yes No No

Auto parallel partition
processing

Yes No No

Partitioned cubes Yes No No

Distributed partitioned
cubes

Yes No No

Table 2-7 Analysis Services Feature Comparison by Edition (continued)

Feature

Enterprise Edition
(IA-32, IA-64, and
x64) and Developer
Edition (IA-32,
IA-64, and x64)

Standard Edition
(IA-32)

Standard Edition
(IA-64 and x64)

Table 2-8 Reporting Services Feature Comparison by Edition

Feature

Enterprise
Edition (IA-32,
IA-64, and x64)
and Developer
Edition (IA-32,
IA-64, and x64)

Standard
Edition (IA-32,
IA-64, and x64)

Workgroup
Edition (IA-32)

Support for remote and nonrelational
data sources

Yes Yes No

MHTML, CSV, XML, and Null rendering
extensions

Yes Yes No

E-mail and file share delivery
extensions

Yes Yes No

Custom data processing, delivery,
and rendering extensions

Yes Yes No

Report caching Yes Yes No

Report history Yes Yes No

Scheduling Yes Yes No

Subscriptions Yes Yes No

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 31
Notification Services
SQL Server Notification Service is supported only in SQL Server 2005 Enterprise and
Standard editions. The key difference between these two editions is that the Notification
Services in Enterprise Edition is more scalable because it supports parallelism, multicast,
and distributed deployments.

Integration Services
Table 2-9 lists the differences in the SQL Server Integration Services (SSIS) features sup-
ported by SQL Server 2005 Enterprise Edition (IA-32, IA-64, and x64), Developer Edi-
tion (IA-32, IA-64, and x64), Standard Edition (IA-32, IA-64, and x64), and Workgroup
Edition (IA-32).

Data-driven subscriptions Yes No No

User-defined role definitions Yes Yes No

Report model item security Yes Yes No

Support for infinite clickthrough in
ad hoc reports

Yes No No

Report server scale-out deployment Yes No No

Table 2-8 Reporting Services Feature Comparison by Edition (continued)

Feature

Enterprise
Edition (IA-32,
IA-64, and x64)
and Developer
Edition (IA-32,
IA-64, and x64)

Standard
Edition (IA-32,
IA-64, and x64)

Workgroup
Edition (IA-32)

Table 2-9 Integration Services Feature Comparison by Edition

Feature

Enterprise
Edition (IA-32,
IA-64, and x64)
and Developer
Edition (IA-32,
IA-64, and x64)

Standard
Edition (IA-32,
IA-64, and x64)

Workgroup
Edition (IA-32)

SSIS Service Yes Yes No

All other source and destination
adapters, tasks, and transformations,
except for those listed below

Yes Yes No

Data Mining Query Transformation Yes No No

32 Part I Introduction to Microsoft SQL Server 2005
Replication
Table 2-10 lists the differences in Replication features supported by SQL Server 2005
Enterprise Edition (IA-32, IA-64, and x64), Developer Edition (IA-32, IA-64, and x64),
Standard Edition (IA-32, IA-64, and x64), and Workgroup Edition (IA-32).

Data Mining Model Training Destina-
tion Adapter

Yes No No

Fuzzy Grouping transformation Yes No No

Fuzzy Lookup transformation Yes No No

Term Extraction transformation Yes No No

Term Lookup transformation Yes No No

Slowly Changing Dimension transfor-
mation and wizard

Yes IA-32: yes

IA-32: no

No

Dimension Processing destination
adapter

Yes No No

Partition Processing destination
adapter

Yes No No

Table 2-9 Integration Services Feature Comparison by Edition (continued)

Feature

Enterprise
Edition (IA-32,
IA-64, and x64)
and Developer
Edition (IA-32,
IA-64, and x64)

Standard
Edition (IA-32,
IA-64, and x64)

Workgroup
Edition (IA-32)

Table 2-10 Replication Feature Comparison by Edition

Feature

Enterprise Edition
(IA-32, IA-64,
and x64) and
Developer Edition
(IA-32, IA-64,
and x64)

Standard
Edition (IA-32,
IA-64, and x64)

Workgroup
Edition (IA-32)

Merge replication Yes Yes Limited*

* An unlimited number of subscriptions to snapshot publications, 25 subscriptions to all merge publications,
and 5 subscriptions to all transactional publications are supported when Workgroup Edition is used as a
publisher.

Transactional replication Yes Yes Limited*

Non-SQL Server Subscribers Yes Yes No

Oracle publishing Yes No No

Peer-to-peer transactional replication Yes No No

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 33
SQL Server 2005 Capacity Limits
Although rare, every once in a while you may encounter a SQL Server 2005 component
preset capacity limit. The most common capacity limits are “maximum number of col-
umns per index” and “maximum number of indexes/statistics per table.” There will also
be times when you have questions about the maximum number of rows you can have in
a table or the number of database instances you can host on a single system. Table 2-11
helps answer these questions by listing the maximum values for various SQL Server data-
base engine objects.

Table 2-11 Maximum Capacity Limits for SQL Server 2005

SQL Server 2005 Database Engine Object Maximum Values

Batch size 65,536 × Network Packet Size

Bytes per short string column 8,000

Bytes per GROUP BY, ORDER BY 8,060

Bytes per index key 900

Bytes per foreign key 900

Bytes per primary key 900

Bytes per row 8,060

Bytes in source text of a stored procedure The lesser of batch size or 250 MB

Bytes per varchar(max), varbinary(max), xml, text,
or image column

231 – 1

Characters per ntext or nvarchar(max) column 230 – 1

Clustered indexes per table 1

Columns in GROUP BY, ORDER BY Limited only by number of bytes (see
Bytes per GROUP BY, ORDER BY)

Columns or expressions in a GROUP BY WITH CUBE
or WITH ROLLUP statement

10

Columns per index key 16

Columns per foreign key 16

Columns per primary key 16

Columns per base table 1,024

Columns per SELECT statement 4,096

Columns per INSERT statement 1,024

34 Part I Introduction to Microsoft SQL Server 2005
Connections per client Maximum value of configured connections*

Database size 1,048,516 terabytes

Databases per instance of SQL Server 32,767

Filegroups per database 32,767

Files per database 32,767

File size (data file) 16 terabytes

File size (log file) 2 terabytes

Foreign key table references per table 253

Identifier length (in characters) 128

Instances per computer 16 (50 for Enterprise Edition)

Length of a string containing SQL statements
(Batch size)

65,536 × network packet size

Locks per connection Maximum locks per instance of SQL Server

Locks per instance of SQL Server IA-32: up to 2,147,483,647

IA-64, ×64: limited only by memory

Nested stored procedure levels 32

Nested subqueries 32

Nested trigger levels 32

Non clustered indexes per table 249

Parameters per stored procedure 2,100

Parameters per user-defined function 2,100

REFERENCES per table 253

Rows per table Limited only by available storage

Tables per database Limited by number of objects in a data-
base

Partitions per partitioned table or index 1,000

Statistics on nonindexed columns 2,000

Tables per SELECT statement 256

Triggers per table Limited by number of objects in a
database

UNIQUE indexes or constraints per table 1 clustered and 249 nonclustered indexes

XML indexes 249

* The maximum value of configured connections can be set using the sp_configure stored procedure or
using SQL Server Management Studio.

Table 2-11 Maximum Capacity Limits for SQL Server 2005 (continued)

SQL Server 2005 Database Engine Object Maximum Values

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 35
The capacity limits are the same for all editions of SQL Server 2005 and for all the plat-
forms (IA-32, IA-64, and x64). The only exceptions are “instances per computer,” which
is different for Enterprise Edition, and “Locks per instance of SQL Server,” which is dif-
ferent for 32-bit (IA-32) and 64-bit (IA-64 and x64) systems, as noted in Table 2-11.

Understanding SQL Server 2005 Licensing
I have often found the SQL Server licensing models to be plagued by confusion and very
poorly understood. Recent changes in processor technology, including the introduction
of hyperthreading and multicore technologies, have further complicated matters. This
section attempts to explain the licensing considerations for SQL Server 2005 deploy-
ments in simple terms.

SQL Server 2005 can be deployed using one of three distinct licensing models:

1. Server plus user client access licensing Requires a license for the system run-
ning SQL Server 2005 and a client access license (CAL) for each user that connects
to the SQL Server instance.

2. Server plus device client access licensing Requires a license for the system
running SQL Server 2005 and a CAL for each device that connects to the SQL
Server instance.

Note A client access license (CAL) is a legal document granting a device
or user access to the SQL Server software. A single user CAL can grant
access to multiple servers for one user. Similarly, a single device CAL can
grant access to multiple servers for one device. Unlike earlier versions, SQL
Server 2005 does not require you to specify the licensing model and CAL
details during the SQL Server installation process.

3. Processor licensing Requires a license for each physical processor in the operat-
ing system environment running SQL Server 2005.

These licensing considerations apply only to SQL Server 2005 Enterprise, Standard,
and Workgroup Editions. SQL Server 2005 Express Edition is available as a free down-
load and, therefore, exempt from the licensing considerations. Also, SQL Server 2005
Developer Edition is intended solely for development and test purposes and licensed
per individual developer or tester and, therefore, the three licensing models mentioned
previously do not apply to it.

36 Part I Introduction to Microsoft SQL Server 2005
The following subsections explain the licensing models for the Enterprise, Standard, and
Workgroup Editions and provide example scenarios for which each is best suited.

User Client Access Licensing
The user client access licensing model requires users to have a server license for every
operating system environment on which SQL Server 2005 or any of its components are
running, plus a license for each user who connects to SQL Server 2005. Figure 2-1 depicts
an environment that uses this licensing model. In this example a server is installed with
the SQL Server 2005 Standard Edition database as well as Analysis Services and is
accessed by seven users. Four of these users access only the database engine while the
other three access, the database as well as Analysis Services.

Figure 2-1 User client access licensing model.

For this configuration a SQL Server 2005 Standard Edition server license is required for
the operating system environment on which SQL Server 2005 is installed. In addition,
seven user CALs are required for the users who access SQL Server and Analysis Services.
Note that there is no differentiation in the CALs for the users who connect to SQL Server
and those who connect to SQL Server and Analysis Services; a single user CAL grants the
user access to any of the installed SQL Server 2005 components. If the client access
license package comes with a server license and five user CALs, you will have to purchase
two additional CALs separately to meet the total requirement of seven CALs.

Server licenses are specific to particular SQL Server 2005 editions; this means that you will
need different server licenses for the Enterprise, Standard, and Workgroup Editions. How-
ever, user CALs are common and can be used to connect to any of the three editions. The
only exception is the special Workgroup user CAL, which, unlike the regular CAL, can be
used only for users to connect to a SQL Server system running Workgroup Edition.

SQL
Server

Analysis
Services

SQL Server 2005
Standard Edition

Users

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 37
The user client access licensing model is best suited for deployments where there are a
few users who connect to the SQL Server 2005 server from multiple devices. For exam-
ple, a user may connect to the server from her office desktop during office hours, from her
laptop after—hours, and from her mobile device while she is traveling. Because the user
CAL is associated with a user, only one CAL is required in this case even though the user
accesses the server from three different devices.

Device Client Access Licensing
Similar to the user client access licensing model, the device client access licensing model
requires you to have a server license for every operating system environment on which
SQL Server 2005 or any of its components are running and a license for each device that
connects to SQL Server 2005. Figure 2-2 depicts an environment that uses this licensing
model. In this example, a server is installed with the SQL Server 2005 Workgroup Edi-
tion database in a department store and is accessed by five point-of-sales devices.

Figure 2-2 Device client access licensing model.

For this configuration, a SQL Server 2005 Workgroup Edition server license is required
for the operating system environment on which SQL Server 2005 is installed. In addition,
five device CALs are required for the five point-of-sales devices that will connect to SQL
Server.

Device CALs are common to the Enterprise, Standard, and Workgroup Editions and can
be used to connect any device to any of these three editions. The only exception to this is
the special Workgroup device CAL, which, unlike the regular CAL, can be used only to
connect to a SQL Server system running Workgroup Edition.

The device client access licensing model is best suited for scenarios where there are
multiple users that connect to the server via a few devices. A classic example of this is
a department store that is open around the clock and has a handful of sales registers
(devices) connected to an application that uses a SQL Server database at the back end.

SQL
Server

SQL Server 2005
Workgroup EditionDevices

38 Part I Introduction to Microsoft SQL Server 2005
In this department store, different cashiers use these sales registers during the shift,
and there are three such shifts every day. With the device user CAL licensing model,
the department store is required to have a server license only for the operating system
environment running SQL Server 2005 and device CALs for each of the devices. This
licensing model could potentially be much cheaper than the user client access licens-
ing model because it is not dependent on the individual users accessing the database,
only the devices that access it. If the department store has five point-of-sales registers
and twenty-five employees operating those registers throughout the day, this model
requires the department store to purchase only five device client access lncenses. In
this case, the device client access licening model is also simpler to adopt because it
does not require detailed tracking of the different department store personnel who use
the sales registers.

Important When using the user or device client access licensing model, the
number of individual licenses required is determined by the number of distinct
users or devices that connect directly or indirectly to the SQL Server software.
This implies that any hardware or software multiplexing through which multiple
distinct users or devices are aggregated such that they appear as fewer users or
devices to SQL Server software does not exempt them from requiring individual
CALs. For example, consider a three-tier (Web tier, application tier, and database
tier) customer relationship management (CRM) application that uses SQL Server
as the back-end data store and uses a single user login for the application tier to
connect to the database tier. If this application supports a thousand unique,
named users and uses the SQL Server user client licensing model, it will require a
thousand user CALs even though only one user login effectively connects to SQL
Server software.

Processor Licensing
The per processor-based licensing model is the simplest to understand and adopt, but
it can often be expensive for smaller deployments. In this model, a processor license is
required for each processor installed on each operating system environment running a
SQL Server 2005 database or any of its components such as Reporting Services, Analy-
sis Services, and so on. With this licensing model, an unlimited number of users or
devices can connect to the system and use any of the database services. Processor
licenses are based on only the number of physical processors in the system and are
independent of the other system resources such as memory or number of disks. Unlike
the user and the device client access licensing models explained previously, no addi-
tional CALs are required for the individual users that connect to the server. Different

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 39
processor licenses are available for the SQL Server 2005 Enterprise, Standard, and
Workgroup Editions.

The processor licensing model is best suited for scenarios in which a large number of
users using different devices need to occasionally access the database components for
short durations of time. For example, an e-commerce site that uses a back-end SQL
Server database may have hundreds or even thousands of unique users connecting via
their individual computers to the e-commerce site. In a scenario such as this, the user
or device client access licensing models would require CALs for each of the occasion-
ally connected users or devices and would most likely become more expensive very
quickly. It would also be very difficult to track individual users or device CAL require-
ments. The processor licensing model is a perfect fit for such applications, especially if
the number of users and devices is large.

Most processors of the current generation are hyperthreaded or have multiple cores.
Hyperthreading technology provides thread-level parallelism on each processor, resulting
in more efficient use of processor resources, higher processing throughput, and improved
performance. Multicore processors, on the other hand, combine multiple independent
processors and their respective caches and cache controllers onto a single silicon chip.
SQL Server 2005 does not differentiate these processors and considers both–processors
built with hyperthreading technology and processors with multiple cores–as a single pro-
cessor. For example, all three processors–single-core, dual-core, and quad-core–shown in
Figure 2-3 are considered as a single processor by SQL Server 2005 and require only one
processor license.

Processor licensing is not dependent on any processor attributes such as the architecture
(IA-32, IA-64, x64), processor speed, or processor cache size.

The way SQL Server 2005 defines a processor and enforces licensing is actually an
advantage for the user, who can get more throughput from a more powerful multicore
processor-based system without incurring additional costs for SQL Server licensing.

Figure 2-3 Multicore processors: single-core, dual-core, and quad-core.

Single-Core
Processor

Dual-Core
Processor

Quad-Core
Processor

40 Part I Introduction to Microsoft SQL Server 2005
Important If you are executing any of the other SQL Server 2005 components,
such as Analysis Services, Reporting Services, and so on, on systems other than
the system where the SQL Server database server is running, you will require
additional server or processor licenses. Additional server licenses are necessary
for each server where a component of SQL Server is running if you are using the
user or device client access licensing model. Additional processor licenses are
necessary for each processor of the systems where the SQL Server components
are running if you are using the processor licensing model.

Licensing Considerations for High-Availability
Environments

High availability with SQL Server 2005 involves configuring two or more servers so that
if one of them fails, one of the others can pick up the workload and continue process-
ing. SQL Server 2005 offers three types of solutions for achieving high-availability:
failoverclustering, database mirroring, and backup log shipping, all of which are
explained in detail in Chapter 27, “Failover Clustering Installation and Configuration,”
and Chapter 28. Each of these solutions uses one or more standby or “passive” servers,
which hold a replica of the main “active” database. During normal processing, the work-
load is directed to the “active” server, as shown in Figure 2-4a. In the event of a failure
of the “active” server, the processing is transferred to the passive server and it becomes
the active server, as shown in Figure 2-4b.

Figure 2-4 Workload processing in an active-passive server setup.

Active Server(a)

(b) Active Server

Server A Server B

Server A Server B

Passive Server

Workload
queries

Workload
queries

Passive Server

Chapter 2 Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing 41
In such an active-passive high-availability setup, SQL Server 2005 licensing does not
require you to license the passive node as long as all the following are true:

■ The number of processors in the passive node is equal to or less than the number
of processors in the active node.

■ No workload is processed on the passive node during normal operation.

■ When the active node failsover to the passive node, it does not continue processing
any workload.

■ The passive node assumes the duties of the active node for a period of only 30 days
or fewer.

If any of these points is not true, then the passive node needs to be licensed in addition
to the active node.

In SQL Server 2005, you can create a database snapshot on a passive node of a mirrored
database, which is explained in Chapter 28, and run reports of it, as shown in Figure 2-5.

Figure 2-5 Active-passive server setup with reporting on the passive node.

If you plan to use this configuration, you will also need SQL Server licenses for the pas-
sive node since you are effectively executing a workload on the passive node as well.

SQL Server 2005 Pricing
The price for the SQL Server software is highly dependent on the configuration of the sys-
tem, the licensing model, and the SQL Server 2005 edition you select. In addition, the
price may also vary based on reseller discounts or any volume licensing discounts you
secure. Table 2-12 lists the retail prices in the spring of 2006 for the processor licensing
and the user or device client access licensing model in United States Dollars (USD) for

Active Server

Server A Server B

Passive Server
+

Database Snapshot

Workload
queries Reporting

42 Part I Introduction to Microsoft SQL Server 2005
the Enterprise, Standard, and Workgroup Editions. (See http://www.microsoft.com/sql/
howtobuy.) This Web site also contains information about volume discounting and how
to obtain copies of the SQL Server 2005 software.

The retail price for Microsoft SQL Server 2005 Developer Edition, which may be installed
and used by only one user, is USD$49.95.

The licensing models are independent of the platform (IA-32, IA-64, or x64) the SQL
Server software runs on. This implies that a processor license for an Itanium processor-
based system costs the same as a processor license for a Pentium IV processor-based
system.

Summary
The first step toward a successful deployment is selecting the SQL Server 2005 edition
that best meets your needs. The rich set of features, enhanced capacity limits, multiple
platform support, and flexible licensing can make the selection task in SQL Server 2005
a lot more difficult than in earlier versions, but overall, it is almost always a good chal-
lenge to face.

In this chapter we learned about the six different SQL Server 2005 editions and com-
pared them based on the features available. We also learned about the various capacity
limits and the supported Windows operating systems and platforms. Lastly, we took a
detailed look at the different SQL Server 2005 licensing models and the implications of
multicore and hyperthreaded processors and licensing requirements for servers used in
redundant high-availability configurations.

Table 2-12 SQL Server 2005 Retail Pricing in USD

SQL Server 2005
Edition

Retail Pricing (USD)

Processor License Server Plus User/Device CALs

Workgroup Edition $3,899 $739 with 5 Workgroup CALs

$146 per additional Workgroup CAL*

*Example pricing per Microsoft Corporation.

Standard Edition $5,999 $1,849 with 5 CALs

$162 per additional CAL*

Enterprise Edition $24,999 $13,969 with 25 CALs

$162 per additional CAL*

Chapter 3

Roles and Responsibilities of the
Microsoft SQL Server DBA

Different Kinds of DBA . 43

Basic Duties of a DBA. 47

DBA Tips, Guidelines, and Advice . 59

Summary . 61

Different Kinds of DBA
A database administrator (or DBA) has many possible roles, depending on his or her envi-
ronment. A DBA might be part of a large team or might be a single person responsible for
more than just the database components of the system, including other applications. In
larger environments, the DBA might be assigned a single function, such as developing
stored procedures and SQL statements, or might be in charge of maintaining the produc-
tion environment. This chapter introduces you to the different roles of DBAs and duties
that these DBAs might perform. Remember that no two companies are the same and no
two environments are the same.

The Prime Directive of the DBA

Regardless of the responsibilities you have as DBA, your ultimate goal should be to
maximize the stability and protection of the database. Today’s corporate data is the
lifeblood of our companies. Protecting this data from intrusion and being prepared
for disasters, both natural and man-made, is our top priority. The DBA is the person
ultimately charged with this responsibility, and it should not be taken lightly.

Production DBA
The production DBA is responsible for the day-to-day operation and maintenance of a pro-
duction database. Production DBAs take care of all changes in the production environment,
perform the backups and restores, and concern themselves with the database and server
performance.
43

44 Part I Introduction to Microsoft SQL Server 2005
Being a production DBA is probably one of the most challenging jobs. Under normal
operating conditions, the job is demanding, and during emergency situations, such as a
system crash, the job can be very stressful. The production DBA must be constantly con-
cerned with backups, security, and system performance. In addition, the production DBA
must be very careful since even a minor mistake could cause system downtime.

A DBA Wears Both a Belt and Suspenders

I was in a class many years ago when the instructor was speaking to us about how
careful a production DBA must be at all times. Referring to checks and double
checks, he said, “A DBA is someone who wears both a belt and suspenders. He may
look funny, but his pants never fall down.”

Development DBA
The development DBA is usually tied to a team of developers and is responsible for the
team’s development systems. The development DBA handles all matters concerning non-
production systems, including providing development guidance to the team. The devel-
opment DBA provides an early opportunity to tune performance in all aspects of new
database applications being created. The knowledge that the development DBA brings
will help him or her recognize early on potential issues with stored procedure function
and indexes that might need to be placed to be sure of performance in production. Con-
versely, the development DBA should be in a position to recognize when new indexes
should not be created due to performance problems created with bulk loads of new data.

In addition to assisting with development efforts and providing guidance to the develop-
ment team, the development DBA is often responsible for the creation of all installation
scripts for changes between environments. If a new database, stored procedure, table def-
inition change, or new element is ready to move into test or production, it is a best prac-
tice for the development DBA to create the scripts for the changes. Doing this allows the
DBA to recognize early possible problems with an install script or accurately define the
order in which change scripts are applied and pass that information along to the DBA
who will actually make the changes. The ability to work hand-in-hand with the produc-
tion DBA to provide the best service at all levels is critical.

Architect DBA
The architect DBA plays a critical role in the development of applications. The architect
DBA provides the knowledge and expertise to build database solutions. Logical and

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 45
physical database design, normalization and de-normalization methods, and stored
procedure development are all critical aspects the architect DBA brings to the table. Fre-
quently, an architect DBA works closely with the development team. The architect DBA
invariably works with data analysts and project managers in creating database models
so that the logical models fit the business need. For this reason, the architect DBA
needs to have skills in database creation, logical layout, and design, as well as the ability
to transform business requirements into a finished product.

Often the architect DBA helps to create stored procedures and complex queries and pro-
vides design solutions for potential problem areas such as reporting structures or archi-
val procedures. The architect DBA works closely with the development DBA to create
databases, tables, procedures, and queries that perform well and meet coding standards
that are agreed upon by all parties in an organization.

Ultimately, the business application, once implemented, will succeed or fail based
upon the model created by the architect DBA, so long-term experience with modeling
is frequently an essential prerequisite for moving into this role. This position has the
ability to directly influence how customers perceive any application based on SQL
Server. Without a good database model in place, a production DBA can certainly work
on performance improvements, but bear in mind, a poorly designed database can be
tuned only so much.

ETL DBA
The ETL DBA provides the knowledge and expertise in ETL (Extract, Transform, Load)
methods. This includes retrieving data from various data sources—whether it is from
another DBMS plain text files, or other sources—and then transforming this data and
loading into SQL Server (or extracting data from SQL Server into a separate destination).
Expertise in SSIS (SQL Server Integration Services, the replacement for DTS) is critical in
this role to ensure that data is loaded optimally.

You could have a situation in which there is a large data warehouse running SQL Server
2005 Analysis Services. The data stored here is comprised of a subset of your OLTP data
that you keep in SQL Server 2005. To be able to use the data in the data warehouse, you
must first get it there. This is where SSIS comes into play. You can take data from SQL
Server 2005 and port it into Analysis Services. You are not limited to doing a straight data
migration, but you can perform advanced logic upon the data that you are transferring
and perform transformations. This could be something as simple as changing the data so
that it is all upper case or as complex as calculating averages within a dataset.

You are not limited to moving data within SQL Server 2005 components, however. You
are able to access and work with a wide variety of data sources, and even multiple sources

46 Part I Introduction to Microsoft SQL Server 2005
within a single package, using OLE DB providers and ODBC drivers for database connec-
tivity. In addition, you can also extract data from text files, Excel spreadsheets, and even
XML documents.

The same storage components that can be the source of data for loading into SQL Server
2005 can also act as a destination, allowing you to provide small data subsets for report-
ing, uploading to ftp sites, or sending in an e-mail message to users. The ability to sched-
ule an SSIS package means that you can set data loads to run during off-hour periods, and
with Notification Services integration you will receive notifications on the status of the
package, including details of possible failures.

SSIS is not limited to the loading and unloading of data. It is also a critical tool from a
management perspective for the DBA. The DBA can create and schedule with SSIS to
perform administration functions. If you have the need to rebuild indexes or statistics
on a frequent basis, you can create a package which runs the scripts to accomplish those
tasks. A package that loops through all of your servers, executes a full backup of all of
your databases, and lets you know which ones, if any, experienced a problem could
prove invaluable.

In SQL Server 2000, DTS packages were a massively powerful tool that allowed the DBA
to bring data into and out of SQL Server and performed administrative functions. SSIS in
SQL Server 2005 has improved this function by providing containers for workflow repe-
tition—packages that can repeat or direct workflow based on information passed in at run
time. SSIS is one of the most powerful tools that you will see. More and more there will
be a critical need to have a DBA dedicated to SSIS and to manage the flow of data.

OLAP DBA
Microsoft SQL Server 2005 Analysis Services (SSAS) provides OLAP, or Online Analytical
Processing, and data mining functionality. Aggregated data is contained within multidi-
mensional structures and constructed from a variety of data sources using data mining
algorithms. Designing, creating, and managing these structures falls within the realm of
the OLAP DBA. The OLAP DBA works with large data sets helping to drive direction
within the company by maintaining cubes for critical business decision support.

Rather than work in SQL, the queries on an SSAS OLAP system are run in MDX (SQL;
Multidimensional Expressions), XMLA (XML for Analysis), or Data Mining Extensions
(DMX). To manage the objects within SSAS, Analysis Services Scripting Language (ASSL)
can be used.

Invariably, the OLAP DBA will work with extremely large datasets and bring data from
a variety of sources. From these sources a single data model is created and provided to

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 47
end users. The data model can be queried directly, provided in reports, or used as the
data source for custom Business Intelligence applications. The amalgamation of data
allows business users to mine through the data to look for trends or specific patterns.
Rarely used in smaller companies, the OLAP DBA works closely with the ETL DBA (or
in some cases is the same person) to load the data from the large number of possible
sources available.

Basic Duties of a DBA
 A SQL Server DBA must wear many hats to provide a full level of service. The require-
ments for the DBA will vary from company to company depending upon the typical
business needs or budget. The DBA might be required to perform all tasks from instal-
lation and configuration to performance tuning and guiding purchases. Conversely,
the DBA might have responsibility for a single particular task such as managing back-
ups and restores, performance optimization, or ETL tasks.

Whatever your DBA responsibilities, there are some core, basic duties that should
become second nature to all DBAs.

Installation and Configuration
The SQL Server DBA is the primary source for completing installations of SQL Server in
the environment. Depending on the company structure, the DBA might be providing
guidelines for configurations, or the DBA might be doing a full system implementation
including the operating system. It is the responsibility of the DBA to ensure that the sys-
tem is configured so that it performs optimally with SQL Server.

Software Installation
The DBA must be involved in all aspects of the SQL Server installation. This means also
being involved in the installation and configuration of Windows Server 2003 and other
software components such as third-party backup utilities, reporting services, and notifi-
cation services. There are many components added to Windows Server 2003 default
installations that might not be appropriate for a server that is purely used as a SQL Server
database server, for example, IIS, and printing services. Each of these items will add to the
server overhead and ultimately affect performance.

Creating a document that identifies the components that will be installed on the system
helps prevent unwanted items, which in turn improves performance and ensures consis-
tency among all of your installations. This will also assist with troubleshooting any poten-
tial problems by providing a baseline against which you can confirm Windows services
and system components.

48 Part I Introduction to Microsoft SQL Server 2005
In addition to documenting and assisting with the Windows installation, the DBA is
responsible for the proper installation of SQL Server 2005. It is important that the correct
choices are made at the time of installation to prevent later problems and avoid a reinstall
of the software to fix unwanted problems. A document that provides information about
the components to be installed and the location of the binaries and the default location
of the data files should be written so that, as with the operating system, consistency is
achieved across installations.

As with all software, you should first complete an install on a test system. This ensures
that your methods for setting up the OS and SQL Server 2005 can be followed as directed
and that there are no problems that will affect your production systems.

Hardware and Software Configuration
Generally, the DBA does not configure server hardware, although this may be required in
some circumstances. Even if you are not in a position to configure the hardware, it is your
responsibility to provide guidance and specifications so that the configuration provides
the best level of performance, scalability, and growth to the system within the budgetary
constraints. Because the DBA is ultimately responsible for the performance of the system
and will be the first line of contact in the event of a slow system or when the system is
running out of capacity, you must understand the hardware you are working with. This
topic is covered in both Chapter 4, “I/O Subsytem Planning and RAID Configuration”
and Chapter 6, “Capacity Planning.”

As with the installations, documenting the configuration is critical. It is worthwhile to
document all aspects of the system setup. This can mean everything from the type of
RAID used to the number of drives involved in that RAID configuration, as well as the
BIOS version of the RAID controller. It is also important to document the types of HBAs
used for connectivity to a Storage Area Network (SAN) alongside the driver revisions. You
will also want to know how much memory is in the system, how that memory is config-
ured, how much extra capacity can be added, and whether you need to remove all the
memory and replace it with a higher density memory to increase capacity. You also need
to know the CPUs in the server. Microsoft licensing for SQL Server 2005 can be based on
a per-processor model. Given recent advancements in technology, you can have a dual
core system. Windows Server 2003 reports the number of cores in the system; however,
this can be on fewer processors, which can save you a significant amount of money when
it comes to purchasing the license because Microsoft charges per processor rather than
per core. For example, a single processor dual core system will show two CPUs, but you
need to purchase a license for only a single processor.

A large amount of data is accessible only by restarting the server and accessing the BIOS.
Therefore, documenting all system settings prevents potential downtime to a production

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 49
system that is required to verify the RAID configuration. It is important that you also
include in your documentation the reasons for making the configuration choices that you
did. For example, you configured the drives as a RAID-5 array because high write perfor-
mance was not critical on the machine and maximizing the disk capacity was. Providing
these reasons for the configuration choices helps other DBAs understand and validate
your decisions.

Service Packs and Security Updates
Microsoft will introduce service packs and security updates for SQL Server 2005 (and for
Windows) as the tool evolves. Bugs will be identified, performance improvements will be
introduced, and even new features will find their way into the product. Proper security
update management becomes a vital task for ensuring that systems remain stable, sup-
portable, and secure.

The DBA must be aware of any new release that could make an improvement to or resolve
a recognized problem of SQL Server. New functionality and performance improvements
tend to come in the form of service packs, whereas security updates tend to be fixes for
bugs and security problems. These fixes are then rolled up into service packs so that all
items are updated at the same time.

Understanding the service packs and security updates and implementing them through
a phased approach—by testing through development and QA, or quality assurance, before
migrating into production—is critical, as is keeping an accurate document identifying the
exact revision of SQL Server on a given system. Imagine a situation in which you applied
a new security update into production to address a problem before you applied it in a
QA/UAT (User Acceptance Testing) environment. Suddenly, the functionality you have
come to expect is gone, or performance has dropped to a level unacceptable to the user
community. You now have to double your downtime to roll back the security update. It
can be far worse than that. You may even have to go back and restore the system data-
bases to get SQL Server in the state prior to the application of the security update, which
means extended downtime for your systems and major impact to your users.

In addition to identifying and managing SQL Server 2005 service packs and security
updates, the DBA should also be an integral part of managing the service packs and
security updates for the Windows Server 2003 operating system. Any change to the
operating system can seriously impact SQL Server in many ways, from major perfor-
mance problems to connectivity issues and even failures in the SQL services themselves.
Microsoft frequently introduces security enhancements for the operating system. The
DBA should work with the system engineer to identify those that are critical and that
should be applied. These changes should then go through the self same QA/UAT proce-
dures as the SQL Server 2005 security updates to provide assurances of system stability
and performance.

50 Part I Introduction to Microsoft SQL Server 2005
Security
The DBA is ultimately responsible for the data stored within the databases. All of the
work that a DBA does in configuring systems for performance, scalability, and reliability
does not compare to the critical function of maintaining proper levels of security for the
data. Managing security is vital for ensuring that sensitive data is not provided to unau-
thorized users, be they internal or external, and for maintaining the integrity of the data.

User Accounts and Permissions
The primary area of focus for a DBA is user-level access to SQL Server. User accounts are
created to provide access to the server and then down to the database. This user access
can be further limited through the use of stored procedures to provide access to only a
single column in a single table or even to a single value in a single table. User access
should be provided only when authorized by the data owner. This access should also be
as restrictive as possible so to provide the maximum level of protection to the data.

There is often a temptation to provide complete access to a database to simplify adminis-
tration tasks. Avoid this whenever possible because it can lead to disaster. When you are
managing a large number of users and you have common objects that require access, it is
best to create and use database roles. This allows you to grant the role access to a partic-
ular object. You can then add to that role any users that require the same permissions.
Doing this simplifies administration and still maintains a strong level of secure access.

Users can gain access by one of two methods: SQL Server authentication or Windows
authentication. Windows authentication makes use of Active Directory user management
and integrates the user access with their domain account. This means that the user only
has to log in to his or her workstation. These credentials are then passed down to SQL
Server 2005, which then provides the user with the relevant levels of access that have
been set up by the DBA. SQL Server authentication requires more direct management at
the DBA level. For these logins, you create a separate login for each user who requires
access to SQL Server 2005. You can assign a password to each user requesting access.
New to SQL Server 2005, you can also allow users to change their passwords and enforce
password policies through tools such as the password strength and an expiration date
that prompts users to change their passwords frequently. This is something that is not
available in SQL Server 2000, where the DBA must manually manage all user accounts
and passwords.

Server Security
The DBA might not have responsibility for the system where SQL Server is installed.
However, the DBA must be able to help manage the system’s security access and help
make sure that the operating system is accessible only to authorized personnel. It is not

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 51
productive to lock down SQL Server only to find that all users have administrative rights
on the operating system and the ability to make any and all changes to SQL from there,
including retrieving database backup files. A well locked down operating system helps
prevent the loss or theft of data.

Security Auditing
Having strong security policies in place is critical to keeping data safe. However, it is also
important to be aware of who is accessing the system and to check that users are not
receiving escalated privileges and that changes are being made only by authorized per-
sonnel. There are many new auditing options within SQL Profiler that allow you to audit
all changes to your database. These changes can include schema changes, insert, update,
and delete operations and events related to permissions changes or new logins created.
This data can be stored in a separate SQL Server installation and queried (either manu-
ally or automatically) to look for security changes or unauthorized database changes.

The DBA also needs to be familiar with the Windows Server 2003 event logs. These event
logs allow the DBA to recognize logins local to the system, trap system, and application
events. Correlating all of this information may seem a daunting task, but it is important
to keep the integrity of your data intact.

Operations
Once installation is complete on a system and the configuration is optimal, the DBA is
also responsible for day-to-day operations, maintaining data integrity, and making sure
that there is a level of recoverability for the data in the event of a severe hardware problem
or other disaster.

Backup and Restore
It is commonly recognized that backup and restore operations are the most crucial tasks
that the DBA performs. As a DBA, it is your responsibility to ensure that all databases are
backed up on a regular basis to allow for a restore should there be a major problem. There
are different kinds of backups: full, differential, partial, and transaction log, as described
in Chapter 14, “Backup Fundamentals.” Each one of these can be used depending upon
the level of recovery required for the data on the server. With SQL Server 2005, you can
also password protect a backup to prevent unauthorized restores. Backup procedures in
themselves are quite simple to master; however, frequent tests of backups can help you
greatly down the road. Similarly, testing restores of these backups is very important. After
all, what good is a backup if you can never restore it? Test all kinds of restores that you
might encounter, and test them frequently by performing those restores to a backup sys-
tem. If you do so, you will be prepared if a disaster occurs, and you can feel confident that
you know what to do.

52 Part I Introduction to Microsoft SQL Server 2005
Change Management
As the DBA, you should make any changes to SQL Server 2005, to the databases, or to the
schemas contained therein. If these changes are handled by a developer, for example, you
cannot verify the code that is going in or confirm what was changed and why. How can
you maintain the integrity of the database when you allow others to make any changes?
Changes should always go through a QA/UAT process to confirm that they do not break
accessing applications and receive a sign off before being moved into production. When
you make the production changes, always document what is being done and by whom.
Implement a true change management system along with bug tracking, and use a tool
like Visual SourceSafe to retain older copies of procedures and schema changes. Finally,
before you implement any change, be sure that you have a rollback strategy in case of any
problems. After all, it’s the DBA that the users will come to when they are unable to access
their data.

Service Levels
The DBA is responsible for providing an appropriate level of service to the customer or to
the data consumer. This might be in the form of a contracted Service Level Agreement
(SLA) or an agreement between departments. In either case, the DBA is held accountable
for providing the highest level of service through server uptime and performance.

System Monitoring
Routinely monitoring the system allows you to recognize problems early and deal with
potential issues before they affect the customer directly. This could be from monitoring
locks and blocks within the database to recognizing when CPU levels are rising or when
a failure of a network card that eliminates redundancy within the system occurs. It is
imperative that both SQL Server 2005 and the operating system are monitored. For
example, you might get a call from a user stating that a query is running particularly
slowly, but you find no locking conditions within the database to account for that. When
you look at performance counters on the operating system, you see that CPU levels are
running at 98 percent, severely affecting the user’s ability to perform tasks. Likewise, that
user might complain later in the day of the same problem. This time the CPU levels are
low at 20 percent, but investigation within the database shows that there is a blocking
process preventing the query from running.

Pulling all of this information together helps to fix problems, but knowing your system
can also help you to prevent problems by notifying users of queries that are using mass
amounts of CPU on the system or returning huge result sets that are eating up network
bandwidth. A good DBA is able to prevent problems with early identification and has

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 53
routines in place to monitor these items. In addition, the better notes that you take, and
the better documentation you create, the easier it might be to solve the problem.

Note By setting up your own knowledge base, you can easily find answers to
problems you have already encountered. I use SharePoint to keep a knowledge
base of problems and solutions that I have run into. This way I can easily find
something that I don’t remember, and additionally, I can share these solutions
with my co-workers.

You can use System Monitor to identify resource issues and SQL Server Management Stu-
dio Activity Monitor for limited internal SQL performance information. In addition, sev-
eral third-party utilities are available, which can provide a complete overview of the
system, including CPU utilization, memory usage, I/O statistics, processes, lock escala-
tions, blocking, and buffer cache usage. Some of these tools will also trend the informa-
tion and can be configured to provide alerts when certain events occur or certain
thresholds are surpassed.

One of the best indicators of how a system is performing is to gather regular feedback
from the user base accessing the data. You can send out feedback forms to gather infor-
mation about how the users feel the system is responding and work to identify potential
problems from the information that they provide.

Performance Tuning
System monitoring helps you recognize when there are problems. Performance tuning
helps you eliminate those problems and prevent them from occurring. Monitoring long-
running queries helps you identify areas where you can make improvements, such as
adding an index, rewriting a query, or de-normalizing data. You might also find that per-
formance is suffering from a lack of memory, so you can adjust the amount of memory
available to SQL Server or add more memory to the machine. You might recognize that all
queries are performing as well as they can and that the user load has just increased to a
point where you need to make system modifications to improve performance. A DBA
needs to be able to provide solutions for problems and to provide these solutions proac-
tively. Working hard to tune all aspects of SQL Server and the system could save thou-
sands of dollars in hardware upgrades that were not required and at the same time
identify where upgrades really are required.

Routine Maintenance
In order for your system to perform as it should, regular maintenance must be performed.
A large portion of this can be automated. However, keep a close eye on the systems to
make sure that users are not negatively affected.

54 Part I Introduction to Microsoft SQL Server 2005
Regular maintenance tasks include the following:

■ Index Rebuilds Much improved in SQL Server 2005, as indexes can be built with-
out locking tables, although performance will drop as the index is rebuilt

■ Compressing data files Frees up some disk space on your system, especially if you
run frequent insert/delete statements

■ Updating Statistics Makes sure that SQL Server is using the up-to-date statistics to
create its execution plans, ensuring high query performance

■ Database Consistency Checks Check for corruption within databases/tables/
indexes

These items can be run within Maintenance Plans and can be set up with the assistance
of a wizard. You might want to run other maintenance routines such as data purges,
which can be set up manually.

Reliability
Keeping SQL Server 2005 reliable and available means keeping the customer happy and
the DBA relaxed. It takes some advanced planning and work to create an environment in
which you feel you have control over the data and can support your customers in even the
most dire circumstances.

Disaster Recovery
Where do you stand in the event of a server failure? What if you lost an entire datacenter?
How much data can you stand to lose in either event? What are the business needs and
requirements? Who will pay for it all?

These are all question that a DBA must ask. Provided that you run regular backups and
have tested your restores, then you will be able to recover from most situations. However,
you still may lose a day’s worth of business, and for some companies that could be mil-
lions of dollars. If the business says that you have the funds for true disaster recovery,
both geographically local and diverse, there are options that you can implement with
SQL Server 2005 to ensure that you keep the systems available.

Clustering
Clustering is a method for having multiple servers connected by shared disk. Each node
within the cluster is capable of running SQL Server 2005, although only a single node at
a time can own a SQL Server 2005 instance. This gives you great hardware redundancy
within a datacenter. If you have a two-node cluster running a single instance of SQL
Server 2005 and the primary hardware fails, SQL Server automatically fails over to the

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 55
second node. Normally, this happens in under 20 seconds. There is no loss of data and
user impact—a loss of connection for the duration of the failover—is minimal.

Log Shipping
Log shipping is a method for keeping consistent copies of a database separate to the pri-
mary instance. This is the primary method for maintaining external copies of a database
outside the local datacenter, so that in the event of a loss to the datacenter itself, you still
have a working copy offsite. With log shipping, you restore a backup of the primary data-
base in STANDBY or NORECOVERY mode on a secondary server. You then create regu-
larly scheduled dumps of the transaction log from the primary database. These logs are
then shipped over and applied on the secondary machine. While you are not getting
instant failover with no loss of data, you can minimize any potential data loss by sched-
uling the logs to be dumped, copied, and loaded frequently. Log shipping works very
well and is reliable, and you can delay transaction being applied on the secondary node,
which is useful as a backup scenario for those times when you are making significant
database changes or want to have a window of data recovery for any changes. Log ship-
ping creates an exact duplicate of the primary database and includes all logged transac-
tions that take place (including schema changes).

Database Mirroring
Database mirroring is a new form of log shipping. Like log shipping, database mirror-
ing is a copy of the primary database that is kept in recovery mode. Unlike log ship-
ping, rather than waiting on the transaction log to be backed up, a copy of the live
transaction log is kept on the mirror. As entries are made into the primary transaction
log, they are sent to the standby as well. In this manner, the standby is kept up-to-date
with the primary. This is covered in detail in Chapter 27, “Log Shipping and Database
Mirroring.”

Replication
Replication is a method of providing data to a reporting server. You can have real time or
near real time transactions applied to a secondary server. This is particularly useful for
keeping a reporting environment with current data that does not affect the hardworking
primary server. However, replication has its drawbacks as it is a copy of the data and not
a copy of the database.

Planning and Scheduling Downtime
Even the best, most stable system will at some point need some downtime, whether to
install a service pack or security update, to introduce some new code, or to support an

56 Part I Introduction to Microsoft SQL Server 2005
application change. These changes should be scheduled well in advance and commu-
nicated to the users. If possible, set up regularly scheduled downtimes for the system
during which you can apply security update if necessary, or just perform maintenance
tasks. This way, the users are always aware that the system will be down at a specific
date and time, and if for some reason there is no work to do, the system remains up.

Capacity Planning
In addition to planning disaster recovery scenarios and downtime, you must be able to
determine the capacity for the system and implement improvements when necessary. To
do this, schedule regular capacity planning tasks, for example, monitoring the size of
databases and ensuring that there is sufficient disk space to host the required amount of
data. Working with the development team and determining requirements early on for
new applications will help you size any system accordingly from a processor, memory,
disk, and network standpoint.

Documentation
Documentation was discussed previously in this chapter, and it is worth reiterating
because of the vital need of both the DBA and the business to know exactly what is run-
ning, where it is running, and what it is running on. In addition to securing your system,
your documentation should be secured as well. This documentation could contain sen-
sitive system information.

Configuration Documentation
Configuration documentation should contain all information about the installation
and configuration of a SQL Server 2005 instance and the hardware and operating sys-
tem that support the installation. This documentation will be your reference when
someone asks about the CPU revision, the current build level of SQL Server, or whether
you have the logs on a RAID-5 or RAID-10 volume, for example. Having this informa-
tion on hand saves you a lot of work in the long term.

Design Documents
How do you design a system? What criteria do you use for making the decisions about
installing SQL Server 2005 or configuring the operating system? How do you decide
which RAID level to use for each volume? By creating a document that describes the deci-
sion-making process, you explain your methodology and justify your decisions.

Operational Information
Who is your customer? If a database becomes unavailable, who needs to know, who is
affected, and what is the Service Level Agreement (SLA) for a resolution? What jobs

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 57
run against the database, and what happens to the data that is imported or exported to
it? The operational information document should contain all of this information and
anything else important to the everyday operation of your environments. You will save
a great deal of time by being aware who is affected when there is a problem, under-
standing the interactions of different systems, and being able to easily identify possible
problem code when there is an issue.

Development and Design
Some smaller companies require the DBA’s role to expand to include code development
and database design. Even if this is not the case in your environment, you should always
be aware of development efforts and be in a position to provide guidance when necessary,
and to recognize good or bad design or coding to prevent production problems.

Database Design
Database design is usually carried out by a database architect. However, if you can pro-
vide guidance about the physical layout of a database, you can provide early assistance
and prevent the database from being backed into a corner when issues of scalability arise
later.

Data Modeling
Data modeling is a critical part of design. The data model includes table relationships, ref-
erential integrity, and the logical layout of the database. There are several third-party util-
ities that can assist with creating a model, but you can also use the Database Designer
that comes with SQL Server Management Studio. This is a very powerful tool but one
that you should be careful using to avoid accidentally introducing changes into your
environment. If possible, use this tool on the development or test environment.

Procedure and SSIS Development
You might be required to create stored procedures to perform certain functions within
SQL Server 2005, such as performing insertions, updates, and deletions or implement-
ing some kind of advanced business logic that provides data sets to customers or that
feeds data out to a Web page. Stored procedures have two major advantages over stan-
dard queries. First, from a security perspective, a user who is given access to execute a
stored procedure can do only that and work with only the results of the procedure. This
limits the damage that can be done. Second, SQL Server stores the execution plan of the
procedure in its cache. This has major performance benefits because extra time is not
spent in SQL Server identifying the best way to execute the procedure.

58 Part I Introduction to Microsoft SQL Server 2005
SQL Server Integration Services (SSIS) is the replacement for DTS in SQL Server 2000.
SSIS projects are designed and built to provide true ETL functionality to SQL Server
2005. As discussed earlier in the chapter, ETL is an acronym for the following terms.:

Extract Extracting data from a source, whether a database or a file

Transform Changing that data, applying logic, and formatting

Load Loading the data into a destination, whether a database or a file

With ETL you can load data into SQL Server from other relational databases such as Ora-
cle or Sybase, from files created by spreadsheet software, or from plain text files. Con-
versely, you can also export data from SQL Server to any of those destinations and to
many others.

Scalability
What good is your installation if you can’t scale as your enterprise grows? A good DBA
plans ahead and recognizes areas where you might need to grow the database. This could
mean adding extra instances to an existing box or providing a separate reporting server
so that your main OLTP databases do not become overwhelmed.

Replication
Replication can be used for several purposes and in different ways. Snapshot replication
allows you to take a snapshot of the data and load it into another database. This is
extremely useful when you have a relatively small table with data that changes rarely and
you wish to move it for reporting purposes. Transactional replication is used for making
incremental changes to a secondary server. Changes to the primary, or publishing, table
are applied over at the secondary, or subscribing, table, which allows you to report
against OLTP environments without affecting your main systems. Merge replication
allows you to have separate publishing databases and the ability to sync data between
them. This ability is especially useful, for example, if you have many sales offices and
want to keep a central repository of all sales made while allowing each individual office
to maintain its own copy of the data independently.

Named Instances
In smaller shops in which there isn’t sufficient funding for many servers, but there is a
need for separate installs of SQL Server, you can use named instances. A named
instance is a complete installation of SQL Server. You can host multiple instances of
SQL on a single piece of hardware, and each instance is an independent entity running
its own processes with its own databases and security settings. Bear in mind that these

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 59
instances share server resources. It’s very useful for occasions when you want to run a
QA and training environment without purchasing extra hardware and when you want
to install in a cluster because instances allow you to have multiple actives nodes.

DBA Tips, Guidelines, and Advice
There is a lot more to being a good DBA than just administering the databases. This sec-
tion provides some additional information including tips, guidelines, and advice about
being a better DBA and handling extreme situations.

Know Your Operating System
Understanding the inner workings of Windows Server 2003 is not critical to the func-
tion of a DBA. However, knowing the operating system well enough to assist in the con-
figuration and being able do advanced troubleshooting to solve problems can save you
a great deal of time and difficulty when problems exist. At the very least, you should be
able to recognize and understand that basic configuration of Windows and be able to
perform basic troubleshooting steps to provide the best possible service to your cus-
tomers. After all, why wait an hour for an on-call Windows administrator to determine
why users can’t access the database when you can look and see for yourself that the ser-
vice has stopped?

Help Desk
From time to time, you may be asked to assist with help desk functions. Getting face-to-
face (or phone-to-phone) interaction with a customer can be an invaluable experience.
You can see the kinds of frustrations a user is having with your databases, or you might
be called to provide assistance with building a query. Developing a customer-orientated
focus helps others to see your role as valuable, which is helpful when you need to get
something done.

Purchasing Input
Who better knows what you need to run your database than the DBA? Certainly pro-
viding input into the servers that are purchased is important, but it goes further than
that. For example, if your department is evaluating new storage solutions, what’s going
to work best for you? What about third-party tools and utilities? Certainly they might
provide huge benefits. Getting involved in purchasing decisions at even the lowest level
helps prevent problems for you later on and also gives you the feeling of really owning
your environment.

60 Part I Introduction to Microsoft SQL Server 2005
Know Your Versions
Which version of SQL Server 2005 should you be using? There are five to choose among
(not including Mobile), each with a different cost, its own choices and benefits, and its
own limitations. The following editions are available:

■ Enterprise Edition The ultimate in scalability and performance for large organi-
zations

■ Standard Edition Ideal for small- to- medium-sized organizations; does not scale as
well as Enterprise Edition

■ Workgroup Edition Provides only core components; ideal for departmental or
office use

■ Developer Edition Fully functional and licensed for development or test use

■ Express Edition Free, easy to use, but limited in performance and connectivity

Don’t Panic
Mistakes can often make a bad situation worse. The key to handling a problem such as a
broken system is being prepared and handling the situation calmly and efficiently. A DBA
is only human. A DBA can stay awake for only a certain number of hours before making
really big mistakes. Even though a situation looks very bad, you cannot keep working for-
ever. If you need to take a break, take it. Here are some tips for handling extreme DBA
experiences:

■ Get rest when you need it. You can’t work without a break.

■ Call in help when you need it. Even if you don’t normally use outside consulting
help, it’s not a bad idea to pre-qualify some extra help in case you need it. Some
companies specialize in helping out in times of disaster.

■ Keep the user community and management well informed. If you schedule reg-
ular updates, such as every half hour, they won’t keep bugging you for information.

■ Have a plan. When developing your disaster recovery system, include a document
that states how and when to implement the disaster plan.

■ Test and then follow your plan. By following your plan, which has been tested,
you increase your likelihood of success.

■ Be confident in yourself and in the decisions that you make. For better or
worse, others will judge you in part on appearance. Showing confidence in the face
of a pressure situation speaks volumes to users and to management.

Chapter 3 Roles and Responsibilities of the Microsoft SQL Server DBA 61
Be careful and follow the first rule of medicine: Do no harm. Be sure that you are not mak-
ing things worse by taking your time and getting help if you need it.

Real World “The Red Book”

When putting together a disaster recovery system (I prefer the term “disaster sur-
vival system”), create documentation that describes how and when to implement
the plan. I prefer to put this into a bright red binder that I refer to as “The Red
Book.” The Red Book has precise implementation steps for how and when to imple-
ment the disaster recovery plan and copies should be kept at multiple key loca-
tions, such as the primary site, the disaster recovery site, the IT director’s office, and
so on. What do I mean by “when”? It is not always obvious when the Disaster
Recovery system should kick in.

Because most disaster recovery plans are difficult to reset, such as putting the pri-
mary database instance back to the primary data center, the decision to implement
disaster recovery must be manual. If the primary data center loses power, you must
determine how long it will be without power. If the plan is to be back online in 30
minutes, you might decide to wait rather than implement the disaster recovery
plan.

Summary
While this chapter provides an overview of the duties and responsibilities of the SQL
Server DBA, it can’t describe all of your possible responsibilities. Some companies have
a single DBA working on all aspects of server maintenance and working to keep SQL
Server up and performing. Other companies have hundreds of DBAs scattered nation-
wide or even worldwide, each responsible for a single machine or a single aspect of SQL
administration.

As a DBA, you might focus on performance, on engineering database solutions, on devel-
oping the backend for new applications, or on loading data from various sources into a
data warehouse. Your duties depend on the needs of your company and upon the skills
that you possess. As you acquire new skills and your experience grows, you become more
valuable to your company and the customers you support.

Part II
System Design
and Architecture

Chapter 4
I/O Subsystem Planning and RAID Configuration. 65

Chapter 5
32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005 95

Chapter 6
Capacity Planning. .107

Chapter 7
Choosing a Storage System for Microsoft SQL Server 2005 133

Chapter 8
Installing and Upgrading SQL Server 2005 .157

Chapter 9
Configuring Microsoft SQL Server 2005 on the Network203

Chapter 4

I/O Subsystem Planning and
RAID Configuration

I/O Fundamentals . 66

Redundant Array of Independent Disks (RAID) . 74

SQL Server I/O Overview. 88

Planning the SQL Server Disk Layout . 90

Summary . 94

In this chapter, you’ll learn how to properly design and configure the I/O subsystem. In
order to properly configure the I/O subsystem for both space and performance, it is nec-
essary to understand some of the fundamentals of I/O processing and RAID configura-
tion. Knowledge of the fundamentals of I/O performance will allow you to size and
configure your system properly.

The term I/O stands for Input/Output, but in recent years the term has really evolved to
mean the storage subsystem. Technically, there is I/O going on with the network, the
CPU bus, memory, and so on, but this term usually refers to storage. The term “storage”
has replaced disk drives because today’s storage subsystems are really much more than
disk drives (although they use disk drives). Storage today consists of disks, Storage Area
Networks (SANs), Network Attached Storage (NAS), and hybrids. In this book, I/O refers
to the act of transferring data to and from the storage subsystem.

This chapter begins by describing the functionality and performance of the fundamental
component of the I/O subsystem: the disk drive. Disk arrays, or RAID, is then explained,
and advanced features such as caching and elevator sorting are covered. In addition,
monitoring and benchmarking the I/O subsystem is discussed. Finally, this chapter will
present some of the I/O requirements of SQL Server and show how to configure your
SQL Server system properly for optimal I/O performance and functionality. After you
complete this chapter, you will be able to properly size and configure the I/O subsystem
for space, redundancy, and performance.
65

66 Part II System Design and Architecture
I/O Fundamentals
In order to understand why I/O sizing is important, we will begin by detailing the perfor-
mance characteristics of the fundamental building block of the I/O subsystem: the disk
drive. Since most I/O subsystems are made up of one or more disk drives, it is important
to understand how they work and what properties they have.

Disk drives are important because they provide persistent storage. Persistent storage is
storage that exists in the absence of an external power source. There are two reasons why
disk storage is important. First, disk drives provide the most storage for your money. Disk
drives are significantly less expensive than memory. Second, disk drives do not lose their
data in the event of a power failure. If you have ever experienced a power outage, you’ll
appreciate that feature.

The disk drive, also often called the hard disk, is one of the fundamental components of
the computer system. The mechanics of disk drives have not changed much in the last 20
years. Disk drives are much more reliable and faster than they originally were, but they
are fundamentally the same today as then. From a performance standpoint, disk drives
are one of the most important hardware components to optimize. Even though you don’t
typically tune a disk drive by setting parameters, by knowing its performance character-
istics and limitations and by configuring your system with those limitations in mind, you
are, in effect, tuning the I/O subsystem.

In the last few years the size of disk drives has grown dramatically. For example, just a
few years ago an 8-gigabyte (GB) disk drive was the standard. Now, it is not uncommon
to have a system made up of 146-GB disk drives, or even larger. The problem from a
database standpoint is that while disk drives are more than 15 times larger, they are
roughly twice as fast as they were a few years ago. The problem comes in when a large
number of smaller drives are replaced by one larger drive, leaving the I/O subsystem
underpowered. Thus, an underperforming I/O subsystem is one of the most common
SQL Server performance problems.

Disk Drive Basics
The data storage component of a disk drive is made up of a number of disk platters. These
platters are coated with a material that stores data magnetically. Data is stored in tracks,
which are similar to the tracks of a record album (or CD, for those of you who don’t
remember records). Each track, in turn, is made up of a number of sectors. As you get far-
ther from the center of the disk drive, each track contains more sectors. Figure 4-1 shows
a typical disk platter.

Chapter 4 I/O Subsystem Planning and RAID Configuration 67
Figure 4-1 Disk platter.

Instead of having just one platter, a disk drive is often made up of many disk platters
stacked on top of each other, as shown in Figure 4-2. The data is read by a magnetic head.
This head is used both to read data from and write data to the disk. Because there are
many platters, there are also many disk heads. These heads are attached to an armature
that moves in and out of the disk stack, much like the arm that holds the needle on a
record player. The heads and armatures are all connected; as a result, all heads are at the
same point on all platters at the same time. Because disks operate in this manner, it
makes sense for all heads to read and write at the same time; thus, data is written to and
read from all platters simultaneously. Because the set of tracks covered by the heads at
any one time resembles a cylinder, we say that data is stored in cylinders, as shown in
Figure 4-2.

Figure 4-2 Disk cylinders with cylinder highlighted.

Disk drives can be made up of as few as one disk platter or more than six platters. The
density of the data on the platters and the number of platters determine the maximum
storage capacity of a disk drive. Some lines of disk drives are almost identical except for

Track

Sector

Armature Head

Disk Platter

Cylinder

68 Part II System Design and Architecture
the number of disk platters. A popular line of disk drives has a 36GB disk drive with two
disk platters and an otherwise identical 73-GB disk drive with four disk platters.

Disk Drive Performance Characteristics
Now that you understand the physical properties of disk drives, let’s look at the perfor-
mance characteristics of the disk drive. There are three main performance factors related
to disk drive performance: rotational latency, seek time, and transfer time.

Rotational Latency
Many high-performance disk drives spin at 10,000 revolutions per minute (rpm). If a
request for data caused the disk to have to rotate completely before it was able to read the
data, this spin would take approximately 6 milliseconds (ms), or 0.006 seconds. This is
easy to understand, as a rotational speed of 10,000 rpm equates to 166.7 rotations per
second. This, in turn, translates to 1/166.7 of a second, or 6 ms, per rotation.

For the disk heads to read a sector of data, that sector must be underneath the head.
Because the disk drive is always rotating, the head simply waits for that sector to rotate
to the position underneath it. The time it takes for the disk to rotate to where the data
is under the head is called the rotational latency. The rotational latency averages around
3 ms but can be as long as 6 ms if the disk has to rotate completely.

The rotational latency is added to the response time of a disk access. When you are choos-
ing disk drives for your system, it is extremely important from a performance standpoint
that you take into consideration the length of the disks’ rotational latency. As you have
just seen, for a 10,000-rpm disk drive, the average rotational latency is around 3 ms.
Older generation disk drives spin at 7,200 rpm or even 5,400 rpm. With the 7,200 rpm
disk drive, one rotation takes 8.3 ms, and the average rotational latency is about 4.15 ms.
This length of time might not seem like a lot, but it is about 38 percent longer than that
of the 10,000-rpm disk drive. As you will see later in this chapter, this longer response
time can add a lot to your I/O times.

Disk Seeks
When retrieving data, not only must the disk rotate under the heads that will read the
data, but the head must also move to the track where the data resides. The disk armature
moves in and out of the disk stack to move the heads to the cylinder that holds the
desired data. The time it takes the head to move to where the requested data resides is
called the seek time. Seek time and rotational latency are represented in Figure 4-3.

Chapter 4 I/O Subsystem Planning and RAID Configuration 69
Figure 4-3 Rotational latency and seek time.

The time it takes for a seek to occur depends mainly on how far the disk heads need to
move. When the disk drives are accessing data sequentially, the heads need to move only
a small distance, which can occur quickly. When disk accesses are occurring all over the
disk drive, the seek times can get quite long. In either case, by minimizing the seek time,
you improve your system’s performance.

Seek time and rotational latency both add to the time it takes for an I/O operation to
occur, and thus they worsen the performance of a disk drive. Rotational latency is usually
around 3 ms for 10,000-rpm disks. The seek time of the disk varies depending on the size
and speed of the disk drive and the type of seek being performed.

Track-to-Track Seeks
Track-to-track seek time is the time the heads take to move between adjacent tracks. This
type of seek is used when performing sequential I/O operations. A typical 10,000-rpm,
73-GB disk drive has a track-to-track seek time of around 0.3 ms, although it varies for
reads and writes. As you can see, for disks with a track-to-track seek time of only 0.3 ms,
the rotational latency of approximately 3 ms is the larger factor in the disk drive perfor-
mance. If the I/O operations are submitted to the disk drive quickly enough, the disk
drive will be able to access adjacent tracks or even read or write an entire track at a time.
However, this is not always the case. In some cases, the I/O operations are not requested
quickly enough, and a disk rotation occurs between each sequential access. Whether this
happens typically depends on the design and the speed of the disk controller.

Average Seek Time
The average seek time is the time the heads take on average to seek between random
tracks on the disk. According to the specification sheet of an average 10,000-rpm disk
drive, the seek time for such a disk is around 5 ms. Because almost all of the I/O opera-
tions that SQL Server generates are random, your disk drives will be performing a lot of
random I/O.

Seek time

Rotational
latency

70 Part II System Design and Architecture
Note I mentioned in the text that almost all SQL Server I/O operations are
random. There are several reasons for this. In an online system, one user might
be performing a table scan, which is a sequential operation. At the same time,
however, you may have hundreds of other users who are doing their own opera-
tions on the I/O subsystem. From the I/O subsystem’s perspective, the multiple
sequential accesses performed by different users mimic a random access pattern.
In a batch system, the same effect is caused by parallelism. The only way to truly
achieve sequential access is to have only one user on the system, disable parallel-
ism, and perform a table scan. This achieves the effect of sequential disk access,
but at what cost?

The maximum seek time of this type of disk can be as long as 10 ms. The maximum seek
occurs from the innermost track of the platter to the outermost track, or vice-versa. This
is referred to as a full-disk seek. However, the seeks will not normally be full-disk seeks,
especially if the disk drive is not full.

Transfer Time
The transfer time is the time it takes to move the data from the disk drive electronics to
the I/O controller. Typically the transfer time of the disk drive is so much higher than the
seek time and rotational latency that it does not fit into the performance equations, but
it can be problematic at times.

You Get What You Pay For

Lately some storage vendors have begun to offer the option of including Serial ATA
drives in their storage subsystems. Because the transfer time of Serial ATA drives is so
much slower than SCSI or Fibre Channel drives, you can potentially experience signif-
icant performance problems. Even though the potential throughput of SAN storage
might be very high, it is only as fast as its slowest component. By saving a few dollars
on disk drives, you might lose a lot more performance than you are counting on.

Disk Drive Specifications
In this section, you will see how quickly a disk drive can perform various types of I/O
operations. To make these calculations, you must have some information about the disk
drive. Much of this information can be found by looking at the specifications of the disk
drive that the manufacturer provides. The sample specifications in this chapter are for a
10,000-rpm, 73-GB disk drive. Other specifications for a sample disk drive are shown in
Table 4-1. These statistics are taken from of a major disk drive vendor’s Web site.

Chapter 4 I/O Subsystem Planning and RAID Configuration 71
As you will see, these types of specifications can help you determine the performance of
the disk drive.

Disk Drive Performance
Several factors determine the amount of time it takes for an I/O operation to occur:

■ The seek time required (for the heads to move to the track that holds the
data)

■ The rotational latency required (for the data to rotate under the heads)

■ The time required to electronically transfer the data from the disk drive to
the disk controller

The time it takes for an I/O operation to occur is the sum of the times needed to complete
these steps, plus the time added by the overhead incurred in the device driver and in the
operating system. Remember, the total time for an I/O operation depends mainly on
whether the operation in question is sequential or random. Sequential I/O performance
depends on track-to-track seeks. Random I/O performance depends on the average seek
time.

Table 4-1 Disk Drive Specifications

Specification Value Description

Disk capacity 73 GB The unformatted disk capacity

Rotational speed 10,000 rpm Speed at which the disk is spinning

Transfer rate 320 MBps Speed of the SCSI bus

Average seek time 4.7 ms (read)

5.3 ms (write)

Average time it takes to seek between tracks during
random I/O operations

Track-to-track seek
time

0.2 ms (read)

0.5 ms (write)

Average time it takes to seek between tracks during
sequential I/O operations

Full-disk seek time 9.5 ms (read)

10.3 ms (write)

Average time it takes to seek from the innermost
sector to the outermost sector of the disk, or vice
versa

Average latency 3 ms Average rotational latency

Mean time between
failures (MTBF)

1,400,000 hours Average disk life

72 Part II System Design and Architecture
Sequential I/O
Sequential I/O consists of accessing adjacent data in disk drives. Because track-to-track
seeks are much faster than random seeks, i t is possible to achieve much
higher throughput from a disk when performing sequential I/O. To get an idea of how
quickly sequential I/O can occur, let’s look at an example.

It takes approximately 0.3 ms to seek between tracks on a typical disk drive, as men-
tioned earlier. If you add the seek time to the rotational latency of 3 ms, you can con-
clude that each I/O operation takes approximately 3.3 ms. Theoretically, this speed
would allow us to perform 303 track-to-track operations per second (because each sec-
ond contains 303 intervals of 3.3 ms). How much data per second this is and how
many SQL Server I/Os per second this is really depend on how many logical I/Os there
are in a track.

In addition, other factors come into play with sequential I/O, such as the SCSI bus
throughput limit of 320 megabytes per second (MBps) for Ultra320 SCSI and operat-
ing system components such as the file system and the device driver. That overhead fac-
tors into the maximum rate of sequential I/O that a drive can sustain, which is around
250 operations per second (depending on how big the operations are). As you will see
in Chapter 6, “Capacity Planning,” if you run a disk drive at more than 75 percent of its
I/O capacity, queuing occurs; thus, the maximum recommended I/O rate is 225 oper-
ations per second.

Random I/O
Random I/O occurs when the disk heads must read data from various parts of the disk.
This random head movement results in reduced performance. Again, let’s look at the
sample disk we covered earlier. Now instead of taking approximately 0.3 ms to seek
between adjacent tracks on the disk, the heads must seek random tracks on the disk.
This random seeking takes approximately 5 ms on average to complete, which is more
than 16 times longer than average track-to-track seeks. A typical random I/O operation
requires approximately 5 ms for the heads to move to the track where the data is held
and 3 ms in rotational latency, for a total of 8 ms, giving a theoretical maximum of 125
I/O operations per second (because each second contains 125 intervals of 8 ms). Thus,
using the same rule as earlier, if you run a disk drive at more than 75 percent of its
capacity, queuing occurs. Therefore, the maximum recommended I/O rate is 94 I/O
operations per second. If you follow a rule of thumb that takes into account overhead
in the controller, you would want to drive these disk drives at no more than 94 I/O
operations per second.

Chapter 4 I/O Subsystem Planning and RAID Configuration 73
Real World You Can’t Argue with Mathematics

The fundamentals of disk drive performance are explained by simple mathematics.
As described above, you can push a disk drive only so hard before queuing occurs
and latencies rise. This is one of the most common problems that I run into as a per-
formance consultant. With larger and larger disk drives, the problem is only getting
worse. Today it is possible to create and run a terabyte database on four disk drives
(or even one). The database might fit, but it certainly won’t perform well unless you
have a terabyte of RAM. I have heard many times “The salesman told me that since
it is a SAN I can do 40,000 I/Os per second.” Well, you might be able to do that if
you have 400 disk drives attached, but not four. Remember to perform the funda-
mental calculations.

When a disk drive performs random I/O, a normal latency (the time it takes to perform
individual I/O operations) is 8 ms. When a drive is accessed more quickly than it can
handle, queuing will occur and the latency will increase, as shown in Figure 4-4. As you
can see, the closer the number of operations per second gets to the disk’s recommended
maximum rate, the longer the latencies get. In fact, if you get to 100 percent, queuing will
certainly occur and performance will degrade dramatically.

Figure 4-4 I/O operations per second as a function of latency.

As you will learn later in this book, SQL Server, like all other relational database manage-
ment systems, is highly sensitive to I/O latencies. When I/O operations take excessive
amounts of time to complete, the performance of SQL Server degrades, and problems
such as blocking and deadlocks might occur. When a thread is waiting on an I/O opera-
tion, it might be holding locks. The longer the operation takes to complete, the longer the
locks are held, thus causing these types of problems.

20.000
18.000
16.000
14.000
12.000
10.000
8.000
6.000
4.000
2.000
0.000

Q
ue

ue
 L

en
gt

h

10%5% 15% 20% 25% 30% 35% 40% 45% 50%

Utilization

Queue Length vs. Utilization

55% 60% 65% 70% 75% 80% 85% 90% 95%

74 Part II System Design and Architecture
Solutions to the Disk Performance Limitation Problem
So how do we solve the problem of disk performance limitations? It is actually quite
straightforward. By following these guidelines, you should be able to design an I/O sub-
system that performs optimally:

■ Isolate sequential I/O operations By isolating components that are sequential
in nature on their own disk volume, you can maintain that sequential nature. The
transaction log is an example of a sequentially accessed file. If you place more than
one sequentially accessed file on the same disk volume, the I/O operations will
become random because the disk must seek between the various sequential com-
ponents.

■ Distribute random I/O operations Because the I/O operations are random in
nature, you can alleviate the load by adding disk drives. If you build a system with
enough disk drives to handle the random I/O load, you should not experience any
problems. How many disks to use and how to configure them will be addressed
later in this chapter and in Chapter 6.

Redundant Array of Independent Disks (RAID)
Before the turn of the twenty-first century, we had to manage the use of multiple disk
drives by spending significant time balancing data files among all of these disks. This
process could be very time-consuming but not very effective. In addition, the lack of fault-
tolerance left the system nonfunctional in the event of the loss of even a single disk drive.
Many years ago a solution was introduced to solve this problem: RAID.

Real World A Little Bit of Personal History

I was working at Compaq Computer Corporation when they introduced their first
RAID controller. It was very exciting because it gave them an opportunity to better
support the emerging server market. This array controller supported up to eight
IDE drives and several RAID levels. At the same time, they introduced their first
multiprocessor system. Things have certainly changed a lot since then.

RAID (Redundant Array of Independent Disks) allows you to create a collection of disk
drives that appears to the operating system as a single disk. You can implement RAID by
using software and existing I/O components, or you can purchase hardware RAID
devices. In this section, you will learn what RAID is and how it works.

Chapter 4 I/O Subsystem Planning and RAID Configuration 75
As the name implies, RAID takes two or more disk drives and creates an array of disks. To
the operating system, this array appears as one logical disk. This logical disk is also known
as a disk volume because it is a collection of disks that appears as one. If hardware RAID
is used the array appears as one disk to the user, the application, and the operating sys-
tem. In many cases, however, this single logical disk is much larger than any disk you
could purchase. Not only does RAID allow you to create large logical disk drives, but
most RAID levels, configurations of RAID, provide disk fault tolerance as well. Fault tol-
erance allows the RAID logical disk to survive, or tolerate, the loss of one or more indi-
vidual disk drives. In the next few sections, you will learn how this is possible and the
characteristics of various RAID levels.

As mentioned earlier, RAID can be implemented using software; in fact, Windows 2003
comes with RAID software. However, this chapter is concerned mostly with hardware-
based RAID because of the additional features that it provides, although software and
hybrid (hardware and software combination) striping can be effective. In the next two
sections, you will learn about some of these features and the characteristics of the various
RAID levels.

Note A hardware stripe presents itself to the OS as a disk drive. Since there are
limitations on the number of drives that can be in a LUN (based on your brand of
hardware) often you will have multiple LUNs to use with SQL Server. I have found
that it is more efficient to stripe within SQL Server using diskgroups, rather than
using software striping.

RAID Basics
The main characteristic of a RAID array is that two or more physical disk drives are com-
bined to form a logical disk drive, which appears to the operating system (and Perfor-
mance Monitor) as one physical disk drive. A logical disk drive can be as large as
terabytes, even though terabyte disk drives are not mainstream (yet!).

Striping
Most of the RAID levels that will be described here use data striping. Data striping com-
bines the data from two or more disks into one larger RAID logical disk, which is accom-
plished by placing the first piece of data on the first disk, the second piece of data on the
second disk, and so on. These pieces are known as stripe elements, or chunks. The size of
the stripe is determined by the controller. Some controllers allow you to configure the
stripe size, whereas other controllers have a fixed stripe size. The individual piece of data
on each disk is referred to as a stripe or chunk, but the combination of all of the chunks
across all disk drives is also referred to as the stripe, as shown in Figure 4-5.

76 Part II System Design and Architecture
Figure 4-5 RAID stripes.

Note The term stripe can be used to describe the piece of data on a specific
disk drive, as in the disk stripe, or to refer to the set of related data, as in the RAID
stripe. Keep this in mind as you read this chapter and others that refer to RAID.

Redundancy
The RAID level identifies the configuration type and therefore the characteristics of a
RAID array other than internal or external logic. One of the most important of these char-
acteristics is fault tolerance. Fault tolerance is the ability of a RAID system to continue to
function after a disk drive has failed. Fault tolerance is the primary purpose of RAID con-
trollers. Because your data is valuable, you must protect it against a disk failure.

RAID Levels
In this section, you will learn about the most common RAID levels: how they work, what
fault tolerance they provide, and how quickly they perform. There are other RAID levels
that are rarely used; only the most popular ones will be mentioned.

RAID-0
RAID-0 is the most basic RAID level, offering disk striping only. A chunk is created on
each disk drive, and the controller defines the size of the chunk. As Figure 4-6 illustrates,
a round-robin method is used to distribute the data to each chunk of each disk in the
RAID-0 array to create a large logical disk.

Although RAID-0 is considered a RAID level, technically, there is no redundancy at this
level. Because there is no redundancy, there is no fault tolerance. If any disk fails in a
RAID-0 array, all data is lost. The loss of one disk is similar to losing every fourth word in
this book. With this portion of the data missing, the array is useless.

RAID Stripe
RAID Stripe

1

5

9

13

2

6

10

14

4

8

12

16

3

7

11

15

Chapter 4 I/O Subsystem Planning and RAID Configuration 77
Figure 4-6 RAID-0.

RAID-0 Recommendations
RAID-0 is not normally recommended for storing SQL Server data files. Because the data
in the database is so important to your business, losing that data could be devastating.
Because a RAID-0 array does not protect you against a disk failure, you shouldn’t use it for
any critical system component, such as the operating system, a transaction log, or data-
base files.

Note A disk drive spins at a high rate and operates at a high temperature.
Because the disk is a mechanical component, it eventually will fail. Thus, it is
important to protect SQL Server data files from that failure by creating a fault-
tolerant system and by performing proper backups.

Real World Long Live the Disk Drive

According to our specifications above, our typical 73-GB disk drive has a MTBF of
1,400,000 hours. My first question to the disk drive vendors is “How can you tell?”
My next question is “Who is going to run a disk drive for 159 years?” I guess my 10-
year-old 5 MB (yes MB) disk drive should still be useful. Check back in 149 years,
and I’ll let you know if it’s still working.

The problem is that this average arises from the fact that most disk drives will never
fail, but some will fail during the first few days of operation. My experience is that
most failures occur during the first few weeks of operation or when the drives have
been running for a long time and are shut down for a few days. In cases in which
disk drives are running for long periods of time, I don’t recommend shutting them
down for any reason.

1

5

9

13

2

6

10

14

4

8

12

16

3

7

11

15

78 Part II System Design and Architecture
RAID-1 and RAID-10
RAID-1 is the most basic fault-tolerant RAID level. RAID-1, also known as mirroring,
duplicates your data disk. As Figure 4-7 shows, the duplicate contains all of the informa-
tion that exists on the original disk. In the event of a disk failure, the mirror takes over;
thus, you lose no data. Because all the data is held on one disk (and its mirror), no strip-
ing is involved. Because RAID-1 uses the second disk drive to duplicate the first disk, the
total space of the RAID-1 volume is equal to the space of one disk drive. Thus, RAID-1 is
costly because you must double the number of disks but you get no additional disk space
in return. However, you do get a high level of fault tolerance.

Figure 4-7 RAID-1.

For a RAID-1 volume, an I/O operation is not considered complete until the controller
has written data to both disk drives. Until that happens, a “fault” (disk failure) cannot be
tolerated without loss of data. Once that data has been written to both disk drives, the
data can be recovered in the event of a failure in either disk. This means that if writing the
data to one disk takes longer than writing the same data to the other disk, the overall
latency will equal the greater of the two latencies.

Note There are variations on how RAID-1 and RAID-10 are implemented.
Some vendors allow triple mirroring, where there are two mirrored copies of the
data. Another variation allows parts of disk drives to be mirrored. The fundamen-
tal concept is the same; a duplicate of the data is kept.

The fact that the write goes to both disks also reduces the performance of the logical disk
drive. When calculating how many I/O operations go to the array, you must multiply the
number of writes by two, because the write must go to both disk drives in the mirror.
Reads occur on only one disk. Disks might perform at different rates because the heads
on one disk might be in a position different than the heads on the other disk; thus, a seek
might take longer. Because of a performance feature of RAID-1 known as split seeks, the
disks’ heads might be in different positions.

Disk 1 Disk 1
Mirror

Chapter 4 I/O Subsystem Planning and RAID Configuration 79
Avg. reads per disk per second = reads to the array per second / 2 (drives in the array)

Avg. writes per disk per second = writes to the array per second * 2 (RAID overhead) / 2 (drives
in the array)

Split seeks allow the disks in a RAID-1 volume to read data independently of each other.
Split seeks are possible because reads occur on only one disk of the volume at a time.
Most controller manufacturers support split seeks. Split seeks increase performance
because the I/O load is distributed to two disks instead of one. However, because the disk
heads are operating independently and because they both must perform the write, the
overall write latency is the longer latency between the two disks.

RAID-10 is a combination of RAID-0 and RAID-1. RAID-10 involves mirroring a disk
stripe. Each disk will have a duplicate, but each disk will contain only a part of the data,
as Figure 4-8 illustrates. This level offers the fault tolerance of RAID-1 and the conve-
nience and performance advantages of RAID-0.

Figure 4-8 RAID-10. The "mirrors" behind the disks represent the B drives.

As with RAID-1, each RAID-10 write operation will incur two physical I/O operations—
one to each disk in the mirror. Thus, when calculating the number of I/O operations per
disk, you must multiply the writes to the array by two because the write must be written
to both drives in the mirror. As with RAID-1, the RAID-10 I/O operation is not considered
completed until both writes have been done; thus, the write latency might be increased.
But, as with RAID-1, most controllers support split seeks with RAID-10.

Avg. reads per disk per second = reads to the array per second / number of drives in the array

Avg. writes per disk per second = writes to the array per second * 2 (RAID overhead) / number
of drives in the array

1a

5a

9a

13a

2a

7a

10a

14a

4a

8a

12a

16a

3a

7a

11a

15a

1a

5a

9a

13a

2a

6a

10a

14a

4a

8a

12a

16a

3a

7a

11a

15a

80 Part II System Design and Architecture
RAID-10 by Any Other Name

RAID-10 is the RAID level with the most different names. This RAID level is some-
times known as RAID-0+1, RAID-1+0, RAID-1/0, RAID-1_0, and so on. Some peo-
ple claim that if the 0 comes first, the array is striped and then mirrored, and thus
it is less tolerant to failures. You should do your own research based on the brand
of array controller you have purchased, but I have found that regardless of the nam-
ing convention, the basic concept of a disk drive or disk drive piece is duplicated on
another disk. Vendors design their RAID-10 for maximum fault tolerance and per-
formance.

RAID-10 offers a high degree of fault tolerance. In fact, the array can survive even if more
than one disk fails. Of course, the loss of both sides of the same mirrored data cannot be
tolerated (unless the mirror consists of more than two drives). If the mirror is split across
disk cabinets, the loss of an entire cabinet can be tolerated.

RAID-1 and RAID-10 Recommendations
RAID-10 offers high performance and a high degree of fault tolerance. RAID-1 or RAID-10
should be used when a large volume is required and more than 10 percent of the I/O
operations are writes. RAID-1 should be used when the use of only two disk drives can be
justified. RAID-1 and RAID-10 recommendations include the following:

■ Use RAID-1 or RAID-10 whenever the array experiences more than 10 percent
writes. This offers maximum performance and protection.

■ Use RAID-1 or RAID-10 when performance is critical. Because RAID-1 and RAID-10
support split seeks, you get premium performance.

■ Use write caching on RAID-1 and RAID-10 volumes. Because a RAID-1 or RAID-10
write will not be completed until both writes have been done, performance of
writes can be improved through the use of a write cache. Write caching is safe only
when used in conjunction with battery–backed up caches.

RAID-1 and RAID-10 are the best fault-tolerant solution in terms of protection and per-
formance, but this protection comes at a cost. You must purchase twice the number of
disks than are necessary with RAID-0. If your volume is mostly read, RAID-5 might be
acceptable.

RAID-5
RAID-5 is a fault-tolerant RAID level that uses parity to protect data. Each RAID stripe
creates parity information on one disk in the stripe. Along with the other disks in the

Chapter 4 I/O Subsystem Planning and RAID Configuration 81
RAID stripe, this parity information can be used to re-create the data on any of the other
disk drives in the stripe. Thus, a RAID-5 array can tolerate the loss of one disk drive in
the array. The parity information is rotated among the various disk drives in the array, as
Figure 4-9 shows.

Figure 4-9 RAID-5.

The advantage of RAID-5 is that the space available in this RAID level is equal to n–1,
where n is the number of disk drives in the array. Thus, a RAID-5 array made up of 10 disk
drives will have the space of 9 disks, making RAID-5 an economical, fault-tolerant choice.

Unfortunately, there are performance penalties associated with RAID-5. Maintaining the
parity information requires additional overhead. When data is written to a RAID-5 array,
both the target disk stripe and the parity stripe must be read, the parity must be calcu-
lated, and then both stripes must be written out.

A RAID-5 write actually incurs four physical I/O operations (two reads and two writes)
for each write to the array. This is important to sizing, where you must design enough
disk drives that you do not exceed 125 I/Os per second per disk drive. This has been
mentioned in this chapter, and will be covered in more detail in Chapter 6, “Capacity
Planning.” Specifics are provided in a few paragraphs.

Avg. reads per disk per second = reads to the array per second / number of drives in the array

Avg. writes per disk per second = writes to the array per second * 4 (RAID overhead) / number
of drives in the array

RAID-5 Parity
In RAID-5, a parity bit is created on the data in each stripe on all of the disk drives. A par-
ity bit is an additional piece of data that, when created on a set of bits, determines what
the other bits are. This parity bit is created by adding up all of the other bits and deter-
mining which value the parity bit must contain to create either an even or odd number.

1

4

7

Parity

2

5

10

6

9

12

3

8

11

Parity

Parity

Parity

82 Part II System Design and Architecture
The parity bit, along with all of the remaining bits, can be used to determine the value of
a missing bit.

Let’s look at an example of how parity works. For this example, we will consider a RAID-5
system with five disk drives. Each disk drive essentially contains bits of data, starting
from the first part of the stripe on the disk and ending at the end part of the stripe on the
disk. The parity bit is based on the bits from each disk drive.

In this example, we will consider the parity to be even; thus, all of the bits must add up
to 0. If the first bit on the first disk drive is 0, the first bit on the second drive is 1, the first
bit on the third drive is 1, and the first bit on the fourth drive is 1, the parity must be 1 in
order for these bits to add up to an even number, as Table 4-2 shows.

Think of the parity as being created on single bits. Even though the disk stripe contains
many bits, you make the data recoverable by creating a parity on the single bits.

As you can see from Table 4-2, the parity is actually created on individual bits in the
stripes. Even though the disk drives are broken up into chunks or stripe pieces that might
be 64 KB or larger, the parity can be created only at the bit level, as shown here. Parity is
actually calculated with a more sophisticated algorithm than that just described.

For example, suppose Disk 3 fails. In this case, the parity bit plus the bits from the other
disk drives can be used to recover the missing bit from Disk 3 because they must all add
up to an even number.

Creating the Parity As you have seen in this section, the RAID-5 parity is created by
finding the sum of the same bits on all of the drives in the RAID-5 array and then creating
a parity bit so that the result is even. Well, as you might imagine, it is impractical for an
array controller to read all of the data from all of the drives each time an I/O operation
occurs. This would be inefficient and slow.

When a RAID-5 array is created, the data is initially zeroed out, and the parity bit is cre-
ated. You then have a set of RAID-5 disk drives with no data but with a full set of parity
bits.

From this point on, whenever data is written to a disk drive, both the data disk and the
parity disk must be read, then the new data is compared with the old data, and if the data
for a particular bit has changed, the parity for that bit must be changed. This is accom-
plished with an exclusive OR (XOR) operation. Thus, only the data disk and the parity

Table 4-2 An Example of RAID Parity

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Bit 1 Bit 1 Bit 1 Bit 1 Parity Bit Sum of Bits

0 1 1 1 1 4 (even)

Chapter 4 I/O Subsystem Planning and RAID Configuration 83
disk, not all of the disks in the array, need to be read. Once this operation has been com-
pleted, both disk drives must be written out because the parity operation works on
entire stripes. Therefore, for each write to a RAID-5 volume, four physical I/O operations
occur: two reads (one from data and one from parity) and two writes (back to data and
back to parity). However, with a RAID-5 array, the parity is distributed, so this load
should be balanced among all the disk drives in the array. This process consists of the
following steps:

1. Write to the RAID-5 array occurs.

2. Current data is read from the disk.

3. Current parity is read from the disk.

4. Exclusive Or (XOR) operation is performed on data and new parity is calculated.

5. Data is written out to the disk.

6. Parity is written out to the disk.

As you can see, RAID-5 incurs significant overhead on writes. However, reads do not
incur any additional overhead (unless a drive has failed).

RAID-5 Recommendations
Because of the additional I/O operations incurred by RAID-5 writes, this RAID level is
recommended for disk volumes that are used mostly for reading. Because the parity is dis-
tributed among the various disks in the array, all disks are used for read operations.
Because of this characteristic, the following suggestions are recommended:

■ Use RAID-5 on read-only volumes Any disk volume that does more than 10
percent writes is not a good candidate for RAID-5.

■ Use write caching on RAID-5 volumes Because a RAID-5 write will not be com-
pleted until two reads and two writes have occurred, the response time of writes
can be improved through the use of a write cache. (When using a write cache, be
sure that it is backed up by battery power.) However, the write cache is not a cure
for overdriving your disk drives. You must still stay within the capacity of those
disks.

As you can see, RAID-5 is economical, but you pay a performance price. You will see later
in this chapter how high that price can be.

RAID Performance
To properly configure and tune your RAID system, you must understand the perfor-
mance differences between the various RAID levels, which the previous section outlined.

84 Part II System Design and Architecture
By understanding how the RAID system works and how it performs under various con-
ditions, you can better tune your I/O subsystem. This section compares in detail the var-
ious performance characteristics that you have seen in the previous section.

Read Performance
The RAID level you choose will not significantly affect read performance. When read
operations are performed on a RAID volume, each drive contributes to the volume’s per-
formance. Because random I/O operations are typically the most problematic, they are
covered here. You can maximize sequential performance by isolating the sequential I/O
operations on their own volume. Let’s look at random-read performance under the vari-
ous RAID levels:

■ RAID-0 volumes spread data evenly among all the disks in the array. Thus, random
I/O operations should be spread equally among all the disk drives in the system. If
we estimate that a particular disk drive can handle 150 random I/O operations per
second, a RAID-0 array of 10 disk drives should be able to handle 1500 I/O opera-
tions per second.

■ RAID-1 volumes support split seeks, so both disk drives perform read operations.
Thus, a RAID-1 volume can support twice the number of reads that a single disk
can, or 250 I/O reads per second. If reads occur more frequently than that, perfor-
mance will suffer.

■ RAID-10 arrays, like RAID-1 arrays, support split seeks. Therefore the maximum
read performance is equal to the number of disk drives multiplied by 150 I/O oper-
ations per second. You might be able to initiate I/O operations more frequently, but
they will not be completed as quickly as you request them.

■ RAID-5 arrays spread the data evenly among all of the disk drives in the array. Even
though one disk drive is used for parity in each stripe, all drives are typically used
because the I/O operations are random in nature. Thus, as with the RAID-0 array,
the read capacity of a RAID-5 array is 150 I/O operations per second multiplied by
the number of disk drives in the array. An array running at more than that will
reduce SQL Server performance.

As you can see, calculating the read capacity of a RAID array is fairly straightforward. By
adding enough disk drives to support your I/O requirements and staying within these
limitations, you will optimize your system’s performance.

Write Performance
The type of RAID controller you use dramatically affects write performance. Again,
because random I/O operations are typically the most problematic, they are covered here.
You can maximize sequential performance by isolating the sequential I/O operations on

Chapter 4 I/O Subsystem Planning and RAID Configuration 85
their own volume or volumes. Let’s look at random-write performance under the various
RAID levels:

■ RAID-0 is the level most capable of handling writes without performance degrada-
tion, but you forfeit fault tolerance. Because RAID-0 does not mirror data or use par-
ity, the performance of RAID-0 is simply the sum of the performance of the
individual disk drives. Thus, a RAID-0 array of 10 disk drives can handle 1,500 ran-
dom writes per second.

■ RAID-1 arrays must mirror any data that is written to the array. Therefore, a single
write to the array will generate two I/O operations to the disk drives. So a RAID-1
array has the read capacity of two disks or 300 I/O Operations Per Second (IOPS)
drives but the write capacity of a single disk drive, or 150 IOPS.

■ RAID-10 has the same write characteristics as the RAID-1 array does. Each write to
the RAID-10 volume generates two physical writes. Thus, the capacity of the RAID-10
array is equivalent to the capacity of one-half of the disk drives in the array.

■ RAID-5 arrays are even slower for write operations. A write to a RAID-5 array gen-
erates two reads from the disks and two writes to the disks. A write to a RAID-5
array generates four physical I/O operations to the disks. Thus, the write capacity of
a RAID-5 array is equivalent to the capacity of one-fourth of the disk drives in the
array.

As you can see, calculating the write capacity of a RAID array is a fairly complex oper-
ation. By adding enough disk drives to support your I/O requirements and staying
within these limitations, you will optimize your system’s performance. The next sec-
tion describes how to calculate the number of I/O operations per disk under various
circumstances.

Disk Calculations
To determine how much load is being placed on the individual disk drives in the system,
you must perform some calculations. If you are using a hardware RAID controller, the
number of I/O operations per second that Performance Monitor displays is the number
of I/O operations that are going to the array. Additional I/O operations that are generated
by the controller for fault tolerance are not shown. In fact, Windows 2003 doesn’t register
that they are occurring, but you must be aware of them for determining the necessary
number of disk drives required for optimal performance. The formulas in the following
sections can help you determine how many I/O operations are actually going to each disk
in the array.

86 Part II System Design and Architecture
RAID-0
The rate of I/O operations per disk drive in a RAID-0 array is calculated by adding up all
the reads and writes to the array and dividing by the number of disks in the array. RAID-0
requires only the following simple and straightforward equation:

operations per disk = (reads + writes) / number of disks

RAID-1
■ With RAID-1, the calculation becomes a little more complicated. Because the num-

ber of writes is doubled, the number of I/O operations per disk per second is equal
to the number of reads plus two times the number of writes, divided by the number
of disk drives in the array (two for RAID-1). The equation is as follows:

operations per disk = (reads + (2 * writes)) / 2

RAID-1 is slower on writes but offers a high degree of fault tolerance.

RAID-10
RAID-10 is slow on writes, as is RAID-1, but RAID-10 offers a high degree of fault toler-
ance. The calculation for RAID-10 is the same as that for RAID-1. Because writes are dou-
bled, the number of I/O operations per disk is equal to the number of reads plus two
times the number of writes, divided by the number of disk drives in the array. The equa-
tion is as follows:

operations per disk = (reads + (2 * writes)) / number of disks

RAID-5
RAID-5 offers fault tolerance but has a high level of overhead on writes. RAID-5 reads are
distributed equally among the various disk drives in the array, but writes cause four phys-
ical I/O operations to occur. To calculate the number of I/O operations occurring on the
individual disk drives, you must add the reads to four times the number of writes before
dividing by the number of disk drives. Thus, the equation for RAID-5 is as follows:

operations per disk = (reads + (4 * number of writes)) / number of disks

RAID Comparison
Let’s compare the RAID levels directly. This might better help you to determine which
RAID level is best for your system. When you compare I/O performance across RAID
levels, one of the most important factors is the read-to-write ratio. The various RAID lev-
els perform comparably when performing reads; only the write rates differ. You should

Chapter 4 I/O Subsystem Planning and RAID Configuration 87
also consider whether your system needs to be fault tolerant. Finally you should be
aware of the various cost-to-space ratios. Table 4-3 summarizes the various RAID levels.

As you can see, your best choice really depends on your requirements. To see the differ-
ence between RAID-5 and RAID-10 at different read/write ratios, look at the following
table. Table 4-4 represents 500 I/O operations per second across 10 disk drives with vary-
ing read/write ratios.

As you can see, at about 90 percent reads and 10 percent writes, the disk usage is about
even. For higher percentages of writes, RAID-5 requires much more overhead.

Which RAID Level Is Right for You?
Which RAID level is right for you? The answer to this question depends on several
factors.

Table 4-3 RAID Levels Comparison

RAID Level Performance Fault Tolerance Cost

RAID-0 Best No fault tolerance Economical

RAID-1 Good Good Expensive

RAID-10 Good Good Expensive

RAID-5 Fast reads, slow writes OK Most economical
with fault tolerance

Table 4-4 RAID-5 and RAID-10 Comparison

RAID-5 I/O Operations RAID-10 I/O Operations

Read/Write Ratio (Reads + (4 * Writes)) / Disks (Reads + (2 * Writes)) / Disks

100% reads (500 + 0) / 10 (500 + 0) / 10

0% writes 50 I/O operations per disk 50 I/O operations per disk

90% reads (450 + 200) / 10 (450 + 100) / 10

10% writes 65 I/O operations per disk 55 I/O operations per disk

75% reads (375 + 500) / 10 (375 + 250) / 10

25% writes 87.5 I/O operations per disk 62.5 I/O operations per disk

50% reads (250 + 1000) / 10 (250 + 500) / 10

50% writes 125 I/O operations per disk 75 I/O operations per disk

0% reads (0 + 2000) / 10 (0 + 1000) / 10

100% writes 200 I/O operations per disk 100 I/O operations per disk

88 Part II System Design and Architecture
■ What are your fault tolerance requirements? Depending on your requirements,
based on company policy or legal requirements, you might have more or fewer
restrictions that normal.

■ What is your budget? Many times compromises are made based on the available
budget for your I/O subsystem.

■ What are your performance requirements? Often performance requirements out-
weigh budget requirements if you have strict service level agreements. Your needs
will determine your requirements.

Now that you have an overview of how I/O works, let’s look at SQL Server I/O
requirements.

SQL Server I/O Overview
SQL Server is especially sensitive to I/O latencies because of the concurrency of trans-
actions within the SQL Server engine. Under normal conditions, tens or hundreds of
applications are running against a SQL Server database. To support this concurrency,
SQL Server has a complex system of row, page, extent, and table locks, as you will see
throughout this book. When a piece of data or a SQL Server resource is locked, other
processes must wait for that data or resource to be unlocked.

If I/O operations take excessive amounts of time to complete, these resources will be held
for a longer-than-normal period, further delaying other threads processing in the system.
In addition, this could lead to a greater chance of deadlocks. The longer the I/O takes to
complete, the longer the locks are held, and the potential for problems increases. As a
result, individual delays can multiply in a way that could cripple the system.

In addition, query processing will be significantly slower. If long table scans are running
on your system, for example, hundreds of thousands or even millions of rows will often
need to be read in order to complete the task. Even slight variations in performance
become dramatic when applied to a million I/O operations. One million operations at 10
ms each will take approximately 2.8 hours to complete. If your system has overloaded the
I/O subsystem and each I/O operation is taking 40 ms, the time to complete this query
will increase to more than 11 hours.

As you can see, SQL Server performance can be severely degraded by a poorly sized or
poorly configured I/O subsystem. By designing your I/O subsystem to work within the
capacity of the individual components, you will find that your system’s performance is
optimal.

Chapter 4 I/O Subsystem Planning and RAID Configuration 89
Let’s look at what affects SQL Server I/O and why it is important to tune the SQL Server
I/O subsystem. We will begin by looking at reads, then writes, and then the transaction
log I/Os. Finally, we will look briefly at backup and recovery.

SQL Server Reads
When a user session wants to read data from the database, it will read either directly from
the SQL Server buffer cache, or, if the buffer cache does not have the data that is
requested, the data will be read into the buffer cache and then from the buffer cache. If
the requested data is in the buffer cache, then it is referred to as a buffer hit. If the data is
not in the buffer cache it is referred to as a buffer miss. The ratio of buffer hits to total buffer
requests is called the buffer cache hit ratio. For optimal performance the buffer hit ratio
should be as close to 100 percent as you can get.

Note When a read is made from the database, it is called a logical read since it
could be a read from memory or a read from disk. A read from the disk drive is
called a physical read. A read from memory takes approximately 100 nanosec-
onds, while a read from disk will take approximately 8 milliseconds or more.

The important point about SQL Server read operations is that the user session will wait
on reads to complete before their request will complete. When selecting data from the
database, the user will wait on the complete operation including all of the physical reads.

The time it takes to select from the database depends on how much data will be read and
how long it takes for those reads to occur. Even with cache reads, the time it takes to read
a large amount of data can be significant. With physical reads, the time can be even
longer.

SQL Server users actually wait on reads to complete before their SQL statement has com-
pleted. As you will see in the next section, SQL Server users will not wait on writes to
complete.

SQL Server Writes
SQL Server writes by the user sessions occur only in the buffer cache. When a change is
made, the buffer is modified in the buffer cache. If the data is not already in the cache,
it will be read into cache from disk. As a change is made and a COMMIT operation is exe-
cuted, a log write will occur specifying the changes that have been made, and then the
COMMIT operation will complete. The user session will not wait on that data to be writ-
ten out to disk before proceeding. The changed data will be written out at a later time via
either the lazy writer process or the checkpoint process. Checkpoints and the lazy
writer will be discussed in more detail in Chapter 14, “Backup Fundamentals .”

90 Part II System Design and Architecture
User sessions never wait on database writes to complete. The exception is the transaction
log. In other words, users wait on reads but not on writes. Therefore, read performance
is more important than write performance for the user community’s usability experience.

Transaction Log
The transaction log is used primarily for restoring the database in the event of a data fail-
ure and to recover in the event of an instance failure. Whenever a commit operation has
been initiated, a commit record must be written into the transaction log before that state-
ment can complete. For this reason, the write performance (mostly sequential) of the
transaction log is very important.

Backup and Recovery
Perhaps the most commonly overlooked I/O considerations for SQL Server are backup
and recovery. With most SQL Server systems there is only a small window of opportunity
for performing backups. This time must be optimized. Earlier in this chapter you saw
illustrations of how a slow I/O subsystem can cause SQL query performance problems.
In addition, when performing backups, you must consider not only the I/O performance
of the SQL Server database but the network performance and the performance of the
disk partition to which you are backing up. The performance of the disk partition to
which you are backing up is often overlooked, which can cause backup performance
problems. In addition, network throughput can also be an issue. These issues will also be
covered in Chapter 14 and Chapter 15, “Restoring Data.”

Planning the SQL Server Disk Layout
As you saw earlier in this chapter, you should configure your I/O system properly to
avoid overloading it. Overloading the I/O subsystem causes the I/O latency to increase
and degrade SQL Server performance. In this section, you will learn how to build a SQL
Server system that can perform within the limitations of your subsystem. The first part of
this configuration exercise shows you how to determine the I/O requirements of your
system. Then you will plan and create your system.

Determine I/O Requirements
Determining the I/O requirements of a system that exists as only a concept can be diffi-
cult if not impossible. However, if you can’t determine the I/O requirements from hard
data, you might be able to gather enough data to make an educated guess. In either case,
building an I/O subsystem that cannot expand is not a good idea. Always leave some
room for required increases in capacity and performance because sooner or later you will
need them.

Chapter 4 I/O Subsystem Planning and RAID Configuration 91
You should design your system to meet a set of minimum requirements based on the
amount of space that you need for data storage and on the level of performance you need.
In the next sections, you will see how to determine how many disks these factors require.

Space
Determining the space required by your SQL Server database is easy compared to deter-
mining the performance requirements. The amount of space is equal to the sum of the
following:

■ Space required for data

■ Space required for indexes

■ Space required for temporary data

■ Space required for the transaction log

The space required for data must include enough space to handle data that is added to
your database. Your business and your customers will dictate, to a large degree, the
amount by which your database will grow. To determine your system’s growth rate, check
your existing database on a regular basis and calculate the size differences in the amount
of space used in it. Calculate this growth rate over several months to determine trends.
You might be surprised by the rate at which your data is growing.

In a system without any history, you can estimate the amount of growth by taking the
number of product orders, inventory items, and so on, and multiplying that by the
estimated row size. Doing this for several periods (perhaps months or years) will give
you a rough idea of the rate at which the data files will grow. This will not tell you how
much your indexes will grow. The amount of index space per data row depends on
how the index is constructed and on the amount of data. A complex index takes more
space per row of data than a simple index. It is then up to you and your management
to determine whether your system should be able to handle growth for two years, five
years, or longer. This will allow you to determine how to configure your I/O subsystem
for space.

Once you have determined the amount of data in the database, the size of the indexes,
the amount of temporary database space required, and the rate of growth, you can deter-
mine how much disk space is required. You must then take into account the effects of
using RAID fault tolerance. Remember, RAID-1 or RAID-10 (data mirroring) takes up half
the disk space of the physical disk drives. RAID-5 takes up the disk space of one disk of
the array. Remember also that the disk size that the manufacturer provides is unformat-
ted space. An unformatted disk drive that is labeled as a 9.1-GB disk is actually an 8.6-GB
disk when formatted. Once you have calculated the amount of space currently required
and estimated the amount of growth space required, you must then move to the next

92 Part II System Design and Architecture
step: performance. It is necessary to calculate both space and performance requirements
and configure your I/O subsystem accordingly.

Performance
It is not sufficient to simply configure your system to meet the space requirements. As you
have seen throughout this chapter, how you configure the I/O subsystem can signifi-
cantly enhance or severely degrade the performance of your system. However, determin-
ing the performance requirements of your I/O subsystem is not nearly as easy as
determining the space requirements.

The best way to determine performance requirements is to look at a similar application
or system. This data can give you a starting point for estimating future requirements. You
will learn much more about this in Chapter 6. Assuming that you find a similar system,
you can then use data gathered from that system and the information earlier in this chap-
ter to determine the number of disk drives required. Remember to take into account the
RAID level that will be used on that I/O subsystem. The next steps are planning the SQL
Server disk layout and then implementing the solution.

Plan the Disk Layout
Planning the layout involves determining where the data will be positioned and then cre-
ating SQL scripts to create the database. The advantage of creating databases with SQL
scripts, rather than through SQL Server Enterprise Manager, is that you can reuse a script,
modifying it if necessary.

The script should take into account the number of logical volumes that your system has
and the number of physical disks in those volumes. It is important to balance the data-
base so that each disk drive will handle roughly the same number of I/O operations per
second. An unbalanced system suffers the performance experienced by the slowest vol-
ume. You should make sure that the transaction log and the data files are distributed
across the disk drives in a way that supports optimal performance.

Planning the Log
The process of planning where to put the transaction log is fairly simple. Using only one
data file for the transaction log is often the best approach. If you must add more log files
to the database, be sure to place them on a RAID-1 or RAID-10 volume. Also, be sure to
isolate the transaction log from data or other transaction logs.

Planning the Data Files
The easiest way to configure the I/O subsystem for the data files is to configure each vol-
ume with a similar number of similarly sized disk drives. In many cases, you don’t need
to split the I/O subsystem into multiple volumes. In fact, you might be perfectly happy

Chapter 4 I/O Subsystem Planning and RAID Configuration 93
with one logical volume that spans the entire controller. However, you shouldn’t use
Windows 2003 striping to span multiple controllers because it adds too much overhead.

Note For your data files, span as many disk drives per controller as you can.
This allows the controller to distribute the data among multiple disks. Do not use
OS striping to span multiple controllers. This incurs too much CPU overhead.

If you use multiple controllers, you should simplify the configuration by using similar
striping with the same number of disk drives on each controller. If you can’t use the same
number of disk drives on each of your controllers, you can use proportional filling to
properly populate the database.

For example, if you use two volumes, one with 20 disk drives and the other with 10 disk
drives, you should create a filegroup with two data files. The first data file should go on
the 20-disk volume and be twice as big as the data file on the 10-disk volume. As data is
loaded, SQL Server will load twice as much data into the first data file as it loads into the
second data file. This should keep the I/O load per disk drive approximately the same.

Implement the Configuration
Once you have developed your SQL scripts to create the database, it is necessary only to
run them and to view the result. If you made a mistake and the database was not created
as planned, now is the time to fix it, not after the data has been loaded and users are
accessing the system. The use of SQL scripts allows you to modify the scripts and to run
them again and again as necessary. An example of a script that uses multiple files within
a filegroup to spread the database among several controllers is shown here.

This script will create a database across several drive letters, D, E, and F. With this design,
E and F will get twice as many I/Os as D. This design would be used if E and F have twice
as many disk drives as D. The L drive is used for the transaction log.

CREATE DATABASE demo
ON
PRIMARY (NAME = demo1,
 FILENAME = 'd:\data\demo_dat1.mdf',
 SIZE = 100MB,
 MAXSIZE = 200,
 FILEGROWTH = 20),
(NAME = demo2,
 FILENAME = 'e:\data\demo_dat2.ndf ',
 SIZE = 200MB,
 MAXSIZE = 200,
 FILEGROWTH = 20),
(NAME = demo3,
 FILENAME = 'f:\data\demo_dat3.ndf ',
 SIZE = 200MB,

94 Part II System Design and Architecture
 MAXSIZE = 200,
 FILEGROWTH = 20)
LOG ON
(NAME = demolog1,
 FILENAME = 'l:\data\demo_log1.ldf ',
 SIZE = 100MB,
 MAXSIZE = 200,
 FILEGROWTH = 20) ;
GO

The information in this section and throughout the chapter should help you create an
optimal I/O subsystem for your SQL Server system.

Summary
In this chapter you have been introduced to the fundamentals of I/O and performance
characteristics of disk drives and RAID. Because I/O performance is so important to SQL
Server, you must carefully plan and design the SQL Server System. This has been briefly
covered here and will be covered in future chapters as well. It is important that the I/O
subsystem be monitored and tuned as necessary. In Chapter 6, you will see how to mon-
itor and benchmark the storage system to plan for the future.

This chapter provided the fundamentals and basics of I/O performance. The chapter
started with the fundamentals of disk drive performance. These fundamentals are impor-
tant since the disk drive is the basic building block of most I/O subsystems. By exceeding
the capacity of these components, the response time or latency of the I/O subsystem will
increase. This will cascade into poor SQL Server performance, potential blocking, or even
deadlocks. In addition to disk drives, the RAID level that you select can also adversely
influence the performance of your I/O subsystem. Careful design and planning can help
alleviate some of these problems. Determining how much hardware you actually need is
the act of sizing and is discussed in Chapter 6. A properly sized system will provide for
good performance and flexibility for changes over time. Remember the fundamentals,
and add capacity as necessary.

Chapter 5

32-Bit Versus 64-Bit Platforms
and Microsoft SQL Server 2005

CPU Basics . 95

Windows Versions .100

SQL Server 2005 Options. .102

Taking Advantage of 64-Bit SQL Server .104

Summary .106

CPU Basics
The CPU, or central processing unit, is the brains of the computer system. The CPU han-
dles the processing of the commands that run the operating system, SQL Server, and user
programs. The CPU chip includes the processing system and some memory that can be
used for instructions and data. The CPU that most of us use on a regular basis is known
as the x86 processor.

The x86 processor has been around since the late 70’s, and we have come a long way in
that time. Today’s PCs and servers are based on the Intel 8086 processor. The 8086,
introduced in 1978, marked the beginning of the x86 architecture. The 8086 was a 16-
bit processor. This was soon followed by the 80186 and 80286 processors, which were
also 16-bit. However, with new technology, the 80286 was actually able to access up to
16 megabytes (MB) of RAM. This was quite an accomplishment in those days, but who
would ever be able to use an entire 16 MB of RAM anyway?

The Intel 80386 processor, introduced in 1986, was the third generation of x86 chips.
The 80386 was also known as the i386. The i386 introduced us to 32-bit processing.
With 32-bit processing and a virtual memory architecture, it was now possible to address
up to 4 gigabytes (GB). With virtual memory, it was possible for the operating system to
actually address up to 4 GB of RAM (2 GB for user and 2 GB for operating system) even
95

96 Part II System Design and Architecture
though nobody would actually ever have an actual computer system with 4 GB of actual
RAM in it.

In contrast with this quick 8-year succession from the 16-bit processor to the 32-bit
processor, it took an amazing 20 years for the mainstream introduction of 64-bit pro-
cessors. This is not to say that there weren’t 64-bit processors available during that
time; there most certainly were, as you will see later in this chapter. However, in 2006
the 64-bit processor is finally becoming mainstream and starting to replace the 32-bit
systems.

64-Bit Versus 32-Bit Addressing
The introduction of the Intel EM64T processor and the AMD Opteron (AMD64) processors
have brought 64-bit technology to the mainstream. The primary advantage of the 64-bit
architecture is its ability to access larger amounts of data. With 32-bit systems, both virtual
and physical memory is limited. There are some workarounds to allow for more physical
memory, but the virtual memory limitation cannot be overcome with 32-bit processors.

Virtual Memory
When physical memory was limited to 64 kilobytes and was very expensive, virtual mem-
ory was introduced. Virtual memory is a technique by which a process in a computer sys-
tem can address memory whose size and addressing is not coupled to the physical
memory of the system. This allows multiple processes to take full advantage of the sys-
tem even though there is not enough memory to fully accommodate all of them at the
same time.

Virtual memory works in conjunction with paging. With paging, memory is moved
between physical memory and a paging area on disk. This allows data to be moved out of
physical memory to make room for other processes, while keeping that data available for
the process that is using it.

When virtual memory was first introduced, it seemed unlikely that the amount of phys-
ical memory would exceed the virtual address space. The microprocessor’s early devel-
opers may have assumed that the 32-bit architecture would not last 20 years without
being replaced. Yet, several years ago, 32-bit systems began shipping with more than 4 GB
of memory.

This introduced a dilemma. The systems can have more than 4 GB of memory, but the vir-
tual memory address space, or the amount of memory a single process can address, is
still limited to 4 GB. With the addition of PAE (Page Address Extension) and AWE
(Address Windowing Extension), SQL Server can use more than 4 GB of memory. How-
ever, this memory can be used only for the SQL Server buffer cache. This memory cannot
be used for connection memory or procedure cache.

Chapter 5 32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005 97
Real World Virtual Memory Can Be a Problem

With large numbers of user connections, it is possible to reach the limits on avail-
able SQL Server connections. It has been my experience that connection prob-
lems occur with a large number of SQL Server sessions. These problems typically
occur with between 4,000 and 5,000 users, depending on what the users are
doing. This is a virtual memory problem, not a physical memory problem.
Regardless of the amount of physical memory in the system, because SQL Server
runs as one process, it is limited to 2 GB (3 GB with the /3-GB flag) for virtual
memory. It is this memory that causes connection problems. Hence, physical
memory is not the only problem.

With the introduction of 64-bit processors, these limitations are for now no longer an
issue. With 64-bit processors, both the virtual and physical memory limitations are
much higher than with 32-bit processors. Although SQL Server has been running on 64-
bit systems since SQL Server 6.0 on Alpha, PowerPC, and MIPS platforms, the new
EM64T and Opteron processors are now making 64-bit processing mainstream. Cur-
rently, with SQL Server 2005, Microsoft supports SQL Server on x86, x86-64, and Ita-
nium 2 platforms.

The EM64T and Opteron processors can access up to 256 terabytes of virtual memory
(248 bytes). The architecture allows this limit to be increased to a maximum of 16
exabytes (264 bytes). Although this is suitable for today’s computing power, it might or
might not be sufficient in another 20 years.

Physical Memory
Currently, 32-bit systems using PAE and AWE can support up to 64 GB of physical mem-
ory. This is sufficient for many databases, but with databases getting larger and larger,
soon this will be insufficient. With 64-bit systems, the amount of physical memory has
greatly increased. However, it will probably be quite a while before systems will actually
support this much memory.

The initial wave of systems that support the EM64T and Opteron processors can cur-
rently address up to 1 terabyte of virtual memory (240 bytes). The architecture allows this
limit to be increased to a maximum of 4 petabytes (252 bytes). This should be sufficient
for the foreseeable future.

Hardware Platforms
SQL Server 2005 is supported on three platforms: the x86 platform, the x86-64 (or
x64) platform, and the Itanium platform. The x86 platform is 32-bits, and the x64 and

98 Part II System Design and Architecture
Itanium platforms are 64-bit. These platforms are all generally available from various
vendors. The x86 and x64 chips are very similar, and the Itanium uses a different archi-
tecture. This section provides a brief overview of the different chip architectures.

x86
As discussed earlier in this chapter, the x86 architecture is the product of an evolution
that started with the 8086 processor back in 1978. The architecture has been enhanced
and clock speeds have been increased, but it is still compatible with operating systems
and programs that run on the 80386 chipset. With later versions of the x86 chips, sys-
tems can support up to 64 GB of RAM using PAE and AWE. Recently, both Intel and AMD
have introduced processors that support both the x86 and x64 architectures on the same
system. In fact, all x64 systems are also x86 systems, depending on what operating sys-
tem you are running. The x86 architecture is summarized in Table 5-1.

Although the x86 has been around for a long time, it is still the mainstream processor
used worldwide. In the next few years, however, I expect to see the x64 architecture
take over.

x64
The x64 platform is very flexible in that it is both a 32-bit processor and a 64-bit pro-
cessor, depending on what operating system you install. If you install a 32-bit version
of Windows Server 2003 on it, the system works as an x86 processor including PAE
and AWE support. If you install Windows Server 2003 x64 on any x86-64 system, it
will run as a 64-bit system.

One of the primary advantages of the x64 architecture is that when you are running a
64-bit version of Windows, 32-bit programs run perfectly well. There is no loss of per-
formance, nor are there for the most part any compatibility problems. However, if you
are going to run the 64-bit version of Windows Server 2003, it is recommended that

Table 5-1 x86 Architecture Memory Summary

Value Notes

Physical memory 4 GB / 64 GB > 4 GB requires PAE

Virtual memory 4 GB 3 GB for user memory*
1 GB for kernel memory*

* Although the x86 architecture can use 3 GB for user and 1 GB for kernel memory, the default is 2 GB
and 2 GB for user and kernel. The operating system must flag the CPU that it wants to use 3 GB for user
memory. In Windows, this is done with the /3 GB flag.

Chapter 5 32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005 99
you run the 64-bit version of SQL Server 2005. The x64 architecture is summarized in
Table 5-2.

Note The x64 architecture summary table refers to the x64 architecture run-
ning in 64-bit mode.

Because of the flexibility and performance of the x64 architecture, I expect to see the
industry moving to 64-bit very quickly. In fact, most server systems are currently ship-
ping with this processor.

Itanium
The Itanium architecture is also known as the IA-64 architecture. This architecture was
developed in 1989 when HP collaborated with Intel to develop a replacement for its PA-
RISC line of processors. Microsoft has ported versions of Windows XP, Windows 2000,
and Windows 2003 for the Itanium processor, and SQL Server is supported on Windows
2000 and Windows 2003 Itanium 2 platforms. The Itanium 2 processor is fairly popular,
and there are many SQL Server implementations on Itanium 2.

Itanium 2 Versus x86-64

My opinion is that the x86-64 processor will very soon become the platform of
choice for 64-bit SQL Server. Because of its flexibility, price, and the fact that it has
already replaced all i386 chips for the server, I believe that the Itanium 2 platform
will soon be used only for large Unix servers. There will still be a few companies
that prefer the Itanium 2 platform, but they will be a small minority.

The Itanium 2 processor is a 64-bit processor that can run some Windows 32-bit pro-
grams in a 32-bit emulation mode. This emulation mode is not very efficient, and 32-
bit programs are not known to work very well on the Itanium 2 platform. This is why
it is recommended that 64-bit SQL Server be run on this platform. There is a version
of SQL Server 2000 for Itanium 2, but only the server components are available. All

Table 5-2 x64 Architecture Memory Summary

Value Notes

Physical memory 1 terabyte Later will be increased to 4
petabytes

Virtual memory 256 terabyte Architecture supports 16
exabytes

100 Part II System Design and Architecture
management must be done from a 32-bit system. The Itanium 2 architecture is sum-
marized in Table 5-3.

One key advantage of the Itanium 2 processor is that it is typically found in higher-
end systems. While you are most likely to find the EM64T and Opteron processors in
2 through 8 CPU systems, you might see high-end systems support up to 128 Itanium
processors in a single system. This is an advantage for high-end customers. These sys-
tems are usually very high-end with exceptional levels of support, I/O bandwidth, and
expandability.

Windows Versions
There are a number of Windows Server versions available that accommodate SQL Server
2005. Each of these systems has its own advantages and limitations. This section pro-
vides an overview of the various choices.

Windows 2000
Windows 2000 is available in both an x86 and an Itanium version. Windows 2000
includes many improvements over Windows NT. Advancements include an improved
memory management system and improved networking capabilities, as well as improve-
ments in the domain administration and functionality.

Windows 2000 is available in Server, Advanced Server, and Datacenter Server Editions.
The Server Edition is more limited than the Advanced Server Edition in both the number
of CPUs supported and the amount of RAM supported. Datacenter Server Edition is
enhanced in support of processors and memory as well as in the enhanced technical
support that it is available for it. Because Windows 2000 has been rendered obsolete by
Windows Server 2003, it will not be covered in detail in this book.

Note The limits of SQL Server 2005 depend on both the version of Windows
that you are running and the version of SQL Server.

Table 5-3 Itanium 2 Architecture Memory Summary

Value Notes

Physical memory 1 petabyte Physical addressing is 50-bits.

Virtual memory 16 exabytes This is the full 64-bit address.

Chapter 5 32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005 101
Windows Server 2003
At the time of this book’s publication, Windows Server 2003 is the most current version
of Windows available. Windows Server 2003 is available in an x86, an x64, and an Ita-
nium version. Windows Server 2003 includes many improvements over Windows 2000,
including Active Directory.

From a purely SQL Server point of view, the most important features that were provided
in Windows Server 2003 were the x64 support and the enhanced PAE support for x86.
In addition, clustering was greatly improved in Windows Server 2003. Like Windows
2000, Windows Server 2003 comes in a variety of editions, including Standard Edition,
Enterprise Edition, and Datacenter Edition. The features of the Windows Server 2003 32-
bit editions are shown in Table 5-4.

The variety allows you to choose what you need and avoid purchasing software that you
don’t need.

Windows Server 2003 64-Bit editions
Windows Server 2003 is also available in 64-bit editions for both the x64 and Itanium
platforms. As with Windows Server 2003 for the x86 platform, these platforms also come
in several different editions. SQL Server 2005 is available for both the x64 and Itanium
versions of Windows Server 2003. The features of the Windows Server 2003 64-bit edi-
tions are shown in Table 5-5.

Note The Itanium Edition of Windows Server 2003 is available only in Enter-
prise and Datacenter Editions.

Table 5-4 Windows Server 2003 32-Bit Editions

Feature Standard Edition Enterprise Edition Datacenter Edition

Maximum RAM 4 GB 64 GB 64 GB

Maximum number of CPUs 4 8 32

Clustering No Yes Yes

Table 5-5 Windows Server 2003 64-Bit Editions

Feature Standard Edition Enterprise Edition Datacenter Edition

Maximum RAM 32 GB 1 TB 1 TB

Maximum number of CPUs 4 8 64

Clustering No Yes Yes

102 Part II System Design and Architecture
Windows Comparison
The version of Windows that you choose depends on the number of CPUs that you
require and the amount of memory that you want to utilize. This must be chosen in con-
junction with the version of SQL Server. In order to utilize a 64-bit version of SQL Server,
you must be running a 64-bit version of Windows. The 64-bit version of SQL Server can
be very useful when large databases are being supported.

SQL Server 2005 Options
Like Windows, SQL Server also comes in a variety of editions. These editions allow you
to choose the features and functionality that you need and avoid paying for features that
you don’t need. SQL Server 2005 is available in Express, Developer, Mobile, Workgroup,
Standard, and Enterprise Editions. This book is geared more towards the server market,
so we won’t cover Express, Developer, Mobile, and Workgroup Editions in this chapter.
Some of the key differences between the editions are shown in Table 5-6.

Of course, there are many more features, most of which work on both Standard and
Enterprise Editions. This table shows only some of the key features. Chapter 8,
“Installing and Upgrading Microsoft SQL Server 2005,” provides a more complete dis-
cussion of the differences.

SQL Server 32-Bit Edition
The differences between SQL Server 2005 32-bit edition and SQL Server 2005 64-bit edi-
tion have been presented throughout this chapter. SQL Server 32-bit edition can be
installed on either a 32-bit or 64-bit version of Windows, but there are a few issues to con-
sider when selecting the appropriate installation.

Table 5-6 SQL Server 2005 Editions

Feature Standard Edition Enterprise Edition

Maximum RAM OS maximum OS maximum

Maximum number of CPUs 4 Unlimited

Partitioning No Yes

Parallel index operations No Yes

Indexed views No Yes

Mirroring and clustering Yes Yes

Online indexing and restore No Yes

Integration Services Advanced Transforms No Yes

Chapter 5 32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005 103
Running 32-Bit SQL Server 2005 on 32-Bit Windows 2003 Server
The most common choice for SQL Server 2005 32-bit is to run on 32-bit Windows Server
2003. If you are running Windows Server 2003 32-bit, then SQL Server 2005 32-bit is
your only choice. With the 32-bit version of the operating system and the database, you
are limited by all of the 32-bit limitations mentioned above. By taking advantage of PAE
and AWE, you can take advantage of memory above 4 GB for SQL Server data buffers
only.

32-Bit SQL Server on 64-Bit Windows
It is possible to run SQL Server 2005 32-bit on Windows Server 2003 64-bit. This can
be a good solution if you are planning to upgrade to SQL Server 2005 64-bit at a later
time because you will be required only to upgrade SQL Server at a later time. Having the
64-bit version of Windows Server 2003 does not provide a noticeable performance dif-
ference over the 32-bit version of Windows. If you want to use more than 4 GB of RAM,
you still must use AWE enabled, and other 32-bit limitations are in effect.

When installing the 32-bit version of SQL Server 2005 on the x64 version of Windows
Server 2003, SQL Server uses the Windows on Windows 64 subsystem (WOW64). The
WOW64 subsystem is the compatibility mode that allows 32-bit programs to run natively
in 32-bit mode on the 64-bit operating system. SQL Server operates in 32-bit mode even
though the underlying operating system is 64-bit. This is one of the biggest advantages of
x64 over Itanium.

Note The x86 32-bit version of SQL Server 2005 is not supported on the Ita-
nium platform.

SQL Server 64-Bit
In order to run the 64-bit version of SQL Server 2005, you must have the 64-bit version
of Windows Server 2003. With this combination, you can benefit from all of the advan-
tages of running in a 64-bit environment. With the 32-bit version of SQL Server, you have
the option of Windows Server 2003 32-bit or 64-bit version, but with SQL Sever 2005
64-bit, your only option is to run on a 64-bit version of Windows Server 2003. Remem-
ber, there are two options for 64-bit Windows 2003: Itanium and EM64T/Opteron pro-
cessor families.

Note You cannot run the 64-bit version of SQL Server 2005 on a 32-bit version
of Windows Server 2003.

104 Part II System Design and Architecture
Taking Advantage of 64-Bit SQL Server
In this chapter you have learned about the limitations of the 32-bit architecture. These
drawbacks limit both virtual memory and physical memory. Both of these limits have
been known to cause problems with SQL Server users. The virtual memory limitation can
restrict the number of connections into SQL Server because of running out of virtual
memory. The physical memory limitation can restrict the amount of SQL Server buffer
cache and procedure cache. For large databases you might require large amounts of SQL
Server cache in order to perform optimally.

Real World Size Matters

The amount of SQL Server memory that is allocated is very important, especially as
databases increase in size. Years ago, the standard practice was to size the buffer
cache as 20 percent of the size of the database. Thus for a 100-GB database, the
amount of memory allocated for SQL Server is 10 GB. As databases reached ter-
abytes in size, that became impractical. Today’s rule of thumb is 5 percent to 10 per-
cent of the database size. In order to achieve this value, 64-bit memory addressing
is probably essential.

If you are using SQL Server in an environment with a relatively small number of users and
a fairly small database, you still might consider using the 32-bit version of Windows
Server 2003 and SQL Server 2005. However, in the next few years, I believe that the 32-
bit versions will begin to be phased out. It might become difficult to find server systems
that are not 64-bit capable. I have yet to find any real downsides to running a 64-bit capa-
ble processor in 64-bit mode rather than in 32-bit mode.

Important Even though SQL Server 2005 x64 should be considered equivalent
to the 32-bit (with enhancements), you should use the version that is recom-
mended by your application software vendor. If the software vendor has not cer-
tified with the 64-bit version, you might not be supported by them even if 64-bit
isn’t the problem.

Here are a few guidelines on when SQL Server 2005 64-bit is recommended:

■ The number of sessions is very large. If your concurrent user count and ses-
sions are in the thousands, you are a candidate for 64-bit.

Chapter 5 32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005 105
■ The database is medium to large. If your database is over 100 GB, then you are
a candidate for 64-bit.

■ The database will experience heavy growth. If the growth of either of the first
two items is significant, then consider 64-bit.

■ You want to stay ahead of the curve. Eventually the 32-bit versions of SQL
Server 2005, or later, will be phased out. Eventually you will not be able to purchase
Windows for 32-bit, just like you cannot run Windows on 16-bit processors. 64-bit
is here to stay.

In the meantime, there is still a significant number of users who are not yet ready to throw
out all of their hardware and go to 64-bit platforms. The next section discusses the simple
steps necessary to take advantage of upper memory on 32-bit systems.

Utilizing Large Memory with the 32-Bit Version of SQL Server
2005

To enable 32-bit memory on the 32-bit version of SQL Server 2005, there are only two
steps:

1. Set the SQL Server configuration parameter “awe enabled” to 1. This parameter is
set to 0 by default. This parameter enables AWE mode, which allows the use of
memory > 4 GB.

2. Set the max server memory parameter to a number greater than 4 GB.

In SQL Server 2005, the amount of AWE is dynamic and the memory allocated for SQL
Server is somewhere between “min server memory” and “max server memory.” In earlier
versions of SQL Server, AWE memory was not dynamic.

Note In order to utilize AWE memory, the user account under which SQL
Server runs must be granted the Lock Pages In Memory option.

It is a big improvement that AWE memory is now dynamic. With Windows 2000, AWE
memory was fixed. Whenever you started up SQL Server, the amount of memory config-
ured in “max server memory” was allocated by SQL Server. This memory was not
released until SQL Server is shut down.

Important Do not allow SQL Server to use too much memory. This could
cause paging in Windows. Always try to leave at least 1 to 2 GB for the operating
system.

106 Part II System Design and Architecture
Utilizing Large Memory with the 64-Bit Version of SQL Server
2005

With the 64-bit version of SQL Server, it is not necessary to make any operating system
or SQL Server configuration changes. Simply set the initialization parameters “min server
memory” and “max server memory,” and SQL Server will dynamically allocate memory
within that range. It is possible to enable the awe enabled flag to guarantee that the mem-
ory allocated for SQL Server is not swappable. In earlier versions of SQL Server, the
parameter “set working set size” indicated that SQL Server memory was not swappable.
This flag has been depreciated.

Summary
In this chapter you have seen the advantages of running SQL Server in 64-bit mode.
There are only a few advantages, including virtual and physical memory increases. How-
ever, these advantages are significant. Whether you can take advantage of the features of
64-bit or not really depends on your configuration and your database size.

If your database is fairly small (less than 10 GB) and you are not experiencing any perfor-
mance problems due to I/O and memory issues, then 32-bit SQL Server might be right
for you. However, if you have a large database and you are doing extensive I/O, you will
probably benefit from more memory and increased efficiency.

Real World Memory Won’t Solve All of Your Problems

If you are in an environment in which you are doing a significant number of I/O
operations and are experiencing I/O problems, you might benefit from more mem-
ory. However, keep in mind that it won’t eliminate all I/O problems from occurring.
Regardless of how much buffer cache you have, checkpoints always generates sig-
nificant I/O operations. The transaction log generates the same amount of I/O
operations regardless of the amount of memory, and backups will be the same.

The benefits of 64-bit are significant when you have large databases and when you can
benefit from an increased cache-hit ratio. The rule of thumb is to set “max server mem-
ory” sufficiently high so that the buffer cache is 5 to 10 percent of the database size. This
might be achievable with 32-bit, but if you are going to use more than 4 GB of RAM and
you already have the hardware, I recommend that you try 64-bit.

Chapter 6

Capacity Planning

Principles of Capacity Planning .108

CPU Capacity Planning .112

Memory Capacity Planning. .117

I/O Capacity Planning .120

Network Capacity Planning .123

Growth Considerations .126

Benchmarking and Load Testing .128

Benchmarking the I/O Subsystem .129

Using MOM for Capacity Planning .132

Summary .132

Two of the biggest challenges in the IT world are sizing and capacity planning. Sizing and
capacity planning are related tasks which involve determining how much hardware and
software is needed in order to optimally run your applications. A system that is oversized
is a waste of money. A system that is undersized could perform poorly and cost you a
large amount of money and business. Sizing and capacity planning involve mathematics,
skill, and instinct, and even then you can get it wrong. In this chapter, you will learn some
of the fundamentals of sizing and capacity planning.

As with many database tasks, sizing and capacity planning are not an exact science. In
order to be successful at capacity planning, you must be imaginative and willing to take
a risk. It is not uncommon for a full-blown production system not to behave as expected
when the capacity planning exercise was done. Not everything is predictable. In this
chapter you will learn about sizing and capacity planning, service level agreements, and
some techniques for monitoring and benchmarking and load testing your system.
107

108 Part II System Design and Architecture
Principles of Capacity Planning
Capacity planning is the activity that results in an estimate of resources that are required
to run your system optimally. Capacity planning is a crucial activity in planning both
hardware and software resources. The process has two distinct operations: Sizing is the
act of determining the resources required for a new system; capacity planning is the act of
determining what resources are required to be added to your existing system in order to
meet future load requirements.

Capacity Planning Versus Sizing
Capacity planning and sizing each serve a similar purpose: to determine the amount and
types of resources necessary to meet future load requirements. The difference is in the
amount and type of data that is available to determine the future load. With capacity
planning you have available to you performance data that can be gathered from an exist-
ing system. This data can be used as a basis of calculations that can be extrapolated to the
future load. For example, if you are currently running a SQL Server system with 500 con-
current users, you can use this data to extrapolate the load that will be generated by the
addition of 250 concurrent users. This calculation might not be simple, but at least you
have a starting point.

When sizing a system that currently has no baseline data associated with it, there can be
no extrapolation. For example, if you are migrating from an ERP system that is Oracle-
based to a SQL Server-based ERP system, you can get some data from the existing sys-
tem, but in general the performance data from the Oracle system is not helpful when
performing a SQL Server sizing. However, any data is better than no data. Whether you
are sizing a system or performing a capacity planning exercise, you must use the data
available to you, calculate estimated workloads, do your research, and add in a little bit
of guesswork.

The desired result of a capacity planning or sizing exercise is to accurately deter-
mine what hardware and software are needed in order to meet your service level
agreement, which is explained in the following section, based on a predetermined
workload. You should design the system to be able to handle peak workloads and
to perform as required. You should sufficiently size the system to meet the require-
ments without over-designing the system. If you over-design the system, you will
end up spending more money than is required without significantly improving sys-
tem performance. If you under-design the system, the service level agreement will
not be met, and you will get angry phone calls.

Chapter 6 Capacity Planning 109
Service Level Agreements
The service level agreement (SLA) is a contract, either formal or informal, between the IT
organization and the customer defining the level of service that will be provided to them.
The customer might be the end users, the call center, or another organization within your
company. The SLA might specify a number of different items that guarantee uptime,
response times, phone wait times, and other requirements. Some of the things that might
be included in an SLA include the following:

■ Average response time Specifies the average response time for each transaction,
query, and operation that the user might perform; will be an “average not to
exceed” specification

■ 90 percent response time Specifies a value that 90 percent of all transactions,
queries, and operations must achieve

■ Maximum response time Specifies a value that 100 percent of all transactions,
queries, and operations must achieve

■ Uptime requirement Specifies how much the system must be up and available for
users and should include a window for performing regularly scheduled tasks

■ Disaster recovery time Specifies how soon the system must be back online at the
disaster recovery site in the event of a catastrophic failure

The SLA should be written in such a way that both the customer and the IT department are
protected. The IT department should only join into a contract that it can fulfill and include
clauses that require the customer to inform it of changes to the system load.

Let’s look at an example of some specific items that might be in an SLA, shown in Figure 6-1.

Note The example shown in Figure 6-1 illustrates a simple SLA with general
terms. An actual SLA would be more detailed and comprehensive.

Real World Service Level Agreements: Protect Yourself

It is important that an SLA is not a one-sided agreement. You should make sure that
you protect yourself by specifying what parameters the agreement covers. For
example, if you specify guaranteed response times, you should specify that this is
for a specific user load. If the customer were to double the user load from 500 con-
current users to 1,000 concurrent users without informing you, this should violate

110 Part II System Design and Architecture
the SLA. Thus, you should specify the user count for which the agreement is valid,
and you can consider specifying how much notice you should be given for an addi-
tion of new users, as shown in the sample SLA in Figure 6-1. This notice gives you
time to add hardware if necessary. Create an agreement that you can live up to.

You should make sure that the SLA is something that you can meet and exceed. You must
then develop metrics and processes for measuring your system in order to validate that
the SLA is being met.

Figure 6-1 An example service level agreement.

Mathematics of Capacity Planning
The fundamentals of sizing and capacity planning are based on queuing theory. Queu-
ing theory is the mathematics that governs the effects of multiple entities all using the
same resources. For those of you hoping that you would never have to do mathematics
again, I apologize. Sizing, capacity planning, and performance tuning are all about
mathematics.

The concept of queuing theory is quite straight-forward. Before jumping into queuing
theory we will start by defining two terms: service time and wait time, or queue time. Service

Chapter 6 Capacity Planning 111
time is the time that the action that you are measuring takes to complete. Wait time, or
queue time, is the time that the action that you are measuring is waiting for all of the jobs
ahead of it to complete. The response time of your job is equal to the service time plus the
queue time, as this formula shows:

response time = service time + queue time

For example, the time it takes you to make a deposit at the bank is the sum of the time it
takes to make the deposit, plus the time you have spent waiting in line. Total task time is
measured in the same way with almost every operation in your computer hardware and
software.

The amount of time spent queuing depends on the capacity of the resource used. In
some cases there is no queuing, and in other cases there is significant queuing. In Figure
4-4 in Chapter 4, “I/O Subsystem Planning and RAID Configuration,” you saw how
latencies increased as you neared the capacity of the disk drive. This is true throughout
the computer system. A lightly used resource might experience no queuing, but the
closer you get to the capacity of the resource, the higher the chance of queuing. When
you reach the capacity of a device you are guaranteed to queue.

For example, if there are four bank tellers, and four customers arrive at the bank at the
same time, there is a chance that you won’t have to wait in line (if there is nobody
already in line). However, if five people arrive in line at exactly the same time, then there
is a 100 percent probability that someone will have to wait. If there is one teller, if it takes
one minute for each transaction, and if there are 10 people arriving over a 10-minute
period, there is a chance that they won’t have to wait (if they arrive at exactly one-minute
intervals).

Thus, the closer you get to the maximum capacity of any resource, such as bank tellers,
disk drives, CPU, and so on, the more chance you have of queuing. When you reach the
maximum capacity of the resource, you have a 100 percent chance of queuing, and then
queuing increases as the utilization increases. The chance of having to wait depends on
how close you are to the capacity of the resource, as Figure 6-2 shows.

Queuing theory, as it pertains to sizing and capacity planning, has two components:

1. The chance of queuing increases exponentially as you near the capacity of the
resource.

2. The response time is equal to the sum of the service time plus the queue time.

The rest of this chapter will use these concepts to explain capacity planning and sizing.

112 Part II System Design and Architecture
Figure 6-2 Queuing vs. utilization.

You can see in the first graph in Figure 6-2 how the chance of queuing changes the slope
of the curve at about 80 percent. We try to size for this area, called the knee of the curve,
when determining the amount of resources that we want to allocate when sizing a sys-
tem. As you learned in Chapter 4, we will try to do no more than 100 I/Os per second
(IOPS) per disk drive because this number is approximately 75 percent of the capacity of
the disk drive. This is true of I/O, CPU, and network.

CPU Capacity Planning
The CPU performance is a finite entity within the computer system. There are a finite
number of CPUs in a system, and each CPU has a finite number of CPU cycles that can
be used per second. Fortunately for us, there are CPU counters available in the Windows
Performance Monitor, or perfmon. These CPU counters provide utilization information
based on 100 percent utilization. In this section we will look at sizing CPUs and monitor-
ing CPU utilization.

Sizing CPUs
Sizing CPUs is the process of allocating a sufficient number and type of CPUs so that nor-
mal On-Line Transaction Processing systems operate at less than or equal to 75 percent
CPU utilization. This is so excessive CPU queuing does not occur and response times are
reasonable. This might seem like a fairly easy thing to do, but with newer and faster CPUs
being introduced every day, how can you determine what number will be? This isn’t an
easy question to answer. Read the specifications on the processors and try to understand

20.000

18.000

16.000

14.000

12.000

10.000

8.000

6.000

4.000

2.000

0.000

Q
ue

ue
 L

en
g

th

10%5% 15% 20% 25% 30% 35% 40% 45% 50%

Utilization

Queue Length vs. Utilization Chart 2

55% 60% 65% 70% 75% 80% 85% 90% 95%

Chapter 6 Capacity Planning 113
the different features of the chips. Some factors that affect performance and scalability are
the following:

■ CPU cache The larger the CPU cache, the more scalability you will get in a multi-
processor system.

■ Dual (or Quad or more) core chips A dual core processor actually has two CPUs
in one. However, they may or may not be sharing the same cache.

■ Hyperthreading This technique takes advantage of normally idle CPU cycles. It
looks like an additional CPU to the OS, but it really isn’t one and doesn’t provide
the performance of an additional CPU.

■ CPU bus bandwidth The more bandwidth available to the CPU the better. As you
have more and more CPUs, the change of having collisions on the bus increases
(since the bandwidth is finite). A higher bandwidth bus allows more processing to
take place without bus contention.

As this list shows, there are many factors to take into account, but I’m sorry to say there
is no magic formula to calculate the number of CPUs. The way to size CPUs is to take
whatever data you have today and extrapolate the effect of your changes.

Typically, CPU scalability with SQL Server is in the range of 60 to 80 percent. Adding a
CPU to a one-CPU system should give you 60 to 80 percent more performance. However,
depending on your application, your performance will vary. The features identified above
all have an effect on CPU scalability.

You might be wondering why I mentioned that this applies to OLTP systems. In OLTP
systems we are concerned about response time and the user experience. Thus, we are
concerned that we do not see excessive queuing that leads to increased response times.
In batch systems the concern is for throughput (how much work is being done) and
not response time. Therefore, it is acceptable to be at 100 percent CPU utilization since
the response times might be in minutes or hours.

Monitoring CPU Usage
A quick and easy way to see how much CPU is being utilized in the system is via the Win-
dows Task Manager. Task Manager provides a graphical view of the percentage of CPU
being used by all the processors in the system. The CPU and memory performance views
are selected by clicking on the Performance tab in Windows Task Manager. The CPU and
memory view of Task Manager is shown in Figure 6-3.

Note CPU and memory are somewhat unique in that they both have a finite
value. Both CPU and memory can reach 100 percent utilization. When CPU
reaches 100 percent utilization, tasks queue up waiting for the CPU to become

114 Part II System Design and Architecture
available. When memory reaches 100 percent utilization, other memory is paged
out. However, both cause performance problems.

In Figure 6-3, you can see the CPU utilization in the top left box with the CPU history (for
each CPU, core, or hyperthread CPU) to the right. Below that is the Page File utilization
with its history to the right. Underneath are additional data for the following:

■ Totals This provides a quick view of processes, handles, and threads.

■ Physical Memory This is the actual RAM in the system and includes total, how
much is available and how much is used for system cache.

■ Commit Charge How much memory has been allocated to the operating system
and to programs. This includes the total, peak, and how much the memory is lim-
ited (RAM plus paging file).

■ Kernel Memory The memory used by the operating system kernel is shown as a
total and how much is paged and nonpaged memory.

Figure 6-3 The performance view of Task Manager.

In addition, CPU utilization can be measured from the processor performance object
within perfmon. Perfmon is the Windows Performance Monitor and is invoked from the
Start menu by selecting Administrative Tools, then Performance. Perfmon is made up of
objects, such as Processor, Processes, Physical Disk, etc., and counters such as the ones
listed here. The actual CPU utilization is measured via the following counters:

Chapter 6 Capacity Planning 115
■ Percent processor time The total percentage of time that the CPU is active based
on the total capacity of the CPU

■ Percent user time The total CPU utilization for user programs; represents work
done on behalf of user programs

■ Percent privileged time The CPU utilization for the Windows operating system;
includes the operating system functions as well as device drivers (except for inter-
rupt processing)

■ Percent interrupt time The percentage of CPU time spent servicing interrupts

■ Percent idle time The percentage of time that the CPU isn’t doing anything

Note When selecting counters, you can always click the Explain button. This
will provide a description of what that counter information is providing.

Windows CPU counters are shown in Figure 6-4.

Figure 6-4 Perfmon CPU counters.

Perfmon is a powerful and useful tool that can be used to help with system and SQL
Server tuning, sizing, and capacity planning. In addition, you can get a limited amount of
CPU information from SQL Server itself. The @@CPU_BUSY function within SQL Server
provides information on how much CPU time SQL Server itself has used. This is a cumu-
lative counter in ticks. Multiply by @@timeticks to get the number of milliseconds. By set-
ting up timers and finding the number of milliseconds of CPU time and the elapsed time
you can get a good indication of how much CPU percentage is being used. To get the mil-
liseconds of CPU time used, use this syntax:

SELECT @@CPU_BUSY * @@timeticks;

This can be valuable information and perfmon data.

116 Part II System Design and Architecture
Note You can use @@CPU_BUSY, @@IO_BUSY in order to save SQL Server
performance data to a table in a database. In this way, you can save long term
performance data.

Perfmon data can be saved directly into a SQL Server database. This information can be
extremely valuable since it can be saved for a long period of time. While a day’s worth of
CPU data from perfmon might be mildly useful for future planning, a year’s worth is very
useful, as shown in Figure 6-5.

Figure 6-5 Long-term CPU data used for capacity planning.

Figure 6-5 illustrates how long-term data can identify trends that you might not see by
looking at perfmon on a daily basis. As you can see, the major dips in the chart represent
holidays where the activity on the system was reduced. You can use this chart to antici-
pate when you might run out of power and need to upgrade your hardware. By looking
only at short time samples, this would be missed. This technique can be applied to sev-
eral areas, such as user counts, memory utilization, and disk space.

10

0

20

30

40

50

60

70

80

90

7/
3/

20
00

7/
10

/2
00

0

7/
17

/2
00

0

7/
24

/2
00

0

7/
31

/2
00

0

8/
7/

20
00

8/
14

/2
00

0

8/
21

/2
00

0

8/
28

/2
00

0

9/
4/

20
00

9/
11

/2
00

0

9/
18

/2
00

0

9/
25

/2
00

0

10
/2

/2
00

0

10
/9

/2
00

0

10
/1

6/
20

00

10
/2

3/
20

00

10
/3

0/
20

00

11
/6

/2
00

0

11
/1

3/
20

00

11
/2

0/
20

00

11
/2

7/
20

00

12
/4

/2
00

0

12
/1

1/
20

00

12
/1

8/
20

00
Date

%
 C

PU
 U

til
iz

at
io

n

Chapter 6 Capacity Planning 117
Keep in mind that the quality of your capacity planning or sizing exercise is directly
related to the quality of the data that you have to work with. The better your the data, the
better the result of your calculations.

Memory Capacity Planning
Memory does not act in the same way as CPU, network, and I/O because there are no col-
lisions involved in allocating memory. What you do get is the need to move objects out of
memory in order to make room for other data that needs to be moved into memory. Win-
dows Server 2003 is a virtual memory operating system. The ramifications of a virtual
memory operating system have changed in the last few years.

Originally the virtual memory operating system was designed to allow you to use more
memory than is actually in the system by fooling the programs into thinking that there is
more memory than there actually is. In fact, with a 32-bit architecture a program or a sin-
gle process can access up to 4 GB of memory even if you don’t have that much physical
memory. If you use more memory than is available in physical memory, some of it is cop-
ied out to disk until it is needed again. This is known as paging.

Best Practices Paging is a very expensive operation, and if excessive paging is
occurring, then any other tuning work will not be effective. If paging is occurring,
fix this problem first and then move on to other performance problems. It is
always better to reduce SQL Server memory allocation in order to reduce paging.
So, if you are experiencing paging, stop and fix the problem.

Real World Don’t Over-Allocate Memory

Occasionally I’ve run into the situation in SQL Server 2000 where the “Max Server
Memory” has been configured too high and causes paging to occur. This is much
less likely to occur with SQL Server 2005 since memory, including AWE memory,
dynamically reduces itself if it has been over-allocated.

When the 32-bit processor was introduced, nobody expected that these processors
would still be around with systems that had more than 4 GB of RAM. This has introduced
an entirely new problem. With 32-bit systems that have more than 4 GB of RAM, a single
process can still address only 4 GB of RAM. Multiple processes can use up this memory,
but a single process cannot. A workaround called PAE and AWE enables SQL Server to

118 Part II System Design and Architecture
use this memory for buffer pages but not for normal processing. This was covered in
detail in Chapter 5, “32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005.”

Sizing Memory
When sizing memory, it is important to have sufficient memory to achieve a high cache-
hit ratio. The cache-hit ratio is the percentage of time that requested data is found in
memory rather than on disk. Typically, the larger the database, the more memory is
needed to achieve this cache-hit ratio. The amount of memory available and its effec-
tiveness depends on your hardware and whether you are running a 32-bit or 64-bit
operating system.

The amount of memory allocated to SQL Server should be significantly high so that a
cache-hit ratio of more than 98 percent is achieved. However, you should not make the
memory so high that paging occurs or other processes are starved for memory. Careful
monitoring should be done so that these do not occur. In the next section, we'll discuss
how to monitor memory.

One way to improve the cache-hit ratio is to add more memory and increase the SQL
Server memory allocation (other ways are to tune queries and good application design).
This is usually effective in most situations; however, you might need a significant amount
of memory in order to make an effect. In addition, if you are running on a 32-bit system,
the memory in excess of 4 GB must be allocated using PAE and AWE. (See Chapter 5 for
more information.) Adding memory in excess of 4 GB is much more efficient when run-
ning SQL Server 2005 on a 64-bit Windows system.

Real World The Importance of Sizing

Assuming that the database is large, adding memory to a SQL Server system almost
always provides a benefit. The value of sizing is in determining how much memory
is required and what value it provides. Although the price has dropped in the past
few years, memory can still be very expensive. In addition, the larger the memory
module, the more expensive it can be. In order to put 32 GB or 64 GB of RAM in
your system, you might have to purchase very large modules.

Since data is stored in 8-KB pages both on disk and in memory, you might have a problem
with page allocation. The number of pages in the buffer cache is equal to the amount of
memory divided by the page size (which is 8 KB). Although data is stored in the buffer
cache in pages, it is usually used in rows. By keeping together rows that are used together,
you can more effectively use the buffer cache.

Chapter 6 Capacity Planning 119
For example, if you have 800 MB of memory allocated to the SQL Server buffer cache, this
equates, at 8 KB per page, to 102,400 pages in memory. If you are only using one row per
page, this gives you 102,400 rows in memory. If you can actually use an average of 10
rows per page, then you have 1,024,000 useful rows in memory. Since data is typically
sorted into clustered indexes, it is important that you cluster on a useful cluster key that
might result in efficient memory usage.

Monitoring Memory
As discussed in the previous section, Windows Server 2003 Task Manager can be a con-
venient tool for displaying the amount of memory used and available in the system. The
memory utilization can be found in the “Performance” tab of Task Manager, as shown
previously in Figure 6-3.

Memory can also be monitored effectively in perfmon. One of the most important per-
fmon counters is the Pages/sec counter under the Memory object. This counter tells you
whether you are experiencing excessive paging. It is okay to have some paging, but if
this number is 100 or greater, you have a big problem. In addition, the Percent Usage and
Percent Usage Peak counters in the Paging File performance object can also indicate
excessive paging in the operating system. Memory counters include the following:

■ Pages/sec Found under the Memory object, this counter provides information on
the amount of paging that is happening in the system. This is a key counter that
indicates memory is over-allocated.

■ Available Mbytes Also found under the Memory object, this counter indicates how
much memory is available for programs to use.

■ Percent Usage Found under the Paging File object, this counter indicates the per-
centage of the paging file that is currently used. Significant usage indicates serious
paging.

■ Percent Usage Peak Also found under the Paging File object, this counter indicates
the highest percentage of the paging file that has been used. This can indicate
whether you have ever had a significant amount of paging.

These important Windows memory counters are shown in Figure 6-6.

The SQL Server cache-hit ratio can be monitored in perfmon via the buffer cache-hit ratio
counter, available through the Buffer Manager performance object. Your goal should be
100 percent; however, anything above 98 percent is acceptable. If you are consistently
seeing a much lower cache-hit ratio, you should take steps to attempt to improve this.

120 Part II System Design and Architecture
Figure 6-6 Perfmon memory counters.

Achieving this goal should be your target, however, it is not always possible to reach a 98
percent cache-hit ratio. With very large databases that are performing large queries, you
might not achieve this; however, you should still strive for it.

I/O Capacity Planning
One of the most common performance problems that we experience in the field is an
undersized I/O subsystem. However, unlike CPU and memory sizing, it is fairly easy to
add more I/O capacity. The I/O subsystem should be monitored constantly, and more
capacity should added as needed. As with any sizing and capacity planning exercise, care
should be taken to carefully monitor and assess your changing needs. Unlike CPU, Mem-
ory, and Network, the I/O subsystem problems leave a very specific indication within
perfmon counters. This will be discussed later in this section.

Sizing the I/O Subsystem
As you have seen in earlier in this chapter, a disk drive can handle only a finite number of
IOPS (I/Os per second). By monitoring the I/O subsystem and applying the techniques
and mathematics that were covered in Chapter 3, I/O sizing is a fairly exact science. The
end goal is to limit the number of IOPS per disk drive to 100 or fewer. If your system
exceeds this, then more disk drives should be added. Be sure to account for the addi-
tional I/Os that are generated by the RAID overhead.

Chapter 6 Capacity Planning 121
Real World Disk Drive Performance

It is getting more and more common to run into undersized I/O subsystems
because of the adoption of very large disk drives. In the past, when disk drives were
2 GB (remember them?) to support the size of your database, you were forced to
have a sufficient number of disk drives so that performance wasn’t an issue. Later
when we had 9-GB disk drives, you were usually still okay. However, when 18-GB,
36-GB, 73-GB, and 200-GB+ disk drives were introduced, we began seeing more
and more I/O performance issues. Now it is possible to put a 1-terabyte volume on
four disk drives. This can lead to extreme performance issues, since the number of
I/Os per second that you can do depends on the number of disk drives in your
array. Combine this with a very low-end storage system, and you could be heading
for trouble.

Unfortunately, not all I/O problems are solved by adding more disk drives. This is why it
is recommended that hardware should be added only after the application, indexes, and
SQL statements have been tuned. The reason for this is that unnecessary I/Os cannot be
compensated for by simply adding hardware.

For example, if a system with a 100-GB database is configured with 500 MB of SQL Server
cache, it is unlikely that the cache-hit ratio will be very good, causing most of the data
reads to go to disk. Even if the I/O subsystem is optimal, a random read will take 6 mil-
liseconds (ms). Thus adding more disk drives will not reduce the I/O latencies to fewer
than 6 ms. Adding more memory, increasing the cache-hit ratio, and reducing the num-
ber of physical I/Os are much more effective than adding more disks in this case.

In addition, by tuning indexes and SQL statements, you might be able to further reduce
the number of IOPS. In fact, index tuning is really all about reducing the number of I/O
operations, both physical and logical. So, your goal should be to reduce the number of
I/Os before adding more disk drives. Once you have reduced the I/O operations as much
as possible, then it is time to add more I/O capacity.

Monitoring the I/O Subsystem
One of the best tools for determining how I/O is performing is perfmon. There are
other tools available within Windows Server 2003, such as Task Manager, but for I/O,
the best tool is perfmon. In this chapter, we will focus on perfmon as it relates to I/O
performance.

Perfmon has two main objects that pertain to I/O: LogicalDisk and PhysicalDisk. The
main difference between the PhysicalDisk object counters and LogicalDisk object

122 Part II System Design and Architecture
counters is how they are split up. The LogicalDisk counters look at drive letters only; the
PhysicalDisk counters look at the entire drive. So, if the first drive in your system is
divided into drive letters, or partitions, C and D, the LogicalDisk object shows two
counters but the PhysicalDisk object shows only the physical disk. For this reason, I pre-
fer to use the PhysicalDisk object rather than the LogicalDisk object.

The following counters are very useful for measuring physical I/Os:

■ Disk Reads/sec The read IOPS (I/Os Per Second) for the disk drive or drives

■ Disk Transfers/sec The total (read plus write) IOPS for each disk drive

■ Disk Writes/sec The write IOPS for each disk drive

■ Avg. Disk sec/Read The disk read latency, or average time for a read operation, (in
seconds); this counter and the next counter are probably the most important I/O
counters

■ Avg. Disk sec/Write The disk write latency, or average time for a write operation,
in seconds

Some of Windows I/O counters are shown here in Figure 6-7.

Figure 6-7 Perfmon I/O counters.

Chapter 6 Capacity Planning 123
As mentioned earlier in this section, the I/O subsystem has very specific indications that
it is being overloaded. These are in the Avg. disk sec/Read and Avg. disk sec/Write counters
that are available in the PhysicalDisk or LogicalDisk performance objects. These counters
show the disk latencies on reads and writes. The read and write latencies should be 5 to
10 ms (0.005 to 0.010 seconds) for an optimal I/O subsystem. If the latencies exceed 20
ms (0.020 seconds), you might be experiencing an I/O problem. Latencies above 30 ms
(0.030 seconds) are completely unacceptable. Of course, use common sense. If you expe-
rience high latencies only during backups or other batch operations, the effect on users
might not be significant.

Network Capacity Planning
The network is a slightly different case than the components discussed above. Network
performance is important, but it affects SQL Server 2005 in a different manner than the
other components. When executing a SQL statement, the CPU, memory, and I/O sub-
systems are all used extensively to execute that operation. Unless you are performing a
distributed transaction or a query that includes a linked server, you will be accessing the
network only during the beginning phase, when the query is submitted to the SQL Server
database engine, and during the final phase, when the results are returned to the client.
Thus, the execution of the query is not affected by a slow network.

Sizing the Network
The network is probably easier to size than some of the other components, but it is
harder to increase its performance. You cannot simply add on another network card into
the same subnet and get more network performance. Increasing the network capacity
might be very difficult and require working with your network administration team and
making changes to your subnet and network topology. This assumes, of course, that you
are not already using the fastest network speed and topology available.

On the client side there is still the possibility that poor network performance can cause
performance problems. This can happen when large amounts of data are transmitted to
the client as a result of your SQL statement. If you are transmitting large amounts of data
and the network is slow (for example, 10baseT), you can experience performance prob-
lems. There is no standard formula for calculating the required network bandwidth, but
standard sizing mathematics is in effect. Thus, you should size in order to avoid exceed-
ing 80 percent of the network bandwidth. Also, remember that most networks specify
bandwidth in bits per second, not bytes per second. So, a gigabit network can handle a
theoretical maximum of 125 MB/sec.

124 Part II System Design and Architecture
It is recommended that a gigabit or faster network be used between database servers,
application servers, and other support servers such as backup servers and network
attached storage (NAS) systems. After using the fastest network hardware available, the
next option for increasing network throughput is using multiple network connections
and segmenting the network. If you are using NAS storage, this should be on a dedicated
network. Connectivity between the database server and the backup server also should be
on a dedicated network.

Real World Client Network Problems Do Occur

Several years ago I was working on a performance tuning consulting job. I discov-
ered that the core problem was that the application was actually receiving 64 MB of
data from the SQL Server database, however, the GUI that the users saw displayed
only a small amount of this data. In addition, even though the data center was using
100baseT network connections (this was before gigabit), the customer was
unaware of the amount of data that was being downloaded to the client and for-
warded the problem over to the developers. Because of the effort and cost needed
to upgrade the network to 100baseT, that option could not be done at the time.
Unfortunately, the client had to live with this until the developers could make a
change to reduce the amount of data returned.

Monitoring the Network
The network can be monitored both via perfmon and Windows Task Manager. Task Man-
ager contains a Network tab. This tab provides a nice view of the network speed and the
percentage of network bandwidth used. By clicking the View drop-down list and select-
ing columns, you can add additional columns to this graph.

Windows Task Manager network monitoring is shown in Figure 6-8.

In addition to Task Manager, there are a number of network counters available in perf-
mon. They can be very useful for monitoring the network and include the following
counters in the Network Interface performance object:

■ Bytes Received/sec The number of bytes received through the network adapter

■ Bytes Sent/sec The number of bytes sent out of the network adapter or adapters

■ Bytes Total/sec The total traffic through the network adapter or adapters

■ Current Bandwidth The estimated speed of the network card or cards in bits/sec

■ Output Queue Length Indicates whether queuing is occurring and the network is
overloaded; a value greater than 2 indicates a network delay

Chapter 6 Capacity Planning 125
Figure 6-8 Windows Task Manager used to monitor the network.

Some Windows network counters are shown in Figure 6-9.

Figure 6-9 Perfmon network monitoring.

126 Part II System Design and Architecture
Note There are additional network counters under the TCPv4 and TCPv6 per-
formance objects.

Sizing the system for CPU, memory, I/O, and network is a combination of monitoring,
analysis, mathematics, and skill. Sizing and capacity planning is not an exact science but
an art. When in doubt, it is best to size for the worst-case scenario and oversize the sys-
tem. It is better to have a slightly oversized system that has awesome performance than
to have an undersized system that you get complaints about.

Growth Considerations
When sizing a system and performing a capacity planning exercise, accounting for future
growth is crucial. In fact, capacity planning is all about system growth. But as with the
previous sections in this chapter, the calculations needed to calculate future growth
depend heavily on the data that you put into these calculations. If you are not given suf-
ficient information to anticipate the system growth, then you will be completely unable to
anticipate system problems.

For this reason, it is important that the IT staff communicates with its customer. This cus-
tomer might be the accounting group, the call center, or another user community. Your
customer must provide you with a projection of future system usage. If your system grows
from 500 online users to 1,000 online users and you are not prepared, it is very possible
that the SLA will be violated. If the IT department doesn’t communicate with its cus-
tomer, then it is at fault for not anticipating the growth.

Calculating Growth
In its simplest form, the growth of the system can be associated with the number of users
in the system, both distinct users and sessions. If you have collected this data over a long
period of time, it can be correlated and used, in conjunction with CPU and I/O perfor-
mance counters, for your growth calculations.

Using user count as a performance metric is demonstrated in Figure 6-10.

By keeping track of the user count on a daily basis, you can see trends in the activity on
the system. This chart was created by sampling the database using a select from syspro-
cesses and counting the number of users. This data was inserted into a database. After a
few months, the data was very useful.

Chapter 6 Capacity Planning 127
Figure 6-10 Using user count as a performance metric.

By having both CPU utilization and user counts as performance metrics, you can calcu-
late the average and maximum CPU utilization per user. The CPU count is gathered from
sysprocesses, and the CPU utilization is gathered from @@CPU_BUSY. With this value
you can extrapolate the CPU utilization with additional users as shown hereL:

CPU per user = CPU Utilization / User Count

New CPU utilization = User Count * CPU per user

This calculation provides a rough estimate of the resources needed when additional users
are added.

Planning for Future Growth
Planning for future growth should start early and be addressed on a regular basis.
Long-term performance monitoring should be done and the results of this monitoring
should be analyzed on a monthly basis. In addition, you should conduct regular dis-
cussions with your customers in order to plan for additional users and changes in the
application.

Keep in mind that changes to applications are not always improvements. A significant
number of performance tuning activities are initiated by the need to tune a new version

0

200

400

600

800

1000

1200

1400

1600

7/
3/

20
00

7/
17

/2
00

0

7/
31

/2
00

0

8/
14

/2
00

0

8/
28

/2
00

0

9/
11

/2
00

0

9/
25

/2
00

0

10
/9

/2
00

0

10
/2

3/
20

00

11
/6

/2
00

0

11
/2

0/
20

00

12
/4

/2
00

0

12
/1

8/
20

00

1/
1/

20
01

1/
15

/2
00

1

1/
29

/2
00

1

2/
12

/2
00

1

2/
26

/2
00

1

3/
12

/2
00

1

3/
26

/2
00

1

4/
9/

20
01

4/
23

/2
00

1

5/
7/

20
01

5/
21

/2
00

1

6/
4/

20
01

Date

U
se

r
C

ou
nt

128 Part II System Design and Architecture
of an application that does not perform as well as the current version. This is a very
common problem. This is somewhat solved by using load-testing application revisions,
but the majority of applications are put into production with no load testing.

Benchmarking and Load Testing
One way to help plan your system and to validate changes to your system is done via
benchmarking and load testing. Benchmarking and load testing are similar in nature and
just slightly different in usage. A benchmark is a performance test used to compare the per-
formance of different hardware or software. A benchmark can be an industry standard
test or a custom test used to measure a particular configuration or program. There are
many companies that publicly publish benchmarks results. These results can be used to
compare systems and are usually used by the publishing companies as marketing mate-
rial. There are several organizations that are used to develop and facilitate standardized
benchmarks. One of the best known of these is the TPC (Transaction Processing Perfor-
mance Council; www.tpc.org). The TPC was founded in 1988. Its mission is to create stan-
dards and regulate the publication of database benchmarks. Microsoft is an active and
leading member of the TPC.

Real World TPC Experience

Three of the co-authors of this book—Edward Whalen, Marci Garcia, and Burzin
Patel—worked as SQL Server benchmarking engineers at one time in their careers.
Edward Whalen chaired the TPC-C subcommittee for several years, and all three
have been involved in publishing record-breaking TPC results on SQL Server in
the past.

A load test is the practice of modeling the characteristics of a program or system by sim-
ulating a number of users accessing that system or program. When used to test a system
operating at more than normal usage to the point of maximum capacity, it is called a stress
test. There is really not much difference between a load test and a benchmark. Typically,
a benchmark is used to compare various products, whereas a load test is used to charac-
terize a single product.

In either case, load testing and benchmarking can be used to characterize the perfor-
mance of your system and to determine how future activity will affect your performance.
In addition, by load testing your application each time changes are made to it, potential
performance problems can be found before the application is introduced to the user
community.

Chapter 6 Capacity Planning 129
Load Testing the Application
Load testing your application is a critical piece of your overall performance management
plan. By simulating the user community, you can accurately measure the performance of
your system on a regular basis. In addition, it is a useful tool in validating that changes
have made things better (or worse). This information and the load testing scripts can be
used each time a change is made to the application in order to validate the changes. Val-
idation tests can include the following:

■ Performance changes Performance changes that you make to the application can
be validated. These changes could be index improvements, code changes, or param-
eter changes.

■ Functional changes New features can be validated and performance tested. It is
not uncommon for functional changes to cause blocking problems or general per-
formance problems in the system.

■ Load changes The number of simulated users can be increased in order to find out
at what point the SLA is violated.

■ Hardware changes It is important to load test new hardware before it goes into
production to validate that it has been correctly configured and sized.

Load testing can be done on both a system-wide basis as described here, or load testing
and benchmarking can be performed on a specific component such as the I/O and net-
work subsystems.

Benchmarking the I/O Subsystem
The I/O subsystem is one of the most important components of your system, and one
that can cause significant performance problems if it is not configured and sized prop-
erly. Any I/O subsystem is made up of finite components that have finite performance
characteristics. Unfortunately, the DBA is not usually the person responsible for the I/O
subsystem and must sometimes must prove that this component is a problem before any
changes can be made. In this section you will learn how to gather that evidence.

Real World “The I/O Subsystem Can’t Be a Problem. It’s a SAN.”

I have heard the statement that the I/O subsystem can’t be a bottleneck because the
company has spent tens of thousands of dollars buying a SAN. This is a myth. Any
I/O subsystem can be a performance bottleneck, and often it is. On more than one
occasion, I have used Iometer, an open-source software project, to demonstrate to a
client that the I/O subsystem is limited and exactly where that limit is.

130 Part II System Design and Architecture
A free tool that you can use to benchmark IO performance is Iometer. Iometer was origi-
nally developed by Intel but was distributed to the open source community several years
ago. Iometer is an excellent benchmarking tool, and you can't beat the price.

Using Iometer can be very useful for discovering and documenting performance prob-
lems. It is easy to use if you understand the basic principles on which it works. This sec-
tion is not a complete tutorial on using Iometer, but here are some of the key issues you
might encounter when using it.

Getting Iometer
Iometer is an open-source software project originally created by Intel that is available free
of charge at www.iometer.org. At this Web site, you can easily find and download Iometer.
Once you have installed it on your system, you are ready to start load testing your I/O
subsystem.

Using Iometer
Iometer is easy to start up and use, and it consists of two parts. The Dynamo is a program
that actually generates I/Os. The GUI, known simply as Iometer, is used for configura-
tion, management, and presentation of data. Iometer is very configurable and can be
used in a number of ways, but the basic concept is this: a work load is generated against
the I/O subsystem, and the result of that workload is measured and presented.

To run Iometer, complete the following steps:

1. Create a disk target. This is one of the most important steps. If you create a disk tar-
get that is too small, the test will not generate significant random I/Os to properly
exercise the I/O subsystem. If necessary (for example, if SAN or NAS storage is very
large), create a very large disk target file. A minimum size of 5 GB is recommended.

2. Configure workers. The workers allow you to specify how many outstanding I/Os
to issue to the disk target at a time. This also is very important because a disk can
do approximately 100 IOPS at 6 ms. If you are issuing only one I/O at a time (in
other words, each I/O waits for the previous one to complete), the latency will be 6
ms and your throughput will be 100 IOPS. In order to simulate a SQL Server system
that has many active users, you must issue at least four to six outstanding I/Os per
disk target. Try varying workers per target and see your results.

3. Create or modify an access specification. The access specification determines the
mix and properties of the I/Os. In order to simulate SQL Server I/Os, use an 8-KB
block size, specify mostly random access (80 to 90 percent) and mostly reads (75
to 90 percent). You can collect perfmon data to determine the percentage of reads
to writes on your system. In addition, you can run perfmon and Iometer concur-
rently and see how your system performs under stress.

Chapter 6 Capacity Planning 131
4. Run the test. You can run the test for as long as you want. You can also set it up to
perform many tests in sequence.

5. Evaluate the results. The results displayed within Iometer tell you the throughput
and the latency. This data can be very valuable for sizing and capacity planning
purposes.

Take the time to try Iometer to see what kind of performance results you can achieve on
your disk subsystem. You might be surprised by what you find.

Benchmarking the Network
The network can be benchmarked and load tested with a program that is available on
the Windows Server 2003 product CD-ROM, in the Valueadd\Msft\Net\Tools folder.
TTCP, or Test TCP, is a standard program that is available to test the maximum through-
put of your network. TTCP has been around for several years and is available on Win-
dows Server 2003 and other platforms. TTCP can be found on the Windows Server
2003 CD in the Valuadd\Msft\Net\Tools folder. The TTCP program can also be found
at the Microsoft Download Center. You should check there for the latest version. This
program can be used to test both TCP and UDP traffic. Testing network connections is
especially important if you are using replication, log shipping, or database mirroring to
a remote site.

Using TTCP
TTCP allows you to determine the throughput of your network. This information can be
used to validate that you are getting the throughput that you need and to allow you to
debug problems. You cannot assume that if you have gigabit network cards, you are get-
ting gigabit throughput. There are many components involved in a network, including
routers, firewalls, proxy servers, and more, that can cause additional overhead, reducing
network throughput and increasing latencies.

By using TTCP you can actually test the real components. You are not simulating the pro-
duction environment in a test environment. This provides the absolute best type of data
since it represents the actual performance of your network.

Important TTCP will saturate your network. This means that everybody else on
this network is affected while you are doing your test. Be careful when running
this so that you don’t cause problems that might affect your employment.

TTCP is run on two different machines that represent the test environment. On one sys-
tem you run TTCP in receive mode; on the other system you run TTCP in transmit
mode. At the end of the test a report that tells you how much throughput was achieved

132 Part II System Design and Architecture
is produced automatically. TTCP has a number of optional parameters that allow you to
configure the packet size, the protocol (TCP or UDP), and the amount of data to send
across the network.

To run TTCP, invoke it in receive mode on the receive system by running ttcp –r –s. On
the driving system, invoke ttcp in transmit mode by running ttcp –t –s recveiving_system.
The results show you the network throughput between the two systems.

You will find this tool very useful, and the data it provides can be invaluable for finding
network performance problems. As with any tool that saturates the network, be careful
when you run it so that you don’t affect others on the network.

Using MOM for Capacity Planning
The Microsoft Operations Manager (MOM) product can also provide useful information
for capacity planning and sizing. MOM stores perfmon data for long periods of time so
that it can be analyzed and used for purposes such as tuning, sizing, and capacity plan-
ning. You can configure both the amount of data that MOM collects and the duration for
which it stores the data.

It is desirable to keep this kind of data as long as possible, but keeping it indefinitely is
impractical. Determine which metrics are important for you, and configure MOM appro-
priately. By saving data such as CPU utilization, user counts, and I/O utilization for a sig-
nificant amount of time, you can extrapolate future usage. MOM can also be used to
validate that you have met your SLA.

Summary
In this chapter, you have learned the fundamentals of sizing and capacity planning. You
have reviewed some mathematics that you probably hope you’ll never use again. In addi-
tion, you have learned how to size a system for CPU, memory, I/O, and network capacity.
This chapter has also introduced you to some new tools that are useful for benchmarking
and load testing both the I/O subsystem and the network. You will find these tools and
concepts important not only for sizing and capacity planning, but for performance tun-
ing as well.

Chapter 7

Choosing a Storage System for
Microsoft SQL Server 2005

Interconnect and Protocol Technologies .135

Storage Systems .146

Storage Considerations for SQL Server 2005 .154

Summary .156

The most common performance problems found in Microsoft SQL Server database sys-
tems involve the disk storage system, where SQL Server data and log files are stored.
Selecting the appropriate storage system to store your SQL Server files and configuring
that storage properly can have a huge effect on the performance of your database system.
This is because SQL Server performance is extremely dependent on I/O performance, as
accessing database data is all about performing I/O—reads and writes.

Chapter 4, “I/O Subsystem Planning and RAID Configuration,” describes in detail how
disks drives work and perform, what the various RAID levels mean, how to lay out SQL
Server files for best performance at the disk level, and how to monitor and analyze disk
performance. The disk and RAID principles in Chapter 4 hold true independent of which
storage system you choose. Bad I/O performance is often a result of the disk storage siz-
ing and configuration rather than the type of storage system being used, although the dif-
ferent storage system types also have factors that affect performance, which will be
discussed in this chapter. This chapter explains the different storage systems available
and the suggested uses of each, while Chapter 4 discusses size and configuration of disks
within a storage system for best SQL Server database performance. Together, these two
chapters offer a holistic view of using storage with SQL Server.

There are various types of storage systems to choose from, each with its own set of fea-
tures and benefits. With so many choices and acronyms for them, it may be hard to
understand what they mean, how they differ from each other, and for what environment
each type is best suited. The variety of options for connecting servers to storage further
133

134 Part II System Design and Architecture
adds to the complexity. In order to help clarify the storage possibilities, this chapter pro-
vides descriptions of each of the common storage technologies and connectivity methods
that are currently available on the market, along with terminology, concepts, benefits, dif-
ferences from other storage types, and examples of when to use each.

After reading this chapter, you will understand the difference between SAN, NAS, and
DAS storage; understand the characteristics of fibre channel, SCSI, iSCSI, and Ethernet
technologies as related to storage devices; understand storage concepts and terminology;
and understand bandwidth as it relates to performance.

TMA = Too Many Acronyms

There are several acronyms used repeatedly throughout this chapter. They will all
be described in more detail in the following sections, but here is a one-stop shop of
definitions to help give you a jump-start on the topics covered:

■ DAS (direct attached storage) DAS is a storage system that utilizes any stor-
age controller that is not part of a network. The server host is directly attached
to the storage device, whether internal or external storage, as opposed to
attaching to a storage device via a network as with NAS and SAN.

■ NAS (network attached storage) NAS is a storage device that is available to
servers via an IP (Internet Protocol) local area network (LAN).

■ SAN (storage area network) SAN is storage system that allows a network of
systems to access storage over a dedicated storage network. This network
could be an IP network (iSCSI SAN) or a fibre channel network (FC SAN).

■ FC (fibre channel) A serial data transfer technology designed for very high
bandwidth data transfers across longer distances than SCSI.

■ FCP (fibre channel protocol) A data transfer protocol that maps the SCSI-3
protocol to implement serial SCSI over FC networks; transferring data at the
block level.

■ SCSI (small computer system interface) A parallel interface standard for
attaching peripheral devices (including storage, printers, tape drives, etc.) to
computers.

■ iSCSI (Internet SCSI) An IP-based standard for linking hosts to storage
devices over a network and transporting data by SCSI commands encapsu-
lated in TCP/IP packets over the network.

■ HBA (host bus adapter) Refers in this chapter to an I/O adapter card used
to connect a host computer to a storage device; performs low-level interface
functions to minimize the impact on host processor performance.

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 135
Interconnect and Protocol Technologies
In order to understand how to choose a storage system, you should first have some
knowledge about the various interconnect technologies that can be used to connect serv-
ers to storage devices. We will start with a description of these interconnect types as a
foundation for the later sections. If you are already familiar with these, you may want to
skip to the “Storage Systems” section later in this chapter for details on SAN, NAS, and
DAS storage.

There are four common types of interconnect and protocol combinations used to connect
servers with storage: SCSI, TCP/IP over Ethernet, FCP over FC, and iSCSI over Ethernet.
For the purposes of this chapter, we use the term interconnect to refer to the physical cable
connection and the term protocol to refer to the communication method that runs over
the interconnect. We will define the various interconnect types and the protocols on
which they are based, the storage types with which they can interact, and the benefits and
limitations of each. At the end of this section we will provide a comparison chart that
summarizes the differences among these interconnect technologies. This serves as a
foundation for the later section on storage systems so that you will have a better under-
standing of how to choose a storage system and interconnect type appropriate for your
requirements. A particular interconnect type may be used with more than one storage
system type, as you will see.

Understanding Data Transfer: Block Form Versus File Format
There are two major forms in which data is transported and accessed: block form and file
form. Data is always stored in block form on disk without any file formatting of the data.
This is true whether the data originates from the application in blocks of data, such as
with SQL Server data, or the data originates as a formatted file. Databases are the largest
example of applications that perform direct block-level data access, meaning that data is
accessed in block form, or in its “raw” form, just as it is stored on disk. Examples of file-
level data access include word processing and spreadsheet applications. Data can be
transported between servers and storage in its original block form, or it can be read from
disk, file formatted, and transported in file form.

For networked Windows platforms, file-formatted data is sent using SMB/CIFS trans-
fer protocols (server message block/common Internet file system). For Unix/Linux
platforms, other protocols are used, such as NFS (network file system). One major dif-
ference regarding performance between block and file-level data access is that file for-
matting protocols incur overhead since data is in block form on disk. Block-level data
is sent using a family of SCSI protocols. If an application requires data in block form,
because data is in block form on disk, a block-level transport would be more efficient

136 Part II System Design and Architecture
than a file-level transport in that case. If an application requires file-based I/O, then
data from disk must be converted to the file format, thus a file-level transport would be
sufficient.

Thus, for SQL Server, which requires data in block form, it is more efficient to transfer
that data in its original block form. Since the SCSI and iSCSI protocols transfer data in
block form (over various interconnect types) to the storage device, these are the best
choices for SQL Server data for I/O performance. This topic will be discussed throughout
the chapter as it relates to the different interconnects, protocols, and storage systems.
SAN storage provides block I/O access, similar to having a server directly attached to a
local disk (DAS). NAS devices provide file system I/O by redirecting file requests over a
network to a storage device. The back end data on disk is stored in block format, so a file
formatting protocol must be used to transform the data into the appropriate format.
These storage types will be described in more detail later in this chapter.

Table 7-1 shows the various protocols and their interconnects with the form of data trans-
port supported and the corresponding type of storage system.

SCSI Protocol over Parallel SCSI Interconnect
The SCSI (small computer system interface) protocol has been around for many years—the
first true SCSI standard was published in 1986. It has evolved over the years with various
SCSI standards including SCSI-1, SCSI-2, and SCSI-3. For each set of standards, there are
various data transfer modes and feature sets such as Ultra2 SCSI, Ultra3 SCSI, Wide
Ultra2 SCSI, and so on. There are two types of SCSI interconnects: parallel and serial
(which includes FC). We will discuss the parallel SCSI interconnect in this section. Serial
SCSI is discussed in the section “Fibre Channel (FC) Interconnect.”

The SCSI interconnect is used to attach peripheral devices to computers. With parallel
SCSI, data is transmitted in chunks of either one or two bytes (8 or 16 bits) at a time
depending on the type of SCSI, rather than serially in individual bits. This transmission

Table 7-1 Data Transport Forms by Protocol/Interconnect Type

Protocol/Interconnect
Storage Attach-
ment Type File Form Block Form

TCP/IP over Ethernet NAS Yes No

SCSI over parallel SCSI DAS No Yes

SCSI-3 over FC (FCP) SAN No Yes

iSCSI over Ethernet SAN No Yes

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 137
occurs across multiple data lines via a SCSI cable with multiple wires inside, thus the
term “parallel.” The SCSI protocol, whether over parallel or serial interconnect, is a block-
based protocol, meaning that data is transferred in block form, not in file format. Thus,
there is no overhead for file system formatting of data.

SCSI is not limited to connecting disk storage devices, although that will be our focus
here. Historically, other SCSI devices include printers, tape drives, CD/DVD writers, CD-
ROMS, and scanners, for example, although many of these devices are connected via USB
or Ethernet today.

Because not all SQL Server database administrators (DBAs) are familiar with or have an
opportunity to explore the hardware, the next few paragraphs provide background infor-
mation about the hardware components involved with SCSI. We will not get into details
on the entire family of SCSI standards and all the transfer modes and features. This foun-
dational information is intended to clarify the basic physical characteristics of SCSI that
determine its limitations and benefits.

More Info To find more detailed information on SCSI and the various stan-
dards, search on www.google.com for “SCSI protocol” or “SCSI standards.”

For disk storage devices—which could be a single hard disk drive or a set of disk drives in
an internal or external disk enclosure or cabinet—a SCSI disk controller resides inside the
server and handles the transfer of data to and from the disk, among other I/O-related
functions. In other words, I/O is managed by the SCSI controller inside the server. The
disk storage device connects directly to the SCSI controller via a SCSI cable that plugs
into a channel on the controller at one end and into the storage device on the other end.
SCSI disk controllers may have more than one channel, thus allowing more than one
storage device to be connected to one controller and providing more disk storage on the
system.

Note With SCSI storage, the disk controller always resides inside the server
itself, whether the disks are internal or external to the server. This means that
every server that attaches to SCSI storage will need its own disk controller(s). A
SCSI controller may also be a RAID controller, when RAID configurations are sup-
ported by the controller. The disk controller location is one key difference from
SAN storage, where the disk controllers reside inside the SAN, which is outside
the server.

With SCSI, disk storage can be connected internally to a server and externally using inter-
nal and external cables. See Figure 7-1 for examples of SCSI cables and SCSI controllers.

138 Part II System Design and Architecture
Figure 7-1 Examples of SCSI cables and controllers: (a) internal SCSI cable, (b) external
SCSI cable, and (c) SCSI controller.

Clustering with SCSI
SCSI storage can be used in a Windows cluster with SQL Server 2005 failover clustering
as the shared storage for the cluster nodes. There are some limitations with using SCSI for
clustering, such as a limited number of shared disks that can be configured, a limited
number of nodes, limited scalability, and limited management capabilities. Also, the SCSI
disk controller write cache must be turned off with this type of clustering, which when
turned on provides a performance benefit for writes to the database. Therefore, SCSI con-
nected storage for clustering does not provide good storage and host flexibility and
expandability as the servers are direct attached to the storage, nor does it provide the best
performance in cases where high writes occur on the data because the controller write
cache cannot be used.

The outstanding difference between SCSI and iSCSI (discussed in a later section) is that
iSCSI is a SCSI protocol designed specifically to transport data across IP networks. This
allows servers to access storage via a network card and Ethernet interconnect rather than
using a SCSI controller.

Advantages of SCSI
One of the main advantages of using SCSI attached devices is their low cost. Servers gen-
erally come with built-in SCSI storage for the internal disk drive(s). If the system needs
more disks for storage space or for performance and there are slots available in the server,
you can purchase an additional SCSI controller(s), external disk cabinet, and disks. This
is a less expensive way to add disks to one server than, for example, buying a SAN storage

(a) (b)

(c)

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 139
system and the components necessary for connecting the server to the SAN only to add
disks to one server.

Another advantage of SCSI is that it can provide high bandwidth (high data transfer
rates). The most recent SCSI standard, as of writing this book, is SCSI-3, and Ultra320
SCSI is the latest transfer mode. Used together, they provide a maximum bandwidth of
320MB/second. That is the largest bandwidth currently available with SCSI. Table 7-2
shows the latest SCSI types and various maximums they support. The number of
devices includes the SCSI adapter (or disk controller) itself. For example, for Ultra320
the maximum number of devices is 16. Those are the disk controller and 15 disk
drives.

Note The maximum cable length listed in the table is 12 meters. This is the
practical maximum. If you have only two devices on the SCSI chain, that cable
length can be increased up to 25 meters maximum.

Another advantage with SCSI is that when using a disk controller with multiple chan-
nels, each channel provides the above throughput because each channel is completely
independent and all channels run in parallel. Note that each channel counts as a
device. Hence, a four-channel disk controller will provide up to four times the through-
put and four times the number of devices as a single channel. With a four-channel
Ultra320 controller, for example, you can connect up to 16 devices per channel. This
gives you a total 64 devices, minus four devices for the four channels, leaving 60 other
devices available.

Note The SCSI protocol also runs over a FC interconnect, and with iSCSI it runs
over an Ethernet interconnect.

Table 7-2 Parallel SCSI Maximums

SCSI Transfer
Modes

Bus Width in
Bits (8 bits = 1
Byte)

Maximum
Bandwidth or
Throughput
in MB/sec

Maximum
Number of
Devices

Maximum Cable
Length in
Meters*

* Assuming maximum number of devices attached.

Ultra2 SCSI 8 40 8 12

Wide Ultra2 SCSI 16 80 16 12

Ultra3 and Ultra160
SCSI

16 160 16 12

Ultra320 SCSI 16 320 16 12

140 Part II System Design and Architecture
Disadvantages of SCSI
One major limitation of SCSI connectivity is the limited length of the SCSI cables and the
limited number of devices per channel. Electrical limitations are inherent to parallel data
transfer on a parallel SCSI cable. Thus, parallel SCSI has the most limited data transfer
distances of all the interconnect types. At best, the maximum SCSI cable length is 25
meters, and even this length is possible only when two devices are attached. If you have
only one server and a few disks, this limitation might not be an issue, but it can become
a problem in an enterprise datacenter environment with many servers and storage
devices that may be spread across longer distances.

In addition, the fact that SCSI-cabled storage is directly attached to a server, which by def-
inition is DAS, does not allow for flexibility or manageability when moving storage
between servers or adding storage to the server. As you will see later in this chapter, SAN
storage provides the best flexibility and manageability of storage with servers.

Ethernet Interconnect
Networking enables computers to send and receive data to and from other computers.
Ethernet is a network standard, used in LANs and metropolitan area networks (MANs)
to provide connectivity between computers. A MAN is a network that may span buildings
within the same city or metropolitan area tens of kilometers in size, but not across cities,
which is a wide area network (WAN). Ethernet cables, either optical fiber cable or copper
cable, are used to physically connect computers to a network. The cable connects on one
end to a network card in the computer and on the other end to a network port connecting
the computer to an IP network infrastructure, which likely includes network switches
and/or hubs.

Data is transferred over IP networks in file format (with the exception of iSCSI). Thus,
data is formatted by the operating system file system protocols.

In addition to connecting computers to each other on a network, Ethernet technology
can be used to connect storage devices to the network as well. This is known as network
attached storage (NAS). Computers can access storage on NAS devices via the IP network
infrastructure. For example, a SQL Server system can be connected to a NAS device, and
the data and log files can be stored on that device. When transferring the SQL Server data
between the NAS device and the server (on the Windows platform, of course), the Server
Message Blocking protocol is used to format the data into file format, which adds some
overhead and latency to the data transfer. For more information, see the section on NAS
later in this chapter.

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 141
There are different data transfer rates available with Ethernet connectivity, as shown in
Table 7-3. The most widely used is 100 Mbps for desktop and notebook computers and
1 Gbps for application, web, and database servers. Higher network bandwidth to and
from the database server particularly allows more efficient communication with multiple
clients sending requests to the server. The largest throughput with Ethernet, 10 Gbps,
using the10GbE technology over fiber cable, is the most recently introduced, in 2002,
and is even suitable for some wide area networks (WAN). 10GbE over copper cable was
introduced in 2004. This technology is not yet common or widespread as research and
development are still under way.

Important Gbps is gigabits per second (Gb/sec), not gigabytes per second
(GB/sec). Mbps is megabits per second (Mb/sec), not megabytes per second (MB/
sec).

Advantages of Ethernet
One of the advantages of using Ethernet to attach storage devices is the low cost of imple-
mentation. You need only a network card in the computer to connect to the storage
device. No special hardware, such as a disk controller or a host bus adapter, is needed.
Network cards are less expensive than these other types of cards, and the existing net-
work card in the computer and the existing network may be used in most cases.

iSCSI over Ethernet is also an excellent low-cost option for using Ethernet to connect
servers with storage. iSCSI is described in detail in a later section of this chapter.

Disadvantages of Ethernet
When using Ethernet networks to connect to a storage device, the file system format-
ting of data for transport adds overhead, thus adding to the total time it takes to per-
form an I/O (known as I/O latency). Although iSCSI also utilizes Ethernet
interconnects, it has an advantage because it eliminates the file formatting overhead, as
seen in the next section.

Table 7-3 Ethernet Throughput

Ethernet Type Bandwidth or Throughput Converted to MB

10BaseT 10 Mbps 1.25 MB/sec

100BaseT 100 Mbps 12.5 MB/sec

1GbE 1 Gbps 125 MB/sec

10GbE 10 Gbps 1250 MB/sec

142 Part II System Design and Architecture
Note The time it takes to transfer, queue, and process I/O requests is called
I/O latency.

iSCSI
iSCSI, or Internet SCSI, is a standard that enables SCSI commands to be sent over an IP
network using the TCP/IP protocol to establish connections between IP-based storage
devices and clients. It is basically a protocol that encapsulates SCSI commands in TCP/
IP packets. You will also see it called iSCSI over Ethernet. iSCSI is quickly gaining popu-
larity because of the cost benefits it offers by communicating over standard IP networks.
Like SCSI, iSCSI is also a block-based protocol—data is transferred in blocks without file
system formatting. It is a cost-effective alternative to FC solutions for applications that
require block-based instead of file-level storage, such as SQL Server.

What Is iSCSI? iSCSI is not a completely new protocol in itself; rather, it is a
protocol designed to send SCSI commands over Ethernet using TCP/IP to provide
a more cost-effective way of connecting servers with storage devices. iSCSI uses
the common IP network infrastructure, making it easier to add existing servers to
a storage device without additional server hardware components. Only a network
card and IP network infrastructure are needed.

Advantages of iSCSI
iSCSI allows both common network messaging traffic and block-based data transfers to IP-
based storage devices over an existing IP network, as opposed to having to install a sepa-
rate FC network for storage access. Currently, FC still offers higher data transfer through-
put than iSCSI, but 1-Gbps Ethernet is already making iSCSI a rival in small-to-medium
business environments. As 10-Gbps Ethernet becomes more popular, iSCSI may become
more widely used, although higher bandwidth does not always equal faster I/O perfor-
mance, depending on the amount of data being transferred.

iSCSI also overcomes the distance limitations of SCSI to equal that of Ethernet and allows
multiple host servers to access the same iSCSI storage device. The main benefit of iSCSI
is that it eliminates the need for an FC infrastructure—no HBAs and FC switches and
cables are needed—and is therefore less expensive than using FC. It also provides for stor-
age flexibility, scalability, and easy-to-use storage management.

Usually, no new hardware is required for the servers to use iSCSI protocol. All that is
needed are network cards, Ethernet cables, and the IP network infrastructure. An addi-
tional network card (or HBA) and network switch may be needed, however, because it is
important to configure a dedicated network between servers and iSCSI storage, isolating

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 143
the I/O traffic from other network traffic to avoid contention and maintain acceptable
I/O performance.

Microsoft began support for iSCSI in 2000 and developed a driver specific for iSCSI: the
Microsoft iSCSI driver for Windows 2000 or Windows 2003. This driver can be down-
loaded for free and must be installed on each server that will use the iSCSI protocol to
access iSCSI storage. Storage systems that support iSCSI have their iSCSI driver built-in;
the storage devices are known as the target. iSCSI storage devices have Ethernet RJ45
connectors for the front-end connectivity.

Note The Microsoft Windows iSCSI initiator (driver) can be downloaded for free
off the Microsoft web site following the link at www.microsoft.com/
windowsserver2003/technologies/storage/iscsi/msfiSCSI.mspx. This must be
installed on each server that will access an iSCSI storage device.

One difference between iSCSI and FC that potentially could affect performance is the
maximum bandwidth. iSCSI currently has a maximum bandwidth of 1 Gbps using
1GbE, whereas FC has a current maximum bandwidth of 2 Gbps. The lower bandwidth
with iSCSI might result in lower performance compared with FC in cases where the
amount of data being transferred per second approaches the bandwidth limitations, such
as when performing backups and restores, streaming video, and scanning large amounts
of data for reports. Bandwidths of 4 Gbps and 10 Gbps are under development for FC, as
well as 10 Gbps for Ethernet, so these two interconnects are close in the bandwidth race.

Disadvantages of iSCSI
There is some built-in overhead incurred with iSCSI from encapsulating the SCSI com-
mands in TCP/IP packets that is not present in the basic SCSI protocols. This overhead
can add to the overall I/O latency, or time it takes to complete an I/O. Some tests have
shown that as much as 30 percent of processing power can be consumed by iSCSI over-
head. That is, of course, just a general number that depends on several factors, including
the amount of I/O activity on the system and the server and network configuration. iSCSI
HBA’s are available from some storage networking hardware vendors, such as Qlogic,
with TOE (TCP Offload Engines) to offload that processing overhead from the system
processor and onto the HBA. This type of HBA takes the place of the network card in the
server for connectivity to the iSCSI storage device.

Fibre Channel (FC) Interconnect
Fibre Channel is a high-speed technology used primarily for transferring SCSI com-
mands serially (as opposed to in parallel) between computers and SAN disk arrays. This
is the context in which we use it in this chapter. It was originally developed to overcome

144 Part II System Design and Architecture
performance barriers of legacy LANs. Fibre Channel Protocol (FCP) maps the SCSI-3
protocol to implement serial SCSI over FC networks, and thus, transfers data at the
block level. FCP can be run over different physical mediums including optical cable,
coaxial cable, and twisted pair (telephone cable). Optical cable supports greater dis-
tances, of up to 10 km. Because it uses a serial wiring technology, it eliminates the elec-
trical limitations found in parallel SCSI technology.

FC networks use dedicated host bus adapters (HBAs) to deliver high-performance block
I/O transfers between servers and storage. The FC protocol most often runs on fibre optic
cables, which currently provide up to 2 Gbps of bandwidth, and soon to reach 4 Gbps. It
can also run on copper wire cabling, but distance is more limited. Fibre optic cabling
allows data transmissions of up to 10 km or more.

Note The “Fibre” in “Fibre Channel” is purposely spelled with “-re” on the end
to differentiate the FC interconnect standard from the “fiber” used in other fiber
optic applications.

Advantages of Fibre Channel
There are several advantages of using fibre channel interconnects and the FCP protocol
(SCSI-3 over fibre). Data transfer rates, now at up to 2 Gbps and soon to reach 4 Gbps, are
the highest available for SAN storage, and FCP has the lowest transmission overhead of
the data transfer protocols. Thus, an FC SAN system provides high performance for large
data transfers, such as for large databases that are heavily accessed, backups, restores,
image data transfers, and real-time computing, for example.

Another benefit of FC over SCSI is the relatively longer distance achieved—10 km with
fibre optic cable. This allows servers and storage to be more easily racked and set up in
the datacenter without being limited to using short cables. It also supports transferring
data over fibre optic cable between two sites within 10 km of each other, such as for a
standby or disaster recovery data site. Other network infrastructure is used to achieve
data transfers across longer distances, such as over T-1, T-3, or OC-3 lines that are leased
from service providers.

Disadvantages of Fibre Channel
There may be a cost disadvantage when using FC if you want to implement it, but do
not yet have an FC network infrastructure. All server hosts that need to attach to the
storage using FC must contain one or more HBA’s (fibre channel cable for connectiv-
ity). Also, an FC switch, or switches for redundancy, are needed. These may have to be

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 145
purchased. Once this infrastructure is in place, more hosts can be added easily, they
each still need an HBA and cables.

In addition, FC SAN systems provide optional software that allows snapshots, clones,
and mirroring of data, for example. These also are add-on costs. However, for a system
storing large amounts of business critical data, this is likely necessary.

Interconnect Bandwidth Comparison
To give a consolidated view of how these interconnect types compare with each other
based solely on bandwidth, Table 7-4 lists the connectivity types we have discussed and
the current practical maximum bandwidths of each. Take into account that this is chang-
ing as 4 Gbps and 10 Gbps FC and 10 Gbps Ethernet will be available in the future. Inter-
connect bandwidth alone should not be the sole determining factor in choosing a storage
subsystem. Many other factors must be considered, such as flexibility, expandability,
manageability, and cost. See the “Speed Versus Bandwidth” sidebar below for a descrip-
tion of data transfer speed as related to bandwidth.

Speed Versus Bandwidth

A common misconception is that data transfer bandwidth equates to data transfer
speed, or I/O performance. For example, you may hear that a 2 Gbps (250 MB/sec)
FC interconnect will be “faster” than a 160 MB/sec SCSI interconnect. This is not
necessarily true, although it could appear to be, depending on the scenario. Band-
width does not refer to transfer speed, but rather the size or amount of data that can
be transferred at once (at the same speed).Suppose the largest amount of data that
an application attempts to transfer concurrently is only 10 MB. Whether you have
a 1 Gbps or 2 Gbps optical fiber interconnect, they both transfer data at the speed
of light. So the difference in bandwidth alone will not make a difference in the

Table 7-4 Connection Bandwidth Comparison

Protocol/Interconnect Physical Cable Type Current Maximum Bandwidth

SCSI over Parallel SCSI Ultra320 SCSI cable 320 MB/sec

iSCSI over Ethernet 10/100BaseT Ethernet cable 100 Mbps = 12.5 MB/sec

1 Gigabit Ethernet cable (1GbE) 1 Gbps = 125 MB/sec

TCP/IP over Ethernet 10/100BaseT Ethernet cable 100 Mbps = 12.5 MB/sec

1 Gigabit Ethernet cable (1GbE) 1 Gbps = 125 MB/sec

FCP (SCSI-3-based
protocol)

1 Gigabit Fibre Optic cable 1 Gbps = 125 MB/sec

2 Gigabit Fibre Optic cable 2 Gbps = 250 MB/sec

146 Part II System Design and Architecture
speed of the transfer since the maximum bandwidth is never approached. 10 MB of
data will travel just as quickly across a 1Gbps interconnect as a 2 Gbps intercon-
nect. It is only when the size of data being transferred approaches the bandwidth
limitations that a higher bandwidth interconnect will perform faster. For example,
if the amount of data that needs to be transferred is 10 GB (such as with a large data
file import), then a 2 Gbps (250 MB/sec) interconnect will complete the data trans-
fer twice as fast as a 1 Gbps (125 MB/sec) interconnect. The 2 Gbps interconnect
would allow twice as much data to be transferred per second. This analysis is sim-
ilar for the performance of Ethernet networks at 10 Mbps, 100 Mbps, and 1 Gbps.
For example, when backing up a large file that is gigabytes in size, a higher through-
put interconnect enables the file to be backed up in less time.

Note When bandwidth is not a bottleneck, meaning the bandwidth limits are
not approached, then there will be no performance gain from simply increasing
bandwidth.

Storage Systems
There are three major categories of storage systems: DAS, NAS, and SAN. These terms
describe the method by which server hosts are attached to and access storage devices. We
will describe each type in the following sections. These storage types and the intercon-
nects that can be used with them are not independent of each other, and they can be inte-
grated in various ways, as you will see in the following sections.

DAS
DAS stands for direct attached storage. This means that a server is directly connected
physically to a storage device. That storage device can be either internal or external disk
storage. This is the most basic and most widely used type of storage. The physical inter-
connect runs directly from the server to the storage device, so there are no switches or
hubs between the server and the storage, as there are with NAS and SAN. DAS can include
different types of external storage and different types of interconnects.

Parallel SCSI connected storage is always DAS whether the disks are internal to the server
or external in a disk enclosure. See Figure 7-2. With a FC SAN storage device, if the hosts
are connected directly to the device instead of connecting through an FC switch as shown
in Figure 7-3, then this is also considered DAS. The determining factor for DAS is the
direct physical connection between server and storage.

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 147
Figure 7-2 Parallel SCSI DAS system.

Figure 7-3 FC SAN cabled directly as DAS.

Can an FC SAN Also Be DAS?

Servers can be directly connected to either SCSI storage or FC SAN storage by SCSI
or FC interconnects. Thus, with FC SAN storage, the system is also considered DAS
if you do not have an FC switch between the server host or hosts and the storage
device. So the answer is “Yes, an FC SAN can be categorized as DAS.” You can
directly attach a limited number of server hosts to an FC SAN storage device
depending on the number of front-end ports on the device. FC SAN becomes true

SCSI
controller

Server

External disk cabinet

SCSI cable

Host 1

Storage Controller 2

Storage Controller 1

Power Supply 1 Power Supply 2

HBA 1

HBA 2

Host 2

HBA 1

HBA 2

SAN

148 Part II System Design and Architecture
SAN and not DAS when one or more switches are added so that a larger number of
hosts can be connected to the storage. In this case, it becomes a true storage area
network (SAN). See the SAN section later in this chapter for more information.

DAS might be used for a FC SAN device that will host only a couple of servers and will not
be expanded for some time. Otherwise, going with a pure FC SAN with FC switches from
the beginning makes it much easier to add server hosts to the storage device later without
having to take the existing hosts offline.

DAS is appropriate for small SQL Server database systems, servers that do not need
access to large amounts of disk space, or that serve static content, such as Web servers.
For a small business environment with only one SQL Server database server, running a
small database, for example, DAS, is appropriate. This is the most commonly used stor-
age technology for small SQL Server systems.

DAS systems using either SCSI connected storage or FC SAN storage can be clustered
using Windows 2003 Cluster Services and SQL Server 2005 failover clustering for high
availability. With SCSI connected storage, there is a maximum of two nodes in a cluster.
For FC SAN storage, the maximum number of nodes is equivalent to the Windows oper-
ating system maximum, eight nodes with Windows 2003 Enterprise and Datacenter Edi-
tions and SQL Server 2005 Enterprise Edition. The limit is two nodes for SQL Server
2005 Standard Edition.

More Info For more information on clustering topics, see
http://msdn2.microsoft.com/enus/library/ms189134(SQL.90).aspx.

SAN
The most common storage subsystem used for database storage in medium-to-large busi-
ness environments, is the storage area network (SAN). This is because of the benefits that
SAN provides for flexibility, scalability, storage consolidation, and centralized storage
management among a large number of server host machines. SANs provide the largest
amounts of consolidated storage and the largest number of server hosts that can be con-
nected to the storage device. The hosts can be of different operating systems as well.

The SAN system itself basically consists of the disk controllers, also called storage pro-
cessors, which are powered by their own CPUs; the disk cabinets, or disk enclosures;
and the disk drives. A SAN generally comes with two controllers and one cabinet of
disks. Although you may be able to get just one controller, it is not recommended. The
controllers have their own cache memory for caching reads and writes of data. More disk
cabinets can be added for more disks up to the maximum for the SAN model. One point

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 149
to note about SAN is the disk controllers/processors are built into the SAN rather than
residing in the host server.

Each SAN model supports a limited number of host machines and a limited number of
disk drives. Make sure that you know these limitations before choosing a model to fit
your current needs and future growth.

A SAN can be based on either the FC or the iSCSI interconnect standards. The one you
choose depends on the needs of your system. We describe both options in the following
sections.

FC SAN
FC SANs are well-designed for mission-critical and I/O-intensive applications where high
performance and high availability are essential. This is the top-of-the-line choice in stor-
age solutions for performance and expandability, but it is also the most costly, requiring
dedicated FC equipment in the server hosts and for the FC network infrastructure. FC
networks are more complicated to configure and manage than IP networks and demand
a high level of expertise to configure the network and storage correctly. FC networks with
dedicated fibre optic cable can extend to 10 km, thus connecting data centers in local or
metropolitan areas. However, this distance is a limitation for sites spread across the coun-
try. This is where IP networks have an advantage. Protocols that allow fibre channel traffic
to be transported over IP are currently being developed to overcome the 10 km distance
limitation.

Host servers communicate I/O requests to the SAN through an HBA in each server. The
HBA is connected to the SAN with an FC cable either directly to the SAN or through an
FC switch. With directly attached host servers to the SAN (which is actually DAS), the
number of possible hosts is limited by the number of ports on the SAN. With an FC
switch, the number of hosts can be much greater. The maximum number depends on
the SAN model. If you are unsure of system growth needs, it’s best to configure the FC
switch or switches into the solution up front to allow for easier addition of more server
hosts later. Alternatively, hosts can connect via Ethernet to a NAS gateway or an iSCSI
bridge that then connects to the SAN via FC, eliminating the need for HBAs in the host
servers and reducing costs. However, this adds to I/O latency and thus degrades I/O
performance.

Figure 7-4 shows an example of a SAN system with three host servers connected to the
storage via an FC switch. Each of the three hosts is assigned to its own logical disk unit(s)
that are configured on the SAN. The disk configuration and assignment to hosts is done
through the SAN management software.

150 Part II System Design and Architecture
Figure 7-4 FC SAN with three hosts and single HBAs.

To configure a SAN for high availability, you must ensure that each component within the
I/O system is redundant, meaning there are two of each component so that one of the
pair will take over if the other fails. This is called a fully redundant SAN system and is the
recommended configuration for high availability of both the storage system and the data
transfer paths between servers and storage. For a fully redundant system, the following
components are needed:

■ Two HBAs per host server

■ Two fibre channel switches

■ Two disk controllers (also called storage processors) inside the SAN

■ Two power supplies in the SAN

Figure 7-5 shows an example of a fully redundant SAN system with three hosts.

By cabling and configuring the SAN and server hosts properly with fully redundant com-
ponents, the I/O system is protected from a single point of failure, such as an HBA or a
switch failure, by providing two possible paths from the host server to the SAN.

Host bus adapter
(HBA)

System

Switch

Host bus adapter
(HBA)

System

Host bus adapter
(HBA)

System

Controller 2

Controller 1

SAN

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 151
Figure 7-5 Fully redundant SAN configuration.

Note If your system is critical and you need this level of redundancy, then ask
your hardware vendor for a fully redundant SAN solution up front, or the dual
components may be overlooked on the hardware order.

In addition to the fault tolerance benefits of redundant components, having dual data
access paths between the servers and the SAN (dual HBAs, cables, and switches) pro-
vides the possibility of using multipath I/O (MPIO). With MPIO, both paths can be used
simultaneously to access the storage to provide load balancing of I/O traffic for greater
performance. The storage vendor normally provides the multipath driver necessary for
your SAN.

Real World SCSI DAS vs. FC SAN Performance

In the field, I’ve seen cases in which there were misconceptions about expected per-
formance of SAN as compared with direct attached SCSI storage. It is often thought
that by moving from a SCSI DAS storage system to an FC SAN system, I/O perfor-
mance will automatically and noticeably improve. However, there are many factors
that affect performance aside from the SAN itself, such as the number of disk
drives, the amount of data being transferred per second, controller cache settings,

Host 1

Storage Controller 2

Storage Controller 1

FC Switch 1

FC Switch 2

Power Supply 1 Power Supply 2

HBA 1

HBA 2

Host 2

HBA 1

HBA 2

Host 3

SAN

HBA 1

HBA 2

152 Part II System Design and Architecture
and others. For example, if you have a direct attached SCSI array with 10 disk
drives, then move that to a SAN with only six disk drives, you may not see any per-
formance gain from the SAN and may even see a degradation. Having a fewer num-
ber of drives can hurt performance. In many cases with SQL Server database
activity, which most often consists of random and small sized I/O’s, you will hit a
physical disk bottleneck before hitting a throughput bottleneck. A SCSI direct con-
nection at 320 MB/sec provides greater throughput than a 1-Gbps or 2-Gbps (125-
MB/sec or 250-MB/sec, respectively) FC connection. On the other hand, the SAN
provides other significant benefits, such as a much larger I/O cache than a SCSI
disk controller, although this cache is then shared by all hosts on the SAN. There-
fore, simply moving to a SAN does not in itself equate to faster I/O performance.
The SAN must be configured properly and with enough disk drives to handle the
I/O needs of the system. Generally, you should configure at least the same number
of disks, if not more, for a particular host when moving from a SCSI DAS system to
SAN. If possible, test the I/O performance of the SAN with a benchmark or load test
before implementing into production to determine the best disk configuration. See
Chapter 4 for more information on disk I/O performance.

iSCSI SAN (or IP SAN)
iSCSI makes SAN more affordable for small-to-medium-sized organizations that cannot
afford an FC network. With an iSCSI SAN, a network attached iSCSI storage device
allows multiple hosts to access the device over an IP network. iSCSI SAN is the best alter-
native to FC SAN because of its lower cost of implementation and ability to transfer data
over much greater distances than FC. No HBAs or FC network infrastructure are
required as with FC SAN configurations, and it is easier to install and support than FC
SAN. See Figure 7-6. iSCSI HBAs are available, though, for offloading the iSCSI process-
ing from the system processors to the HBA itself.

Figure 7-6 iSCSI storage with two hosts on Ethernet network.

iSCSI bandwidth between a server host and the storage is dependent upon the type of
Ethernet and IP network bandwidth, for example, 100 Mbps or 1GbE. To avoid hitting

Server 1

Server 2

Ethernet switch
or hub

iSCSI storage device

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 153
bandwidth limitations, the highest available bandwidth for all network components such
as cables, switches, and network cards should be used, and a dedicated network should
be configured in order to completely isolate the server-to-storage-device data transfers
from other network traffic.

The data transport latency is higher with iSCSI than with FC because of the overhead
incurred by encapsulating the SCSI commands in TCP/IP packets. Also, the entire net-
work infrastructure must be taken into account regarding bandwidth. For example, the
Ethernet cabling may be at 1GbE, but if a network switch is overloaded with heavy net-
work traffic from multiple servers, this can cause network congestion and further
increase latencies.

More Info Refer to the Microsoft article “Microsoft Support for iSCSI” for more
information about how iSCSI works and the Microsoft iSCSI Initiator package with
the iSCSI driver at download.microsoft.com/download/a/6/4/a6403fbb-8cdb-4826-
bf8f-56f79cb5a184/MicrosoftSupportforiSCSI.doc.

iSCSI Bridge to FC SAN
Data that is passed through an iSCSI bridge is translated from iSCSI to FC, allowing an
iSCSI host to be connected to an FC SAN storage back end. This enables servers on an
existing IP network infrastructure to access storage on an FC SAN without having to add
an HBA and FC interconnect to that server. Again, this incremental step adds some over-
head and latency to data transfers between the host and the storage compared with direct
FC connectivity.

NAS
NAS stands for network attached storage, storage that is connected using an IP-based net-
work, not, for example, an FC network. A NAS storage device consists of disk storage and
management software and is completely dedicated to serving files over the network. This
differs from DAS in that NAS relieves the server from the overhead of file sharing respon-
sibilities. Servers access data on NAS devices via standard Ethernet connectivity.

A NAS device is a file server that attaches to the LAN like any other client or server in the
network. Rather than containing a full-blown operating system, the NAS device uses a
slimmed-down microkernel specialized for handling only file reads and writes support-
ing CIFS/SMB, NFS, and NCP file protocols, for example.

When to Use NAS
NAS is not recommended for SQL Server data storage because of the overhead incurred
by protocols used for file-level data access (SMB/CIFS). Block-level data access is much

154 Part II System Design and Architecture
more efficient for SQL Server. Also, the NAS is subject to the variable behavior and over-
head of a network that may contain thousands of users. A dedicated network is therefore
necessary to eliminate contention as well as for the obvious security benefits. Therefore,
although it is possible to store SQL Server files on NAS storage, it is not commonly used
and not generally recommended because of slower performance.

NAS is most commonly and most appropriately used for basic file storage and sharing of
data such as reference data, images, audio and video, Web content, and archives. It also
provides storage access to systems with different operating systems.

NAS Gateway to FC SAN
A NAS gateway provides a way to connect servers to a SAN using an Ethernet network
card in the server. A server connects to a NAS gateway by Ethernet, and the NAS gateway
then connects to an FC SAN by FC. The NAS gateway converts file-formatted data into
block-level data for storage on the SAN. This eliminates the need for FC infrastructure for
the servers, thus, also eliminating the purchase of HBAs and FC switches for the server
hosts. Again, this is not a recommended solution for SQL Server data because of the per-
formance degradation with the data conversion. A good purpose for the NAS gateway is
using your SAN storage for both file and block data storage. (The file data is converted to
block by the gateway.) Therefore, you could have SQL Server data stored on the SAN and
accessed via an FC network and also have other files stored on the SAN accessed via the
NAS gateway by hosts on the Ethernet LAN.

Note One example of how these protocols and storage devices can intermingle
is Netapp, which provides a single storage device that simultaneously supports FC
SAN, iSCSI SAN, and NAS capabilities. All three types of storage access can be
performed at the same time against the storage via the different interconnect
types. Some hosts can access storage on the device via pure TCP/IP over IP net-
work, some can connect via iSCSI over IP network, and others can access via FPC
over FC network. This allows different access needs to be met from the same
storage device.

Storage Considerations for SQL Server 2005
Now let’s put all the previous information together and relate it specifically to SQL Server
storage needs. Knowing the type of data to be stored, whether shared files, archives, or
SQL Server data, for example, will help you determine what system is best. SQL Server
performance is very dependent on I/O performance. In other words, read and write
latencies greatly affect SQL Server performance. Therefore, for the very best I/O perfor-
mance with SQL Server you would choose a block-based data transport protocol, either

Chapter 7 Choosing a Storage System for Microsoft SQL Server 2005 155
SCSI, iSCSI, or FCP. NAS, which transports data in file form, is not really a viable choice
for SQL Server data.

To determine whether to select less costly SCSI DAS or more expandable and flexible
SAN storage, consider the following:

■ How big will the size of the database or databases be?

■ How many users will access the database, and what type of activity will they be per-
forming, including OLTP, reports, batch jobs, and others?

■ How many disk drives will be needed for storage space, including backups, and
how many spindles will be needed for best practice for performance? For example,
to physically separate log files from data files.

■ At what rate will the data grow?

■ At what rate will users be added to the system?

■ Are there/ will there be other servers added to the environment that will need stor-
age and thus could utilize the SAN as well?

■ What are the organization’s high-availability, scalability, and disaster-recovery
requirements?

 If only one SQL Server suffices for your entire business and the database and number of
users accessing it (or the amount of database activity) are somewhat small, then a SCSI
DAS solution might be appropriate. “Small” could be between one and 50 users with a
database size of 100 MB to 1 GB, for example. A database this size could easily fit into the
SQL Server buffer cache in memory on the server, and reduce the amount of disk I/O,
thus requiring a small number of disk drives on the system. Keep in mind that high avail-
ability can be covered by clustering with SCSI storage, and disaster recovery can be
accomplished using database mirroring or other solution as described in Chapter 26,
“Disaster Recovery Solutions”.

If the SQL Server application or applications run on a medium- to large-sized database
system, if there are multiple servers in the environment that need more storage, if the
application performs intense I/O activity, if there is a need to consolidate existing servers’
storage to manage it more easily then consider SAN storage. SAN storage also provides
more options for high availability and disaster recovery through SAN based software
solutions, such as database snapshots or clones and mirrored databases across storage,
including local or remote mirrors. You may also want to start with a smaller, less expen-
sive SAN system that supports a smaller number of disks and a smaller number of host
servers if it will meet your current needs. This approach still provides opportunity for
growth and upgrade later if more storage or server hosts need to be added. If you know
that you will need room for growth, plan for that up front and go with the bigger SAN to

156 Part II System Design and Architecture
reduce downtime and the risk involved with upgrades. A SAN upgrade will involve down-
time.

Table 7-5 shows a comparison of storage types and the type of data appropriate for each.

Summary
Choosing a storage system for SQL Server 2005 data and log files is very important for
overall I/O performance, storage flexibility, manageability, and scalability. We have dis-
cussed the different types of data transport interconnects that are available—SCSI,
Ethernet, and FC—and the various data transfer protocol types—SCSI, iSCSI, FCP, and
TCP/IP—and how they interact with the three main storage system configurations, DAS,
NAS, and SAN. There are many factors to consider when choosing a storage system for
SQL Server data. Although it is more expensive than DAS or NAS, SAN storage also pro-
vides the greatest features and benefits, so you may have to make a trade-off between
cost, performance, and features. Identifying those trade-offs will help you make the
best decision.

Table 7-5 Storage Comparison Chart

Protocol Data TransportBest Used for Benefits/Drawbacks

SCSI DAS (SCSI
over Parallel
SCSI)

Block-based SQL Server files; data that
is mainly accessed by the
direct-attached server
(not a file share server)

Good performance, low
flexibility

NAS (TCP/IP
over Ethernet)

File-based File servers, file sharing,
archive, static data

Lowest performance and high
data accessibility between
servers, but not optimal for
SQL Server data

iSCSI SAN (iSCSI
over Ethernet)

Block-based SQL Server files and any
other data, although
more data transport
overhead than FC SAN

Possibly a less expensive option
than FC SAN. Good performance,
good flexibility

FC SAN (SCSI-3
based protocol
over FC)

Block-based SQL Server files, I/O inten-
sive data, and any other
data

Highest performance/flexibility
combined. Given the appropriate
budget, probably can’t go wrong
with FC SAN for SQL Server data

Chapter 8

Installing and Upgrading
Microsoft SQL Server 2005

Preinstallation Planning. .157

Installing SQL Server 2005 .165

Upgrading to SQL Server 2005. .183

Reading the SQL Server 2005 Setup Log Files .193

Uninstalling SQL Server 2005 .194

Using SQL Server Surface Area Configuration .197

Summary .201

Now that you have a good understanding of the different editions of Microsoft SQL
Server 2005 Server, the platforms on which it can be run, and capacity planning and stor-
age configuration concepts, let’s get to the next most important step: installing SQL
Server 2005.

This chapter provides a detailed look at the planning necessary before installation and
the step-by-step installation process using the graphical user interface and the command
line. You will also learn how to upgrade to SQL Server 2005 from earlier versions, how to
configure SQL Server features and services using the new SQL Server Surface Area Con-
figuration tool, and how to uninstall SQL Server 2005 components.

Preinstallation Planning
Before installing SQL Server 2005, it is extremely important that you plan the installation
process well and have all the relevant information necessary for the installation process.
This will help ensure a smooth installation experience and prevent unnecessary postin-
stallation changes.
157

158 Part II System Design and Architecture
This section explains some of the important configuration options you need to have
decided on before starting the installation. While the graphical user interface-based
installation method is relatively easy and many users like to adopt a “discover-as-you-go”
approach, I have found time and again that this is not the most productive approach. The
time supposedly saved by not planning out the installation is spent either cancelling and
restarting the installation, or debugging and resolving incorrect configuration options
after the installation is complete. Both of these cases are undesirable. I highly recommend
that you read the following sections to understand the various planning considerations
and then decide which ones are applicable and important to your deployment.

Minimum Hardware Requirements
SQL Server 2005 has a well-defined set of minimum hardware requirements that need to
be met for SQL Server 2005 installation. These requirements are listed in Table 8-1. These
are only the bare minimum requirements for SQL Server 2005 installation; they do not
guarantee good performance. Refer to Chapter 6, “Capacity Planning,” to determine the
appropriate hardware resources required for your particular deployment.

During installation, the System Configuration Checker (SCC) will display an error mes-
sage and terminate the installation if the system does not meet the minimum processor
type requirements. SCC will issue a warning if the minimum processor speed or the rec-
ommended memory requirements are not met.

Table 8-1 Minimum Hardware Requirements

Resource Requirement

Monitor At least 1024 × 768 pixel resolution (SVGA) if using graphical tools

Pointing device Microsoft mouse or compatible pointing device

DVD drive Only required if installing from DVD media

Network card Only required if accessing via the network

Processor 32-bit systems:

• Processor type: Pentium III-compatible or higher

• Processor speed: 600 MHz minimum

64-bit systems:

• Processor type (IA64): Itanium processor or higher

• Processor type (x64): AMD Opteron, AMD Athlon 64, Intel Xenon with
Intel EM64T support and Intel Pentium IV with EM64T support

• Processor speed: 1 GHz minimum

Memory (RAM) Minimum 512 MB, recommended 1 GB

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 159
Note If you have 1 GB of memory in the system, the SQL Server 2005 installa-
tion wizard may incorrectly flag a warning stating that the current system does
not meet the recommended hardware requirements. This is an anomaly in the
installer. If you’re sure that system does meet the minimum requirements, you can
ignore this message.

The disk space requirements for the SQL Server executables and samples vary based on
the components selected for installation. Table 8-2 lists the disk space utilized by the dif-
ferent SQL Server 2005 components.

The maximum disk space required if all of the components and samples are selected is
approximately 750 MB.

Selecting the Processor Architecture
As mentioned in Chapter 2, “SQL Server 2005 Editions, Capacity Limits, and Licens-
ing,” each SQL Server 2005 edition is available on the 32-bit (IA-32), 64-bit (IA64), and
64-bit (x64) platforms. To make sure that the software installs correctly and performs
well, make sure that you install the correct executables SQL Server 2005 platform ver-
sion for your operating system and hardware. While combinations such as installing the
IA64 SQL Server 2005 software on a 32-bit system will simply not install and result in
an error message, some combinations like 32-bit software on the x64 platform may
work but not perform properly.

Table 8-2 SQL Server 2005 Disk Space Requirements

Feature Disk Space Required

Database engine, replication, and full-text search 150 MB

Analysis Services 35 KB

Reporting Services and Report Manager 40 MB

Notification Services engine, client, and rules components 5 MB

Integration Services 9 MB

Client Components 12 MB

Management Tools 70 MB

Development Tools 20 MB

SQL Server Books Online and SQL Server Mobile Books Online 15 MB

Samples and sample databases 390 MB

160 Part II System Design and Architecture
Installing Internet Information Services
If you plan to install Microsoft SQL Server 2005 Reporting Services, you will require
Internet Information Services (IIS) 5.0 or later installed on the server before SQL Server
2005 setup is started. You can install IIS using the following steps:

1. Click Start, then select Control Panel (or select Settings and then Control Panel),
and then double-click Select Add or Remove Programs in Control Panel.

2. In the left pane, click Add/Remove Windows Components.

3. Select Application Server in the Windows Components Wizard that opens, and
then select Details.

4. Select the check box next to Internet Information Services (IIS) in the Application
Server dialog box that appears, then click OK, and then click Next.

5. You may be prompted to insert your Windows media CD, so you may want to have
this available during installation.

In general, having IIS installed on your server is not recommended unless it is absolutely
required. If you do not plan to use Reporting Services on your server, I’d recommend
you do not install IIS and ignore the warning messages that are displayed during the
installation process.

Components to Be Installed
Unlike earlier versions of SQL Server, which required invoking separate installation pro-
cesses for the different components, SQL Server 2005 has a fully integrated setup
through which all the components can be installed together via a single installation pro-
cess. You can select any combination of the following components for installation:

■ SQL Server Database Services

■ Analysis Services

■ Reporting Services

■ Notification Services

■ Integration Services

■ Workstation components, books online, and development tools

Depending on the Microsoft SQL Server components you choose to install, the following
10 services are installed:

1. SQL Server Main SQL Server database engine

2. SQL Server Agent Used for automating administrative tasks, executing jobs,
alerts, and so on

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 161
3. SQL Server Analysis Services Provides online analytical processing (OLAP) and
data mining functionality for Business Intelligence (BI) applications

4. SQL Server Reporting Services Manages, executes, renders, schedules, and
delivers reports

5. SQL Server Notification Services Platform for developing and deploying appli-
cations that generate and send notifications

Note When you install SQL Server Notification Services, a service is not
installed by default and will not appear under Services in the Control Panel.
The service is configured only when you build an application and register a
service to run that application.

6. SQL Server Integration Services Provides management support for Integration
Services package storage and execution

7. SQL Server Full Text Search Enables fast linguistic searches on content and
properties of structured and semistructured data by using full-text indexes

8. SQL Server Browser Name resolution service that provides SQL Server connec-
tion information for client computers

9. SQL Server Active Directory Helper Publishes and manages SQL Server services
in Windows Active Directory

10. SQL Server VSS Writer Allows backup and restore applications to operate in the
Volume Shadow-copy Service (VSS) framework

I recommend that you be selective and install only the components you actually plan to
use. This will limit the number of unnecessary services that run on your server and pre-
vent them from consuming precious server resources like disk space, memory, processor,
and so on.

Service Accounts
All SQL Server 2005 services require a login account to operate. The login account can be
either a local service account, a domain user account, a network service account, or a local
system account.

■ Local Service account This is a built-in account that has the same level of access
as members of the users group. This low-privileged access limits the damage that
can be done in case the service gets compromised. This account is not effective for
use with services that need to interact with other network services since it accesses
network resources with no credentials.

162 Part II System Design and Architecture
■ Domain User account As the name suggests, this account corresponds to an
actual domain user account. This account is preferred when the service needs to
interact with other services on the network.

■ Network Service account This account is similar to the Local Service account,
except that services that run as the Network Service account can access network
resources with the credentials of the computer account.

■ Local System account The Local System account is a highly privileged account
and should be used very selectively. You should be careful not to confuse this
account with the Local Service account. With respect to privileges, they are at oppo-
site ends of the spectrum.

Best Practices You should always configure a service to run with the lowest
effective privileges that can be used.

Table 8-3 lists the default accounts for each of the 10 SQL Server services. You can change
these as required, but always consider the limitations and security exposures explained
previously.

Before you start installation, make sure that all domain accounts required to configure
the services during setup have been created and are available for use.

Multiple Instances and Side-by-Side Installation
Microsoft SQL Server 2005 supports multiple instances of the database engine, Analysis
Services, and Reporting Services to be installed side-by-side on the same computer. Side-
by-side installations are completely separate instances and not dependent on each other

Table 8-3 SQL Server Service Default Accounts

SQL Server Service Default Account

SQL Server Domain User

SQL Server Agent Domain User

SQL Server Analysis Services Domain User

SQL Server Reporting Services Domain User

SQL Server Notification Services N/A

SQL Server Integration Services Network Service

SQL Server Full-Text Search Same account as SQL Server

SQL Server Browser Domain User

SQL Server Active Directory Helper Network Service

SQL Server VSS Writer Local System

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 163
in any way. You can choose to have any combination of side-by-side installs of SQL Server
7.0, SQL Server 2000, or SQL Server 2005 listed as supported in Table 8-4.

If you already have an instance of SQL Server installed on your system, you should decide
before starting the installation process whether you’d like to upgrade it (as explained
later in this chapter) or install a new SQL Server 2005 instance on the side.

Licensing Mode
As explained in Chapter 2, SQL Server 2005 can be installed using a per-processor licens-
ing model, a user client access license (user CAL) licensing model, or a device client
access license (device CAL) licensing model. Before starting the installation process, you
should determine the licensing model you plan to use and secure the required licenses.

Collation
A collation determines the rules by which character data is sorted and compared. SQL
Server 2005 has two groups of collations: Windows collations and SQL collations. SQL
collations are provided primarily as a compatibility option with earlier versions of SQL
Server. You should use these if you plan to use replication with databases on earlier ver-
sions of SQL Server or if your application requires a specific SQL collation of an earlier
SQL Server version. For all other cases, you should use the Windows collation.

Best Practices You should decide on an organization-wide collation and use it
for all your SQL Server 2005 servers so you’re assured of consistency for all
server-to-server activity.

The collation specified during the installation process becomes the SQL Server instance’s
default collation. This collation is used for all the system databases and any user data-
bases that do not explicitly specify a collation.

Table 8-4 Supported Side-by-Side Installations

Side-by-Side Install

SQL Server
2000 (32-
bit)

SQL Server
2000 (64-
bit)

SQL Server
2005 (32-
bit)

SQL Server
2005 (IA64)

SQL Server
2005 (x64)

SQL Server 7.0 Yes No Yes No No

SQL Server 2000 (32-bit) Yes No Yes No Yes

SQL Server 2000 (64-bit) No Yes No Yes No

SQL Server 2005 (32-bit) Yes No Yes No Yes

SQL Server 2005 (IA64) No Yes No Yes No

SQL Server 2005 (x64) Yes No Yes No Yes

164 Part II System Design and Architecture
Authentication Modes
SQL Server supports two authentication modes: Windows authentication mode and
mixed mode.

■ Windows authentication mode This authentication mode permits users to con-
nect only by using a valid Windows user account. With Windows authentication,
SQL Server validates the account credentials using information from the Windows
operating system. The Windows authentication mode optionally provides pass-
word policy enforcement for validation for strong passwords, support for account
lockout, and password expiration. The sa user (“sa” is short for “system administra-
tor”) is disabled when Windows authentication is selected.

■ Mixed mode This authentication mode permits users to connect using either
Windows authentication or SQL Server authentication. Users who connect
through a Windows user account are validated by Windows, while users who con-
nect using SQL Server login are validated by SQL Server. The sa user is enabled
when mixed mode is selected and a password prompt appears during the installa-
tion process.

Best Practices Never use a blank or weak password for the sa account.

It is recommended that you use strong passwords for all users who will log in to SQL
Server 2005. A strong password must be six or more characters long and have at least
three of the following types of characters:

■ Uppercase letters

■ Lowercase letters

■ Numbers

■ Non-alphanumeric characters

Although Windows authentication is the recommended authentication mode and more
secure than mixed mode, many applications require mixed mode authentication. You
should evaluate your application needs and select the authentication based on that.

Security Considerations
A large part of the long-term security of your server environment is dictated by some rel-
atively simple and inexpensive best practices you can adopt during the planning and
installation phase. To make your SQL Server installation as secure as possible, the follow-
ing are recommended:

■ Physically secure the server and make it accessible only to authorized personnel.

■ Have at least one firewall between the server and the Internet.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 165
■ Enforce strong passwords for all SQL Server accounts and enable password policies
and password expiration.

■ Create service accounts with least privileges.

■ Run separate SQL Server services under separate Windows accounts to prevent one
compromised service from being used to compromise others.

■ Use NTFS instead of a FAT file system.

■ Disable all unnecessary protocols, including NetBIOS and server message block
(SMB), on the servers.

Note Disabling the NetBIOS protocol may cause connectivity problems
if you’re using DHCP. You may want to check with your system administra-
tor before disabling any protocols.

Installing SQL Server 2005
Once you’ve completed the preinstallation planning and have all the required information
available, you are ready to install SQL Server 2005. SQL Server 2005 can be installed on
your local server using either the SQL Server 2005 Installation Wizard or the command
prompt installation. If you’re new to SQL Server or plan to install just a couple of servers,
I recommend you use the Installation Wizard. The command prompt-based installation is
often slightly trickier and better suited to experienced users who need to perform multiple
similar installations and want to automate the process. SQL Server also provides the
option of installing just the SQL Native Access Client (SNAC) connectivity libraries on the
server; this process is explained in detail later in this chapter. This is particularly useful for
client systems that need to use SNAC to connect to the SQL Server 2005–based server. All
of these installation methods are explained in detail in the following sections.

Note Installing to a remote server, which was possible in earlier versions of SQL
Server, is not supported in SQL Server 2005. To install SQL Server 2005 onto a
remote server, you need to log in remotely to the server and run the setup pro-
gram, or remotely execute the command prompt installation on the remote server.

Installing SQL Server 2005 Using the Installation Wizard
The SQL Server 2005 Installation Wizard is a Windows installer-based program that
interactively guides you through the entire installation process. The Installation Wizard
has built-in tools for performing appropriate configuration and error checking and pro-
vides meaningful warning and error messages.

166 Part II System Design and Architecture
The following steps explain how to install a new nonclustered SQL Server 2005
instance on your local server. If you already have an instance of SQL server installed on
your server, some of the windows shown in the figures may not be presented or may be
slightly different. This is because the Installation Wizard reuses the information already
available on the system; for example, the Registration dialog box (step 8) will not
prompt you for the PID if you’ve already installed the same version of SQL Server 2005
on the system before.

1. Log in to the system as Administrator or as a user who has administrator privileges
on the server.

Note The SQL Server 2005 Setup program can be invoked in many
ways. In most cases, the program automatically starts when the SQL Server
2005 DVD media is inserted into the DVD drive or when a remote network
share is mapped onto the server. If the program is not automatically
loaded, you can navigate to the Servers directory and double-click the
Splash.hta program. With either of these approaches, the Start dialog box,
shown in Figure 8-1, appears.

Figure 8-1 SQL Server Setup—Start window.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 167
2. The Start window presents options to prepare and install the server as well as
access other information. To install SQL Server 2005, click the "Server components,
tools, Books Online, and samples" option in the Start window.

3. The End User License Agreement (EULA) window appears. Read the agreement
and select the I Accept the Licensing Terms and Conditions check box. Selecting
the check box will activate the Next button. Select Next.

4. The Installing Prerequisites dialog box, shown in Figure 8-2, appears, and the soft-
ware components required prior to installing SQL Server 2005 are installed. Select
Install. This step may take several minutes to complete.

Note You may see a different list in Figure 8-2 if some of the compo-
nents have already been installed via a previous install, or by some other
application.

Figure 8-2 SQL Server Setup—Installing Prerequisites dialog box.

5. The Welcome page for the Installation Wizard appears. Select Next.

6. The System Configuration Check (SCC) page appears. At this point, the Installa-
tion Wizard scans the system for conditions that do not meet the minimum
requirements and displays the status for each action with a message for the errors
and a warning, as shown in Figure 8-3.

168 Part II System Design and Architecture
Figure 8-3 SQL Server Setup—System Configuration Check page.

7. Once the SCC has completed scanning the computer, the Filter button in the
lower-left corner is activated and can be used to filter the output to Show All
Actions, Show Errors, Show Successful Actions, or Show Warnings in the win-
dow. You can only view the actions that are relevant, for example if there are no
errors the Show Errors option is not activated. Correspondingly, the Report but-
ton in the lower-right corner can be used to view a report in a report format, save
the report to a file, copy the report to the Clipboard, or send the report as e-mail.
Once SCC completes the configuration check, click Next to continue with the
setup.

Note If the SCC determines a pending action that must be completed
before proceeding, for example a pending reboot operation, it will block
the setup by not activating the Next button and force you to complete the
pending actions.

8. The setup performs some additional checks that may take a few minutes and then
displays the Registration Information page. On the Registration Information page,
enter information in the Name, Company, and Product Key text boxes. Select Next
to continue.

9. The Components To Install page displays, as shown in Figure 8-4. On this page,
select the components to be installed that you identified during the preinstallation
planning.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 169
Figure 8-4 SQL Server Setup—Components To Install page.

10. To select specific subcomponents for any of the components, you can select the
Advanced button on the lower-right side of the page, which will display the Feature
Selection dialog box as shown in Figure 8-5.

Figure 8-5 SQL Server Setup—Feature Selection dialog box.

170 Part II System Design and Architecture
In this dialog box, you can select the Will Be Installed On Local Hard Drive option to
install the feature but not all the subcomponents of the feature, select the Entire Fea-
ture Will Be Installed On Local Hard Drive option to install the feature and all the
subcomponents of the feature, or select the Entire Feature Will Be Unavailable
option to not install the feature. Once you have selected the appropriate services,
select Next to continue.

Note The sample databases and sample code and applications are not
installed by default even when the Documentation, Samples, and Sample
Databases feature is selected. To install these, select the Advanced button
and explicitly select them for installation, as shown in Figure 8-5, or select
the Entire Feature Will Be Installed On Local Hard Drive option for the Doc-
umentation, Samples, And Sample Databases feature.

11. The Instance Name page, shown in Figure 8-6, appears. On this page, you can select
the instance to be either a Default Instance or a Named Instance. If you select Named
Instance, the text box in which you need to enter a valid instance name is activated.
You can select the Installed Instances button in the lower right of the page to view the
instances already installed on the system. If a default or named instance is already
installed on the server and you select it, the setup will upgrade it and present you the
option of installing additional components. This is explained in the section on
upgrading to SQL Server 2005 later in this chapter. Click Next to continue.

Figure 8-6 SQL Server Setup—Instance Name page.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 171
Note A server can have only one default instance of SQL Server. This
implies that if you have SQL Server 2000 installed on your server as a
default instance and you do not want to upgrade it, you should install the
SQL Server 2005 as a named instance.

12. The Service Account page, shown in Figure 8-7, is displayed. This page is used to
specify the accounts the services use to log in. You can either specify the same
account for all the services installed or select the Customize For Each Service
Account check box and specify the login accounts for each service selected for
installation individually. You can then select the login account to use one of the
built-in system accounts (Local Service, Network Service, or Local System) by click-
ing on the Use The Built-in System Account radio button and selecting the appro-
priate account from the drop-down list, or you can specify a domain user by
selecting the Use A Domain User Account radio button and entering a domain user
name, password, and domain. In the Start Services At The End Of Setup section,
you can select the check boxes next to the services you would like to start automat-
ically every time the system is started. Click Next to continue.

Figure 8-7 SQL Server Setup—Service Account page.

172 Part II System Design and Architecture
13. The Authentication Mode page, shown in Figure 8-8, appears. On this page, click
the appropriate radio button to select either Windows Authentication Mode or
Mixed Mode (Windows Authentication And SQL Server Authentication). If you use
the mixed mode, you will need to enter and confirm the login password for the sa
user. Click Next to continue.

Figure 8-8 SQL Server Setup—Authentication Mode page.

14. The Collation Settings page, shown in Figure 8-9, appears. On this page you can
choose to customize the collation for each individual service being installed using
the Customize For Each Service Account check box, or you can use the same col-
lation for all the services. For the collation, you can select either Collation Desig-
nator And Sort Order or SQL Collations (Used For Compatibility With Previous
Versions Of SQL Server) using the radio buttons. If you are using the collation
designator and sort order, select the language (for example, Latin1_General for
the English language) from the drop-down list and the appropriate check boxes
below. If you are using the SQL Collations, select the desired one from the scrol-
lable list below the radio button. Click Next to continue.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 173
Figure 8-9 SQL Server Setup—Collation Settings page.

15. If you selected to install Reporting Services, the Report Server Installation Options
page, shown in Figure 8-10, appears. You can use the radio buttons on this page to
choose to Install The Default Configuration for Reporting Server or Install But Do
Not Configure The Server. You can select the Details button located in the upper
right of the page to view the details of the Report Server installation information. If
a Secure Sockets Layer (SSL) certificate has not been installed on the server, a warn-
ing message is displayed. Since reports often contain sensitive information, it is rec-
ommended that you use SSL in most installations. Select Next to continue.

Figure 8-10 SQL Server Setup—Report Server Installation Options page.

174 Part II System Design and Architecture
16. The Error And Usage Report Settings page, shown in Figure 8-11, appears. On this
page, you can select the two radio buttons, Automatically Send Error Reports For SQL
Server 2005 To Microsoft Or Your Corporate Error Reporting Server and Usage Data
For SQL Server 2005 To Microsoft, to set the desired default action. This data is col-
lected for information purposes only, and selecting either of these options will not
have any adverse effects on the performance of your system. Select Next to continue.

Figure 8-11 SQL Server Setup—Error And Usage Report Settings page.

17. The Ready To Install page, shown in Figure 8-12, appears. You can review the sum-
mary of features and components selected for installation. To make any changes,
select the Back button and go back in the installation process until the relevant
page appears. For the most part, the installation process will retain your selections
so that you don’t have to re-enter all of the information after backtracking through
the pages. Select Install to continue.

18. The Setup Progress page, shown in Figure 8-13, appears. At this point in the instal-
lation process, the selected services are actually installed and configured on your
system. This step may take a while to complete and is dependent on the speed of
your processor and the disk being installed to. The page continuously updates the
progress bar to reflect the installation status of the individual components and will
reset for each component being installed. To view the log file for the component
installation status, you can click the component name. When all of the steps are
completed, select Next to continue.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 175
Figure 8-12 SQL Server Setup—Ready To Install page.

Figure 8-13 SQL Server Setup—Setup Progress page.

19. The Completing Microsoft SQL Server 2005 Setup page, shown in Figure 8-14,
appears. On this page, you view the summary log. You can also select the Surface
Area Configuration Tool to configure SQL Server 2005 as explained in the Surface
Area Configuration section that follows. Click Finish to complete the installation.

176 Part II System Design and Architecture
Figure 8-14 SQL Server Setup—Completing Microsoft SQL Server 2005 Setup page.

20. Restart the system if the setup prompts you to do so.

Note If you need to add or remove components to a default or named
instance of SQL Server 2005, you can do so by selecting Add Or Remove
Programs in Control Panel, selecting the SQL Server 2005 instance you
want to modify, and then clicking the Change or Remove buttons.

Installing SNAC Using the Installation Wizard
1. Log in to the system as Administrator or as a user who has administrator privileges

on the server.

Note The SQL Server 2005 Setup program can be invoked in many ways.
In most cases, the program will start automatically when the SQL Server
2005 DVD media is inserted into the DVD drive or when a remote network
share is mapped onto the server. If the program is not automatically
loaded, you can navigate to the Servers directory and double-click the
Splash.hta program.

2. The Start window appears, similar to what is shown in Figure 8-1. Select Run The
SQL Native Client Installation Wizard.

3. The Welcome page of the wizard appears. Click Next to continue.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 177
4. The License Agreement page appears. Read and accept the terms in the license
agreement and click Next.

5. The Registration Information page appears. Enter your name and the name of your
organization in the text fields and click Next.

6. The Feature Selection page, shown in Figure 8-15, appears. Select the program fea-
tures you want to install and click Next.

Figure 8-15 SQL Native Client Installation—Feature Selection page.

Note The Client Components contain the SNAC network library files and
should be selected if you are installing SNAC on a client for connectivity.

7. The Ready To Install The Program page appears. Click Install.

8. After the installation process completes, click Finish.

Installing SQL Server 2005 Using the Command Prompt
Unlike earlier versions, SQL Server 2005 does not have an unattended install recorder
and playback mechanism. Instead, it ships with a powerful command prompt installation
option, which can be used to install, modify, or uninstall SQL Server components and
perform certain maintenance tasks. With command prompt installation, you can choose
either to specify all the input parameter directly on the command line or to pass them in
using a settings (.ini) file.

The syntax for a command prompt installation is shown in the following example.

Start /wait <DVD Drive>\Servers\setup.exe /qb INSTANCENAME=MSSQLSERVER
ADDLOCAL=SQL_Engine SQLACCOUNT=advadmin SQLPASSWORD=Pa55wD
AGTACCOUNT=advadmin AGTPASSWORD=Pa55wD SQLBROWSERACCOUNT=advadmin
SQLBROWSERPASSWORD=Pa55wD

178 Part II System Design and Architecture
In this example, the SQL Server 2005 database engine is installed as a default instance
using the account advadmin and password Pa55wd.

Important Since the password is clearly visible in the code, it presents a
potential security risk and should be used carefully. Do not leave any references
to a password such as this in an unprotected script file.

The command prompt installation can be used to customize every option in the installa-
tion process. Table 8-5 lists the command prompt installation options and gives a brief
description of each.

Table 8-5 Command Prompt Installation Options

Command Prompt Option Description

/qb Installation is done in quiet mode with basic GUI
information displayed, but no user interaction is
required.

/qn Installation is done in quiet mode with no GUI dis-
played.

Options This parameter is for the Registration Information
dialog box and must be specified when using a set-
tings file.

PIDKEY This parameter is used to specify the registration key.
[Note: Do not specify the hyphens (-) that appear in
the key.]

INSTALLSQLDIR This parameter is used to specify the installation
directory for the instance specific binary files.

INSTALLSQLSHAREDDIR This parameter is used to specify the installation
directory for Integration Services, Notification Ser-
vices, and Workstation components.

INSTALLSQLDATADIR This parameter is used to specify the installation
directory for the SQL Server data files.

INSTALLASDATADIR This parameter is used to specify the location for the
Analysis Services data files.

ADDLOCAL This parameter is used to specify the components to
install. ADDLOCAL=ALL installs all the components.
Setup fails if ADDLOCAL is not specified. (Note: Fea-
ture names are case sensitive.)

REMOVE This parameter specifies which components to unin-
stall. The INSTANCENAME parameter must be used in
conjunction with this parameter.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 179
INSTANCENAME This parameter specifies the name of the instance.
MSSQLSERVER is used to represent the default
instance. This parameter must be specified for
instance-aware components.

UPGRADE This parameter is used to specify which product to
upgrade. The INSTANCENAME parameter must be
used in conjunction with this parameter.

SAVESYSDB This parameter can be used during uninstall to specify
not to delete system databases.

USESYSDB This parameter is used to specify the root path to the
system databases data directory during upgrade.

SQLACCOUNT, SQLPASSWORD, AGTAC-
COUNT, AGTPASSWORD, ASACCOUNT,
ASPASSWORD, RSACCOUNT, RSPASS-
WORD

These parameters are used to specify the service
accounts and passwords for the services. A service
account and password need to be provided for each
service selected for installation.

SQLBROWSERAUTOSTART, SQLAU-
TOSTART, AGTAUTOSTART, ASAU-
TOSTART, RSAUTOSTART

These parameters are used to specify the startup
behavior of the respective service. When set to 1, the
service will start automatically; when set to 0, the ser-
vice must be started manually.

SECURITYMODE and SAPWD SECURITYMODE=SQL is used to specify mixed mode
authentication. SAPWD is used to specify the pass-
word for the sa account.

SQLCOLLATION and ASCOLLATION These parameters are used to set the collations for
SQL Server and Analysis Services, respectively.

REBUILDDATABASE This parameter is used to rebuild the master data-
base.

REINSTALLMODE This parameter is used to repair installed components
that may be corrupted.

REINSTALL This parameter is used to specify the components
to reinstall and must be specified when using
 REINSTALLMODE. REINSTALL parameters use the
same values as ADDLOCAL parameters.

RSCONFIGURATION This parameter is applicable only if Reporting Services
or Report Manager is installed. It is used to specify
whether to configure the service.

SAMPLEDATABASESERVER This parameter is used to specify the server and
instance name to which the sample databases should
be attached.

Table 8-5 Command Prompt Installation Options (continued)

Command Prompt Option Description

180 Part II System Design and Architecture
More Info For a complete list of parameters and their possible values, refer to
the SQL Server Setup Help by double-clicking

<DVD Drive>\Servers\Setup\help\1033\setupsql9.chm and searching for ‘How to:
Install SQL Server 2005 from the Command Prompt’.

In the next few sections, we will see how these parameters can be used in combination
to perform a variety of operations such as installing a default instance with all the com-
ponents, installing a named instance with mixed mode authentication, adding compo-
nents to an existing instance, and using a settings file to pass in the installation
parameters.

Installing a Default Instance
This is one of the most commonly used command prompt–based installation scenarios.
The following command installs all of the SQL Server 2005 components in a default
instance (MSSQLSERVER) on the local server. A Windows administrator account called
advadmin with a password of Pa55wD is used for all the services.

start /wait <DVD Drive>\Servers\setup.exe /qb INSTANCENAME=MSSQLSERVER
ADDLOCAL=ALL SAPWD=Pa55wD SQLACCOUNT=advadmin SQLPASSWORD=Pa55wD
AGTACCOUNT=advadmin AGTPASSWORD=Pa55wD ASACCOUNT=advadmin ASPASSWORD=Pa55wD
RSACCOUNT=advadmin RSPASSWORD=Pa55wD SQLBROWSERACCOUNT=advadmin
SQLBROWSERPASSWORD=Pa55wD

Best Practices If you plan to store these commands as script files, you should
make sure to store them in a secure location with the correct permissions, since
they contain unencrypted passwords.

Installing a Named Instance with Mixed Authentication
The following command installs database engine and management tools components on
a named instance of SQL Server 2005 called SS2K5 with mixed authentication and the

DISABLENETWORKPROTOCOLS This parameter is used to set up the start-up state of
the network protocols.

ERRORREPORTING This parameter is used to configure SQL Server to
send reports from any fatal errors directly to
Microsoft.

Table 8-5 Command Prompt Installation Options (continued)

Command Prompt Option Description

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 181
Latin1_General_BIN collation. A Windows administrator account called advadmin with
a password of Pa55wD is used for all the services.

start /wait <DVD Drive>\Servers\setup.exe /qb INSTANCENAME=SS2K5
ADDLOCAL=SQL_Engine,SQL_Data_Files,Client_Components,Connectivity,SQL_Tools9
0 SECURITYMODE=SQL SQLCOLLATION=Latin1_General_Bin SQLAUTOSTART=1
AGTAUTOSTART=1 SAPWD=Pa55wD SQLACCOUNT=advadmin SQLPASSWORD=Pa55wD
AGTACCOUNT=advadmin AGTPASSWORD=Pa55wD SQLBROWSERACCOUNT=advadmin
SQLBROWSERPASSWORD=Pa55wD

Adding Components to an Existing Instance
The command prompt installation method can also be used to add components to an
existing SQL Server 2005 instance. The following command adds the Analysis Server
components with the Latin1_General_Bin collation setting to an existing instance named
SS2K5. Once again, a Windows administrator account called advadmin with a password
of Pa55wD is used for all the services.

start /wait <DVD Drive>\Servers\setup.exe /qb INSTANCENAME=SS2K5
ADDLOCAL=Analysis_Server,AnalysisDataFiles ASCOLLATION=Latin1_General_Bin
SAPWD=Pa55wD ASACCOUNT=advadmin ASPASSWORD=Pa55wD

Installing Using a Settings (.ini) File
All the command prompt installation examples we’ve seen so far have specified the setup
options directly on the command line. This approach works well but is not very easy to
use given that the commands are usually rather long and prone to typos. Also, the com-
mands need to be re-typed for each use and cannot be easily persisted across sessions. To
circumvent these problems, SQL Server 2005 allows you to use a settings file with which
you can pass in the desired command prompt options. A settings file is a text file which
contains a list of setup parameters.

The following example settings file specifies the options that can be used to install all
SQL Server 2005 components using the mixed mode authentication and the
Latin1_General_BIN collation for both SQL Server database as well as Analysis Server.

[Options]
USERNAME=Mike
COMPANYNAME=Microsoft

PIDKEY=ADDYOURVALIDPIDKEYHERE

ADDLOCAL=ALL

INSTANCENAME=MSSQLSERVER

182 Part II System Design and Architecture
SQLBROWSERACCOUNT=advadmin
SQLBROWSERPASSWORD=Pa55wD

SQLACCOUNT=advadmin
SQLPASSWORD=Pa55wD

AGTACCOUNT=advadmin
AGTPASSWORD=Pa55wD

ASACCOUNT=advadmin
ASPASSWORD=Pa55wD

RSACCOUNT=advadmin
RSPASSWORD=Pa55wD

SQLBROWSERAUTOSTART=1
SQLAUTOSTART=1
AGTAUTOSTART=1
ASAUTOSTART=0
RSAUTOSTART=0

SECURITYMODE=SQL
SAPWD=Pa55wD

SQLCOLLATION=Latin1_General_BIN
ASCOLLATION=Latin1_General_BIN

DISABLENETWORKPROTOCOLS=2

Note A sample template file (Template.ini) listing all the configurable parame-
ters is provided with the SQL Server media and can be found in the same direc-
tory as the Setup.exe program.

The settings file is specified using the /settings option of the command prompt installa-
tion. For example, the following command passes in the SqlInstall.ini file containing the
setup parameters to the setup program.

start /wait <DVD Drive>\Servers\setup.exe /qb /settings C:\SqlInstall.ini

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 183
Best Practices Since the settings files contain logins, passwords, and product
keys, you should always store them in a secure location with the appropriate file
permissions.

Upgrading to SQL Server 2005
If you have an existing installation of SQL Server, you can choose to upgrade it to SQL
Server 2005 instead of installing a new instance. SQL Server 2005 supports direct
upgrade paths from SQL Server 7.0 with SP4 and SQL Server 2000 with SP3 or later ver-
sions. Table 8-7 lists the versions of SQL Server and the possible direct upgrade path to
the corresponding SQL Server 2005 edition. Before upgrading from one edition to
another, you should always verify that all the functionality you are currently using is sup-
ported in the edition being upgraded to.

Table 8-7 Supported Upgrade Paths to SQL Server 2005

Upgrade from Supported Upgrade Paths

SQL Server 7.0 Enterprise Edition SP4 SQL Server 2005 Enterprise Edition

SQL Server 7.0 Developer Edition SP4 SQL Server 2005 Enterprise Edition

SQL Server 2005 Developer Edition

SQL Server 7.0 Standard Edition SP4 SQL Server 2005 Standard Edition

SQL Server 2005 Enterprise Edition

SQL Server 7.0 Desktop Edition SP4 SQL Server 2005 Standard Edition

SQL Server 2005 Workgroup Edition

SQL Server 7.0 Evaluation Edition SP4 Upgrade not supported

SQL Server Desktop Engine (MSDE) 7.0 SP4 SQL Server 2005 Express Edition

SQL Server 2000 Enterprise Edition SP3 or
later versions

SQL Server 2005 Enterprise Edition

SQL Server 2000 Developer Edition SP3 or
later versions

SQL Server 2005 Developer Edition

SQL Server 2000 Standard Edition SP3 or
later versions

SQL Server 2005 Enterprise Edition

SQL Server 2005 Developer Edition

SQL Server 2005 Standard Edition

SQL Server 2000 Workgroup Edition SQL Server 2005 Enterprise Edition

SQL Server 2005 Developer Edition

SQL Server 2005 Standard Edition

SQL Server 2005 Workgroup Edition

184 Part II System Design and Architecture
SQL Server 2000 Personal Edition SP3 or
later versions

SQL Server 2005 Standard Edition

SQL Server 2005 Workgroup Edition

SQL Server 2005 Express Edition

SQL Server 2000 Evaluation Edition SP3 or
later versions

SQL Server 2005 Evaluation Edition

SQL Server Desktop Engine (MSDE) 2000 SQL Server 2005 Workgroup Edition

SQL Server 2005 Express Edition

SQL Server 2000 IA-64 (64-bit) Enterprise
Edition

SQL Server 2005 IA-64 (64-bit) Enterprise Edition

SQL Server 2000 IA-64 (64-bit) Developer
 Edition

SQL Server 2005 IA-64 (64-bit) Enterprise Edition

SQL Server 2005 IA-64 (64-bit) Developer Edition

SQL Server 2005 Developer Edition SQL Server 2005 Enterprise Edition

SQL Server 2005 Standard Edition

SQL Server 2005 Workgroup Edition

SQL Server 2005 Standard Edition SQL Server 2005 Enterprise Edition

SQL Server 2005 Developer Edition

SQL Server 2005 Workgroup Edition SQL Server 2005 Enterprise Edition

SQL Server 2005 Developer Edition

SQL Server 2005 Standard Edition

SQL Server 2005 Evaluation Edition SQL Server 2005 Enterprise Edition

SQL Server 2005 Developer Edition

SQL Server 2005 Standard Edition

SQL Server 2005 Workgroup Edition

SQL Server 2005 Express Edition

SQL Server 2005 Express Edition SQL Server 2005 Enterprise Edition

SQL Server 2005 Developer Edition

SQL Server 2005 Standard Edition

SQL Server 2005 Workgroup Edition

SQL Server 2005 IA-64 (64-bit) Developer
 Edition

SQL Server 2005 IA-64 (64-bit) Enterprise Edition

SQL Server 2005 IA-64 (64-bit) Standard Edition

SQL Server 2005 x64 (64-bit) Developer
Edition

SQL Server 2005 x64 (64-bit) Enterprise Edition

SQL Server 2005 x64 (64-bit) Standard Edition

SQL Server 2005 IA-64 (64-bit) Standard
Edition

SQL Server 2005 IA-64 (64-bit) Enterprise Edition

SQL Server 2005 IA-64 (64-bit) Developer Edition

Table 8-7 Supported Upgrade Paths to SQL Server 2005 (continued)

Upgrade from Supported Upgrade Paths

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 185
A SQL Server 2000 32-bit instance running on the 32-bit subsystems of an x64 system
cannot be upgraded to run on the 64-bit subsystem directly. If you require converting
your 32-bit SQL Server instance to SQL Server 2005 (64-bit), you will need to install SQL
Server 2005 on the 64-bit server as a new instance and then move the database over. You
can move the databases either by backing them up from the 32-bit system and restoring
them on the 64-bit system, or by detaching the databases from the 32-bit system, copying
them over to the 64-bit system and attaching them to the 64-bit system. In either case,
you will need to do some additional housekeeping tasks such as recreating logins, recon-
figuring replication, and so forth on the new 64-bit server instance.

English-language versions of SQL Server can be upgraded to an English-language or any
other localized version of SQL Server 2005. However, localized versions of SQL Server
can be upgraded only to localized versions of SQL Server 2005 of the same language. In
addition, SQL Server 2005 does not support cross-version instances, implying that all the
components (for example, Database Engine, Analysis Services, and Reporting Services)
within a single instance must be the same.

SQL Server Upgrade Advisor
SQL Server Upgrade Advisor is a stand-alone tool that can help you analyze your SQL
Server 7.0 or SQL Server 2000 database for possible incompatibilities before being
upgraded to SQL Server 2005 and help you proactively resolve them. Although most
well-designed SQL Server databases should be seamlessly upgradeable to SQL Server
2005, there are some scenarios in which SQL Server 2005 has tightened up on checking
for compliance with SQL standards and disallows certain nonstandard code constructs.
The Upgrade Advisor is a great way to quickly and easily check for such cases.

The following sections explain the steps to install and use the Upgrade Advisor.

SQL Server 2005 x64 (64-bit) Standard
Edition

SQL Server 2005 x64 (64-bit) Enterprise Edition

SQL Server 2005 x64 (64-bit) Developer Edition

SQL Server 2005 IA-64 (64-bit) Evaluation
 Edition

SQL Server 2005 IA-64 (64-bit) Enterprise Edition

SQL Server 2005 IA-64 (64-bit) Developer Edition

SQL Server 2005 IA-64 (64-bit) Standard Edition

SQL Server 2005 x64 (64-bit) Evaluation
Edition

SQL Server 2005 x64 (64-bit) Enterprise Edition

SQL Server 2005 x64 (64-bit) Developer Edition

SQL Server 2005 x64 (64-bit) Standard Edition

Table 8-7 Supported Upgrade Paths to SQL Server 2005 (continued)

Upgrade from Supported Upgrade Paths

186 Part II System Design and Architecture
Installing SQL Server Upgrade Advisor
The SQL Server Upgrade Advisor is a stand-alone tool that must be installed via a sepa-
rate installation process. To install SQL Server Upgrade Advisor:

1. Log in to the system as Administrator or a user who has administrator privileges on
the server.

Note The SQL Server 2005 Setup program can be invoked in many ways.
In most cases, the program will automatically start when the SQL Server
2005 DVD media is inserted into the DVD drive or when a remote network
share is mapped onto the server. If the program does not load automati-
cally, you can navigate to the Servers directory and double-click the
Splash.hta program.

2. From the Start window, from the Prepare section, select Install SQL Server Upgrade
Advisor.

3. On the Welcome page, click Next.

4. The License Agreement page appears. Read and accept the terms of the license
agreement by selecting the radio button, and then click Next.

5. The Registration Information page appears. Enter your name and the name of your
organization and click Next.

6. The Feature Selection page appears. On this page, leave the Upgrade Advisor fea-
ture selected. You can change the directory to which Upgrade Advisor will be
installed by using the Browse button. You can also view the disk cost by using the
Disk Cost button. Click Next to continue.

7. The Ready To Install The Program page appears. Click Install.

8. The Setup Wizard will install the Upgrade Advisor and should report a successful
completion message. Click Finish to complete the installation.

Using SQL Server Upgrade Advisor
The Upgrade Advisor is built from two components: the Upgrade Advisor Analysis Wiz-
ard and the Upgrade Advisor Report Viewer.

■ Upgrade Advisor Analysis Wizard This tool helps analyze the SQL Server 7.0 or
SQL Server 2000 instance for issues that can cause the upgrade to fail or your appli-
cation to falter after the upgrade. The wizard does not modify the instance in any
way and can be run as many times as you like.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 187
■ Upgrade Advisor Report Viewer This tool is used to view the list of issues
found by the Analysis Wizard.

The typical sequence of events when using the Upgrade Advisor includes executing the
Update Advisor, gathering the recommendations, taking the recommended corrective
actions, and rerunning Upgrade Advisor to verify the changes. While this process can be
completed in a single pass, I have often found it to require a couple of iterations before all
the issues are resolved.

The following steps explain the process of using the SQL Server Upgrade Advisor Analy-
sis Wizard and viewing the report using the Upgrade Advisor Report Viewer:

1. To open SQL Server 2005 Upgrade Advisor click the Start button, and then point
to All Programs, then Microsoft SQL Server 2005, and then select SQL Server
2005 Upgrade Advisor. The Upgrade Advisor Start window appears, as shown in
Figure 8-16.

2. Select Launch Upgrade Advisor Analysis Wizard. The Welcome page appears. Click
Next.

Figure 8-16 SQL Server 2005 Upgrade Advisor—Start window.

3. The SQL Server Components page appears, as shown in Figure 8-17. Enter the
name of the server you want to run Upgrade Advisor against. You can choose to
query the server and automatically populate the appropriate check boxes for the
components by clicking on Detect, or you can choose to manually select the check
boxes. Click Next to continue.

188 Part II System Design and Architecture
Figure 8-17 SQL Server 2005 Upgrade Advisor—SQL Server Components page.

4. The Connection Parameters page, shown in Figure 8-18, appears. Select the instance
name (select MSSQLSERVER for the default instance), select the authentication mode,
and enter the login credentials if using the SQL Server authentication mode. Click Next.

Figure 8-18 SQL Server 2005 Upgrade Advisor—Connection Parameters page.

5. The SQL Server Parameters page appears, as shown in Figure 8-19. Select the check
boxes for the databases to be analyzed. Additionally, if you want to analyze trace
files and SQL batch files, select the appropriate check boxes as well. Click Next.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 189
Figure 8-19 SQL Server 2005 Upgrade Advisor—SQL Server Parameters page.

6. Based on the components you selected for analysis in step 3, the appropriate com-
ponent parameter page displays. Enter the requested information for each, and
then click Next.

7. The Confirm Upgrade Advisor Settings page appears, as shown in Figure 8-20.
Review the information and click Run to execute the analysis process. You can
select the Send Reports To Microsoft check box if you want to submit your upgrade
report to Microsoft. Re-executing the Upgrade Advisor process causes any previous
reports to be overwritten.

Figure 8-20 SQL Server 2005 Upgrade Advisor—Confirm Upgrade Advisor Settings page.

190 Part II System Design and Architecture
8. The Upgrade Advisor Progress page appears, as shown in Figure 8-21. The analysis
may take several minutes to complete and is dependent on the number of compo-
nents selected. Once the analysis is completed, you can select Launch Report to
view the report that was generated or exit the wizard by clicking Close.

Figure 8-21 SQL Server 2005 Upgrade Advisor—Upgrade Advisor Progress page.

9. When you select Launch Report in step 8 or the Launch Upgrade Avisor Report
Viewer option shown in Figure 8-16, the window shown in Figure 8-22 appears.
From this window, you can choose to view all the issues for all the components
together or filter the view using the Instance Or Component and Filter By drop-down
lists. Clicking on the + next to a line item expands the display to show a more detailed
description. You also can use the This Issue Has Been Resolved check box on each
line item to mark the task resolved, which will then delete it from the current report.

Figure 8-22 SQL Server 2005 Upgrade Advisor—View Report window.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 191
Upgrade Procedure
The procedure to upgrade an earlier version of SQL Server to SQL Server 2005 is very
similar to the procedure for a new SQL Server 2005 installation. To upgrade a version of
SQL Server 7.0 or SQL Server 2000, start with steps 1 through 9 listed in the section
“Installing SQL Server 2005 Using the Installation Wizard.” Then follow these steps:

1. When the Instance Name page appears, select the default or named instance to
upgrade. To upgrade a SQL Server default instance already installed on your sys-
tem, click Default Instance, and then click Next to continue. To upgrade a SQL
Server named instance already installed on your system, click Named Instance, and
then enter the instance name in the text field below, or click the Installed Instances
button, select an instance from the Installed Instances list, and click OK to automat-
ically populate the instance name text field. After you have selected the instance to
upgrade, click Next to continue.

Note If you want to do an upgrade, make sure you specify the name of
the existing default or named instance correctly. If the instance specified
does not exist on the system, the Installation Wizard will install a new
instance instead of performing an upgrade.

2. The Existing Components page, shown in Figure 8-23, appears. On this page, you
can select the check boxes next to the components you want to upgrade (the list of
components is based on the SQL Server instances and versions installed on your
system and, therefore, may be different than what is shown in Figure 8-23). You can
also view the details of the listed components by clicking on the Details button in
the lower-right corner. Click Next to continue with the upgrade.

Figure 8-23 SQL Server Upgrade—Existing Components page.

192 Part II System Design and Architecture
Troubleshooting You should make sure that the SQL Server 2005 edi-
tion to which you’re trying to upgrade is listed in Table 8-7 as a valid
upgrade path. If not, the setup process will block the upgrade by graying
out the component selection check boxes.

3. The Upgrade Logon Information page appears. On this page, click the appropriate
radio button to select either the Windows Authentication Mode or the Mixed Mode
(Windows Authentication and SQL Server Authentication). If you select to use the
mixed mode, you will need to enter and confirm login password for the sa user.
Click Next to continue.

4. The upgrade process will analyze the instance and then display the Error And
Usage Report Settings page. On this page, you can select one of two radio buttons
to Automatically Send Error Reports To Microsoft Or Your Corporate Error Report-
ing Server, or to Automatically Send Feature Usage Data For SQL Server 2005 To
Microsoft, to set the desired default action. This data is collected for information
purposes only, and selecting either of these options will not have any adverse
effects on the performance of your system. Click Next to continue.

5. On the Ready To Install page, review the components selected for upgrade, and
then click Install to upgrade them.

Post-Upgrade Steps
The procedure explained previously upgrades the SQL Server database executables to
SQL Server 2005; however, this may not be sufficient to ensure optimal performance and
functioning of your application. In addition to upgrading to SQL Server 2005, you will
need to complete the following tasks manually to upgrade your individual databases and
do some housekeeping tasks:

1. Register servers After upgrading to SQL Server 2005, you must reregister your
servers.

2. Set database compatibility to 90 After an upgrade, SQL Server 2005 automat-
ically sets the database compatibility level for each database to the level of the pre-
vious SQL Server version. For example, if you upgrade SQL Server 2000 to SQL
Server 2005, the database compatibility level for all the upgraded user databases
will be set to 80 (SQL Server 2000). You should change the database compatibil-
ity level for each of your databases to SQL Server 2005 (90) by executing the
sp_dbcmptlevel stored procure command shown below from one of the SQL Server
tools like SQL Server Management Studio.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 193
sp_dbcmptlevel

Best Practices You should always run your databases in the 90 compat-
ibility level for SQL Server 2005 and avoid setting the compatibility level to
an earlier version to permanently work around any incompatibilities you
encounter after an upgrade.

3. Execute update statistics You should update statistics on all tables. This ensures
that the statistics are current and help optimize query performance. You can use
the sp_updatestats stored procedure to update the statistics on all user tables in your
database.

4. Update usage counters You should run DBCC UPDATEUSAGE on all upgraded
databases to correct any invalid row or page counts, for example DBCC UPDATE-
USAGE ('AdventureWorks').

5. Configure the surface area You should enable the required SQL Server 2005
features and services using the SQL Server 2005 Surface Area Configuration tool
explained later in this chapter.

6. Repopulate full-text catalogs The upgrade process disables full-text on all data-
bases. If you plan to use the full-text feature, you should repopulate the catalogs.
You can do this using the sp_fulltext_catalog stored procedure.

Reading the SQL Server 2005 Setup Log Files
SQL Server 2005 setup has a significantly enhanced logging mechanism wherein all
actions performed by setup are logged in an easy-to-read format. The master log file for
the setup process is named Summary.txt and is located under: %Program-
Files%\Microsoft SQL Server\90\Setup Bootstrap\LOG\. This file contains a sum-
mary for each component being installed. The following is a typical Summary.txt log
file fragment.

Microsoft SQL Server 2005 9.00.1399.06
==============================

OS Version : Microsoft Windows Server 2003 family, Enterprise Edition
Service Pack 1 (Build 3790)
Time : Thu Jan 12 22:38:12 2006

194 Part II System Design and Architecture
Machine : HOTH
Product : Microsoft SQL Server Setup Support Files (English)
Product Version : 9.00.1399.06
Install : Successful
Log File : C:\Program Files\Microsoft SQL Server\90\Setup
Bootstrap\LOG\Files\SQLSetup0003_HOTH_SQLSupport_1.log
--
Machine : HOTH
Product : Microsoft SQL Server Native Client
Product Version : 9.00.1399.06
Install : Successful
Log File : C:\Program Files\Microsoft SQL Server\90\Setup
Bootstrap\LOG\Files\SQLSetup0003_HOTH_SQLNCLI_1.log
--
Machine : HOTH
Product : Microsoft Office 2003 Web Components
Product Version : 11.0.6558.0
Install : Successful
Log File : C:\Program Files\Microsoft SQL Server\90\Setup
Bootstrap\LOG\Files\SQLSetup0003_HOTH_OWC11_1.log
--
…

You can use the Summary.txt file to examine the details of a component installation pro-
cess by referring to the log file name listed on the respective Log File line. This is partic-
ularly useful when a component fails to install and the installation process needs to be
debugged. The individual component log files are created in text format and stored in the
%ProgramFiles%\Microsoft SQL Server\90\Setup Bootstrap\LOG\Files directory.

Uninstalling SQL Server 2005
Similar to the installation process, SQL Server 2005 can be uninstalled using either an
uninstall wizard or the command prompt. The following sections explain both of these
methods in detail.

Uninstalling SQL Server 2005 Using the Uninstall Wizard
1. To begin the uninstall process, click the Start button, select Control Panel (or select

Settings and then Control Panel), and then in Control Panel, double-click Add Or
Remove Programs.

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 195
2. In the left pane, click Add/Remove Windows Components.

3. Select the SQL Server 2005 component to uninstall. The Change and Remove but-
tons are then displayed. Click Remove. This starts the SQL Server 2005 Unistall
Wizard.

4. The Component Selection page, shown in Figure 8-24, is displayed. On this page,
you can select the installed instance and common components you’d like to unin-
stall. You can select the Report button to view the list of SQL Server 2005 compo-
nents and features installed on your computer. The report displays the versions, the
editions, any updates, and the language information for each installed component
and feature. Click Next.

Figure 8-24 SQL Server 2005 Uninstall—Component Selection page.

5. The Confirmation page is displayed. Review the list of components and features
that will be uninstalled.

6. Click Finish to uninstall the selected components. The Setup Progress window
appears and displays the uninstall status for each component. When the uninstall
process is completed, the window will close automatically.

Note The Add Or Remove Programs window may continue to display
some of the components as installed even though they’ve been uninstalled.
This is because the Add Or Remove Programs window does not auto-
refresh. The easiest way to refresh the window is to close it and then click
Add Or Remove Programs in the Control Panel again.

196 Part II System Design and Architecture
Uninstalling SQL Server 2005 Using the Command Prompt
As mentioned earlier, SQL Server 2005 can be uninstalled from the local server by spec-
ifying the REMOVE option in command prompt. When the option is specified with the
ALL parameter, all the instance aware components are uninstalled. For example, the fol-
lowing command uninstalls all components from an instance called SS2K5 on the local
server.

start /wait <DVD Drive>\Servers\setup.exe /qb REMOVE=ALL INSTANCENAME=SS2K5

Note To uninstall the default instance, specify
INSTANCENAME=MSSQLSERVER.

The command prompt can also be used to selectively uninstall specific components of a
SQL Server 2005 instance. For example, the following command uninstalls the Analysis
Server components from the default instance of SQL Server on the local server in silent
mode with no GUI displayed (/qn).

start /wait <DVD Drive>\Servers\setup.exe /qn REMOVE=
Analysis_Server,AnalysisDataFiles INSTANCENAME=MSSQLSERVER

Note The REMOVE option can also be used in conjunction with the ADDLOCAL
option. While these two are seemingly orthogonal actions, they can be used very
effectively to simplify the installation command. For example, to install all the
components of SQL Server 2005 except Notification Services, you can install all
the components (ADDLOCAL=ALL) and use the REMOVE option to exclude Noti-
fication Services, as shown in the following example query:

start /wait <DVD Drive>\Servers\setup.exe /qn ADDLOCAL=ALL
REMOVE=Notification_Services INSTANCENAME=MSSQLSERVER

An alternative is to specify all the components of SQL Server 2005 except Notifi-
cation Services individually as comma-separated parameters to the ADDLOCAL
option.

These commands do not uninstall the SQL Native Access Client (SNAC) component
from the server. To uninstall SNAC, execute the command (where C is the boot drive).

start /wait C:\Windows\System32\msiexec /qb /X <DVD
Drive>\Servers\setup\sqlncli.msi

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 197
Using SQL Server Surface Area Configuration
SQL Server 2005 by default disables some features, services, and connections for new
installations in order to reduce the attackable surface area and, thereby, help protect your
system. This security scheme is new in SQL Server 2005 and is very different from earlier
versions, which by default always enable all installed components.

The SQL Server Surface Area Configuration tool is a new configuration tool that ships
with SQL Server 2005 and can be used to enable, disable, start, or stop features, services,
and remote connectivity. This tool provides a single interface for managing Database
Engine, Analysis Services, and Reporting Services features and can be used locally or
from a remote server.

The following steps list the process used to invoke and use the SQL Server Surface Area
Configuration tool:

1. Click the Start button and point to All Programs. Point to Microsoft SQL Server
2005, select Configuration Tools, and then select SQL Server Surface Area Config-
uration.

2. The SQL Server Surface Area Configuration start window, shown in Figure 8-25,
appears. From this window, you can specify the server you want to configure by select-
ing the link adjacent to Configure Surface Area For Localhost. In the Select Computer
dialog box that appears, select Local Computer or Remote Computer and enter the
name of the remote computer in the text box if necessary. Click OK to continue.

Figure 8-25 SQL Server Surface Area Configuration—Start window.

198 Part II System Design and Architecture
3. Click the Surface Area Configuration For Services And Connections link to enable
or disable Windows services and remote connectivity or the Surface Area Configu-
ration For Features link to enable or disable features of the Database Engine, Anal-
ysis Services, and Reporting Services.

4. Click the Surface Area Configuration for Services and Connections link to set the
startup state (Automatic, Manual, or Disabled) for each of the installed services and
Start, Stop, or Pause the respective service. In addition, you can use this link to man-
age the connectivity options by specifying whether local connections only or local
and remote connections are permitted, as shown in Figure 8-26.

Figure 8-26 Surface Area Configuration For Services And Connections dialog box.

Real World Error While Connecting Remotely

I have found that one of the most common problems for folks using SQL Server
2005 Express, Evaluation, or Developer Editions is not being able to connect to the
server from a remote system. The error message returned when trying to connect
remotely is as follows:

“An error has occurred while establishing a connection to the server. When connecting to
SQL Server 2005, this failure may be caused by the fact that under the default settings
SQL Server does not allow remote connections. (provider: SQL Network Interfaces, error:
28 - Server doesn’t support requested protocol) (Microsoft SQL Server, Error: -1)”

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 199
As mentioned earlier, SQL Server 2005 by default disables several network proto-
cols to reduce the possible attack surface area. In line with this principle, the SQL
Server 2005 Express, Evaluation, and Developer Editions disallow remote connec-
tions to the server, and that is why you cannot connect to the server remotely. You
can easily remedy the situation by using the SQL Server Surface Area Configuration
tool, selecting Remote Connections, and then selecting the Local And Remote Con-
nections and Using Both TCP/IP /IP And Named Pipes options.

5. Click the Surface Area Configuration For Features link. The window shown in Fig-
ure 8-27 appears. This window provides a single interface for enabling or disabling
the installed components listed in Table 8-6.

Note To configure a component, the component has to be running. If the
component is not running, it will not be displayed as shown in Figure 8-27.

Table 8-6 Surface Area Configuration for Features

Component Configurable Feature

Database Engine Ad hoc remote queries

CLR integration

DAC

Database Mail

Native XML Web Service

OLE Automation

SQL Server Service Broker

SQL Mail

Web Assistant

xp_cmdshell

Analysis Services Ad hoc data mining queries

Anonymous connections

Linked objects

User-Defined Functions

Reporting Services Scheduled Events and Report Delivery

Web Service and HTTP Access

Windows Integrated Security

200 Part II System Design and Architecture
Figure 8-27 Surface Area Configuration for Features window.

Best Practices These days security is a major concern for almost all deploy-
ments. To reduce the surface area for a possible attack, be selective about the
features you enable and have a policy for enabling only those that you plan to
use. It is also worthwhile to use the SQL Server Surface Area Configuration tool
periodically and disable features that you are no longer using.

sac Utility
The sac utility can be used to import or export Microsoft SQL Server 2005 surface area
settings. This utility is very useful in cases where the same surface area configuration
needs to be replicated on multiple servers. To configure multiple servers with the same
setting, you can configure the surface area on one server using the graphical SQL Server
Surface Area Configuration tool and then use the sac utility to export the setting to a file.
This file can then be used to import the setting into remote servers using the same utility.
The sac utility (Sac.exe) is located under the directory:

%Program Files%\Microsoft SQL Server\90\Shared

The following command can be used to export the surface area configuration settings for
all default instance settings of a server named HOTH into an XML-formatted file called
sacSetting.txt.

sac out C:\sacSettings.txt -S HOTH -U sa -P Pa55wD -I MSSQLSERVER

Chapter 8 Installing and Upgrading Microsoft SQL Server 2005 201
This file can then be imported into some other server using the in option. The following
command imports the sacSettings.txt file into a server called NABU.

sac in C:\sacSettings.txt -S NABU

More Info The sac utility is very powerful and provides the flexibility of export-
ing and importing settings for specific services as well as Features and Network
settings. The entire list of options for this utility can be found at http://
msdn2.microsoft.com/en-us/library/ms162800.aspx.

Summary
Installing the software is the first step towards using SQL Server 2005. Although it is a rel-
atively easy task, it is important to do preinstallation planning, select the correct installa-
tion options, and perform all of the postinstallation configuration steps to ensure an
optimal installation and to avoid having to make repairs or patches postinstallation.

In this chapter, you’ve learned about the Installation Wizard and command prompt-
based options available for installing the SQL Server 2005 components. You also learned
about the new SQL Server 2005 Upgrade Advisor and how it can assist you in ensuring
a smooth upgrade process, and how the SQL Server Surface Area Configuration tool and
sac utility can be used to configure SQL Server 2005.

Chapter 9

Configuring Microsoft SQL
Server 2005 on the Network

Understanding the SQL Server Network Services .204

SQL Native Client (SNAC) .210

Configuring Network Protocols .213

Using ODBC Data Source Names (DSN) .221

SQL Server Browser Service .230

Network Components and Performance .233

Network Monitoring .236

Summary .238

Once you’ve installed Microsoft SQL Server 2005, the next step is to configure the net-
work components so that it is accessible via the network. This is an important step in
ensuring connectivity to the database system and has a large influence on the overall per-
formance. SQL Server 2005 introduces many changes in the way the network compo-
nents are configured as well as a new network library that makes the task of configuring
easier in some ways, given the simplified configuration tools and libraries, but more
complex in other ways, given all of the new concepts and tools introduced.

In this chapter, we will start by looking at the SQL Server 2005 network architecture.
Using this as a foundation, you will learn about the various network libraries, appli-
catieon programming interfaces (APIs), and the new SNAC (SQL Native Client) library.
You will also learn about the SQL Server Browser service, ODBC DSNs (Data Source
Name), and the configuration of network protocols. Lastly, you will learn how to monitor
network and performance, how to identify possible network bottlenecks, and how to
resolve performance problems.
203

204 Part II System Design and Architecture
Understanding the SQL Server Network Services
SQL Server 2005 uses many well-defined protocol layers to enable communication
between the server and clients. Figure 9-1 schematically depicts the three communication
layers for SQL Server 2005:

■ Application Protocol layer

■ SQL Network Interface (SNI) layer

■ Hardware layer

Figure 9-1 SQL Server network communication layers.

A request for data originates on the client side by a client application like SQL Server
Management Studio (SSMS) or a custom SQL Server application. Client applications use
APIs such as ODBC and OLE DB to access the data. The client request is sent down the
stack to the SNI layer and serviced by either TCP/IP, named pipes, shared memory or VIA
network libraries based on the status (enabled/disabled) and the configured priority
order. The APIs and network libraries are explained in detail in the following sections.
The SNI layer then sends the request to the hardware layer. The hardware layer uses a
communication protocol like Ethernet to transmit the data across the wire to the server
system.

At the server side, the request goes up the network stack from the hardware layer,
through the SNI layer, and to the database engine as shown in Figure 9-1. The database
engine then services the request and sends the requested data back to the client through
the same layers in reverse order.

While Figure 9-1 depicts the client and server network stacks separately, this is only a log-
ical representation of the client and server side network stacks. In reality, both of these
stacks can reside on the same computer system. However, even when the network stacks

ODBC OLEDB Other

TCP/IP
Named
Pipes

Shared
Memory

VIA

SQL Server

ODBC OLEDB Other

TCP/IP
Named
Pipes

Shared
Memory

VIA

Client Server

Client Application

Application
Protocol

SQL Network
Interface (SNI)

Hardware Layer

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 205
reside on the same system, the communication still has to pass through the different net-
work layers; the only layer that can be minimized is the hardware layer.

SQL Server APIs
To communicate with SQL Server, an application must speak SQL Server’s language. One
means of communication is to use one of the tools provided with SQL Server, such as
command-line sqlcmd, or the SQL Server Management Studio. These tools can be useful
for executing ad-hoc queries, but they are not useful for day-to-day application process-
ing. For example, the people who process inventory, accounts payable, and accounts
receivable can work more productively using specialized applications rather than extract-
ing the data by keying in SQL statements. In fact, most users of such applications don’t
know SQL.

SQL Server provides a number of APIs like ODBC, OLEDB and JDBC which developers
can use to write applications that connect to SQL Server and execute various database
functions. This section describes some common APIs.

ODBC Connectivity
Pronounced as separate letters, ODBC is short for Open DataBase Connectivity, a stan-
dard database access method developed by the SQL Access group in 1992. The goal of
ODBC is to make it possible to access any data from any application. SQL Server 2005
fully supports the ODBC protocol via the MDAC (Microsoft Data Access Components)
library and the newer SNAC library, both of which are explained later in this chapter.

The ODBC API has the same form regardless of the relational database management sys-
tem (RDBMS) making it well-suited for applications that require supporting multiple
back-end data sources. In fact, it is one of the most popular protocols and used by more
than 70 percent of industry applications.

More Info For more information on ODBC refer to:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkod
bcoverview.asp.

Real World ODBC Connection Pooling—What Is It?

The ability to pool connections from within an application was introduced with
ODBC 2.x. Normally, an application creates an additional connection from the
application layer to the database each time a different user logs in to the application.

206 Part II System Design and Architecture
This process can be inefficient because establishing and maintaining a connection
to the database involves quite a bit of overhead.

A connection pool allows other threads within an application to use existing ODBC
connections without requiring a separate connection. This capability can be espe-
cially useful for Internet applications that make repeated connections to the data-
base. Applications that require connection pooling must register themselves when
they are started. Connection pooling can be enabled when creating or configuring
the DSN, as explained later in this chapter.

When an application requests an ODBC connection, the ODBC Connection Man-
ager determines whether a new connection will be initiated or an existing connec-
tion reused. This determination is made outside the control of the application. The
application thread then works in the usual manner. Once the thread has finished
with the ODBC connection, the application makes a call to release the connection.
Again, the ODBC Connection Manager takes control of the connection. If a connec-
tion has been idle for a certain amount of time, the ODBC Connection Manager will
close it.

While connection pooling can help save resources and possibly even increase perfor-
mance, careful consideration should be given to factors like security and application
functionality before enabling it. I recommend that you consult your application con-
figuration manual to determine whether connection pooling is well-suited for your
application.

OLE DB
Object Linking and Embedding (OLE DB; DB refers to databases) is the strategic system-
level programming interface for accessing data and the underlying technology for ADO
as well as a source of data for ADO.NET. OLE DB is an open standard for accessing all
kinds of data, both relational and nonrelational, including mainframe ISAM/VSAM and
hierarchical databases; e-mail and file system stores; text, graphical, and geographical
data; and custom business objects, making it conceptually easier for extracting data from
heterogeneous sources.

OLE DB provides consistent, high-performance access to data and can support a variety
of development needs, including the creation of front-end database clients and middle-
tier business objects using live connections to data in relational databases and other
stores. OLE DB is commonly used when building Visual BASIC applications and is
closely tied to ADO. As of SQL 7.0, it works with COM and DCOM. Unlike ODBC, OLE
DB does not require that you set up a DSN.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 207
More Info For more information on OLE DB refer to
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/oledb/htm/das
dkoledboverview.asp.

What Is MDAC?

MDAC is a common abbreviation for Microsoft Data Access Components, which is
a group of Microsoft technologies that interact together as a framework, allowing
programmers a uniform and comprehensive way of developing applications for
accessing data. MDAC is made up of various components: ActiveX Data Objects
(ADO), OLE DB, and Open Database Connectivity (ODBC).

The MDAC architecture may be viewed as three layers: a programming interface
layer, a database access layer, and the database itself. These component layers are all
made available to applications through the MDAC API.

MDAC is integrated with Microsoft Windows and ships with the operating system.
The latest version as of January 2006 is MDAC 2.8 SP1. Additional information
about MDAC can be found at http://msdn.microsoft.com/data/mdac.

JDBC
Microsoft first released a JDBC (Java Database Connectivity) driver a couple of years back
and supported connectivity from Java applications to SQL Server. Prior to this release,
customers wanting to access SQL Server from Java application were forced to use third-
party JDBC drivers such as those from DataDirect (www.datadirect.com).

SQL Server 2005 introduces an updated version of this driver. The SQL Server 2005 JDBC
Driver download is available to all SQL Server users at no additional charge and provides
access to SQL Server 2000 and SQL Server 2005 from any Java application, application
server, or Java-enabled applet. This is a Type-4 JDBC driver that is JDBC 3.0 compliant and
runs on the 1.4 JDK and higher. The SQL Server 2005 JDBC driver supports Java-based
desktop applications and server applications using Java 2 Enterprise Edition (J2EE). It has
been tested against all major application servers including BEA WebLogic, IBM Web-
Sphere, JBoss, and Sun, and runs on Linux and Solaris in addition to Windows.

More Info The new JDBC Driver is also freely redistributable for registered
partners. Additional information about the driver and redistribution license can be
found at http://msdn.microsoft.com/data/jdbc/default.aspx.

208 Part II System Design and Architecture
Other APIs
A number of other APIs are also available to enable your applications to communicate
with SQL Server. These APIs include SQL Management Objects (SMO), DBLib, SQL-
Distributed Management Framework (SQL-DMF), and SQL-Namespace (SQL-NS). In
general, each of these protocols supports a specific function or market segment that
requires its own programming interface.

Note SQL Server 2005 does not ship the DBLib driver, but it still supports the
API. This means that any DBLib-based application is supported with SQL Server
2005 but needs to have the DBLib library separately installed on the client
systems.

SQL Server Network Libraries
As discussed earlier, SQL Server supports a number of net-libraries: Named Pipes, TCP/
IP, shared memory and VIA at the SNI layer. Each network library corresponds to a dif-
ferent network protocol or set of protocols. All SQL Server commands and functions are
supported across all network protocols; however, some protocols are faster than others.
This section provides a brief overview of each network library.

Named Pipes
Named pipes is a protocol developed for local area networks. With named pipes a por-
tion of memory is used by one process to pass information to another process, so that the
output of one is the input of the other. The second process can be on the same computer
as the first or on a remote networked computer.

Named pipes is the default client protocol and one of the default network protocols on
Windows systems. Although named pipes is an efficient protocol, it is not usually used
for large networks because it does not support routing and gateways. It is also not pre-
ferred for use with a slower network because it requires significantly more interaction
between the server and the client than do other protocols, such as TCP/IP.

Shared Memory
In SQL Server 2005 the shared memory protocol is implemented as local named pipes
and runs in kernel mode, making it extremely fast. Clients using the shared memory pro-
tocol can connect only to a SQL Server instance running on the same computer. This lim-
its the usefulness of this protocol and makes it well-suited only for applications that run
locally on the database server system and for troubleshooting cases where you suspect
that the other protocols are configured incorrectly.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 209
TCP/IP
TCP/IP is one of the most popular network protocols because of the number of platforms
on which it runs, its acceptance as a standard, and its high speed. TCP/IP is also the most
common network protocol used for Internet traffic, includes standards for routing net-
work traffic, and offers advanced security features. The TCP/IP net-library’s rich feature
set coupled with its high performance makes it a good choice.

The TCP/IP protocol provides many settings to fine tune its performance, which often
makes configuration a complex task. Most of the key settings can be altered via SQL
Server Configuration Manager, as explained later in this chapter. Other settings not
exposed via SQL Server Configuration Manager can be altered using the Windows regis-
try. You should refer to your Microsoft Windows documentation for details about these
settings and best practices when making changes directly to the Windows registry.

VIA
The Virtual Interface Adapter (VIA) is a high-performance protocol that requires special-
ized VIA hardware and can be enabled only with this hardware. It is recommended that
you consult your hardware vendor for information about using the VIA protocol.

Selecting a Network Library
Since the shared memory protocol can connect only to a SQL Server instance running on
the same computer, its usefulness is limited. On the other hand, the VIA protocol, while
high-performing, requires specialized hardware which usually makes it an expensive
option and limits its use. This leaves the choice between the named pipes and TCP/IP
protocols for most applications.

In a fast local area network (LAN) environment, TCP/IP and named pipes clients are
comparable in terms of performance. However, the performance difference between the
two becomes apparent with slower networks, such as across wide area networks
(WANs) because of the different ways the interprocess communication (IPC) mecha-
nisms communicate.

For named pipes, network communications are typically more interactive. A server does
not send data until the client asks for it using a read command. A network read typically
involves a series of peek named pipes messages before it begins to read the data. These
can be very costly in a slow network and cause excessive network traffic.

With TCP/IP, data transmissions are more streamlined and have less overhead. Data
transmissions can also take advantage of TCP/IP performance enhancement mecha-
nisms such as windowing and delayed acknowledgements, which can be very beneficial
in a slow network. Depending on the type of applications, such performance differences
can be significant. TCP/IP also supports a backlog queue, which can provide a limited

210 Part II System Design and Architecture
smoothing effect compared to named pipes that may lead to pipe busy errors when
attempting to connect to SQL Server.

In general, TCP/IP is preferred in slow LAN, WAN, or dial-up networks, whereas a named
pipe is a better choice when network speed is not an issue because it offers more func-
tionality and ease of use.

Note The Multiprotocol, NWLink IPX/SPX, AppleTalk and Banyan VINES proto-
cols, which were supported with earlier versions of SQL Server, are no longer sup-
ported with SQL Server 2005.

SQL Native Client (SNAC)
SQL Native Client, also known as SNAC (pronounced to rhyme with “lack”), is a data
access technology new in Microsoft SQL Server 2005. SNAC is a stand-alone data access
application programming interface (API) that combines the SQL OLE DB provider and
the ODBC driver into one native dynamic-link library (SQLNCLI.DLL) while also provid-
ing new functionality above and beyond that supplied by the Microsoft Data Access Com-
ponents (MDAC).

It is a common misconception that the SQL Native Client replaces MDAC. This is abso-
lutely not true; MDAC is still fully supported. The big difference between SNAC and
MDAC is that unlike earlier editions, SQL Server 2005 does not distribute the MDAC
library. Instead, it ships the SNAC library, which is backward compatible with MDAC to
a large extent but not one hundred percent. The MDAC distribution is now owned by the
Windows operating system, and the SQL Server-specific features are frozen at the SQL
Server 2000 level, with MDAC 2.8 being the last common version. This change provides
SQL Server with a better version of the story going forward, in a way eliminating the
dependence on Windows and providing the flexibility to introduce new features and
changes that are SQL server specific. SNAC is supported only on Windows 2000 with
Service Pack 4 (or higher), Windows XP with Service Pack 1 (or higher), and Widows
2003 with or without Service Packs.

SQL Native Client introduces a simplified architecture by way of a single library (SQLN-
CLI.DLL) for all the APIs and can conceptually be viewed to be built up of four compo-
nents: ODBC Functionality (based on SQLSRV32.DLL), OLEDB Functionality (Based on
SQLOLEDB.DLL), TDS Parser plus Data Access Runtime Services, and SNI Functionality
(based on DBNETLIB.DLL), as shown in Figure 9-2.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 211
Figure 9-2 SQL Native Client architecture.

SNAC is built on a completely restructured code base and has improved serviceability
and performance. While your application workload may exhibit different performance
characteristics, some benchmark tests using artificial workloads have exhibited perfor-
mance comparable to MDAC for the OLEDB provider and up to 20 percent faster for
ODBC.

Using SQL Native Client
SQL Native Client can be used for new applications or can be substituted for MDAC to
enhance existing applications that need to take advantage of new SQL Server 2005 fea-
tures. SQL Server 2005 features that require SNAC include the following:

■ Database mirroring

■ Asynchronous operations

■ New data types (XML data types, user-defined data types, large value data types)

■ Multiple Active Result Sets (MARS)

■ Query notifications

■ Password change/expiry

■ Snapshot isolation (this does not apply to Read Committed Snapshot Isolation)

■ Encryption without validation

SQLNCLI.DLL

ODBC Functionality
(based on SQLSRV32.DLL)

OLEDB Functionality
(based on SQLOLEDB.DLL)

TDS Parser + Data Access Runtime Services

BCP Interfaces BCP Interfaces

SNI (SQL Native Interface) Functionality
(based on DBNETLIB.dll)

212 Part II System Design and Architecture
More Info You can find more information about these features by referring to
the “Features of SQL Native Client” topic at
http://msdn.microsoft.com/data/sqlnative/default.aspx.

SQL Server 2005 applications that utilize features like the new large value data-types (for
example, VARCHAR(MAX)) that require SNAC get down-leveled to the corresponding
SQL Server 2000 equivalent (for example, TEXT) when MDAC is used. Client applica-
tions using SNAC can access SQL Server 2000 and SQL Server 7.0, but as can be expected
some new features, such as MARS, are not available for use.

There is another misconception that MDAC support is being deprecated by SQL Server,
and all applications should immediately adopt SNAC. This again is not true. While only
SNAC will be shipped with future versions of SQL Server, support for MDAC is not going
away anytime in the foreseeable future. If your application does not need to use any of the
new SQL Server 2005 features that require SNAC, you can continue using the MDAC
library and upgrade to SNAC when you have a good reason to do so.

Converting an application to use SNAC is easy and can be achieved by performing the fol-
lowing steps:

1. Change the application connection string. This usually involves an application
code change but can also be done without one in cases where the application uses
a configuration file to specify the connection string.

2. Create a new SNAC based ODBC DSN for applications that require a DSN. The
procedure to do this is explained in the “Creating an ODBC DSN” section later in
this chapter.

3. Test the new configuration exhaustively. Although step 1 is necessary to be able
to use features such as the new large value data types, many of the features such
as read committed snapshot isolation can be used by simply performing steps 2
and 3.

I’d recommend you use SNAC for new applications or applications being re-
designed while continuing to use MDAC for stable, mature, and deployed applica-
tions. Existing applications that need to exploit SQL Server 2005 capabilities
should convert to use SQL Native Client.

Tracing and Debugging
Tracing and debugging client access problems are significantly easier with SNAC. SNAC
contains a rich, flexible, built-in data trace facility called BID (Built-In Diagnostics) trac-
ing which can be used to trace all client components like OLE DB, ODBC, TDS Parser,

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 213
and SNI (Netlibs). BID tracing is fairly easy to use and can help with cursory analysis and
detailed under-the-cover investigation of the exact sequence of operations at the network
library level.

More Info For additional information about BID tracing refer to
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnadonet/html/
tracingdataaccess.asp. This article contains a good overview of the trace architec-
ture, demonstrates how you can perform cursory trace file analysis, and looks at
simple trace use-cases.

SNAC is installed with SQL Server 2005. Client systems that need to connect to SQL
Server 2005 using SNAC need SNAC to be installed on each client system individually.
You can do this using the procedure outlined in Chapter 8, “Installing and Upgrading
Microsoft SQL Server 2005.”

Configuring Network Protocols
SQL Server 2005 by default disables certain network protocols to enhance the security
of the server. Table 9-1 presents the default protocol status for each SQL Server 2005
edition.

If an instance of SQL Server is being upgraded to SQL Server 2005, the network config-
uration settings from the previous installation are preserved. This does not apply for
cases where a previous version of SQL Server exists on the server but is not being
upgraded. SQL Server 2005 treats such cases the same as a new install and configures the
network protocols as per Table 9-1.

Table 9-1 Default Network Protocol Configurations

SQL Server
2005 Edition

Shared
Memory TCP/IP Named Pipes VIA

Express Enabled Disabled Enabled for local connections,
disabled for remote connections

Disabled

Workgroup Enabled Enabled Enabled for local connections,
disabled for remote connections

Disabled

Standard Enabled Enabled Enabled for local connections,
disabled for remote connections

Disabled

Enterprise Enabled Enabled Enabled for local connections,
disabled for remote connections

Disabled

Developer Enabled Disabled Enabled for local connections,
disabled for network connections

Disabled

214 Part II System Design and Architecture
The network protocols can be enabled using the SQL Server Surface Area Configuration
utility explained in Chapter 8 or using the SQL Server 2005 Network Configuration
mode of SQL Server Configuration Manager, as explained in the next section.

Important The VIA (Virtual Interface Architecture) protocol is generally used
for heavy-duty high-end workloads and requires special network adapters. It is
disabled by default, and you should not enable it unless you have the correct
network adapters and plan to use this protocol.

Configuring Server and Client Protocols
In SQL Server 2005, successfully establishing connectivity between a client application
and the SQL Server instance requires both the server protocols on the system hosting the
SQL Server 2005 instance and the client protocols on the client system to be configured
correctly. Although you can configure these servers and client protocols using various
tools and utilities, I’ve found the SQL Server Configuration Manager to be the simplest to
use.

SQL Server Configuration Manager is a tool that is installed by SQL Server 2005 setup. It
can be used to configure:

■ SQL Server 2005 Services

■ SQL Server 2005 Network Protocols for each instance of SQL Server installed on
the system

■ SQL Native Client Configuration

The sections below explain each of these in detail.

SQL Server 2005 Services
SQL Server Configuration Manager can be invoked by selecting Programs from the Start
menu, then selecting Microsoft SQL Server 2005, then Configuration Tools, and then
SQL Server Configuration Manager. When invoked, the window shown in Figure 9-3 is
displayed.

You can use the SQL Server 2005 Services pane to start, stop, pause, resume, or restart
any of the services installed on the local system by right-clicking on the respective service
name. You can also configure the properties, such as the login account, the startup mode,
the startup parameters, etc., by right-clicking the respective service name and selecting
the Properties option.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 215
Figure 9-3 SQL Server Configuration Manager.

SQL Server 2005 Network Protocols
Expanding the SQL Server Network Configuration lists the protocols for each installed
SQL Server instance. Selecting a protocol for a particular instance results in the protocols
being displayed on the right-hand pane and their current status, as shown in Figure 9-4.

Figure 9-4 SQL Server Configuration Manager—SQL Server Network Configuration.

Each of these protocols can be enabled or disabled by right-clicking the respective proto-
col and selecting the appropriate action. In addition, certain protocol properties can also
be set by right-clicking on the respective protocol and selecting the Properties option.

216 Part II System Design and Architecture
 The options that can be set for each of the four protocols are as follows:

1. Shared Memory Shared Memory Properties dialog box can be used to enable or
disable the shared memory protocol. Shared memory has no configurable settings.

2. Named Pipes The Named Pipes Properties dialog box can be used to enable and
disable the protocol or change the named pipe to which Microsoft SQL Server lis-
tens. To change the named pipe, type the new pipe name in the Pipe Name box and
then restart SQL Server. By default SQL Server listens on \\.\pipe\sql\query for
the default instance and \\.\pipe\MSSQL$<instancename>\sql\query for a
named instance. This field is limited to 2,047 characters.

Best Practices Since sql\query is well-known as the named pipe used by
SQL Server you should change the pipe name to help reduce the risk of
malicious attacks.

3. TCP/IP The TCP/IP Properties dialog box has two tabs: Protocol and IP Addresses.
The Protocol tab can be used to configure the following parameters:

❑ Enabled This parameter is used to specify whether the TCP/IP protocol is
enabled (Yes) or disabled (No).

❑ Keep Alive SQL Server 2005 does not implement changes to this property.

❑ Listen All When this parameter is set to Yes, SQL Server listens on all of the
IP addresses that are bound to network cards on the system. When set to No,
you must configure each IP address separately using the Properties dialog
box for each IP address. Unless you have a specific need to bind individual IP
addresses, you should leave this set to Yes, which is the default value.

❑ No Delay SQL Server 2005 does not implement changes to this property.

The IP Addresses tab can be used to configure the following parameters for each of
the IP addresses (IP):

❑ Active Indicates whether SQL Server is listening on the designated port (Yes)
or not (No). This option cannot be set for IPAll.

❑ Enabled This parameter is used to enable (Yes) or disable (No) the connec-
tion. This option cannot be set for IPAll.

❑ IP Address This parameter is used to specify the IP address used by the con-
nection. This option cannot be set for IPAll.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 217
❑ TCP Dynamic Ports This parameter is used to specify whether dynamic
ports are used. Setting to 0 enables dynamic ports. If no value is specified,
dynamic ports are not enabled.

❑ TCP Port This parameter is used to specify a static port on which SQL Server
listens. The SQL Server database engine can listen on multiple ports on the
same IP address. To enable SQL Server to listen on multiple ports on the same
IP address, list multiple ports separated by a comma in this field, for example,
1428,1429,1430. However, you should only specify ports that are not already
being used. This field is limited to 2,047 characters. To configure a single IP
address to listen only on the specified ports, the Listen All parameter must
also be set to No on the Protocols Tab of the TCP/IP Properties dialog box.

4. VIA The VIA Properties dialog box can be used to enable or disable the VIA protocol
as well as set the following parameter values:

❑ Default Port This parameter is used to set the default port. The values are
specified in the format <network interface card number>:<port number>, for
example, 0:1433.

❑ Enabled This parameter is used to specify whether the protocol is enabled
(Yes) or disabled (No).

❑ Listen Info This parameter is specified in the format <network interface card
number>:<port number>. Multiple ports can be specified by separating them
with commas. This field is limited to 2,047 characters.

The SQL Server 2005 service must be restarted to apply the changes to any of the proto-
cols. With SQL Server 2005, configuring the network protocols incorrectly causes the
SQL server service to fail to start up. For example, enabling the VIA protocol on a system
that does not have the correct VIA hardware configured prevents the SQL Server service
from starting up and results in error messages similar to the following being reported in
the SQL Server error log:

2006-03-04 09:32:39.85 Server

Error: 17182, Severity: 16, State: 1.

2006-03-04 09:32:39.85 Server

TDSSNIClient initialization failed with error 0x7e, status code 0x60.

2006-03-04 09:32:39.89 Server

 Error: 17182, Severity: 16, State: 1.

2006-03-04 09:32:39.89 Server

TDSSNIClient initialization failed with error 0x7e, status code 0x1.

2006-03-04 09:32:39.89 Server

218 Part II System Design and Architecture
 Error: 17826, Severity: 18, State: 3.

2006-03-04 09:32:39.89 Server

Could not start the network library because of an internal error in the network
library. To determine the cause, review the errors immediately preceding this one
in the error log.

2006-03-04 09:32:39.89 Server

 Error: 17120, Severity: 16, State: 1.

2006-03-04 09:32:39.89 Server

SQL Server could not spawn FRunCM thread. Check the SQL Server error log and the
Windows event logs for information about possible related problems.

Note The SQL Server error log is located under the MSSQL\LOG directory of
the particular instance of SQL Server, for example, C:\Program Files\Microsoft
SQL Server\MSSQL.1\MSSQL\LOG\.

SQL Native Client Configuration
SQL Server 2005 client programs communicate with SQL Server 2005 servers using the
protocols provided in the SNAC library file. The SQL Native Client Configuration set-
tings can be used to specify the status (enabled/disabled) and the order of the protocols
for the client programs running on the system. These settings do not affect client pro-
grams connecting to earlier versions of SQL Server.

The Client Protocols under the SQL Native Client Configuration can be used to manage
the client protocols. When Client Protocols is selected, the window shown in Figure 9-5
appears.

Figure 9-5 SQL Server Configuration Manager—Client Protocols.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 219
To change the status of a client protocol, you can right click on the respective protocol
name on this window and select Enable or Disable.

You can also manage the order in which the client protocols are selected by right-clicking
any of the protocols and selecting Order. Doing so results in the Client Protocols Proper-
ties window, shown in Figure 9-6, appearing.

Figure 9-6 SQL Server Configuration Manager—Client Protocols Properties.

In this window you can enable or disable the client protocols by selecting the respec-
tive protocol and then using the “>” or “<” button. Once enabled, you can change the
order of the protocols using the up and down arrows in the right-hand pane of the
window. As discussed earlier, when enabled the shared memory protocol is always
tried first and therefore, on this window, this protocol can only be enabled or disabled
using the Enable Shared Memory Protocol check box located towards the bottom of
the window.

The properties for the client protocols can be managed by selecting Client Protocols in
the console pane, right-clicking the desired protocol in the details pane, and selecting
Properties. The configured properties are used by all client programs on the system con-
necting via the respective protocol. You can set the properties for the four different pro-
tocols as follows:

1. Shared Memory Shared memory has no configurable settings. The only prop-
erty you can set is whether the protocol is enabled (Yes) or disabled (No).

220 Part II System Design and Architecture
2. Named Pipes The named pipes properties can be used to set whether the proto-
col is enabled (Yes) or disabled (No) and to set the default pipe the Named Pipes
Net-library uses to attempt to connect to the target instance of SQL Server. By
default, SQL Server listens on \\.\pipe\sql\query which is specified as sql/query
in the Default Pipe text box.

3. TCP/IP The TCP/IP Properties can be used to set the following four properties:

❑ Default Port The default port specifies the port that the TCP/IP Net-library
uses to attempt to connect to the target instance of SQL Server. The port for
the default SQL Server instance is 1433, which is used when connecting to a
default instance of Database Engine. If the default instance has been config-
ured to listen on a different port, you will need to change this value to that
port number. This does not apply when connecting to named SQL Server
instances because the SQL Server Browser service is used to dynamically
determine the port number.

❑ Enabled This parameter is used to specify whether the protocol is enabled
(Yes) or disabled (No).

❑ Keep Alive TCP/IP is a connection-oriented protocol, implying that the
connection between the client and the server is maintained even during
instances when there is no data being communicated back and forth. The
Keep Alive parameter specifies how often TCP attempts to verify that an idle
connection is still intact by sending a KEEPALIVE packet. The parameter is
specified in milliseconds and has a default value of 30,000 milliseconds. For
majority of the deployments the default value should work fine. You should
change this setting only if you’re trying to resolve a specific TCP/IP-related
connection problem.

❑ Keep Alive Interval If a KEEPALIVE packet is not acknowledged by the
server, the client retransmits it. The Keep Alive Interval is used to determine
the interval separating the retransmissions until a response is received. The
default is 1,000 milliseconds, which should work fine for a majority of the
deployments.

4. VIA The VIA Properties can be used to set the following three settings:

❑ Default NIC This parameter indicates to which Network Interface Card
(NIC) the VIA protocol is bound. NICs are numbered starting at zero. Com-
puters with only one NIC always indicate 0.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 221
❑ Default Server This parameter specifies the VIA port on which VIA is listen-
ing when accepting connections from VIA clients. The default port is: 0:1433.

❑ Enabled This parameter is used to specify whether the protocol is enabled
(Yes) or disabled (No).

Using ODBC Data Source Names (DSN)
An ODBC Data Source Name (DSN) is a symbolic name that represents an ODBC con-
nection and is used to provide connectivity to a database through an ODBC driver. A
DSN stores the connection details such as database name, database driver, user identi-
fier, password, and so on , saving you the trouble of having to remember and specify all
the details when making a connection. While ODBC applications can access the data-
base directly and do not necessarily require a connection through a DSN, using an
ODBC DSN is preferred because of its transparency, flexibility, and ease of use. Once
you create an ODBC DSN you can reference it in your application to retrieve data from
the database.

Depending on the requirements of your application you can create one of three types of
DSNs:

■ System DSN This type of DSN has a system-wide scope, implying that it is visible
and accessible by all users and Windows services that log in to the system. The con-
nection parameters for a system DSN are stored in the Windows registry. This is the
most commonly used DSN type.

■ User DSN This type of DSN is limited to having a user-wide scope, implying that
only the user who created the DSN can view and use it. Similar to System DSNs, the
information for User DSNs is stored in the registry. User DSNs are very useful in
shared development and test environments where multiple users may need to
share a common system and use it in differing ways. In such environments each
user of the system can create his or her own User DSN which is not viewable to any-
one else, thereby eliminating any confusion and limiting unintentional modifica-
tions to a DSN created by some other user.

■ File DSN A File DSN is very similar to a System DSN, the only difference being
that the parameter values are stored in a file instead of the Windows registry. File
DSNs are text files that have a .DSN extension and are stored under: %Program
Files%\Common Files\ODBC\Data Sources. File DSNs have the advantage of
being easy to backup since all you need to do is back up the .DSN files.

222 Part II System Design and Architecture
Best Practices When using the mixed mode authentication, File DSNs store
the SQL Server user ID and password in plain text. Therefore, you should always
secure these files.

All three DSNs are functionally equivalent. The only difference lies in their scope and the
location where the parameter values are stored. DSNs are created on the client system. If
there are multiple client systems that need the same DSN, you will have to create it mul-
tiple times on each of the client systems. Multiple DSNs can point to the same SQL Server
database.

Creating an ODBC DSN
Creating an ODBC DSN is simple. The steps below explain the procedure that can be
used to create a System DSN. User and File DSN can be created using the same basic
steps by selecting the User and File options as appropriate:

1. Open the ODBC Data Source Administrator by selecting Programs from the Start
menu, then Control Panel, then Administrative Tools, Data Sources (ODBC), and
then select the System DSN tab. The ODBC Data Source Administrator window
appears, similar to the one shown in Figure 9-7.

Figure 9-7 ODBC Data Source Administrator.

2. Select the Add button. The Create New Data Source window appears, as shown in
Figure 9-8.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 223
Figure 9-8 Create New Data Source.

3. To create a System DSN using the new SNAC driver, scroll down to the bottom of
the list, select SQL Native Client, and click Finish. The first page of the Create a New
Data Source to SQL Server Wizard appears, as shown in Figure 9-9.

Note To use the MDAC driver, select SQL Server from the list shown in
Figure 9-8.

Figure 9-9 First page of the Create a New Data Source to SQL Server Wizard.

4. Enter the Name of the DSN (for example, MyTestDSN), a description for the DSN
(for example, My Test Data Source Name), and the server instance hosting the

224 Part II System Design and Architecture
database you want to connect to by selecting the name from the drop-down list, spec-
ifying the server name and instance name (for example, HOTH\SS2K5), or specify-
ing the server IP address and instance name (for example, 192.168.1.101\SS2K5).
Click Next. The second page of the Create A New Data Source To SQL Server Wiz-
ard appears, as shown in Figure 9-10.

Figure 9-10 Second page of the Create A New Data Source To Sql Server Wizard.

5. Select the authentication mode and enter the login ID and password if using the
SQL Server authentication mode. It is recommended that you leave the check
box next to Connect To SQL Server selected in order to obtain default settings
for the additional configuration options, as this enables the wizard to connect to
the SQL Server instance and provides you with the list of selectable options in
the successive pages of the wizard. You can clear this check box if you’re creating
a DSN to a database that is not online or if you already know all the required
parameter values and prefer to not query the database for the same. Select Next
to continue. The third page of the Create A New Data Source To SQL Server Wiz-
ard appears, as shown in Figure 9-11.

Best Practices It is a SQL Server best practice to use Integrated Win-
dows authentication mode. However, some applications specifically require
the use of the mixed mode (SQL Server) authentication, for example the
PeopleSoft-Oracle Financials application. For all such applications, it is
acceptable to use the mixed mode authentication.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 225
Figure 9-11 Third page of the Create A New Data Source to SQL Server Wizard.

6. Select the Change The Default Database To check box if required, and specify the
name of the name of the database to which you’d like the DSN to connect. If using
database mirroring, explained in detail in Chapter 28, “Log Shipping and Database
Mirroring,” you can specify the name of the mirror server in the text box provided.
You can also chose to attach a database by selecting the Attach Database Filename
check box, specifying the database name in the Change The Default Database to
textbox, and specifying the complete path to the database filename (for example,
%Program Files%\Microsoft SQL Server\MSSQL.1\MSSQL\Data\TestDB.mdf) in
the text box below the Attach Database Filename check box. Select the Use ANSI
Quoted Identifiers and the Use Ansi Nulls, Paddings And Warnings check boxes as
required. Select Next to continue. The fourth page of the Create A New Data Source
To SQL Server wizard appears, as shown in Figure 9-12.

7. On this page of the Create A New Data Source To SQL Server Wizard, you can
choose to change the language of SQL Server system messages; use strong encryp-
tion for data; perform translation of character data; use regional settings when out-
putting currency, numbers, dates, and times; save queries that take more than a
preset amount of time to a log file; and log ODBC driver statistics to a log file. For
most DSNs, leaving the setting to the default works fine.

8. Click Finish to continue. The ODBC Microsoft SQL Server Setup window appears,
as shown in Figure 9-13. Use this window to test the data source by clicking Test
Data Source.

226 Part II System Design and Architecture
Figure 9-12 Fourth page of the Create A New Data Source To SQL Server Wizard.

Figure 9-13 ODBC Microsoft SQL Server Setup.

A successful completion of the test results in the window is shown in Figure 9-14.
Click OK to exit the test window, and then click OK to confirm the data source name
creation. You can also select Cancel if you need to backtrack in the creation process
and change any of the parameters. This brings you back to the ODBC Data Source
Administrator window, and you will see the newly created DSN listed there, as shown
in Figure 9-15.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 227
Figure 9-14 SQL Server ODBC Data Source Test.

Figure 9-15 ODBC Data Source Administrator.

Note Once a DSN has been created, you can choose to change any of the
parameter values by clicking the Configure button and going through the config-
uration process again.

228 Part II System Design and Architecture
Using Aliases
As we saw in the previous section, you can connect to a SQL Server instance by specifying
the system name or TCP/IP address and the instance name for nondefault instances, or
the named pipe. However, there are times when you must refer to the SQL Server instance
by an alternate name, for example, if the name of your database instance is
HOTH\SS2K5 but your application can accept only eight-letter database names in its
connection string. For all such cases you can use an alias for the database instance and
connect using that.

An alias is a named entity that contains all of the information required to connect to a par-
ticular SQL Server instance. Aliases are created on the client system. If there are multiple
client systems that need the same alias name, you will have to create the alias multiple
times, once on each of the client systems. Multiple aliases can point to the same SQL
server instance.

The steps below explain the procedure for creating an alias for a database using the TCP/
IP protocol:

1. Open SQL Server Configuration Manager by selecting Programs from the Start
menu, then Microsoft SQL Server 2005, then Configuration Tools, and then SQL
Server Configuration Manager.

2. In SQL Server Configuration Manager, expand SQL Native Client Configuration as
shown in Figure 9-16.

Figure 9-16 SQL Server Configuration Manager—SQL Native Client Configuration.

3. Right-click Aliases and select New Alias. The Alias – New window appears, as shown
in Figure 9-17. In this dialog box, enter the alias name (for example, MyTestAlias),

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 229
the TCP/IP port number associated with the SQL Server instance (for example,
1029)1, leave the Protocol as TCP/IP since you’re creating an alias for the TCP/IP
protocol, and enter the name in the Server Name text box or the TCP/IP address of
the system hosting the SQL server instance. Click OK to create the alias. The new
alias entry appears in the pane at the right side of SQL Server Configuration Man-
ager, as shown in Figure 9-18.

Figure 9-17 Alias – New window used to create a new SQL Server 2005 server alias.

Figure 9-18 SQL Server Configuration Manager.

1 The TCP/IP port number can be identified by viewing the value of the “TCP/IP Dynamic ports” for the
TCP/IP protocol in SQL Server Configuration Manager or by checking the port specified for the ipv4 pro-
tocol in SQL Server error log, for example, Server is listening on ['any' <ipv4> 4475].

230 Part II System Design and Architecture
SQL Server Browser Service
SQL Server 2005 introduces a new program called the SQL Server Browser (sql-
browser.exe), which is used to provide information about SQL Server instances installed
on the system. For those of you who are familiar with SQL Server 2000, the SQL Browser
service replaces the SQL Server Resolution Service which operated on UDP port 1434
and provided a way for clients to query for network endpoints of SQL Server instances.
SQL Server Browser service is installed with the first instance of SQL Server 2005
installed on the system. There is always only one SQL Browser service installed and run-
ning on any system. This is true even for systems that host multiple instances of SQL
Server 2005 or instances of previous versions of SQL Server (SQL Server 7.0 and SQL
Server 2000). The SQL Server Browser service is configured to start automatically for
upgraded, clustered, and named instances. For new default instances it is set to start
manually. The start-up mode (automatic, manual, or disabled) is configured using the
Surface Area Configuration tool, SQL Server Configuration Manager, or the Services util-
ity under Administrative Tools in the Control Panel.

The SQL Server Browser service provides the instance name and the version number for
each instance of the database engine and SQL Server Analysis Service installed on the
system. However, it is not necessary to have this service running to communicate with
the server. If the SQL Server Browser service is not running on the system, you can still
connect to the particular instance of SQL Server by specifying the protocol, server name
and port number, or named pipe directly in the connection string, for example,
tcp:HOTH,1429.

Note The SQL Server Browser service is not required when a request is made
for resources in the default SQL Server instance. This is because there is always
only one default instance of SQL Server on a system, and by default it is always
configured to listen to TCP/IP network requests on port 1433 and named pipe
network requests using the pipe \sql\query.

SQL Browser Working
Every instance of SQL Server2 with the respective protocol enabled has a unique port
number or specific named pipe assigned that is used to communicate with client appli-
cations. For named instances, these ports are dynamically assigned when the SQL Server
instance is started (this doesn’t apply to the default instance installed on the system since
that is always configured to use port 1433 and the pipe \sql\query). Since the ports are

2 This applies to all editions of SQL Server including SQL Server Express.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 231
assigned dynamically, the client applications have no way of determining to which port
to connect. This is where SQL Server Browser comes to the rescue.

When SQL Server Browser service starts, it identifies all SQL Server instances installed on
the system and the port numbers and named pipes associated with each using the infor-
mation stored in the Windows registry. Multiple port numbers and named pipes are
returned for SQL Server instances that have more than one port number or named pipe
enabled. SQL Server Browser then begins listening to network requests on UDP port
1434.

When a SQL Server 2000 or SQL Server 2005 client needs to request SQL Server
resources, the client network library initiates the request by sending a UDP message
using 1434. SQL Server Browser, which is listening on port 1434, responds to the request
and returns the TCP/IP port or named pipe associated with the requested SQL Server
instance. The client application then sends the request for information to the server,
using the respective port or named pipe of the respective instance, which then services
the request and returns the requested data.

The SQL Server Browser program is installed to %Program Files%\Microsoft SQL
Server\90\Shared\sqlbrowser.exe. For debugging purposes it is sometimes helpful to
start the program via the command line instead of as a service. To do so you can use the
following command:

%Program Files%\Microsoft SQL Server\90\Shared\sqlbrowser.exe –c

Understanding “Login Failed” (Error 18456) Error Messages

If SQL Server 2005 encounters an error that prevents a login from succeeding, it
returns the following error message to the client:

Msg 18456, Level 14, State 1, Server <server name>, Line 1
Login failed for user '<user name>'

Unlike other error messages that are descriptive and help you to quickly drill-down
into the exact cause, the message for error 18456 has been intentionally kept fairly
nondescript to prevent information disclosure to unauthenticated clients. In par-
ticular, the error ‘State’ is always reported as ‘1’ regardless of the nature of the fail-
ure. There is no way to determine additional information about the error at the
client level.

For cases where you need to debug the exact cause of the failure, a user with admin-
istrative privileges can find additional information from the SQL Server errorlog
where a corresponding entry will be recorded provided the audit-level is set to log

232 Part II System Design and Architecture
failures on login (default value). For example, an entry such as the following may
be recorded in the error log corresponding to an 18456 error.

2006-02-27 00:02:00.34 Logon Error: 18456, Severity: 14, State: 8.
2006-02-27 00:02:00.34 Logon Login failed for user '<user name>'. [CLIENT:
<ip address>]

The important information presented in the entry in the SQL Server error log is the
‘State’ information which, unlike the error returned to the client, is set to correctly
reflect the source of the problem. Some of the common error states include:

Based on this information you can determine that the error in the above message
(State = 8) was caused by a password mismatch.

Hiding a SQL Server 2005 Instance
When the SQL Server Browser service is running by default, all instances of SQL Server
are exposed. However, there may be cases when you would like to hide a particular SQL
server instance while continuing to expose others. SQL Server 2005 provides you this
flexibility by providing an instance-specific option to hide the identity.

The following steps explain the process of hiding an instance of SQL Server using SQL
Server Configuration Manager:

1. Open SQL Server Configuration Manager by selecting Programs from the Start
menu, then Microsoft SQL Server 2005, then Configuration Tools, and then SQL
Server Configuration Manager.

2. In SQL Server Configuration Manager, expand SQL Server 2005 Network Config-
uration, as shown in Figure 9-16. Right-click the Protocols for <instance name> and

 Error State Error Description

2 or 5 Userid is not valid

6 Attempt to use a Windows login name with SQL Server Authentication

7 Login disabled and the password is incorrect

8 Password is incorrect

9 Password is not valid

11 or 12 Valid login but server access failure

13 SQL Server service is paused

18 Password change required

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 233
select Properties. The Protocols for <instance name> Properties window appears, as
shown in Figure 9-19.

Figure 9-19 SQL Server Configuration Manager—Protocols for <instance name>
Properties.

3. On the HideInstance box in the Flags pane, select Yes to hide the instance. Click
OK to apply the changes and close the dialog box. You do not need to restart your
server to make this change effective. Once you click OK, the setting change is imme-
diately applied and new connections will not be able to connect to the instance via
the SQL Browser service. A connection can still be made to the SQL Server instance
by specifying the protocol, server name (or TCP/IP address), and port number, or
the named pipe directly, for example:

tcp:192.168.1.101,1429

Network Components and Performance
The network can be divided broadly into two layers: the software layer, which houses the
network protocols, and the hardware layer, which includes the network interface cards
(NIC), cables, and so on. Each network layer has its own characteristics and performance
considerations. There are several reasons for choosing a particular protocol or network
hardware component. Usually, this choice is made based on your business rules and how

234 Part II System Design and Architecture
each system is connected to the other systems in your network. In this section we’ll exam-
ine the software and hardware related factors that affect SQL Server performance.

The Software Layer
With the newer versions of the Windows operating system and SQL Server 2005, the
software layer of the networking stack autoconfigures itself for a majority of the cases
requiring little or no user intervention. However, there may be times when you may expe-
rience connectivity problems. If you experience problems connecting a SQL Server client
to a SQL Server 2005 server, you may want to the check the following:

■ Make sure that the SQL Server service is enabled and running.

■ Make sure that the SQL Server 2005 instance has been enabled to accept remote
connections.

■ Make sure that the correct protocols have been configured on the client and SQL
Server systems.

■ Try connecting the client to the server system in some other manner, for exam-
ple by using Windows Explorer. If you cannot connect via Windows Explorer,
your problem probably relates to some hardware issue or network adapter con-
figuration.

■ If connecting to a named SQL Server instance, make sure that the SQL Server
Browser service is running. In addition, if using a firewall, make sure that the UDP
port 1434 is not blocked.

While SQL Server 2005 network stack exposes many user configurable settings, these
hardly ever need to be changed to enhance performance. In my experience the network
performance is good with just the default settings as long as the hardware layer is config-
ured and operating correctly.

The Hardware Layer
The amount of throughput the network can handle depends on both the type and the
speed of the network. The networking hardware you choose largely determines the per-
formance of the network. While in many organizations the hardware infrastructure team
takes care of the hardware layer, it is important that you as a database administrator
understand the hardware layer to determine where network performance problems are
occurring.

At the hardware layer the fundamental and most important metric to consider is the net-
work bandwidth. The network bandwidth measures the amount of data that a network can
transmit in a specified amount of time. Network bandwidth is sometimes stated in the

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 235
name of the network hardware itself, as in 100BaseT, which indicates a 100-megabit per
second (Mbps) bandwidth.

Note Network bandwidth is stated in megabits per second (Mbps), not mega-
bytes per second (MBps).

This rated network throughput, for example 100BaseT, can sometimes be deceiving
because the rating is calibrated from perfect work conditions in a lab environment. The
effective network bandwidth realized by real-world applications like SQL Server is
often far less because of the overheads associated with transmitting data. In addition,
the rate at which a particular network adapter can transmit data decreases as the size
of the transmission decreases because each network transmission takes a certain
amount of overhead, which results in suboptimal use of fixed-size network packets. For
example, the amount of network bandwidth and overhead required to transmit 200
bytes of data is approximately the same as the amount necessary to transmit 1,200
bytes of data. This is because each data transmission is encapsulated in a fixed-size
TCP/IP packet of 1,500 bytes, which is the default TCP/IP transmission packet size, or
9,000 bytes, which is the “jumbo-frame” packet size for TCP/IP (and is rarely used).
Since applications like SQL Server typically deal with transmissions of small amounts
of data, the amount of throughput that your server can handle might be smaller than
the bandwidth of the network hardware. In my experience I have usually seen the
actual realized bandwidth to be about 35 to 50 percent of the rated bandwidth, imply-
ing that a 100BaseT network can provide an effective bandwidth of about 35 to 50
Mbps, or about 4.4 to 6.2 MBps.

The most popular and widely used network hardware is still 100BaseT Ethernet,
although Gigabit (1000BaseT) network hardware has become very affordable and
increasingly prevalent. 10BaseT is still an available and supported option, though not rec-
ommended given the availability of the 100BaseT and 1000BaseT. Table 9-2 presents the
maximum rated transmission bandwidths of commonly used network hardware. It also
lists the maximum effective bandwidths I have seen being realized with SQL Server work-
loads.

Table 9-2 Maximum Network Bandwidths

Network Maximum Bandwidth

Rated Effective

10BaseT 10 Mbps 3.5 to 5 Mbps

100BaseT 100 Mbps 35 to 50 Mbps

Gigabit Ethernet or 1000BaseT 1000 Mbps 350 to 500 Mbps

236 Part II System Design and Architecture
As much as possible you should use Gigabit Ethernet to provide connectivity throughout
your environment, or at least between the SQL Server system and all client systems that
connect to it. This maximizes the probability of the network not becoming a bottleneck
and provides you flexibility to grow your workload in the future without having to redo
the network infrastructure. While the price differential between 100BaseT and Gigabit
used to be significant, this has been drastically reduced recently, making Gigabit Ethernet
a more easily adoptable solution. When using Gigabit Ethernet you need to make sure
that in addition to the network adapters the rest of your infrastructure, like the network
switches, cables, and so on, also supports Gigabit Ethernet.

Network Monitoring
The type and speed of the network hardware you choose can affect the overall perfor-
mance of your database system. If you try to transmit more data than your network can
handle at one time, data transmissions will queue up and be delayed. This delay will, in
turn, slow down the entire system.

The first step in finding network problems is to periodically monitor and log the network
performance so that you can gauge the network utilization as a percent of the maximum
effective bandwidth, as listed in Table 9-2. You can then use this data to determine
whether your network is a bottleneck and also gauge the magnitude of the problem.

Monitoring Network Performance
Monitoring the network performance is often not as straightforward a task as monitor-
ing some of the other components of the system, such as memory and processors. This
is primarily because the network usually involves multiple systems communicating
with each other and utilizes multiple network interface cards, network cables, and net-
work drivers. Tools like Windows Perfmon, which is explained in Chapter 29, “Con-
cepts of Tuning,” help you view some of the key networking metrics but have some
inherent inaccuracies built in to them because they present data only for the system on
which it’s running and not the actual underlying network. While these coarse-gain
measurements are acceptable for measuring performance of most SQL Server systems,
at times it may be necessary to purchase additional network monitoring hardware or
software for more accurate measurements. Monitoring the network performance using
specialized software or hardware is outside the scope of this book and will not be
explained.

Chapter 9 Configuring Microsoft SQL Server 2005 on the Network 237
When using Windows Perfmon to measure network performance, the most important
metric to monitor is “Bytes Total/sec.” This metric, when compared to the effective
bandwidth of your select network infrastructure, helps you determine the utilization of
your network. For example, if your server is configured with 100BaseT network gear
and the Bytes Total/sec measured over a period of time is, say, 4,000,000 (32 Mbps),
your network may be running close to the maximum permissible network bandwidth
possible by the network infrastructure.

Finding Solutions to Network Problems
You can solve bandwidth problems in a number of ways, depending on the specific prob-
lem. You might be able to solve the problem by purchasing more or different hardware,
segmenting the network, or even redesigning the application.

One way to resolve the network utilization problem is to increase the network’s band-
width. Upgrading the network hardware from 100BaseT to 1000BaseT increases the
bandwidth tenfold. This solution is simple, but it can be expensive. Let’s look at alter-
natives.

If you are seeing too much traffic on the network, it might be the right time to divide the
network into subnets based on departments or workgroups. By subnetting, you can cre-
ate a network for each office or department instead of having the entire company on the
same network. This process reduces the number of systems on a single network and thus
reduces the traffic. Sometimes, the network grows slowly over a long period of time, and
you might not notice additional traffic until a problem occurs. The use of subnets might
be an easy solution to alleviate network congestion.

Another solution is looking at the network usage from a functional standpoint. Is the net-
work being used for good reasons? Are the applications returning too much data? It is
always a good idea to look at the SQL Server client applications to be sure that they are
not requesting more data than what is actually needed. Using queries that return the
minimum number of rows is an easy way to reduce network traffic if you have many
users.

As you can see, there can be a variety of problems and, thus, a variety of solutions. Don’t
be afraid to look at all the possibilities. Logic errors in applications can sometimes man-
ifest themselves as network bandwidth problems. Scheduling problems can also arise—
for example, it’s not a good idea to back up your data across the network during the busi-
est time of day.

238 Part II System Design and Architecture
Summary
Configuring the SQL Server network components correctly is an essential step in ensur-
ing that users and applications are able to connect to the SQL Server database reliably
and realize good performance.

SQL Server 2005 introduces several changes to the network components by way of new
tools and libraries as well as configuration management. In this chapter we took an in-
depth look at some of these, like SQL Server Configuration Manager and SQL Native Cli-
ent, and the applicability of these to particular usage scenarios. We also took a look at the
procedure to create ODBC DSNs, configuring network protocols as well as analyzing and
troubleshooting network performance.

Part III
Microsoft SQL Server 2005
Administration

Chapter 10
Creating Databases and Database Snapshots. .241

Chapter 11
Creating Tables and Views. .283

Chapter 12
Creating Indexes for Performance .315

Chapter 13
Enforcing Data Integrity .343

Chapter 14
Backup Fundamentals .369

Chapter 15
Restoring Data .405

Chapter 16
User and Security Management. .423

Chapter 10

Creating Databases and
Database Snapshots

Understanding the Database Structure. .242

Understanding System Databases .244

Creating User Databases .249

Viewing Database Details .268

Deleting a Database .270

Real-World Database Layouts. .271

Using Database Snapshots .276

Summary .282

A database’s manageability and performance is largely determined by its structure and
configuration. A well-designed database provides you with flexibility in managing day-to-
day operations and helps streamline I/O operations to maximize the effectiveness of the
storage subsystems.

In Chapter 4, “I/O Subsystem Planning and RAID Configuration,” you learned about the
fundamentals of I/O subsystems. Chapter 7, “Choosing a Storage System for SQL Server
2005,” explained the factors to consider when choosing a particular storage solution.
This chapter builds on those fundamentals and shows you how to design, create, and
configure a database for optimal manageability and performance. We will also take an in-
depth look at Database Snapshots, a new feature introduced in SQL Server 2005 that per-
mits you to create a point-in-time read-only snapshot of a database.

After reading this chapter, you will understand the structure of a SQL Server database
and the purpose of the five system databases. You will learn how to create, configure, and
alter a user database; see example real-world application databases; and learn some use-
ful best practices. You will also learn about Database Snapshots along with valuable
insights into their working, common uses, is limitations, and the methods used to create,
use, and delete them.
241

242 Part III Microsoft SQL Server Administration
Understanding the Database Structure
A database in SQL Server 2005 can conceptually be viewed as a named collection of
objects that hold data and metadata. The data component relates to actual user informa-
tion stored in the database, for example, information about employees for a human
resources application, while metadata is the data that describes how the database han-
dles and stores the data, for example, table definitions, indexes, and so on. Each data-
base file is mapped onto an operating system file that resides on an NTFS or FAT file
system. The operating system files are then organized into filegroups for manageability
purposes.

Database Files
Every SQL Server database always has one primary data file and one transaction log file.
A database can also have additional transaction log files and one or more secondary data
files.

Primary Data File
The primary data file is the most important file in the database. It is used to store the
start-up information and metadata for the database. It contains the system tables of the
database, like sysindexes, syscolumns, user data, and so on, user data and holds informa-
tion about the other files in the database. The primary data file usually has an .mdf file
name extension.

Transaction Log File
The transaction log is an integral part of the database and is used to recover a database in
the event of a failure. Every database operation that modifies the state of the database is
stored in the transaction log file. A database must have at least one transaction log file,
and they can have more for manageability and data distribution purposes. If there is more
than one physical log file for a database, the log grows through the end of each physical
file before circling back to the first physical file, assuming that that part of the transaction
log is free. If the physical transaction log file is completely full and auto-growth is
enabled, the size of the file or files is increased. The minimum size for a single transaction
log is 512 KB, though it’s a good practice to create it with at least 3 MB. The transaction
log files usually have an .ldf extension.

Secondary Data File
A SQL Server database can also have secondary data files. The secondary data files are
used to store user data like tables, indexes, views, and stored procedures. Secondary data

Chapter 10 Creating Databases and Database Snapshots 243
files are used to spread the user database across multiple disks for manageability and per-
formance reasons. The secondary data files usually have an .ndf file name extension.

Note The .mdf, .ldf, and .ndf file name extensions are recommended standard
naming conventions; however, they are not required nor explicitly enforced by
SQL Server 2005.

Naming Database Files
Every SQL Server 2005 database file has two names: a physical file name and a logical file
name. The physical file name is the complete name of the physical file including the direc-
tory path and is used to identify the file on the disk. Physical names must conform to the
operating system’s file naming convention. The logical file name is used to refer to the file
in T-SQL statements and needs to conform to the SQL server 2005 identifier naming con-
ventions.

Database Filegroups
A database filegroup is a logical grouping of data files used primarily for manageability
and allocation purposes. In SQL Server 2005 there can be two types of filegroups: pri-
mary and user-defined filegroups:

■ Primary filegroup Every SQL Server 2005 database always has a primary file-
group, which contains the primary data file (.MDF). The primary filegroup may
also contain zero or more secondary data files (.NDF).

■ User-defined filegroup A user-defined filegroup is explicitly created by the user.
A database can have zero or more user-defined filegroups, and each user-defined
filegroup can have zero or more secondary data files associated with it.

SQL Server 2005 has the concept of a default filegroup, which, as the name suggests, is
the default filegroup for all secondary data files created without an explicit filegroup
assignment. The primary filegroup is initially assigned to be the default filegroup; how-
ever, this can be changed to be any other user-defined filegroup by a db_owner using SQL
Sever Management Studio or the T-SQL ALTER DATABASE command (T-SQL was intro-
duced in Chapter 1, "Overview of New Features and Enhancements"):

ALTER DATABASE <database_name> MODIFY FILEGROUP <new_filegroup_name> DEFAULT;

For example:

ALTER DATABASE TestDB MODIFY FILEGROUP NewFG DEFAULT ;

244 Part III Microsoft SQL Server Administration
At any given point in time, only one filegroup can be designated as the default filegroup.

A secondary data file can be a part of only one filegroup. Once a data file has been cre-
ated as part of a particular filegroup, you cannot move it directly to another filegroup.
If you want to move the file to another filegroup, you must first empty it by relocating
any data present in that file to other files in the same filegroup using the command:

DBCC SHRINKFILE (<data_file>, EMPTYFILE);

For example:

DBCC SHRINKFILE (TestDB_2, EMPTYFILE);

Once emptied, you can delete the file and recreate it on the other filegroup.

Even though there can be more than one transaction log file, the transaction log files are
never a part of a filegroup and cannot be placed individually. All transaction log files uti-
lized sequentially in a circular fashion to store the logical log records.

While filegroups are simply containers for the data files that don’t intrinsically help
improve performance, in some cases performance gains are realized by appropriate place-
ment of tables and indexes on specific disks. This is particularly true for complex work-
loads where the data access patterns are well understood, and there are gains to be
realized by appropriate placement of the tables. For example, if an application has a huge
volume of data continuously being inserted into, for example, a case-history information
table, it may make sense to separate this table into its own filegroup. Filegroups also help
you partition large tables across multiple files to distribute the I/O throughput. They can
also be used effectively to store indexes and text, ntext, and image data type columns on
files other than where the table itself is stored.

Note SQL Server 2005 permits a database to have 32,767 data files and file-
groups; however, this limit is almost never expected to be reached. In real world
deployments, the number of files and filegroups in a database is usually less
than a half dozen, and many of the small and lightly accessed databases have
just a single data and transaction log file. The one exception to this is when data
partitioning is used. In this case the database could very easily have upwards of
250 filegroups and files. You will learn more about this in Chapter 20, “Data Par-
titioning.”

Understanding System Databases
Every SQL Server 2005 instance contains five system databases—master, model, msdb,
tempdb, and resource—that are used for the server initialization, housekeeping, and

Chapter 10 Creating Databases and Database Snapshots 245
temporary storage required for application data. In addition, SQL Server 2005 also
optionally installs two sample databases: AdventureWorks and AdventureWorksDW. The
purpose of all these databases is described in the sections below.

master
The master is by far the most important system database in SQL Server 2005. It contains
a set of system tables that serve as a central repository for the entire instance and main-
taining information about login accounts, other databases, file allocations, system config-
uration setting, disk space, resource consumptions, endpoints, linked servers, and so on.
Unlike earlier versions of SQL Server, the master database in SQL Server 2005 does not
store system objects; the system objects are now stored in the resource database, which is
explained later.

The master database records the initialization information for SQL Server 2005, and
therefore it is absolutely critical to the SQL Server instance. It is a recommended best
practice to locate the master database on a fault-tolerant disk drive and always have a cur-
rent backup to protect against the event that it gets completely destroyed and has to be
restored from a backup media. You should always back up the master database after cre-
ating, modifying, or deleting a user database; changing the server or any database config-
uration; and modifying or adding user accounts.

More Info In the absolute worst-case scenario when the master database is
destroyed and no backup is available, you can rebuild it to its state when the
instance was installed using the REBUILDDATABASE option available in the unat-
tended setup. This operation should be performed very selectively and after
careful consideration as it wipes out your entire server-wide configuration includ-
ing all logins, forcing you to redo everything from scratch. Search for “Rebuild
master database” in SQL Server Books Online for information on how to rebuild
the master database.

model
The model database servers as a template for all new databases created in the SQL Server
2005 instance. When the CREATE DATABASE command is executed to create a new user
database or when the tempdb database (explained later) is initialized, SQL Server 2005
simply copies the contents of the model database to the new database. In cases where
you want to create every new database with a table, stored procedure, database option,
permission, and so on, you can add it to the model database, and it will be added to every
new database that is created from there on.

246 Part III Microsoft SQL Server Administration
msdb
The msdb database is used by the SQL Server instance, primarily by SQL Server Agent, to
store scheduled jobs, alerts, and backup/restore history information. All the information
stored in it is viewable via the SQL Server tools, so other than backing up this database,
there is little need for you to access or directly query this database.

Note The master, model, and msdb databases have the following restrictions:

■ Cannot add, rename, or delete any file or filegroup

■ Cannot be renamed or dropped

■ Cannot be set to READ_ONLY or OFFLINE

■ Cannot change default collation

■ Cannot change database owner

■ Cannot drop guest user from the database

■ Cannot participate in database mirroring

■ Cannot create full-text catalog, full-text index, or triggers

resource
The resource database, introduced in SQL Server 2005, is a read-only database that con-
tains all of the system objects, such as system stored procedures, system extended
stored procedures, system functions, and so on. The resource database provides a means
of quick version upgrades and the ability to easily roll back service packs. In previous
versions of SQL Server, upgrading the SQL Server version involved the lengthy process
of dropping and creating the system objects. However, since the resource database now
contains all the system objects, it is sufficient simply to copy a single resource database
file onto the server. The same mechanism is used when a version of SQL Server needs to
be rolled back.

 The resource database does not contain any user data or metadata, so you do not need to
include it in your regular backup/restore scheme. Instead, it should be treated as code
and should have a backup/restore plan similar to what’s used for the other SQL Sever
executables. The resource database is hidden and does not show up in the SQL Server
Management Studio or the sp_helpdb output. Only its data (mssqlsystemresource.mdf)
and log (mssqlsystemresource.ldf) files can be seen in the SQL Server Data directory (for
example, C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data).

Chapter 10 Creating Databases and Database Snapshots 247
tempdb
The tempdb database is an instance-wide temporary workspace that SQL Server 2005
uses for a variety of operations. Some of the common uses include the following:

■ Storage for private and global temporary variables, regardless of the database con-
text

■ Work tables associated with ORDER BY clauses, cursors, GROUP BY clauses, and
HASH plans

■ Explicitly created temporary objects such as stored procedures, cursors, tables, and
table variables

■ Versions of updated records for the snapshot isolation feature when enabled

■ Results of temporary sorts from create or rebuild index operations if
SORT_IN_TEMPDB is specified

The tempdb database is the only system database in SQL Server 2005 that is recreated
every time SQL Server is started, implying that it always starts with a clean copy and
no information is persisted across SQL Server restarts. Operations in tempdb are always
minimally logged (SIMPLE recovery model) so that sufficient information is stored to
allow roll back of an in-flight operation if needed. Since tempdb is reinitialized when
SQL Server 2005 starts, there is no need for the ability to recover or redo the database.

Note Since there is a single tempdb database across the entire SQL Server
instance, it is a potential bottleneck if there are many databases that utilize it
heavily running on the instance. While I have never encountered a situation like
this, it is worth keeping in mind. If this were to ever become a problem, you may
consider installing multiple instances of SQL Server 2005 on the same server and
splitting up the databases between the two or more instances. Since each
instance will have its own tempdb, it will effectively help distribute the utilization.

While tempdb is initially installed in the same location as the other system databases, it is
often a good idea to relocate it to a high-performing disk subsystem. This is particularly
important for applications that make heavy use of tempdb.

Relocating tempdb involves a slightly different procedure than other databases because it
is recreated when SQL Server starts. To move tempdb:

1. Determine the current location of tempdb files (Tempdb.mdf and Tempdb.ldf), for
example, in C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data.

248 Part III Microsoft SQL Server Administration
2. Relocate the files using the ALTER DATABASE commands:

ALTER DATABASE tempdb

MODIFY FILE (NAME = tempdev, FILENAME = ‘X:\TempdbData\tempdb.mdf’) ;

GO

ALTER DATABASE tempdb

MODIFY FILE (NAME = templog, FILENAME = ‘Y:\TempdbLog\templog.ldf’) ;

GO

where X and Y are the new drives on which tempdb is relocated.

3. Restart SQL Server 2005. This will create new tempdb data and log files under the
new directories.

4. Verify the new locations of tempdb using the command:

sp_helpdb tempdb ;

5. Delete the files identified in Step 1 to avoid any confusion and free up space.

The tempdb database is a global resource that is available to all users operating on
the particular instance of SQL Server. All users can create temporary objects (those
starting with # or ##) in tempdb.

Note For detailed steps on moving the tempdb master file, search for
“Rebuild master database” in SQL Server Books Online and refer to the
“Moving tempdb to a new location” topic.

For high-throughput and large applications, it is a recommended best practice that you
create multiple tempdb data files. Multiple tempdb data files minimize contention on the
IAM and SGAM pages and results in better performance. A general rule of thumb I like
to use is to create tempdb files equal in number to the processor cores in the server. In
other words, for a 4-processor dual-core server, I'd create 8 tempdb data files. The files
should all be the same size and located on a high-performing disk subsystem (RAID-
10), as explained in Chapter 4. You should also make sure that the tempdb master file
has been relocated to the high-performing disk subsystem and is the same size as the
other files.

Note The tempdb database’s performance in SQL Server 2005 has been signif-
icantly optimized. Many of the internal points of contention that existed in earlier
versions of SQL Server have been resolved. If you used trace flag 1118 (-T1118)

Chapter 10 Creating Databases and Database Snapshots 249
on your server to get around SGAM single page allocation contention, as
explained in Microsoft Knowledge Base article 328551, FIX: Concurrency
enhancements for the tempdb database, “http://support.microsoft.com/kb/328551”
with SQL Server 2000, you may want to test your application without this trace
flag to see if the problem you originally encountered has been resolved by design
in SQL Server 2005. There is a high likelihood that it is. If not, you can continue to
use trace flag -T1118.

AdventureWorks and AdventureWorksDW
The AdventureWorks and AdventureWorksDW are two new sample databases introduced in
SQL Server 2005 that are based on a fictitious “Adventure Works Cycles” company. The
AdventureWorks database is an online transaction processing (OLTP) sample database
while the AdventureWorksDW is a data warehousing sample database. These databases
replace the pubs and Northwind databases that used to ship with earlier versions of SQL
Server. However, some of the tables are similar in structure and can continue to be used
for old sample queries.

More Info You can search for the “AdventureWorks to pubs Table Comparison”
and “AdventureWorks to Northwind Table Comparison” topics in SQL Server Books
Online for a comparison between the AdventureWorks and pubs and Northwind
tables.

Both of these sample databases are not installed by default and have to be manually
selected during SQL Server 2005 installation. (Refer to Chapter 8, “Installing and
Upgrading Microsoft SQL Server,” for details on installing these databases.) These data-
bases have no involvement in the operation of SQL Server and are used solely for exam-
ple purposes. Since they are standard databases and most users have access to them, I
have found that they serve as an effective base for creating and sharing samples. For
example, if I want to demonstrate a certain operation to a customer, I just create a sam-
ple based on the AdventureWorks database and send it to the customer with instructions
on how to execute it. Most of the samples in the SQL Server Books Online are also based
on these two databases.

Creating User Databases
Unlike system databases that are always installed by default, you need to create and con-
figure all user databases manually. The sections below explain the processes involved in
creating, altering, viewing, and deleting user databases.

250 Part III Microsoft SQL Server Administration
Creating a Database
In SQL Server 2005 user databases can be created using either SQL Server Management
Studio or the CREATE DATABASE command. Creating a database using either method is
a relatively straight-forward operation that can be done fairly quickly. However, setting
the various database options correctly requires detailed understanding of the databases
requirements and anticipated usage characteristics.

SQL Server Management Studio is the easier of the two options and presents a graphi-
cal user interface for the database creation and configuration. The CREATE DATABASE
command, on the other hand, requires the user to know the format of the command
and the parameters but has the advantage of being able to save the T-SQL.

Real World A Hybrid Method to Create a Database

I have found that a hybrid approach using SQL Server Management Studio to create
the database and then the SCRIPT DATABASE AS option to script it and save it to
a file, as explained in Chapter 31, “Using Profiler, Management Studio, and Data-
base Tuning Advisor,” is easiest and works well. With this approach you realize the
best of both worlds: an easy creation process and the ability to save the process to
a file for backup purposes and possible reuse.

Creating a Database Using SQL Server Management Studio
The following steps explain the process of creating a user database using SQL Server
Management Studio:

1. To start SQL Server Management Studio, click the Start button, point to All Programs,
select Microsoft SQL Server 2005, and then select SQL Server Management Studio.

2. Log in to the instance you want to use, and then wait until the server finishes pro-
cessing the login and the Object Explorer pane appears on the left side of the
window. If the Object Explorer pane does not appear, you can display it by select-
ing Object Explorer from the View menu.

3. Click on the + sign next to the server name to expand the instance, as shown in
Figure 10-1.

4. Right-click Databases and then select New Database from the shortcut menu.

5. Select the General tab and enter the database name, for example, TestDB. You will
notice that the logical name column is automatically filled in with the name of the
database, as shown in Figure 10-2.

Chapter 10 Creating Databases and Database Snapshots 251
Figure 10-1 SQL Server Management Studio—Object Explorer.

Figure 10-2 New Database—General tab.

6. If you would like to keep all of the other database options at their default values,
click OK, and your database will be created with the default settings. If you’d like
to change any of the default database settings, continue with the following steps.

252 Part III Microsoft SQL Server Administration
7. If you’d like to change the owner of the database, click on the … button next to
Owner and select the desired login from the Browse list. Leaving the Owner value
as <default> will make the logged in user for the session the owner of the database.

8. Select the Use Full-Text Indexing check box if you want to enable full-text search on
the database.

Note Full-text search allows fast and flexible searching of text data stored
in the database and can operate on words as well as phrases based on
rules of a particular language. While a very powerful feature, this option
should be enabled only if you plan to actually use it as there is overhead
associated with maintaining the full-text indexes.

Note SQL Server Management Studio creates all databases with a pri-
mary data file (.mdf) and one transaction log file (.ldf). These two files
appear in the database files grid. Both of these files have default logical
names assigned to them, but they can be changed to any valid SQL Server
identifier name by selecting the cell and typing in the new name.

9. You can add additional files by clicking the Add button in the lower-right corner of
the New Database screen. This adds another row with default values to the database
files grid.

10. Enter the Logical Name for the file in the new row that is created in the database
files grid. All of the other database file options can be left at their default settings or
configured as explained in the following list:

❑ File type This drop-down list option is used to select whether the file is a
data or log file. However, the file types for the auto-created primary data file
and transaction log files cannot be changed.

❑ Filegroup The filegroup option applies only to data files and is used to
select the filegroup to which the file belongs. The main database file always
belongs to the primary filegroup. The additional data files created can belong
to either the primary or a new filegroup created using the <new filegroup>
option in the drop-down list. In this screen, shown in Figure 10-3, you can
specify the name of the filegroup and set the filegroup to be read-only if
required. You can also make the filegroup the default, implying that all suc-
cessive new file creations will by default be added to this filegroup.

❑ Initial size (MB) This option sets the initial size for each of the files. It is
recommended that you create the database with sufficient space to prevent
unnecessary and excessive auto-grow operations.

Chapter 10 Creating Databases and Database Snapshots 253
Figure 10-3 New Filegroup window.

❑ Autogrowth Autogrowth is a very powerful option in SQL Server through
which the size of a database file is automatically increased if it fills up. The
autogrowth options can be changed by selecting the … button and setting the
values in the Change Autogrowth screen, as shown in Figure 10-4.

Figure 10-4 Change Autogrowth window.

Best Practices For production databases it is best to configure the
database file sizes slightly larger than the maximum size you antici-
pate so that you do not trigger the auto-growth mechanism. Because
the database engine needs to acquire a schema lock when the size of
the database is extended to prevent transactions from progressing, it
is best to treat the Autogrowth option as a worst-case insurance pol-
icy and not rely on it to do the appropriate file-sizing job for you.

❑ Path This option is used to specify the location of the physical file.

❑ File name This option cannot be set. The physical file name is automatically
set to the same value as the corresponding logical file name with the appro-
priate file name extensions (.mdf, .ldf, .ndf) added.

Figure 10-5 shows a database named TestDB configured with two new file-
groups (FG1 and FG2), two additional f i les (TestDB_data2 and
TestDB_data3), and the autogrowth value changed to 15 percent.

254 Part III Microsoft SQL Server Administration
Figure 10-5 New Database window for database TestDB.

Figure 10-6 New Database Options window.

Chapter 10 Creating Databases and Database Snapshots 255
11. Select the Options tab from the left pane, as shown in Figure 10-6, and set the
appropriate database options. The various database options are explained in detail
in the Database Options section that follows.

12. Select the Filegroups tab from the pane at left, as shown in Figure 10-7. This screen
is used to create new filegroups.

Figure 10-7 New Database Filegroups window.

13. To add a new filegroup, select Add in the lower-right corner and enter the name of
the filegroup in the Name cell. You can also select the filegroup to be read-only or
set it to be the default filegroup for the database.

14. Click OK to create the database. The database creation will take between a few sec-
onds to several minutes depending on the number and sizes of the database files
created. Once completed, a new entry for the database appears in the Object
Explorer of SQL Server Management Studio, as shown in Figure 10-8.

256 Part III Microsoft SQL Server Administration
Figure 10-8 SQL Server Management Studio Object Explorer with new database TestDB.

Creating a Database Using the T-SQL Command
You can use the CREATE DATABASE T-SQL command to create a new database and the
required database files and filegroups. In its simplest form the CREATE DATABASE com-
mand simply needs to specify the name of the database and the name and locations of
the primary data file and transaction log file, as shown in the command below.

CREATE DATABASE EasyDB

ON PRIMARY

 (NAME = N‘EasyDB_data’,

FILENAME = N‘C:\EasyDB_data.mdf’)

 LOG ON

 (NAME = N‘EasyDB_log’,

FILENAME = N‘C:\EasyDB_log.ldf’) ;

GO

Note The “N” before the strings is used to specify them as Unicode strings.
Additional information about Unicode strings can be found by searching for
“Unicode [SQL Server], constants” in SQL Server Books Online.

As you can imagine, this simple command is of little use to all but the simplest of data-
bases. The code below presents a more real-world example of a database created with
one primary and two secondary files all placed on separate filegroups that are also

Chapter 10 Creating Databases and Database Snapshots 257
created by the command. The command also changes the database collation to
Latin1_General_BIN2.

CREATE DATABASE TestDB

 ON PRIMARY

 (NAME = N‘TestDB_data1’,

FILENAME = N‘C:\TestDB_data1.mdf’,

SIZE = 102400KB,

MAXSIZE = UNLIMITED,

FILEGROWTH = 15%),

 FILEGROUP [FG1]

 (NAME = N‘TestDB_data2’,

FILENAME = N‘C:\TestDB_data2.ndf’,

SIZE = 102400KB,

MAXSIZE = UNLIMITED,

FILEGROWTH = 15%),

 FILEGROUP [FG2]

 (NAME = N‘TestDB_data3’,

FILENAME = N‘C:\TestDB_data3.ndf’,

SIZE = 102400KB,

MAXSIZE = UNLIMITED,

FILEGROWTH = 15%)

 LOG ON

 (NAME = N‘TestDB_log’,

FILENAME = N‘C:\TestDB_log.ldf’,

SIZE = 51200KB ,

MAXSIZE = 2048GB ,

FILEGROWTH = 10%)

 COLLATE Latin1_General_BIN2 ;

GO

The attributes of the database that are not a part of the CREATE DATABASE command
are set using the ALTER DATABASE command after the database has been created. The

258 Part III Microsoft SQL Server Administration
sample commands below change the PARAMETERIZATION option to FORCED, ARITH-
ABORT to ON, and QUOTED_IDENTIFIER to ON for the TestDB database:

ALTER DATABASE TestDB SET PARAMETERIZATION FORCED ;

GO

ALTER DATABASE TestDB SET ARITHABORT ON ;

GO

ALTER DATABASE TestDB SET QUOTED_IDENTIFIER ON ;

GO

The other attributes that can be modified using ALTER DATABASE are explained in the
following section. The ALTER DATABASE command can also be used to add, remove, or
modify the files and filegroups associated with the database after it has been created.

Note SQL Server 2005 introduces a new feature that instantly initializes files
and helps speed up the process of creating a database, restoring a database, or
adding or increasing the size of a data file. Instant file initialization is realized by
reclaiming used disk space without filling the space with zeros; instead, the previ-
ous data is overwritten directly by the new data. In some cases, instant file initial-
ization may pose a security risk because the previously deleted disk contents are
not initialized and might be accessed by an unauthorized user or service. If such
a security issue is of concern, you can disable instant file initialization for the
instance of SQL Server by revoking SE_MANAGE_VOLUME_NAME privilege from
the SQL Server service account.

Setting Database Options
This section briefly describes the various database options that can be set during data-
base creation , or be changed via SQL Server Management Studio by right-clicking on the
database name, selecting Properties, and then selecting Options. The names in the paren-
thesis correspond to the corresponding database option that can be configured via the
ALTER DATABASE command. For example, to change the database collation via the
ALTER DATABASE command, you need to use the COLLATE option.

Collation (COLLATE)
Collations specify the rules by which character data is compared and sorted. Each SQL
Server collation specifies the sort order to use for non-Unicode and Unicode character
data types (char, varchar, text, nchar, nvarchar and ntext), which are discussed in detail in
Chapter 11, “Creating Tables and Views,” and the code page used to store non-Unicode
character data. Collations specified for Unicode data do not have specific code pages
associated with them.

Chapter 10 Creating Databases and Database Snapshots 259
Every SQL Server instance has a default collation, which is the collation with which
the instance was installed. This collation is used for all the system databases and is
assigned to all new databases when the <server default> default option in SQL Sever
Management Studio, or the COLLATE option in the ALTER DATABASE command, is
not explicitly set.

A common collation used by many applications for the English language is
Latin1_General_BIN. In this collation the “Latin1_General” corresponds to the English
language (code page 1252) while “BIN” corresponds to a binary sort order. Similarly,
“Latin1_General_CS_AS_KS_WS” corresponds to the English language with a case-
sensitive, accent-sensitive, kana-sensitive, and width-sensitive sort order.

Note Given a choice, select the binary sort order. I have often found this to
perform slightly better than the other sort orders, though not by much.

More Info Additional information about database collations can be found by
searching for “Collations [SQL Server]” in SQL Server Books Online.

Recovery Model (RECOVERY)
The recovery model determines how database transactions are logged and what the
exposure to data loss is. In SQL Server 2005, three recovery models are available:

■ Full The full recovery model does the most extensive logging and allows the
database to be recovered to the point of failure. This recovery model presents the
highest protection against data loss. You should always configure all production
databases to use full recovery.

■ Bulk-logged The bulk-logged recovery model fully logs transactions but only
minimally logs most bulk operations, such as bulk loads, SLECT INTO, and
index creations. Bulk-logged recovery model allows the database to be recov-
ered to the end of a transaction log backup only when the log backup contains
bulk changes. Recovery to the point of failure is not supported.

■ Simple The simple recovery model minimally logs most transactions, logging
only the information required to ensure database consistency after a system crash
or after restoring a database backup. With this model the database can be recov-
ered only to the most recent backup. This recovery model has the maximum expo-
sure to data loss and should not be used where data loss in the event of a crash
cannot be tolerated.

260 Part III Microsoft SQL Server Administration
Compatibility Level
The compatibility level of a database specifies the SQL Server version compatibility and
can be set to SQL Server 7.0 (70), SQL Server 2000 (80), or SQL Server 2005 (90). When
set to a value other than SQL Server 2005 (90), the compatibility level makes the data-
base behavior compatible with that version of SQL Server. It is highly recommended that
you use the SQL Server 2005 (90) compatibility level. The other compatibility levels are
provided primarily to help quickly address upgrade time incompatibilities and provide
you with time to work through the issues. The compatibility level cannot be set using the
ALTER DATABASE command; you need to use the sp_dbcmptlevel stored procedure
instead. For example, the following command sets the database compatibility level for
the TestDB database to SQL Server 2000.

sp_dbcmptlevel TestDB, 80 ;

More Info For a detailed list of differences between the different compatibility
levels, you may want to refer to the “Behavioral Differences Between Level 60 or
65 and Level 70, 80, or 90” section in the sp_dbcmptlevel help topic in SQL Server
Books Online.

Auto Close (AUTO_CLOSE)
You can use this option to control whether the database will be automatically closed
when not in use. When this option is set to TRUE in SQL Server Management Studio, or
to ON when using the ALTER DATABASE command, SQL Server closes the database
whenever the last user disconnects from it, freeing up the associated resources. When a
user tries to use the database again, the database is reopened. The closing and reopening
process is completely automatic and transparent.

Best Practices Usually a SQL Server instance has only a few user databases,
but it is possible for it to have several hundred databases, for example, being a
hosting provider that hosts many small user databases on a single server
instance. For database instances with hundreds of databases that are infrequently
accessed, it is recommended to set the database’s AUTO_CLOSE option to TRUE.
Setting this option forces the database to be closed when all the database pro-
cesses complete and all users disconnect from the database, thereby freeing up
server resources. The AUTO_CLOSE option is not recommended for frequently
accessed databases.

Auto Create Statistics (AUTO_CREATE_STATISTICS)
Accurate optimization of some queries often requires column statistics on specific col-
umns that may not already have statistics created on them. Setting the Auto Create Sta-
tistics option to TRUE in SQL Server Management Studio, or to ON when using the

Chapter 10 Creating Databases and Database Snapshots 261
ALTER DATABASE command, permits SQL Server to create statistic on a table columns
automatically as needed. You should always leave this option set to TRUE unless you
have a very good reason to turn it off.

Note Statistics that are automatically generated by SQL Server always have
the prefix “_WA_Sys_” and end in a hexadecimal number. For example,
_WA_Sys_ProcessID_2CD08213 is an auto-created statistic on column ProcessID.
You can view all auto- and manually created statistics using the sp_autostats
<table name> command. For example, you can check on the statistics for the
Persons table in the AdventureWorks database using the command sp_autostats
'Person.Address'.

Auto Shrink (AUTO_SHRINK)
You can use this option to control whether the database files will be automatically
shrunk. When this option is set to TRUE in SQL Server Management Studio, or to ON
when using the ALTER DATABASE command, the database data and log files are shrunk
when more than 25 percent of the file contains unused space. The files are shrunk to a
size where 25 percent of the file is unused space, or to the size of the file when it was cre-
ated, whichever is larger. In most cases it is advisable to leave this option set to FALSE.

Auto Update Statistics (AUTO_UPDATE_STATISTICS)
You can use this option to control whether statistics will be updated automatically. SQL
Server uses a cost-based optimizer that is extremely sensitive to the accuracy of the
statistical information available to it. To ensure that relatively accurate statistics are
always available, it employs the auto update statistics mechanism.

You should always leave the Auto Update Statistics database option set to TRUE for all
user databases. If there is an exceptional situation where you believe that this option
needs to be disabled for a particular table, you should disable it only for the particular
table using the sp_autostats command. Disabling this option at the database level can
have some nasty long-term performance implications.

Real World Auto Update Statistics—Is It Really Needed?

I have often seen customers turn the auto update statistics option off and justify the
action with the following claims:

■ The update mechanism performs extensive table scans and is particularly
detrimental to performance when the database contains large tables.

■ It unnecessarily chews up precious server resources.

262 Part III Microsoft SQL Server Administration
■ It gets triggered too frequently.

■ It is not needed because the database has been running for several days and
all the statistics have already been auto-updated.

All of these arguments are flawed. While update statistics may take a while to run
against large tables with millions of rows, the auto-update process does not scan the
tables. Instead, it uses a sophisticated algorithm that dynamically computes the
number of rows to be sampled and the frequency with which the operations should
be triggered. Also, the shape of the data in any production database is constantly
changing. Even if the tables themselves are not growing, data could be being
updated, causing the statistics on the table to change significantly. Having the auto
update statistics mechanism enabled helps present a representative image of the
data to the optimizer, enabling it to better optimize queries, and the increased like-
lihood of generating better query execution plans far outweighs the relatively small
overhead in server resources.

Auto Update Statistics Asynchronously
(AUTO_UPDATE_STATISTICS_ASYNC)
When a query encounters an out-of-date statistic and the update statistic thresholds have
been met, it issues an update statistic call and waits for the operation to complete before
compiling the query execution plan and executing the query. This can sometimes lead to
long and unpredictable response times.

To address this problem, SQL Server 2005 introduces this new option to update statistics
asynchronously. When set to TRUE in SQL Server Management Studio or ON when
using the ALTER DATABASE command, this option causes the query to not wait for an
out-of-date statistic to be recomputed; instead it uses the out-of-date statistics and issues
a background request to recompute the statistic. This option may cause the query opti-
mizer to choose a suboptimal query plan based on the out-of-date statistics and should
therefore be used with caution.

You may want to enable this option if your database has large tables where the data isn’t
excessively skewed. Databases that have large batch-type queries that operate on large
tables that are frequently inserted to and deleted from should use this option selectively.
It is best to experiment with this option and check for yourself if your particular workload
will benefit. If there is no measurable gain, I’d recommend keeping it set to FALSE.

Close Cursor on Commit Enabled (CURSOR_CLOSE_ON_COMMIT)
You can use this option to control whether a cursor is closed when a transaction is com-
mitted. When set to TRUE in SQL Server Management Studio or ON when using the

Chapter 10 Creating Databases and Database Snapshots 263
ALTER DATABASE command, any open cursors are closed on commit or rolled back in
compliance with the SQL-92 standard. It should be left at the default setting, FALSE,
unless your application specifically requires this functionality to be enabled.

Default Cursor (CURSOR_DEFAULT)
You can use this option to set the scope of the cursor type to global or local. When you
set it to global and the cursor is not explicitly defined as local during creation, the cursor
will be created with a global scope and be referenced by any stored procedure or batch
executed by the connection. Conversely, when you set this option to local and the cursor
is not explicitly defined as global during creation, the cursor is created with a local scope
and can only be referenced by local cursor variables in the batch, trigger, stored proce-
dure, or a stored procedure OUTPUT parameter.

ANSI NULL Default (ANSI_NULL_DEFAULT)
You can use this option to determine the default value of a column, alias data type, or
CLR user-defined type for which the nullability, which is discussed in more detail in
Chapter 11, is not explicitly defined. When set to TRUE in SQL Server Management Stu-
dio or ON when using the ALTER DATABASE command, the default value is NULL, and
when set to FALSE, the default value is NOT NULL. Connection-level settings override
the default database-level setting. Similarly, columns that are defined with explicit con-
straints follow constraint rules regardless of this setting.

ANSI NULL Enabled (ANSI_NULLS)
You can use this option to determine how NULL values are compared. When set to
TRUE in SQL Server Management Studio or ON when using the ALTER DATABASE
command, all comparisons to a null value evaluate to UNKNOWN. When set to FALSE,
comparisons of non-UNICODE values to a null value evaluate to TRUE if both values are
NULL. Connection-level settings override the default database setting.

Note ANSI NULL Enabled should be set to TRUE when creating or manipulat-
ing indexes on computed columns or indexed views.

ANSI Padding Enabled (ANSI_PADDING)
You can use this option to control the padding of strings for comparison and insert oper-
ations. When set to TRUE in SQL Server Management Studio or ON when using the
ALTER DATABASE command, all strings are padded to the same length before conver-
sion or insertion into a varchar or nvarchar data type. Trailing blanks in character values
inserted into varchar or nvarchar columns and trailing zeros in binary values inserted into
varbinary columns are not trimmed. When set to FALSE, trailing blanks for varchar or

264 Part III Microsoft SQL Server Administration
nvarchar, and zeros for varbinary are trimmed. Connection-level settings that are set by
using the SET statement override the default database setting. In general, it is recom-
mended you keep this option set to TRUE.

Note ANSI Padding Enabled should be set to TRUE when creating or manipu-
lating indexes on computed columns or indexed views.

ANSI Warnings Enabled (ANSI_WARNINGS)
You can use this option to determine the behavior of certain exception conditions. When
set to TRUE in SQL Server Management Studio or ON when using the ALTER DATABASE
command, errors or warnings are issued when conditions such as divide-by-zero occur or
null values appear in aggregate functions. When set to FALSE, no warning is raised, and
instead a NULL value is returned. Connection-level settings that are set by using the SET
statement override the default database setting.

Note ANSI Warnings Enabled should be set to TRUE when creating or manipu-
lating indexes on computed columns or indexed views.

Arithmetic Abort Enabled (ARITHABORT)
You can use this option to determine the behavior of certain exception conditions. When
set to TRUE in SQL Server Management Studio or ON when using the ALTER DATABASE
command, a query is terminated when divide-by-zero error or overflow occurs during
query execution. When set to FALSE, a warning message is displayed when one of these
errors occurs, but the query, batch, or transaction continues to process as if no error
occurred.

Note Arithmetic Abort Enabled should be set to TRUE when creating or manip-
ulating indexes on computed columns or indexed views.

Concatenate Null Yields Null (CONCAT_NULL_YIELDS_NULL)
You can use this option to control the concatenation rules for NULL operators. When set
to TRUE in SQL Server Management Studio or ON when using the ALTER DATABASE
command, the result of a concatenation operation is NULL when either operand is
NULL. When set to FALSE, NULL values are treated as an empty character string, imply-
ing that a concatenation of the strings “xyz” and NULL will yield “xyz.”

Note Concatenate Null Yields Null should be set to TRUE when creating or
manipulating indexes on computed columns or indexed views.

Chapter 10 Creating Databases and Database Snapshots 265
Cross-Database Ownership Chaining Enabled (DB_CHAINING)
Cross-Database Ownership Chaining Enabled is a security feature that controls
whether the database can be accessed by external resources, such as objects from
another database. When set to TRUE in SQL Server Management Studio or ON when
using the ALTER DATABASE command, the database can be the source or target of a
cross-database ownership chain. Setting the option to FALSE prevents participation in
cross-database ownership chaining. This option is effective only when the instance-
wide cross db ownership chaining server option is set to 0. When the cross db owner-
ship chaining option is enabled via SQL Server Management Studio or set to 1 via the
sp_configure stored procedure, this option is ignored and all databases in the server can
participate in cross database ownership chaining.

Date Correlation Optimization Enabled
(date_correlation_optimization_option)
This option controls the date correlation optimization. The date correlation optimization
improves performance of queries that perform an equijoin between two tables that spec-
ify a date restriction in the query’s WHERE clause predicate, and whose datetime col-
umns are linked by a foreign key constraint.

Setting the Date Correlation Optimization Enabled to TRUE directs SQL Server to main-
tain correlation statistics between any two tables in the database that are linked by a FOR-
EIGN KEY constraint and have datetime columns. Setting this option to FALSE disables
date correlation.

Note Tables that can benefit from enabling this optimization are typically part
of a one-to-many relationship and are used primarily for decision support,
reporting, or data warehousing purposes.

Numeric Round-Abort (NUMERIC_ROUNDABORT)
This option determines the behavior when an operation results in a loss of precision.
When set to TRUE in SQL Server Management Studio or ON when using the ALTER
DATABASE command, an error is generated when loss of precision occurs in an
expression. When set to FALSE, losses of precision do not generate error messages and
the results are rounded to the precision of the column or variable storing the result.

Note Numeric Round-Abort should be set to FALSE when creating or manipu-
lating indexes on computed columns or indexed views.

266 Part III Microsoft SQL Server Administration
Parameterization (PARAMETERIZATION)
Parameterizing SQL queries enables the database optimizer to reuse a previously com-
piled query plan, thereby eliminating the need for recompiling it for successive invoca-
tions of the same query with differing parameter values. If a nonparameterized SQL
statement is executed, SQL Server 2005 internally tries to parameterize the statement
to increase the possibility of matching it against an existing execution plan. This mode
of parameterization is referred to as simple parameterization. SQL Server 2005 also
introduces a new parameterization mode called forced parameterization. With forced
parameterization, all nonparameterized SQL statements, subject to certain limitations,
are force parameterized, and unlike simple parameterization the likelihood of SQL
Server 2005 parameterizing those statements is far higher.

You can use this option to control whether the queries in the database will be simple or
forced parameterized. When PARAMETERIZATION is set to SIMPLE, SQL Server will try
to parameterize queries using the simple scheme unless a query hint has been specified
for a particular query to force parameterize it. Conversely, when PARAMETERIZATION is
set to FORCED, all queries will be force parameterized unless a query hinto has been
specified for a particular query to parameterize it using the simple scheme.

Note SIMPLE parameterization in SQL Server 2005 is the same as auto-
parameterization in SQL Server 2000.

Quoted Identifier Enabled (QUOTED_IDENTIFIER)
This option controls the interpretation of double quotation marks by the parser. When
set to TRUE in SQL Server Management Studio or ON when using the ALTER DATABASE
command, double quotation marks can be used to enclose delimited identifiers, for
example, FirstName = “Mike”. When set to FALSE, identifiers cannot be in quotation
marks and must follow all T-SQL rules for identifiers.

Recursive Triggers Enabled (RECURSIVE_TRIGGERS)
This option controls the behavior of recursion of AFTER triggers. When set to TRUE in
SQL Server Management Studio or ON when using the ALTER DATABASE command,
recursive firing of AFTER triggers is permitted. When set to FALSE, direct recursive firing
of AFTER triggers is not allowed.

Note Only direct recursion is prevented when Recursive Triggers Enabled is set
to FALSE. To disable indirect recursion, you must also set the nested triggers
server option to 0 using the sp_configure command.

Chapter 10 Creating Databases and Database Snapshots 267
Trustworthy (TRUSTWORTHY)
You can use this option to control access to resources outside the database. When set
to TRUE in SQL Server Management Studio or ON when using the ALTER DATABASE
command, database modules like user-defined functions and stored procedures that
use an impersonation context can access resources outside the database. When set to
FALSE, database modules that use an impersonation context cannot access resources
outside the database.

Note The model and tempdb databases always have TRUSTWORTHY set to
FALSE, and the value cannot be changed for these databases. The master data-
base by default has TRUSTWORTHY set to TRUE.

Page Verify (PAGE_VERIFY)
You can use this option to determine the mechanism used to discover damaged database
pages caused by disk I/O path errors.

When set to Checksum, a checksum over the contents of the whole page is calculated
and the value stored in the page header when a page is written to disk. When the page is
later read from disk, the checksum is recomputed and compared to the checksum value
stored in the page header. If the values do not match, an error is reported.

When set to TornPageDetection, a specific bit for each 512-byte sector in the 8-kilobyte
(KB) database page is saved and stored in the database page header when the page is writ-
ten to disk. When the page is read from disk, the torn bits stored in the page header are
compared to the actual page sector information. Unmatched values indicate that only
part of the page was written to disk, a condition called a torn page.

When set to None, the database will not generate or verify a checksum or torn page detec-
tion bits.

Best Practices The default page verification mechanism in SQL Server 2005 is
Checksum. It is recommended that you use this option because even though the
TornPageDetection option may use fewer resources, it provides only a minimal
subset of the checksum protection. It is not advisable to set this option to None.

Database Read-Only (READ_ONLY or READ_WRITE)
You can use this option to control whether updates are allowed on the database. When
set to TRUE in SQL Server Management Studio or ON when using the ALTER DATABASE
command, users can only read from the database and are not permitted to modify data.
When set to FALSE, the read and write operations are permitted on the database. To
change the state of this option, you must have exclusive access to the database.

268 Part III Microsoft SQL Server Administration
Database State (DB_STATE_OPTION)
You can use this option to control the state of the database. When set to NORMAL, the
database is fully operational and available for use. When the database is set to CLOSED,
the database is shut down cleanly and marked offline. The database cannot be accessed
or modified while in this state. When set to EMERGENCY, the database is marked
READ_ONLY, logging is disabled, and access is limited to members of the sysadmin
fixed server role. The EMERGENCY database state is used primarily for troubleshooting
purposes.

Restrict Access (DB_USER_ACCESS_OPTION)
You can use this option to control access to the database. In MULTIPLE mode all users
are allowed to connect to the database as long as they have the appropriate permissions.
Conversely, in the SINGLE mode only one user is permitted to access the database at a
time. In the RESTRICTED mode only members of the db_owner, dbcreator, and sysad-
min roles can connect to the database.

Note Connection-level settings take precedence over the database-level set-
tings, implying that if a database option is set at the database level and also is
specified at the connection level, the connection-level setting is utilized.

Viewing Database Details
The details of a database, such as the size, collation, filegroups, database options, and
so on, can be viewed via SQL Server Management Studio or using the sp_helpdb stored
procedure. The process used to do this is explained in the sections below.

Viewing Database Details with SQL Server Management
Studio

The following steps explain the process of viewing the details of a database via SQL
Server Management Studio:

1. Click the Start button, point to All Programs, select Microsoft SQL Server 2005, and
then select SQL Server Management Studio.

2. Log in to the instance you want to use, and then click on the + sign next to Data-
bases to expand the list of databases.

3. Select a database, right-click it, and then select Properties from the shortcut menu.
The window shown in Figure 10-9 is displayed. You can then select the appropriate
page from the left pane to view the required details.

Chapter 10 Creating Databases and Database Snapshots 269
Figure 10-9 SQL Server Management Studio—View Database Details.

Viewing Database Details with the sp_helpdb Command
The sp_helpdb <database_name> command lists the details of the database, as shown in
Figure 10-10.

Figure 10-10 sp_helpdb <database_name> output.

270 Part III Microsoft SQL Server Administration
If no database name is provided to the sp_helpdb command, the high-level details of all
the databases in the instance get listed. In addition the command:

sp_dboption <database_name>

can be used to list all of the options that have been set for the database.

Deleting a Database
A database can be deleted via SQL Sever Management Studio, or via the DROP DATA-
BASE command. Listed below are some important points to consider when dropping a
database:

■ A database cannot be deleted if it is in use.

■ Dropping a database deletes the database from an instance of SQL Server and
deletes the physical disk files used by the database. The only exception is when the
database or any one of the files is offline. In this case, the disk files are not deleted
and must be deleted manually from the file system.

■ A database can be deleted regardless of its state: offline, read-only, suspect, and so
on. However, once deleted it can be re-created only by restoring a backup.

■ Only users having CONTROL permission on the database can delete it.

■ If a database participates in log shipping, the log shipping needs to be removed
before deleting the database.

Deleting a Database Using SQL Server Management Studio
The following steps explain the process of deleting a database via SQL Server Manage-
ment Studio:

1. Click the Start button, point to All Programs, select Microsoft SQL Server 2005, and
then select SQL Server Management Studio.

2. Log in to the instance you want to use, and then click the + sign next to Databases
to expand the list of databases.

3. Right-click the database you want to delete and select Delete from the shortcut
menu.

4. Based on your requirements, select the check boxes to delete backup and restore
history information for databases and to close existing connections, as shown in
Figure 10-11. Click OK to complete the operation.

Chapter 10 Creating Databases and Database Snapshots 271
Figure 10-11 SQL Server Management Studio—Delete Database.

Deleting a Database Using the DROP DATABASE Command
The DROP DATABASE command can be used to drop one or more databases or database
snapshots, for example.

USE master ; -- make sure the current conext is not set to <database_name>

GO

DROP DATABASE TestDB ;

GO

When executing this command the current context cannot be set to the database being
dropped. The DROP DATABASE command cannot be executed as part of an implicit or
explicit transaction.

Real-World Database Layouts
Now that we’ve covered the fundamentals of databases, let’s pull all of the concepts
together and apply them to define the structure of the databases for three applications—
simple, moderately complex, and complex—given a fixed number of disk drives, a set of
application characteristics, and a set of requirements.

272 Part III Microsoft SQL Server Administration
Simple Application Workload
Scenario: In this scenario a user has a very simple application that utilizes a backend SQL
Server 2005 database as a data repository for a small application. The maximum database
size is estimated to be 8 GB with the data access somewhat evenly distributed across all
the tables, with an average 95 percent read and 5 percent write data access ratio. The user
would like to protect the database against single disk failures but has a tight budget and
can afford only eight disk drives.

Solution: A mirrored (RAID-1) disk is created (C:) and used to store all five system data-
bases and SQL Server executables. This addresses the user’s requirement for protection
against single disk failures for the system database and executables.

Best Practices Storing the master, model, msdb, tempdb, and resource database
and SQL Server executables on a mirrored disk is also a recommended best
practice.

Since in any database the data access is almost always random in nature, while the trans-
action log access is primarily sequential, it is best to separate out the data and transaction
log files onto separate disks.

Best Practices Separating out the data and transaction log files onto separate
disks is another recommended best practice.

To do this and meet the protection against single disk failure requirement, the remaining
six disks are configured into two sets, one set of four disks configured as RAID-5 to hold
the primary data file, and the other as a two-disk mirrored (RAID-1) pair used to hold the
transaction log. Since the data access distribution is heavily skewed towards read activity,
the RAID-5 disk configuration will yield better performance than a RAID10 because the
disk stripe size is wider and only 5 percent of the queries will encounter the double write
overhead imposed by RAID-5. RAID-1 is not the most optimal configuration for the log
file, but since the user has a very limited number of disks available and again only 10 per-
cent of the workload involves writes, the RAID-1 choice is acceptable. Ideally, if more
disks were available, it would have been best to configure both the data (D) and the trans-
action log (L:) disks as RAID-10. The final database layout along with the filegroup and
data file details is shown in Figures 10-12.

Chapter 10 Creating Databases and Database Snapshots 273
Figure 10-12 Simple application workload database layout.

Moderately Complex Application Workload
Scenario: In this scenario the user has a moderately complex application that utilizes a
backend SQL Server 2005 database as a data repository for the entire application. The
maximum database size is estimated to be 35 GB with a fairly even split between read and
write type transactions. While the read transactions access the entire database, the write
activity is primarily targeted to a single large CaseLog table which is heavily inserted into.
The application has a high transactions/second throughput with a mix of very simple
transactions that are executed in high volumes as well as large complex queries that
involve multiple table joins and sort operations that are executed less frequently. The
user has 28 disk drives available for the database and would like to maximize perfor-
mance while protecting the database against single disk failures.

Solution: A mirrored (RAID-1) disk is created (C) and used to store the master, msdb,
model, and resource databases as well as the SQL Server executables. This addresses the
user’s requirement for protection against single disk failures for the system database and
executables. Since the application has a sizable amount of write activity, the database
transaction log is created on a RAID-10 disk (L) utilizing six disk drives. Given the size
of the database and the presence of large complex T-SQL queries that could possibly uti-
lize tempdb, the tempdb database is created with eight data files on a six-drive RAID-10
disk (T). The remaining 14 drives are split into two RAID-10 disks with eight drives (D)
and six drives (E). D is used to store the primary filegroup consisting of the primary data
file (data.mdf) as well as filegroup FG1 which contains a single secondary data file. FG1,
with the single secondary data file (data1.ndf), is created primarily for manageability
purposes given the size of the database and the need to be able to move the data around
at a later time. All the database tables, except the CaseLog table, are stored on this disk

C

master, msalb, model,
resource database, tempdb,
SQL Server executables

RAID-1
(2 disks)

D
Primary filegroup
(data.mdf)

RAID-5
(4 disks)

L Log file

RAID-1
(2 disks)

274 Part III Microsoft SQL Server Administration
(D). The E drive holds filegroup FG2, which consists of a single secondary data file
(data2.ndf), and is used to store the CaseLog table. Separating the CaseLog table out
into its own filegroup helps keep the heavy write activity from interfering with the read
activity on the other database tables. This is particularly important given that the appli-
cation executes a high transaction per second. The final database layout along with the
filegroup and data file details is shown in Figures 10-13.

Figure 10-13 Moderately complex application workload database layout.

Complex Application Workload
Scenario: In this scenario the user has a complex application that utilizes a backend SQL
Server 2005 database to store all its data and metadata. The maximum database size is
projected to be 100 GB with a growth of 10 percent every year. The application is charac-
terized by a wide range of transaction types. The usual online transaction processing
workload executes relatively light, primarily read type transactions on the database
throughout the day. In addition, there is also a set of heavy-duty batch jobs that are exe-
cuted every 12 hours. These batch jobs execute some very complex queries, involving
multiple table joins and perform a large number of insert and delete operations. The user
has a 42 disk drives available for the database and would like the database to perform

C

master, msdb, model,
resource database, tempdb,
SQL senser executables

RAID-1
(2 disks)

D Primary filegroup (data.mdf)
FG1 (data1.ndf)

RAID-10
(8 disks)

E FG2 (data2.ndf)

RAID-10
(6 disks)

L Logs

RAID-10
(6 disks)

T tempdb

RAID-10
(6 disks)

Chapter 10 Creating Databases and Database Snapshots 275
well for both online and batch workloads, be highly available and protected against single
disk failures.

Solution: A mirrored (RAID-1) disk is created (C) and used to store the master, msdb,
model, and resource databases as well as the SQL Server executables. This addresses the
user’s requirement for protection against single disk failures for the system database and
executables. Since the batch jobs perform large amounts of inserts and deletes, the data-
base transaction log is created on dedicated RAID-10 disk (L) utilizing eight disk drives.
Given the size of the database and the presence of large complex queries that could pos-
sibly utilize tempdb to hold the results of operations that cannot be held in memory,
tempdb is created on a RAID-10 disk (T) with another eight drives.

The remaining 24 drives are configured as a single RAID-10 disk (D) and used to store the
primary filegroup consisting of the primary data file (Data.mdf) and filegroup FG1, con-
taining a single secondary data file (Data2.ndf) that is created for manageability pur-
poses. This database layout is chosen because of the wide variations in the application
database’s usage characteristics. The reason for having just one large 24-disk stripe is that
both the online transaction processing and the batch workloads that execute only once in
a while can benefit from all of the disks. There will undoubtedly be some interference
when the online and batch workloads execute concurrently, but this should be far out-
weighed by the extra disk drives available to both types of workloads. The final database
layout along with the filegroup and data file details is shown in Figures 10-14.

Figure 10-14 Complex application workload database layout.

C

master, msdb, model,
resource database,
SQL Server executables

RAID-1
(2 disks)

D
Primary filegroup (data.mdf)
FG1 (data1.ndf)

RAID-10
(24 disks)

L Logs

RAID-10
(8 disks)

T tempdb

RAID-10
(8 disks)

276 Part III Microsoft SQL Server Administration
Note You will notice that in all three examples above, multiple disks were used
to store the databases even though in most cases a single or a couple of disks
could have been adequate from a database size perspective. This was done
intentionally for performance reasons. Having the data distributed across multiple
drives reduces the disk seek latencies as explained in Chapter 4, and thereby
increases performance. Given the relatively low costs of disks these days, this is
usually acceptable. If needed, you can utilize the free disk space to store some
hot backup of the database or some other data. However, care should be taken
not to store any heavily accessed data that would affect the performance of the
main database.

Using Database Snapshots
Database Snapshots is a new feature introduced in SQL Server 2005 which enables you to
take a point-in-time, read-only snapshot of a database. A database snapshot can be que-
ried as if it were just another user database and can exist for as long as needed. When
you’re done using it, the database snapshot can be deleted or restored back onto the
source database.

Note Database Snapshots are in no way related to snapshot backups, snapshot
replication, or the new snapshot transaction isolation level.

How Database Snapshots Work
When a database snapshot is created, a view of a source database is captured as it exists
at that point in time while eliminating any changes made by uncommitted transactions.
Therefore, a database snapshot can be considered a transactionally consistent snapshot
of a database.

Database Snapshots operate at the database page level. Once a database snapshot is cre-
ated, a copy of the original version of a page in the source database is copied to the data-
base snapshot using a copy-on-write mechanism before being modified for the first time.
Subsequent updates to data contained in a modified page do not affect the contents of
the snapshot. As can be expected, the database snapshot stores only copies of the source
database pages that have been changed since the snapshot was created.

The snapshot mechanism uses one or more sparse files to store the copied source data-
base pages. The sparse file starts off as an empty file and grows as pages are updated in
the source database. The sparse files initially take very little disk space but can grow very
large for database snapshots created from source databases that have had a significant
number of updates since the database snapshot was created.

Chapter 10 Creating Databases and Database Snapshots 277
When a query accesses a database snapshot, SQL Server internally checks whether the
page containing the data has been modified since the snapshot was created. If it has, SQL
Server uses the original source database page stored in the sparse file. If the page contain-
ing the data has not been modified, SQL Server accesses the page directly from the source
database.

When a snapshot is deleted, the copies of the original pages that were stored in the sparse
file are deleted. On the other hand, if the database snapshot is reverted back to the source
database, the original pages are copied back onto the source database.

Managing Database Snapshots
Database snapshots can be created, viewed, deleted, or reverted using T-SQL commands.
SQL Server Management Studio can be used as well, but only to view and delete the snap-
shots.

Creating Database Snapshots
A database snapshot can be created using the CREATE DATABASE command with the AS
SNAPSHOT OF option specified. For example, a database snapshot of the TestDB data-
base can be created using the following command:

CREATE DATABASE TestDB_ss_122805 ON

(NAME = TestDB_data1,

 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\TestDB_data1_1800.ss’),

(NAME = TestDB_data2,

 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\TestDB_data2_1800.ss’),

(NAME = TestDB_data3,

 FILENAME = ‘C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\TestDB_data3_1800.ss’)

AS SNAPSHOT OF TestDB ;

GO

Since multiple database snapshots can exist on the same source database, it is important
to use a meaningful naming convention. The recommended best practice is to use a con-
catenation of the original database name (TestDB), some indicator that the name relates
to a database snapshot (ss), and a timestamp or some other unique identifier to distin-
guish multiple snapshots on the same source database (122805).

278 Part III Microsoft SQL Server Administration
Viewing Database Snapshots
Database snapshot details can be viewed using the sp_helpdb command just like any reg-
ular database. Example:

sp_helpdb TestDB_ss_122805 ;

SQL Server Management Studio can also be used to view the details using the following
steps:

1. In SQL Server Management Studio, log in to the instance you want to use.

2. Expand the server in the Object Explorer pane on the left.

3. Expand the list of databases and then click the + sign next to Database Snapshots
to expand the list of database snapshots. You may have to right-click Database
Snapshots and select Refresh in order to view any database snapshots that were cre-
ated after SQL Server Management Studio was started.

4. Right-click the database snapshot you wish to view details of and select Properties
from the shortcut menu. The database snapshot properties are displayed as shown
in Figure 10-15.

Figure 10-15 SQL Server Management Studio—View details of Database Snapshot.

5. Click OK to continue.

Chapter 10 Creating Databases and Database Snapshots 279
Deleting a Database Snapshot
A database snapshot can be selected using the DROP DATABASE command. Example:

DROP DATABASE TestDB_ss_122805 ;

SQL Server Management Studio can also be used to delete a database snapshot using the
following steps:

1. In SQL Server Management Studio, log in to the instance you want to use.

2. Expand the server in the Object Explorer pane on the left.

3. Expand the list of databases and then click the + sign next to Database Snapshots
to expand the list of database snapshots. You may have to right-click Database
Snapshots and select Refresh in order to view any database snapshots that were cre-
ated after SQL Server Management Studio was started.

4. Right-click the database snapshot you want to delete and select Delete from the
shortcut menu.

5. The Delete Object dialog box is displayed, as shown in Figure 10-16.

Figure 10-16 SQL Server Management Studio—Delete Database Snapshot dialog box.

6. Click OK to delete the database snapshot.

280 Part III Microsoft SQL Server Administration
Reverting a Database
A database snapshot can be used to revert the source database to the state it was in when
the snapshot was created. Reverting a database overwrites all updates made to the origi-
nal database since the snapshot was created by copying the copy-on-write pages from the
sparse files back into the database.

A database can be reverted using the RESTORE DATABASE command. For example, the
command below reverts the snapshot TestDB_ss_122805 onto the source TestDB data-
base:

RESTORE DATABASE TestDB FROM

DATABASE_SNAPSHOT = ‘TestDB_ss_122805’ ;

GO

Before a database can be reverted, make sure that no other database snapshots exist on
the source database, that the source database does not contain any read-only or com-
pressed filegroups, and that all the filegroups that were online when the snapshot was
created are online.

Common Uses
SQL Server 2005 Database Snapshots is a very powerful feature that can be effectively
used for a wide range of scenarios. Some common uses include the following:

■ Safeguarding against administrator and user errors You can take a database
snapshot before any major operation is performed on the database. In the event of
an error or unexpected event, you can use the snapshot to revert the original data-
base to the point in time when the snapshot was taken. You can also take multiple
database snapshots during the course of a complex operation. If one of the inter-
mediate steps resulted in an error, you can roll back the database state to an appro-
priate database snapshot save-point.

■ Report generation on historical data You can create a database snapshot at a par-
ticular point in time, for example, at the end of the financial year, and use it to run
year-end reports on.

■ Offloading reporting tasks from the main database server In this scenario the
database snapshot is used in conjunction with database mirroring. As explained in
Chapter 28, “Log Shipping and Database Mirroring,” database mirroring provides
a mechanism to maintain a mirrored replica of the database on another server.
Since the mirror copy of the database is by design not directly accessible, reporting
jobs cannot be directly run against it. To work around this limitation, you can cre-
ate a database snapshot on the mirror and run your reports against the database
snapshot.

Chapter 10 Creating Databases and Database Snapshots 281
Database Snapshot Performance

The existence of one or more database snapshots negatively affects the perfor-
mance of the main database because it has to perform additional tasks when the
data is accessed and updated. This is particularly true for database snapshots that
exist on source databases that have been heavily updated since the database snap-
shot was created.

While multiple database snapshots are permitted on the same database, the multi-
ple copy-on-write operations for the multiple snapshots can adversely affect perfor-
mance. I have found that a couple of concurrently existing database snapshots on
a source database that is infrequently updated has relatively minimal impact on per-
formance.

Database Snapshots Limitations
The following limitations apply to database snapshots:

■ Database snapshots are read-only and can be created only on the same server
instance that the source database resides on.

■ The specifications of the database snapshot files cannot be changed. The only way
to accomplish this is to drop and recreate the database snapshot.

■ Database snapshot files cannot be deleted, backed-up, or restored, nor can they be
attached or detached.

■ If a snapshot runs out of disk space or encounters some other error, it is marked as
suspect and must be deleted.

■ Snapshots of the model, master, and tempdb system databases are not permitted.

■ You cannot create snapshots on a FAT32 file system or on RAW partitions.

■ Full-text indexing is not supported on database snapshots.

■ A database snapshot inherits the security constraints of its source database at the
time it was created. Permission changes made to the source database after the data-
base snapshot was created are not reflected in existing snapshots.

■ Reverting a database snapshot to a compressed or read-only filegroup is not sup-
ported.

■ Once a database snapshot has been created, the underlying database cannot be
dropped, detached, or restored.

282 Part III Microsoft SQL Server Administration
Note If a source database goes into a RECOVERY_PENDING state, its
database snapshots may become temporarily inaccessible. However, after
the issue on the source database is resolved, the snapshots should become
available again.

Summary
In this chapter, you’ve learned about the structure of a SQL Server 2005 system and user
database including database files, filegroups, various configuration options, and meth-
ods for creating, altering, viewing, and deleting databases. You’ve also learned about the
new database snapshot feature including its working, common uses, limitations, and the
methods used to create, view, and delete them.

Chapter 11

Creating Tables and Views

Table Fundamentals .283

Creating, Modifying, and Dropping Tables .296

Views .303

System Views. .310

Summary .314

Tables are the foundation of a relational database. Every database consists of one or more
tables that store the data, or information in the database. The first part of this chapter cov-
ers the fundamentals of tables and demonstrates how to create, modify, and drop tables.
Before you begin to create tables, you’ll need to make some decisions about the type of
data that will be stored in each table, the structure of each table (including the data type
of each column), and the relationships of the different tables to one another. We will
cover the structure of tables in this chapter, while table relationships are covered in Chap-
ter 13, “Enforcing Data Integrity.” After tables, this chapter covers fundamentals of views,
types of views, and how to create and manage them.

The last part of the chapter covers the useful new system views for SQL Server 2005.
These are a collection of views designed to provide access to metadata information, and
they take the place of querying system tables in SQL Server 2000. The specific category
of system views called dynamic management views are covered in much detail in a chap-
ter of their own, Chapter 31, “Dynamic Management Views.”

Table Fundamentals
A table is an object in a database that stores data in a collection of rows and columns. A
column defines one piece of data stored in all the rows. Columns in a table are frequently
called fields. You can think of a table as a grid of columns and rows like a spreadsheet. A
single table in a SQL Server 2005 database can have up to 1,024 columns, and there can
be up to two billion tables in a database. The maximum row size is 8,060 bytes, except for
283

284 Part III Microsoft SQL Server 2005 Administration
variable length data types. The number of rows and total size of the table are limited only
by the available storage.

Following are the basic rules for table and column names (identifiers). These same rules
apply to all SQL Server objects, such as views, indexes, triggers, and procedures:

■ The first character must be a letter (either uppercase or lowercase) as defined in
the Unicode standard (which includes letters from other languages), or an under-
score (_).

■ Subsequent characters can be letters from the Unicode standard (again, either
uppercase or lowercase), digits (0-9), the “at” sign (@), the dollar sign ($), the num-
ber sign (#), or an underscore (_).

■ The length must be at least one and up to 128 characters (except for local tempo-
rary tables, which can have a maximum of 116 characters for the table name).

■ Spaces and other symbols may be used if delimited by double quotation marks or
brackets, [], for example, “First Name” or [First Name]. This is not recommended as
the quotation marks or brackets must always be used when referencing that name.

■ SQL Server reserved words can be used, but should not be for the same reason—
they must be delimited by quotation marks or brackets.

There are several design decisions that should be made before getting into the details of
creating tables. This will help provide consistency, accuracy, and efficiency throughout
your database. These decisions include the following:

■ What data will each table contain?

■ How will you name each table and column? Do you have a standard naming con-
vention to follow? If not, should you develop one?

■ What data type should be used for each column? How many characters or what
range of numbers is needed in the data type?

■ Which columns should and should not be allowed to contain null values?

■ Which columns should have a default value?

■ How will each table relate to other tables, if applicable?

■ What column(s) will be used as a primary key or foreign key?

■ How will the data be accessed? What column(s) will be good candidates for
indexes? What columns will be used in the JOIN or WHERE clauses when retriev-
ing data?

Chapter 11 Creating Tables and Views 285
Data Types
A data type is an attribute that specifies the type of data that the column can store.
Choosing the correct data type for each column is important when creating tables. The
following guidelines should help you make a good decision on the data type for each
column:

■ Try to use the smallest-sized data type for data. Not only will this save storage space,
but it will also increase your performance. The smaller the storage size, the faster
SQL can retrieve, sort, write, and transfer the data.

■ Use char when the data values in a column are expected to be consistently close to
the same size. Char has a maximum of 8,000 characters.

■ Use varchar when the data values in a column are expected to vary considerably in
size or contain a lot of NULL values. (A char(50) field will take up 50 bytes of stor-
age even if the value is NULL.) Varchar also has a maximum of 8,000 characters.

■ Use a numeric data type for columns used to store only numbers. A char or varchar
data type will work, but numeric types generally take up less storage space, and an
index on a numeric column will have better performance for searches and joins. Be
careful with something like ZIP codes or social security numbers, as they may
always consist of numbers, but they also can have leading zeros. These must be
stored in character fields to avoid losing any leading zeros.

■ Do not use the Unicode nchar and nvarchar data types unless you need to store Uni-
code data. The Unicode character set takes twice as much space to store as the char
and varchar counterparts. Unicode types are designed to include characters appear-
ing in non-English languages, including Chinese, Japanese, and others.

System Data Types
SQL Server provides two types of data types: system data types and user-defined data
types. System data types are the built-in data types provided by SQL Server and are
described in Table 11-1. The table is first divided into different categories of data types
and then in order of storage size.

SQL Server 2005 introduces a few new data types: varchar(max), nvarchar(max), varbi-
nary(max), and xml. For the variable data types, the (max) data types are known as large
value data types. They can store up to 2 GB of data. In previous versions of SQL Server,
you needed to use the (now depreciated) data types text, ntext, or image. An advantage
of the new large value data types is that you can use Transact-SQL functions on them,
you can use them as variables, and you can use them as parameters to procedures and
functions.

286 Part III Microsoft SQL Server 2005 Administration
For example, here is a simple function created using the T-SQL CREATE FUNCTION
command in which you can pass a large value data type, and perform a couple of string
functions on the parameter:

CREATE FUNCTION first_line(@large_text varchar(max))

RETURNS varchar(100) AS

BEGIN

RETURN 'First Line: ' + SUBSTRING(@large_text, 1,
80)

END

The other new data type is xml. This data type allows you store XML documents and frag-
ments of XML documents natively, which means the database engine takes into account
the XML nature of the documents you are storing. In the previous version of SQL Server,
there were less direct ways of storing and manipulating XML in the database. Now that
xml is a built-in data type, SQL Server 2005 adds a number of new features to support
XML data storage and manipulation.

Table 11-1 System Data Types in SQL Server 2005

Data Type Description Storage Size

Character Strings

char[(n)] Fixed-length, non-Unicode character data with
length of n characters (1 non-Unicode character
= 1 byte), where n is a value from 1 through
8,000.

n bytes

varchar[(n)]

varchar(max)

Variable-length non-Unicode character data with
a length of n characters, where n is a value from
1 through 8,000, or max. max indicates a maxi-
mum storage size of 2^31–1 bytes. (varchar(max)
is preferred over the use of the depreciated text
data type.)

Actual length of data
entered + 2 bytes

Unicode Character Strings

nchar[(n)] Fixed-length Unicode character data of n charac-
ters, where n is a value from 1 through 4,000.

2 × n bytes

nvarchar[(n)]

nvarchar[(max)]

Variable-length Unicode data of n characters,
where n is a value from 1 through 4,000, or max.
max indicates a maximum storage size of 2^31-1
bytes. (nvarchar(max) is preferred over the use of
the depreciated ntext data type.)

2 × the actual length
of data entered
+ 2 bytes

Chapter 11 Creating Tables and Views 287
Exact Numerics

Bit Integer data type that can be a value of 1, 0, or
NULL. Note: bit columns can not have indexes on
them.

1 byte for up to eight
bit columns, 2 bytes for
a table with nine
through 16 bit col-
umns, and so on

Tinyint Integer data from 0 through 255. 1 byte

Smallint Integer data from –2^15 (–32,768) through

2^15 – 1 (32,767).

2 bytes

integer or int Integer (whole number) data from
–2^31 (–2,147,483,648) through

2^31–1 (2,147,483,647)

4 bytes

Bigint Integer data from

–2^63 (–9,223,372,036,854,775,808) through

2^63–1 (9,223,372,036,854,775,807)

8 bytes

decimal[(p,[s])]

or

numeric[(p,[s])]

Fixed-precision and fixed-scale
numbers. (The data type numeric is
functionally equivalent to decimal.)
Precision (p) specifies the total num-
ber of digits that can be stored, both
to the left and to the right of the dec-
imal point. Scale (s) specifies the
maximum number of digits that can
be stored to the right of the decimal
point. Scale must be less than or
equal to precision. The minimum
precision is 1, and the maximum pre-
cision is 38, with a default of 18.

Precision

1–9

10–19

20–28

29–38

Storage

5 bytes

9 bytes

13 bytes

17 bytes

Smallmoney Monetary data values from

–214,748.3648 through 214,748.3647,
with accuracy to one ten-thousandth
(.0001) of a monetary unit.

4 bytes

Money Monetary data values from
(–922,337,203,685,477.5808) through

922,337,203,685,477.5807), with
accuracy to one ten-thousandth
(.0001) of a monetary unit.

8 bytes

Table 11-1 System Data Types in SQL Server 2005 (continued)

Data Type Description Storage Size

288 Part III Microsoft SQL Server 2005 Administration
Approximate Numerics

float[(n)] Floating-point numerical data that
can range from –1.79E +308 to
–2.23E–308, 0, and 2.23E–308 to
1.79E+308. The value n is the number
of bits used to store the mantissa of
the float number in scientific nota-
tion, and can range from 1 to 53. For
1<= n <=24, SQL Server treats n as
24. For 25<=n<=53, n is treated as
53. The default for n is 53.

n

1–24

25–53

Precision

7 digits

15 digits

Storage

4 bytes

8 bytes

Real Floating-precision numerical data
that can range from –3.40E + 38 to
–1.18E –38, 0, and 1.18E –38 to 3.40E
+ 38

. The synonym for real is float(24).

4 bytes

Date and Time

Smalldatetime Date and time data from January 1, 1900,
through June 6, 2079, with accuracy to the
minute. It is stored in two 2-byte integers. The
first stores the number of days past January 1,
1900 and the second stores the number of
minutes past midnight.

4 bytes

Datetime Date and time data from January 1, 1753,
through December 31, 9999, with accuracy to
3.33 milliseconds. It is stored in two 4-byte inte-
gers. The first stores the number of days before or
after January 1, 1900 and the second stores the
number of milliseconds after midnight.

8 bytes

Binary

binary[(n)] Fixed-length binary data of n bytes, where n is a
value from 1 through 8,000

n bytes

varbinary[(n)]

varbinary[(max)]

Variable-length binary data of n bytes, where n is
a value from 1 through 8,000, or max. max indi-
cates a maximum storage size of 2^31–1 bytes.
(varbinary(max) is preferred over the use of the
depreciated image data type.).

Actual length of data
entered + 2 bytes

Table 11-1 System Data Types in SQL Server 2005 (continued)

Data Type Description Storage Size

Chapter 11 Creating Tables and Views 289
Real World Appropriate Use of Data Types

In the field I have seen data types misused such that the type selected could cause
unexpected results when inserting data or comparing data. If the appropriate data
type had been selected, these problems could have been avoided. Following are
some examples.

One case of misused data types that I’ve seen is the use of a number data type, such
as int, for a column that stores Social Security numbers or ZIP code numbers. If the
number entered has a leading 0, such as the ZIP code for Boston (02110), as a num-
ber data type the leading 0 is dropped and the number is stored as 2110. The same
applies for Social Security numbers. For these types of numbers, the character data
type should be selected. Social Security number could be char(9), and ZIP code
might be char(5) or char(10) to include the dash and four-digit extension.

Other Data Types

Timestamp A timestamp column is updated automatically
with a unique binary number every time a row is
inserted or updated. Each table can have only
one timestamp column.

8 bytes

Cursor A reference to a cursor. Can be used only for vari-
ables and stored procedure parameters.

Not applicable

unique identifier Stores a 16-byte binary value that is a globally
unique identifier (GUID).

16 bytes

sql_variant Allows values of various data types. The data
value and data describing that value—its base
data type, scale, precision, maximum size, and
collation—are stored in this column. The follow-
ing types of values are not allowed with
sql_variant – text, ntext, image, timestamp, xml,
varchar(max), nvarchar(max), varbinary(max),
sql_variant, and user-defined data types.

Size varies. Maximum
length of 8,016 bytes

Table Similar to using a temporary table—the declara-
tion includes a column list and data types. Can be
used to define a local variable or for the return
value of a user-defined function.

Varies with table
definition

Xml Stores XML data. Size of data.
Maximum of 2 GB

Table 11-1 System Data Types in SQL Server 2005 (continued)

Data Type Description Storage Size

290 Part III Microsoft SQL Server 2005 Administration
Another misuse case is selecting the character data type for a column that will store
dates. This allows non-date data to be entered, such as “3/25/2005” including the
slashes, or invalid data such as “ABC.” These entries cannot be compared in a
greater-than-or-equal-to date comparison and would provide incorrect results if
sorted. For date values, the smalldatetime and datetime data types should be used.

To determine the correct data type, consider what the possible values may be and
how the values will be used in queries, such as in equality comparisons, greater-
than-or-less-than comparisons, or in the ORDER BY clause, for example.

Aliases and Common Language Runtime User-Defined Data Types
SQL Server 2005 allows you to define your own data types in T-SQL (or Management Stu-
dio) or in the Microsoft .NET Framework. There are two classes of user-defined data
types—alias types and common language runtime (CLR) user-defined types. First let’s
talk about alias types; they are the most simple to create.

Creating Alias Data Types
Alias data types are system data types that have been customized. An alias data type is
based on a single system data type, but it provides a mechanism for applying a more
descriptive name to a data type. Alias data types allow you to refine system data types fur-
ther to ensure consistency when working with common data elements in different tables.
This is especially useful when there are several tables that must store the same type of
data in a column. This can make it easier for a programmer or database administrator to
understand the intended use of any object defined with the data type. When creating an
alias you must supply the alias name, the system data type upon which it will be based,
and the nullability (whether NULL is allowed as a value or not).

Here is an example showing good use of an alias type. Suppose your database contains
phone number data that may be used in a variety of columns in a table (for example,
home, work, cell, and so on) and/or in a number of different tables. You could create an
alias data type named phone_number, which could be used for all columns (in all tables)
that contain phone number data. The phone_number data type could be defined as var-
char(12) null. Then, when creating tables, you do not need to remember if you used
varchar(12), char(15) or varchar(50). Just use the alias data type and all of your
phone number columns will be consistent.

Here is the T-SQL syntax for creating an alias or CLR user-defined data type.

CREATE TYPE [schema_name.] type_name
{
 FROM base_type
 [(precision [, scale])]

Chapter 11 Creating Tables and Views 291
 [NULL | NOT NULL]
 | EXTERNAL NAME assembly_name [.class_name]
}

Here is the T-SQL CREATE TYPE command to create a phone_number alias data type that
can hold up to 12 characters, per the example above:
CREATE TYPE phone_number FROM varchar(12) NULL

To do this using SQL Server Management Studio Object Explorer, follow these steps:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice, and then expand the server’s Management Data-
bases folder.

2. Expand your database and expand Programmability.

3. Right-click Types, select New, and then select User-Defined Data Types on the
shortcut menu.

4. Enter the Schema, Name, Data Type, Size, and Nullability. In our example, these
are, respectively, dbo, phone_number, varchar, and 12, a nullability is checked to
allow nulls.

Your screen should be similar to the one shown in Figure 11-1.

Figure 11-1 Creating an alias type using Management Studio.

5. Click OK to save the new data type.

292 Part III Microsoft SQL Server 2005 Administration
Creating CLR User-Defined Data Types
New for SQL Server 2005, CLR user-defined data types obtain their characteristics from
methods and operators of a class that you must create using one of the programming lan-
guages supported by the .NET Framework—including Microsoft Visual C# and Microsoft
Visual Basic .NET. A user-defined type must first be coded as a class or structure, com-
piled as a dynamic-link library (DLL), and then loaded into SQL Server 2005. This can
also be accomplished through Microsoft Visual Studio. Following are the basic steps for
creating a CLR user-defined type:

1. Code the user-defined type as a class or structure using a supported Microsoft .NET
Framework programming language.

2. Compile the class or structure to build an assembly using the appropriate compiler.

3. Register the assembly in SQL Server 2005 using the CREATE ASSEMBLY statement.

4. Create the data type that references the assembly using the CREATE TYPE statement.

The ability to execute CLR code is disabled by default in SQL Server 2005. To enable CLR
code execution, enable the following option using the sp_configure stored procedure as
shown here:

sp_configure ‘clr enabled’, 1
reconfigure ;

Because CLR is more of a developer topic than a DBA topic, we refer you to the page enti-
tled “CLR User-Defined Types” in SQL Server Books Online for more information and
links to examples of coding CLR user-defined types and registering them with SQL
Server 2005.

Dropping User-Defined Data Types
Both alias and CLR user-defined data types can be renamed, but the data type itself can-
not be modified. The user-defined data type can only be created and dropped, and it can
be dropped only if it is not currently in use by a table or another database object. With
CLR user-defined types, the ALTER ASSEMBLY statement can be used to modify an
assembly that is registered as a type with SQL Server, but there are several considerations
that must be taken into account when doing so that can be found in SQL Server Books
Online under the topic “ALTER ASSEMBLY (Transact-SQL).”

Here is the T-SQL syntax for dropping any user-defined data type:

DROP TYPE [schema_name.] type_name

For example, this command drops the alias type we created previously.

DROP TYPE phone_number

Chapter 11 Creating Tables and Views 293
Note Previous versions of SQL Server used sp_addtype and sp_droptype to per-
form these functions. They can still be used, but they should be avoided because
they will be obsolete in future versions.

To drop or rename any user-defined type from the Object Explorer, follow these steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand the database name and then expand Programmability.

3. Expand Types, and then expand User-Defined Data Types.

4. Right-click the user-defined data type you want to use, and then select Delete or
Rename on the shortcut menu.

5. If you are deleting the type, a Delete Object dialog box appears. Click OK to confirm
the deletion. If you are renaming the type, just enter the new name and click Enter.

Note Renaming a user-defined data type automatically renames the data
type for all columns using this data type.

Note All user-defined data types (both alias and CLR types) that are cre-
ated in the model database will be available in all databases that are subse-
quently created. User-defined types that are created within a database are
available only to that database.

Nulls
A null value is an unknown or missing value that is referred to as NULL. The nullability
of a column refers to the ability of the column to accept or reject null values. A null value
in a column usually indicates that no entry has been made or an explicit NULL was sup-
plied for that column for a particular row of data. Null values are neither empty values
nor 0 values; their true values are unknown—thus, no two null values are equal.

It is best to avoid allowing the use of null values as much as possible, and only allow nulls
when necessary and truly appropriate. When possible, use default values to be used
when no value is supplied instead of allowing null values for a column. With null values,
more complexity is incurred in queries and updates, coding can be more complicated
when dealing with the possibility of null values, and unexpected results can occur if not

294 Part III Microsoft SQL Server 2005 Administration
taken into consideration when coding. Keep in mind that the PRIMARY KEY constraint
and the IDENTITY property can not allow null values as well.

IDENTITY Column
Use the IDENTITY property to create a column that contains system-generated sequen-
tial values to identify each row inserted into a table. This value is based on a seed value
and an increment value. The seed is a value that will be the identity value for the first row
inserted into the table. The increment is the amount by which SQL Server will increase
the identity value for successive inserts. The default seed value is 1, and the default incre-
ment value is 1. This means that the value on the first row inserted will be 1, the value
on the second row inserted will be 2, and so on. An identity column is commonly used
as a primary key constraint in the table to uniquely identify a row. (See Chapter 13 to
learn about primary key constraints.)

Some things to keep in mind about the IDENTITY property include:

■ There can be only one identity column per table.

■ Null values are not allowed.

■ It can be used only with the following data types: tinyint, smallint, int, bigint, or
numeric/decimal with a scale of zero.

Note The IDENTITY column does not enforce the uniqueness of records.
This will need to be done using a unique index.

When you insert into a table with an identity column you do not put a value into the
identity column. For example, let’s create myTable with three columns, making the first
column an IDENTITY column, using the following CREATE TABLE statement:

CREATE TABLE myTable

(myID int IDENTITY (1,1),

firstName varchar(30),

lastName varchar(30));

 The following INSERT statements to insert rows into myTable are correct:

INSERT INTO myTable(firstName, lastName) VALUES (‘Ben’, ‘Franklin’)

INSERT INTO myTable(firstName, lastName) VALUES (‘Paul’ , ‘Revere’)

INSERT INTO myTable(firstName, lastName) VALUES (‘George’ , ‘Washington’);

Now select all the rows from myTable:

SELECT * FROM myTable;

Chapter 11 Creating Tables and Views 295
The results will show the identity value that was inserted in the myID column for each
row as follows:

myID firstName lastName

------ ----------- -----------

1 Ben Franklin

2 Paul Revere

3 George Washington

The myID column was automatically populated with the next value in the sequence. You
will get an error if you try to fill in a value for an identity column.

If you need to know the value of the identity column of the last row inserted, you can use
the built-in function @@IDENTITY. After the three insert statements in the previous exam-
ple, you can add the following statement to see the identity value that was last inserted.

SELECT @@IDENTITY

This will return a 3, as that was the last identity value inserted into myTable.

SQL Server does not guarantee sequential gap-free values in identity columns. If records
are deleted, SQL Server will not back fill the missing values. By the same token, if you
delete all the records from a table, it will not reset the identity. The next identity number
will be the next number in sequence. After the following code is executed in the myTable
example, you will see that the identity column sequence picks up where it last left off.
First we delete a row from the table with this DELETE statement:

DELETE FROM myTable WHERE lastName = ‘Revere’

Then we insert a new row:

INSERT INTO myTable(firstName, lastName) VALUES (‘Abe’ , ‘Lincoln’)

Then we select all rows from the table to see the identity values now:

SELECT * FROM myTable

The rows returned show that the next identity value of 4 was used for the inserted row
and the previously used identity value of 2 is now deleted from the table and will not be
used again. Here are the results:

myID firstName lastName

------ ---------- -----------

1 Ben Franklin

4 Abe Lincoln

3 George Washington

296 Part III Microsoft SQL Server 2005 Administration
There is a way to set the value of an identity column explicitly when you are inserting a
record. This is accomplished by first setting the IDENTITY_INSERT property to ON,
then inserting the row:

SET IDENTITY_INSERT myTable ON

INSERT myTable (myID, firstName, lastName) Values(2, ‘John’, ‘Hancock’)

SET IDENTITY_INSERT myTable OFF

The identity value of 2 was allowed to be explicitly inserted into myTable. Now select all
rows to see the values:

SELECT * FROM myTable

The new results for the table are as follows:

myID firstName lastName

------ ---------- -----------

1 Ben Washington

4 Abe Lincoln

2 John Hancock

3 George Washington

Note Only one table in a session can have the IDENTITY_INSERT property set
to ON. It is a good practice to turn it on to use it and then immediately turn it
back off.

Creating, Modifying, and Dropping Tables
When you create a table, you must specify the table name, column names, and column
data types. Column names must be unique to a table, but the same column name can be
used in different tables within the same database. The column name can be omitted for
columns that are created with a timestamp data type, in which case the column name will
default to “timestamp.”

Creating Tables
You should adopt standards when naming your tables and columns. Making good use
of uppercase and lowercase letters and using underscores to separate words will help
make the table and columns easier to read and understand. Try to keep the names short

Chapter 11 Creating Tables and Views 297
but still long enough to be descriptive. If you use the same column in different tables, try
to use the same name. This consistency helps avoid confusion when creating and using
queries.

Below is the basic T-SQL syntax for creating a table. Not all of the arguments for creating
a table are listed here. Refer to SQL Server Books Online for the complete CREATE
TABLE syntax:

CREATE TABLE
 [database_name . [schema_name] . | schema_name .]
table_name
 (
 column_name <data_type>
 [NULL | NOT NULL]
 [DEFAULT constant_expression]
 [IDENTITY [(seed ,increment)]
 [,...n]
)

Below are descriptions of the CREATE TABLE arguments listed in the above syntax:

■ database_name Optional. Name of the database in which the table will be created.
Defaults to the current database.

■ schema_name Optional. Name of the schema to which the new table belongs.
Defaults to dbo.

■ table_name Required. Name of the new table.

■ column_name Required. Name of the column.

■ data_type Required. System or user-defined data type including arguments (preci-
sion, scale, max, and so on) if applicable.

■ nullability Optional. Indicates whether null values are allowed in the column. Sim-
ply state NULL or NOT NULL. NOT NULL is the SQL Server default, but the server
defaults can be changed. It is best to specify the nullability of a column when creat-
ing a table.

■ DEFAULT Optional. The value you want to be used for the column for any row that
is inserted without explicitly supplying a value for that particular column.

■ IDENTITY Optional. Indicates that the column is an identity column. The (seed,
increment) values will default to (1, 1) if not specified.

298 Part III Microsoft SQL Server 2005 Administration
The following is a T-SQL example creating a table using some of the optional arguments:

CREATE TABLE Employees
(
 Employee_ID smallint NOT NULL IDENTITY(1000,1),
 SSN char(9) NOT NULL,
 FName varchar(50) NOT NULL,
 Middle char(1) NULL,
 LName varchar(50) NOT NULL,
 BirthDate smalldatetime NULL,
 Salary smallmoney NULL,
 Department_ID smallint NOT NULL,
 Active_Flag char(1) NOT NULL DEFAULT ‘Y’
)

This script creates a table named Employees with eight columns. Smallint was used for
the Employee_ID column because the number of employees may be more than 255 (tiny-
int) but fewer than 32,767 (int). The IDENTITY property will automatically assign an
incremental integer to this column starting with 1,000, incrementing by 1 for each new
row. The first name and last name fields are NOT NULL, meaning values are required at
the time the record is created. The Active_Flag field will default to a value of y for each
record inserted, unless otherwise specified.

To create a table using SQL Server Management Studio from the Object Explorer, follow
these steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand the database name, right-click Tables, and then select New Table on the
shortcut menu. A grid displays to allow you to enter all the columns.

3. Type column names, choose data types, and choose whether to allow nulls for each
column.

Note In addition to the options in the grid, a column properties page will
be displayed at the bottom of the window that has some additional column
settings.

4. On the File menu, select Save table name or hit CTRL-S to save table.

5. In the Choose Name dialog box, type a name for the table and click OK.

Chapter 11 Creating Tables and Views 299
Figure 11-2 shows our example Employee table.

Figure 11-2 Creating a table using Management Studio.

Modifying Tables
After a table is created and even if data already populates the table, you can rename the
table or add, modify, or delete columns.

Important Caution should be taken when renaming a table or column
because it may cause existing queries, views, user-defined functions, stored pro-
cedures, or programs that refer to the original table or column name to become
invalid and return errors.

The data type of an existing column can be changed only if the table is empty (in other
words, has no rows) or the existing data in the column can be implicitly converted to the
new data type.

For example, you can not change a varchar(50) column to an int data type if the column
contains first names. If the varchar(50) column contained only numbers, like ZIP codes
(without the dashes), it can be converted to an int column. (Any leading zeros are lost.)

For data types where the length of the data type is specified, such as binary, char, nchar,
varbinary, varchar, and nvarchar, the length can be increased or decreased. If you decrease

300 Part III Microsoft SQL Server 2005 Administration
the length, all values in the column that exceed the new length will be truncated. For
example, changing a varchar(50) column to varchar(5) will truncate all of the data in the
column exceeding five characters.

Note There is an exception to changing the length of a column as described
above—you cannot change the length of a column that has a PRIMARY KEY or
FOREIGN KEY constraint. Thus, the constraint would have to be dropped in order
to change the column length.

There is a bit more to the adjustment of the data types decimal and numeric. There is a pre-
cision value and a scale value for these types. If the scale value is decreased, any digits to
the right of the decimal exceeding the new size of the scale value will be rounded to the
new scale number of digits. For example, assume a column is defined as data type
numeric(9,4), and one row in the table has a value of 1234.5678 for that column. If the
data type of the column is then changed to numeric(9,2), that value is adjusted to 1234.57.

The same is not true for the precision. The whole number part of the value cannot be
changed when altering a column. If you adjust the precision smaller and there is a value
in your column that is already larger than that precision, SQL Server will not allow you to
alter the column. For example, assume a column currently has data type numeric(9,4)
and one row in the table has a value of 1234.5678 for that column. You will not be able
to change the column to data type numeric(7,4). You can, however, change the column’s
data type to numeric(8,4) since that covers the eight digits in the number.

To modify an existing table using T-SQL, you use the ALTER TABLE command. Refer to
SQL Server Books Online for the complete ALTER TABLE syntax.

Here are some examples of ways to modify the Employees table that we created in the pre-
vious CREATE TABLE example. This first example adds a new column to a table and
demonstrates using the user-defined data type that we created earlier:

ALTER TABLE Employees
ADD Home_phone phone_number

This example removes a column from a table:

ALTER TABLE Employees
DROP COLUMN SSN

This example modifies the size of an existing column. The LName column was originally
created as varchar(50):

ALTER TABLE Employees
ALTER COLUMN LName varchar(100) NOT NULL

After running the above statements, the columns in the Employees table, if viewed in
Management Studio, appear as shown in Figure 11-3.

Chapter 11 Creating Tables and Views 301
Figure 11-3 Modified table viewed with Management Studio.

It is easy to make modifications to your table using SQL Server Management Studio.
Here’s how to do so from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand the database name and expand Tables.

3. Right-click the table you want to work with, and then select Modify on the shortcut
menu. A grid showing all the current columns of the table is displayed, as shown
above in Figure 11-3.

4. Name or data type changes can be done in place. Right-click any row and select
Insert Column or Delete Column on the shortcut menu, if desired.

Note You can change the order of the columns by clicking your left
mouse button on the grid arrow to the left of the column and dragging the
column up or down to the desired position.

Note In addition to the options in the grid, a column properties page with
some additional column settings is displayed at the bottom of the window.

5. To save changes, select Save table name on the File menu or enter Ctrl-S.

302 Part III Microsoft SQL Server 2005 Administration
Dropping Tables
When you drop a table, all data, indexes, constraints, and permission specifications for
that table are deleted from the database. Dropping a table is not the same action as either
the TRUNCATE TABLE or the DELETE command. The TRUNCATE TABLE and
DELETE commands are used to remove data only from a table, not to remove the entire
table itself. More on these two commands is discussed at the end of this section.

Note System Tables can not be dropped.

To delete a table using T-SQL, you use the following command:

DROP TABLE < table_name >

The following is an example that drops the Employees table:

DROP TABLE Employees

Note If the table is referenced by a FOREIGN KEY constraint, the referencing
constraint or the referencing table must be dropped first.

To drop a table using SQL Server Management Studio from the Object Explorer, follow
these steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand the database name and expand Tables, and then right-click the table you
want to delete.

3. Select Delete on the shortcut menu and click OK to confirm the deletion.

If you want to remove only the data in a table, use either the TRUNCATE TABLE or
DELETE command. The DELETE statement removes all rows in a table or removes only
a subset of rows if you use the conditional WHERE clause. All rows deleted are recorded
in the transaction log. The TRUNCATE TABLE statement always removes all rows from
a table. It does not record the deleted rows in the transaction log, and a WHERE clause
cannot be used. TRUNCATE TABLE is much faster than DELETE when the desired result
is the removal of all of the rows from a table. Both statements release the space occupied
by the deleted rows for the storage of new data.

Chapter 11 Creating Tables and Views 303
Views
There are two basic types of views in SQL Server 2005: standard views and indexed views.
A standard view is a virtual table based on the result set of a SELECT statement. A view
contains rows and columns just like a real table. The fields in a view are fields from one
or more real tables or other views in the database. You can add T-SQL arguments to a
view definition as with any SELECT statement, such as WHERE, JOIN, and UNION, to
present the data as if the data was coming from a single table. In a standard view, the data-
base does not store the view data. The view is actually a predefined SQL statement that
the database engine executes and retrieves dynamically when the view is referenced. A
view can be used inside a query, a stored procedure, or another view.

Note Although a view is not a real table, the data in the base tables can still be
manipulated, with some limitations, through the view as if it were a real table.

An indexed view is like a standard view except that it has a unique clustered index created
on it. This causes the data of the view to be stored physically on disk, just like a table. Not
only does the view now take up disk space, but there is also the additional overhead of
maintaining the view when the data in the base tables changes. Because of this, there are
limited reasons to use indexed views. The reason for creating an indexed view is to
achieve better performance for queries using the view, as with table indexes. Indexed
views work best for queries that aggregate many rows or have joins that cause the
response time of the standard view to be slow, and where the data in the underlying
tables is not frequently updated.

Note Secondary, nonclustered indexes can also be created on an indexed view
to provide additional query performance. They will also be stored physically on a
disk like the clustered index.

Performance must be considered when deciding whether to use an indexed view. If
the indexed view is using base tables that are frequently inserted into, deleted from, or
updated via a front-end application, that application may become noticeably slower.
This occurs because each time a user changes the data in the base tables, the base table
indexes are updated. In addition, the indexed view will need to be updated. Indexes
can certainly increase the query performance of the view, but you need to find the
right balance of the indexes and maintenance overhead to meet your needs. With read-
only or mostly-read access of the table data, the update overhead problem will not be
an issue.

304 Part III Microsoft SQL Server 2005 Administration
Note Partitioned views are included in SQL Server 2005 for backward compati-
bility purposes only and are in the process of being depreciated. They are being
replaced by partitioned tables. See Chapter 19, “Data Partitioning,” to learn more.

Indexed views can be created with any version of SQL Server 2005, but the query opti-
mizer automatically considers using the indexed view only with Enterprise Edition. With
other editions of SQL Server, the table hint WITH (NOEXPAND) must be specified in
order for the indexed view to be considered for the execution plan. This hint is placed
after the indexed view name in the SELECT statement that references the indexed view.

Advantages of Views
Views can hide the complexity of database tables and present data to the end user in a
simple organized manner.

Views can be created to do any or all of the following:

■ Allow access to a subset of columns. Display only the columns needed by the end-
user and hide columns with sensitive data.

■ Rename columns. User-friendly column names can be used instead of the base
table column names.

■ Allow access to a subset of rows. Display only the rows needed by the end-user by
using a conditional WHERE clause.

■ Join two or more tables. Frequently used complex joins, queries, and unions can be
coded once as a view, and the view can be referenced for simplicity and consistency
of coding.

■ Aggregate information. Sums, counts, averages, and so on can be calculated in a
view to simplify coding when those aggregates will be referenced multiple times.

Data Security with Views
Views can be used for security, allowing users access to certain data through the view
without granting the user permission to directly access the underlying base tables. A view
can be used to allow only harmless data to be available while hiding sensitive informa-
tion. For example, a view may display a subset of columns only, such as an employee’s
name, e-mail address, and phone number, while hiding the employee’s salary. With the
WHERE clause, you can also limit the access to only certain rows.

Creating, Modifying, and Dropping Views
The creator of the view must have access to all of the tables and columns referenced in the
view. A view, like a table, can have up to 1,024 columns. Views can be built on other views
and nested up to 32 levels.

Chapter 11 Creating Tables and Views 305
Note If you define a view with a SELECT * statement and then alter the struc-
ture of the underlying tables by adding columns, the new columns will not appear
in the view. To see the new columns in the view, you must alter the view.

Use the following to create a view using T-SQL Syntax:

CREATE VIEW [schema_name .] view_name [(column [,...n])]
[WITH { [ENCRYPTION] [SCHEMABINDING] [VIEW_METADATA] }
[,...n]]
AS select_statement
[WITH CHECK OPTION]

Here is a description of the arguments for the CREATE VIEW statement:

■ schema_name Optional. Name of the schema to which the view belongs. Defaults to
dbo.

■ view_name Required. Name of the view.

■ column Optional. Names of all of the columns in the view. The column names are
required if the column value is derived from a function, an expression, or a con-
stant, or if two or more columns in the select_statement have the same name, as is
typical with table joins. If column names are stated, there must be a one-to-one cor-
relation to the columns in the select_statement. If omitted, the column names in the
view will be the same as the column names in the select_statement.

■ ENCRYPTION Optional. Encrypts the actual SQL source code for the view. The
view cannot be modified. To change the view, the view must be dropped and then
recreated from the original source code of the view.

■ SCHEMABINDING Optional. Binds the columns of the view to the schema of the
underlying table or tables. The base table or tables cannot be modified in a way that
would affect the view definition.

■ VIEW_METADATA Optional. SQL Server will return the metadata information
about the view instead of the underlying tables to the DB-Library, ODBC and OLE
DB APIs. This metadata enables the client-side APIs to implement updatable client-
side cursors.

■ select_statement Required. The SQL SELECT statement that defines the view. This
can be from a single table, multiple tables, or other views, optionally using functions.
Multiple SELECT statements separated by UNION or UNION ALL can also be used.

306 Part III Microsoft SQL Server 2005 Administration
■ CHECK OPTION Optional. Ensures that any data modification through the view
complies with the WHERE condition of the view. CHECK OPTION cannot be spec-
ified if TOP is used anywhere in select_statement.

The SELECT clauses in a view definition cannot include the following:

■ COMPUTE or COMPUTE BY clauses

■ An ORDER BY clause, unless there is also a TOP clause in the select list of the
SELECT statement

■ The INTO keyword

■ The OPTION clause

■ A reference to a temporary table or a table variable

Note It is a good idea to use a naming convention when creating views.
Popular conventions include the prefix v_ or the suffix _v to the name (for
example, employees_v).

The following T-SQL example demonstrates how to create a view to show employees
from a single department, how to join multiple tables, and how to rename a few columns:

CREATE VIEW dept_101_employees_view

AS

SELECT emp.FName AS First_Name,

emp.LName AS Last_Name,

hire.Hire_Date,

dept.Description AS Department_Name

FROM Employees emp

INNER JOIN Employment hire ON emp.employee_id =
hire.employee_id

INNER JOIN Departments dept ON dept.department_id =
emp.department_id

WHERE dept.department_id = 101

WITH CHECK OPTION

The CHECK OPTION specified here will allow only INSERTS or UPDATES to this view
for employees in department 101. For example, you cannot insert an employee into
department 200 using this view, nor can you update the department for an employee in
this view to another department.

Chapter 11 Creating Tables and Views 307
When a user queries SELECT * from this view, the user sees more specifically named col-
umns (“Department_Name” instead of “Description”), the sensitive data is hidden (for
example, the salary column is hidden and cannot be selected), and the number of rows
returned is limited to only one department. The complexity of the join is also hidden
from the user. The user will not know that the data is actually coming from three tables.

The columns can also be renamed at the beginning of the statement, as displayed in the
following example. This example also shows the use of an aggregate function and encryp-
tion of the view so that the source cannot be viewed by others:
CREATE VIEW dept_101_employee_vacation_view

(First_Name, Last_Name, EmployeeNumber, Hire_Date,
Avg_Vacation_Remaining)

WITH ENCRYPTION, SCHEMABINDING

AS

SELECT emp.FName,

emp.LName,

emp.EmployeeNumber,

hire.Hire_Date,

AVG(emp.vac_days_remaining)

FROM Employees emp

INNER JOIN Employment hire ON emp.employee_id =
hire.employee_id

INNER JOIN Departments dept ON dept.department_id =
emp.department_id

WHERE dept.department_id = 101

GROUP BY emp.FName, emp.LName, emp.EmployeeNumber,
hire.Hire_Date

Note Be careful using ENCRYPTION. You will not be able to retrieve the source
(the actual SQL) of the view from the database. You must keep a copy of the view
in a separate file in order to maintain it.

To allow this view to become an indexed view, we included the SCHEMABINDING
option in the CREATE VIEW statement. To create the unique clustered index, run the fol-
lowing T-SQL. (See Chapter 12, “Creating Indexes for Performance,” to learn more about
creating indexes.)
CREATE UNIQUE CLUSTERED INDEX v_ind_dept_101_employee_vacation ON
dept_101_employee_vacation_view (EmployeeNumber);

308 Part III Microsoft SQL Server 2005 Administration
To create a view from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand the database name and then right-click Views and select New View on the
shortcut menu. This opens a window that asks you to select the base source for
your view. For multiple sources, you can click the Add button after each selection,
or use Ctrl-Click to select several sources, and then click the Add button.

3. Click Close when you are finished.

4. You can create joins by dragging a column from one source to another. Select inner
or outer joins by right-clicking the box in the middle of the join line.

5. Select all of the columns you want in your view by clicking the check box next to
the field. The alias name for each column can be entered in the grid below the dia-
gram.

6. You can enter the WHERE clause of the SQL in the Filter and Or columns of the
grid.

7. You can also add or modify the SQL in the SQL window displayed below the grid.

8. When you are finished, select Save view name on the File menu, or enter Ctrl+S.

If you created our example dept_101_employees_view view, your screen should look simi-
lar to Figure 11-4.

Figure 11-4 Creating a view using Management Studio.

Chapter 11 Creating Tables and Views 309
View Source
The source definition for your view can be seen by accessing system views. System views
are the new method in SQL Server 2005 used to access information about database meta-
data. The following T-SQL command shows how to select the view definition from sys-
tem view INFORMATION_SCHEMA.VIEWS (see the section later in this chapter ‘System
Views’). The system stored procedure to view text of an object, sp_helptext, is still avail-
able with SQL Server 2005 as well. Here is the T-SQL using both methods to retrieve the
CREATE VIEW statement definition we used to create our example view dept_101_-
employees_view in mydatabase:

SELECT VIEW_DEFINITION FROM mydatabase.INFORMATION_SCHEMA.VIEWS
WHERE table_name = ‘dept_101_employees_view’;

--OR

use mydatabase

go

sp_helptext dept_101_employees_view;

Note You will not be able to view the source of the example view
dept_101_employee_vacation_view because it was created using WITH ENCRYP-
TION. The text field will contain NULL.

Modifying Views
The T-SQL Syntax for modifying a view is basically the same as the syntax for creating the
view, except ALTER is used instead of CREATE:

ALTER VIEW [schema_name .] view_name [(column [,...n])]
[WITH { [ENCRYPTION] [SCHEMABINDING] [VIEW_METADATA] }
[,...n]]
AS select_statement
[WITH CHECK OPTION]

Using SQL Server Management Studio Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand the database name and expand Views.

3. Right-click the view you want to work with, and then select Modify on the shortcut
menu.

310 Part III Microsoft SQL Server 2005 Administration
4. You can modify the view using similar steps as with creating the view. Right-click in
the Diagram pane to bring up a menu of additional modification options such as
Add Table.

5. Once you have made the desired changes, select Save view name on the File menu,
or enter Ctrl-S to save the changes.

Note You will notice that any views created with the encryption option
will display a small lock in the icon next to the view name. You will not be
able to modify an encrypted view as the modify menu item is shaded and
not selectable.

Dropping Views
To delete a view, use the DROP VIEW command. The T-SQL Syntax to do this is as follows:

DROP VIEW [schema_name .] view_name [...,n]

This T-SQL example drops the view we created earlier:

DROP VIEW dept_101_employees_view

Using SQL Server Management Studio Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand the database name and expand Views.

3. Right-click the view you want to delete, and then select Delete on the shortcut
menu.

4. Click OK to confirm the deletion.

System Views
System views are new for SQL Server 2005. They are designed to expose instance and
database related metadata in an organized and useful method. Some system tables from
SQL Server 2000 are now implemented in SQL Server 2005 as system views for back-
ward compatibility. Although the SQL Server 2000 system tables can still be queried by
name, SQL Server 2005 features and related metadata will not be seen. Thus, the results
may be different from those when querying the corresponding new system view. See the
example later in this section.

Chapter 11 Creating Tables and Views 311
Using the new system views is the recommended method for viewing metadata and sys-
tem information. There are many SQL Server 2005 system tables that do not have system
views for accessing data from them, such as the backup and restore history tables. In
those cases, the data must be accessed by querying the system table itself.

System base tables are the underlying tables that actually store metadata for a specific
database. These base tables are used within SQL Server 2005 Database Engine and are
not intended for customer user. Therefore, the system views are provided for accessing
that metadata without accessing the base tables. All of the system objects referenced by
the system views are physically persisted in the system base tables stored within the read-
only system database called Resource. This database is not visible to users and does not
appear in SQL Server Management Studio. Users cannot use or connect to it, unless in
single-user mode, which is only recommended to allow Microsoft Customer Support Ser-
vices to assist in troubleshooting and support issues.

All system views are contained in either the INFORMATION_SCHEMA or the sys sche-
mas. Both schemas logically appear in every database.

There are six collections of system views: catalog, compatibility, dynamic management,
information schema, replication, and notification services. There are numerous catego-
ries of system views within each collection. Following are descriptions of each of the
collections:

■ Catalog views Return information that is used by the Database Engine, such as
information on objects, databases, files, security, and more. (They do not contain
information about backups, replication, database maintenance plans, or SQL
Server Agent catalog data.)

■ Compatibility views Provided for backward compatibility only with SQL Server
2000 system tables. They do not expose any SQL Server 2005 new feature meta-
data, such as partitioning. Use the new catalog views instead.

■ Dynamic management views (DMVs) Return information on server state or data-
base state that can be used for monitoring the health of a server instance and data-
bases, and diagnose performance problems. DMVs can be identified by their name,
which begins with ”dm_,” plus an abbreviation of what category the DMV is a part,
then a description of what the view returns. For example, dm_db_file_space_usage
is part of the database category of DMVs and returns information on file space
usage.

■ Information schema views These are system views that are part of a separate
schema, called INFORMATION_SCHEMA. Returns metadata for database objects
in a particular database. All other system views are part of the sys schema.

312 Part III Microsoft SQL Server 2005 Administration
■ Replication views Return information about replication. They are created when a
database is configured as a publisher or subscriber, and different views are created
in the different databases: msdb, distribution, publisher database, and subscriber
database. Otherwise, these views will not exist. Using replication stored procedures
is still a good way to access replication metadata.

■ Notification services views Return instance and application data specifically
related to Notification Services; designed to help with debugging, tracking, or trou-
bleshooting.

More Info Dynamic management views are covered in detail in Chapter 31

To display the system views for a database from the Object Explorer, perform the follow-
ing steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand the database name and expand Views.

3. Expand System Views. The example in Figure 11-5 shows the INFORMATION_
SCHEMA.VIEWS system view expanded and the columns in that view displayed in
the right pane (by highlighting the Columns folder).

Figure 11-5 Displaying system views using Management Studio.

Chapter 11 Creating Tables and Views 313
More Info To find out which system views belong to each collection category,
visit the topic “System Views’ in SQL Server Books Online. There you will find all of
the views listed and what data columns they include. There is also a mapping of
SQL Server 2000 system tables to their new system views found in the topic
“Mapping SQL Server 2000 System Tables to SQL Server 2005 System Views.”

When retrieving data from the system views, the schema name and view name must both
be specified—such as sys.databases or INFORMATION_SCHEMA.VIEWS. To access the
sys.tables view and the INFORMATION_SCHEMA.TABLES view for example, run the
following T-SQL:

—catalog view

SELECT * FROM sys.tables;

—information schema view

SELECT * FROM INFORMATION_SCHEMA.TABLES;

The output from both queries is shown in Figure 11-6. Notice the output is different for
each of these views—although they have the same name, they are contained in different
schemas. The first set of output from sys.tables has many columns (not all shown in the
figure), while the second set of output has only the four columns.

Figure 11-6 System view output example.

314 Part III Microsoft SQL Server 2005 Administration
Now let’s compare the output from querying the SQL Server 2000 system table sysdata-
bases, which is really a view in SQL Server 2005 for backward compatibility, and the new
system view sys.databases. Run the following T-SQL:

—new SQL Server 2005 System view

SELECT * FROM sys.databases;

—compatibility view of the SQL Server 2000 system table sysdatabases

SELECT * FROM sysdatabases;

The output from the two queries above will be different—the sys.databases view exposes
all of the SQL Server 2005 feature information and includes additional columns, while
the SQL Server 2000 backward compatibility view results exclude that information and
only show results as they appeared in SQL Server 2000 when querying the sysdatabases
table.

To display the definition of a system view, you can run the system stored procedure
sp_helptext, as in the following two T-SQL examples:

sp_helptext ‘sys.tables’;

exec sp_helptext ‘INFORMATION_SCHEMA.TABLES’;

Summary
Tables are the basis of a relational database. In this chapter, we have learned how to cre-
ate, modify, and delete tables. We have explored the different system data types provided
by SQL Server 2005, along with how to create user-defined data types. We described how
to define tables including the use of NULL values and the IDENTITY property.

Views are virtual tables that look and act like database tables to the end user. Views can
be used to limit both the columns and the rows to provide a simplified view for the end
user, to simplify coding for the database developer, and to increase data security. In this
chapter we have learned how to create, modify, and delete views. We have also learned
about indexed views. A clustered index is created on a view and the result set is stored
physically in the database. This can speed up slow-running queries but at a cost of disk
space and increased table update times.

System views provide a new metadata access method for SQL Server 2005. There are
numerous system views that allow users to access metadata information and server and
database state information without accessing the underlying system base tables.

Chapter 12

Creating Indexes for
Performance

Index Fundamentals. .315

How to Optimally Take Advantage of Indexes. .320

Index Types .321

Designing Indexes .326

Creating Indexes .329

Index Maintenance and Tuning .335

Summary .341

Indexes are a Microsoft SQL Server feature designed to speed access to data in the data-
base. Indexes are similar to the index of this book. By using indexes, you can quickly find
specific data without having to read through all of the data in the table. In this chapter,
you will learn what indexes are, how they work, and what you can do to improve perfor-
mance on your system by using indexes. In addition, you will learn about the new index
features in SQL Server 2005.

Index Fundamentals
Indexes are an optional structure that is designed to help you access table data more
quickly and efficiently. Indexes are not required, and not having indexes will not affect
the functionality of your queries, only the performance of those queries. However, this
performance difference can be dramatic and can affect the overall performance of your
system. The performance of queries is improved by reducing the amount of work
needed to find the desired data. Without indexes, the entire table must be searched,
causing a full table scan that must read all of the data in a table. Within SQL Server there
315

316 Part III Microsoft SQL Server 2005 Administration
are several different types of indexes and different ways that they can be configured, but
the fundamentals of the index apply to all index types.

An index speeds access to data by allowing you to take shortcuts to find a specific piece
of data. Like an index in a book, the SQL Server index helps you quickly find data by a
series of choices. Let’s look at an illustration of how the index works using “Last Name”
and “First Name” as our selection criteria. Say I want to find the telephone number of Mr.
John Smith. Following is an illustration of the steps SQL Server uses to find Mr. Smith
using an index:

1. Open the first page in the index. You will see a list of names and pointers to other
pages in the index as shown here:

Aaberg, Jesper-Furse, Kari—Go to index page 2

Gabel, Ron-Lysaker, Jenny—Go to index page 3

Ma, Andrew-Rytt, Christian—Go to index page 4

Sacksteder, Lane-Zwilling, Michael—Go to index page 5

2. Open index page 5, where you will see the following list:

Sacksteder, Lane-Severino, Miguel—Go to index page 12

Sloth, Peter-Spanton, Ryan—Go to index page 13

Speckmann, Melanie-Tham, Bernard—Go to index page 14

Thirunavukkarasu, Ram-Tupy, Richard—Go to index page 15

Turner, Olinda-Zwilling, Michael—Go to index page 16

3. Since you are still looking for John Smith, open page 13. On this page, you will
again find the page that further refines your search criteria. This will again point to
another page, perhaps full of Smiths.

4. In this final page, there will be an entry for Smith, John that points to the page in the
database that has his phone number.

The result of this process is that with five page reads in the database, you have found John
Smith’s telephone number. The other alternative, known as a table scan, involves reading
every page in the table and comparing the data in the table to the search criteria. A table
scan can be a very slow operation, and it usually should be avoided.

Chapter 12 Creating Indexes for Performance 317
Real World It’s All About the I/O

Indexes are really all about the I/O. You use indexes to decrease the number of I/O
operations that you perform. When you perform a table scan, thousands or even
millions of I/Os are generated. These operations are expensive. Using an index
finds your data faster because there are fewer reads necessary in order to find your
data. By performing fewer I/Os, performance is increased and resource utilization
is reduced.

The index is created with one or more index keys. The index key is the column or columns
in the table that define what is indexed. This is the value that will be used to find the data
in the table quickly. It can be character strings, integers, floats, and so on. Because these
keys are used as the criteria for finding the data in the table and because you don’t always
look for data using the same columns in your WHERE clause of your query, multiple
indexes are allowed. The exception is the clustered index, which is discussed later in this
chapter. You can have only one clustered index per table.

Note The index key column does not support the following data types: image,
ntext, and text data types.

Since indexes are created on index keys, you must include the leading key values in the
WHERE clause of your SQL statement in order to use an index. If you do not include
the index key in the WHERE clause, that index won’t be used to find your data. Specif-
ically, the leading side of the index must be included in the WHERE clause of the
SELECT statement. In addition, there are a few other restrictions that are described
later in this chapter.

An index that has been defined with only one key column is called a simple index. An
index that has more that one key column is called a composite index. More than one col-
umn should be used in the index key if it makes the index more unique or gives it greater
selectivity. The more unique the index, the better the index since it allows for fewer rows
to be retrieved within the queries. As you will learn later in this chapter, indexes should
be created to be as unique as possible, but very wide indexes with lots of key values are
less efficient in terms of space and modification performance.

Note The benefit of an index is that you can find your data with as few reads
as possible. The wider the index, the more index pages that it consumes, and thus
it takes more space and more pages are needed to find the desired data. As a

318 Part III Microsoft SQL Server 2005 Administration
result, there is always a give-and-take between creating more unique indexes and
creating smaller indexes.

An index can be either unique or non-unique. With a unique index, there can be only one
index key value; with a non-unique index, you can have duplicate index key values. For
example, if the unique index were created on Lastname, Firstname, there could be only
one entry for each name, a duplicate entry would be refused and an error issued. A
unique index has the highest level of selectivity that an index can have, since each key
value is associated with only one row, or each row has a unique key value. Any attempt to
insert a duplicate index key value into a unique index will result in a failure. A set of col-
umns that is designed to uniquely define each row in the table is called the Primary Key
(PK), as mentioned in Chapter 13, “Enforcing Data Integrity.” The primary key is usually
associated with a constraint and often is a very good candidate for a clustered index.
Unfortunately, a table cannot always be defined with a primary key since it might be
impossible to uniquely identify a row. There can be only one primary key per table, and
the primary key cannot contain NULL values. When the primary key is defined, a unique
index that is used to enforce uniqueness is created.

Real World Artificial Primary Keys Are Not Always Good

The statement that I made in the preceding paragraph is not entirely true. You can
always create a primary key by adding a unique column to a table, such as an iden-
tity column. However, even though you can do it, it is not always a good idea to do
it. This should be done with care and only when absolutely necessary. As you will
see in Chapter 20, “Replication,” you sometimes need to add a primary key. When
not needed, you should not artificially create a Primary Key just for the sake of hav-
ing one. This can cause undo overhead that is not necessary.

The index structure resembles an inverse tree (like a directory structure). This tree begins
with the first page of the index which is known as the root node. The root node contains
ranges of key values and pointers to other pages in the index. These intermediate pages
are known as branch nodes. The branch nodes also contain key values and pointers to
lower branch nodes and eventually to leaf nodes. The leaf node is the lowest-level page in
the index and contains key values and either a rowid that points to the data itself (in a
table) or a cluster key value (in a clustered index table). The index tree structure is shown
here in Figure 12-1.

Chapter 12 Creating Indexes for Performance 319
Figure 12-1 The index structure.

As you can see, the index is built in a tree-like structure. The tree-like structure used in an
index is known as a B-tree. The index structure is built from the root node to the leaf node
via the branch nodes as shown above. Although this example shows an index as a single
character, the index pages are actually made up of values of the entire index key. How
many pages the index takes depends on how wide the index is. The index width is deter-
mined by how many columns are in the index keys and how big those columns are. The
number of rows in an index page is determined by how wide the index is.

The branch nodes are described in terms of branch levels. A branch level is the set of
branch nodes that are the same distance from the root node, as shown in Figure 12-2.

Figure 12-2 The index branch levels.

B-Tree

A-Z

A-M N-Z

T-ZN-SH-MA-G

A-D E-G H-J K-M N-P Q-S T-V W-Z

A-Z

A-M N-Z

T-ZN-SH-MA-G

A-D E-G H-J K-M N-P Q-S T-V W-Z

Br
an

ch
 L

ev
el

s

{

B-Tree

320 Part III Microsoft SQL Server 2005 Administration
The number of I/Os required to retrieve the data that is requested depends on the number
of branch levels that must be traversed to reach the leaf node. This directly affects the per-
formance of retrieving the requested data. The number of branch levels depends on the
width of the index (number of key columns and their sizes) and the number of rows in the
table. Theoretically, in a very small table, the root node and leaf node can be in the same
page. In this case, the index itself usually incurs more overhead than a table scan would.

When using an index, the root node is read and, based on the value of index key that you
are using, the decision of which branch node is read is made. The branch nodes then
allow you to quickly zoom in on your data by following the trail and decisions made by
the branch nodes. Eventually, you will reach the leaf node and either a rowid or a key
value for a clustered index lookup will be supplied. In some cases, you might reach a
series of leaf nodes. At this point you will either retrieve your data directly or traverse a
clustered index (bookmark lookup) in order to retrieve your data. There will be more on
exactly how this works once you have been introduced to clustered indexes.

Depending on how you create the index, the index is sorted in either ascending or
descending order. Because the index provides the sort order, you can often avoid having
to execute a sort when the ORDER BY clause in the SQL statement is the same as the
order of the index (assuming this index is used). This provides an additional advantage
by reducing sorting in the database. However, this is not always the case.

How to Optimally Take Advantage of Indexes
In order to take advantage of indexes, the index key must be referenced in the WHERE
clause of your SQL statement. In a multicolumn index, the leading edge of the index
must be supplied in the WHERE clause of your SQL statement. This must be the leading
edge of the index since the data in the index is sorted on the first index key value and
then subsequent key values.

For example, if an index is created on the columns last_name and then first_name, the
data is sorted first by last_name and then within each last name the first_name data is
sorted. Figure 12-3 shows an example that illustrates this point.

Figure 12-3 Example of using an index.

Since the values in the second key column in the index are scattered throughout the
entire index, you can benefit from using this index only if the first key column also exists

Alexander, David

Alexander, Michael

Alexander, Michelle

Smith, Jeff

Smith, John

Smith, Samantha

Wilson, Dan

Wilson, Jm

Wilson, John

Chapter 12 Creating Indexes for Performance 321
in the WHERE clause. Therefore, if an index is created on last_name and first_name as
shown above, the index can be accessed very effectively in the following SQL statement:

SELECT PhoneNumber

FROM myTable

WHERE last_name = ‘smith’

AND first_name = ‘john’ ;

Furthermore, this index can be somewhat useful with the following query since it
reduces the number of rows retrieved. However, there will possibly be many Smiths
retrieved.

SELECT PhoneNumber

FROM myTable

WHERE last_name = ‘smith’ ;

However, the following query will not use this index at all (unless it has no choice since
it is a clustered index) since the last names are held together but the first names are scat-
tered throughout the index. In this case, a table scan will be used.

SELECT PhoneNumber

FROM table

WHERE first_name = ‘john’ ;

As you will see later in this chapter, the index keys and the values that you use in the
WHERE clause will together determine how beneficial the index is for improving the per-
formance of your query. In addition, the type of index also determines its effectiveness.

Index Types
SQL Server has a number of different index types such as clustered indexes, nonclustered
indexes, included column indexes, indexed views, full-text indexes, and XML indexes,
each with their own purpose and characteristics. By understanding how indexes work,
you will be better able to create and tune indexes. Based on the type of index, the way it
works might be different.

Clustered Index
A clustered index stores the table data in sorted order in the leaf page of the index based
on the index key. Because of the requirement that the clustered index store the data in
sorted order, there is the need to constantly rearrange pages in the index. As data is
inserted into the database, space might be needed to add these new pages into the index.

322 Part III Microsoft SQL Server 2005 Administration
If new entries are added to the database, a new page is also added and a page split occurs.
This page split can cause significant overhead but is unavoidable since a clustered index
must store the data in sorted order. A clustered index is shown in Figure 12-4.

Figure 12-4 Example of a clustered index.

The data is actually stored in the leaf node of the index. Because of this, data that is stored
in a clustered index must be accessed through the index structure. There is no other way
to access this data but via the index. Because the data is stored in the index itself, it can-
not be accessed directly. The leaf nodes are linked together via pointers. There is a pointer
in each leaf node to the node before it and the node after it. This is known as a linked list.
Since the leaf nodes of the index are connected via a linked list, the leaf nodes in the
index are read in sequence during a table scan.

An index can be defined on either a table or a clustered index. When a nonclustered
index is used to find data in a clustered index, the leaf nodes of the nonclustered index
supply the index keys to the clustered index, and the underlying clustered index is
scanned. This step is known as a bookmark lookup. The bookmark lookup is either a row
access by rowid (no clustered index) or an index seek using the clustered index key (clus-
tered index). This is why the effectiveness of the clustered index is so important.

Real World A Bad Clustered Index Is Worse Than No Index

I have occasionally run across good nonclustered indexes that point to a very bad
clustered index. For example, suppose that we have a table that represents every-
body in the country. Furthermore, let’s say that we create a clustered index for the
respective states in which everybody lives. In addition, we create nonclustered
indexes on last name, first name, and state. Upon performing an index lookup on
last name, first name, and state, the nonclustered index, the bookmark key is
returned in only a few page selects. In this example, the very fast nonclustered

A-B

C-D

E-F

A

B
C

D

E

F

Root
Node

Branch
Nodes

Leaf Nodes
(include

data rows)

A

Data
B

Data

C

Data
D

Data

E

Data
F

Data

Chapter 12 Creating Indexes for Performance 323
index lookup returns a specific state, say, Texas, as the key to the bookmark
lookup. Unfortunately, the bookmark lookup to the clustered index requires an
index scan that pulls in so many rows that a table scan is invoked. The table scan
is required to find a few rows or one row because of the clustered index. In this case,
the clustered index is so bad that every lookup invokes a table scan. If the clustered
index is created on a better index key, such as social security number, the fast non-
clustered index seek is then directed to an efficient clustered index seek. Thus, if an
index is a bad index in general, it is much worse as a clustered index.

It is very important that the clustered index be as effective as possible. A unique index or
a primary key is an excellent candidate for a clustered index.

Nonclustered Index
A nonclustered index is both logically and physically independent of the table data. This
index is similar to the clustered index with the exception that the table data is not stored
in the leaf node of the index. Instead, the leaf node contains either the cluster key, for an
index pointing to a clustered index, or a row id that points directly to the table data when
there is no clustered index.

Nonclustered indexes can be defined as either unique or non-unique. In addition, a non-
clustered index can be used as a primary key index, although it is often recommended to
cluster on the primary key index. You can have 249 nonclustered indexes defined on a
table. These indexes can be defined on various combinations of columns (up to 16 col-
umns and 900 bytes). The more indexes there are, the better various queries can become.
However, more indexes mean more overhead. Whenever data is inserted, updated, or
deleted, all of the indexes affected by that row must also be updated. As a result, the num-
ber of indexes grows, and the update, insert, and delete operations become slower.

A covering index is an index that includes enough information that performing the book-
mark lookup is not necessary. This tool works in conjunction with a covering query. If the
selected criteria are included on the trailing end of the index and if the leading end of
the index is used in the WHERE clause of a query, the index itself can return the data to
the user. For example, the following query can be issued if an index is created on
last_name, first_name, and social_security_number:

SELECT social_security_number

FROM myTable

WHERE last_name = ‘smith’

AND first_name = ‘john’ ;

324 Part III Microsoft SQL Server 2005 Administration
Since the social security number is available in the index, that value is returned without
having to perform the bookmark lookup. In SQL Server 2005 the Index with Included
Columns is provided specifically to provide covering indexes.

Included Columns Index
The included columns index is an index where additional column values that are not
used in the key values of the index are included in the index. This allows for smaller
indexes that can provide a covering function. Since the size and number of key columns
determine the number of index levels, there is a benefit in keeping them as small as pos-
sible. If the addition of another key column does not make the index any more selectable,
then it is not worth adding it to the keys unless it can be used in a covering fashion.

With the included columns index these included columns are not part of the index key
but are stored in the leaf node of the index, similar to a clustered index. The included col-
umns index offers several advantages over the clustered index, including the following:

■ Unlike a clustered index, more than one included columns index can be defined on
a table or clustered index.

■ The included columns index must contain only the columns necessary for covering.

■ The nonkey columns can be column types not supported as key columns such as
image or text.

■ The bookmark lookup can be avoided.

As you can see, the included columns index offers the flexibility of the covering index
without the extra overhead of adding it to the index keys.

Indexed Views
An ordinary view is simply a SQL statement that is stored in the database. When the view
is accessed, the SQL statement from the view is merged with the base SQL statement,
forming a merged SQL statement. This SQL statement is then executed.

When a unique clustered index is created on a view, this view is materialized. This means
that the index actually contains the view data, rather than evaluating the view each time
it is accessed. The indexed view is sometimes referred to as a materialized view. The result
set of the index is stored actually in the database like a table with a clustered index. This
can be quite beneficial because these views can include joins and aggregates, thus reduc-
ing the need for these aggregates to be computed on the fly.

Another advantage of an indexed view is that it can be used even though the view name
is not expressly named in the WHERE clause of the SQL statement. This can be very

Chapter 12 Creating Indexes for Performance 325
advantageous for queries that are extensive users of aggregates. The indexed view is auto-
matically updated as the underlying data is updated. Thus, these indexes can incur sig-
nificant overhead and should be used with care. Only tables that do not experience
significant update, insert, and delete activity are candidates for indexed views.

Full-Text Index
The full-text index is very different from a B-tree index and serves a different function.
The full-text index is built and used by the Full-Text Engine for SQL Server, or MSFT-
ESQL. This engine is designed to perform searches on text-based data using a mecha-
nism that allows searching using wildcards and pattern recognition. The full-text index is
designed for pattern searches in text strings.

The full-text index is actually more like a catalog than an index, and its structure is not a
B-tree. The full-text index allows you to search by groups of keywords. The full-text index
is part of the Microsoft Search service; it is used extensively in Web site search engines
and in other text-based operations. Unlike B-tree indexes, a full-text index is stored out-
side the database but is maintained by the database. Because it is stored externally, the
index can maintain its own structure. The following restrictions apply to full-text indexes:

■ A full-text index must include a column that uniquely identifies each row in the
table.

■ A full-text index also must include one or more character string columns in the
table.

■ Only one full-text index per table is allowed.

■ A full-text index is not automatically updated, as B-tree indexes are. That is, a B-tree
index, a table insert, update, or delete operation will update the index. With the
full-text index, these operations on the table will not automatically update the
index. Updates must be scheduled or run manually.

The full-text index has a wealth of features that cannot be found in B-tree indexes.
Because this index is designed to be a text search engine, it supports more than standard
text-searching capabilities. Using a full-text index, you can search for single words and
phrases, groups of words, and words that are similar to each other.

XML Index
XML indexes are used to speed access to XML data. XML data is stored as BLOB data in
the database. Unlike B-tree indexes, the XML index is designed to work with the exists
statement. XML indexes are defined as either primary XML indexes or secondary XML
indexes.

326 Part III Microsoft SQL Server 2005 Administration
A primary XML index is a shredded and persisted representation of the XML BLOB in the
xml data type column. For each row in the BLOB, the index creates several rows. The num-
ber of rows in the index is roughly equivalent to the number of nodes in the XML BLOB.

In order to have a secondary XML index, you must first have a primary XML index. The
secondary XML indexes are created on PATH, VALUE, and PROPERTY attributes of the
XML BLOB data.

Designing Indexes
Designing indexes is critical to achieving optimal performance from the indexes in the
system. Creating an index is only half of the story—if the index is not actually used, then
you have done nothing more than add overhead to the system. An effective index derives
its effectiveness from how well it is designed and from how it is used.

Index Best Practices
The lack of indexes and poorly designed clustered indexes cause many of the perfor-
mance problems that you might experience in a SQL Server system. Designing optimal
indexes can make the difference between a poorly performing system and an optimally
performing system. There is a delicate balance between having too many indexes, which
slows down update performance, and too few indexes, which slows down query perfor-
mance. Choosing the right columns to index on and the appropriate type of index to use
are also both very important. In this section you will learn some techniques and tips for
creating optimal indexes.

There are a number of best practices that should be followed when creating indexes.
These practices help you create the most optimal indexes for your system. The following
list of best practices includes both general and specific recommendations, and items are
not listed in any particular order:

■ Create indexes with good selectivity, or uniqueness An index with good selec-
tivity has very few or no duplicates. A unique index has ultimate selectivity. If a non-
clustered index does not have good selectivity, it most likely will not be chosen. A
clustered index with poor selectivity causes poor performance on bookmark look-
ups and is worse than no clustered index because more reads are required. This is
because you would have to suffer the overhead of both the nonclustered index
lookup and the clustered index lookup (bookmark lookup).

■ Create indexes that reduce the number of rows If a query selects a few rows
from a large table, indexes that help facilitate this reduction of rows should be created.

Chapter 12 Creating Indexes for Performance 327
■ Create indexes that select a range of rows If the query returns a set of rows that
are similar, an index can facilitate the selection of those rows.

■ Create clustered indexes as unique indexes if possible The best candidates for
clustered indexes are primary keys and unique indexes. However, it is not always a
good idea to make the primary key index the clustered index if it is too big. In some
cases it is better to make the primary key index nonclustered and use a smaller clus-
tered index.

■ Keep indexes as narrow as possible An index that is created on one or a few
small columns is called a narrow index, and an index with many large key columns
is called a wide index. The fewer the columns in the index the better, but you must
have enough columns to make it effective.

■ Use indexes sparingly on tables that have a lot of update activity You can cre-
ate more indexes on tables that do not have much update activity.

■ Don’t index very small tables With very small tables there is more overhead
than benefit involved with the index. Since an index adds pages that must be read,
a table scan might sometimes be more efficient.

■ Create covering indexes when possible Covering indexes are greatly enhanced
with the introduction of included columns indexes.

■ Index views where appropriate Indexed views can be very effective with aggre-
gates and some joins.

By following these guidelines your indexes become more effective and, therefore, are
more likely to be used. An ineffective index is not likely to be used and thus just adds
unnecessary overhead on the systems. Indexes, especially clustered indexes, should be
carefully designed and used sparingly since indexes add overhead and reduce the perfor-
mance on data updates.

Index Restrictions
There are a number of restrictions on the various index types. These restrictions are
shown in Table 12-1.

Table 12-1 Index Restrictions

Index Restriction Value

Number of clustered indexes per table 1

Number of nonclustered indexes per table 249

Number of XML indexes per table 249

328 Part III Microsoft SQL Server 2005 Administration
In addition, there are a few design considerations related to the type of data that can be
used in an index key column:

■ Computed Columns The computed columns data type can be indexed.

■ LOB (Large Object) LOB data such as image, ntext, text, varchar(max), nvar-
char(max), and varbinary(max) cannot be indexed.

■ XML XML columns can be indexed only in an XML index type.

As you learned earlier in this chapter, it is also important to consider the order of the
index key columns in addition to their data type, since the order of the key columns
could determine how effectively the index is used.

Using the Index Fill Factor
As discussed earlier in this chapter, the index is sorted based on the index keys. In order
to keep the indexes sorted, some rearranging of data constantly occurs. Under normal
conditions adding a new entry to the index involves simply adding rows to the leaf pages
of the indexes. When there is no more space available in these pages, a new page is cre-
ated and approximately half of the rows from the existing page are moved into this new
index page. This is known as a page split.

With the page now split into two pages, the new row is inserted into the appropriate page
in the index. This page split is quite an expensive operation. The number of page splits
per second is a counter in the Access Methods object in perfmon and should be occasion-
ally monitored. This page split is quite an expensive operation due to high IOs and page
allocations required.

If you know that your index will have constant updates or insertions, you can reduce the
number of page splits that occur by leaving some extra space in the leaf pages of the
index. This is done via the index fill factor. The fill factor specifies how full the index
should be when it is created.

By specifying the fill factor, additional rows are left empty in the index pages, thus leaving
room for new rows to be added. The fill factor specifies the percentage of the index to fill
and can take an integer value from 1 to 100. Setting the fill factor to 75 fills the index 75
percent, leaving 25 percent of the rows available.

Number of key columns per index. (Note: This does not included
additional nonkey columns in an index with included columns.)

16

Maximum index key record size. (Note: This does not include
additional nonkey columns in an index with included columns.)

900 bytes

Table 12-1 Index Restrictions (continued)

Index Restriction Value

Chapter 12 Creating Indexes for Performance 329
The disadvantage of setting the fill factor is that the indexes will be larger and less effi-
cient than a tightly packed index. The advantage of setting the fill factor is that page splits
can be reduced. The fill factor setting appropriate for you really depends on your config-
uration and the load on the system. Remember that indexes, like all data, are stored both
on disk and in memory in 8K pages. Setting the fill factor of an index to 50 causes the
index to take up twice as many pages as a fill factor of 100. Keep this in mind when setting
the fill factor.

Partitioned Indexes
Partitioned indexes are indexes that are partitioned either on the underlying partitioned
table or independently of the underlying partitioned table. The basic underlying function
and structure of the partitioned index is the same as with a nonpartitioned index, but the
partitioning column is always included in the index keys. Partitioned indexes are dis-
cussed in Chapter 19, “Data Partitioning.”

Note Partitioning is supported only in the Enterprise and Developer editions of
SQL Server 2005.

Creating Indexes
Indexes can be created either via SQL Server Management Studio using the graphical
user interface (GUI) or via command line tools. SQL Server Management Studio is con-
venient because of its ease of use. The GUI can generate a script that you can then modify
and reuse. However, I prefer to create indexes using the command line option because
these scripts can be reused and modified to create other similar indexes. In addition,
these scripts are an excellent way to document your database. If there is a problem with
indexes and you needed to recreate them, these scripts can be used to create all indexes
in the database. One way to do this is to use the GUI to create the first index, have the
GUI generate a script, and then modify and reuse that script.

Indexes are created with the CREATE INDEX command. The CREATE INDEX command
supports many options and is used for all of the various index types. The syntax of the
CREATE INDEX command is as follows:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON <object> (column [ASC | DESC] [,...n])
[INCLUDE (column_name [,...n])]
[WITH (<relational_index_option> [,...n])]

330 Part III Microsoft SQL Server 2005 Administration
[ON { partition_scheme_name (column_name)
| filegroup_name
| default
}

]
[;]

The parameters for the CREATE INDEX statement are as follows:

■ The UNIQUE parameter specifies that the index to be created is unique.

■ The CLUSTERED parameter specifies that the index is a clustered index.

■ The NONCLUSTERED parameter specifies that this is a nonclustered index. This is
the default type of index.

■ The object information specifies on what table and columns the index is created.

■ The INCLUDE parameter specifies included nonindexed columns.

■ Partitioning option parameters specify how the index is partitioned.

Index Creation Examples
Now that you’ve seen how to create an index using the CREATE INDEX statement, let’s
look at a few examples of how to create some indexes. As mentioned earlier in this sec-
tion, the index can be created either via SQL Server Management Studio or with SQL
statements. To create an index with the Management Studio, follow these steps:

1. Expand the database, and then expand the table.

2. Right-click on the Indexes icon and select New Index. This will invoke the new
index utility as shown in Figure 12-5.

3. The New Index utility is used to create indexes. Fill in the Index Name and pull
down the Index Type from the top part of the screen and check Unique if you want
to create a unique index.

4. Next, select the Add button. This will invoke the Select Column tool. Here you can
select the columns to be included in the index. This tool is shown in Figure 12-6.

5. Once you have selected the columns to include in the index, click on the OK button
to return to the New Index utility, where you can move columns up and down

Chapter 12 Creating Indexes for Performance 331
using the Move Up and Move Down buttons. You can remove a column if you so
desire.

Figure 12-5 The New Index utility.

Figure 12-6 The Select Table Columns tool.

6. After you choose the index columns and order, you can either click OK to create the
index or choose other index options.

332 Part III Microsoft SQL Server 2005 Administration
7. In order to set advance index options, click on the Options page selection button.
The options page allows you to set advanced options such as:

❑ Drop Existing Index (if index is existing)

❑ Rebuild Index (if index is existing)

❑ Automatically compute statistics

❑ Use row locks or page locks

❑ Use tempdb for the creation of the index

These options are advanced and should be used with some caution. The Options
page is shown in Figure 12-7.

Figure 12-7 The Options page of the New Index utility.

8. The third choice is the Included Columns page. Here you can choose to Add or
Remove included columns to or from this index. This is shown in Figure 12-8.

9. The final option is the Storage page, shown in Figure 12-9. Here you can select the
filegroup or partition scheme to use for this index. Usually the PRIMARY filegroup
is sufficient, but you can change it if necessary.

Chapter 12 Creating Indexes for Performance 333
Figure 12-8 The Included Columns page of the New Index utility.

Figure 12-9 The Storage page of the New Index utility.

334 Part III Microsoft SQL Server 2005 Administration
This same index can be created via SQL Statements. The SQL statement that will create
the identical index is shown here:

USE [Production]

GO

CREATE NONCLUSTERED INDEX [Person_ix] ON [dbo].[Person]

(

 [LastName] ASC,

 [FirstName] ASC

)

WITH (STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF,

 IGNORE_DUP_KEY = OFF, ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = OFF) ON [PRIMARY] ;

GO

The same index with an included column (SSN) is shown in this example:

USE [Production]

GO

CREATE NONCLUSTERED INDEX [Person_IX] ON [dbo].[Person]

(

 [LastName] ASC,

 [FirstName] ASC

)

INCLUDE ([SSN]) WITH (STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF,

 IGNORE_DUP_KEY = OFF, ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = OFF) ON [PRIMARY] ;

GO

Whether you use the GUI or SQL statements, the outcome is the exact same index.

Chapter 12 Creating Indexes for Performance 335
Normal Index Creation Logging
During normal index operations a large amount of transaction log information is gener-
ated. This can affect performance and cause additional maintenance. This log informa-
tion is used to recover after a system failure. Because indexes are independent of the data
in the database and can be reproduced easily, some of these operations can be performed
without full logging.

Minimally Logged Operations
A number of index operations can be performed with a reduced amount of logging. This
is known as a minimal logged operation. These minimal logged operations generate less
transaction log information but are not recoverable and must be re-run if they fail. Mini-
mal logged operations are not available when running in full logged mode. When run-
ning in bulk logged and simple logged modes, minimal index logging can be performed.

Whether you choose to run in minimally logged mode is ultimately up to you the DBA.
There is some risk involved because long-running operations cannot be recovered, but
the advantage is that logging can be significantly reduced. The choice is up to you.

Important Running in a logging mode other than Full can be risky and lead to
loss of data under certain conditions. I only recommend running in Full logging
mode.

When running in full logging mode, there is additional overhead involved in creating
transaction log entries and in backing up the transaction log, but this mode provides the
ability to recover from a system failure.

If you choose to run in minimally logged mode, the overhead involved in logging opera-
tions is reduced. However, in the event of a system failure all minimally logged operations
are lost, cannot be recovered, and must be redone.

Index Maintenance and Tuning
Maintaining indexes is an ongoing operation. Because of factors such as page splits and
updates to index branch and leaf pages, the index often becomes fragmented. Even
though the data is stored in a logically contiguous manner, with time it is no longer phys-
ically contiguous. Thus, the indexes should be reorganized occasionally. In this section,
you will learn some of the fundamentals for discovering information about indexes and
how to maintain indexes.

336 Part III Microsoft SQL Server 2005 Administration
Monitoring Indexes
Monitoring Indexes might be a slight misnomer. It really is more of a task of investigating
indexes, determining their effectiveness, and determining whether these indexes are
being used. Whether an index is used really depends on how effective it is compared to
other indexes and to the clustered index. The optimizer then decides whether or not to
use the index.

Because indexes are an auxiliary structure and used only when the optimizer determines
that they can improve query performance, it is often the case that an index is not used. It is
also very possible to create indexes that are never used. This is a very common occurrence.

The factors affecting whether indexes are used include the following:

■ The compatibility between the index columns and the WHERE clause of the
query If the leading edge of the index columns doesn’t match with the WHERE
clause, the index will not be used. For example, if the index is created on last_name
and first_name but the WHERE clause includes only first_name, the index will not
be used.

■ The selectivity of an index If an index is highly selectable, it is more likely to be
used than indexes with less selectivity. The more unique the index is, the more
likely it is to be used.

■ Covering indexes If the index covers a query, it is likely to be used.

■ Join usage If the index is defined on a join column, it might be used.

In order to determine the effectiveness of an index, the command DBCC
SHOW_STATISTICS can be used. Table 12-2 lists the output of DBCC SHOW_STATISTICS.

Table 12-2 Output of SHOW_STATISTICS

Value Notes

Name The name of the statistic

Updated The date and time that statistics on this object were last gathered

Rows The number of rows in the table

Rows sampled The number of rows sampled for statistics gathering

Steps The number of distribution steps

Density The selectivity of the first key column in the index

Average key length The average length of the key columns

String index An indication that the index includes a string summary index if the
value is Yes

Chapter 12 Creating Indexes for Performance 337
Other information from DBCC SHOW_STATISTICS is returned if DENSITY_VECTOR is
specified in the DBCC SHOW_STATISTICS command. Table 12-3 lists this information.

Other information from DBCC SHOW_STATISTICS is returned if HISTOGRAM is
specified in the DBCC SHOW_STATISTICS command. This information is included in
the following Table 12-4.

The output of DBCC SHOW_STATISTICS can be valuable for determining whether an
index is good. It will also help you determine which indexes might be used and which
indexes will probably not be used. An example of DBCC SHOW STATISTICS is shown in
Figure 12-10.

To the experienced professional, this information can be valuable for viewing the effec-
tiveness of an index. The density is an indication of the number of distinct rows. A col-
umn that is unique will have a density of 1. The more duplicate values, the lower the
number of the density value.

Table 12-3 Output of SHOW_STATISTICS with DENSITY_VECTOR

Value Notes

All density The selectivity of a set of index column prefixes

Average length The average length of a set of index column prefixes

Columns Names of the index column prefixes that are displayed in the all
density or average density displays

Table 12-4 Output of SHOW_STATISTICS with HISTOGRAM

Value Notes

RANGE_HI_KEY The upper bound of the histogram step

RANGE_ROWS The estimated number of rows that fall within this step, exclud-
ing the upper bound

EQ_ROWS The estimated number of rows that are equal to the upper
bound value of the histogram step

DISTINCT_RANGE_ROWS The estimated number of distinct values that fall within the his-
togram step, excluding the upper bound

AVG_RANGE_ROWS Average number of duplicate values within the histogram step,
excluding the upper bound

338 Part III Microsoft SQL Server 2005 Administration
Figure 12-10 DBCC SHOW STATISTICS output.

Rebuilding Indexes
If you have worked with previous versions of SQL Server, you are probably familiar with
the process of rebuilding indexes. When data is added to or updated in the index, page
splits occur. These page splits cause the physical structure of the index to become frag-
mented. In order to restore the structure of the index to an efficient state, the index needs
to be rebuilt. The more fragmented the index, the more performance improvement will
result from rebuilding the index.

With SQL Server 2005 you can view the fragmentation in an index via the
sys.dm_db_index_physical_stats function. If the percentage of index fragmentation is less
than or equal to 30 percent, Microsoft recommends correcting this with the ALTER
INDEX REORGANIZE statement. If the percentage of fragmentation is greater than 30
percent, Microsoft recommends using the ALTER INDEX REBUILD WITH (ONLINE =
ON) statement.

With SQL Server 2005, there are additional methods of rebuilding and reorganizing
indexes that have been added. Table 12-5 lists these Index maintenance operations.

Table 12-5 Index Operations

Index Operation Notes

ALTER INDEX REORGANIZE Reorganizes the index by reordering the leaf pages of
the index. It will also repack the leaf pages. This should
be used if fragmentation is not too great. This is an
online operation that makes the DBCC INDEXDEFRAG
statement obsolete.

Chapter 12 Creating Indexes for Performance 339
*These statements are provided in SQL Server 2005 for compatibility reasons and will
not be supported in future versions. You should discontinue the use of these statements
whenever feasible. An example of the REBUILD INDEX statement is shown here:

ALTER INDEX [uniquet_ix]

ON [dbo].[unique_t]

REBUILD WITH (PAD_INDEX = OFF,

 STATISTICS_NORECOMPUTE = OFF,

 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF,

 SORT_IN_TEMPDB = OFF,

 IGNORE_DUP_KEY = OFF, ONLINE = OFF) ;

A simpler form is shown here:

ALTER INDEX [uniquet_ix]

ON [dbo].[unique_t]

REBUILD ;

These operations are part of ongoing index maintenance. Without rebuilding indexes,
occasional fragmentation can cause severe index performance problems.

Disabling Indexes
With SQL Server 2005 you can now disable an index. An index is disabled via the ALTER
INDEX DISABLE command. This allows you to deny access to an index without remov-
ing the index definition and statistics. With a nonclustered index or an index on a view,
the index data is removed when the index is disabled. Disabling a clustered index also
disables access to the underlying table data, but the underlying table data is not removed.

ALTER INDEX REBUILD Drops the index and recreates it. This is a much more
significant operation that the REORGANIZE statement
and consumes more resources, but it produces a better
result. With the ONLINE = ON qualifier, this online
operation replaces the DBCC DBREINDEX statement.

CREATE INDEX WITH
DROP_EXISTING=ON

Creates a new index while dropping the existing index
of the same name, thus rebuilding the index. This state-
ment is usually used to modify the definition of the
index.

DBCC INDEX DEFRAG Replaced by ALTER INDEX REORGANIZE.*

DBCC INDEX REBUILD Replaced by ALTER INDEX REBUILD.*

Table 12-5 Index Operations (continued)

Index Operation Notes

340 Part III Microsoft SQL Server 2005 Administration
Disabling an index allows you to try various new indexes without worrying about a better
specific index being used instead. Disabling all other indexes on a table guarantees that
only the existing index will be used, if possible. This command is useful for testing since
it does not require existing indexes to be rebuilt after the test.

In order to re-enable access to the index, and underlying data if it is a clustered index, run
the command ALTER INDEX REBUILD or CREATE INDEX WITH DROP EXISTING.
These commands recreate the index data, enable the index, and allow user access to that
data. In essence, the disable index command allows you to delete an index but retain its
definition. An example of this is shown here:

ALTER INDEX profiler1_ix ON profiler1 DISABLE ;

Perform tests …

ALTER INDEX profiler1_ix ON profiler1 REBUILD ;

Tuning Indexes
Tuning indexes is typically an iterative process in which indexes are analyzed, rebuilt, and
monitored. The DBCC SHOW_STATISTICS command can assist you with determining
the selectivity of the index. In addition, you can run your own SQL statements to deter-
mine which columns might make good candidates for indexing. You can try a SQL state-
ment such as the following:

SELECT col1, COUNT(*)
FROM myTable
GROUP BY col1
ORDER BY COUNT(*) DESC ;

This statement can give you a fairly good indication of the selectivity of the index on that
column. However, remember that this query can be quite intense and can utilize signifi-
cant system resources.

Tuning indexes typically involves a thorough knowledge of your application. Index tun-
ing often comes from viewing profiler output and starting with the SQL statements that
are performing the most read operations. Because the main benefit of indexes is reducing
the number of I/O operations necessary to retrieve data, starting with SQL statements
that perform lots of read operations is usually very efficient.

Online Index Operations
With SQL Server 2005 you can now create, rebuild, and drop indexes online. By using
the ONLINE qualifier of the CREATE INDEX and ALTER INDEX statements, concurrent
access to the index can happen while the underlying table data is being accessed. So now
an index can be rebuilt while other users are updating the underlying table data. Prior to

Chapter 12 Creating Indexes for Performance 341
SQL Server 2005, when you were rebuilding an index, the underlying table was locked,
and other users were prohibited access to that data.

Summary
As you have seen in this chapter, indexes can be very helpful for reducing the number of
I/Os required to retrieve data and for speeding access to that data. This chapter has
offered many tips and guidelines for creating and using indexes effectively. As a review of
some of those, here again are some index best practices:

■ Use indexes only when necessary.

■ Index large tables.

■ Create indexes as narrowly as possible.

■ Use covering queries and indexes or included columns indexes where possible.

By creating indexes and properly maintaining these indexes, the system performance can
be optimized. Indexes can be quite beneficial, but beware that poorly clustered indexes
can do more harm than good.

Chapter 13

Enforcing Data Integrity

What Is Data Integrity? .343

Enforcing Integrity with Constraints .344

Summary .367

Chapter 11, “Creating Tables and Views,” discussed the fundamentals of designing and
creating tables. Before finalizing your table design, you must consider what data values
should and should not be allowed into each column of a table and determine how the
data across tables in a database may be related. Identifying valid values that can be
inserted into a table and maintaining consistency among tables that have related data are
the essence of data integrity. Data integrity is enforced as a means to guarantee that data
is valid and consistent throughout the database tables.

This chapter discusses the various categories of data integrity and how to enforce data
integrity using the built-in capabilities of Microsoft SQL Server 2005. Using SQL Server
to enforce data integrity, rather than coding an application to enforce this, is the recom-
mended choice.

In this chapter we will cover what data integrity means and how to enforce integrity with
constraints, and we will describe the use of SQL Server built-in capabilities for enforcing
data integrity, including PRIMARY KEY constraints, FOREIGN KEY constraints,
UNIQUE constraints, CHECK constraints, NULL and NOT NULL constraints, and
DEFAULT definitions.

What Is Data Integrity?
Data integrity refers to the accuracy, consistency, and correctness of the data. Rules are set
up in the database to help ensure the validity of the data. Data integrity falls into the fol-
lowing categories:

Domain integrity, also known as column integrity, specifies a set of data values that are
valid for a column. This can be defined by the data type, format, data length, nullability,
default value, and range of allowable values.
343

344 Part III Microsoft SQL Server 2005 Administration
Entity integrity, also known as table or row integrity, requires that all of the rows in a table
have a unique identifier, enforced by either a PRIMARY KEY or UNIQUE constraint.

Referential integrity ensures that the relationships between tables are maintained. Every
FOREIGN KEY value in the referencing table must either be NULL, match a PRIMARY
KEY value, or match a UNIQUE key value in an associated referenced table. The refer-
enced row cannot be deleted if a FOREIGN KEY refers to the row, nor can key values be
changed if a FOREIGN KEY refers to it. Also, you cannot insert or change records in a ref-
erencing table if there is not an associated record in the primary referenced table.

User-defined integrity lets you define business rules that do not fall under one of the other
integrity categories, including column-level and table-level constraints.

Enforcing Integrity with Constraints
Constraints are an ANSI-standard method used to enforce the integrity of the data in the
database. They are rules that SQL Server Database Engine enforces for you. There are var-
ious types of constraints, each of which enforces a specific rule. All of the built-in con-
straints are enforced before a data change is made to the database so that if a constraint
is violated, the modification statement is not executed. This way, there is no rollback of
data necessary if the constraint is violated.

SQL Server 2005 provides the following types of constraints:

■ PRIMARY KEY constraints

■ UNIQUE constraints

■ FOREIGN KEY constraints

■ CHECK constraints

■ DEFAULT definitions

■ NULL/NOT NULL constraints

The following sections will describe each of these to help you determine when to use each
type of constraint. You will also see how to create, modify, and delete the constraints
using Transact-SQL syntax and using SQL Server Management Studio.

PRIMARY KEY Constraints
The ability to uniquely identify a row in a table is fundamental to relational database
design. This is accomplished using a PRIMARY KEY constraint. The primary key is a
column or set of columns that uniquely identifies a row in a table. The PRIMARY KEY
column or columns can never be NULL, and there can be only one primary key on

Chapter 13 Enforcing Data Integrity 345
a table. A PRIMARY KEY constraint on a table guarantees that every row in the table
is unique. If an attempt is made to insert a row of data with a duplicate value or a
NULL value for the primary key, an error message will result and the insert is not
allowed. The database will not allow a column defined as nullable to be part of a pri-
mary key. This will prevent a NULL value from being inserted into any of the primary
key columns.

When a PRIMARY KEY constraint is defined for a column or a set of columns, SQL Server
2005 Database Engine automatically creates a unique index on the PRIMARY KEY col-
umn or columns to enforce the uniqueness requirement of the PRIMARY KEY constraint.
If a clustered index does not already exist on the table or a nonclustered index is not
explicitly specified, a unique, clustered index is created by default.

An existing table may already have a column or set of columns that meet the condi-
tions for a primary key. This key is known as a natural key. In some cases, you may need
to add an additional column to act as your primary key. This is known as a surrogate
key. A surrogate key is an artificial identifier that is unique. This is most often a system-
generated sequential number. SQL Server supplies an IDENTITY column that is a very
good candidate for a primary key. See Chapter 11 for more information on using IDEN-
TITY columns.

Even if you have a natural key in your table, it is sometimes more practical to use a surro-
gate key. The natural key may be very long or consist of many columns. Using a surrogate
key in this case may be simpler, especially if the primary key will be referenced by a for-
eign key in another table. Performance might be another reason to use a surrogate key,
but it is purely a database design decision.

Note If you create a numeric surrogate column in your table to use as a key
field, a popular naming convention to use is a suffix of “ID” so it can be easily rec-
ognized as a PRIMARY KEY column.

A table can also have several columns or sets of columns that each could serve as the PRI-
MARY KEY. These are called candidate keys. They all may be candidates for the PRIMARY
KEY, but only one can be chosen. Unique indexes can still be used on the other candidate
keys to preserve uniqueness in that column or set of columns. Selecting a specific candi-
date key to be the PRIMARY KEY is a database design decision. After the PRIMARY KEY
is selected, the other candidate keys are then known as alternate keys.

The PRIMARY KEY constraint can be created either when you first create a table, or it can
be added later by modifying a table. When using CREATE TABLE, use the keyword CON-
STRAINT to define the constraint, as the following example illustrates. (Refer to SQL
Server Books Online for the complete CREATE TABLE syntax.)

346 Part III Microsoft SQL Server 2005 Administration
Here is the partial T-SQL syntax:

CONSTRAINT constraint_name
 PRIMARY KEY [CLUSTERED | NONCLUSTERED]
 {column(,...n)}

The following example shows how to create a PRIMARY KEY constraint within the CRE-
ATE TABLE statement:
CREATE TABLE Employees
(
 Employee_ID smallint NOT NULL IDENTITY(1000,1),

 SSN char(9) NOT NULL,
 FName varchar(50) NOT NULL,
 Middle char(1) NULL,
 LName varchar(50) NOT NULL,
 BirthDate smalldatetime NULL,

 Salary smallmoney NULL,

 Department_ID smallint NOT NULL,

 Active_Flag char(1) NOT NULL DEFAULT ‘Y’,

 CONSTRAINT PK_Employees_Employee_ID PRIMARY KEY CLUSTERED
 (Employee_ID ASC)

)

The CONSTRAINT clause in the previous statement creates a PRIMARY KEY constraint
named PK_Employees_Employee_ID on column Employee_ID. The index created, which
has the same name as the constraint, is a clustered index on the Employee_ID column
arranged in ascending order.

To add a PRIMARY KEY constraint to an existing table, use the ALTER TABLE command:
ALTER TABLE Employees

ADD CONSTRAINT PK_Employees_Employee_ID PRIMARY KEY CLUSTERED

 (Employee_ID ASC)

SQL Server 2005 Database Engine will validate the key to guarantee that the key meets
the following rules for primary keys:

■ The column or columns do not contain and will not allow NULL values. If using
SQL Server Management Studio, the column or columns will be automatically con-
verted to NOT NULL when the key is created.

■ There are no duplicate values.

If these rules are not met, an error will be returned and the primary key will not be
created.

Chapter 13 Enforcing Data Integrity 347
To create a PRIMARY KEY constraint using SQL Server Management Studio, follow these
steps from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand Tables, right-click the table you want to work with, and then select Modify
on the shortcut menu.

3. Click the row selector for the column you want to define as the primary key. For
multiple columns, hold down the CTRL key while you click the row selectors. Each
column will be highlighted as you select it.

4. Right-click the row selector for the column and select Set Primary Key on the short-
cut menu.

5. A primary key symbol (a key) icon will be displayed in the row selector of the col-
umn(s) of the primary key, as shown in Figure 13-1.

6. Save the changes (CTRL+S). A primary key index, named “PK” followed by the
table name, is automatically created in the background.

Figure 13-1 Setting a PRIMARY KEY constraint.

348 Part III Microsoft SQL Server 2005 Administration
To drop a PRIMARY KEY constraint, use the ALTER TABLE command. Only the con-
straint name is necessary. For example, to drop the constraint we created previously, use
the following statement:
ALTER TABLE Employees

DROP CONSTRAINT PK_Employees_Employee_ID

A PRIMARY KEY constraint cannot be dropped if it is referenced by a FOREIGN KEY con-
straint in another table. First, you must delete the FOREIGN KEY constraint; then you
will be able to delete the PRIMARY KEY constraint. In addition, a PRIMARY KEY con-
straint cannot be dropped if there is a PRIMARY XML index applied to the table. The
index would have to be deleted first.

Note To change an existing PRIMARY KEY constraint, you must first drop the
constraint and then create the new constraint. Both of these tasks can be accom-
plished using the ALTER TABLE command as shown in the previous T-SQL examples.

To drop a PRIMARY KEY constraint using SQL Server Management Studio, follow these
steps from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand Tables, right-click the table you want to work with, and then select Modify
on the shortcut menu.

3. Right-click the row selector for the column of the current primary key, and then
select Remove Primary Key on the shortcut menu.

4. Save the changes (CTRL-S).

UNIQUE Constraints
Like the PRIMARY KEY constraint, the UNIQUE constraint ensures that a column or a set
of columns will not allow duplicate values. But unlike the PRIMARY KEY constraint, the
UNIQUE constraint will allow NULL as one of the unique values—only one NULL value is
allowed per column as it is treated like any other value and must be unique. There can also
be more than one UNIQUE constraint on a table. Both PRIMARY KEY and UNIQUE con-
straints can also be referenced by a FOREIGN KEY constraint.

SQL Server 2005 enforces entity integrity with the UNIQUE constraint by creating a
unique index on the selected column or set of columns. Unless a clustered index is
explicitly specified, a unique, nonclustered index is created by default.

The UNIQUE constraint can be created either when you create or modify a table. When
using CREATE TABLE, use the keyword CONSTRAINT to define the constraint. (Refer to
SQL Server Books Online for the complete CREATE TABLE syntax.)

Chapter 13 Enforcing Data Integrity 349
Here is the partial T-SQL syntax:

CONSTRAINT constraint_name
 UNIQUE [CLUSTERED | NONCLUSTERED] {column(,...n)}

The following example shows how to create a UNIQUE constraint within the CREATE
TABLE statement:

CREATE TABLE Employees
(
 Employee_ID smallint NOT NULL IDENTITY(1000,1),

 SSN char(9) NOT NULL,
 FName varchar(50) NOT NULL,
 Middle char(1) NULL,
 LName varchar(50) NOT NULL,
 BirthDate smalldatetime NULL,

 Salary smallmoney NULL,

 Department_ID smallint NOT NULL,

 Active_Flag char(1) NOT NULL DEFAULT ‘Y’,

 CONSTRAINT PK_Employees_Employee_ID PRIMARY KEY CLUSTERED

 (Employee_ID ASC),

 CONSTRAINT IX_Employees UNIQUE NONCLUSTERED
 (SSN ASC)

)

The last CONSTRAINT clause in the previous SQL statement will create a UNIQUE con-
straint named IX_Employees, on column SSN. The index created will be nonclustered
with SSN in ascending order.

To add a UNIQUE constraint to an existing table, use the ALTER TABLE command. If the
Employees table already exists, we can add the UNIQUE constraint as follows:

ALTER TABLE Employees

ADD CONSTRAINT IX_Employees UNIQUE NONCLUSTERED

 (SSN ASC)

To create a UNIQUE constraint using SQL Server Management Studio, follow these steps
from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

350 Part III Microsoft SQL Server 2005 Administration
2. Expand Tables, right-click the table you want to work with, and then select Modify
on the shortcut menu.

3. Right-click the table grid anywhere and select Indexes/Keys on the shortcut menu.
The Indexes/Keys dialog box will be displayed, as shown in Figure 13-2.

4. Click the Add button.

5. Highlight Columns in the General section of the properties grid on the right and
then click the ellipsis button (…), and then select all the columns and the sort order
for the Unique index.

6. Click OK when finished to close dialog box.

7. For Type, select Unique Key from the drop-down list, as shown in Figure 13-3.

8. Click Close to close the Indexes/Keys dialog box.

9. Save the changes (CTRL-S). This will create the constraint.

Figure 13-2 Indexes/Keys dialog box.

To drop a UNIQUE constraint, you will also use the ALTER TABLE command. Again,
only the constraint name is necessary:

ALTER TABLE Employees

DROP CONSTRAINT IX_Employees

Similar to a PRIMARY KEY constraint, a UNIQUE constraint cannot be dropped if it is ref-
erenced by a FOREIGN KEY constraint in another table. First, you must delete the FOR-
EIGN KEY constraint, and then you can delete the UNIQUE constraint.

Chapter 13 Enforcing Data Integrity 351
Figure 13-3 Creating a UNIQUE constraint.

Note To change an existing UNIQUE constraint, you must first drop the con-
straint and then create the new constraint. Both of these tasks can be accom-
plished using the ALTER TABLE command, as shown in the previous examples.

To drop a UNIQUE constraint using SQL Server Management Studio, follow these steps
from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand Tables, right-click the table you want to work with, and then select Modify
on the shortcut menu.

3. Right-click anywhere on the table grid and select Indexes/Keys on the shortcut
menu. The Indexes/Keys dialog box will be displayed, as shown previously in
Figure 13-2.

4. Select the desired unique key index name to drop, and click the Delete button.

5. Click Close to close the dialog box.

6. Save the changes (CTRL-S). This will drop the constraint.

FOREIGN KEY Constraints
A FOREIGN KEY (FK) is a column or set of columns that is used to establish a relation-
ship between two tables. The FOREIGN KEY constraint governs the link between the
parent, or referenced, table and the child, or referencing, table. This constraint enforces

352 Part III Microsoft SQL Server 2005 Administration
data referential integrity (DRI) between tables. The number and data type of the col-
umn or columns in the parent table key must match the number and data type of the
column or columns in the child table.

Generally, the link is between the PRIMARY KEY of the parent table and the FOREIGN
KEY of the child table. The column or columns from the parent table are not required to
be the PRIMARY KEY; the column or columns can be from another alternate key or any
other column or set of columns that have a UNIQUE constraint.

The relationship does not have to be between two separate tables. The FOREIGN KEY
constraint can be defined on the same table that it references. A table may have a column
that is a FOREIGN KEY linked back to the same table’s PRIMARY KEY or UNIQUE KEY.
This is known as a self-referencing relationship. For example, assume there was a
“Manager_ID” column in the example Employees tables. The Manager_ID column would
contain the Employee_ID value of the manager of the current employee record. A FOR-
EIGN KEY constraint would be defined on the Manager_ID of the Employees table
(child), to the Employee_ID of the Employees table (parent).

Note The FOREIGN KEY column or columns are not required to be the same
name as in the parent table, although this is a good convention to follow to help
eliminate confusion. This is not possible in a self-referencing relationship.

Once the FOREIGN KEY constraint is created, rules are enforced by the database engine
to ensure data referential integrity. When a row is inserted into the child table with the
FOREIGN KEY constraint, the values to be inserted into the column or columns defined
as the foreign key are checked against the values in the key of the referenced, or parent,
table. If no row in the referenced table matches the values in the foreign key, the row can-
not be inserted. The database engine will raise an error. A NULL value is allowed in the
FOREIGN KEY column or columns if the columns themselves allow NULLs (even
though NULLs are not allowed in the PRIMARY KEY of the parent table). In the case of
a NULL value, the database engine will bypass the verification of the constraint.

If a key value in either the parent or child table is changed, the FOREIGN KEY constraint
enforces validation of the change before it is made. For example, if an attempt is made to
change the current child value, the new value must exist in the parent table. If an attempt
is made to change or delete the current parent value, the current value must not exist in
a child table. A FOREIGN KEY constraint does not allow you to delete or update a row
from the parent table if the value exists as a FOREIGN KEY in the child table unless you
are using the CASCADE action, shown below. All rows with matching values must first be
deleted or changed in the child table before those rows can be deleted in the parent table.

Chapter 13 Enforcing Data Integrity 353
An exception to this rule is if the FOREIGN KEY constraint is created using the ON
UPDATE and/or ON DELETE options. These options have the following four referential
actions:

■ NO ACTION The default action; the FOREIGN KEY constraint is strictly enforced
so that an error is raised if the parent row is deleted or updated to a new value and
the value exists in the child table.

■ CASCADE The database engine automatically deletes or updates all rows in the
child table with the matching foreign key values which correspond to the rows
affected in the parent table. There are no errors or messages in this case, so be sure
this behavior is what you expect.

■ SET NULL The database engine automatically sets all of the matching foreign key
values in the child table to NULL.

■ SET DEFAULT The database engine automatically sets all of the matching foreign
key values in the child table to the DEFAULT value for the column.

Note FOREIGN KEY constraints, unlike PRIMARY KEY constraints, are not
automatically indexed by the database engine. They are excellent candi-
dates for an index if the constraint is often validated by modification state-
ments, or used in joins, and should therefore be explicitly indexed.

The FOREIGN KEY constraint can be created either when you create or modify a table.
When using CREATE TABLE, use the keyword CONSTRAINT to define the constraint.
(Refer to SQL Server Books Online for the complete CREATE TABLE syntax.)

Here is the partial T-SQL syntax:

CONSTRAINT constraint_name
 FOREIGN KEY [column(,...n)]
 REFERENCES ref_table[(ref_column(,...n))]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT
}]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT
}]

The following example will create a Departments table with a PRIMARY KEY constraint
and an Employee table with a FOREIGN KEY constraint:

CREATE TABLE Departments
(
 Department_ID smallint NOT NULL IDENTITY(10,1),

 Dept_Name varchar(150) NOT NULL,

354 Part III Microsoft SQL Server 2005 Administration
 CONSTRAINT PK_Departments_Department_ID PRIMARY KEY CLUSTERED
 (Department_ID ASC)

)

CREATE TABLE Employees
(
 Employee_ID smallint NOT NULL IDENTITY(1000,1),

 SSN char(9) NOT NULL,
 FName varchar(50) NOT NULL,
 Middle char(1) NULL,
 LName varchar(50) NOT NULL,
 BirthDate smalldatetime NULL,

 Salary smallmoney NULL,

 Department_ID smallint NOT NULL,

 Active_Flag char(1) NOT NULL DEFAULT ‘Y’,

 CONSTRAINT PK_Employees_Employee_ID PRIMARY KEY CLUSTERED

 (Employee_ID ASC),

 CONSTRAINT FK_Employees_Departments FOREIGN KEY (Department_ID)
 REFERENCES Departments (Department_ID)

 ON UPDATE CASCADE

 ON DELETE NO ACTION

)

The last CONSTRAINT clause in the previous SQL statement will create a FOREIGN KEY
constraint between the Employees table (the referencing, or child, table) and the Depart-
ments table (the referenced, or parent, table). The ON UPDATE and ON DELETE options
are also specified. With the ON UPDATE CASCADE option, if the Department_ID is mod-
ified (updated to new values) in the Departments table, all matching foreign keys in the
Employees table will also be changed to the new value. With the ON DELETE NO
ACTION option, if an attempt is made to delete a row in the Departments table, and a row
with a matching value in the FOREIGN KEY column exists in the child table, then an
error occurs and the DELETE statement will not be executed. Business rules must be
well-defined to determine what action should be taken in these cases. This is just an
example.

The FOREIGN KEY constraint can also be created on existing tables using the ALTER
TABLE command. By default, the SQL Server 2005 database engine will validate the data
in the FOREIGN KEY when the constraint is created. There is an option to bypass this
check by specifying WITH NOCHECK in the ALTER TABLE command. Using WITH
NOCHECK will allow existing rows that do not meet the foreign key criteria to remain

Chapter 13 Enforcing Data Integrity 355
intact, and any rows thereafter that are added, deleted, or inserted will be validated
against the constraint.

Here is an example of using ALTER TABLE to add a FOREIGN KEY constraint:

ALTER TABLE Employees WITH NOCHECK

ADD CONSTRAINT FK_Employees_Departments FOREIGN KEY (Department_ID)

 REFERENCES Departments (Department_ID)

 ON UPDATE CASCADE

 ON DELETE NO ACTION

To create a FOREIGN KEY constraint using SQL Server Management Studio, follow these
steps from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand Tables, then expand the table you want to work with.

3. Right-click Keys and select New Foreign Key on the shortcut menu.

4. The Foreign-Key Relationships dialog box will be displayed as shown in Figure 13-4.

5. The relationship appears in the Selected Relationship list with a system-provided
name in the format FK_<tablename>_<tablename>, where tablename is the name of
the foreign key table.

6. Select the new relationship name in the Selected Relationship list.

7. Click on Tables And Columns Specification in the grid, then click the ellipsis (…) to
the right of the property. This will bring up the Tables And Columns dialog box as
shown in Figure 13-5.

8. In the Primary key table drop-down list, select the table that will be on the primary-
key side of the relationship.

9. In the grid beneath, select the column or columns contributing to the table’s pri-
mary or unique key.

10. In the adjacent grid cell to the right of each column, select the corresponding FOR-
EIGN KEY column of the FOREIGN KEY table. See Figure 13-5.

11. Table Designer suggests a name for the relationship. To change this name, edit the
contents of the Relationship name text box.

356 Part III Microsoft SQL Server 2005 Administration
12. Click OK to close the dialog box, then click Close to close the Relationship window.

13. Save changes (CTRL+S). A Save dialog box will be displayed asking for confirma-
tion to save changes to both tables (parent and child), as shown in Figure 13-6.
Click Yes. This will create the relationship.

Figure 13-4 Foreign-Key Relationships dialog box.

Figure 13-5 Foreign Key Tables And Columns dialog box.

Chapter 13 Enforcing Data Integrity 357
Figure 13-6 Foreign Key Save dialog box.

To drop a FOREIGN KEY constraint, you will also use the ALTER TABLE command; only
the constraint name is necessary:

ALTER TABLE Employees

DROP CONSTRAINT FK_Employees_Departments

Note To change an existing FOREIGN KEY constraint, you must first drop the
constraint and then create the new constraint. Both of these tasks can be accom-
plished using the ALTER TABLE command as shown in the previous examples.

To drop a FOREIGN KEY constraint using SQL Server Management Studio, follow these
steps from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand Tables, then expand the table you want to work with.

3. Expand Keys.

4. Right-click the desired relationship name and select Delete from the shortcut
menu.

5. In the Delete Object dialog box, click OK to confirm delete.

An existing FOREIGN KEY constraint can also be enabled or disabled. Disabling a con-
straint keeps the constraint defined on the table, but the data is no longer validated on

358 Part III Microsoft SQL Server 2005 Administration
inserts, updates, or deletes. At some point when the constraint is enabled, you can specify
whether you want the database to validate the existing data. The default for enabling a
constraint is not to validate the data (WITH NOCHECK). The ALTER TABLE command
is used with an argument of CHECK CONSTRAINT to enable a constraint and
NOCHECK CONSTRAINT to disable an existing constraint.

Now why would you want to create a constraint just to disable it? Consider the case when
a more complicated set of operations must be followed in which a PRIMARY KEY is
affected, something that the basic FOREIGN KEY constraint is not capable of handling.
For example, assume that a row will be deleted from the parent table, and other tables
aside from the child table should be checked for some value before action is taken. A
FOREIGN KEY constraint cannot perform action on tables outside of the table on which
the constraint is defined. In this and other cases, you will have to create a trigger, write
code in the application, or code a stored procedure to perform the checks on the other
tables. But if the effect of these checks is in essence to maintain a FOREIGN KEY relation-
ship, then it is helpful to see that relationship defined (although disabled) on the those
tables as well when looking at the table properties, if only as an indication that the rela-
tionship is being validated even though this validation does not happen through the
FOREIGN KEY constraint. It is used just for clarity.

Another reason you may want to disable a FOREIGN KEY constraint is to temporarily
allow changes that would otherwise violate the constraint. The constraint can then be re-
enabled using WITH NOCHECK to enforce the foreign key once again.

Note It is best practice and more efficient to use FOREIGN KEY constraints for
referential integrity where possible rather than coding through triggers or other
methods. Constraints are checked before modifications are executed, thus avoid-
ing unnecessary rollback of the data modification if the constraint is violated.

The following ALTER TABLE statement disables the constraint:

ALTER TABLE Employees

 NOCHECK CONSTRAINT FK_Employees_Departments

This statement enables the constraint and checks that existing values meet the constraint
criteria.

ALTER TABLE Employees

 CHECK CONSTRAINT FK_Employees_Departments

 WITH CHECK

Chapter 13 Enforcing Data Integrity 359
To enable or disable a FOREIGN KEY constraint using SQL Server Management Studio,
follow these steps from the Object Explorer:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice, and then expand the server’s Databases folder.

2. Expand Tables, then expand the table you want to work with.

3. Expand Keys.

4. Right-click the desired FOREIGN KEY constraint name and select Modify on the
shortcut menu. The Foreign-Key Relationships dialog box will be displayed as pre-
viously shown in Figure 13-4.

5. For the property Enforce Foreign Key Constraint in the grid, select Yes to enable or
No to disable.

6. Click Close to close the dialog box.

7. Save changes (CTRL-S).

CHECK Constraints
The CHECK constraint is used to enforce domain integrity by restricting the values
allowed in a column to specific values. CHECK constraints contain a logical (Boolean)
expression, similar to the WHERE clause of a query, that causes the database to evaluate
whether the value of an inserted or updated record fits the criteria of the CHECK con-
straint. If the expression evaluates to false (meaning the value is not within the allowed
set of values), the database does not execute the modification statement, and SQL Server
returns an error.

A CHECK constraint can be created with any logical expression that returns true or false
based on the logical operators. You can use any of the logical operators in your expres-
sion such as =, <>, >, <, <=, >=, IN, BETWEEN, LIKE, IS NULL, NOT, AND, OR, and so
on. You can also use built-in functions, reference other columns, and even use a sub-
query. You can apply multiple CHECK constraints to a single column, and you can apply
a single CHECK constraint to multiple columns by creating it at the table level.

Note CHECK constraints are validated only during INSERT and UPDATE state-
ments, not during DELETE statements.

The CHECK constraint can be created when you either create or modify a table. When
using CREATE TABLE, use the keyword CONSTRAINT to define the constraint. (Refer to
SQL Server Books Online for the complete CREATE TABLE syntax.)

360 Part III Microsoft SQL Server 2005 Administration
Here is the partial T-SQL syntax:

CONSTRAINT constraint_name
 CHECK (logical_expression)

The following example creates a table with a CHECK constraint:

CREATE TABLE Employees
(
 Employee_ID smallint NOT NULL IDENTITY(1000,1),

 SSN char(9) NOT NULL,
 FName varchar(50) NOT NULL,
 Middle char(1) NULL,
 LName varchar(50) NOT NULL,
 BirthDate smalldatetime NULL,

 Salary smallmoney NULL,

 Department_ID smallint NOT NULL,

 Active_Flag char(1) NOT NULL DEFAULT ‘Y’,

 CONSTRAINT PK_Employees_Employee_ID PRIMARY KEY CLUSTERED

 (Employee_ID ASC),

 CONSTRAINT IX_Employees UNIQUE NONCLUSTERED

 (SSN ASC),

 CONSTRAINT CK_Employees_Salary
 CHECK (Salary > 0 AND Salary <= 1000000)

)

The last CONSTRAINT clause in the previous SQL statement will create a CHECK con-
straint named CK_Employees_Salary that restricts the value of the Salary field to a value
greater than zero and less than or equal to one million.

To add a CHECK constraint to an existing table, use the ALTER TABLE command. When
you add a CHECK constraint, existing values in the table are by default checked for com-
pliance with the constraint, and if there are values that violate the constraint, an error is
returned. The WITH NOCHECK option can be specified to bypass validation of existing
data.

Assuming the Employees table already exists, we can add the CHECK constraint as follows:

ALTER TABLE Employees

ADD CONSTRAINT CK_Employees_Salary

 CHECK (Salary > 0 AND Salary <= 1000000)

Chapter 13 Enforcing Data Integrity 361
To create a CHECK constraint using SQL Server Management Studio, follow these steps
from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand Tables, then expand the table you want to work with.

3. Right-click Constraints and select New Constraint on the shortcut menu. The
Check Constraints dialog box will be displayed as shown in Figure 13-7.

4. A new relationship appears in the Selected Check Constraints list with a system-
provided name in the format CK_<tablename>.

5. Click on Expression in the grid, then click the ellipsis (…) to the right of the prop-
erty. The Check Constraints Expression dialog box will be displayed as shown in
Figure 13-8.

6. Enter your logical expression. For example: (Salary > 0 AND Salary <= 1000000).

7. Click OK to close the Expression dialog box, then click Close to close the Check
Constraints dialog box.

8. Save changes (CTRL-S). This will create the CHECK constraint.

Figure 13-7 Check Constraints dialog box.

362 Part III Microsoft SQL Server 2005 Administration
Figure 13-8 Check Constraints Expression dialog box.

To drop a CHECK constraint, use the ALTER TABLE command; only the constraint name
is necessary:

ALTER TABLE Employees

DROP CONSTRAINT CK_Employees_Salary

Note Previous versions of SQL Server allowed defining rules for similar func-
tionality to CHECK constraints, using the CREATE RULE and DROP RULE com-
mands. These are deprecated commands that will not be supported in future
versions of SQL Server.

To drop a CHECK constraint using SQL Server Management Studio, follow these steps
from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Expand Tables, then expand the table you want to work with.

3. Expand Constraints.

4. Right-click on the desired constraint name and select Delete from the shortcut
menu.

5. The Delete Object dialog box will be displayed as shown in Figure 13-9. Click OK
to confirm deletion.

Note To change an existing CHECK constraint, you must first drop the
constraint and then create the new constraint. You can use the ALTER
TABLE command as shown in the previous examples.

Chapter 13 Enforcing Data Integrity 363
Figure 13-9 Delete Object dialog box.

An existing CHECK constraint can also be enabled or disabled, just like a FOREIGN KEY
constraint. Disabling a constraint keeps the constraint defined on the table, but the data
is no longer validated on inserts and updates. When the constraint is enabled, you have
the option of specifying whether you want the database to validate the existing data. The
default for enabling a constraint is not to validate the data (WITH NOCHECK). The
ALTER TABLE command is used with an argument of CHECK CONSTRAINT to enable
the constraint, and NOCHECK CONSTRAINT to disable the existing constraint.

This statement disables the constraint:
ALTER TABLE Employees

 NOCHECK CONSTRAINT CK_Employees_Salary

This statement enables the constraint and validates the existing data:
ALTER TABLE Employees WITH CHECK

 CHECK CONSTRAINT CK_Employees_Salary

To enable or disable a CHECK constraint using SQL Server Management Studio, follow
these steps from the Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

364 Part III Microsoft SQL Server 2005 Administration
2. Expand Tables, then expand the table you want to work with.

3. Expand Constraints.

4. Right-click the desired constraint name and select Modify on the shortcut menu.
The Check Constraints dialog box will be displayed as previously shown in Figure
13-7.

5. For the property Enforce for INSERTs and UPDATEs in the grid, select Yes to enable
or No to disable.

6. Click Close to close the dialog box.

7. Save changes (CTRL-S).

NULL and NOT NULL Constraints
The NULL and NOT NULL constraints are used on a column in a table to allow or pre-
vent null values from being inserted into that column. A NULL constraint allows NULL
values, and a NOT NULL constraint does not allow NULL values in the column. This
type of constraint is used to enforce domain integrity, or what values are allowed in a
column.

You should use NOT NULL instead of NULL whenever possible because operations
that deal with null values, such as comparisons, require more processing overhead. It is
better to use a DEFAULT (discussed in the next section), when possible, than to allow
null values.

Note You should always define a column explicitly as NULL or NOT NULL. NOT
NULL is the SQL Server default, but the server defaults can be changed and dif-
ferent environments may have different values. It is recommended to use NOT
NULL where possible or create a DEFAULT instead of allowing a null value.

The NULL and NOT NULL constraints can be created either when you create or modify
a table. When using CREATE TABLE, use the keyword NULL or NOT NULL when spec-
ifying a column to define the constraint. (Refer to SQL Server Books Online for the com-
plete CREATE TABLE syntax.)

Here is the partial T-SQL syntax:

CREATE TABLE
 table_name
 (
 column_name <data_type> [NULL | NOT NULL]
)

Chapter 13 Enforcing Data Integrity 365
To change the constraint of an existing column, use the ALTER TABLE - ALTER COL-
UMN command.

Here is the partial T-SQL syntax:

ALTER TABLE table_name
 ALTER COLUMN column_name <data_type> [NULL | NOT NULL]

Note The data type of the column must be specified when you are changing
the NULL or NOT NULL constraint. If the data type is to remain the same, simply
specify the current column data type.

NOT NULL can be specified in ALTER COLUMN only if the column currently contains
no null values. The null values must be updated to some value before you can use the
ALTER COLUMN with NOT NULL. A table update could be executed that updates all
existing null values to some default value to accomplish this.

Refer to Chapter 11 for more details on creating tables using NULL and NOT NULL
columns.

DEFAULT Definitions
A DEFAULT definition on a column provides automatic entry of a default value for a col-
umn when an INSERT statement does not specify the value for that column. DEFAULT
constraints enforce domain integrity as well. A DEFAULT definition can assign a constant
value, the value of a system function, or NULL to a column. DEFAULT can be used on any
column except IDENTITY columns and columns of data type timestamp.

The DEFAULT constraint applies only to INSERT statements, and the value is applied to
the column only if a value is not explicitly set for the column in the INSERT statement.

Note Specifying a NULL value for a column within an INSERT statement is not
the equivalent of leaving the column value unspecified. The database engine will
not use the column DEFAULT in that case, but rather a NULL value will be entered
in the column.

The DEFAULT definition can be created when you either create or modify a table. When
using CREATE TABLE, use the keyword DEFAULT when specifying a column to define
the constraint. (Refer to SQL Server Books Online for the complete CREATE TABLE
syntax.)

366 Part III Microsoft SQL Server 2005 Administration
Here is the partial T-SQL syntax:

CREATE TABLE
 table_name
 (
 column_name <data_type> [DEFAULT constant_expression]
)

The following example has several columns using a DEFAULT definition. Some use con-
stants, one uses NULL, and one uses a system function:

CREATE TABLE Employees
(
 Employee_ID smallint NOT NULL IDENTITY(1000,1),

 SSN char(9) NOT NULL DEFAULT ‘000000000’,
 FName varchar(50) NOT NULL,
 Middle char(1) NULL DEFAULT NULL,
 LName varchar(50) NOT NULL,
 HireDate smalldatetime NOT NULL DEFAULT GETDATE(),

 Salary smallmoney NULL DEFAULT 0,

 Department_ID smallint NOT NULL,

 Active_Flag char(1) NOT NULL DEFAULT ‘Y’

)

To change the DEFAULT of an existing column, use the ALTER TABLE - ALTER COL-
UMN command.

Here is the partial T-SQL syntax:

ALTER TABLE table_name
 ALTER COLUMN column_name <data_type> [DEFAULT constant_expression]

Note The data type of the column must be specified when changing the
DEFAULT definition. If the data type will remain the same, simply specify the cur-
rent column data type.

NOT NULL can be specified in ALTER COLUMN only if the column currently contains
no null values. The null values must be updated to some value before you can use the
ALTER COLUMN with NOT NULL.

Chapter 13 Enforcing Data Integrity 367
Note Previous versions of SQL Server used the CREATE DEFAULT and DROP
DEFAULT commands for the creation and deletion of defaults. These are depre-
cated commands that will not be supported in future versions of SQL Server.

Refer to Chapter 11 for more details on creating tables and setting DEFAULT values for
columns.

Summary
In this chapter, we have learned the importance of database integrity and how to use the
built-in capabilities of SQL Server 2005 to help ensure that the data in a database remains
accurate and correct. The use of database constraints to enforce data integrity is the pre-
ferred method.

Domain, entity, and referential integrity are enforced with the various constraint types
available in SQL Server:

■ PRIMARY KEY Constraints

■ UNIQUE Constraints

■ FOREIGN KEY Constraints

■ CHECK Constraints

■ NULL and NOT NULL Constraints

■ DEFAULT Definitions

All of these constraints were described in this chapter along with examples of how to cre-
ate and modify each, using T-SQL and using SQL Server Management Studio. Following
is a consolidated example of a table creation script displaying the use of all the con-
straints discussed in this chapter:

CREATE TABLE Departments
(
 Department_ID smallint NOT NULL IDENTITY(10,1),

 Dept_Name varchar(150) NOT NULL,

 CONSTRAINT PK_Departments_Department_ID PRIMARY KEY CLUSTERED

 (Department_ID ASC)

)

CREATE TABLE Employees
(
 Employee_ID smallint NOT NULL IDENTITY(1000,1),

368 Part III Microsoft SQL Server 2005 Administration
 SSN char(9) NOT NULL,
 FName varchar(50) NOT NULL,
 Middle char(1) NULL,
 LName varchar(50) NOT NULL,
 BirthDate smalldatetime NULL,

 Salary smallmoney NULL,

 Department_ID smallint NOT NULL,

 Active_Flag char(1) NOT NULL DEFAULT ‘Y’,

 CONSTRAINT PK_Employees_Employee_ID PRIMARY KEY CLUSTERED

 (Employee_ID ASC),

 CONSTRAINT FK_Employees_Departments FOREIGN KEY (Department_ID)

 REFERENCES Departments (Department_ID)

 ON UPDATE CASCADE

 ON DELETE NO ACTION,

 CONSTRAINT IX_Employees UNIQUE NONCLUSTERED

 (SSN ASC),

 CONSTRAINT CK_Employees_Salary

 CHECK (Salary > 0 AND Salary <= 1000000)

)

There are more detailed options available for most of these constraints that were not cov-
ered in this chapter.

More Info Refer to SQL Server Books Online for further options that can be
used with these constraints.

Chapter 14

Backup Fundamentals

Why Perform Backups with a Highly Available System? 370

System Failures That Require Backups .371

Purpose of the Transaction Log .372

Microsoft SQL Server Automatic Recovery. .374

Recovery Models and Logging. .375

Types of Backups .379

Backup and Media Fundamentals .387

Backup Strategy .398

Backing Up System Databases .402

Summary .403

One of the most important roles of a DBA is performing regular backups of SQL Server
data. Creating backups of critical business data should be one of the foremost concerns
of a database administrator (DBA) because backups provide a way to restore data that
otherwise could be completely lost. The DBA should also be concerned with performing
occasional tests of restoring the database to ensure the process goes as planned without
any glitches. When you have to restore a database because of a real loss of data, you don’t
want to find out that your strategy was incorrect.

There are many options and types of backup methods available for backing up transac-
tion logs and database data. In order to design a good backup strategy for your particular
needs, you must first understand how backups work and what you must do to protect all
of your data. In this chapter you will learn about the reasons backups are necessary, the
relationship between the transaction log and recovery, the differences among the recov-
ery models, the various backup types and options, backup history tables, backing up sys-
tem databases, and new backup features in SQL Server 2005.
369

370 Part III Microsoft SQL Server 2005 Administration
There are several new features in SQL Server 2005 that provide enhanced backup and
restore capabilities. These features provide more options, flexibility, and reliability for
your backup process. The new or enhanced backup features that are discussed
throughout this chapter include backing up to mirrored media, partial backups, copy-
only backups, and full-text catalog backups.

Why Perform Backups with a Highly Available
System?

You may wonder whether backups are always necessary, particularly if your system is
designed for high availability with redundant components, such as with disks drives pro-
tected by RAID fault tolerance (see Chapter 4, “I/O Subsystem Planning and RAID Con-
figuration”), servers that are clustered for failover (with Microsoft Cluster Services and
SQL Server 2005 Failover Clustering), and a fully redundant SAN storage system (see
Chapter 7, “Choosing a Storage System for Microsoft SQL Server 2005”). These high-
availability methods provide protection or failover capabilities only for certain software
and hardware component failures, such as a power failure for one clustered server node
or a single disk drive failure. However, they do not provide protection from all possible
causes of data loss. Problems such as a user accidentally deleting data from the database,
unexpected data corruption from a software or hardware failure, or an entire disk cabinet
failure are not protected by typical high-availability or fault-tolerance methods. In addi-
tion, a disaster such as flooding, fire, or hurricane can also destroy your entire datacenter,
including your data. In all of these cases, backups are necessary for recovering your data.
In a disaster situation, the backups must also be stored at another site or they will also be
destroyed. See Chapter 25, “Disaster Recovery Solutions,” for more information on this
topic.

Note Even if you have a fully redundant and highly available hardware system,
you absolutely need to perform database backups of your critical business data.
There is no substitute for database backups.

Backups are also useful in other cases not related to system failures and data loss. You
could use a backup to set up database mirroring or to restore a database to a development
or test system. You may also archive backup files over months or years so they are acces-
sible if they are needed for an audit.

Chapter 14 Backup Fundamentals 371
System Failures That Require Backups
To to help you better understand when and why backups are required, we will discuss
specific types and examples of failures from which data can be restored only if there is a
backup of the database. One assumption made in this section is that there is no disaster
recovery site, a secondary datacenter to which all data is replicated so that it could take
over in the event of failure at the primary datacenter. You might conclude that you can
always use the disaster recovery site as a “ backup” site if you keep it up-to-date, but you
should still always create backups of your data in case even the disaster recovery systems
incur any of the failures we discuss below as well.

Hardware Failures
As we’ve mentioned, you can protect your data from many hardware failures using high-
availability solutions such as disk RAID and server clustering, but this does not cover all
hardware failures. The following are possible hardware failures that require a database
backup in order to restore the lost data:

■ Disk failure with no RAID If you do not have RAID fault tolerance configured or
if you are using RAID-0 for the disk drives where the SQL data and/or log files
reside, then the failure of any disk drive causes data loss. In this case, the failed disk
must be replaced and configured into the system, and the database must be
restored from backups.

■ Catastrophic event If a disaster occurs at the datacenter and the system hardware
is damaged or destroyed, all data can be lost. In this case, an entirely new system
would have to be built, and the data would have to be restored onto it from back-
ups.

■ Multiple component failures If more than one component fails at a time, such as
multiple disks of a RAID array or the entire disk cabinet resulting in the array being
unable to recover data by simply replacing disks, then a backup is needed to restore
the data.

■ Security breach There is the possibility that someone could purposely damage a
system as an act of sabotage and destroy data.

There can be other unexpected scenarios that can cause data loss, such as data corrup-
tion on a disk caused by disk subsystem failures. All of these can be recovered only by
restoring a database backup.

372 Part III Microsoft SQL Server 2005 Administration
Software Failures
In addition to hardware failure, there are possible software failures that require restoring
data from a backup in order to recover your system. Software failures are not as common
as hardware failures but can be more disastrous than them. The following are possible
software failures for which you need backups for recovery:

■ Operating system failure If an operating system failure occurs relating to the I/O
system, data can be corrupted on disk. Don’t be alarmed because not all operating
system failures cause data corruption. This is quite rare.

■ SQL Server failure Same as above, in that a database application failure can poten-
tially cause data corruption but does not commonly do so.

■ Other application failure Another application on the server that would cause data
to be corrupted on the disks could fail.

■ Accidental data deletion or modification For example, an administrator or
developer could accidentally run a delete or update command on the production
system that was meant to be run on a development system and corrupts data.

■ Security breach A person could purposely breach security to access data and
make modifications that should not be made. In this case it might be easier to
restore the database rather than trying to isolate the modifications.

The above scenarios are not common but are definitely possible. It’s best to be sure you
can recover from any unexpected failure by always having recent backups.

Purpose of the Transaction Log
One very important component for performing proper backups and restores is the SQL
Server transaction log. Every database has its own transaction log, which is implemented
as one or more log files that reside on physical disk. The transaction log is used to record
all transactions and the modifications that those transactions make to the database. The
data in the log file is referred to as log records.

In general, the term transaction refers to a logical unit of work that can consist of queries
and modifications to data. When referring to the transaction log, the term transaction
refers specifically to data modifications only, for example, an UPDATE, INSERT, or
DELETE operation, or a database schema change operation. Records of read-only queries
performed by SELECT statements are not stored in the transaction log since they do not
make any changes to data. Only transactions that perform data modifications are

Chapter 14 Backup Fundamentals 373
recorded in the log. Throughout this section as we discuss the transaction log, we use the
term transaction to refer to one or more data modification operations.

Storing log records of transactions makes data recovery possible, which is the main pur-
pose of the transaction log. There are also other uses for the transaction log that are dis-
cussed throughout this book, such as database mirroring, transactional replication, and
log shipping.

To understand how the transaction log works, let’s step through the process of a trans-
action. A single transaction can result in multiple changes to data, such as an update that
modifies many rows in a table, and one transaction can therefore generate multiple log
records. As a transaction occurs, changes to the associated database data pages (in the
data files) are not immediatlely written to disk. First, each page that will be modified is
read into in the SQL Server buffer cache in memory, and the changes to that page(s) are
made in memory. At this point, a log record is created in the log buffer in memory. (See
Chapter 18, “Microsoft SQL Server 2005 Memory Configuration,” for details about mem-
ory buffers.) As the log buffer fills or when the transaction commits, the log record or
records for that transaction are written out to the log file on disk. If the transaction did
commit, then the commit record is written out to the log disk as well. Note that when a
transaction has committed, it is not considered complete in SQL Server until the commit
record has been written to the log file on disk.

Whether a transaction has committed in the log file yet or not, once a data modification
record is written to the log file for that transaction, then any changes that are made to
associated data pages in memory during the transaction may now be written to disk (to
the data files). These pages are known as dirty pages because they have been modified in
memory but not on disk, thus the data is not yet “permanent.” The modified data pages
will be actually written to disk at a later time as they are flushed out from the data buffer
in memory through various SQL Server automatic operations. Once the dirty pages are
written to disk, the data is now “permanent” in the database. If the transaction rolls back
rather than committing, then these data changes on disk are rolled back as well by using
the records in the log file to reverse the effects of the transaction.

In other words, there can be uncommitted transaction records in the log file if records
are flushed from the log buffer before the transaction has committed. The records are
considered uncommitted, or active, until the entire transaction finishes and the com-
mit record is written to the log file. The uncommitted records are stored in order to
allow SQL Server to perform data recovery or rollback when necessary, as discussed in
the next section. Active, uncommitted transactions cannot be truncated from the log
file such that large, long-running transactions are often a source of excessive log file
growth.

374 Part III Microsoft SQL Server 2005 Administration
Note SQL Server requires that a transaction is written to the log file on disk
first, before any data file changes are written to disk. Thus, the SQL Server trans-
action log is known as a write-ahead log. This guarantees that no data is written
to disk until its associated log record is written to disk. Once the data is written to
disk, it is made “permanent” in the database.

Since data changes are not written to disk immediately, the transaction log file is the only
means by which transactions can be recovered in the event of a system failure. Any data
in memory, including the data buffer cache and the log buffer cache, are lost in the event
of system failure and therefore cannot be used for recovery. There are two ways in which
the transaction log may be used for data recovery: through automatic recovery performed
by SQL Server and through restoring backups of the transaction logs.

Note Transaction log backups are required in order to recover a damaged
database up to the point of failure. If SQL Server automatic recovery will not suf-
fice and if you have only data backups without transaction log backups, then you
can recover data only up to the last data backup. Therefore, be sure to perform
transaction log backups for critical databases that allow modifications. If a data-
base is read-only, then you do not need transaction log backups and can set the
database to the simple recovery model as described later in the chapter.

Microsoft SQL Server Automatic Recovery
SQL Server uses the records stored in the transaction log to perform automatic data
recovery in the case of a power failure or an unclean shutdown of SQL Server in which
data is not damaged or corrupted in any way. In this case, backups are not needed to
recover the database. This is normal SQL Server operation. Automatic recovery occurs
per database every time SQL Server starts up and occurs with all of the recovery models—
simple, bulk-logged, or full—discussed in the next section. SQL Server always logs
enough data in the transaction log to be able to perform automatic recovery when neces-
sary, even with the simple recovery model.

When a system failure such as a power loss occurs, there may be transactions in flight, or
active, that have uncommitted records written to the log file. There may also be commit-
ted transactions whose records were written to the log file with a commit record but
whose associated changes to the data files have not yet been written. To resolve these
inconsistencies and maintain data integrity, SQL Server performs automatic recovery on
each database upon restart. No user intervention is required other than restarting SQL
Server.

Chapter 14 Backup Fundamentals 375
During automatic recovery, transactions that were committed in the log file but whose
data changes were not yet written to the data files are rolled forward, meaning that by
reading the committed transaction records from the log and replaying those records (in
other words, rolling forward the transaction), the appropriate data changes are written to
the data files on disk and thus made permanent in the database. Any transactions that
were not committed yet and have uncommitted records in the transaction log are rolled
back, meaning the changes to the data files made by those records are reversed as if the
transaction never started. This leaves each database in a consistent state.

Recovery Models and Logging
Each database is configured with a particular SQL Server recovery model that determines
the manner in which transaction logging and SQL Server recovery are handled. When
you create a database, the recovery model for that database is set to the recovery model
of the system model database. If you do not change the model database recovery model
setting after SQL Server installation, then all user databases are created with the Full
recovery model setting, the default of the model database. The recovery model can be
changed using the Management Studio or T-SQL commands.

The following sections describe the three possible recovery models: simple, full, and
bulk-logged. For all three recovery models, data backups must be taken to ensure that
data can be recovered when automatic recovery will not suffice. The main difference
between the types is the method in which transaction logs are managed and backed up.

Simple Recovery Model
The simple recovery model provides the fewest capabilities for restoring data. You cannot
restore data to a point in time with simple recovery, and only data backups, including dif-
ferential backups, can be restored. This is because transaction log backups are not taken
and are not even allowed with simple recovery model. This method requires the least
administration and simplest restore method but provides no possibility to recover
beyond the restore of the latest data backup.

When a database is set to use the simple recovery model, the transaction log for that data-
base is automatically truncated after every database checkpoint and after every data
backup. (Checkpoints occur automatically and are described in Chapter 18.) Truncating
the log means that the inactive log records are simply dropped without any backup of
them and that log space is freed up for reuse. Using simple recovery model also provides
a log of the minimum information required for automatic recovery, so log space used is
minimized. The information logged is just enough for SQL Server to be able to perform

376 Part III Microsoft SQL Server 2005 Administration
automatic recovery in case of a system crash, and to recover the database after a data
restore. Thus, no explicit transaction log or log file space management is needed by the
DBA.

Simple recovery model is useful in a variety of cases. First, databases that do not store
critical business data such as development or test databases are a good candidate for
simple recovery. These types of databases can be easily recreated as needed by restoring
a backup of production data. You might not be concerned about recording data
changes to the development database if you will not need to restore those changes for
any reason. Usually, a development database is periodically refreshed from production
instead.

Other good candidates for simple recovery are databases that store all or mostly read-
only data, so that even if a small number of data changes do occur between data backups,
these can easily be reproduced manually. If the database is completely read-only, then
there are no data changes to be written to the log anyway.

On the other hand, if the database data is read-write and data is modified often, and if the
data is critical such that you do not want to risk losing changes, then log backups are nec-
essary. In this case, one of the other two recovery models must be chosen, full or bulk-
logged.

Full Recovery Model
The full recovery model provides the highest level of recovery capabilities: the ability to
recover data to a specific point in time. To achieve this, data backups must be performed
regularly and transaction log backups must be performed continuously, without gaps,
between data backups. Each time the log file is backed up, the inactive log records are
truncated, freeing up space to be reused. If no log backups are taken, the log will continue
to grow, potentially until the disk is full. Therefore, you must set up log backups when
using the full recovery model. With this model, all transactions are fully logged, including
all bulk and index operations, making this the only model that allows full point-in-time
recovery capabilities.

Note To achieve the full capabilities of point-in-time recovery of data, the full
recovery model must be used.

With full recovery model, log backups must be set up explicitly to run on a regular sched-
ule, which is most commonly done by creating a database maintenance plan in SQL
Server Management Studio or through a third-party backup management software.

Chapter 14 Backup Fundamentals 377
Note Simply setting a database to full recovery model is not, in itself, enough
to protect your data. You must create and schedule data and log backups to
occur regularly. This is not done automatically by setting the full recovery model.

Bulk-Logged Recovery Model
The bulk-logged recovery model is similar in behavior and capabilities to the full recovery
model, and it also requires data and log backups for recovery. Bulk-logged model is a spe-
cial case that is intended for use in conjunction with the full recovery model. It provides
unique logging behavior for large bulk operations that cause a large number of transac-
tion records to be written to the log file, which takes up significant disk space if per-
formed under the full recovery model. With bulk-logged model, bulk operations are
minimally logged, but all other transactions are still fully logged. Minimal logging of bulk
operations provides better performance and greatly reduces the amount of space used in
the log file.

Bulk operations that are minimally logged with bulk-logged recovery model include the
following:

■ Bulk imports of data using the bcp utility, OPENROWSET, or BULK INSERT

■ SELECT INTO

■ WRITETEXT or UPDATETEXT (note that these are deprecated commands in SQL
Server 2005 and exist for backward compatibility)

■ CREATE INDEX

■ ALTER INDEX REBUILD (formerly known as DBCC DBREINDEX)

■ DROP INDEX (when it causes a new heap rebuild such as when a clustered index
is dropped)

There are two main benefits and purposes of setting the recovery model to bulk-logged
before the above operations are performed. One benefit is an improvement in the perfor-
mance of the operation itself and other activity on the system because of the reduced
activity and reduced contention on the log file. The second benefit is a reduction of log
file growth. Excessive log growth can be an issue when rebuilding or defragmenting
indexes on large tables or when bulk loading data.

The ideal usage of the bulk-logged recovery model is to enable it just before a bulk opera-
tion will occur and then return to full recovery model when the operation is completed.

378 Part III Microsoft SQL Server 2005 Administration
Switching between full and bulk-logged as needed is the recommended solution. See SQL
Server Books Online for steps to take when switching between these two recovery models.

Note The database mirroring feature requires that the database always remain
in the full recovery model. Do not switch to bulk-logged in this case.

The main difference between log backups with bulk-logged versus full model is that with
bulk-logged model any log backup that contains bulk-logged records must be restored
completely to the end of that log backup file; you cannot restore in this case to a point in
time within that log backup. So if bulk-logged recovery model is set and there is a data-
base failure that requires data restoration, you cannot restore to a point in time within any
of the log backups that contain bulk-logged records. You probably would not want to
restore to a point in time during a bulk-logged operation anyway, as it might leave the
database in an inconsistent or unknown state.

Viewing and Changing the Recovery Model
The recovery model can be configured on a per-database basis. When a user database is
created, it inherits the same recovery model as the SQL Server model database, the tem-
plate for all user-created databases. The model database has full recovery model set by
default when you install SQL Server. You can change the model database setting so all
future user databases that are created inherit the new model database setting. You can
also change the recovery model at any time per database without changing the model
database setting. Be sure you understand the behavior and implications of each recovery
model before selecting one.

Note When you create a new user database, the recovery model is set to that
of the model database. You can change the setting for the model database to
affect all subsequently created user databases; the change will not affect the set-
ting of any currently existing databases.

To change the recovery model using SQL Server Management Studio, perform the follow-
ing steps:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice, and then expand the server’s Databases folder.

2. Right-click the database name, and then click Properties on the shortcut menu.

3. Click Options in the left pane to view the Options page.

Chapter 14 Backup Fundamentals 379
4. Select the Recovery Model from the drop-down list.

5. Click OK to save.

Figure 14-1 shows the Database Properties window with the Options page selected.

Figure 14-1 Recovery model on the Options page.

Here is the T-SQL code to set the recovery model to full for mydatabase:

USE master

ALTER DATABASE mydatabase SET RECOVERY FULL ;

Read SQL Server Books Online for more information about options associated with the
ALTER DATABASE statement and for important steps regarding transaction log backups
when switching between recovery models.

Types of Backups
We’ve already discussed several topics involving transaction log backups, but of
course transaction log backups cannot be used to restore a database by themselves.
To restore a database, you must have a base backup of the data files. You can choose
to back up only parts of a database at a time, such as a file or filegroup, or an entire

380 Part III Microsoft SQL Server 2005 Administration
database. The many different types of backups available can be confusing, so I will try
to simplify them by highlighting when you might want to use each type. The different
backup categories—data, differential, and log—and the types within each category are
described in the following sections.

Note Backups are an online process. When SQL Server performs a backup, the
database being backed up remains online for users to access. Backups generate
additional load on the system and can block user processes, so you absolutely
want to schedule them during off-peak hours if possible to reduce overhead and
contention as much as possible.

Data Backups
The first major category of backups we will discuss is data backups. A data backup
includes an image of one or more data files and enough log record data to allow recovery
of the data upon restore. Data backups include the following three types:

■ Full database backup Includes all data files in the database; a complete set of
data. A complete set of file or filegroup backups can be equivalent to a full database
backup.

■ Partial backup New for SQL Server 2005; includes the primary filegroup and any
read-write filegroups; excluding any read-only filegroups by default.

■ File or filegroup backup Includes only the file or filegroup specified.

Full Database Backup
The full database backup is sometimes referred to simply as the “full backup.” I prefer to
call it “full database backup” to avoid confusion with a “full file backup” or “full filegroup
backup.” A full database backup is a backup of the entire database that contains all data
files and the log records needed to recover the database to the point in time when the
backup completed. Full database backups should be part of the backup strategy for all
business-critical databases.

A full database backup contains the complete set of data needed to restore and recover a
database to a consistent state—so it can be thought of as a baseline. Other backups may
be restored on top of a restored full database backup—such as differential backups, partial
backups, and log backups. However, all other backup types require a full database
backup to be restored before they can be restored. You cannot restore only a differential,
partial, or log backup by themselves.

Chapter 14 Backup Fundamentals 381
Real World Create Useful T-SQL Backup/Restore Scripts from
Management Studio

If you are working in Management Studio, you can easily create T-SQL scripts of the
work you are performing or want to perform through the GUI. If you have a win-
dow such as a Properties window or a Task window open, click the Script button
at the top of the window. You can pull down the Script menu to select where the
script should be created—to a new query window, to the clipboard, to a file, or to a
SQL Server job. For some Properties windows, you may have to make a change to
a property before creating a script. For example, here is how to script a backup
operation of the Adventureworks database:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice, and then expand the server’s Databases folder.

2. Right-click the database name and select Tasks on the shortcut menu then
Backup on the submenu. The Back Up Database window will appear as
shown in Figure 14-2.

3. Set all of the appropriate backup options within the window.

4. Click the Script button to script to a new query window, or select another
option from the Script drop-down list.

5. If you do not want to execute the backup at this time, click the Cancel button
to close the Back Up Database window. If you click OK, the backup will be
executed.

Figure 14-2 Scripting a backup operation.

382 Part III Microsoft SQL Server 2005 Administration
Partial Backup
The partial backup capability is new for SQL Server 2005. Partial backup is entirely dif-
ferent than a differential backup, which we describe later in this chapter. Partial backup
is mainly intended for use with read-only databases that use the simple recovery model;
however, it also works with full and bulk-logged recovery models. The partial backup
always backs up both the primary filegroup and any filegroups that are read-write. A
read-write filegroup allows data modifications to the files in that filegroup, in contrast
with a read-only filegroup, which allows only reads of that filegroup. Read-only file-
groups are not backed up with a partial backup unless they are explicitly specified in the
backup command. Note too that the primary filegroup cannot be individually set to
read-only. To force the primary filegroup to read-only, you can set an entire database to
read-only.

Important The partial backup feature is intended for use with read-only data-
bases using the simple recovery model. It is not the same as a differential backup.
Partial backup still backs up entire filegroups, not just the changes, as the differ-
ential backup does.

The main purpose of the partial backup is to provide a faster and smaller backup for data-
bases with one or more read-only filegroups that have been backed up at least once
within a full database backup or a full file backup and that have had no changes made to
them (since they are read-only). Thus, those filegroups do not need to be backed up
again. Therefore, once you have a full database backup, you can use the partial backup to
back up only those filegroups that have changed. When you restore, you first restore the
full database backup, then restore the partial backups.

Since we are on the topic of read-only filegroups, here is how to set a filegroup to read-
only using Management Studio:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice, and then expand the server’s Databases folder.

2. Right-click the database name and select Properties on the shortcut menu.

3. Under Select a Page on the left, click Filegroups.

4. You will see a check box in the Read-Only column for filegroups other than Primary.
Select the check box to set that filegroup to read-only, as shown in Figure 14-3.

5. Click OK to save the changes and close the Properties dialog box.

Chapter 14 Backup Fundamentals 383
If a filegroup is set to read-only, all the files in that filegroup are read-only. Use the follow-
ing steps to set an entire database to read-only using Management Studio:

Figure 14-3 Setting a filegroup to read-only.

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice, and then expand the server’s Databases folder.

2. Right-click the database name and select Properties on the shortcut menu.

3. Under Select a Page at left, click Options.

4. Scroll down to the State section.

5. On the drop-down list next to Database Read-Only, select True to set the database
to read-only, as shown in Figure 14-4.

6. Click OK to save changes and close the Properties dialog box.

If the entire database is set to read-only, then it is appropriate to use the simple recovery
model and perform a full database backup without performing differential or parital
backups because no data is modified.

384 Part III Microsoft SQL Server 2005 Administration
Figure 14-4 Setting a database to read-only.

File and Filegroup Backup
As an alternative to performing a full database backup of the entire database at once, you
can choose to backup only one file or filegroup at a time. This assumes that there are mut-
liple filegroups in the database (in addition to the primary filegroup). An individual file
within a filegroup may be backed up, or an entire filegroup, which includes all the files
within that filegroup, can be backed up. File or filegroup backups can be necessary when
a database is so large that back up must be done in parts because it takes too long to back
up the entire database at one time.

Another potential benefit of having a file backup is that if a disk on which a particular
file resides fails and is replaced, just that file can be restored, instead of the entire data-
base. This is not a common scenario, but it can happen. See Chapter 10, “Creating
Databases and Database Snapshots,” for more discussion about database file layout on
disk.

To ensure that you can restore a complete copy of the database when needed, you must
have either a full database backup as a baseline or a complete set of full backups for each
of the files and/or filegroups in the database. A complete set of file or filegroup backups
is equivalent to a full database backup. If you do not have a full database backup and do
not have a complete backup set of all files, then you will not be able to restore the entire
database.

Chapter 14 Backup Fundamentals 385
In addition, when performing file or filegroup backups with full or bulk-logged recovery
models, you must still back up transaction logs as well. When restoring, the logs must be
applied after restoring a file or filegroup backup to roll forward transactions and main-
tain data consistency with the rest of the database. Only transactions that apply to the file
or filegroup being restored are applied from the transaction log backups.

If a database is using the simple recovery model, only read-only filegroups are supported
for filegroup backup because there are no log backups taken with simple recovery model.
Therefore, if a filegroup in the database is read-write, there must be a full database backup
taken so that the entire database can be restored if necessary. When restoring the data in
this case, there are no transaction logs to restore, just the data backups.

As you may have guessed by now, one drawback of performing file or filegroup backups
is that more administration and care are required with both the backup and restore strat-
egy than with complete full database backups. You must be sure you always have a com-
plete set of file or filegroup backups and the transaction log backups to go with them in
order to recover from a full database failure. Complications also arise when you are
restoring from multiple copies of file backups and possibly file differential backups.
(Differential backups are covered in the next section.) On the other hand the benefits
include faster backup times for a single filegroup backup versus an entire database
backup. So in the case of a large database that takes too long to backup all at once, file-
group backups are a good option.

Differential Backups
A differential backup backs up only the data that has changed since the last base backup.
A differential backup is not a stand-alone backup—there must be a full backup that the
differential is based on, called the base backup. Differential backups are a means of back-
ing up data more quickly by backing up only changes in data that occurred since the last
base backup, resulting in a smaller backup than a full backup. This may allow you to per-
form differential backups more frequently than you could perform full backups. A differ-
ential backup can be created on the database, partial, file, or filegroup level. For smaller
databases, a full database differential is most common. For much larger databases, differ-
ential backups at the file or filegroup level might be needed to save space and to reduce
backup time and the associated system overhead.

In addition to being faster and smaller than a full backup, a differential backup also
makes the restore process simpler. When you restore using differentials, you must first
restore the full base backup. Then, you restore the most recent differential backup that
was taken. If multiple differentials were taken, you need to restore only the most recent
one, not all of them. No log backups need to be restored between the full and differential
backups. After the differential has been restored, then any log backups taken after the dif-
ferential can be restored.

386 Part III Microsoft SQL Server 2005 Administration
You may want to schedule differential backups often between full database backups to
avoid having to restore lots of transaction log backups in the case of a failure. For exam-
ple, you might take full database backups on the weekend and take a differential database
backup every week night. Throughout the day, you perform log backups at shorter inter-
vals, such as every 30 minutes. This is a common strategy and fairly simple to execute and
recover from.

Log Backups
We have already covered a lot about log backups in the previous sections (see the section
“Purpose of the Transaction Log”), so we will provide just a recap here. Log backups are
required when a database uses the full or bulk-logged recovery models, or else the log file
will grow continually until the disk is full. Simple recovery model does not allow log
backups because the log file is truncated automatically upon database checkpoints.

The transaction log contains records of transactions (in other words, modifications) that
are made to the database. A backup of the log is necessary for recovering transactions
between data backups. Data may be recovered to a point in time within the log backup as
well, with the exception of log backups that contain bulk-logged records—these must be
restored to the end of the backup. Without log backups, you can restore data only to the
time when a data backup was completed. Log backups are taken between data backups
to allow point-in-time recovery. For read-only databases, log backups are not needed, and
you may set the database to use the simple recovery model in this case.

There is one special type of log backup, called the tail-log backup, that we have not yet
defined. This is a log backup taken immediately upon a system failure. Assuming the log
disks are intact and accessible, a last tail-log backup can be taken before attempting to
restore data. This is the best case scenario because it allows you to recover up to the point
of failure. You must not forget to take the tail-log backup before you start restoring data,
or the transactions that were in the log at the time of failure will be lost. Also, attempting
a restore without first taking the tail-log backup will result in an error unless you use the
WITH REPLACE or WITH STOPAT clause. For information on the options for the
BACKUP command when taking a tail-log backup, see the SQL Server Books Online
topic “Tail-Log Backups.”

Important In the event of a failure on the system, if possible, immediately
take a log backup, called the tail-log backup, to help you restore to the point of
failure.

Chapter 14 Backup Fundamentals 387
Copy-Only Backups
Each time a backup occurs, SQL Server stores information about the backup to keep
track of the restore sequence. (See Chapter 15, “Restoring Data.”) Each data backup, for
example, serves as a base backup for any differential backups taken later, so by default,
backups affect other backups and how they will be restored. In other words, each backup
affects future backup and restore procedures.

There may be a situation in which you would like to create a backup of a file or database
but do not want to affect the current backup and restore procedures. You can do this
using a new backup type in SQL Server 2005 called a copy-only backup. It will leave the
current backup and restore information intact in the database and will not disturb the
normal sequence of backups that are in process.

Note To use copy-only backups, you must use T-SQL scripts with the BACKUP
and RESTORE commands. Copy-only backups are not an option in SQL Server
Management Studio.

Full-Text Catalog Backups
SQL Server 2005 provides a new feature to backup full-text catalog data. The full-text
data is backed up by default with a regular backup. It is treated as a file and is included
in the backup set with the file data. A full-text catalog file can also be backed up alone
without the database data. Use the BACKUP command to perform a full-text catalog
backup. See SQL Server Books Online for more options, such as differential and file
backup options, with full-text catalog backups.

Backup and Media Fundamentals
Information about backup history, backup devices, and media sets are stored in the sys-
tem msdb database. This information is extremely useful in helping to understand and
manage backups, such as to determine what databases and files have been backed up,
what type of backups have been performed, and which backup sets are available for
restore. Basic backup set and media set terminology are unchanged since SQL Server
2000, and the information in the backup history tables of both is similar, but with SQL
Server 2005 there are some additional columns in the tables and one completely new
table, called backupfilegroup.

388 Part III Microsoft SQL Server 2005 Administration
The following system tables within the msdb system database store history information
about backups:

■ Backupfile For each backup event that occurs, this table stores a row for each
data and log file in the database, including a column, is_present, that indicates
whether that file was backed up as part of the backup set.

■ Backupfilegroup This table is new for SQL Server 2005. It contains a row for each
filegroup in a database at the time of a backup. This table does not indicate whether
that filegroup was backed up. See the backupfile table to find that information.

■ Backupset This table contains one row for each backup set. A new backup set is
created for each backup event.

■ Backupmediaset This table contains one row for each backup media set to
which backup sets are written.

■ Backupmediafamily This table contains one row for each media family, or if part
of a mirrored media set, one row for each mirror in the set.

Understanding Backup Devices and Media Sets
To understand the information provided in these tables, there are several concepts and
terms that we must define first. Backups are written to either a location on disk (a file)
or to a tape device or devices. A backup device is a logical name that is given to a tape or
disk file to which a backup can be written. All of the backup data stored on a single
backup device, which could contain data from multiple backups, is known as a media
family. A media set is made up of a fixed type and number of backup devices used to
store one or more backup sets. A media set cannot include both disk and tape devices;
it must be all one type of device or the other. There can be multiple backup devices
within a media set such as multiple disk locations or multiple tape devices. When this is
the case, then each backup written to that media set is written evenly across all the
devices in that set.

For example, if a backup is written to two disk backup devices (for example, two files on
disk), then those two files together make up one media set. The T-SQL example below
shows how to take a full database backup of a database named Mydatabase by writing it
to two files on separate disk drives or disk arrays: C:\SQL_Backups\mydb1.bak and
D:\SQL_Backups\mydb2.bak. At this point, these files have not been identified as a spe-
cific backup device yet. We will show how to do this below:
BACKUP DATABASE mydatabase

TO DISK = ‘C:\SQL_Backups\mydb1.bak ’,

DISK = ‘D:\SQL_Backups\mydb2.bak ’

WITH MEDIANAME = ‘mydb_disk_media’ ;

Chapter 14 Backup Fundamentals 389
In this example, a full database backup is written across the two files listed. See Figure
14-5. Half of the backup is stored on C drive and half on D drive. The media set, con-
sisting of the two files, is named Mydb_disk_media. If this is the first time this media
set is used, it is formatted with a media header and initialized by default. If a backup
has been written to the media set before, then by default (the default is WITH
NOINIT) the backup is appended to the media set. To force an overwrite of all existing
backups on the media set without reformatting the media header, specify the WITH
INIT option. See SQL Server Books Online for the many options available to the
BACKUP command.

Now let’s talk about creating backup devices for these two files, which we could have
done before executing the BACKUP command. Unofficially, the two files used above are
considered backup devices, but they do not yet appear under the Management Studio
Server Objects/Backup Devices. You can explicitly create a backup device name for each
file or tape that will be used for backups even if you have already backed up to that file or
tape before the backup device is created, and you may decide to do so for a couple of rea-
sons. One reason is so that you can view its properties and media contents within Man-
agement Studio. Another reason is so you can use that backup device name instead of the
full physical file name when performing backups. If you do not explicitly create backup
device names for these files, you will not see their information in Management Studio
under Server Objects/Backup Devices nor will there be a backup device option in the
Backup window when you perform a backup through Management Studio. You will
instead have to select the physical file name.

Figure 14-5 Logical view of backup across two files.

Backup 1
content

Backup 2
content

Media Family 1

File 1 =
C:/SQL.Backups/mydb1.bak

Backup set 1

Backup set 2

Backup 1
content

Backup 2
content

Media Family 2

Media set name = mydb_disk_media

File 2 =
D:/SQL.Backups/mydb2.bak

390 Part III Microsoft SQL Server 2005 Administration
To view backup devices in Management Studio, follow these steps:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice.

2. Expand the Server Objects folder.

3. Expand the Backup Devices folder. Any existing backup devices will appear as
shown in the example in Figure 14-6.

You can create the backup device either using Management Studio or by using the
sp_addumpdevice stored procedure. Using Management Studio, follow the previous steps
to view backup devices, then right-click in the white space in the pane on the right and
select New Backup Device. If the new device does not yet exist, it will not yet have media
contents to view. If you create a device with the same name and location as a file or tape
to which you have already written a backup or backups, the object will appear and all of
its media contents will automatically be visible in the Management Studio. Let’s go
through an example of this scenario.

Figure 14-6 Viewing backup devices.

Using the BACKUP command example above, we backed up to two files: located on
C:\SQL_Backups\mydb1.bak and D:\SQL_Backups\mydb2.bak. Before you have explicitly

Chapter 14 Backup Fundamentals 391
created these as backup devices, they will not be visible in Management Studio even
though the files do exist once we executed the BACKUP command above. To make them
visible in Management Studio, follow these steps:

1. Follow the previous steps for viewing backup devices.

2. Right-click in the white space in the right pane and select New Backup Device.

3. Enter a name for the device.

4. Enter the destination as the same name and path that we gave it above. For
example, Figure 14-7 shows the creation of a backup device to identify the file
C:\SQL_Backups\mydb1.bak with a name of mydb1_dev.

Figure 14-7 Creating a backup device.

To create this same device using T-SQL instead, use the following command:

EXEC sp_addumpdevice ‘disk’, ‘mydb1_dev’, ‘C:\SQL_Backups\mydb1.bak’ ;

To create a backup device for the second file, use the following command:

EXEC sp_addumpdevice ‘disk’, ‘mydb2_dev’, ‘D:\SQL_Backups\mydb2.bak’ ;

Now the backup devices, which we called mydb1_dev and mydb2_dev, appear in the
Backup Device window. These backup device names serve as the logical names for the

392 Part III Microsoft SQL Server 2005 Administration
physical backup files C:\SQL_Backups\mydb1.bak and D:\SQL_Backups\mydb2.bak.
To view the media contents of a backup device, perform the following steps:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice.

2. Expand the Server Objects folder.

3. Expand the Backup Devices folder.

4. Right-click a backup device name and select Properties.

5. Click Media Contents in the left panel. For example, information about the existing
backup on the device we created above is shown in Figure 14-8.

Figure 14-8 Viewing the contents of a backup device—media family 1.

Since this backup device is part of a media set that includes two backup devices
(mydb1_dev and mydb2_dev), you will see Family 1. For the second device in the media
set you will see Family 2.

When you perform a backup, you will now be able to select the backup device name in
Management Studio, or you can use it as the logical name in the BACKUP command
instead of the physical file name.

Chapter 14 Backup Fundamentals 393
Mirrored Media Sets
SQL Server 2005 provides a new feature, called mirrored media sets, that allows you to
back up data to more than one media set at a time. Having more than one copy of your
backup increases reliability in case one set of media has a failure during restore, such as
if a tape is damaged. In that case, one of the other mirrored media sets can be used.

You can create up to four mirrors of a backup, or a total of four copies. All of the mirrored
media sets must have the same number of backup devices, and the backup devices must
be equivalent—such as disk type or the same type of tape device. Here is an example of
backing up to three mirrored media sets, each set made up of two tape devices:

BACKUP DATABASE mydatabase

TO TAPE = ‘\\.\tape0’ , TAPE = ‘\\.\tape1’

MIRROR TO TAPE = ‘\\.\tape2’ , TAPE = ‘\\.\tape3’

MIRROR TO TAPE = ‘\\.\tape4’ , TAPE = ‘\\.\tape5’

WITH MEDIANAME = ‘mydb_mirrored_media_set’ ;

Another benefit of mirrored sets it that you can substitute a media family from one mir-
rored media set for another. Using the BACKUP example above, there are two media
families, or backup devices, per mirrored media set. If tape1, which contains media fam-
ily 2, is damaged, you can restore media family 2 from either tape 3 or tape 5, which each
contain mirrors of media family 2. In other words, you can restore a particular media
family from any one of the mirrored media sets. All you need is one good, complete set
of the media families to restore.

Overview of Backup History Tables
To find information about the backups that have occurred, you can query the system
tables mentioned above. We’ll give some examples that will help understand what you
can find out from these tables. The backup_set_id column of the backupfile table can be
used to determine which backed up files are in a backup set. The media_set_id column
tells you to which media set the backup belongs.

For example, run the following query:

USE msdb

SELECT a.backup_set_id, a.media_set_id, a.database_name,

 b.logical_name, b.file_type

FROM backupset a, backupfile b

WHERE a.backup_set_id = b.backup_set_id ;

394 Part III Microsoft SQL Server 2005 Administration
The backup_set_id relates a group of files that existed as part of the database when the
backup was taken. Whether it was a full database backup or a file backup, all files in the
database are listed. This number increases sequentially for each backup set to represent
the position of each in the media set. For example, the highest number represents the
most recent backup set. This allows you to identify a specific backup set to restore.

Here is a sample result set from running the query above:

backup_set_id media_set_id database_name logical_name file_type

------------- ------------ --------------- ---------------------- ---------

1 1 AdventureWorks AdventureWorks_Data D

1 1 AdventureWorks AdventureWorks_Log L

2 1 AdventureWorks AdventureWorks_Data D

2 1 AdventureWorks AdventureWorks_Log L

3 1 AdventureWorks AdventureWorks_Data D

3 1 AdventureWorks AdventureWorks_Log L

4 1 AdventureWorks AdventureWorks_Data D

4 1 AdventureWorks AdventureWorks_Log L

9 3 mydatabase mydatabase_file1_primary D

9 3 mydatabase mydatabase_log L

10 3 mydatabase mydatabase_file1_primary D

10 3 mydatabase mydatabase_log L

10 3 mydatabase mydb_file2_primary D

11 3 mydatabase mydatabase_file1_primary D

11 3 mydatabase mydatabase_log L

11 3 mydatabase mydb_file2_primary D

12 3 mydatabase mydatabase_file1_primary D

12 3 mydatabase mydatabase_log L

12 3 mydatabase mydb_file2_primary D

In the output above, we see that there have been four backups taken of mydatabase with
backup_set_id = 9, 10, 11, and 12. The first backup set with id = 9 consisted of only one data
file and one log file, Mydatabase_file1_primary and Mydatabase_log. After that backup was

Chapter 14 Backup Fundamentals 395
taken, another file, mydb_file2_primary, was added to the database. Thus, subsequent
backup sets (10, 11, and 12) list all 3 files, including the new file, in the database.

The value in the media_set_id column relates to the media set to which a backup is writ-
ten. In the above output, the media set = 1 was used for backups of the AdventureWorks
database, and media set = 3 was used for mydatabase. Each of the backups taken were
appended to the media set. The backup_set_id indicates the position of each backup set
within the media set.

The file_type column has either a “D” for data, “L” for log, or “F” for full-text catalog.
These indicate whether the file in that row is a data file or a log file.

There is another really interesting column in the backupfile table that we look at in this
next example. The following T-SQL statement queries three backup sets (with id’s
16,17, and 18) and the is_present and type columns. The is_present column identifies
whether the specific file is part of the backup set. A value of 0 indicates that it is not
part of the backup set, and a 1 indicates that it is part of the backup set. For a log
backup, for example, all the files in the database are part of the backup set because
transactions from the log are backed up for all files. Therefore, all files appear with
is_present = 1 for a log backup. This does not mean that all the files were completely
backed up. For a file backup, both the file and the portion of the log that relates to that
file are backed up, so both the data file and the log file have is_present = 1. For a differ-
ential database backup, all files are contained in the backup. For a differential file
backup, only the specified file and its portion of the log are contained in the backup.
The example below demonstrates this.

In our example, the type column identifies the type of backup that was performed for
each backup set. Possible backup types are “D” (database), “I” (database differential),
“L” (log), “F” (file or filegroup), “G“ (file differential), “P” (partial), and “Q” (partial dif-
ferential).

Here is the T-SQL example for querying this information:

USE msdb

SELECT a.backup_set_id, b.logical_name, b.file_type,

 b.is_present, a.type

FROM backupset a, backupfile b

WHERE a.backup_set_id = b.backup_set_id

 AND b.backup_set_id IN (16,17,18) ;

396 Part III Microsoft SQL Server 2005 Administration
Here is a set of sample results:

backup_set_id logical_name file_type is_present type

------------- ------------------------------ --------- ---------- ----

16 mydatabase_file1_primary D 1 L

16 mydatabase_log L 1 L

16 mydb_file2_primary D 1 L

17 mydatabase_file1_primary D 0 F

17 mydatabase_log L 1 F

17 mydb_file2_primary D 1 F

18 mydatabase_file1_primary D 1 D

18 mydatabase_log L 1 D

18 mydb_file2_primary D 1 D

The fourth row of the sample results shows a file that is not part of the backup set for
backup set 17 (because is_present = 0 for that file). Only the Mydatabase_log and
Mydb_file2_primary files are contained in the backup set. This indicates that a file
backup (type “F”) was taken of Mydb_file2_primary and the portion of the log relating to
that file was backed up with it by design.

For backup_set_id = 16, all three files are contained in this backup set, and it has a type
of log backup (type = “L”). For a log backup, the entire transaction log is backed up,
which contains transactions for all files in the database. Therefore, all database files have
is_present = 1 for a log backup.

For backup_set_id = 18, all three files are again contained in the backup set, as this was
a full database backup (type = “D”). This is a complete database backup of all files in the
database.

Viewing Backup Sets in Management Studio
When using SQL Server Management Studio to restore a complete database, the most
recent full database backup set, along with any corresponding differential and log back-
ups, are presented by default in the Restore Database dialog box. To open this dialog box,
follow these steps:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice, and then expand the server’s Databases folder.

Chapter 14 Backup Fundamentals 397
2. Right-click the database name and select Tasks from the menu, then select Restore
and Database from the submenus.

3. Select From Database as the source for restore and you will see only the most recent
set of backups for restoring the database, as shown in Figure 14-9. Previous data-
base backups will not be seen by default. (For file or filegroup restores, a history of
files backed up is presented by default in Management Studio, not just the most
recent one.)

Figure 14-9 Restoring the most recent database backup.

To restore from a different backup device or to see previous backups that exist on a
backup device, complete the following steps from within the Restore Database dialog box
(opened in previous steps):

1. Select From Device as the source for restore.

2. Click the ellipsis and then select Backup Device from the drop-down Backup Media
pull-down list.

3. Click the Add button.

4. Select the backup device you would like to view from the drop-down list, and click
the OK button, as shown in Figure 14-10.

5. Click the Contents button.

398 Part III Microsoft SQL Server 2005 Administration
Figure 14-10 Selecting a backup device.

All of the backups on that device will be presented as shown in Figure 14-11.

Figure 14-11 Viewing all contents on a device.

More information on performing data restores is presented in Chapter 15, “Restoring
Data.”

Backup Strategy
Designing solid backup and restore strategies for each critical user and system database
is very important for protecting your data. Backup types and backup schedules may be
different for various databases and database servers. When planning a backup strategy,
consider the following factors:

Chapter 14 Backup Fundamentals 399
■ How critical is the data to the success of the business? Will you lose money if the
data is lost or unavailable?

■ Is the data read-only or is it read-write? Read-only data may not need to be backed
up more than once.

■ Is there an off-peak time when backups can be taken to minimize the performance
overhead? For example, if users are not on the system during weekend nights, this
might be a good time to perform full database backups.

■ How big is the database and how long does it take to perform various types of back-
ups? Is this time acceptable? For example, if the database is very large and backups
take a lot of time, you may need to perform full database backups only once every
other week and perform differential backups in between.

■ To what media will the backups be written? Backing up first to disk and then copy-
ing the backup files off to tape or DVD is a common strategy. Taking the tapes or
DVD’s offsite is a minimal strategy for disaster recovery that should be seriously
considered.

■ Will you want to mirror the backup to have two or more copies for protection? Mir-
roring the backup to more than one media set provides protection in case one of the
media sets becomes corrupt and cannot be restored from.

Important You should not write backups to the same disks that store the
source data or log files. If you lose the source data because of a disk failure
or data corruption, you could also lose the backup. Backups should be writ-
ten to disks physically separate from the database files.

Off-peak time is a time period during which a minimal amount of user activity occurs on
the system. Backing up data from the production database is an online process, but the
overhead can affect performance of other activity on that database or other databases on
that server. During a backup operation, high reads are performed on the database and
high writes are performed to the backup destination. The performance impact to other
activity on the system varies depending on several factors.

One option for reducing the impact of backups on performance is to perform a snap-
shot backup, which is a backup that requires cooperation from third-party independent
hardware or software vendor solutions. A typical snapshot backup solution is accom-
plished by mirroring data onto separate physical disks so that the mirror can be split at
some point in time, creating an almost instantaneous copy of the database and thus

400 Part III Microsoft SQL Server 2005 Administration
eliminating the need for a backup of the production database. This is a costly solution,
but it is beneficial for very large, critical databases.

Important SQL Server 2005 does not allow you to back up a mirror database
(the mirror copy in a database mirroring scenario) because it is not in a recovered
state, nor does it allow backing up any kind of SQL Server database snapshot.
This capability may be an enhancement in a future release of SQL Server.

As of the writing of this book, SQL Server 2005 does not allow taking a backup of a mir-
ror database because it is in a state of no recovery. A database must be in a recovered,
online state in order to be backed up. A database snapshot, or SQL Server snapshot, can
be taken of a mirror database. Such a snapshot can be accessed only in a read-only man-
ner, such as for reporting, but like a mirror database, database snapshots cannot be
backed up.

Generally, backups should be performed regularly and frequently for all critical data-
bases that allow data modifications. The more often modifications are made and the
more critical the data, the more frequently backups should occur. Less critical databases,
such as development and test systems, may need to be backed up only occasionally or
not at all. A clear plan for backing up all user databases and pertinent SQL Server system
databases (discussed in the next section) should be developed.

Real World Common Backup Strategy

Although there are many options for backup strategies and types of backups that
can be taken, the majority of cases are well suited to a simple strategy that is easy to
restore from. The following is an example of such a common backup strategy for
backing up critical user databases.

1. Perform a full database backup every Saturday night

2. Perform a differential database backup every Wednesday night

3. Perform continual transaction log backups every 30 minutes

This can be scheduled to run automatically using the Database Maintenance Plan
Wizard.

The Real World example shows a common backup strategy scenario, and specific days
and times may vary. Such a schedule is very beneficial because it is simple to implement,

Chapter 14 Backup Fundamentals 401
understand, and restore from. However, if your database is very big or if user activity
requires continuous uptime and optimal performance, this schedule may not be possi-
ble. File or filegroup backups may be necessary in these cases, although administration
complexity is increased. Here is a sample strategy for backing up a very large database,
assuming it has only two filegroups (Filegroup1, the primary filegroup, and Filegroup2,
a secondary filegroup):

1. Full filegroup backup of Filegroup1 on Saturday night (provides the base)

2. Full filegroup backup of Filegroup2 on Sunday night (provides the base)

3. Differential filegroup backup of Filegroup1 on Tuesday night

4. Differential filegroup backup of Filegroup2 on Wednesday night

5. Differential filegroup backup of Filegroup1 on Thursday night

6. Differential filegroup backup of Filegroup2 on Friday night

7. Continual transaction log backups every 30 minutes

This backup plan allows recovery of the database by following these steps:

1. Restore the two filegroup base backups (from steps 1 and 2 above).

2. Restore the most recent differential backup of Filegroup1 (from step 5 above).

3. Restore the transaction logs backups taken since Filegroup1 differential backup.

4. Restore the most recent differential backup of Filegroup2 (from step 6 above).

5. Restore the transaction log backups taken since Filegroup2 differential backup.

The differential backups from steps 3 and 4 do not need to be restored because all of the
changes since the base backup are incorporated into the most recent differential backup.
Nor do any log backups taken before the most recent file differential backups need to be
restored. Taking differential backups reduces the number of transaction log backups that
must be restored.

A common and easy way to set up straight-forward SQL Server backups is to use the Data-
base Maintenance Plan Wizard in SQL Server Management Studio. See Chapter 17 for
details on how to set up database maintenance plans.

Important You absolutely should test restoring from your backups (onto a test
system) to verify your backup and restore strategy work as expected. Perform
these restore tests regulary, such as every few months or more often.

402 Part III Microsoft SQL Server 2005 Administration
Backing Up System Databases
In addition to user databases, it is also important to back up pertinent system databases.
You do not need to back up all of them, only the critical ones. Here is a list of all the sys-
tem databases and optional sample databases:

■ master Stores SQL Server system-level information, such as logon accounts,
server configuration settings, existence of all other databases, and the location of
the files

■ model Contains a database template used when creating new user databases

■ msdb Stores information and history on backup and restore operations, SQL
Agent jobs, and replication

■ tempdb Provides temporary space for various operations, and is recreated every
time SQL Server is restarted

■ distribution Exists only if the server is configured as the distributor for replication

■ Resource Contains all the system objects that are included in SQL Server 2005
but does not contain any user data or user metadata. This is a new system database
for SQL Server 2005 that is read-only.

■ AdventureWorks and AdventureWorksDW Provide sample data. These can
optionally be selected for installation during SQL Server installation and are pro-
vided for use in testing and experimentation

Of the system databases, you should back up the two most critical and informative sys-
tem databases, master and msdb, regularly. They usually back up in seconds, so you may
want to back these up every night. You might want to also backup the model database
occasionally if you make changes, such as adding user-defined data types, that you would
like to preserve for future user databases to use as their template.

tempdb never needs backed up because it does not store permanent data. In fact, SQL
Server does not even allow you to back it up. It is recreated every time SQL Server restarts
and all data is permanently deleted from it when SQL Server shuts down.

The distribution database, which is used in replication, should be backed up regularly.
The method to backup and restore this database depends on the type of replication con-
figured—transactional, snapshot, and merge. See SQL Server Books Online for details
regarding backup and restore procedures with replicated databases.

The Resource database is read-only and does not contain user data or metadata and there-
fore does not need backed up. This database is used to make upgrading to new versions
of SQL Server easier and faster and to make roll backs of service packs easier. It is intended

Chapter 14 Backup Fundamentals 403
for access only by Microsoft Customer Support Services when supporting and trouble-
shooting customer issues.

The AdventureWorks and AdventureWorksDW sample databases do not need to be backed
up unless you have a special reason you want to save them. They can even be deleted if
you do not want to use them.

Summary
In this chapter, we covered the foundations of transaction logging and database recovery
models in order to help you better understand backups. We also covered the various
types and categories of backups that can be performed on a database. Understanding
backups and performing them properly are essential parts of database maintenance and
data recoverability. Without backups, your data can be lost regardless of how much fault
tolerance is configured at the hardware or software level. Do not get caught without a
good backup, or you may risk losing your job along with the data. Always perform back-
ups and test restoring from them on occasion to verify that you can restore the database
and data when necessary.

Chapter 15

Restoring Data

Practicing and Documenting Restore Procedures.405

Restore and Recovery Concepts .406

Restoring Data from Backups .409

Summary .422

In Chapter 14, “Backup Fundamentals,” we discussed taking backups of critical database
data and their importance for data protection because they provide the ability to recover
from system or disk failures which could cause data loss. In addition to taking backups,
another one of the most important roles of a database administrator (DBA) is being able
to restore data that has been backed up. Taking backups is just one side of the story. Suc-
cessfully restoring that data is the other side.

In this chapter we discuss the fundatmentals of the restore process and define terminol-
ogy and concepts. Then we discuss the different ways to restore data, how to perform
restores, and the new options for restoring data with Microsoft SQL Server 2005. These
new options include online restore, fast recovery, and piecemeal restore.

Practicing and Documenting Restore Procedures
Before getting into the details of restoring data, here is some important advice. Knowing
how to restore data and practicing the restore process to ensure that it works as expected
are important tasks that a DBA should not avoid. Often this is not considered a priority,
but it really should be. If there is not a system available with enough disk space to test
restoring a full database backup, then try a test with a smaller database or one of the sam-
ple databases using the same backup and restore method and the same backup types as
used for the production database.

One backup method, for example, could be to perform a backup to disk first and then to
copy the backup file to tape. In this case, practice performing a restore from the backup
on disk and a restore from the tape backup so that if the disk backup is erased or
405

406 Part III Microsoft SQL Server 2005 Administration
corrupted, you also know how to restore from the tape. Understanding where the tapes
are stored, how to retrieve them, how to identify what is on them, and how long it takes
to retrieve them are all important to know when you need to retrieve data quickly. The
steps for restoring data using both methods should be well-documented, and that docu-
mentation should be kept in a place where appropriate parties can access it in the case
when the DBA is not accessible.

Restore and Recovery Concepts
In order to better understand how to restore data, it helps to know the terminology and
concepts behind the restore process. This section defines terms that are used throughout
the chapter and explains the phases of the restore process.

There are three possible phases in a restore operation: the data copy, redo, and undo
phases. The term restore is used here in a more specific way to describe the first two
phases of a restore operation: the data copy and redo (roll forward) phases. Recovery is
the term used to describe the phase that performs undo (roll back) and brings the data-
base online to a recovered state. The following are descriptions of these three phases,
which are summarized in Table 15-1:

■ Data Copy Phase The process of copying the data, index, and log pages from the
backup media to the database files. Copies data from data backups, and optionally
differential backups, to the database files. No log backups nor any log information
in the data backups are applied in this phase.

■ Redo Phase This phase replays logged changes to the data by processing log
backups. It begins by replaying any logged data stored within the data backups
themselves, and then if any log backups are restored, it continues by replaying
transactions from each restored log backup.

■ Undo Phase This phase occurs only if there are changes to data from uncommit-
ted transactions in the restored data at the recovery point. (Log records may
include transaction records of transactions that had not been committed at the time
of backup.) These changes are rolled back, so the database will be in a state as if
those uncommitted transactions never occurred. After the undo phase, no more
data can be restored to the database. This phase occurs when a database is restored
with recovery. At the end of this phase the database is brought online for use, or
recovered. If there were no uncommitted transactions to handle, then undo is
skipped and the database is recovered.

Chapter 15 Restoring Data 407
The terms “restore” and “recovery” are used in more general ways as well. The single term
“restore” is often used to refer to the entire process of restore and recovery. The term
“recovery” is used in the sense of recovering lost data, which can also refer to the entire
process of restoring and recovering data. “Recovery” is also used to refer to the SQL
Server automatic recovery process, also known as startup recovery. (Automatic recovery
and recovery models are explained in Chapter 14.) Depending on the context, these
terms can be used in a more general or more specific way.

Recovery point is the specified point in time to which a set of data is restored. In other
words, the data set is restored to its state at that point in time. A recovery point is the
point to which the data set is rolled forward. This data set is called the roll forward set. If
there are uncommitted transactions at the recovery point, then undo, or roll back, occurs
to bring the data to a consistent state such that there are no data changes in the database
from transactions that were not committed. The undo process is skipped if there are no
uncommitted transactions in the roll forward set.

Important Backups created using SQL Server 2005 cannot be restored to a
previous version of SQL Server.

Important Backups created using SQL Server 7.0 or SQL Server 2000 can be
restored to a SQL Server 2005 server, but the system databases—master, model,
and msdb—cannot be restored. (An interesting exception is that a log backup
taken using SQL Server 7.0 cannot be restored to SQL Server 2000 or 2005 if that
log backup contains a CREATE INDEX operation.) Backups from SQL Server 6.5 or
earlier versions cannot be restored to SQL Server 2005; the backup format is
incompatible. A data export and import must be performed instead.

Table 15-1 Restore Operation Phases and Descriptions

Restore Phase 1
Data copy phase

Copies data from data backups to the
database files; no logs are restored in this
phase

Phase 2

Redo phase (roll forward)

Replays logged records of transactions,
first from any logged data in the data back-
ups themselves and then from any log back-
ups restored

Recovery Phase 3
Undo phase (roll back)and data
set online

Rolls back any data changes from
uncommitted transactions that were
replayed in the redo phase and brings the
data set online

408 Part III Microsoft SQL Server 2005 Administration
A restore sequence is a set of RESTORE statements used to perform the restore steps
described above: data copy, roll forward, roll back, and bring data online. This might be
only one RESTORE statement or a series of RESTORE statements in the correct order.
For example, a restore sequence to restore a complete database to a point of failure might
include statements that first restore a full database backup, then a differential database
backup, then multiple log backups, and finally a tail-log backup that also recovers the
database (using the RECOVERY option described in the following section).

A recovery path is any complete sequence of data and log backups that can be restored to
bring a database to a point in time. As data backups are being taken on a database, a
recovery path is created from the point at which the base backup or backups begin.
Whenever data is restored and recovered, a new recovery path is created at that recovery
point. If the recovery point is up to a point of failure (as recent as possible) and a database
backup is then taken again, a new single recovery path begins with that complete backup
(not a forked path). On the other hand, if data is restored to a point in time that is earlier
than the current database state, the database is used from that point, and log backups
continue, then the current recovery path is forked into two paths so that there are now
two possible recovery paths from which to restore. (An example of this follows.) If you
always restore data to the most recent point in time or to the point of failure when possi-
ble with a tail-log backup, then you will not have forked recovery paths.

For example, assume a full database backup is taken, followed by three log backups, and
later the database is restored using the full database backup and only two of the three log
backups, thus bringing the database back to an earlier point in time than the current
point. If the database continues to be used, then a second recovery path is forked from
the first recovery path at that recovery point, which was the end of the second log restore.
See Figure 15-1 for a diagram of this scenario. Now if log backups continue on a regular
schedule (log backups four and five in Figure 15-1) once the database is recovered, then
there are two possible recovery paths that could be used for restoring data. In our exam-
ple, the following are the two possible restore sequences that could be restored based on
the two recovery paths:

1. Recovery Path 1: Restore full database backup, log backups one, two, and three

2. Recovery Path 2: Restore full database backup, log backups one, two, four, and five

Best Practices It is best practice to avoid creation of multiple recovery
paths for ease of management of your backup and restore processes.

Having forked recovery paths is neither correct or incorrect, but the downside is that it
can be a bit complex to figure out which path to take when restoring data again. It is a best
practice to avoid creating multiple recovery paths either by performing a full backup of

Chapter 15 Restoring Data 409
the database as soon as possible after a restore to a point in time or by restoring the data-
base to the point of failure using the tail-log backup or to the most recent point possible.
See Figure 15-2 for examples of these. (The types of backups are covered in Chapter 14.)

Figure 15-1 Forked recovery path example.

Figure 15-2 Avoiding forked recovery paths.

Restoring Data from Backups
You may need to restore data for various reasons. The most critical reason is to restore lost
data, which may be a factor in the success or failure of a business. Here are some common
scenarios in which you may restore data:

Full DB
backup

Recovery path 1

Recovery path 2

Log
backup 1

<Recovery
point>

Log
backup 4

Log
backup 5

Log
backup 2

Log
backup 3

Fork

Full DB
backup

Recovery path 1

Start's new
recovery path 1

Recovery
path 2

Log
backup 1

<Recovery
point>

<Recovery
point>

Log
backup 2

Full DB
backup

Log
backup 1

Log
backup 2

Log
backup 3

Log
backup 4

Point of
failure

Tail log
backup (3)

Log
backup 5

Recovery path 1

Log
backup 4

Full DB
backup

Log
backup 1

Log
backup 2

Recovery
path 2

Fork

Fork

410 Part III Microsoft SQL Server 2005 Administration
■ To restore data lost or corrupted because of a system failure

■ To restore a database onto a development system for use by application developers
while developing and testing new code

■ To restore a database onto a test system to load test your applications or to test the
use of certain database features in a controlled environment

■ To restore a database onto a separate server as a read-only database that can be
accessed by users to perform queries, such as for reports.

There are several ways to restore data, depending on the types of backups taken and the
purpose of the restore. These are described in the following sections.

Complete Database, Differential Database, and Log Restores
A complete database restore is performed by restoring a full database backup. It restores
all the files that existed in the database at the time of the backup. A differential database
restore can be applied after its base complete database restore is performed with the
NORECOVERY option. If multiple differential database backups have been taken since
the full database backup, only the most recent differential backup needs to be restored.
This is because each differential backup contains all changes since the base backup, not
since the last differential backup. (In some cases there may not be a differential backup to
apply, only log backups.)

The following is the basic T-SQL syntax for a complete database restore or a differential
restore operation:

RESTORE DATABASE <database_name>
FROM <backup_device>
WITH FILE = n, [RECOVERY | NORECOVERY];

The following is the basic T-SQL syntax for a log restore operation:

RESTORE LOG <database_name>
FROM <backup_device>
WITH FILE = n, [RECOVERY | NORECOVERY];

There are many options to both the RESTORE DATBASE and RESTORE LOG statements
that may be of interest. For example, when performing a restore in a command prompt or
with Query Editor, the “STATS = percentage” option will print the progress of the restore as
the indicated percentage completes. The default is 10 percent. Please see SQL Server Books
Online for usage of all possible arguments and options for the RESTORE command.

A log restore applies a log backup by rolling forward transaction records. Multiple log
backups may be applied one after the other as long as the NORECOVERY option is

Chapter 15 Restoring Data 411
specified. When the last log backup will be applied, use the RECOVERY option to recover
the database and bring it online.

Instead of using the logical backup device name in the FROM clause, you can list the phys-
ical file or files or tape drive path with “DISK=”or “TAPE=” options. The file number deter-
mines which backup file to apply. (Some methods for getting the file number follow.) If
not specified in the WITH clause, the default is RECOVERY, meaning that the undo phase
will occur, if necessary, and the database will be brought online. If the RECOVERY option
is included but SQL Server determines that more data is needed to recover (such as a log
backup when restoring a file that has changed since it was backed up), an error occurs and
the database or file remains offline in a restoring state. Once the data has been successfully
recovered (roll back has occurred and the data brought online), then no more backups
can be applied. If the data has already been recovered, then to allow further backups to be
applied you have to start the entire restore sequence again. Therefore, use the WITH
NORECOVERY option if you need to apply other backups after restoring the database,
such as a full database differential backup or log backups.

The file number can be found by looking in the Management Studio Restore Database
window in the Position column, as shown in Figure 15-3. To open the Restore Database
window, complete the following steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Right-click the appropriate database name.

Figure 15-3 Viewing file numbers in Management Studio (position column).

412 Part III Microsoft SQL Server 2005 Administration
3. Select Tasks, then Restore, and then Database.

4. Click OK to restore the database immediately, or click on the Script drop-down
menu at the top of the window to script the restore statements.

Another method of retrieving the file number for a set of backups is by running the fol-
lowing SELECT statement on the backupset history table. (The backup history tables are
introduced in Chapter 14).

USE msdb ;
SELECT backup_set_id, media_set_id, position, name, type
FROM backupset ;

The following are sample results from this query:

backup_set_id media_set_id position name type
------------- ------------ -------- --------------------------------------
36 10 6 mydb Full Database Backup D
37 10 7 mydb Differential Database Backup I
38 10 8 mydatabase-Transaction Log Backup L
39 10 9 mydatabase-Transaction Log Backup L
40 10 10 mydatabase-Transaction Log Backup L

Below is an example of restoring the full database backup, differential database backup,
and three log backups listed in the query output above by specifying the file numbers in
the correct order in the restore sequence. (This could also be done by using Management
Studio and selecting the appropriate files to restore, as shown in Figure 15-3.) Notice that
NORECOVERY is specified in the first four restore statements so that further backups
can be applied before recovering the database:

USE master ;
--restore full database backup
RESTORE DATABASE [mydatabase]
FROM mydb1_dev, mydb2_dev
WITH FILE = 6, NORECOVERY ;

--restore differential db backup
RESTORE DATABASE [mydatabase]
FROM mydb1_dev, mydb2_dev
WITH FILE = 7, NORECOVERY ;

--restore log backup 1
RESTORE LOG [mydatabase]
FROM mydb1_dev, mydb2_dev
WITH FILE = 8, NORECOVERY ;

Chapter 15 Restoring Data 413
--restore log backup 2
RESTORE LOG [mydatabase]
FROM mydb1_dev, mydb2_dev
WITH FILE = 9, NORECOVERY ;

--restore log backup 3 and recover database and bring online
RESTORE LOG [mydatabase]
FROM mydb1_dev, mydb2_dev
WITH FILE = 10, RECOVERY ;

Notice that NORECOVERY was explicitly specified in the first four restore statements to
allow further data to be restored. The last restore log statement specifies RECOVERY.
After that log backup is restored, the database is brought online, and no more data can be
restored (rolled forward) at that point.

Point-in-Time Restore
When using full or bulk-logged recovery models, and thus taking regular log backups, it is
possible to recover to a point-in-time during a log backup. The exception is that with bulk-
logged recovery model, if a particular log backup does contain bulk-logged records, then
the entire log backup must be restored and point-in-time restore is not possible within that
log backup. Whereas with bulk-logged, a log backup can be restored to a point in time if
that log backup does not contain bulk-logged records. Point-in-time restore recovers only
the transations that occurred before the specified time within a log backup.

Point-in-time recovery can be accomplished using Management Studio or the RESTORE
statement with the STOPAT option. When using the RESTORE command in a restore
sequence, you should specify the time to stop with each command in the sequence, so
you don’t have to identify which backups are needed to restore to that point. SQL Server
determines when the time has been reached and does not restore records after that point
but does recover the database. For example, here is a restore sequence using STOPAT to
restore up to 1:15 p.m. and recover the database (even though we do not know within
which backup the records up to 1:15 p.m. reside):

--restore db backup stopping at 1:15PM
RESTORE DATABASE [mydatabase]
FROM mydb1_dev, mydb2_dev
WITH STOPAT = ‘May 17, 2006 1:15 PM’, NORECOVERY ;

--restore records from log backup 1
RESTORE LOG [mydatabase]
FROM mydblog_dev1
WITH STOPAT = ‘May 17, 2006 1:15 PM’, NORECOVERY ;

414 Part III Microsoft SQL Server 2005 Administration
--restore records from log backup 2

RESTORE LOG [mydatabase]

FROM mydblog_dev2

WITH STOPAT = ‘May 17, 2006 1:15 PM’, RECOVERY ;

There are many scenarios to consider when using the RESTORE statement. See SQL
Server Books Online for more specifics about using the STOPAT option.

If the time specified falls beyond the log backup that is restored, then the database is not
recovered, thus allowing further log backups to be applied. If you made a mistake speci-
fying the time and meant to stop at an earlier time, then the restore sequence must be
restarted.

To use Management Studio to select a point-in-time to recover to, follow these steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Right-click the database name.

3. Select Tasks, then Restore, and then Database.

4. Click the ellipses for the To A Point In Time: field. The Point in Time Restore window
opens, as shown in Figure 15-4. There you can specify an exact time up to which to
restore.

5. Click OK if you want to restore the database now, or click on the Script drop-down
menu at the top of the window to script the restore statements.

Figure 15-4 Point-In-Time Restore dialog box.

If that time occurs before the interval captured by a log backup, then the point-in-
time restore fails and no data is rolled forward. If the time occurs after the log backup,
then the entire log backup is restored, but the database is not recovered. If the time
is within the log backup, then the point-in-time restore succeeds and the database is
recovered.

Chapter 15 Restoring Data 415
File and Filegroup Restore
A file or filegroup restore is applicable only for databases that contain multiple filegroups
(one or more filegroups in addition to the default PRIMARY filegroup). An individual file
can be restored or an entire filegroup can be restored, including all the files within that
filegroup.

Note When creating a database with multiple files and filegroups, it is
recommended to place user data files on a secondary filegroup or filegroups
(setting one of them as the default filegroup instead of primary) so that the pri-
mary filegroup contains only the system tables and objects, not user database
files. This allows for more flexibility when performing filegroup backups and
online restores.

With multiple filegroups in a database, files and filegroups can be backed up and
restored individually. If all database files were in the primary filegroup, there would be lit-
tle benefit of having individual file backups, since the online restore capability applies
only to filegroups other than the primary filegroup. (See the section Online Restore later
in this chapter.) The main benefit of being able to restore one file individually is that it can
reduce the time for restoring data in the case where only one file is damaged or affected
by accidental data deletion. That file can be restored individually instead of restoring the
entire database.

If the filegroup to which a file belongs is read-write, then you must have the complete
chain of log backups since the file was backed up, plus the tail-log backup, in order to
recover the file to a state consistent with the rest of the database. Only the changes in the
log backups that affect that particular file are applied. If the file is read-only or if that file
has not had any data changes made to it, then it can be successfully restored and recov-
ered without applying log backups.

When creating file or filegroup backups, make sure to get a complete set of backups of
each of the filegroups so that you could restore the entire database by filegroup if needed.
It is best to get a full database backup as a safety net in case you need to restore the entire
database.

If using simple recovery model, only read-only filegroups can be backed up using file or
filegroup backup. Read-write filegroups cannot be backed up when using the simple
recovery model because there are no log backups taken with this model, and therefore
the data cannot be recovered to be consistent with the database.

Important A tail-log backup must be taken before restoring a file backup
because it is needed to recover the file to a state consistent with the rest of
the database. If you cannot get a tail-log backup, then you cannot restore an

416 Part III Microsoft SQL Server 2005 Administration
individual file or filegroup backup alone but must restore the entire database.
Otherwise, the database would not be consistent. The exceptions to this are if the
filegroup for that file is read-only or if no data changes were made to that file
since it was backed up.

Differential file and filegroup backups may be restored as well. Before restoring a differ-
ential file or filegroup backup, the base file or filegroup backup must be restored first.
Any transaction log backups, including the tail-log backup, must also be applied if the file
has changed since the differential backup. The following is a T-SQL example of restoring
a full file backup (the base), a differential file backup, and log backups, including the tail-
log backup:

USE master ;

--restore base file backup

RESTORE DATABASE mydatabase

FILE = ‘mydb_file3_on_secondary_fg’

FROM mydb1_dev, mydb2_dev WITH FILE = 21, NORECOVERY ;

--restore differential file backup

RESTORE DATABASE mydatabase

FILE = ‘mydb_file3_on_secondary_fg’

FROM mydb1_dev, mydb2_dev WITH FILE = 22, NORECOVERY ;

--restore log backup

RESTORE LOG mydatabase

FROM mydb1_dev, mydb2_dev WITH FILE = 23, NORECOVERY ;

--restore tail log backup

RESTORE LOG mydatabase

FROM mydb1_dev, mydb2_dev WITH FILE = 24, RECOVERY ;

To restore all files in a filegroup from a filegroup backup rather than individual files, you
can use the “FILEGROUP=” syntax, as in the following example:

USE master ;

--restore filegroup backup

RESTORE DATABASE mydatabase

FILEGROUP = ‘SECONDARY_FG’

FROM mydb_secondary_fg_backup_dev

WITH NORECOVERY ;

Chapter 15 Restoring Data 417
--restore log backup
RESTORE LOG mydatabase
FROM mydb_log_backup_dev
WITH FILE = 26, NORECOVERY ;

--restore tail-log backup
RESTORE LOG mydatabase
FROM mydb_log_backup_dev
WITH FILE = 27, RECOVERY ;

Log backups taken since the filegroup was backed up and the tail-log backup must be
restored in order to recover the filegroup unless the filegroup was read-only when
backed up.

Page Restore
Page restores are possible only for databases using the full or bulk-logged recovery mod-
els, not with the simple recovery model, and only available with SQL Server 2005 Enter-
prise Edition. This capability is provided in order to recover a corrupted data page that
has been detected by checksum or a torn write. SQL Server 2005 has improved page-level
error detection and reporting.

To restore a page, the file ID number and the page ID number are both needed. Use the
RESTORE DATABASE statement to restore from the file, filegroup, or database that con-
tains the page, and the PAGE option with <fileID:pageID>. The following example restores
four data pages (with IDs 89, 250, 863, and 1049) within file ID = 1. Note that to com-
plete the page restores, a log backup must be taken and then restored at the end of the
restore sequence:

USE master ;
RESTORE DATABASE mydatabase
PAGE = ‘1:89, 1:250, 1:863, 1:1049’
FROM file1_backup_dev
WITH NORECOVERY ;

RESTORE LOG mydatabase FROM log_backup_dev1
WITH NORECOVERY ;

RESTORE LOG mydatabase FROM log_backup_dev2
WITH NORECOVERY ;

BACKUP LOG mydatabase TO current_log_backup_dev
RESTORE LOG mydatabase FROM current_log_backup_dev
WITH RECOVERY ;

418 Part III Microsoft SQL Server 2005 Administration
There are a number of ways to identify the file and page ID of corrupted pages, including
viewing the SQL Server error log, and there are several limitations and considerations
that you should know before performing page restores that are described in detail in SQL
Server Books Online under the topic “Performing Page Restores.”

Partial and Piecemeal Restore
As an enhancement to partial restores in SQL Server 2000, SQL Server 2005 allows piece-
meal restores from not only a full database backup but also from a set of individual file-
group backups. The purpose of a piecemeal restore is to provide the capability to restore
and recover a database in stages or by pieces, one filegroup at a time. As each filegroup is
restored, it is brought online for access. Filegroups that have not been restored yet are
marked offline and are not accessible until they are restored or simply recovered. If the
filegroup is read-only and data is not damaged, it can be recovered without having to
restore data. Restoring a database in stages at different times is possible because the
piecemeal restore performs checks during the process to ensure that data is consistent in
the end.

The piecemeal restore sequence recovers data at the filegroup level. The primary file-
group must be restored in the first stage as a partial restore (optionally along with any
other secondary filegroups) using the PARTIAL option of the RESTORE command,
which indicates the beginning of a piecemeal restore. When the PARTIAL option is spec-
ified in the command, the primary filegroup is implicitly selected. If you use PARTIAL for
any other stage in the restore sequence, the primary filegroup is implicitly selected and a
new piecemeal restore scenario begins. Therefore, PARTIAL must be used only in the very
first restore statement of the sequence.

Assume mydatabase contains three filegroups that are all read-write: primary,
secondary_fg_1, and secondary_fg_2. Here is an example of a restore sequence that begins
a piecemeal (partial) restore and restores only the primary filegroup and one of the read-
write secondary filegroups, and recovers those two filegroups only. The third filegroup
will be marked offline and will not be accessible until it is restored and brought online.
But in the meantime, the first two filegroups are made available:

USE master ;
--first create the tail-log backup
BACKUP LOG mydatabase TO mydb_taillog_backup ;

--begin initial stage of a piecemeal restore with primary filegroup restore
RESTORE DATABASE mydatabase
FILEGROUP=‘PRIMARY’
FROM mydbbackup
WITH PARTIAL, NORECOVERY ;

Chapter 15 Restoring Data 419
--restore one of the secondary read-write filegroups
RESTORE DATABASE mydatabase
FILEGROUP=‘SECONDARY_FG_1’
FROM secondary_fg_backup
WITH NORECOVERY ;

--restore unbroken chain of log backups
RESTORE LOG mydatabase
FROM mydb_log_backup_dev1
WITH NORECOVERY ;

RESTORE LOG mydatabase
FROM mydb_log_backup_dev2
WITH NORECOVERY ;

RESTORE LOG mydatabase
FROM mydb_taillog_backup
WITH RECOVERY ;

After the primary filegroup is restored, it is brought online and any other filegroups that
were not restored are automatically marked offline and placed in a state of recovery pend-
ing. Any filegroups that are not damaged and are read-only may be brought online with-
out restoring the data. Subsequent restore sequences can be performed in stages at any
time after the PARTIAL restore sequence. Each stage in itself is a complete restore
sequence that restores a piece of the database and brings that piece online. If the file-
group being restored is read-write, then an unbroken chain of log backups must also be
applied. If the restored filegroup is read-only, the log backups do not need to be applied
and are automatically skipped if included as part of the restore sequence.

Following the previous example, which shows the first stage of a piecemeal restore, the
second stage can be run at a later time to restore the remaining read-write secondary file-
group, secondary_fg_2. Here is what that second restore sequence looks like:

USE master ;
--second stage - restore the remaining secondary read-write filegroup
RESTORE DATABASE mydatabase
FILEGROUP=‘SECONDARY_FG_2’
FROM secondary_fg_backup2
WITH NORECOVERY ;

--restore unbroken chain of log backups because this is a read-write
--filegroup
RESTORE LOG mydatabase
FROM mydb_log_backup_dev1
WITH NORECOVERY ;

420 Part III Microsoft SQL Server 2005 Administration
RESTORE LOG mydatabase
FROM mydb_log_backup_dev2
WITH NORECOVERY ;

RESTORE LOG mydatabase
FROM mydb_taillog_backup
WITH RECOVERY ;

Now all three filegroups are online and available.

Piecemeal restores are applicable only for databases with multiple filegroups. With both
offline and online piecemeal restores, the first stage is the same. After the intial stage, the pri-
mary filegroup and any other specified filegroups are restored and brought online and made
available. At that point, all unrestored filegroups are marked offline. The difference between
offline and online piecemeal restore is that with offline, when additional restore stages are
performed after the first stage, the database must be brought offline for these additional
restore stages, whereas with online restore, the database can remain online while subse-
quent filegroups are restored.

Note Online piecemeal restore is supported only with SQL Server 2005 Enter-
prise Edition. All other editions support only offline piecemeal restore.

Real World Most Common Backup and Restore Procedures

In the real world, the least complicated backup and restore procedures are the most
often implemented. That is, full database, differential database, and log backups are
taken regularly. For example, a full database backup might be taken once a week, a
differential database backup each night, and log backups every 20 minutes. These
types of backups are very easy to understand and restore. Individual file and file-
group backups are much less commonly implemented as they are more complex to
restore and may not be necessary. These backups are useful when a database is too
big to backup all at once because of time and/or the overhead incurred during
backups, which can adversely affect performance of the system for any other pro-
cesses that need to run.

Revert to Database Snapshot
Database snapshots are available only with SQL Server 2005 Enterprise Edition. A
database snapshot is a read-only, static view of a source database that can be accessed
for reporting purposes (read-only access). If a database snapshot has been taken of a

da
tha
inv
the
(th
Fo
de
tab

A d
da
da
is
int
rep
dro
See
ati

On
sna
a f
Be
als
sta
is l
ces

Th
the

Onlin
On
da
som
be
du
file
an
Chapter 15 Restoring Data 421

tabase, then reverting back to it is similar but not equivalent to a database restore in
t it restores the database to the state it was in when the snapshot was taken. This
olves overwriting any updates that were made to the source database pages since
 snapshot was taken with the copy-on-write pages that were saved for the snapshot
e original source data pages that were copied when the source page was updated).
r example, if a snapshot is taken at one point in time and after that a table is acci-
ntally dropped, then reverting to the snapshot is one method of getting the dropped
le back.

atabase snapshot should never be considered a replacement for a backup. If certain
ta in the source database that is also part of the snapshot is corrupted, then both the
tabase and snapshot contain corrupted data. If a copy-on-write page in the snapshot
corrupted, then reverting to it includes the corrupted data. Snapshots are not
ended for use in place of solid database backups. They are a better fit for use as a
orting database or for a safety net from administrative or user errors, such as a
pped table. It may be quicker to revert to a snapshot than to perform a data restore.
 Chapter 10, “Creating Databases and Database Snapshots,” for more details on cre-

ng database snapshots.

ce the database has been reverted to a snapshot, no data can be rolled forward. The
pshot revert operation automatically rebuilds the log, overwriting the old log file, so

ull database backup or file backup must be taken before log backups can begin again.
fore reverting to a particular snapshot, you must drop any other snapshots that may
o exist. You can accomplish this either using the DROP DATABASE <snapshot_name>
tement or through Management Studio. Now you can revert to the one snapshot that
eft. Dropping a snapshot does not affect the source database. During the revert pro-
s, both the source database and the snapshot are unavailable.

e RESTORE command is used to revert to a database snapshot that was taken. Here is
 basic syntax for the T-SQL command to revert to a database snapshot:

RESTORE DATABASE <database_name>

FROM DATABASE_SNAPSHOT = <database_snapshot_name>;

e Restore
line restore is a new feature with SQL Server 2005 Enterprise Edition. This allows a

tabase to remain online during certain restore operations, permitting users to access

e filegroups in the database while other filegroups may be offline. For a database to

 online, at least its primary filegroup must be online. The entire database is not online
ring a restore, only certain filegroups at a time. If a file is being restored, the entire
group that it belongs to will be offline during the restore, but the primary filegroup

d any other filegroups may remain online and users may access data in those online

422 Part III Microsoft SQL Server 2005 Administration
filegroups. Data in a filegroup that is being restored is offline and not accessible, and an
error is returned if an attempt to access that data is made. File restores are automatically
performed as online restores (by default).

Note Online restore capabilities are available only with SQL Server 2005 Enter-
prise Edition.

Fast Recovery
Fast recovery is a new feature supported only in SQL Server 2005 Enterprise Edition that
allows a database to be available during the undo (rollback) phase of the restore process.
In previous versions of SQL Server, a database could not be accessed until the undo
phase was complete. When recovering from a crashed system, the undo phase can poten-
tially take minutes or hours to complete. Fast recovery eliminates the need for users to
wait while uncommitted transactions are rolled back. This is accomplished by SQL Server
acquiring appropriate locks on data for the transactions that are being rolled back. This
is an automatic feature.

Note Fast recovery is also available only with SQL Server 2005 Enterprise Edition.

Summary
In this chapter we covered the concepts of restoring and recovering data. There are vari-
ous methods for restoring that are based on the type of backups that are taken. Data can
be restored to any point in time or to the point of failure if backups are taken properly.
Therefore, the strategy chosen for backup and restore is extremely important for protect-
ing critical business data. Documenting restore procedures and putting them in a known
location that the appropriate people can access is also very important.

There were several features mentioned in this chapter that are available only with SQL
Server 2005 Enterprise Edition: online restores, fast recovery, and database snapshots. Be
careful when choosing your edition to make sure you get the features you are expecting.

Chapter 16

User and Security Management

Principals .424

Securables .438

Permissions .441

Summary .451

In addition to backup and recovery, the tasks of user and security management are prob-
ably the most important tasks that SQL Server DBA must perform. In the last few years,
the job of security management has become much more important. In this chapter, you
will be introduced to the basic concepts of SQL Server user and security management:
logins, user IDs, schemas, permissions, and roles.

The SQL Server login is the method that allows users to connect in to the SQL Server
instance. The login is the connection to the outside world. Within each database are user
ids that provide a way of regulating access at the database level. Logins are mapped into
user IDs at the database level. In addition, schemas are used for ownership of objects. Per-
missions allow users to perform specific tasks or access specific objects, and roles are a
way of creating permissions on a pseudo-entity, which in turn is assigned to users.

Effective security is necessary to ensure that only authorized personnel or businesses are
able to access your SQL Server database. In many cases, there are laws that specify the
level of security that must be placed on your system. In the event of a security breach, you
can lose data that can result in disastrous consequences and significant liability. Thus,
security and user management are key parts of the SQL Server DBA’s job.

The areas of user and security management have been enhanced in SQL Server 2005. In
addition to users and logins, the concept of a schema has been introduced in this version of
SQL Server. A schema now owns SQL Server objects. Since a schema can be owned by a role,
now multiple users can have administrative rights over SQL Server objects. This allows you
to drop individual users without having to change the ownership of the underlying objects.

The schema is covered later in this chapter. The chapter begins with the concepts of user
login and user ID. The user login is the way that a user is identified to SQL Server. A user
423

424 Part III Microsoft SQL Server 2005 Administration
ID is used to assign user permissions to specific objects within a database. In addition,
with SQL Server 2005 a schema can also be used to assign specific permissions to data-
base objects.

With SQL Server 2005, security is managed hierarchically. This hierarchy is made up of
principals (users, groups, and processes that can access SQL Server objects) and secur-
ables (the objects that are being managed), and permissions, which can be granted to
either principals or securables. In addition to the enhancements to the permissions hier-
archy, all permissions are now grantable via the GRANT statement, thus simplifying
management.

Principals
Principals are the entities that can request access to SQL Server resources and consist of
its own hierarchy. This hierarchy is made up of different levels that have progressively
smaller scopes and consists of the following principals:

■ Windows principals

■ Domain logins

■ Windows local logins

■ SQL Server principals

■ SQL Server login

■ Database principals

■ Database user

■ Database role

■ Application role

The higher you are in the hierarchy, the more influence you have on the scope of your
security influence.

Logins
The user login is the way that a user is identified to SQL Server. It is important that each
user be uniquely identified so that the user can be tracked, if necessary, and so that indi-
vidual permissions or group permissions can be applied. A login can be managed either
via Windows Server 2003 or within SQL Server 2005. When SQL Server is configured,
you can select to manage its security either via Windows authentication or mixed mode.
With mixed mode authentication the user can log in with either Windows or SQL Server
authentication.

Chapter 16 User and Security Management 425
There are both advantages and disadvantages of each method. The primary advantage of
using Windows logon is that security can be maintained and monitored on an enterprise-
wide basis, and it is generally considered to be a more secure method. Users log on to the
domain and no further authentication is required. The disadvantage of Windows logons
is that there is a necessary amount of coordination between the database administrators
and the system administrators. Typically, the database administrators don’t have autho-
rization to create and manage domain accounts.

Windows Authentication
With Windows authentication, SQL Server 2005 relies on Windows Server 2003 to pro-
vide the logon security. When a user logs on to Windows Server 2003, the user’s account
identity is validated. SQL Server verifies that the user was validated by Windows and
allows access based on that authentication. SQL Server integrates its login security pro-
cess with the Windows logon security process to provide these services. Network security
attributes are validated through a sophisticated encryption process provided by Win-
dows. Because the SQL Server login and Windows logon security processes are inte-
grated when this mode is used, no further authentication methods are required for you
to access SQL Server once you are authenticated by the operating system. The only pass-
word you need to supply to log in to SQL Server is your Windows password.

Windows authentication is considered a better security method than mixed mode
authentication because of the additional security features it provides. These features
include secure validation and encryption of passwords, auditing, password expiration,
minimum password length, and automated account lockout after a certain number of
unsuccessful logon attempts.

Mixed Mode Authentication
With mixed mode authentication, users can access SQL Server by using either Windows
authentication or SQL Server authentication. When mixed mode authentication is used,
SQL Server authenticates a login made from an insecure system by verifying whether a
SQL Server login account has been set up for the user requesting access. SQL Server per-
forms this account authentication by comparing the name and password provided by the
user attempting to connect to SQL Server with login account information stored in the
database. If a login account has not been set up for the user or if the user does not provide
the correct name and password, SQL Server access is denied.

Web applications require SQL Server Authentication (through Microsoft Internet Infor-
mation Server) because users of these applications are most likely not within the same
domain as the server and thus cannot rely on Windows security. Other applications
that require database access might require SQL Server authentication as well. Some
application developers prefer to use SQL Server security for their applications because

426 Part III Microsoft SQL Server 2005 Administration
it simplifies the security of their applications. When applications use SQL Server secu-
rity within a trusted network, application developers do not have to provide security
authentication within the application itself, which simplifies their job.

Creating Logins
The method for creating logins varies depending on the type of login you wish to create.
If you are using Windows authentication, the logins are created through either the
domain administration console or the local system administration console, depending
on whether you are creating a domain or local user account.

Creating a SQL Server login is done within SQL Server. You can create a login either via
SQL Server Management Studio or with SQL statements from within the sqlcmd tool.
SQL Server Management Studio provides an easy way to quickly create a SQL Server
login; however, creating logins through SQL scripts provides a self-documenting method
for creating repeatable scripts.

In order to create a login through SQL Server Management Studio, use the following
steps:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the server
instance of your choice, and then navigate to logins security, as shown in Figure 16-1.

Figure 16-1 SQL Server Management Studio.

Chapter 16 User and Security Management 427
2. Right-click either the logins identifier in the navigation pane or an item in the log-
ins list on the right side, and then select New Login. This invokes the Login – New
utility, shown in Figure 16-2.

Figure 16-2 The SQL ServerLogin – New utility.

3. From this utility, there are a number of pages that allow you to create and identify
the new login that can be selected using the icons in the upper left of the window.
These pages include the following:

❑ General This page allows you to define the authentication type, default
database, and default language.

❑ Server roles This page allows you to select which roles are assigned to this
login. Roles are covered later in this chapter.

❑ User Mapping This page is used to define the databases to which the login
has access.

❑ Securables The securables page is used to assign permissions to securables
for this login.

❑ Status The status page is used to grant permissions to this login and to dis-
able the login if desired.

428 Part III Microsoft SQL Server 2005 Administration
4. Once you have configured the user, click the OK button to create the login. Once
the login has been created, the Login – New utility closes and the new login is vis-
ible in the login list.

Alternately, you can create SQL Server logins by using the CREATE LOGIN command.
CREATE LOGIN requires the parameter login_name. The login_name parameter is the
name by which the new login will be identified, and it must be unique in the database.
The optional parameters include <option_list1> and <sources>. The available options and
their descriptions are presented here:

CREATE LOGIN login_name { WITH <option_list1> | FROM <sources> }

<option_list1> ::=
 PASSWORD = ‘password’ [HASHED] [MUST_CHANGE]
 [, <option_list2> [,...]]

<option_list2> ::=
 SID = sid
 | DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language
 | CHECK_EXPIRATION = { ON | OFF}
 | CHECK_POLICY = { ON | OFF}
 [CREDENTIAL = credential_name]

<sources> ::=
 WINDOWS [WITH <windows_options> [,...]]
 | CERTIFICATE certname
 | ASYMMETRIC KEY asym_key_name

<windows_options> ::=
 DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language

The parameters to CREATE LOGIN are divided into two sets. The first set of parameters
only applies to SQL Server logins. The second set applies to Windows logins. Here are the
SQL Server login parameters:

■ Specifying PASSWORD sets the password for this new login.

■ Optionally, specifying HASHED indicates that the password is already hashed or
encoded and will not be hashed. This allows you to export and import a login with-
out having to know its password.

Chapter 16 User and Security Management 429
■ The optional parameter MUST_CHANGE forces the user to change his or her pass-
word on first login. If this is set, both CHECK_EXPIRATION and CHECK_POLICY
must be set to on.

■ The SID parameter allows you to manually assign the GUID for the SQL Server
user. If this is not specified, one will be assigned automatically by SQL Server.

■ CHECK_EXPIRATION specifies whether the password expiration policy is applied
to this login. The default value is OFF.

■ CHECK_POLICY specifies that the Windows password policy is applied to this
login. The default value is ON.

■ CREDENTIAL is the name of the credential associated with the SQL Server login.

The following parameters apply to a login that is mapped to a Windows login.

■ WINDOWS specifies that this login is mapped to a Windows account.

■ CERTIFICATE is the name of the certificate, located in the master database, that is
associated with this login.

■ ASYMMETRIC KEY is the name of the asymmetric key, located in the master data-
base, that is associated with this login.

The following parameters apply to logins that use either SQL Server or Windows authen-
tication:

■ The DEFAULT_DATABASE parameter allows you to assign a default database for
this login.

■ DEFAULT_LANGUAGE allows you to specify the default language for this login.

Here are a few examples of creating logins using the CREATE LOGIN command:

1. Create a simple login with forced password change on first connect and whose
default database is users.

CREATE LOGIN edw WITH PASSWORD = ‘abcd1234’ MUST_CHANGE,

CHECK_POLICY=ON, CHECK_EXPIRATION=ON, DEFAULT_DATABASE=users ;

2. Create login from the guest account of Windows.

CREATE LOGIN [ptc7\Guest] FROM WINDOWS ;

Logins are an important part of your security policy. If you use Windows authentication,
the SQL Server logins use the same security policy as your Windows system.

In addition to the CREATE LOGIN statement, there is a DROP LOGIN statement that is
used to delete a login and an ALTER LOGIN statement that is used to modify logins.
These two statements are used to manipulate already existing logins.

430 Part III Microsoft SQL Server 2005 Administration
Real World Real World How Do I Move Logins?

How do you move a login from one system to another? How do you preserver the
password when you do this? Microsoft Support has developed and published via
support.microsoft.com [in ital] a stored procedure called sp_help_revlogin, which
allows you to script the creation of logins, including the retention of passwords.
Search support.microsoft.com [ital] for sp_help_revlogin. The stored procedure for
SQL Server 2005 is slightly different from the one for SQL Server 2000.

Users
Whereas logins provide a method of authenticating and mapping user accounts, users
allow us to map specific permissions to users. The logins that were covered in the pre-
vious section are a database-wide account that allows us to connect into the database.
Within each database is a set of users who have permissions associated with those
user accounts and the database. This is how permissions are assigned to individual
logins. By default, a SQL Server login does not have any database permissions associ-
ated with it.

A SQL Server user can be created when a SQL Server login is created, or it can be cre-
ated separately. Typically, a SQL Server user is created when you create the login, and
it can be done within the Login – New utility available in SQL Server Management Stu-
dio by selecting the User Mapping page and clicking OK. In addition to adding the
SQL Server user, you can also specify the login’s default schema, as shown in Figure
16-3. If you don’t specify a default schema, dbo is used. Schemas are described later in
this section.

In addition to creating a user with SQL Server Management Studio, either as part of the
login creation process or by creating the user directly, you can also create a user using the
CREATE USER command. Follow these steps to create a user in SQL Server Management
Studio:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Select and expand your database, and then expand the Security folder.

3. Right-click Users in either the navigation pane or in the main pane. This invokes the
Database User – New utility. This utility allows you to create a user, associate that
user with a login, and assign roles and securables. This is what allows the actual
login to be associated with specific database objects and permissions, as shown in
Figure 16-4.

Chapter 16 User and Security Management 431
Figure 16-3 The SQL Server Login – New utility specifying user.

Figure 16-4 The Database User – New utility.

432 Part III Microsoft SQL Server 2005 Administration
The User – New utility also allows you to select securables that have permissions granted
to new users, as shown in Figure 16-5. In order to assign securables to the new user, select
the Securables page and click the Add or Remove button to either add or remove secur-
ables permissions on the user. The Add button invokes a pop-up that asks you what type
of securable you want to add. Select the type from specific objects, objects of a type, or all
objects belonging to a specific schema. Once this has been selected, you can then modify
individual securable permissions, as shown in Figure 16-5.

Figure 16-5 The Securables page of the Database User – New utility.

The final page is the Extended Properties page. From this page, you can add custom prop-
erties to a database.

In addition to using SQL Server Management Studio, you can also create a user from the
command line using the CREATE USER command. The CREATE USER command allows
you to create a SQL Server user without having to create a login at the same time. The
CREATE USER command has the following syntax:

CREATE USER user_name
 [{ { FOR | FROM }
 {
 LOGIN login_name

Chapter 16 User and Security Management 433
 | CERTIFICATE cert_name

 | ASYMMETRIC KEY asym_key_name

 }

 | WITHOUT LOGIN

]

[WITH DEFAULT_SCHEMA = schema_name]

The parameters are as follow:

■ user_name specifies the name of the user that you are creating.

■ LOGIN specifies the login name with which this user is associated.

■ CERTIFICATE is the name of the certificate, located in the master database, that is
associated with this user.

■ ASYMMETRIC KEY is the name of the asymmetric key, located in the master data-
base that is associated with this user.

■ WITH DEFAULT_SCHEMA specifies the first schema that should be searched
when objects are resolved for this user.

■ WITHOUT LOGIN specifies that this user is not associated with a specific SQL
Server login.

A user must be associated with a login for a login to be able to access objects. Once the
login and user have been established, permissions can be granted.

Roles
As you will see later in this chapter, each login and user must be granted permissions in
order to perform tasks in the database. The type of permission varies based on both func-
tion and whether the permission is granted to the login or the user. A login is granted sys-
tem permissions, such as create database, bulk copy, and so on. These permissions are
assigned to roles, specifically the fixed server roles, which are in turn assigned to logins.

Roles are used to help ease the burden of security management. Rather than applying
specific permissions to each user and object, roles allow you to assign specific permis-
sions to a pseudo user or role and then assign this role to users. So, instead of applying
specific permissions for all of the users in the accounting group, you can create an
accounting role, set the permissions for that role, and then assign the rights of that role
to other users.

There are two different types of permissions. The server permissions provide server-
wide permissions such as shutdown, checkpoint, create database, and so on (see SQL

434 Part III Microsoft SQL Server 2005 Administration
Server Books Online for a complete list). In addition to the server roles, there are data-
base permissions. The database permissions are used to provide permissions to data-
base objects.

Server permissions can be assigned via the fixed server roles. The fixed server roles con-
sist of the roles shown in Table 16-1.

These permissions are described later in this chapter.

Note The GRANT option allows the user to grant this permission to other users.

Fixed Database Roles
Similar to the server permissions and roles, database roles are created to make managing
database permissions easier. The database permissions are used to grant access to spe-
cific objects. As with server permissions, there are pre-created database roles that help
administer permissions of users on objects. You can use these predefined, fixed database
roles, or you can create your own roles. The fixed database roles are listed in Table 16-2.

Table 16-1 Fixed Server Roles

Role Permissions

Bulkadmin Granted the ADMINISTER BULK OPERATIONS permission

Dbcreator Granted the CREATE DATABASE permission

Diskadmin Granted the ALTER RESOURCES permission

Processadmin Granted the ALTER ANY CONNECTION and ALTER SERVER
STATE permissions

Securityadmin Granted ALTER ANY LOGIN permission

Serveradmin Granted the ALTER ANY ENDPOINT (used for network commu-
nication), ALTER RESOURCES, ALTER SERVER STATE, ALTER SET-
TINGS, SHUTDOWN, and VIEW SERVER STATE permissions

Setupadmin Granted the ALTER ANY LINKED SERVER permission

Sysadmin Granted the CONTROL SERVER permission with GRANT option

Table 16-2 Fixed Database Roles

Role Permissions

db_accessadmin Granted the ALTER ANY USER and CREATE SCHEMA permissions
and granted the CONNECT permission with GRANT option.

db_backupoperator Granted the BACKUP DATABASE, BACKUP LOG and CHECKPOINT
permissions.

Chapter 16 User and Security Management 435
These roles can be used to provide permissions on specific objects in the database. In
order to create your own role, follow these steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Select and expand your database, and then expand the Security folder.

3. Right-click Roles in the navigation pane or in the main pane.

4. Then select either New Database Role or New Application Role from the shortcut
menu. If you select Database Role, you will see the Database Role – New utility, as
shown in Figure 16-6. This utility allows you to create a new role, select users for
this role, select schemas that the role owns, and select securables and extended
types.

Note An application role is a principal that allows an application to run
with user-like permissions. A database role is a role that is applied to users
in the database. Every database user is part of the public role, which pro-
vides default permissions for each user that has access to the database.

db_datareader Granted the SELECT permission

db_datawriter Granted the INSERT, UPDATE, and DELETE permissions

db_ddladmin Granted the ALTER ANY ASSEMBLY, ALTER ANY ASYMMETRIC KEY,
ALTER ANY CERTIFICATE, ALTER ANY CONTRACT, ALTER ANY
DATABASE DDL TRIGGER, ALTER ANY DATABASE EVENT NOTIFI-
CATION, ALTER ANY DATASPACE, ALTER ANY FULLTEXT CATALOG,
ALTER ANY MESSAGE TYPE, ALTER ANY REMOTE SERVICE BIND-
ING, ALTER ANY ROUTE, ALTER ANY SCHEMA, ALTER ANY SER-
VICE, ALTER ANY SYMMETRIC KEY, CHECKPOINT, CREATE
AGGREGATE, CREATE DEFAULT, CREATE FUNCTION, CREATE PRO-
CEDURE, CREATE QUEUE, CREATE RULE, CREATE SYNONYM, CRE-
ATE TABLE, CREATE TYPE, CREATE VIEW, CREATE XML SCHEMA
COLLECTION, and REFERENCES permissions

db_denydatareader Denied the SELECT permission

db_denydatawriter Denied the INSERT, UPDATE, and DELETE permissions

db_owner Granted the CONTROL permission with GRANT option

db_securityadmin Granted the ALTER ANY APPLICATION ROLE, ALTER ANY ROLE,
CREATE SCHEMA, and VIEW DEFINITION permissions

Table 16-2 Fixed Database Roles (continued)

Role Permissions

436 Part III Microsoft SQL Server 2005 Administration
Figure 16-6 The Database Role – New utility.

The first step is to give the role a name and an owner. In addition, in the General window
you can also select schemas owned by this role, and select other roles that this role is a
member of.

Selecting the securables page allows you to select securables that this role has permis-
sions to access and select those permissions. The Add button invokes a pop-up window
that asks you what type of securable you want to add. Select the type from specific
objects, objects of a type, or all objects belonging to a specific schema. Once this has been
selected, you can then modify individual securable permissions, as shown in Figure 16-7.

In addition to the general and securables page, there is an extended properties page. The
final page is the extended properties page. From this page you can add custom properties
to a role.

Creating an application role is similar to creating a database role, but you must supply the
password that the application uses to access the application role. The introduction of the
application role allows you to connect applications to the database without having to cre-
ate users for each individual application user. This simplifies application management.

In addition to creating a role, the SQL Server Management Studio provides a nice feature
that lets you script role creation. By right-clicking an existing role and selecting Script

Chapter 16 User and Security Management 437
Database Role, then Create To or Script Database Role, and then Drop To, you are pro-
vided with the SQL to create or drop the role. This script can then be modified to create
roles like this role. In addition to creating roles, you can also modify or delete a role.

Figure 16-7 The Database Role – New utility.

Note Most utilities in the SQL Server Management Studio include a “Script”
button. Clicking this button displays the SQL code that will be performing the
Management Studio tasks.

As with other tasks in SQL Server, the act of creating a role can be done with SQL state-
ments. Creating a role is accomplished with the CREATE ROLE statement. The CREATE
ROLE statement does not have very many parameters. The syntax for this statement is as
follows:

CREATE ROLE role_name [AUTHORIZATION owner_name]

The role_name is the name of the role, and the owner_name is the database user or role
that owns this role. Once the role has been created, permissions and securables can be
assigned to this role. In addition to the CREATE ROLE statement, there is a DROP ROLE
and ALTER ROLE statement.

438 Part III Microsoft SQL Server 2005 Administration
Securables
Securables are the resources to which the SQL Server database engine regulates access, or
secures. As with the entire SQL Server security system, there is a hierarchy. The securables
are made up of three scopes, which in turn contain other securables. The three scopes are
server, database, and schema. These scopes in turn contain the following securables:

■ Server securable scope

❑ Endpoint

❑ Login

❑ Database

■ Database securable scope

❑ User

❑ Role

❑ Application role

❑ Assembly

❑ Message type

❑ Route

❑ Service

❑ Remote service binding

❑ Fulltext catalog

❑ Certificate

❑ Asymmetric key

❑ Symmetric key

❑ Contract

❑ Schema

■ Schema securable scope

❑ Type

❑ XML schema collection

❑ Object

Within the securables, the user, role, and schemas are treated equally. The schema has
changed in SQL Server 2005 in order to ease administration of objects.

Chapter 16 User and Security Management 439
Schemas
A schema is a collection of objects that form a unique namespace. The schema is intended
to reduce some of the issues associated with having all objects owned by a user. In the
past, when a user was dropped from SQL Server, ownership of all associated objects had
to be transferred to another user, or they were deleted and had to be recreated if they were
again needed. The reason is that in SQL Server 2000 and earlier versions, the schema and
the user were coupled.

In SQL Server 2000, for example, if my username is joe and I create a table called inven-
tory in the database mydb on ptc7(my system name), the fully qualified ownership of the
table is ptc7.mydb.joe.inventory. The schema name is joe. In SQL Server 2000, the
schema name and the owner of the object cannot be decoupled easily, so any change in
joe’s status causes additional work to change the ownership of the object.

With SQL Server 2005, the schema can now be decoupled from the username. When cre-
ating a table, you now have a choice to create the table with a schema associated with the
login or a schema that is decoupled from the login. With this enhancement you can now
detach the ownership of the object from the underlying user.

In SQL Server 2005, for example, if my username is joe and I create a table called inven-
tory in the database mydb on ptc7 (my system name) specifying the apps schema, the fully
qualified name of the table is ptc7.mydb.apps.inventory. The ownership of the schema
can be either a user or a role. By assigning the ownership of a schema to a role, multiple
users can own the objects in that schema. Benefits of using schemas include the following:

■ By assigning the ownership of a schema to a role, multiple users can own a schema.
If a user is deleted, the ownership of objects doesn’t necessarily need to be changed.

■ Dropping database users is simplified.

■ Multiple users can share the same schema, providing for uniform name resolution
of objects among users.

■ Fully qualified names now contain the schema rather than just the user name. Fully
qualified names are server.database.schema.object.

The use of independent schemas is recommended in SQL Server 2005. Schemas can be
created within the SQL Server Management Studio using the following steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Select and expand your database, and then expand the Security folder.

3. Right-click Schemas in either the navigation pane or the main pane to open the
Schema – New window, as shown in Figure 16-8.

440 Part III Microsoft SQL Server 2005 Administration
Figure 16-8 The Schema – New utility.

4. Select to set permissions for this schema. You can add users that have permissions
on this schema and add explicit permissions on each of those users. This is shown
in Figure 16-9.

Figure 16-9 The Permissions page of the Schema – New utility.

Chapter 16 User and Security Management 441
5. In addition to the General and Permissions pages in this utility, there is also an
Extended Properties page. The final page is the Extended Properties page. From
this page, you can add custom properties to a schema.

A schema can also be created with the CREATE SCHEMA statement. The CREATE
SCHEMA statement has the following syntax:

CREATE SCHEMA schema_name_clause [<schema_element> [, ...n]]

<schema_name_clause> ::=
 {

schema_name

| AUTHORIZATION owner_name
| schema_name AUTHORIZATION owner_name

 }

<schema_element> ::=
 {
 table_definition | view_definition | grant_statement
 revoke_statement | deny_statement
 }

The following parameters are provided:

■ schema_name is the name of the schema to be added.

■ AUTHORIZATION provides the database principal that owns the schema.

■ table_definition is a table create statement that creates a table within the schema.

■ view_definition is a view create statement that creates a view within the schema.

■ grant_statement is a grant on any securable except this new schema.

■ revoke_statement is a revoke on any securable except this new schema.

■ deny_statement is a deny on any securable except this new schema.

The schemas are covered by permissions, which are described in the next section.

Permissions
Permissions are used to control access to database objects and schemas and to specify
which users can perform certain database actions. You can set both server and database

442 Part III Microsoft SQL Server 2005 Administration
permissions. Server permissions are used to allow DBAs to perform database administra-
tion tasks. Database permissions are used to allow or disallow access to database objects
and statements. In this section, we’ll look at the types of permissions and how to allocate
them.

Server Permissions
Server permissions are assigned to DBAs to allow them to perform administrative tasks.
These permissions are defined on the fixed server roles. User logins can be assigned to
the fixed server roles, but these roles cannot be modified. (Server roles are explained in
the section “Using Fixed Server Roles” earlier in this chapter.) Server permissions include
SHUTDOWN, CREATE ANY DATABASE, ALTER SERVER SETTINGS, and ALTER SET-
TINGS. Server permissions are used only for authorizing DBAs to perform administrative
tasks and do not need to be modified or granted to individual users.

Database Object Permissions
Database object permissions are a class of permissions that are granted to allow access to
database objects. Object permissions are necessary to access a table or view by using SQL
statements such as SELECT, INSERT, UPDATE, and DELETE. An object permission is
also needed to use the EXECUTE statement to run a stored procedure. You can use SQL
Server Management Studio or SQL commands to assign object permissions.

Using SQL Server Management Studio to Assign Object Permissions
To use SQL Server Management Studio to grant database object permissions to a user, fol-
low these steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Select and expand your database, and then expand the Security folder.

3. Expand the Users folder and then right-click a user name in the main pane and
choose Properties from the shortcut menu to display the Database User window,
as shown in Figure 16-10. From this window you can assign schemas and role
membership.

4. Click the Securables button to display the Securables page, shown in Figure 16-11.
On this page, you manage the permissions assigned to this user.

5. Click the Add button to display the Add Objects utility, as shown in Figure 16-12.

Chapter 16 User and Security Management 443
Figure 16-10 The Database User utility.

Figure 16-11 The Database User Securables page.

444 Part III Microsoft SQL Server 2005 Administration
Figure 16-12 The Add Objects utility.

6. Select the object type from the list of Specific Objects, All Objects of Type, or All
Objects Belonging to the Schema. For this example, I chose all objects belonging to
schema [dbo] and was returned to the Securables page, as shown in Figure 16-13.

Figure 16-13 The Database User Securables page.

7. From this page, select a securable from the list and check the explicit permissions
from the boxes below.

8. Select the desired permissions and then click OK.

Chapter 16 User and Security Management 445
Note On each permission, you have the option of Grant, which gives you
that permission, With Grant, which gives you permissions to grant this per-
mission to others, and Deny, which denies this permission on the object.

Using SQL to Assign Object Permissions
To use SQL to assign object permissions to a user, you run the GRANT statement. The
GRANT statement has the following syntax:

GRANT { ALL [PRIVILEGES] }
 | permission [(column [,...n])] [,...n]
 [ON [class ::] securable] TO principal [,...n]
 [WITH GRANT OPTION] [AS principal]

The parameters are as follow:

■ ALL means to assign a number of permissions depending on whether the securable
is a database, a table, a view, a stored procedure, and so on as described here. See
SQL Server Books Online for more details.

❑ If the securable is a database, "ALL" means BACKUP DATABASE, BACKUP
LOG, CREATE DATABASE, CREATE DEFAULT, CREATE FUNCTION, CRE-
ATE PROCEDURE, CREATE RULE, CREATE TABLE, and CREATE VIEW.

❑ If the securable is a scalar function, "ALL" means EXECUTE and REFER-
ENCES.

❑ If the securable is a table-valued function, "ALL" means DELETE, INSERT,
REFERENCES, SELECT, and UPDATE.

❑ If the securable is a stored procedure, "ALL" means EXECUTE.

❑ If the securable is a table, "ALL" means DELETE, INSERT, REFERENCES,
SELECT, and UPDATE.

❑ If the securable is a view, "ALL" means DELETE, INSERT, REFERENCES,
SELECT, and UPDATE.

■ PRIVILEGES is provided for SQL-92 compliance. The keywords ALL and ALL
PRIVILEGES are synonymous.

■ permission is the name of the permission.

■ column is the name of the column in a table to which to apply the permission.

446 Part III Microsoft SQL Server 2005 Administration
■ class specifies the class of the securable.

■ TO principal specifies to which principal to grant the permission.

■ WITH GRANT OPTION gives the principal the right to grant this permission to
others.

■ AS principal specifies the principal from which the grantor derives its rights.

Note Using the GRANT OPTION keyword allows the user or users spec-
ified in the statement to grant the specified permission to other users. This
can be useful when you grant permissions to other DBAs. However, the
GRANT option should be used with care.

The AS principal option specifies whose authority the GRANT statement is run under. To
run the GRANT statement, a user or role must have been specifically granted authority to
do so.

Here is an example of how to use the GRANT statement:

GRANT SELECT ON [dbo].[Person] TO [SQLUser] WITH GRANT OPTION ;

GRANT INSERT ON [dbo].[Person] TO [SQLUser];

GRANT UPDATE ON [dbo].[Person] TO [SQLUser];

GRANT DELETE ON [dbo].[Person] TO [SQLUser];

The AS myuser option is used because the myuser user has permissions to grant permis-
sions on the test1 table. The WITH GRANT OPTION keyword allows the edw user to
grant these permissions to other users.

Using SQL to Revoke Object Permissions
You can use the SQL REVOKE statement to revoke a user’s object permissions. This is
useful when a user’s role has changed and you want to take away permissions that you
have previously granted. The syntax of the REVOKE statement is shown here:

REVOKE [GRANT OPTION FOR]
 {
 [ALL [PRIVILEGES]]
 |
 permission [(column [,...n])] [,...n]
 }

Chapter 16 User and Security Management 447
 [ON [class ::] securable]
 { TO | FROM } principal [,...n]
 [CASCADE] [AS principal]

The parameters to REVOKE are similar to GRANT. An example of REVOKE is shown
here:

REVOKE DELETE ON [dbo].[Person] TO [SQLUser] CASCADE;

Note The CASCADE option specifies that when the permission is revoked from
this user it is revoked from all users that this user has granted the permission to.
Thus, the entire chain of grants is revoked.

In addition, the DENY statement can be used to Deny permissions to users. The syntax
of the DENY statement is as follows:

DENY { ALL [PRIVILEGES] }
 | permission [(column [,...n])] [,...n]
 [ON [class ::] securable] TO principal [,...n]
 [CASCADE] [AS principal]

The parameters to DENY are similar to REVOKE. An example of DENY is shown here:

DENY ALTER ON [dbo].[Person] TO [SQLUser] CASCADE;

Statement Permissions
In addition to assigning database object permissions, you can assign permissions for par-
ticular types of operations. Object permissions enable users to access existing objects
within the database, whereas statement permissions authorize them to create database
objects, including databases and tables and do not reference a particular object. Some of
the most commonly used statement permissions are listed here:

■ BACKUP DATABASE allows the user to execute the BACKUP DATABASE com-
mand.

■ BACKUP LOG allows the user to execute the BACKUP LOG command.

■ CREATE DATABASE allows the user to create new databases.

■ CREATE DEFAULT allows the user to create default values that can be bound to
columns.

■ CREATE PROCEDURE allows the user to create stored procedures.

448 Part III Microsoft SQL Server 2005 Administration
■ CREATE RULE allows the user to create rules.

■ CREATE TABLE allows the user to create new tables.

■ CREATE VIEW allows the user to create new views.

You can assign statement permissions by using either SQL Server Management Studio or
SQL.

Using SQL Server Management Studio to Assign Statement
Permissions
To use SQL Server Management Studio to grant database object permissions to a user, fol-
low these steps:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Right-click a database name in the main pane or the database name in the naviga-
tion pane and then choose Properties from the shortcut menu to display the Data-
base Properties utility, as shown in Figure 16-14.

Figure 16-14 The Database Properties utility.

Chapter 16 User and Security Management 449
3. Select the Permissions page, shown in Figure 16-15. Here you can assign statement
permissions to the users and roles that have access to this database. The upper win-
dow contains the list of users and roles that have access to this database.

4. Highlight a user or role and then select the permissions in the lower window. The
columns containing check boxes define the statement permissions that can be
assigned, assigned with grant option, or denied.

Note A permission can be granted with or without the grant option, however,
for the grant option to be assigned, the permission must also be assigned. You
cannot check the With Grant column without checking the Grant column.

Figure 16-15 The Database Properties Permissions page.

Using SQL to Assign Statement Permissions
To use SQL to assign statement permissions to a user, you use the GRANT statement (as
shown earlier). The GRANT statement has the following syntax:

GRANT { ALL [PRIVILEGES] }
 | permission [(column [,...n])] [,...n]

450 Part III Microsoft SQL Server 2005 Administration
 [ON [class ::] securable] TO principal [,...n]
 [WITH GRANT OPTION] [AS principal]

Some of the most common statement permissions that can be assigned to a user are
BACKUP DATABASE, BACKUP LOG, CREATE DATABASE, CREATE DEFAULT, CREATE
FUNCTION, CREATE PROCEDURE, CREATE RULE, CREATE TABLE, and CREATE
VIEW, as described earlier. Please check SQL Server Books Online for a complete list and
description. For example, to add the BACKUP DATABASE, CREATE TABLE and CREATE
VIEW statement permissions to the user account SQLUser, use the following command:

GRANT BACKUP DATABASE, CREATE TABLE, CREATE VIEW

TO [SQLUser]

WITH GRANT OPTION;

Permissions should be granted and revoked with care. Be sure to keep records of permis-
sions that have been added in case you need to redo these GRANTS.

Using SQL to Revoke Statement Permissions
You can use the SQL statement REVOKE to remove statement permissions from a user
account. The REVOKE statement has the following syntax:

REVOKE [GRANT OPTION FOR]
 {
 [ALL [PRIVILEGES]]
 |
 permission [(column [,...n])] [,...n]
 }
 [ON [class ::] securable]
 { TO | FROM } principal [,...n]
 [CASCADE] [AS principal]

For example, to remove just the CREATE VIEW statement permissions from the user
account edw, use the following command:

REVOKE CREATE VIEW

FROM [edw]

CASCADE

As you can see, removing statement permissions from a user account is not a complex
process, but it should be done with care.

Chapter 16 User and Security Management 451
Summary
In this chapter you have learned about the principals of user and security management.
SQL Server 2005 is similar to SQL Server 2000 in many ways, but the handling of user
schema separation is one difference. Keep in mind that the tasks of user and security
management are probably among the most important tasks that the SQL Server DBA
must perform. This is often an ongoing task for most DBAs because employees join, leave,
and change roles within an organization on a regular basis.

Effective security is necessary for ensuring that only authorized personnel or businesses
are allowed access to your SQL Server database. Thus, security and user management are
key parts of the SQL Server DBA’s job. SQL Server Security has been made easier with the
SQL Server Management Studio, and the ability to script commands. Scripting com-
mands allows you to save the SQL statements used to execute the command, thus docu-
menting what was done, and also the ability to modify and reuse the command. Security
and user management should not be taken lightly and should be done with care.

Part IV
Microsoft SQL Server 2005
Architecture and Features

Chapter 17
Transactions and Locking .455

Chapter 18
Microsoft SQL Server 2005 Memory Configuration497

Chapter 19
Data Partitioning .507

Chapter 17

Transactions and Locking

What Is a Transaction? .455

ACID Properties .456

Committing Transactions .458

Transaction Rollbacks. .468

Transaction Locking .473

Viewing Locks .478

Locking Hints .480

Blocking and Deadlocks .483

Isolation Levels .485

Summary .495

In this chapter, we discuss the fundamentals and concepts relating to transactions and
locking in Microsoft SQL Server 2005, including a description of the various transaction
modes, isolation levels, process blocking, and deadlocking. Many of the transaction and
locking concepts are similar to those in SQL Server 2000. The major new and exciting fea-
ture in SQL Server 2005 relating to transaction behavior is the new snapshot capability
that comes in the form of two new isolation levels—read-committed snapshot and snap-
shot isolation—that utilize the new row versioning feature. In this chapter, we discuss
what a transaction is, what properties SQL Server requires for valid transactions, what the
different transaction modes are, how to specify the beginning and the end of a transac-
tion, and how to commit and roll back transactions. We’ll also look at the types and
modes of locking that SQL Server uses, the use of locking hints in Transact-SQL code,
and the effect on locking behavior of using the various transaction isolation levels.

What Is a Transaction?
A transaction is one or more database operations that must be executed in their entirety
as one logical unit of work. If one of a series of operations fails or does not complete, then
455

456 Part IV Microsoft SQL Server 2005 Architecture and Features
all operations within that transaction should be rolled back, or undone, so that none of
them complete. If the transaction is a single operation that performs modifications to
multiple rows of data and it does not complete, then all of the changes made should be
rolled back so the operation is not left partially done; rather, all or nothing is done. Trans-
actions allow SQL Server to ensure data integrity, consistency, and recoverability.

The transaction log of each database keeps a record of all data modifications that a trans-
action performs on the database (such as an insert, update, delete, or schema change),
and it marks the beginning and end of the transaction’s records. SQL Server uses this
transaction log to recover data in case of errors or system failures. How the transaction
log works is discussed in more detail in Chapter 14, “Backup Fundamentals.”

SQL Server provides various ways to explicitly begin and end transactions via application
programming interface (API) functions or T-SQL statements, which we will discuss
throughout this chapter. Therefore, the integrity of a transaction depends in part on the
developer. The developer must know when to start and end the transaction and how to
sequence data modifications to ensure logical consistency and meaningfulness of data. In
addition, performance of the system may also depend on how transactions are handled.
For example, locking behavior (and therefore the potential for process blocking) must be
taken into consideration with transactions, which vary depending on the isolation level
in effect. A long-running transaction can potentially hold locks for extended periods of
time, thus blocking other users. These topics are covered throughout this chapter.

ACID Properties
Now that you know generally what a transaction is, let’s take a look at the properties that
must be met for a transaction to be considered valid. These are not specific to SQL Server
transactions, but to transactions in general. SQL Server supports these properties, which
have not changed from previous versions of SQL Server. A logical unit of work must
exhibit four properties, called the atomicity, consistency, isolation, and durability (ACID)
properties, to qualify as a valid transaction. SQL Server provides mechanisms to help
ensure that a transaction meets each of these requirements.

Atomicity
SQL Server ensures either that all data modifications in a transaction are completed as a
group if the transaction is successful or that none of the modifications occur if the trans-
action is not successful. In other words, SQL Server ensures the atomicity of your trans-
actions. The transaction must be performed as an atomic unit—thus the term “atomicity.”
For a transaction to be successful, every step, or statement, in the transaction must suc-
ceed. If one of the steps fails, the entire transaction fails and any modifications made after

Chapter 17 Transactions and Locking 457
the transaction started will be undone. SQL Server provides a transaction management
mechanism that automatically determines whether a transaction has succeeded or failed,
and undoes data modification, as necessary, in the case of a failure.

Consistency
SQL Server also ensures the consistency of your transactions. Consistency means that all
data remains in a consistent state—that the integrity of the data is preserved—after a trans-
action finishes, regardless of whether the transaction succeeded or failed. Before a trans-
action begins, the database must be in a consistent state, which means that the integrity
of the data is upheld and that internal structures, such as B-tree indexes and doubly
linked lists, are correct. Likewise, after a transaction occurs, the database must be in a
consistent state—a new state if the transaction succeeded or its pre-transaction state if the
transaction failed.

Consistency is also a transaction management feature provided by SQL Server. If your
data is consistent and your transactions maintain logical consistency and data integrity,
SQL Server will ensure the consistency of the data after a transaction. When you are using
data replication in a distributed environment, various levels of consistency can be
achieved, ranging from eventual transactional convergence, or latent consistency, to
immediate transactional consistency. The level of consistency depends on the type of rep-
lication you use.

Isolation
The “I” in ACID stands for isolation. Isolation means that the effects of each transaction
are the same as if the transaction was the only one in the system; in other words, modi-
fications made by a concurrent transaction must be isolated from the modifications
made by any other concurrent transaction. In this way, a transaction will not be affected
by a value that has been changed by another transaction until the change is committed.
A transaction either recognizes data in the state it was in before another concurrent
transaction modified the data, or it recognizes the data after the second transaction has
completed; however, it does not recognize the data in an intermediate state. This is
referred to as serializable isolation because it results in the ability to have a common
starting set of data reloaded and to replay a series of transactions to end up with the data
in the same state no matter how many times it is performed. If a transaction fails, its
modifications will have no effect because the changes will be rolled back. SQL Server
enables you to adjust the isolation level of your transactions according to what is accept-
able for business needs; serializable is not the only option. A transaction’s isolation
behavior depends on the isolation level you specify. Levels of isolation are covered in
more detail in a later section.

458 Part IV Microsoft SQL Server 2005 Architecture and Features
Durability
The last ACID property is durability. Durability means that once a transaction is commit-
ted, the effects of the transaction remain permanently in the database, even in the event
of a system failure. The SQL Server transaction log and your database backups provide
durability. If SQL Server, the operating system, or a component of the server fails, the
database will automatically recover when SQL Server is restarted. SQL Server uses the
transaction log to replay the committed transactions that were affected by the system
crash and to roll back any uncommitted transactions.

If a data drive fails and data is lost or corrupted, you can recover the database by using
data backups and transaction log backups. Proper recovery planning is essential in any
database system. With proper backups, you should always be able to recover from a fail-
ure. Unfortunately, if your backup drives fail and you lose the backup that is needed to
recover the system, you might not be able to recover your database. See Chapter 14 and
Chapter 15, “Restoring Data,” for details about backing up and restoring your database
and transaction logs.

Committing Transactions
Now that you understand the properties of a valid transaction, let’s look at the mecha-
nisms SQL Server provides to manage transactions with both the default SQL Server
behavior and via programmable transaction management. The key to transactions is the
commit process.

Committing transactions—in essence, committing the data changes made by transac-
tions—is an integral part of data integrity, locking, and consistency. A commit is an oper-
ation that conceptually saves all changes to the database made since the start of a
transaction. A commit guarantees that all of the transaction’s modifications, first written
to the buffer cache in memory, will be permanent in the database. When a transaction is
committed, it means any changed records are written to the log file and, eventually also
written to the data files (if not already). If the changes were not yet written to the data files
at the point of the commit, then the changes will be written when the SQL Server back-
ground processes, such as the lazy writer or checkpoint, writes them out. A commit also
frees resources such as locks, which are held by a transaction.

Starting and ending transactions appropriately to enforce logical consistency of data is
the responsibility of the application developer and/or the DBA who writes SQL code or
stored procedures. A transaction may need to include multiple data modification state-
ments that must be part of a single unit in order to maintain data integrity and consis-
tency in the database. If one of those statements fails, the other statements must not
complete either or the data will be left inconsistent. SQL Server cannot determine on its

Chapter 17 Transactions and Locking 459
own when a logical unit of work should begin or end—only a developer who knows the
business logic can determine that—but SQL Server does provide the mechanisms needed
to manage transactions.

Transaction Commit Modes
There are three basic transaction modes in which SQL Server operates to begin transac-
tions and commit data: autocommit, explicit, and implicit modes. In addition to these,
there is a new transaction mode in SQL Server 2005 that is only applicable for multiple
active result sets (MARS), called batch-scoped transaction mode. The default transaction
mode for SQL Server 2005 is autocommit.

Using API functions and T-SQL statements, a transaction can be started in one of the
three basic modes. The transaction mode can be set to either autocommit or implicit for
a SQL Server connection, or a transaction can be started explicitly through coding. Let’s
take a look at how each of these modes works and how to use them.

Autocommit Mode
In autocommit mode, the SQL Server default mode, each T-SQL statement (select, insert,
update, delete, schema changes, and so on) is committed when it finishes or is rolled back
when it fails. No explicit T-SQL statements or application code is necessary to control
transactions with this mode. Each transaction consists of just one T-SQL statement. Auto-
commit mode is useful when you are executing statements by interactive command line,
using the sqlcmd utility or Query Editor, because you do not have to explicitly start and
end each transaction. Each statement is treated as its own transaction by SQL Server and is
committed as soon as it is finished. Every connection to SQL Server uses autocommit
mode until you start an explicit transaction by using BEGIN TRANSACTION or until you
specify implicit mode. Once the explicit transaction is ended (with a commit or rollback)
or implicit mode is turned off, SQL Server automatically returns to autocommit mode.
Autocommit is also the default mode for ADO, OLE DB, ODBC, and DB-Library.

Explicit Mode
An explicit transaction is one in which you explicitly define both the start and the end of
the transaction. Explicit mode is used most often in application programming, in stored
procedures, and T-SQL scripts. When you are executing a group of statements to perform
a task, you might need to determine at what points the transaction should start and end
so that either the entire group of statements succeeds or the entire group’s modifications
are rolled back, such is the case when multiple tables with related data must be modified
together in order for a particular business function to complete properly and to maintain
consistent data between those tables. For example, a bank deposit transaction may
require an update to the customer balance and an insert into a historical table that stores
a record with information about the deposit, such as the time and place it occurred.

460 Part IV Microsoft SQL Server 2005 Architecture and Features
When you explicitly identify the beginning and the end of a transaction, you are using
explicit mode, and the transaction is referred to as an explicit transaction. You specify an
explicit transaction by using either T-SQL statements or API functions. This section
explains only the T-SQL method, as the specific API functions are a more detailed devel-
oper topic and are beyond the scope of this book (For more information, see Inside
Microsoft SQL Server 2005: T-SQL Programming, by Itzik Ben-gan, Dejan Sarka, and Roger
Wolter, published by Microsoft Press.). It is very important that the application devel-
oper also understands the implications of starting and ending transactions within the
application.

Using Explicit Transactions
Let’s look at a situation in which you would need to use an explicit transaction to start
and end a task. Suppose we have a stored procedure that handles the database task of cre-
ating a customer’s order for an item. The steps in this procedure include selecting the cus-
tomer’s current account information, entering the new order ID number and the item
ordered, calculating the price of the order plus taxes, and updating the customer’s
account to reflect payment due for the order.

We want either all of these steps to be completed together or none of them to be com-
pleted so that the data will remain consistent in the database. To achieve this, we will
group the statements that handle these tasks into an explicit transaction. If we do not
group the statements into a transaction, we could end up with inconsistent data in the
database. For example, if the network connection from the client to the server is inter-
rupted after the new order number is entered but before the customer account is updated
with the payment due, the database will be left with a new order for the customer but no
charge on the customer’s account. Without an explicit transaction, SQL Server would
commit each statement as soon as it finished using autocommit mode, leaving the stored
procedure half-completed at the time of the network disconnect. However, if the steps are
defined within one explicit transaction, SQL Server automatically rolls back the entire
transaction upon disconnection, and the client can later reconnect and execute the pro-
cedure again.

Using explicit transactions when your task consists of several steps is also beneficial
because, whether or not you specify your own ROLLBACK statements, SQL Server will
automatically roll back your transactions when a severe error occurs, such as a break
in communication across the network, a database crash, a client system crash, or a
deadlock. (Deadlocks are covered in the section “Blocking and Deadlocks” later in this
chapter.)

The T-SQL statement used to start a transaction is BEGIN TRANSACTION (BEGIN
or BEGIN TRAN are equivalent; see the syntax that follows). You specify the end of
an implicit or an explicit transaction by using either COMMIT TRANSACTION or

Chapter 17 Transactions and Locking 461
ROLLBACK TRANSACTION. You can optionally specify a name for a transaction in
the BEGIN TRANSACTION statement. You can then refer to the transaction by name
in the COMMIT TRANSACTION or ROLLBACK TRANSACTION statement, although
the name is useful only for human readability of code and for no other reason; SQL
Server ignores the name if one is provided. The name helps readers identify to which
BEGIN TRANSACTION a COMMIT or ROLLBACK belongs. The syntax for these
three statements is shown here:

BEGIN {TRAN|TRANSACTION}
 [transaction_name | @tran_name_variable]
 [WITH MARK [‘description’]]

COMMIT {TRAN | TRANSACTION}
 [transaction_name | @tran_name_variable]

ROLLBACK {TRAN|TRANSACTION}
 [transaction_name | @tran_name_variable
 | savepoint_name | @savepoint_name_variable]

The BEGIN TRANSACTION statement has an option WITH MARK. This marks the
transaction so that the transaction name gets written to the transaction log, marking the
transaction so that a log can be restored to the point in the log where that transaction
occurred.

Note COMMIT WORK is the equivalent of COMMIT TRAN, except the former
does not accept a user-defined transaction name. ROLLBACK WORK is the equiv-
alent of ROLLBACK TRAN, except the former also does not accept a user-defined
transaction name. Use the statements in the example syntax if you want to define
a transaction name for coding clarity.

Generally, all resources used by a transaction, such as locks, are released when the trans-
action commits (except for nested transactions, which are discussed in the “Creating
Nested Transactions” section later in this chapter). Note that the way in which locks are
managed during a transaction also depends on the isolation level. For example, when
using the READCOMMITTED isolation level, shared locks for SELECT statements are
released during a multi-statement transaction as soon as the SELECT completes, they are
not held until the end of the transaction. See the section “Isolation Levels” later in this
chapter for more details.

A transaction commits successfully if each of its statements is successful. For exam-
ple, here is the T-SQL to run a single statement explicit transaction, named

462 Part IV Microsoft SQL Server 2005 Architecture and Features
update_marital_status, that updates the MaritalStatus column value to “M” in the
Employee table for a particular EmployeeID:

USE AdventureWorks;

BEGIN TRAN update_marital_status;

 UPDATE HumanResources.Employee

 SET MaritalStatus=‘M’

 WHERE EmployeeID=8;

COMMIT TRAN update_marital_status;

The transaction name update_marital_status is ignored by SQL Server; it serves simply
as an aid to the programmer for identifying which transaction is being committed. This is
useful in the case of nesting transactions as seen in the next section. In this previous
example, since only one data modification statement makes up the entire transaction, the
same can be accomplished without an explicit transaction, but instead using the SQL
Server default autocommit mode as follows:

USE AdventureWorks;

UPDATE HumanResources.Employee

SET MaritalStatus=‘M’

WHERE EmployeeID=8;

In autocommit mode, the UPDATE statement begins a transaction which is committed as
soon as the update completes.

When a transaction includes multiple modification statements that must be executed as
a unit or not at all, an explicit transaction or implicit mode is necessary instead of using
autocommit mode (see section “Implicit Mode” later in this chapter). For an example of
creating an explicit transaction, let’s expand on the previous update transaction by add-
ing another update that changes a woman’s title to correspond to her marital status that
should be part of the unit of work. Here is the code to do this:

USE AdventureWorks;

BEGIN TRAN update_marital_status;

 UPDATE HumanResources.Employee

 SET MaritalStatus=‘M’

 WHERE EmployeeID=8;

 UPDATE Person.Contact

 SET title = ‘Mrs.’

 FROM HumanResources.Employee e JOIN Person.Contact p

 ON e.ContactID = p.ContactID

 WHERE e.EmployeeID = 8;

COMMIT TRAN update_marital_status;

Chapter 17 Transactions and Locking 463
Now if there is a failure during processing, the entire transaction rolls back so that the
updated marital status is not updated without the title also being updated. Therefore,
that these pieces of information will be consistent—either as they were before the trans-
action started or as updated by the transaction.

@@TRANCOUNT Variable
The built-in SQL Server variable @@TRANCOUNT keeps track of the number of active
transactions for each user connection. When no active transactions are present, @@TRAN-
COUNT is 0. Each BEGIN TRANSACTION statement increases @@TRANCOUNT by 1.
Each COMMIT statement decreases @@TRANCOUNT by 1. If a ROLLBACK statement is
executed within the outer transaction or any inner nested transactions, @@TRANCOUNT
is set to 0, unless a savepoint is specified, in which case @@TRANCOUNT is not affected.
Remember, you should commit each inner transaction so that @@TRANCOUNT can be
decremented properly. You can test the value of @@TRANCOUNT to determine whether
any active transactions are present by running the following query:

 SELECT @@TRANCOUNT

If @@TRANCOUNT has a value of 1 when a COMMIT is encountered, then the transac-
tion is committed and all its modifications are made a permanent part of the database. If
@@TRANCOUNT is greater than 1 when a COMMIT is encountered, then @@TRAN-
COUNT is simply decremented by 1 and no transactions are actually committed—the
outer transaction stays active. This is important for nesting transactions, as seen in the
next section.

Creating Nested Transactions
SQL Server allows nested transactions, or transactions that begin within another trans-
action. The first transaction to begin is called the outer transaction, and any nested trans-
actions that start within that outer transaction are all referred to as inner transactions. A
common example of this is when one stored procedure begins a transaction (outer) and
then makes a call to another stored procedure that also begins a transaction (inner).
(This case is also something to be careful of to avoid locks being held unnecessarily.)
With nested transactions, you must explicitly commit each inner transaction so SQL
Server can maintain the correct value for @@TRANCOUNT. When inner transactions are
committed with a COMMIT statement, their resources are not released and their changes
are not actually committed until the outer transaction finally commits. Although SQL
Server does not commit inner transactions upon encountering their COMMIT state-
ments, it does update the @@TRANCOUNT, decreasing it by 1 for each COMMIT
encountered. Therefore, the COMMIT statements for inner transactions are necessary so
that @@TRANCOUNT can be properly decremented such that it equals 1 when the
outer transaction reaches its COMMIT statement.

464 Part IV Microsoft SQL Server 2005 Architecture and Features
If the outer transaction or any of the inner transactions fails, then none of the transac-
tions will commit and the outer transaction and all inner transactions will be rolled back.
If the outer transaction commits, all inner transactions commit. In other words, SQL
Server basically ignores any COMMIT statements within inner nested transactions, in the
sense that the inner transactions do not commit, and instead wait for the final commit or
rollback of the outer transaction to determine the completion status of the outer and all
inner transactions.

Also, in nested transactions, if a ROLLBACK statement is executed within the outer trans-
action or any of the inner transactions, the outer and all inner transactions are rolled
back. It is not valid to include an inner transaction name with a ROLLBACK statement—
if you do, SQL Server returns an error. Include the name of the outermost transaction, no
name at all, or a savepoint name. Savepoints are explained in the “Savepoints” section
later in this chapter.

Let’s look at an example of a nested transaction by beginning a transaction and then call-
ing a stored procedure that also begins a transaction. Therefore, the transaction started
within the stored procedure becomes a nested inner transaction. The following code
shows an example of creating a stored procedure and then starting a transaction that calls
the stored procedure, building from the previous examples. First, here is the T-SQL code
to create the stored procedure:

USE AdventureWorks;

GO

CREATE PROCEDURE update_marital_status(@new_status char(1),

 @emp_id smallint, @new_title char(4))
 AS

 BEGIN TRAN update_status_tran;

 UPDATE HumanResources.Employee

 SET MaritalStatus=@new_status

 WHERE EmployeeID=@emp_id;

 UPDATE Person.Contact

 SET title = @new_title

 FROM HumanResources.Employee e JOIN Person.Contact p

 ON e.ContactID = p.ContactID

 WHERE e.EmployeeID = @emp_id;

 COMMIT TRAN update_status_tran;

GO

Chapter 17 Transactions and Locking 465
Now, here is the T-SQL that starts a transaction (outer) and calls the above stored proce-
dure, which also starts a transaction (inner):

BEGIN TRAN outer_tran;

 EXEC update_marital_status ‘M’, 8, ‘Mrs.’;

 GO

COMMIT TRAN outer_tran;

GO

The first BEGIN TRAN above increments @@TRANCOUNT to 1. The BEGIN TRAN
within the stored procedure then increments @@TRANCOUNT to 2. Therefore, the
COMMIT TRAN within the stored procedure must be present to decrement @@TRAN-
COUNT to 1. Otherwise, the above COMMIT TRAN outer_tran statement would not be
able to commit the two transactions, as @@TRANCOUNT would still be 1, not 0.

To view the results of the stored procedure, run the following query:

SELECT e.MaritalStatus, p.title

FROM HumanResources.Employee e join Person.Contact p

ON e.ContactID = p.ContactID

WHERE e.EmployeeID = 8;

The above update_status_tran transaction must have a COMMIT statement within the
stored procedure to mark the end of that transaction, but it will not actually commit until
the outer_tran transaction commits. Whether update_status_tran is committed or rolled
back depends entirely on whether outer_tran commits and vice versa. If either outer or
inner transaction fails, then both are automatically rolled back. By explicitly defining the
start and end of the transaction within the stored procedure, it is guaranteed that any
time that stored procedure is called from an application program, the code within the
stored procedure is always executed as a transaction, whether the application code has
started a transaction or not. Therefore, the developer does not have to code the transac-
tion start and end in the application code itself. This is a good way to protect transactions.

Note For explicit transactions that use BEGIN TRAN, you must commit each
transaction explicitly. When you use nested transactions, SQL Server is not able to
commit the outermost or innermost transactions until all the inner transactions
have been explicitly committed with a COMMIT statement.

Implicit Mode
In implicit transaction mode, SQL Server automatically starts a new transaction upon
encountering certain T-SQL statements. After the current transaction is explicitly commit-
ted or rolled back, a new transaction begins again the next time one of the key statements

466 Part IV Microsoft SQL Server 2005 Architecture and Features
is encountered. You do nothing to delineate the start of a transaction, but you must execute
a COMMIT TRAN or ROLLBACK TRAN to end an implicit transaction. If an implicit trans-
action is active and the user is disconnected, it is rolled back automatically just like an auto-
commit or explicit transaction. The following T-SQL statements automatically begin a new
transaction in implicit mode if a transaction is not already open:

■ ALTER TABLE

■ CREATE

■ DELETE

■ DROP

■ FETCH

■ GRANT

■ INSERT

■ OPEN

■ REVOKE

■ SELECT

■ TRUNCATE TABLE

■ UPDATE

When one of these statements is used to begin an implicit transaction, the transaction
continues until it is explicitly ended, even if another of these statements is executed
within the transaction. After the transaction has been explicitly committed or rolled back,
the next time one of these statements is used, a new transaction is started. This process
continues until implicit mode is turned off. The instance keeps generating a chain of
implicit transactions until implicit mode is turned off. To enable or disable the implicit
transaction mode, you can use the following T-SQL command:

SET IMPLICIT_TRANSACTIONS {ON | OFF}

ON enables implicit mode, and OFF disables it. When implicit mode is turned off, auto-
commit mode becomes the default again. Implicit transaction mode can also be turned
on through the application code using features of both the OLE DB and ODBC API’s. By
default, implicit mode is off. ADO does not support implicit mode, but only autocommit
and explicit.

More Info For details on how to program this, see SQL Server Books Online
topic “API Implicit Transactions.”

Chapter 17 Transactions and Locking 467
Real World Using Implicit Transactions

I have witnessed a scenario in which implicit transaction mode was inadvertently set
by a user as the default for user connections via Query Editor. The effect was that
when the user opened a window and performed one of the statements that starts a
transaction in implicit mode, the locks were held until the user closed the window—
thus ending the connection—because the user did not explicitly run the COMMIT
command to commit the transaction. This was causing random and long blocking
issues within SQL Server. The fix was to disable the implicit transaction mode as the
default connection option for all new connections, via Options under the Tools
menu in Management Studio, thus reinstating autocommit as the default mode.

Implicit transactions are useful when you are running scripts that perform data modifi-
cations that need to be protected within a transaction. You can turn on implicit mode at
the beginning of the script, perform the necessary modifications, and then turn off
implicit mode at the end. To avoid concurrency problems, disable implicit mode after
making data modifications and before browsing through data. If the next statement after
a commit is a SELECT statement, it starts a new transaction in implicit mode, and the
resources are not released until that transaction is committed (also dependent on the iso-
lation level used).

Important Be very careful when using implicit mode to make sure transactions
are committed as soon as possible so that you avoid holding locks for excessive
periods of time, thus potentially causing blocking problems.

Transaction Performance
Consideration must be taken in order to code transactions for best performance. The
appropriate transaction mode (implicit, autocommit, or explicit) must be used to fit the
need. Transactions should be made as short as possible so that the resources are held for
as little time as possible to avoid locking contention with concurrent users.

Any variable assignment, conditional logic, browsing data, or other related preliminary
data analysis should be done outside of transactions, not inside them. Also, a transac-
tion should not be started within an application and then placed on hold while waiting
for user input. User input should always be done outside of a transaction. Otherwise,
locks may be held unnecessarily long while waiting for the user input, potentially block-
ing other concurrent users. Perform data analysis or get user input before starting the
transaction.

468 Part IV Microsoft SQL Server 2005 Architecture and Features
Always be consistent with the method for beginning and ending transactions. If you start
a transaction with the OLE DB API functions, for example, then the same method should
be used to end the transaction. If the transaction is instead committed using the T-SQL
COMMIT statement, the OLE DB driver does not recognize that the transaction has been
committed. Mixing methods for a transaction can lead to undefined results.

It is good practice to encapsulate transactions within stored procedures where possible.
Using stored procedures helps to limit multiple roundtrips of communication between
the client application and SQL Server to perform a transaction, thus reducing the net-
work time and total transaction execution time. Starting and ending transactions within
stored procedures also avoids some of the other issues mentioned above, such as user
input during a transaction and consistency starting and ending transactions.

To reduce blocking problems when reading data, consider the read-committed snapshot
isolation level, new for SQL Server 2005. See the section “Isolation Levels” later in this
chapter for more details.

Transaction Rollbacks
The opposite of a commit is a rollback. A rollback reverses any changes made by a trans-
action that has not been committed. A rollback can occur in one of two ways: as an auto-
matic rollback by SQL Server or as a manually programmed rollback. In many scenarios,
such as restoring data or a client connection being interrupted during a transaction, SQL
Server performs automatic rollback for you.

Automatic Rollbacks
If a transaction fails because of a severe or fatal error, such as a loss of network connection
while the transaction is being run or a failure of the client application or server, SQL
Server automatically rolls back the transaction. A rollback reverses all database modifica-
tions the transaction performed and frees up any database resources the transaction
used.

The manner in which SQL Server rolls back a transaction can be set to two different
behaviors. With the SQL Server default setting, if a run-time statement causes an error,
such as a constraint or rule violation, SQL Server automatically rolls back only the par-
ticular statement in error, not the entire transaction. To change this behavior, you can use
the SET XACT_ABORT statement. Setting XACT_ABORT to ON tells SQL Server to auto-
matically roll back a transaction in the event of a run-time error. This technique is useful
when, for instance, one statement in your transaction fails because it violates a foreign
key constraint and—because that statement failed—you do not want any of the other state-
ments to succeed. By default, XACT_ABORT is set to OFF.

Chapter 17 Transactions and Locking 469
SQL Server also uses automatic rollback during recovery of a server. For example, if you
have a power loss while running transactions and the system is rebooted, SQL Server per-
forms automatic recovery when it is restarted. Automatic recovery involves reading from
the transaction log information to replay committed transactions that did not get written
to disk and to roll back transactions that were in flight (not committed yet) at the time of
the power loss.

Programmed Rollbacks
You can specify a point in a transaction at which a rollback occurs by using the ROLL-
BACK statement. The ROLLBACK statement terminates the transaction and reverses any
changes that were made up to that point. It also frees all resources held by that transac-
tion and decrements @@TRANCOUNT to 0. If a rollback occurs in the middle of a trans-
action, the rest of the transaction is ignored. If the transaction encapsulates an entire
stored procedure, for example, and the ROLLBACK statement occurs within the stored
procedure, the stored procedure is rolled back and processing resumes at the next state-
ment in the batch after the stored procedure call (assuming the transaction was not a
nested transaction).

A transaction cannot be rolled back after it commits. For an explicit rollback of a single
transaction (with no nested transactions) to occur, a ROLLBACK statement must be exe-
cuted before the COMMIT statement. In the case of nested transactions, once the outer-
most transaction has committed (which causes the inner transactions to commit also),
none of the transactions can be rolled back. As mentioned previously, you cannot roll
back individual inner transactions; instead, the entire outer transaction and all inner
transactions are rolled back together. When the ROLLBACK statement is executed within
a nested transaction, it is rolled back to the very first BEGIN TRANSATION that started
the outer transaction. So, if you include a transaction name in the ROLLBACK statement,
it must be the outermost transaction’s name, otherwise you will receive an error from
SQL Server.

Below is an example of performing a ROLLBACK within a nested transaction based on
the previous examples. We have added a ROLLBACK within the stored procedure, CRE-
ATE TABLE and INSERT statements in the outer transaction to use as a test for ROLL-
BACK and to show the effect on the outer transaction, and some print statements of
@@TRANCOUNT:

USE AdventureWorks;

GO

IF EXISTS (SELECT name FROM sys.objects

 WHERE name = N‘update_marital_status’)

 DROP PROC update_marital_status;

470 Part IV Microsoft SQL Server 2005 Architecture and Features
GO

CREATE PROCEDURE update_marital_status(@new_status char(1),

 @emp_id smallint, @new_title char(4))

 AS

 DECLARE @tran_count tinyint;

 BEGIN TRAN update_status_tran;

 UPDATE HumanResources.Employee

 SET MaritalStatus=@new_status

 WHERE EmployeeID=@emp_id;

 UPDATE Person.Contact

 SET title = @new_title

 FROM HumanResources.Employee e JOIN Person.Contact p

 ON e.ContactID = p.ContactID

 WHERE e.EmployeeID = @emp_id ;

 SELECT @tran_count = @@TRANCOUNT;

 PRINT ‘inside proc tran_count = ’;

 PRINT @tran_count;

 IF (SELECT COUNT(*) from Test_Table) <> 0

 ROLLBACK TRAN;

 ELSE

 COMMIT TRAN update_status_tran;

GO

DECLARE @tran_count tinyint;

BEGIN TRAN outer_tran;

IF EXISTS (SELECT name FROM sys.objects

 WHERE name = N‘ Test_Table ’)

 DROP TABLE Test_Table;

GO

 CREATE TABLE Test_Table (ColA int, ColB char(1));

 INSERT INTO Test_Table VALUES (1, ‘A’);

Chapter 17 Transactions and Locking 471
 SELECT @tran_count = @@TRANCOUNT;

 PRINT ‘before proc tran_count = ’;

 PRINT @tran_count;

 EXEC update_marital_status ‘M’, 8, ‘Mrs.’;

 SELECT @tran_count = @@TRANCOUNT;

 PRINT ‘after proc tran_count = ’;

 PRINT @tran_count;

 IF @@TRANCOUNT = 1

 COMMIT TRAN outer_tran;

GO

Running the above code creates the stored procedure and then executes the batch (start-
ing at the DECLARE statement) that creates the table Test_Table, inserts one row in it,
executes the stored procedure that calls a rollback because the condition for the IF state-
ment is true, and then continues with the batch. The PRINT statements show this.
Because the ROLLBACK is executed, the outer transaction is rolled back as well, so at the
end of the batch, the Test_Table table does not exist because the CREATE TABLE and
INSERT statements are rolled back as well. To see these transactions commit, simply
change the following line in the stored procedure:

IF (SELECT COUNT(*) from Test_Table) <> 0

Change to the following:

IF (SELECT COUNT(*) from Test_Table) = 0

You should then be able to view the Test_Table with one row inserted.

Also note that because the ROLLBACK occurs at a different level from the BEGIN
TRAN with which it corresponds (it corresponds to the outer transaction BEGIN
TRAN, as we have discussed for nested transactions), SQL Server returns an error mes-
sage 266. This message is expected and can be ignored, and it does not affect execution.
It occurs whenever @@TRANCOUNT at the beginning of a stored procedure is differ-
ent at the end of the stored procedure. If the ROLLBACK is in the outer transaction, this
does not occur.

More Info For ways to avoid or work around this message, see the topic “Roll-
backs and Commits in Stored Procedures and Triggers” in SQL Server Books
Online.

472 Part IV Microsoft SQL Server 2005 Architecture and Features
There is a way to avoid having to roll back an entire transaction, which allows you to keep
some of the modifications. This is done using savepoints.

Using Savepoints
Savepoints offer a way to roll back just a portion of a transaction. All modifications up
to the savepoint remain in effect and are not rolled back, but the statements that are
executed after the savepoint and up to the ROLLBACK statement are rolled back. You
must specify the savepoint in the transaction. After a roll back to a savepoint occurs,
the statements following the ROLLBACK statement then continue to be executed. If
you roll back the transaction without specifying a savepoint, all modifications are
reversed to the beginning of the transaction as usual. The entire transaction is rolled
back, even if you have previously executed a savepoint rollback. Note that when a
transaction is being rolled back to a savepoint, SQL Server does not release locked
resources. They are released when the transaction commits or upon a full-transaction
rollback.

Savepoints are useful in situations in which an error is unlikely to occur, such that a roll
back to savepoint does not occur very often. For example, instead of checking for validity
of an update before executing the update, use a savepoint to roll back part of a transaction
in the case of an error, assuming that such an error is an infrequent occurrence. This can
be more efficient than coding to test the validity of each update before executing it. This
is most effective when the probability of encountering an error is low, and the cost of
checking the validity of the update is relatively high.

To specify a savepoint in a transaction, use the following syntax:

SAVE {TRAN|TRANSACTION}

 {savepoint_name | @savepoint_name_variable}

Position a savepoint in the transaction at the location to which you want to roll back. To
roll back to the savepoint, use ROLLBACK TRAN with the savepoint name, as shown
here:

ROLLBACK TRAN savepoint_name

You can have more T-SQL statements after the ROLLBACK to a savepoint statement
to continue the transaction. Remember to include a COMMIT statement or another
ROLLBACK statement after the first ROLLBACK to savepoint statement in order for

Chapter 17 Transactions and Locking 473
the entire transaction to be completed. Here is an example using ROLLBACK to a
savepoint:

USE AdventureWorks;

GO

BEGIN TRAN update_marital_status;

 UPDATE HumanResources.Employee

 SET MaritalStatus=‘S’

 WHERE EmployeeID=8;

 SAVE TRAN first_update_only;

 UPDATE Person.Contact

 SET title = ‘Ms.’

 FROM HumanResources.Employee e JOIN Person.Contact p

 ON e.ContactID = p.ContactID

 WHERE e.EmployeeID = 8;

 ROLLBACK TRAN first_update_only;

 SELECT e.MaritalStatus, p.title

 FROM HumanResources.Employee e JOIN Person.Contact p

 ON e.ContactID = p.ContactID

 WHERE e.EmployeeID = 8 ;

COMMIT TRAN update_marital_status;

GO

If you look at the output from the SELECT statement, you can see that the first
update succeeded but only the second update was rolled back by the ROLLBACK
first_update_only statement.

Transaction Locking
SQL Server uses an object called a lock to allow synchronized access by multiple users
that attempt to access the same piece of data at the same time. Locking helps to ensure
logical integrity of transactions and data. Locks are managed internally by SQL Server
lock manager and are acquired on a per-user-connection basis. When a user connection

474 Part IV Microsoft SQL Server 2005 Architecture and Features
acquires (or owns) a lock on a resource, the lock indicates that the user has the right to
use that resource. Resources that can be locked by a user include a row of data, a page of
data, an extent (eight pages), a table, a file, or an entire database. For example, assuming
the default isolation level of read committed is used, if the user holds a lock on a data
page, another user cannot perform operations on that page that affect the operations of
the user owning the lock. Therefore, a user cannot update a data page that is currently
locked for reading or for modification by another user. Nor can a user acquire a lock that
conflicts with a lock already held by another user. For instance, two users cannot both
have locks to update the same page at the same time. The same lock cannot be used by
more than one user.

SQL Server’s locking management automatically acquires and releases locks, according
to users’ actions. No action by the DBA or the programmer is needed to manage locks.
However, you can use programming hints to indicate to SQL Server which type of lock to
acquire when performing a particular query or database modification; these are covered
in the section “Locking Hints” later in this chapter.

In this section, we’ll look at the levels of granularity of locks and options for locking
modes. But first, let’s examine some of the locking management features that enhance
SQL Server performance.

Locking Management Features
SQL Server supports row-level locking—the ability to acquire locks on a row in a data page
or an index page. Row-level locking is the finest level of locking granularity that can be
acquired in SQL Server. This lower level of locking provides many online transaction pro-
cessing (OLTP) applications with more concurrency. Row-level locking is especially use-
ful when you are performing row inserts, updates, and deletes (their corresponding
indexes are also affected).

In addition to providing the row-level locking feature, SQL Server provides ease of admin-
istration for lock configuration. It is not necessary to set the “locks” configuration option
manually to determine the number of locks available for SQL Server use. By default, this
value is 0, which means that as more locks are needed, SQL Server dynamically allocates
more, up to a limit set by SQL Server memory. If locks have been allocated but are no
longer in use, SQL Server deallocates them.

SQL Server is also optimized to dynamically choose which types of locks to acquire on a
resource—for example, row-level locking for single row inserts, updates, and deletes; page
locking for partial scans of table data; and table locking for full table scans. There can be
multiple lock types held in a lock hierarchy as well. The next section explains the levels
of locking in more detail.

Chapter 17 Transactions and Locking 475
Lockable Resources
Locks can be acquired on a number of resources; the type of resource determines the
granularity level of the lock. Table 17-1 lists the resources that SQL Server can lock—also
known as lock types.

As the granularity level becomes coarser (or larger), data access concurrency decreases.
For example, locking an entire table with a certain type of lock can block that table from
being accessed by any other users, but lock overhead decreases because fewer locks are
used. As the granularity level becomes finer (or smaller)—such as with page-level and row-
level locking—concurrency increases because more users are allowed to access various
pages or rows in the same table at one time. In this case, overhead also increases because
more locks are required when many rows or pages are being accessed individually.

SQL Server automatically chooses the type of lock appropriate for the task while mini-
mizing the overhead of locking. SQL Server also automatically determines a lock mode
for each type of lock; these modes are covered in the following section.

Lock Modes
A lock mode specifies how a locked resource can be accessed by concurrent users (or
concurrent transactions). Each type of lock mentioned previously is acquired in one of
these modes. There are seven different lock modes used by SQL Server 2005: shared,

Table 17-1 Lockable Resources

Resource Type of Locking Description

RID (Row ID) Row level Locks an individual row of data in a table

Key Row level Locks an individual row of data in an index

Page Page level Locks an individual 8-KB page of data or index

Extent Extent level Locks an extent, a group of eight contiguous data
pages, or index pages

Table Table level Locks an entire table

HOBT Heap or B-tree index
level

Locks an index or a heap of table data (for a table
with no clustered index)

File File level Locks a database file

Application Application resource Locks an application-specified resource

Metadata Metadata level Locks pages of metadata

Allocation unit Allocation unit level Locks allocation unit

Database Database level Locks an entire database

476 Part IV Microsoft SQL Server 2005 Architecture and Features
update, exclusive, intent, schema, bulk update, and key-range. These lock modes are the
same as in SQL Server 2000.

Shared
Shared lock mode is used for read-only operations such as operations you perform by
using the SELECT statement. This mode allows concurrent transactions to read the same
resource at the same time, but it does not allow any transaction to modify that resource.
Shared locks are released as soon as the read is finished, unless the isolation level has
been set to repeatable read or higher or unless a locking hint that overrides this behavior
is specified in the transaction.

Update
Update lock mode is used when an update might be performed on the resource. Only
one transaction at a time can obtain an update lock on a resource. If the transaction
makes a modification (because, for example, the search condition found rows to modify),
the update lock is converted to an exclusive lock (described next); otherwise, it is con-
verted to a shared lock. This type of lock helps avoid deadlocks for concurrent updates in
the case when repeatable read or serializable isolation levels are used. See the section
“Isolation Levels” later in this chapter for descriptions of these levels.

Exclusive
Exclusive lock mode is used for operations that modify data, such as updates, inserts, and
deletes. When an exclusive lock is held on a resource by a transaction, no other transac-
tion can read or modify that resource (others may read the data without blocking on the
exclusive lock if a locking hint, read uncommitted isolation level, or read committed
snapshot isolation are used). This lock mode prevents the same data from being updated
at the same time by concurrent users, which otherwise could potentially cause inconsis-
tent or incorrect data.

Intent
Intent lock mode is used to establish a locking hierarchy. There are different types of
intent locks, as described below. The purpose of the intent lock is to protect the lower-
level resource locks, such as page and row locks that may be needed by a transaction,
from being exclusively locked by another transaction through a higher-level resource
lock, such as a table lock. For example, an intent lock at the table level acquired by a
transaction indicates that SQL Server intends to acquire a lock on a resource lower in the
hierarchy, such as on one or more pages or rows in that table. The intent lock on the table
is acquired before any lower level locks are acquired, signaling the intention to lock a
lower-level resource in the locking hierarchy. This prevents a second transaction from
acquiring an exclusive lock on that same table, which would block intended page-level or

Chapter 17 Transactions and Locking 477
row-level access by the first transaction. See the section “Viewing Locks” later in this
chapter for an example of intent lock usage.

Using intent locks provides better performance for SQL Server as it allows SQL Server
to check only at the table level for intent locks to determine whether a lock can be
acquired on an entire table, rather than having to check every page-level and row-level
lock on the table.

There are six categories of intent lock modes, as follows:

■ Intent shared (IS) Indicates that a transaction intends to acquire or holds a
shared lock on a resource, and protects shared locks on some resources lower in
the hierarchy.

■ Intent exclusive (IX) Indicates that a transaction intends to acquire or holds an
exclusive lock on a resource and protects exclusive locks on some resources lower
in the hierarchy.

■ Shared with intent exclusive (SIX) Indicates that a transaction intends to
acquire or holds a shared lock on some resources and an exclusive lock on other
resources. The SIX also protects shared locks on all resources lower in the hierarchy
and intent exclusive locks on some resources lower in the hierarchy.

■ Intent update (IU) Acquired only on page resources, indicates that a transaction
intends to or holds an update lock on a resource. The IU lock is converted to an IX
if the update operation occurs.

■ Shared intent update (SIU) A combination of acquiring both a shared and
intent update lock on the same resource and holding them simultaneously within
a transaction.

■ Update intent exclusive (UIX) A combination of acquiring both an update and
intent exclusive lock on the same resource and holding them simultaneously
within a transaction.

Schema
There are two categories of schema lock mode: schema modification and schema stabil-
ity. Schema modification (Sch-M) lock mode is used when a table data definition lan-
guage (DDL) operation is performed, such as the addition of a column to a table or
deletion of a table, or when certain data manipulation language (DML) operations are
performed, such as truncating a table. While this lock is held, no users can access the
table.

Schema stability (Sch-S) lock mode is used when queries are being compiled. When a
query is compiled, other transactional locks are not blocked, including exclusive locks,

478 Part IV Microsoft SQL Server 2005 Architecture and Features
but DDL and DML statements that use a schema modification (Sch-M) lock cannot be
executed on the table while there is a schema stability lock.

Bulk Update
Bulk update lock mode is used when you are bulk copying data into a table with either
the TABLOCK hint specified or when the table lock on bulk load option is set by using
the sp_tableoption stored procedure. The purpose of the bulk update lock is to allow mul-
tiple threads to bulk copy data concurrently into the same table while preventing access
to that table by any processes that are not performing a bulk copy.

Key-Range
Key-range lock mode is used to lock index rows in order to fulfill the requirement for
transactions using the serializable isolation level—that any query executed during the
transaction will retrieve the same set of rows if executed more than once during the trans-
action. By locking the index rows of the index keys accessed for the duration of the trans-
action, no rows whose key falls within the range of the locked index keys can be inserted,
updated, or deleted. This protects the rows so that the transaction can read repeatable
data later in the transaction. This prevents the scenario called phantom read, which could
otherwise occur when a transaction reads a range of rows, and then a second transaction
inserts or deletes rows in that same range. Then the first transaction then reads the range
of rows a second time, resulting in a different result set than with the first query. Phantom
rows “appeared” or “disappeared” during the first transaction.

Viewing Locks
You can view current locks held by selecting from the system view sys.dm_tran_locks.
(The sp_lock procedure used to view locks in previous versions of SQL Server is sup-
ported for backward compatibility only.) To show an example of locking, run the follow-
ing T-SQL that creates a test table and inserts two rows for our test:

USE AdventureWorks;

CREATE TABLE test1(col1 int);

INSERT INTO test1 VALUES (1);

INSERT INTO test1 VALUES (2);

To create the ability to capture the specific lock information for this example, we open
three connections to the server via Management Studio Query Editor. We will run an
update on test1 in one window with a time delay before the transaction commits, per-
form a query on test1 in the second window, and view the lock information in the third

Chapter 17 Transactions and Locking 479
window. To accomplish this, in the first Query Editor window, run the following explicit
transaction with an UPDATE and a WAITFOR DELAY statement as follows:

Use AdventureWorks;

BEGIN TRAN

 UPDATE test1 SET col1=999 WHERE col1=1;

 WAITFOR DELAY ‘00:00:15’;

COMMIT;

Immediately from the second connection, run the following SELECT statement, using
default autocommit transaction mode:

USE AdventureWorks;

SELECT * FROM test1;

The SELECT should block on the UPDATE for 15 seconds (time for the WAITFOR
DELAY command to complete and then the UPDATE to commit). Immediately go to the
third window and run the following query to view the current locks held:

SELECT resource_type, request_mode, request_status, request_session_id

FROM sys.dm_tran_locks

The results will look similar to the following, where request_session_id is the server pro-
cess identifier (SPID) for the connection, assuming no other processes are running on
the server:

resource_type request_mode request_status request_session_id

--------------- --------------- -------------------- ------------------

DATABASE S GRANT 53

DATABASE S GRANT 52

RID X GRANT 52

RID S WAIT 53

PAGE IS GRANT 53

PAGE IX GRANT 52

OBJECT IS GRANT 53

OBJECT IX GRANT 52

The resource_type column shows the type of resource on which the lock is held, the
request_mode column shows the lock mode, and the request_status column shows
the status for the lock request. For resource_type, OBJECT is equivalent to table. You
can see from the above output that SPID 53 (the SELECT) was blocked by SPID 52

480 Part IV Microsoft SQL Server 2005 Architecture and Features
(the UPDATE), shown by its request_status of WAIT—it is waiting for a shared lock on the
RID resource which is currently locked by SPID 52 with an exclusive lock (request_status
is GRANTED). These lock types are not compatible, so SPID 53 must wait on, and is thus
blocked by, SPID 52. Once the UPDATE completes and the transaction is committed,
then the SELECT completes.

Also from this output you can see how intent locks are acquired on the higher-level
resources. For SPID 52 (the UPDATE), intent exclusive locks on both the PAGE and
OBJECT level were acquired because it acquired an exclusive lock on the row. For SPID
53, intent shared locks were acquired at the PAGE and OBJECT level because it acquired
a shared lock on the row. This shows how intent locks are acquired at the higher level.
Both SPID 52 and 53 hold shared locks at the database level. This is true of every con-
nection into a database.

Locking Hints
Locking hints are T-SQL keywords that can be used with SELECT, INSERT, UPDATE,
and DELETE statements to direct SQL Server to use a preferred type of locking behavior
for locks on a particular table or view. Locking hints on views are propagated to all the
tables and/or views that are referenced by that view. You can use locking hints to override
the default transaction isolation level. You should use this technique only when abso-
lutely necessary because if you’re not careful, you could cause blocking or deadlocks.

The following list describes the available table-level locking hints:

■ HOLDLOCK Holds shared locks until the completion of a transaction rather than
releasing them as soon they are no longer needed. Equivalent to using the SERIAL-
IZABLE locking hint. Cannot be used with a SELECT query that includes the FOR
BROWSE option.

■ NOLOCK Applies only to the SELECT statement. Does not obtain shared locks
for reading data and does not honor exclusive locks, such that a SELECT statement
is allowed to read data that is exclusively locked by another transaction, and will
not block other locks requested on the same data. Allows for reads of uncommitted
data (known as dirty reads). Equivalent to READUNCOMMITTED.

■ PAGLOCK Acquires page locks where either a single table lock or individual row
or key locks would normally be used.

■ READCOMMITTED The default isolation level for SQL Server. Applies to read
operations, such that shared locks are acquired as data is read and released
when the read operation is complete. This behavior changes if the option

Chapter 17 Transactions and Locking 481
READ_COMMITTED_SNAPSHOT is ON. (This option is new for SQL Server
2005.) In this case, locks are not acquired and row versioning is used. (See more on
this in the “Isolation Levels” section of this chapter.)

■ READCOMMITTEDLOCK New for SQL Server 2005. Equivalent to READCOM-
MITTED, but will apply whether the setting for READ_COMMITTED_SNAPSHOT
is ON or OFF, allowing you to override that setting.

■ READPAST Applies to read operations; skips reading rows that are currently
locked by other transactions so that blocking does not occur. The results are
returned without these locked rows as part of the result set. Can be used only with
transactions running at the READ COMMITTED or REPEATABLE READ isolation
levels. Applies to SELECT, DELETE, and UPDATE statements but is not allowed in
the INTO clause of INSERT statements.

■ READUNCOMMITTED Equivalent to NOLOCK.

■ REPEATABLEREAD Performs a scan with the same locking behavior as that of a
transaction using the repeatable read isolation level.

■ ROWLOCK Acquires row locks when page or table locks are normally taken.

■ SERIALIZABLE Equivalent to HOLDLOCK. Performs a scan with the same lock-
ing behavior as that of a transaction using the SERIALIZABLE isolation level.

■ TABLOCK Uses a shared lock on a table, rather than page or row locks, that is
held until the end of the statement.

■ TABLOCKX Uses an exclusive lock on a table. This hint prevents other transac-
tions from accessing the table.

■ UPDLOCK Uses update locks that are held until the end of the transaction.

■ XLOCK Acquires exclusive locks that are held until the end of the transaction.

Let’s look at a situation where using a locking hint could be useful. Suppose you are using
the default read committed isolation level serverwide for all transactions. With read com-
mitted, when a transaction performs a read, a shared lock is held on the resource only
until the read is completed, and then the shared lock is released. Therefore, if a transac-
tion reads the same data twice during a transaction, the results might differ between
reads because another transaction could have obtained a lock and updated the same data
between the first and second read.

To avoid getting different data from the two reads, you could specify the serializable iso-
lation level for the connection, but doing so causes SQL Server to use that isolation level
for all statements within the transactions for that connection and holds all shared locks
from all SELECT statements for the duration of each transaction. If you do not want to

482 Part IV Microsoft SQL Server 2005 Architecture and Features
enforce serializability on all the statements for that connection, you can instead add a
locking hint to a specific query.

The HOLDLOCK locking hint in a SELECT statement instructs SQL Server to hold all
shared locks for the table on which the hint is specified until the end of the transaction,
overriding whatever the current isolation level is. Thus, if the transaction performs a
repeated read, the results returned are consistent with the first read.

Note SQL Server Database Engine query optimizer almost always chooses the
optimal locking types and modes for a query. Locking hints should be used only
if they are well understood and only when absolutely necessary, as they might
adversely affect concurrency by causing unintended blocking or deadlocks.

You can also combine compatible locking hints, such as TABLOCK and REPEAT-
ABLEREAD, but you cannot combine conflicting hints, such as REPEATABLEREAD and
SERIALIZABLE. To indicate a table locking hint, include the keyword WITH and the hint
name within parentheses after the table name in the T-SQL statement. The following
statement is an example of using the NOLOCK hint in a SELECT statement:

USE AdventureWorks;

SELECT COUNT(*)

FROM Production.Product WITH (NOLOCK);

The above NOLOCK hint directs SQL Server not to acquire shared locks and not to
honor exclusive locks on the Product table. Although this hint ensures the transaction
will not block on locked table data, it also allows dirty reads of the table data.

The keyword WITH is not required for most of the table hints and can be omitted, but it
is always safe to include it. If more than one hint is specified, the WITH keyword must be
used, and the hints should be separated by a comma within the parentheses, such as in
the following example, which specifies both TABLOCK and REPEATABLEREAD hints.
This example demonstrates a successful repeatable read scenario. Run the first transac-
tion (an explicit transaction) in one Query Editor window and the second transaction (an
autocommit transaction) in a second window immediately after the first, as follows.

From Query Editor window one, run the following:

USE AdventureWorks;

BEGIN TRAN;

 SELECT SafetyStockLevel

 FROM Production.Product WITH (TABLOCK, REPEATABLEREAD)

Chapter 17 Transactions and Locking 483
 WHERE ProductID = 1;

 WAITFOR DELAY ‘00:00:15’;

 SELECT SafetyStockLevel

 FROM Production.Product

 WHERE ProductID = 1;

COMMIT;

From the second window immediately run the update:

USE AdventureWorks;

UPDATE Production.Product SET SafetyStockLevel = 800

WHERE ProductID = 1;

The first transaction returns the same value for each of the two SELECT statements
because of the REPEATABLEREAD locking hint. The TABLOCK hint causes a shared lock
on the entire table to be acquired instead of just a row or page lock. The UPDATE in the
second transaction blocks waiting for the first transaction to finish, after which it com-
pletes and changes the value of SafetyStockLevel to 800. To see the locks held during
these transactions, query the system view sys.dm_tran_locks.

As seen in this example, the second transaction was blocked by the first because of the
locking hint REPEATABLEREAD. Locking hints should be used only when the implica-
tions of doing so are well understood and when necessary for a specific desired behavior,
as you can cause blocking that would not typically occur with the default locking behavior.

Note Notice in the above example that an UPDATE statement was blocked by a
SELECT statement, thus showing that a SELECT statement can cause blocking, not
just be blocked. This is why you want to be careful when using locking hints.

Blocking and Deadlocks
Blocking and deadlocks are two events that can occur with concurrent transactions.
Sometimes they are desirable because they help maintain data consistency, and some-
times they are not desirable because of possible performance degradation for users.
Blocking and deadlocks both relate to locking.

Blocking occurs when one transaction is holding a lock on a resource and a second trans-
action requires a conflicting lock type on that resource. The second transaction must wait
for the first transaction to release its lock—in other words, it is blocked by the first trans-
action. If a transaction holds a lock for an extended period, it can cause a chain of blocked

484 Part IV Microsoft SQL Server 2005 Architecture and Features
transactions that are waiting for the first transaction to finish so they can obtain their
required locks, a condition referred to as chain blocking. Figure 17-1 shows the concept
of blocking.

Figure 17-1 Blocking.

A deadlock differs from a blocked transaction in that a deadlock involves two blocked
transactions, each of which is waiting for the other to release a lock. For example, assume
that one transaction is holding an exclusive lock on Table1 and a second transaction is
holding an exclusive lock on Table2. Before either exclusive lock is released, the first
transaction requires a lock on Table2 and the second transaction requires a lock on
Table1. Now each transaction is waiting for the other to release its exclusive lock, yet nei-
ther transaction will release its exclusive lock until a commit or rollback occurs to com-
plete the transaction. Neither transaction can be completed because it requires a lock
held by the other transaction in order to continue. Thus, the two transactions are in a
deadlock. Figure 17-2 illustrates a deadlock scenario. When a deadlock occurs, SQL
Server chooses to terminate one of the transactions, called the victim, and that transac-
tion will have to be run again.

If transactions are long running, then locks on the data may also be held for the duration
of the transaction. For example, a single UPDATE statement that updates a large number
of rows in a table can take considerable time to complete, thus holding locks for that
entire transaction duration. For another example, assume a transaction consists of mul-
tiple update and insert statements. In this case, the locks on all data modifications are
held for the duration of the transaction, so the more work performed during the transac-
tion, the more locks will be held and the longer it will take. This can cause blocking and

Chain Blocking"

Tran1-
UPDATE
Table A

Blocked by Tran1

Blocked by Tran2

Tran2-
SELECT
Table A

Tran3-
UPDATE
Table A

Chapter 17 Transactions and Locking 485
deadlocking with other processes. Therefore, it is important to keep transactions as short
and quick as possible to avoid long blocking times.

Figure 17-2 Deadlock.

As already mentioned in this chapter, there are several factors that affect blocking, includ-
ing using locking hints and setting isolation levels. Isolation levels are discussed in the
next section.

More Info For information about how to code to avoid deadlocks, look up the
“Minimizing Deadlocks” topic in SQL Server Books Online.

Isolation Levels
SQL Server 2005 supports five isolation levels that affect the way locking behavior for
read operations is handled. There is one new isolation level and one new option to an
existing isolation level for SQL Server 2005 that are intended to enhance concurrency for
online transaction processing (OLTP) applications: snapshot isolation and read commit-
ted snapshot. These depend on a new feature called row versioning that can be used to
avoid reader-writer blocking scenarios.

The transaction isolation level determines the level at which a transaction is allowed to
read inconsistent data—that is, the degree to which one transaction is isolated from
another. A higher isolation level increases data accuracy, but it can reduce the number of
concurrent transactions. On the other hand, a lower isolation level allows more concur-
rency but results in reduced data accuracy. These isolation levels are set at the SQL
Server session, or connection, level and last for the duration of the session. Note that
some of them correspond directly to locking hints, which can be set at the statement
level. (See the previous section “Locking Hints.”) The isolation level you specify for a
SQL Server session, or the default if you do not specify a level, determines the locking
behavior for all SELECT statements performed during that session until the isolation
level is modified.

"Deadlock"
Tran1

BEGIN TRAN UPDATE Table A;

SELECT Table B;

COMMIT

Tran2

Blocked

Blocked

BEGIN TRAN UPDATE Table B;

SELECT Table A;

COMMIT

486 Part IV Microsoft SQL Server 2005 Architecture and Features
The five levels of isolation, plus one new database option affecting isolation, are as
follows:

■ Read uncommitted Lowest level of isolation. At this level, transactions are iso-
lated just enough to ensure that physically corrupted data is not read. Dirty reads
are allowed because no shared locks are held for data reads, and exclusive locks on
data are ignored. See the section below for a description of dirty reads. (Corre-
sponds to the NOLOCK and READUNCOMMITTED locking hints.)

■ Read committed Default level for SQL Server. At this level, reads are allowed
only on committed data, so a read is blocked while the data is being modified.
Shared locks are held for reads, and exclusive locks are honored. Thus, dirty reads
are not allowed. There is a new database option that determines the behavior of
read committed, called read committed snapshot. By default the read committed
snapshot option is off, such that the read committed isolation level behaves exactly
as described here. (See next bullet.)

■ Read committed snapshot (database option) New for SQL Server 2005, this
is actually a database option, not a stand-alone isolation level. It determines the
specific behavior of the read committed isolation level. When this option is on,
row versioning is used to take a snapshot of data. Provides data access with
reduced blocking in a manner similar to read uncommitted isolation, but with-
out allowing dirty reads. See the section “Read Committed Snapshot” later in
this chapter.

■ Repeatable read Level at which repeated reads of the same row or rows within
a transaction achieve the same results. Until a repeatable read transaction is com-
pleted, no other transactions can modify the data because all shared locks are
held for the duration of the transaction. (Corresponds to REPEATABLEREAD
locking hint.)

■ Snapshot isolation New for SQL Server 2005. This isolation level uses row ver-
sioning to provide read consistency for an entire transaction while avoiding block-
ing and preventing phantom reads. There is a corresponding database option that
must also be set to use this isolation level. See the section below titled “Snapshot
Isolation” for more information.

■ Serializable Highest level of isolation; transactions are completely isolated from
each other. At this level, the results achieved by running concurrent transactions on
a database are the same as if the transactions had been run serially (one at a time in
order) because it locks entire ranges of keys, and all locks are held for the duration
of the transaction.

Chapter 17 Transactions and Locking 487
Concurrent Transaction Behavior
To better understand isolation levels, we will look at three types of behaviors that can
occur when you are running concurrent transactions. These behaviors are as follows:

■ Dirty read A read that contains uncommitted data. A dirty read occurs when one
transaction modifies data and a second transaction reads the modified data before
the first transaction has committed the changes. That data is not yet a permanent
part of the database and could possibly be rolled back.

■ Non-repeatable read When one transaction reads a row, then a second transac-
tion modifies the same row, and then the first transaction reads that row again, get-
ting different results. Because the first transaction’s repeated reads retrieve different
data, the results are not repeatable within that transaction.

■ Phantom read A read that occurs when a transaction attempts to retrieve a row
that does not exist when the transaction begins but that is inserted by a second
transaction before the first transaction finishes. If the first transaction again looks
for the row, it will find that the row has suddenly appeared. The same situation
could occur with a row delete; a row that was existing later disappears. This is
called a phantom row.

Table 17-2 lists the types of behaviors each isolation level allows. As you can see, read
uncommitted is the least restrictive isolation level, and serializable is the most restrictive.
As mentioned previously, the default SQL Server isolation level is read committed. As the
level of isolation increases, SQL Server holds more restrictive locks and holds locks for
longer periods of time. Since the isolation level affects the locking behavior for SELECT
statements, isolation affects the locking mode used on data that is being read.

Table 17-2 Isolation Level Behaviors

Isolation Level Dirty Read Non-repeatable Read Phantom Read

Read uncommitted Yes Yes Yes

Read committed without
snapshot

No Yes Yes

Read committed with snapshot
(statement level)

No Yes Yes

Repeatable read No No Yes

Snapshot (transaction level) No No No

Serializable No No No

488 Part IV Microsoft SQL Server 2005 Architecture and Features
Row Versioning
To implement the new snapshot isolation level behaviors—via read committed snapshot
and snapshot isolation—a new feature called row versioning is used. These two snapshot
options are different in that the read committed snapshot affects only statement-level
locking behavior, while snapshot isolation affects an entire transaction.Both use row ver-
sioning as a means to create snapshots of modified data by storing a copy of the data
image as it was before the modification (in tempdb), so that a consistent snapshot view
of the data can be accessed from tempdb without blocking on writes to the actual table
data and without locking the actual table data.

Row versioning is a framework that is always enabled in SQL Server 2005 because it is
used by default for purposes other than for isolation levels, such as for supporting online
index building, modifications made in triggers, and modifications made by multiple
active result sets (MARS) sessions. For the locking behavior options being discussed
here, row versioning can be enabled or disabled depending on the isolation level and
database options set.

Sizing the tempdb system database is a very important consideration with SQL Server
2005, as it is used for several enhanced features, such as for row versioning. With row ver-
sioning, snapshot versions of modified rows are stored in tempdb as needed to support
the various operations that utilize row versioning. This space used in tempdb is called the
version store. There are actually two version stores, an online index build store and a
common store for all other uses. The versioned rows are stored until they are no longer
needed by the transaction or operation, and then they are released for removal by a back-
ground thread that executes once per minute. If a transaction is short and versioned rows
are not needed for very long, the modified row or rows may not be stored beyond the
buffer cache in memory, and thus may not be written to tempdb on disk. (All data is writ-
ten to memory first before going to disk.) It is not required that a versioned row get writ-
ten to disk. If the row is not needed for long, it may be flushed out of the buffer cache
before getting written to tempdb; thus, the disk write overhead is avoided.

When a row-versioning based isolation level is enabled for a database, then all data mod-
ifications for that database are row versioned, even if there are no active transactions
using that isolation level. This causes an increase in resource usage for data modifica-
tions. Tempdb must have sufficient space allocated to hold the version stores as well. It is
better to allocate file space initially for tempdb than to allow the file to automatically grow,
as the auto grow process can cause heavy overhead and performance degradation.
Tempdb may have to be very large, depending on the rate of data modifications within
each database that is enabled for row-versioning isolation. If disk space becomes full and
the tempdb file therefore does run out of space, the Database Engine automatically

Chapter 17 Transactions and Locking 489
attempts to shrink the version store. This is not a desirable condition and incurs over-
head and possible transaction errors if the shrink attempt is not successful.

More Info See SQL Server Books Online topic “Row Versioning Resource
Usage” for details on the shrink process.

Note that tempdb holds the version stores for all databases for an instance of SQL Server.
So if there are multiple databases in an instance, and multiple are configured for row-ver-
sioning based isolation, consider the tempdb size for all of those database’s version stores.
If tempdb runs out of available disk space, then row versions are no longer generated by
modification statements, and queries that try to access versioned data roll back.

In addition to space in tempdb, row versioning can add up to 14 bytes of information to
the user database data file(s) for each affected row of data. This information is added the
first time a row is modified and when any of the row-versioning features are being utilized
(features mentioned above). It contains the transaction sequence number of the transac-
tion that committed the current version, plus a pointer to the versioned row in the ver-
sion store. Extra space in the data files should be allocated to support this overhead.

More Info See the topic “Troubleshooting Insufficient Disk Space in tempdb” in
SQL Server Books Online for information on analyzing the space used in tempdb.

Read Committed Snapshot
Read committed snapshot is a database option that can be turned on or off at the data-
base level only and is used in conjunction with the read committed isolation level. When
this database option is enabled (ON) and read committed isolation level is used, row ver-
sioning is used to provide read consistency at the statement level. A stored version, or
snapshot, of the row or rows is taken as it existed at the beginning of the statement, so
that it can be read while another process is updating that data. This avoids a reader block-
ing on a writer. Also, since the reader does not hold shared locks on the table data being
read, writers are not blocked by readers.

To enable read committed snapshot for a database, you must turn on the database option
using the ALTER DATABASE T-SQL command. The command will succeed only when
there are no other connections into the database but the one running the command. If
there are other connections, this command will run in a wait state until they are discon-
nected. It should complete in just a few seconds. Here is an example of turning on read
committed snapshot for the AdventureWorks database:

ALTER DATABASE AdventureWorks

SET READ_COMMITTED_SNAPSHOT ON;

490 Part IV Microsoft SQL Server 2005 Architecture and Features
To show how this isolation level works, we’ll use a variation of a previous example with
the test1 table. First we drop and recreate the table and insert two rows, using Query Edi-
tor as follows:

USE AdventureWorks;

DROP TABLE test1;

CREATE TABLE test1(col1 int);

INSERT INTO test1 VALUES (1);

INSERT INTO test1 VALUES (2);

In the same Query Editor window, begin this update transaction with a 15-second delay
before committing. This update normally blocks a query of the same data when read
committed isolation is used without the snapshot option. This will show what happens
when the snapshot option is enabled:

BEGIN TRAN;

 UPDATE test1 SET col1=999 WHERE col1=1;

 WAITFOR DELAY ‘00:00:15’;

COMMIT;

From a second Query Editor window, immediately run this query on the test1 table,
which explicitly sets the transaction isolation level to read committed, the default. Read
committed isolation level must be used for the transaction in order for read committed
snapshot to have an effect and for versioned rows to be read by the query. (Autocommit
transaction mode is on, so we do not have to explicitly begin and end a transaction since
there is only one SELECT statement in this transaction.):

USE AdventureWorks;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SELECT * FROM test1;

With read committed snapshot isolation enabled in the database, the above SELECT
does not block on the UPDATE but reads the versioned rows that have the values 1 and
2. After the UPDATE commits, you will see the new values—999 and 2 if you rerun this
SELECT.

To see the default behavior, let’s turn read committed snapshot off:

ALTER DATABASE AdventureWorks

SET READ_COMMITTED_SNAPSHOT OFF;

Chapter 17 Transactions and Locking 491
Now if you rerun the UPDATE and SELECT, changing the updated value as follows, the
SELECT blocks and does not return data until the UPDATE has committed. Run the fol-
lowing in one Query Editor window:

Use AdventureWorks;

BEGIN TRAN;

 UPDATE test1 SET col1=1 WHERE col1=999;

 WAITFOR DELAY ‘00:00:15’;

COMMIT;

Run the following in a second window:
USE AdventureWorks;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SELECT * FROM test1;

One effect of using read committed snapshot isolation is that reads do not block on
writes. This is similar to using the NOLOCK table hint on the SELECT or the READ
UNCOMMITTED isolation level for the transaction, except that with those options dirty
reads are possible. With read committed snapshot, dirty reads never occur. The data is
read before the data is modified or after a modification is committed, but not if the mod-
ification is not yet committed (dirty read). Another effect is that reads also do not take
shared locks on the table data, as with NOLOCK and READ UNCOMMITTED.

Important Read committed snapshot isolation can help reduce blocking con-
tention, as do the NOLOCK hint and the READ UNCOMMITTED isolation level, but
with the added benefit that it does not allow dirty reads. Whether or not dirty
reads should be allowed should depend on business data access requirements
regarding concurrent users.

Advantages of Read Committed Snapshot
One of the main benefits of the read committed snapshot database option used with read
committed isolation level is that potential lock contention (blocking) can be avoided in
many cases, as seen in the above example. In addition, a consistent version of data can be
read without blocking on a current modification of that data, such that dirty reads are not
allowed. Read committed snapshot provides a new option to the NOLOCK hint and
READ UNCOMMITTED isolation level commonly used in previous versions of SQL
Server to reduce blocking.

Disadvantages of Read Committed Snapshot
The main disadvantage of using read committed snapshot is the overhead incurred in
the row versioning process. When the read committed snapshot option is enabled for a

492 Part IV Microsoft SQL Server 2005 Architecture and Features
database, then all data modifications must be row versioned in the tempdb database, in
spite of whether any read committed transactions are accessing that data. There is also
a background process which runs once per minute to remove versioned rows that are no
longer needed. Tempdb space also becomes an issue; there must be sufficient space to
hold the version stores, and tempdb disk performance is critical. When reading or writing
a versioned row, there is overhead of reading or maintaining a chained link list, linking
one or multiple versions of a row. Thus, overhead is incurred during data modifications
as row versions are stored and during reads as the appropriate row version is determined
and read.

The potential performance benefits of using read committed snapshot depend on several
factors, including the rate of data modifications in the database, the I/O performance of
the tempdb disk(s), and the amount of SQL Server blocking that occurred before read
committed snapshot is enabled. If there are frequent and long blocks occurring within
the system, then read committed snapshot may give a significant performance improve-
ment. If there are no blocking problems in the system, then overall performance may
show degradation by turning read committed snapshot on. If there were once blocking
problems in the system and those have already been reduced or eliminated by using
NOLOCK and READ UNCOMMITTED, then using read committed snapshot may show
performance degradation or no difference in performance since there is no blocking
problem to fix. If NOLOCK and READ UNCOMMITTED are removed and replaced with
read committed snapshot, you may also see performance degradation, but you will elim-
inate the potential for dirty reads. Evaluating the appropriate method really depends on
the data access requirements of each particular environment.

Snapshot Isolation Level
Snapshot isolation is a new isolation level for SQL Server 2005 that also uses row ver-
sioning. It is different than other isolation levels in that it must be used in conjunction
with a new database option called ALLOW_SNAPSHOT_ISOLATION. Once the data-
base option is turned on, then row versioning is enabled for the database, and all data
modifications are versioned. This allows transactions to use the isolation level SNAP-
SHOT. The database option and the isolation level work together: one at the database
level to enable row versioning and the other at the transaction level to use the versioned
rows. By default, ALLOW_SNAPSHOT_ISOLATION database option is set OFF for user
databases.

The main difference between read committed snapshot and SNAPSHOT isolation is that
SNAPSHOT ensures a consistent view of the data for the entire duration of a transaction,
not just for a statement, so all reads during the transaction access a view of the data as it
was last committed before the transaction started. The locking behavior is just like that of

Chapter 17 Transactions and Locking 493
read committed snapshot; read operations acquire no shared locks on data and do not
block on data modifications.

To use SNAPSHOT isolation, first the database option must be turned on as follows:

ALTER DATABASE AdventureWorks

SET ALLOW_SNAPSHOT_ISOLATION ON;

If you do not turn on the database option ALLOW_SNAPSHOT_ISOLATION and try to
use SNAPSHOT isolation level, Error 3952 is returned and the transaction will not exe-
cute. Let’s run through an example of using SNAPSHOT isolation now with the database
option enabled. First, run the following T-SQL in one Query Editor window, which
refreshes the data in test1 table, sets the isolation level to SNAPSHOT, and then begins a
transaction with the same query run twice with a 15-second delay in between:

USE AdventureWorks;

TRUNCATE TABLE test1;

INSERT INTO test1 VALUES (1);

INSERT INTO test1 VALUES (2);

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

BEGIN TRAN

 SELECT * FROM test1;

 WAITFOR DELAY ‘00:00:15’;

 SELECT * FROM test1;

COMMIT;

Immediately run the following in a second window, to see the UPDATE complete and
commit without blocking.

Use AdventureWorks;

BEGIN TRAN

 UPDATE test1 SET col1=999 WHERE col1=1;

COMMIT;

The second SELECT statement above finishes after the UPDATE has completed, but it
does not read the updated value 999. This is because the SNAPSHOT isolation level reads
from the version store so that the data read is the same as it was at the beginning of the
snapshot transaction. Therefore, both SELECT statements return the same data. These
results are the same as if the REPEATABLE READ isolation level were used, but the

494 Part IV Microsoft SQL Server 2005 Architecture and Features
method of achieving the results is quite different with SNAPSHOT isolation, which uses
row versioning instead of holding shared locks.

Advantages of Snapshot Isolation
One of the advantages of using snapshot isolation is the reduction in lock contention, as
with read committed snapshot. With snapshot isolation, an entire transaction can read
consistent data for its duration (via the version store) without preventing data modifica-
tions and without holding shared locks. This is especially beneficial in certain read-only
cases, for example, when reports must be run against a set of consistent data while data
is being continually updated by other users. The data modifications are not blocked by
the snapshot transaction reads, and the reads are not blocked by the data modifications.

Disadvantages of Snapshot Isolation
The disadvantages of snapshot isolation are similar in concept to those of read commit-
ted snapshot in that it uses tempdb for the version store, entails row versioning mainte-
nance overhead, and adds up to 14 bytes to each data row modified (see the previous
section, “Disadvantages of Read Committed Snapshot”). However, the overhead and per-
formance degradation may be much greater with snapshot isolation. More tempdb space
is needed because versions of rows must be saved in tempdb for the duration of entire
transactions, not just for a statement. This means the version store can grow much larger
since rows may not be removed as often.

Another disadvantage is that there can be a situation where an update conflict occurs and
the snapshot transaction must be rolled back. This happens when the following order of
events occurs: a snapshot transaction begins and reads some data, a second transaction
updates that same data, and the snapshot transaction then tries to update that same data.
This causes an update conflict, and the snapshot transaction is terminated and automat-
ically rolled back.

Consider using database snapshots as an alternative to snapshot isolation where data does
not have to be kept up-to-date, such as for daily, weekly, or monthly reporting queries.

Viewing Snapshot Database Options
To view whether the snapshot database options are enabled (1) or disabled (0) for all
databases, run the following query:

SELECT name, snapshot_isolation_state, is_read_committed_snapshot_on

FROM sys.databases

In the sample results shown below, snapshot isolation is turned on for master, msdb, and
AdventureWorks, and read committed snapshot is turned off for all databases. Snapshot
isolation is on by default only for master and msdb, and it cannot be disabled for these sys-
tem databases. Read committed snapshot is off for all databases by default, and it cannot
be turned on for the system databases master, msdb, and tempdb.

Chapter 17 Transactions and Locking 495
name snapshot_isolation_state is_read_committed_snapshot_on

------------------ ------------------------ -----------------------------

master 1 0

tempdb 0 0

model 0 0

msdb 1 0

AdventureWorksDW 0 0

AdventureWorks 1 0

mydatabase 0 0

Northwind 0 0

Summary
In this chapter, you’ve learned about transactions, how they are managed by default by
SQL Server, and how you can explicitly manage them. We covered topics including the
ACID properties of a transaction, the transaction modes that can be used to specify the
beginning and the end of a transaction, how resource locks are used to protect data con-
sistency, and the different ways to control transactions and locking behavior. We’ve also
taken a look at blocking, deadlocks, and the isolation levels, including the new read com-
mitted snapshot, snapshot isolation database option, and the new snapshot isolation
level. These concepts of transactions, locking, blocking, and isolation are critical to
understand and must be used appropriately in order for concurrent transactions to
access data with the proper locking behavior that suits the business data requirements.

Chapter 18

Microsoft SQL Server 2005
Memory Configuration

Buffer Cache .497

SQL Server Memory Allocation .502

Summary .506

Internal memory management for Microsoft SQL Server 2005 has changed in many ways
since SQL Server 2000. Configuring memory on the system has remained very similar,
though. This chapter covers the configuration topics. Configuring memory effecitively
can greatly improve database performance, so it is important to understand the options
database admistrators have in this area. This chapter focuses on the basics of buffer
cache management and memory configuration settings and options in SQL Server 2005
to allow you to make informed decisions about SQL Server memory configuration for
performance. This chapter explains several important SQL Server memory-related inter-
nal processes that will help you better understand memory usage in your system. It does
not get into the details of internal SQL Server caches. For details on the internal caches,
see the book by Microsoft Press titled Inside Microsoft SQL Server: The Storage Engine. Also,
see Chapter 4, “I/O Subsystem Planning and RAID Configuration,” for details on physi-
cal disk performance and RAID topics, which go hand-in-hand with memory relating to
performance.

Buffer Cache
Caching data in this context refers to the process of storing data from disk in memory.
When data is read from disk into memory, that data “gets cached” or it is “in cache.”
Because data access is much faster when the data can be found in memory, you want SQL
Server to have enough memory to achieve a high cache hit ratio.

The SQL Server buffer cache is the largest cache in SQL Server memory—it stores all data
and index pages. Each instance of SQL Server maintains a singly linked list, called the free
list, that contains the addresses of pages in the buffer cache that are free, or available for
storing data. When SQL Server first starts up, as pages are allocated for the buffer cache
497

498 Part IV Microsoft SQL Server 2005 Architecture and Features
they are initially free for use. As threads begin accessing data and SQL Server reads a page
from physical disk, that page is stored in the first free page in the free list. If that thread
or another thread must read or modify the same page, it can read the page from or modify
it in the buffer cache, instead of performing physical I/Os to the disk. The buffer cache
significantly speeds read and write performance by accessing the pages in memory,
which is a less resource-expensive operation than accessing pages on disk.

Each buffer page contains header information about the page. This header holds a refer-
ence counter and an indicator of whether the page is dirty. A dirty page is one that has
been modified in the buffer cache but whose changes have not yet been written to disk.
Each time a page is referenced in the buffer cache by a SQL statement, its reference
counter is incremented by one. Periodically, the buffer cache is scanned and the reference
counter is divided by four, with the remainder discarded. If the result of the division is
zero, the page has been referenced fewer than three times since the last scan, and the dirty
page indicator is set for that page. This indicator signals that the page can be added back
to the free list. If the page has been modified, its modifications are first written to disk
before the page is freed; otherwise, if the page had been only read but not modified, then
it will simply be freed without being written to disk. Basically, as more buffer pages are
needed for new data pages to be read in, the least frequently referenced pages will be freed.

When SQL Server is running on Windows 2000, Windows Server 2003, or Windows XP,
the work of scanning the buffer cache is performed by individual worker threads during
the time interval between the scheduling of an asynchronous read operation and the
completion of that read. The worker threads also write dirty pages to disk and add pages
to the free list. These write operations are also performed asynchronously so they do not
interfere with the thread’s ability to complete other operations.

Lazy Writer Process
There are two other built-in automatic mechanisms SQL Server uses to scan the buffer
cache and write out dirty pages: the lazy writer and the checkpoint processes. The lazy
writer periodically checks to ensure that the free buffer list does not fall below a specific
size (depending on the size of the buffer cache). If the free list has fallen below that size,
the lazy writer scans the cache, reclaims unused pages, and frees dirty pages with a refer-
ence counter set to zero. When running SQL Server on Windows 2000, Windows Server
2003, and Windows XP, most of this work is done by the individual threads mentioned
above, so typically the lazy writer does not have much work to do. However, in very I/O-
intensive systems, the lazy writer is needed to help maintain the free list. The checkpoint
process also writes out modified buffer pages to disk but does not free those pages; see the
following section, “Checkpoint Process,” for details on how and when the checkpoint
process runs.

Chapter 18 Microsoft SQL Server 2005 Memory Configuration 499
Checkpoint Process
A checkpoint is a SQL Server operation that synchronizes the physical data with the cur-
rent state of the buffer cache by writing out all modified data pages in buffer cache to disk.
It does not put the pages back on the free list as the lazy writer does. The checkpoint also
forces any pending transaction log records in the log buffer to be written to the log file on
disk. This assures a permanent copy of the data on disk at the point in time when the
checkpoint process completes. SQL Server has a thread dedicated to checkpoints. Per-
forming checkpoints also reduces the necessary recovery time in the event of a system
failure in cases where automatic recovery by SQL Server is possible. This is because by
writing data out to disk, checkpoints minimize the number of transactions that must be
rolled forward (transactions that completed but are not written to disk yet).

The time needed to recover the database is determined by the time since the last fully
completed checkpoint and the number of dirty pages in the buffer cache. So decreasing
the checkpoint interval—the amount of time between checkpoints (discussed in the next
section)—reduces the recovery time, but with some cost. The checkpoint process incurs
some overhead because it may perform a large number of writes, depending on the num-
ber of modified pages that must be written to disk. These writes could potentially inter-
fere with and slow the user transaction response times. This is typically not a problem
but potentially could be in systems that experience heavy data modifications.

The checkpoint operation involves a number of steps, including the following:

■ Writing out all dirty data to disk A dirty page is one that has been modified in
the buffer cache or log cache, but has not yet been written to disk.

■ Writing a list of outstanding, active transactions to the transaction log This step
notifies SQL Server of which transactions were in progress when the checkpoint
occurred, so that in the case of an automatic recovery, SQL Server knows to go back
further in the log than the checkpoint in order to recover those transactions.

■ Storing checkpoint records in the log A record marking the start and the end of
each checkpoint is written to the log.

Checkpoints occur per database, so, for example, if you are connected to SQL Server
using the master database and manually run the checkpoint command, the checkpoint
operation runs only on the master database. However, when SQL Server performs auto-
matic checkpoints, a checkpoint is run on all databases. Checkpoints occur in the follow-
ing cases:

■ Whenever you issue a manual CHECKPOINT command, a checkpoint operation is
executed against the current database in use.

500 Part IV Microsoft SQL Server 2005 Architecture and Features
■ Whenever you shut down SQL Server, a checkpoint operation is executed on all
databases. Using the SHUTDOWN WITH NOWAIT command skips the check-
point. This may cause the subsequent restart to take much longer to recover the
databases and is not recommended.

■ When the ALTER DATABASE command is used to add or remove a database file, a
checkpoint occurs.

■ When a minimally logged operation such as a bulk-copy is performed and the data-
base is in bulk-logged recovery model, a checkpoint occurs.

■ When a change going from the bulk-logged or full recovery models to the simple
recovery model is made, a checkpoint occurs.

■ Before a database backup is performed, a checkpoint is executed on that database.

■ By design, for databases using the full or bulk-logged recovery models, checkpoints
are periodically run on all databases as specified by the recovery interval server set-
ting (recovery interval is discussed in a later section).

■ With simple recovery model, checkpoints are run automatically either when the log
becomes 70 percent full or based on the recovery interval setting as above, which-
ever comes first in this case. For simple recovery model, the log is truncated after
checkpoints occur.

Checkpoint Duration
The CHECKPOINT command has a new option with SQL Server 2005. You can specify
a checkpoint duration, which is a number, in seconds, that you can request for SQL
Server to complete the checkpoint. In SQL Server 2000, this was not directly configurable
but was calculated from the recovery interval option. The following command performs
a checkpoint on the AdventureWorks database and requests that SQL Server complete the
checkpoint in 60 seconds:

USE ADVENTUREWORKS;

CHECKPOINT 60;

By default, SQL Server 2005 adjusts the frequency of writes that are performed during a
checkpoint in order to minimize impact on the system. Setting the checkpoint duration
to less time in seconds than the time the checkpoint would automatically take (assuming
similar write activity) increases the frequency of writes during the checkpoint by having
SQL Server dedicate more resources to it, and it will finish faster. On the other hand, set-
ting the checkpoint duration to a longer time decreases the frequency of writes, and thus

Chapter 18 Microsoft SQL Server 2005 Memory Configuration 501
the checkpoint takes longer to complete but incurs less resources. Typically, checkpoints
are best left as automatic.

Recovery Interval
The checkpoint interval, which is the time between the beginnings of consecutive check-
points, is determined by the recovery interval option and the number of records in the
transaction log, not by the system time or size of the log. The recovery interval option is
set for an entire SQL Server instance, not for each database, but checkpoints do occur on
a per-database basis. The recovery interval value is the number of minutes that you
choose to allow SQL Server for automatic recovery per database in case of a system fail-
ure. SQL Server uses an algorithm to determine when it should perform the next check-
point for each database based on the recovery interval. For example, if recovery interval
is set to five minutes, then SQL Server performs checkpoints per database often enough
that in the event of a system failure, no database recovery will take more than five minutes
when SQL Server is restarted (assuming the failure is of a type from which SQL Server
can recover automatically).

The number of transactions in the log file also affects the checkpoint interval. The more
records in the transaction log, the shorter the checkpoint interval will be, which means
the checkpoint executes more often. As more data modifications occur, more records are
inserted into the transaction log and, consequently, SQL Server writes those changes to
disk more often. If few or no changes are made to the database, the transaction log con-
tains only a few records, and the checkpoint interval is longer. If a database is read-only,
there are no checkpoints. For example, if the recovery interval is set to five minutes but
only a few modifications have been written to the log in the hour since the last check-
point, then another checkpoint might not occur for an entire hour. This is because the few
modifications made will take only a number of seconds to recover, and SQL Server has up
to five minutes. On the other hand, if many modifications have occurred in the database
and many log records written, the SQL Server checkpoints that database more often.

The default value for recovery interval is 0, which instructs SQL Server to determine the
checkpoint interval automatically—usually less than one minute, which is quite often. For
systems that have a large amount of memory and a lot of insert, delete, or update activity,
this default setting might cause too many checkpoints to occur such that the writes inter-
fere with the other activity on the system. In that case, you might want to set the option
to a larger value. If you can tolerate a 10-minute recovery in the event of a system failure,
for example, you might see better transaction performance by setting recovery interval to
10, as checkpoints will be performed less often. How you change this option depends on
how long you can wait for a recovery in case of a failure, the frequency of failures, and
whether performance is affected.

502 Part IV Microsoft SQL Server 2005 Architecture and Features
Recovery interval is an advanced option—Show Advanced Options must be set to 1 in
order to view it. To set recovery interval using Transact-SQL, use the sp_configure stored
procedure, as shown here:

sp_configure “recovery interval”, 10;

RECONFIGURE WITH OVERRIDE;

This option does not require restarting SQL Server to take effect, but the change does not
become active until you run the RECONFIGURE WITH OVERRIDE command. The
RECONFIGURE command signals SQL Server to accept the configuration changes as the
run value.

To ensure that the setting you have made is actually in effect, use the following T-SQL
statement and verify the run value column shows the value you entered:

sp_configure “recovery interval”;

Important The recovery interval option is an advanced option and should be
changed only after careful planning. Increasing the recovery interval setting
increases the time necessary for SQL Server to perform automatic database
recovery.

SQL Server Memory Allocation
Memory management in SQL Server 2005 requires little or no user intervention, and by
default memory is allocated and deallocated dynamically by SQL Server as needed for
optimal performance, according to the amount of physical memory available. You can
override this dynamic behavior if necessary using the configuration options described in
this section.

Dynamic Memory Allocation
With SQL Server 2005, memory allocation is by default dynamic, even when AWE is
enabled. (AWE is applicable only on 32-bit operating systems and is explained in detail
in Chapter 5, “32-Bit Versus 64-Bit Platforms and SQL Server 2005.”) The exception to
this is when running SQL Server 2005 on Windows 2000 32-bit operating system with
AWE enabled. In this case, the memory allocation is not dynamic but rather static, the
same as it was previously with SQL Server 2000 Enterprise Edition 32-bit running on
either Windows 2000 or Windows Server 2003 32-bit operating systems. For this excep-
tion, the memory is all allocated at SQL Server startup and is not released until SQL
Server is shut down.

Chapter 18 Microsoft SQL Server 2005 Memory Configuration 503
Note Support for AWE is available only with SQL Server 2005 Standard, Enter-
prise, and Developer Editions, and applies only when running on 32-bit operating
systems.

SQL Server 2005 manages memory dynamically based on either the default memory set-
tings or settings that you specify. Dynamic memory management means that SQL Server
automatically acquires and releases memory for its memory pool as necessary. At startup,
SQL Server acquires only the memory that is needed at that point. As users connect and
access data, SQL Server allocates memory to the memory pool as needed to support the
workload. It allocates memory from the available physical memory in the system if there
is any available. SQL Server can also deallocate memory from the memory pool, freeing
it for other applications to use. If no other applications are requesting memory, however,
SQL Server maintains its memory pool at the current size even if there are unused pages;
it deallocates memory only if it is needed by another process.

To avoid excessive paging by the operating system (some minimal paging is normal),
SQL Server maintains its virtual memory space at less than available physical memory, so
it is never bigger than physical memory. This allows SQL Server to have the largest mem-
ory pool possible while preventing SQL Server pages from swapping to the page file on
disk. The page file should not be utilized for SQL Server pages. If the leftover available
memory in the system is consumed by some other application, SQL Server deallocates
more of its memory pool to keep some physical memory free on the system at all times.
If the application then releases some memory and SQL Server needs it, SQL Server real-
locates the memory. With Windows 2000, the amount of free physical memory was kept
between 4MB and 10MB, and with Windows Server 2003 a memory notification API is
used to determine when SQL Server should release or allocate memory.

With dynamic memory allocation, if additional applications running on the same
machine as SQL Server require memory, SQL Server releases memory for them from its
memory pool. Thus, other applications might attempt to steal memory from SQL Server’s
total memory pool. This is why it is a best practice to dedicate a system for SQL Server
and not run other applications alongside it.

Note It is highly recommended that you dedicate the database server to SQL
Server only and do not run user applications on the same system. This helps
avoid paging problems and avoids other applications stealing memory from SQL
Server, as discussed above.

504 Part IV Microsoft SQL Server 2005 Architecture and Features
Static Memory Allocation
There are two cases in which SQL Server maintains a static amount of memory. One was
mentioned above, when SQL Server 2005 (32-bit edition of Standard, Enterprise, or
Developer) is run on Windows 2000 32-bit, with AWE enabled. The other case is when
the memory settings are set to the same value. With static memory allocation, once the
maximum amount of memory is allocated to SQL Server, it will not release the memory,
even if another process may need it. In this case, paging of the other applications could
occur if there is not enough memory in the system to support SQL Server and any other
applications.

Real World Don’t Forget AWE Enabled

I have seen cases in which a client has a 32-bit server with 8 GB of RAM running on
32-bit Windows operating system, and they are experiencing poor performance
with indications of a memory bottleneck. The first thing I evaluate are the memory
configuration options and run System Monitor to identify exactly how much mem-
ory SQL Server is actually allocating. (With AWE enabled, the Task Manager does
not accurately show the AWE memory allocated to SQL Server.) Many times I have
found that even though there was 8 GB of physical RAM in the system, SQL Server
was only using about 1.6 GB! After checking the awe-enabled option, I found that
it had been overlooked and had not been changed to 1 (enabled). After enabling
this option, SQL Server is then able to see about 6GB of memory. This typically pro-
vides a huge improvement in performance.

Setting Max and Min Server Memory
There are two configuration options in SQL Server that allow you to configure memory
settings: min server memory and max server memory. There is a third option that must
be set if AWE will be used, called awe-enabled. All of these are advanced options, so to
view them with sp_configure, you must first set show advanced options to 1 and reconfig-
ure, as follows:

sp_configure “show advanced options”, 1;

RECONFIGURE;

To enable the use of AWE memory with SQL Server (where applicable), set the awe-
enabled option to 1, (1 = enabled; the default of 0 = disabled) as follows:

sp_configure “awe enabled”, 1;

You must restart the instance of SQL Server for the awe-enabled option to take effect.

Chapter 18 Microsoft SQL Server 2005 Memory Configuration 505
To achieve dynamic memory allocation, you can leave the default settings for both min
server memory (0) and max server memory (2147483647), which allows SQL Server to
acquire as much memory as is available in the system as needed, or you can set those
options to other limits. SQL Server dynamically aquires and releases memory between
the amounts specified for min and max server memory settings.

The default of min server memory, 0, also allows other applications to force SQL Server
to release memory to a low amount. To limit the minimum amount of memory that SQL
Server should maintain, you can set a minimum size for the memory pool by configuring
the min server memory option, so that SQL Server does not release memory if doing so
causes the pool to fall below that size. For example, to ensure that SQL Server always has
at least 256 MB of memory, set min server memory to 256, as follows:

sp_configure “min server memory”, 256;

RECONFIGURE;

You might also want to put a maximum limit on the SQL Server memory pool by setting
the max server memory option to a value so that other applications are ensured a certain
amount of memory that cannot be used by SQL Server. For example, to tell SQL Server
not to use more than 1,000 MB of memory, set max server memory to 1,000, as follows:

sp_configure “max server memory”, 1000;

RECONFIGURE;

These options only require the RECONFIGURE in order to take effect; they do not
require a restart of SQL Server.

When other applications are running on the same system as SQL Server, avoid configur-
ing SQL Server memory settings in a manner that causes excessive paging on the system.
For example, if you set the min server memory option too high, other applications might
have to page as there may not be enough physical memory left over. Use System Monitor
in the Windows 2003 Performance console to view the Memory, Pages/sec counter to
determine how much paging is occurring on the system. A low number of occasional
pages per second is normal, but a continuously high number of pages per second indi-
cates a paging problem that is slowing down the performance of your system. If you can-
not avoid excessive paging by adjusting the SQL Server memory options, you may need
to add physical memory in the machine. First, be sure that your memory settings are con-
figured correctly. Remember to enable the awe-enabled option if using 32-bit and there
is more than 4 GB RAM in the system in order to allow SQL Server to utilize more than
4 GB.

Microsoft recommends that you allow SQL Server to configure its memory usage dynam-
ically by leaving these two memory options at their defaults. Again, this is best when you
have a dedicated machine for SQL Server such that it will not have to release memory for

506 Part IV Microsoft SQL Server 2005 Architecture and Features
other applications. When other applications demand memory on the server, you might
need to adjust these options. But even with a minimum or maximum memory size con-
figured, SQL Server dynamically adjusts memory as needed without violating the upper
or lower limits.

To force SQL Server to allocate a fixed amount of memory, set the min server memory and
max server memory options to the same value. SQL Server allocates memory as needed up
to the maximum configured value (or actually, up to the maximum memory available, yet
not exceeding the max server memory setting). SQL Server then does not release mem-
ory below the min server memory value. Again, you do not want to cause paging on the
system, so do not set the fixed memory size too large for your system. Leave some mem-
ory free for other applications when necessary.

Note If you change a configuration value for an option that does not require
SQL Server to be restarted, you must run the RECONFIGURE statement for the
new value to take effect as the run value (the value SQL Server uses while running).

Again, Microsoft recommends that you allow SQL Server to configure memory dynami-
cally by leaving the memory options set to their default values if you have a server dedi-
cated to SQL Server. This memory management strategy is designed to improve SQL
Server memory usage and to relieve the database administrator (DBA) of memory config-
uration worries.

Summary
This chapter focused on the memory configuration settings that a DBA will need to
understand and may need to adjust. SQL Server 2005 performs dynamic memory alloca-
tion and deallocation by default in all cases but one—when it is run on 32-bit Windows
2000 with AWE enabled. The configuration options may be manually set to adjust
dynamic memory allocation minimum and maximum limits or to configure a static mem-
ory size for SQL Server. Using these settings appropriately is very important to SQL
Server performance.

Chapter 19

Data Partitioning

Partitioning Fundamentals .508

Designing Partitions. .512

Creating Partitions .513

Viewing Partition Information .519

Maintaining Partitions .526

Using Partitions .535

Partitioning Scenarios .536

Summary .539

Data partitioning is the process of dividing, or partitioning, a table into smaller, more
manageable pieces. Data partitioning exists in two forms: horizontal partitioning and ver-
tical partitioning. Horizontal partitioning is where a table with a large number of rows is
split into multiple partitions, each with the same number of columns but fewer rows. Ver-
tical partitioning is where a table with a large number of columns or very large columns is
split into multiple partitions, each with the same number of rows but fewer columns.

Vertical partitioning appears in two forms. The first form is known as normalization. Nor-
malization is the standard RDBMS practice of taking redundancy out of rows in a table by
storing redundant data once and then referencing that data in a lookup table. For exam-
ple, a table of banking transactions need not have the full extent of customer information
in each row. Each row contains a customer ID that points to the customer table which
contains the customer ID and information about the customer.

The second form of vertical partitioning is row splitting. Row splitting involves taking a
row and dividing it into two or more tables. Each table contains the same number of
rows; however, a pointer in the first part of the table identifies the remaining row piece in
another table. This allows the size of a table to be reduced by splitting off pieces of it.
507

508 Part IV Microsoft SQL Server 2005 Architecture and Features
Normalization is a regular part of database design and has been around for many years.
Row splitting is also a fairly common practice, although not as common as normalization.
Although these are important concepts, this chapter focuses on the new SQL Server fea-
ture of data partitioning that is introduced in SQL Server 2005. SQL Server data parti-
tioning is a horizontal partitioning feature.

Data partitioning has existed in a very limited form since SQL Server 7.0 and then
became a little more advanced in SQL Server 2000 using the UNION ALL view. With the
UNION ALL view, multiple tables were created, each with the same data structure, and
were joined together with a view that was a UNION ALL between all partitions. With
SQL Server 7.0, you could not update this view, but with SQL Server 2000, you could.
However, the full power of partitioning was not available until native partitioning was
introduced in SQL Server 2005.

In this chapter, you will learn about the fundamentals of data partitioning in SQL Server
2005, why you would want to use data partitioning, and how it can benefit your database.
You will also learn how to create, modify, and monitor partitions. In addition, this chapter
will provide information on how to maintain partitioned tables and indexes and addi-
tional tips and techniques for using partitions effectively. Data partitions can be a power-
ful tool when created and used correctly.

Note Data partitioning is available only in SQL Server 2005 Enterprise Edition
and Developer Edition. It is not available in Standard Edition.

Partitioning Fundamentals
Data partitioning does one thing and only one thing. It divides the data in a table (or
index) into smaller, more manageable pieces, known as partitions. By dividing data into
smaller pieces, performance can be greatly improved. In the next few sections you will
begin to see why partitioning is so important. Later in the chapter you will learn how to
use partitioning to optimize your database.

Data Partitioning Basics
With SQL Server 2005, the data partitioning option allows you to divide a table or index
into smaller, more manageable parts (up to 1,000). This is done by creating a partition-
ing function and a partitioning scheme. The partitioning function defines how the data
is divided up within the partitions. The partitioning scheme defines how and to what
type of storage the partitions are allocated. Finally, when creating the table or index, the

Chapter 19 Data Partitioning 509
column that the data is partitioned on is defined. This is sometimes known as the parti-
tion column.

Note SQL Server 2005 considers all tables and indexes to be partitioned. If you
do not explicitly create partitions, the table or index will be considered a single
partition.

The partition column is similar to an index key in an index. Like a key in an index, if the
column is not defined in the WHERE clause of your SQL statement, partitioning will not
be effective. Unlike an index, where the lack of the index key causes the index not to be
used, the lack of a partition column causes all partitions to be used. This defeats the pur-
pose of the partition. However, unlike an index—where using an index inappropriately
can cause more I/Os to be done than in a table scan—with partitioning, you will read all
partitions if you don’t take advantage of the partitioning. This is no different than not par-
titioning at all. There is no improvement, but there is no penalty either. As you will see
later in this chapter, how you design and create your partitions is important.

Partitioning Benefits
The primary purpose of partitioning is to divide data in a table into manageable pieces.
This has two main advantages. The first is a reduction in the amount of data that must be
accessed during certain operations, such as aggregates or table scans. The second is the
ability to more closely control the location and type of storage used for your table data.

Partitioning for Data Manageability
When large SQL Server databases are in production, some management and mainte-
nance tasks can take a very long time to complete. I’m referring specifically to operations
such as index rebuilds, index defragmentations, and index creations, which were covered
in Chapter 12, “Creating Indexes for Performance.” Occasionally, indexes need to be
rebuilt in order to repack them and to reduce fragmentation. Fragmentation occurs when
data is inserted into, updated, or removed from a table, thus changing the index and
causing page splits. If an index is never changed, it never needs to be rebuilt.

Under many circumstances, only a portion of your data is actually changing in a table.
For example, in most financial systems, transaction data is stored with a timestamp. As
new data is added, it is identified as new by the timestamp. It might be rare for historical
data to change. So, if data is partitioned by date, it is necessary only to rebuild the parti-
tions that have changed. This allows you to actively maintain a much smaller data set,
while not having to touch the older data.

510 Part IV Microsoft SQL Server 2005 Architecture and Features
Real World Size Matters

When rebuilding or defragmenting an index, the size of the index and its under-
lying data will proportionally affect how long this operation takes to complete.
Although there are a number of factors that affect these operations, such as size of
the data cache, speed of the I/O subsystem, and the speed of the CPUs, it is a fact
that larger indexes take longer to rebuild than smaller indexes because all table
data must be read in order to rebuild the index. Thus, by using partitions, you can
keep the size of the partition small, reducing the time it takes to maintain that
partition.

By partitioning the table so that more manageable pieces can be maintained, the time it
takes to complete these operations is minimized. Rebuilding indexes is a fact of life in
SQL Server systems, and unfortunately, there are some databases where the indexes can-
not be maintained properly because of the sheer size of the table data. By partitioning,
the time necessary to complete tasks is minimized and reasonable.

Note Both the ALTER INDEX REBUILD and the DBCC INDEXDEFRAG (which is
obsolete) statements support partition operations.

Partitioning for Storage Resource Utilization
Although storage has become much less expensive in the last few years, it still can be
costly for large databases. Rather than sizing the I/O subsystem for space as was previ-
ously done, you are most likely sizing your I/O subsystem for performance, which was
discussed in both Chapter 4, “I/O Subsystem Planning and RAID Configuration,” and
Chapter 6, “Capacity Planning.” Partitioning can help to maximize both performance and
budget.

Many systems maintain a large amount of data but use only a smaller subset of that data
under normal conditions. For example, most financial systems must maintain seven
years of data in the database, but most data processing is interested in only the latest
year’s data. In this situation, you can partition the tables into different filegroups. Read-
only historical data can be placed on RAID-5 storage and current read-write data can be
placed on faster RAID-10 storage.

Performance Benefits of Partitioning
In addition to maintenance and storage considerations, partitioning can greatly
enhance the performance of both queries and transactions in your database. There are

Chapter 19 Data Partitioning 511
often conditions where indexes are not effective. Specifically, indexes are ineffective
when large amounts of data are selected from a table. This might be due to aggregates or
to table scans caused by other reasons.

Partitions Versus Indexes
If a data access touches more than five to 10 percent of the rows in a table, it is better to
do a table scan than to access the data because of all the extra overhead incurred by going
through the branch pages of the index. In addition, if the index access is via a nonclus-
tered index, the resulting bookmark lookup causes additional overhead.

The result of partitioning is that now table scans can be much cheaper because a table
scan has now turned into a set of partition scans, which can potentially be performed in
parallel. The partition scans consist of a table scan on one or more partitions. This scan
accesses far fewer rows than a full table scan across all of the data would access, thus
improving performance.

Real World My Opinion on Data Partitioning

In my opinion, the primary value of partitioning is the ability to reduce the amount
of data accessed from SQL statements. This will reduce I/Os and the amount of
buffer cache used, thus improving overall system performance. Others might pro-
mote the benefit of separating partitions into different filegroups, but this is sec-
ondary. With SAN or NAS storage, chances are that you might be accessing logical
disks that share the same disk drives regardless of how you split up the partitions.
If your I/O subsystem is optimally configured, the real value of data partitioning is
data reduction.

With the introduction of data partitioning it is now possible to avoid indexes that you
otherwise might not have any choice but to create.

Partitions Versus Bad Indexes
Prior to SQL Server 2005, it was often necessary to create indexes that were suboptimal
simply because you have no other choice. Usually, this takes the form of an index on a
datetime field. Although indexes on datetime fields can be effective in some cases, it’s usu-
ally not a good idea because the indexes are very unbalanced. Indexes like to be created
on columns that are fairly unique so that the modified branch pages can be spread out
somewhat among the index pages.

A datetime data type is stored as two 4-byte integers. The first 4-byte integer is the number
of days before or after the base date of January 1, 1900. The second 4 bytes represent the

512 Part IV Microsoft SQL Server 2005 Architecture and Features
number of milliseconds since midnight. A smalldatetime data type is stored as two 2-byte
integers. The first 2-byte integer is the number of days after January 1, 1900. The second
2 bytes are the number of minutes since midnight.

Real World Don’t Index datetime

Since the first part of the datetime or smalldatetime data types is days, it is conceiv-
able that many entries are made into the table during the same day. Thus, sec-
tions of the index that are close to each other will be accessed, causing excessive
page splits. In addition, it is unlikely that the WHERE clause of a SQL statement
will specify milliseconds or even minutes, thus causing index scans. For this rea-
son, I do not recommend indexing on datetime fields, especially now that we have
partitions.

Designing Partitions
Just as with indexes, partitions should be designed carefully in order to be effective. As
with indexes, in order to take advantage of data partitioning, you must provide the par-
titioning column in the WHERE clause of your SQL statements for the partitioning
scheme to be evaluated and utilized. Consider the following criteria to design partitions
effectively:

■ How will this data be used? Are there criteria that are regularly used in the WHERE
clause of your SQL statement?

■ How is data aggregated? Do reports look at data for each month, quarter, or year?

■ Is data separated by account? Do accounts mix, or do you always look at one
account at a time?

■ Are there common SELECT criteria? Is there some data that is always used in the
WHERE clause of your SQL statements?

By understanding the data and finding criteria that data is divided on, you can better
develop a partitioning design that is optimal. What and how to partition is decided at the
design stage of the database development. The designer, who is intimately familiar with
the data and the application, should be able to pick natural partitions for data. For exam-
ple, since the designer knows that end-of-month processing will select an entire month’s
worth of data, this might indicate that partitioning on month is natural.

Chapter 19 Data Partitioning 513
Note Not only does partitioning allow you to reduce the amount of data
accessed in aggregates and table scans, but it allows join data to be reduced as
well. When designing your database for performance, keep in mind both indexes
and partitions and choose the option more appropriate for your environment.

Partitioning Design Fundamentals
In order to effectively design partitions, you should consider the following criteria:

■ Partition large tables where most data is not regularly used.

■ Partition on objects where data can be easily segmented and where data is used
together.

■ Partition objects that are used in aggregates based on ranges of data such as dates,
accounts, and so on.

■ Partition where data is segmented but where indexes aren’t effective because of the
large number of rows normally selected.

Each application and database is different. How you partition will depend on exactly
what your application is doing and how your database is designed. These are only guide-
lines to help with that process.

To sum up the design project, there are two main questions that must be answered:

1. What column will be partitioned?

2. How will that column be partitioned?

Once these questions have been answered, the rest is only mechanics. However, these
questions might not always be easy to answer.

Creating Partitions
Creating partitions is a three-step process. In the first step, a partition function is created.
This function defines how the partitions will be formed by specifying how data is divided.
The second step is creating the partition scheme. The partition scheme is used to define
how the partitions will be physically defined in the database. The third and final step is
creating the table or index that uses the partition scheme that you have developed.

Create the Partition Function
The partition function is used to define the criteria for dividing the data into the indi-
vidual partitions. A partitioned table or index can be made up of as few as one partition

514 Part IV Microsoft SQL Server 2005 Architecture and Features
(all objects are considered partitioned now) or as many as 1,000 partitions. These par-
titions are actually ranges of data. The ranges can be either left-bound (less than or equal
to) or right-bound (less than).

The partition function is created with the CREATE PARTITION FUNCTION command.
The syntax of the CREATE PARTITION FUNCTION command is as follows:

CREATE PARTITION FUNCTION partition_function_name (input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]])
[;]

The parameters for the CREATE PARTITION FUNCTION are as follows:

■ The partition_function_name must fall within the specifications for SQL Server iden-
tifiers to , be unique within the database.

■ The input_parameter_type specifies the data type for the partition column. Valid data
types are all data types except text, ntext, image, xml, timestamp, varchar(max), nvar-
char(max), varbinary(max), and alias data types, or CLR user-defined data types.

■ The boundary_value is a list of boundaries that define the partitions. If no value is
specified, the partition maps the entire table. It is a constant value against which
column values in a table or index are compared.

■ The LEFT or RIGHT qualifier specifies the side of the boundary value to which the
partition belongs.

Note A SQL Server identifier is a name of a SQL Server object, such as a table,
index, partition function, and so on. It must start with the letters a-z, A-Z or _
(underscore), @, or # and can be made up of the characters, numbers, @, _
(underscore), #, or $. An identifier cannot be a SQL Server reserved key word.

The LEFT and RIGHT boundaries define which side of a boundary the data belongs to.
For example, if you are partitioning by date the value “4/1/2005,” you probably want to
use right partitioning to include any data on and after April 1, 2005. If you are partition-
ing on “12/31/2005,” you probably want to use left partitioning. With left partitioning,
any data after December 31, 2005 is included in the partition. December 31, 2005 is not
included in this partion.

Thus, left and right partitioning allow you to accommodate different partition types. For
example, using the LEFT boundaries allow you to use partitions such as years where you
might partition as (“12/31/2003,” “12/31/2004,” “12/31/2005”). This is convenient

Chapter 19 Data Partitioning 515
because the year always ends on December 31. However, if you are partitioning by month,
February will end on a different day of the month. Therefore, right partitioning is more
appropriate because the month always starts on the first day of the month.

Let’s look at a few examples of creating partition functions. The following is a very basic
partition based on a set of values:

CREATE PARTITION FUNCTION partfunc1 (int)

AS RANGE

FOR VALUES (1000, 2000, 3000, 4000, 5000);

This partition function creates the partitions shown in Table 19-1.

Another example of a partition is partitioning by dates. In this example, the partitioning
is done by quarter. Because the quarters start on the first days of January, April, July, and
October, this partition can be created as a right partition:

CREATE PARTITION FUNCTION partdatefunc1 (datetime)

AS RANGE RIGHT

FOR VALUES (‘1/1/2003’, ‘4/1/2003’,

 ‘7/1/2003’, ‘10/1/2003’,

 ‘1/1/2004’, ‘4/1/2004’,

 ‘7/1/2004’, ‘10/1/2004’,

 ‘1/1/2005’, ‘4/1/2005’,

 ‘7/1/2005’, ‘10/1/2005’);

This partition function creates the partitions in Table 19-2. Only a subset of the example
above is shown in this table.

Table 19-1 Partition Example 1

Partition Lower Bound Upper Bound

1 < = 1000

2 > 1000 <= 2000

3 > 2000 <= 3000

4 > 3000 <= 4000

5 > 4000

Table 19-2 Partition Example 2

Partition Lower Bound Upper Bound

1 < ‘1/1/2003’

2 >= ‘1/1/2003’ < ‘4/1/2003’

516 Part IV Microsoft SQL Server 2005 Architecture and Features
The partitioning continues on to October 1, 2005. This partitioning function is suitable for
right partitioning, while the example that precedes it is more suitable for left partitioning.

Once the partitioning function is created, the partition scheme maps the partition func-
tion to filegroups, as discussed in the next section.

Create the Partition Scheme
The partition scheme is used to map to filegroups the partitions defined in the partition
function. The partition scheme can map partitions individually to filegroups or it can
map all partitions to the same filegroup. The syntax for the CREATE PARTITION
SCHEME command is as follows.

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
[ALL] TO ({ file_group_name | [PRIMARY] } [,...n])
[;]

The parameters for the CREATE PARTITION SCHEME are as follows:

■ The partition_scheme_name must fall within the specifications for SQL Server iden-
tifiers, be unique within the database, and be the name of the partition scheme.

■ The partition_function_name specifies the name of the partition function with
which to associate this partition scheme.

■ The file_group_name is a list of filegroups with which the scheme is associated, or
PRIMARY is used to associate all partitions with the primary filegroup. The key-
word ALL specifies that all partitions go to this filegroup.

Here are a few examples of creating the partition schemes. The first example simply cre-
ates a partition scheme using the primary filegroup for all partitions and uses the parti-
tion function created earlier:

CREATE PARTITION SCHEME partscheme1

AS PARTITION partfunc1

ALL TO (‘PRIMARY’);

3 >= ‘4/1/2003’ < ‘7/1/2003’

4 >= ‘7/1/2003’ < ‘10/1/2003’

5 >= ‘10/1/2003’ < ‘1/1/2004’

Table 19-2 Partition Example 2 (Continued)

Partition Lower Bound Upper Bound

Chapter 19 Data Partitioning 517
To separate the partitions into different filegroups, use the following syntax:

CREATE PARTITION SCHEME partscheme1

AS PARTITION partfunc1

TO (fg1, fg2, fg3, fg4, fg5, fg6);

Note The filegroups specified in the CREATE PARTITION SCHEME statement
must already exist.

To create a partition scheme for the second example above, use the following syntax:

CREATE PARTITION SCHEME partdatescheme1

AS PARTITION partdatefunc1

ALL TO (‘PRIMARY’);

Once you have created the partition function and partition scheme, the partitioned table
or index can be created using the partition scheme created here.

Create the Partitioned Table
Once the partition function and partition scheme are in place, the partitioned table can
be created. The partitioned table is created with the CREATE TABLE statement. The per-
tinent subset of the CREATE TABLE statement syntax is slightly different with parti-
tioned tables, as shown here. The full CREATE TABLE statement is covered in Chapter
11, “Creating Tables and Views:”

CREATE TABLE
[database_name . [schema_name] . | schema_name .] table_name

({ <column_definition> | <computed_column_definition> }
 [<table_constraint>] [,...n])

 [ON { partition_scheme_name (partition_column_name) | filegroup
 | “default” }]
 [{ TEXTIMAGE_ON { filegroup | “default” }]
[;]

The major difference for partitioned tables is the addition of the partition_scheme_name
(partition_column_name) qualifier. This allows you to specify which column the table is
partitioned on. The partition_column_name must correspond to a column with the col-
umn type specified in the partition function.

518 Part IV Microsoft SQL Server 2005 Architecture and Features
Once you have created the partition function and partition scheme, creating the parti-
tioned table is the easy part. The following examples show how to create the two parti-
tioned tables used in the previous examples. You will notice that even though the
partition functions and partition schemes are different in the two examples, the CREATE
TABLE statements are identical; only the names have changed:

CREATE TABLE parttable1

(

 col1 int,

 col2 int,

 col3 int

)

ON partscheme1 (col1);

The second example is as follows:

CREATE TABLE parttable2

(

 col1 int NULL,

 col2 int NULL,

 col3 int NULL,

 col4 datetime NULL

)

ON partdatescheme1(col4) ;

As you can see, the CREATE TABLE statement is very straightforward for partitioned
tables. In addition to partitioned tables, you can also create partitioned indexes.

Create the Partitioned Index
By default, if you create an index on a partitioned table, it will be partitioned on the
underlying partition scheme of the table itself. A partitioned index is created with the
CREATE INDEX statement. The pertinent subset of the syntax of the CREATE INDEX
statement is as follows. The full CREATE INDEX syntax is shown in Chapter 12:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON <object> (column [ASC | DESC] [,...n])
[INCLUDE (column_name [,...n])]
[WITH (<relational_index_option> [,...n])]
[ON { partition_scheme_name (column_name)

Chapter 19 Data Partitioning 519
| filegroup_name
| default
}

]
[;]

As with the partitioned table, the main difference between the traditional CREATE
INDEX statement and the partitioned index statement is the ON (partition_scheme_name
(column_name) qualifier:

CREATE INDEX ix_parttable2

ON parttable2(col1);

Note The index is created on col1, but the table and index are partitioned on col4.

It is possible, and sometimes beneficial, to partition the index differently than the under-
lying table. This is done by creating a different partition function and partition scheme
and referencing this partition scheme in the CREATE INDEX statement, as shown here:

CREATE INDEX ix2_parttable2

ON parttable2 (col1)

ON partscheme1 (col2);

As you can see, creating a partitioned index can be a little confusing given the multiple
use of the ON qualifier. As discussed, with respect to creating tables, the creation of the
index is the easy part after the partition function and partition scheme have been created.

Viewing Partition Information
One of the first things that many people like to do when creating partitions is to test
them. It is easy to insert data into a partitioned table because partitioning is automatic.
Since partitioning is native to SQL Server 2005, the data is automatically inserted into the
correct partition. However, if you want proof that partitioning is working, you can use
some of the queries that you will learn in this chapter. Partition information can be found
with both SQL statements and SQL Server Management Studio.

Viewing Partition Information with SQL Statements
If you are like me, you’d like some sort of proof or indication that partitioning is really
working. The following example demonstrates how you can create a partitioned table,
insert data into it, and see how partitioning has worked:

520 Part IV Microsoft SQL Server 2005 Architecture and Features
CREATE PARTITION FUNCTION partfunc1 (int)

AS RANGE

FOR VALUES (1000, 2000, 3000, 4000, 5000);

CREATE PARTITION SCHEME partscheme1

AS PARTITION partfunc1

ALL TO (‘PRIMARY’);

CREATE TABLE parttable1

(

 col1 int,

 col2 int,

 col3 int

)

ON partscheme1 (col1);

INSERT INTO parttable1 VALUES (10, 10, 10);

INSERT INTO parttable1 VALUES (999, 10, 10);

INSERT INTO parttable1 VALUES (1000, 10, 10);

INSERT INTO parttable1 VALUES (2000, 10, 10);

INSERT INTO parttable1 VALUES (3000, 10, 10);

INSERT INTO parttable1 VALUES (5000, 10, 10);

INSERT INTO parttable1 VALUES (6000, 10, 10);

INSERT INTO parttable1 VALUES (7000, 10, 10);

INSERT INTO parttable1 VALUES (9000, 10, 10);

INSERT INTO parttable1 VALUES (993, 10, 10);

INSERT INTO parttable1 VALUES (6000, 10, 10);

INSERT INTO parttable1 VALUES (5000, 10, 10);

INSERT INTO parttable1 VALUES (7000, 10, 10);

INSERT INTO parttable1 VALUES (6600, 10, 10);

INSERT INTO parttable1 VALUES (8200, 10, 10);

Chapter 19 Data Partitioning 521
INSERT INTO parttable1 VALUES (8900, 10, 10);

INSERT INTO parttable1 VALUES (17000, 10, 10);

INSERT INTO parttable1 VALUES (61600, 10, 10);

INSERT INTO parttable1 VALUES (81200, 10, 10);

INSERT INTO parttable1 VALUES (18900, 10, 10);

INSERT INTO parttable1 VALUES (10, 10, 10);

INSERT INTO parttable1 VALUES (999, 10, 10);

INSERT INTO parttable1 VALUES (1000, 10, 10);

INSERT INTO parttable1 VALUES (2000, 10, 10);

INSERT INTO parttable1 VALUES (3000, 10, 10);

INSERT INTO parttable1 VALUES (5000, 10, 10);

INSERT INTO parttable1 VALUES (6000, 10, 10);

INSERT INTO parttable1 VALUES (7000, 10, 10);

INSERT INTO parttable1 VALUES (9000, 10, 10);

INSERT INTO parttable1 VALUES (1993, 10, 10);

INSERT INTO parttable1 VALUES (16000, 10, 10);

INSERT INTO parttable1 VALUES (15000, 10, 10);

INSERT INTO parttable1 VALUES (17000, 10, 10);

INSERT INTO parttable1 VALUES (16600, 10, 10);

INSERT INTO parttable1 VALUES (18200, 10, 10);

INSERT INTO parttable1 VALUES (15000, 10, 10);

INSERT INTO parttable1 VALUES (17000, 10, 10);

INSERT INTO parttable1 VALUES (16000, 10, 10);

INSERT INTO parttable1 VALUES (12000, 10, 10);

INSERT INTO parttable1 VALUES (11000, 10, 10);

You can use the following query to see a count of the rows in a table divided into parti-
tions:

SELECT o.name, p.partition_number, p.rows

FROM sys.objects o

JOIN sys.partitions p ON (o.object_id = p.object_id)

WHERE o.type = ‘U’ AND o.name = ‘parttable1’;

522 Part IV Microsoft SQL Server 2005 Architecture and Features
The following is the result of this query:

name partition_number rows

--------------------- ---------------- --------------------

parttable1 1 7

parttable1 2 3

parttable1 3 2

parttable1 4 0

parttable1 5 3

parttable1 6 25

(6 row(s) affected)

To see even more details or to check boundary conditions, use the following query to dis-
play every row in a partitioned table along with the partition to which it belongs:

SELECT $PARTITION.partfunc1(col1) AS Partition,

col1 AS [data] FROM parttable1

ORDER BY Partition ;

The following is the result of this query:

Partition data

----------- -----------

1 10

1 999

1 1000

1 993

1 10

1 999

1 1000

2 2000

2 2000

2 1993

3 3000

3 3000

5 5000

Chapter 19 Data Partitioning 523
5 5000

5 5000

6 6000

6 7000

6 9000

6 6000

6 7000

6 6600

6 8200

6 8900

6 17000

6 61600

6 81200

6 18900

6 6000

6 7000

6 9000

6 16000

6 15000

6 17000

6 16600

6 18200

6 15000

6 17000

6 16000

6 12000

6 11000

(40 row(s) affected)

With datetime partition functions, the same statements can be used, and similar results
are returned to the user. Examples of these queries are shown here:

SELECT $PARTITION.partdatefunc1(col4) AS Partition,

 COUNT(*) AS [COUNT] FROM parttable2

524 Part IV Microsoft SQL Server 2005 Architecture and Features
GROUP BY $PARTITION.partdatefunc1(col4)

ORDER BY Partition ;

SELECT $PARTITION.partdatefunc1(col4) AS Partition,

 col4 AS [data] FROM parttable2

ORDER BY Partition ;

This function can show you that partitioning is actually functioning correctly.

In addition, SQL Server 2005 includes a number of sys tables that will allow us to view
information on the configurations of the partitions. The following query can be used to
view your current partitions:

SELECT f.name, f.type_desc, f.fanout, p.boundary_id, p.value

FROM sys.partition_functions f

JOIN sys.partition_range_values p ON (f.function_id = p.function_id) ;

This query will return information similar to what is shown here on the partition func-
tions that were created and modified in the examples in this chapter:

name type_desc fanout boundary_id value

------------- --------- ------- ----------- ------------------------

partdatefunc1 RANGE 9 1 2005-01-01 00:00:00.000

partdatefunc1 RANGE 9 2 2005-04-01 00:00:00.000

partdatefunc1 RANGE 9 3 2005-07-01 00:00:00.000

partdatefunc1 RANGE 9 4 2005-10-01 00:00:00.000

partdatefunc1 RANGE 9 5 2006-01-01 00:00:00.000

partdatefunc1 RANGE 9 6 2006-04-01 00:00:00.000

partdatefunc1 RANGE 9 7 2006-07-01 00:00:00.000

partdatefunc1 RANGE 9 8 2006-10-01 00:00:00.000

partfunc1 RANGE 6 1 1000

partfunc1 RANGE 6 2 2000

partfunc1 RANGE 6 3 3000

partfunc1 RANGE 6 4 4000

partfunc1 RANGE 6 5 5000

(13 row(s) affected)

Chapter 19 Data Partitioning 525
Note Depending on what other partitions have been created in your database,
the output of this query might look different.

This can be very useful when modifying partitions. You first need to make sure that the
partitions are created as you think they are before you can modify them.

Viewing Partition Information with SQL Server Management
Studio

With the first release of partitioning in SQL Server 2005, there is not a lot of information
that can be viewed from SQL Server Management Studio, but some can be. In order to
view partitioning configuration information, follow these steps:

1. Start SQL Server Management Studio. In Object Explorer view, connect to the
server instance of your choice, and then expand the server’s Databases folder.

2. Select and expand the target database’s folder, expand the Storage folder, and
expand either the Partition Schemes or the Partition Functions folder to view the
appropriate schema or functions, as shown in Figure 19-1.

Figure 19-1 Viewing Partition Schemes in SQL Server Management Studio.

3. Right-click the desired partition scheme or function and select Script Partition
Function As, or Script Partition Scheme As, select CREATE TO, and then select New

526 Part IV Microsoft SQL Server 2005 Architecture and Features
Query Editor Window. This opens a Query Editor window in SQL Server Manage-
ment Studio, with the SQL statement that can be used to recreate the partition func-
tion or scheme. This allows you to see the boundary values and the configuration.
This output is shown in Figure 19-2.

Figure 19-2 Query Editor window in SQL Server Management Studio.

As you can see, partitioning integration into Management Studio is fairly limited at this
time. However, it is a primarily manual task to partition, so this is not much of a limitation.

Maintaining Partitions
Maintaining partitions can be a challenge. Over time, as your data changes and the values
of the partition columns change, you may need to add, remove, or migrate partitions. One
of the benefits of partitioning is that older partitions can be quickly deleted as necessary,
partitions can be moved to slower storage, and partitions can be archived to other tables.
In this section, we will see how these actions can be done easily and efficiently.

Adding Partitions
One of the most common tasks that you will perform is adding partitions. As your data
grows over time, you will need to increase the number of partitions defined on your par-
titioned table. You do this by modifying the partition function using the ALTER PARTI-
TION FUNCTION command. The syntax of the ALTER PARTITION FUNCTION
command is as follows:

Chapter 19 Data Partitioning 527
ALTER PARTITION FUNCTION partition_function_name()
{
 SPLIT RANGE (boundary_value)
 | MERGE RANGE (boundary_value)
} ;

Splitting a partition allows you to turn one partition into two partitions. Merging a par-
tition takes two partitions and collapses them into one partition. With the split range
function, a new boundary is added to the partition function. The merge range function
takes an existing boundary value as its parameter and removes that boundary, thus
merging the partitions that share the boundary value.

Here is an example of splitting a partition:

ALTER PARTITION FUNCTION partfunc1 ()
SPLIT RANGE (6000);

The partitioning information query (shown above) yields the following results both
before and after the split:

 Before Split After Split
name partition_number rows name partition_number rows
------------- ---------------- ----- ------------- ---------------- -----
parttable1 1 7 parttable1 1 7
parttable1 2 3 parttable1 2 3
parttable1 3 2 parttable1 3 2
parttable1 4 0 parttable1 4 0
parttable1 5 3 parttable1 5 3
parttable1 6 25 parttable1 7 22
 parttable1 6 3
(6 row(s) affected) (7 row(s) affected)

A partition can be merged with the following SQL statement:

ALTER PARTITION FUNCTION partfunc1 ()
MERGE RANGE (3000);

528 Part IV Microsoft SQL Server 2005 Architecture and Features
This yields the following results:

name partition_number rows

------------- ---------------- -----

parttable1 1 7

parttable1 2 3

parttable1 3 2

parttable1 4 3

parttable1 6 22

parttable1 5 3

(6 row(s) affected)

If you are using separate filegroups for each partition, as in our first example, it is neces-
sary to alter the partition scheme using the ALTER PARTITION SCHEME command. The
syntax of the ALTER PARTITION FUNCTION command is as follows:

ALTER PARTITION SCHEME partition_scheme_name
NEXT USED filegroup_name ;

The filegroup identified by filegroup_name must exist before you can alter the partition. If
it doesn’t already exist, the filegroup must be done prior to the altering of the partition
scheme. What you are actually doing is taking a partition, usually the last one, and split-
ting it into two partitions. An example of adding a partition and then splitting off a new
partition to use that filegroup is shown here:

ALTER PARTITION SCHEME partscheme1

NEXT USED fg7;

ALTER PARTITION FUNCTION partfunc1()

SPLIT RANGE (7000);

Think of the first and last partitions as holding all additional data that doesn’t fit into
your defined partitions. If you want to add a partition to either the beginning or end of
your table, simply split the partitions.

Archiving Partitions
As partitions become old, assuming historical data, moving the older data to slower stor-
age is often acceptable. This can free up the faster storage for other tasks that can take

Chapter 19 Data Partitioning 529
advantage of the performance. In addition, you might want to move data from one table
to another. Archiving and moving partitions involve the same mechanism and are cov-
ered together.

There are many reasons that you might want to move partitions. In many cases, applica-
tions have a built-in mechanism for looking for data in current and archive data tables. By
using partitioning, the process of moving data into archive tables is simplified. Moving
partitions is done by using the ALTER TABLE statement. The relevant portion of the
ALTER TABLE statement is shown here:

ALTER TABLE [database_name . [schema_name] . | schema_name .] table_name
{

…

SWITCH [PARTITION source_partition_number_expression]
 TO [schema_name.] target_table

 [PARTITION target_partition_number_expression]
}
[;]

The SWITCH qualifier allows you to move the partition from the source table (the
table being altered) to a destination table and partition. You can use the query on page
525 to identify the partition number, and you can use a query such as this to verify the
identification:

SELECT $PARTITION.partfunc1(col1) AS “Partition #”, *

FROM parttable1

WHERE $PARTITION.partfunc1(col1) = 1;

This query selects just the data from partition 1. Once you are certain of the partition
number, you are free to move the data. There are several options for ALTER TABLE
SWITCH, including the following:

■ Move data from a nonpartitioned table to a partition in a partitioned table.

■ Move a partition from a partitioned table to a nonpartitioned table.

■ Move a partition from a partitioned table to a different partitioned table.

Note In order to switch partitions, both tables must reside in the same file-
group.

530 Part IV Microsoft SQL Server 2005 Architecture and Features
Here is an example of how to move data from a partitioned table to a nonpartitioned
table:

CREATE PARTITION FUNCTION partfunc3 (int)

AS RANGE

FOR VALUES (1000, 2000, 3000, 4000, 5000);

CREATE PARTITION SCHEME partscheme3

AS PARTITION partfunc3

ALL TO (‘PRIMARY’);

CREATE TABLE parttable3

(

 col1 int,

 col2 int,

 col3 int

)

ON partscheme3 (col1);

This creates the partitioned table. At this point you can add data to this test table. When
you are ready to move a partition to a nonpartitioned table, use the ALTER TABLE
SWITCH statement, as shown here:

CREATE TABLE nonparttable1

(

 col1 int,

 col2 int,

 col3 int

);

ALTER TABLE parttable3

SWITCH PARTITION 1

TO nonparttable1;

The table nonparttable1 is a nonpartitioned table even though you have moved a partition
into it. This function is useful for archiving and moving data.

Chapter 19 Data Partitioning 531
Deleting Partitions
Deleting partitions can be part of a regular maintenance operation. As data ages, it is nec-
essary to prune it from the tables. Performing this operation using the DELETE state-
ment and specifying the data to be deleted in the WHERE clause can be quite time-
consuming and sometimes dangerous since a slight mistake in the WHERE clause could
remove more data than you desire.

At this time there is no mechanism in SQL Server 2005 for deleting or dropping a parti-
tion. However, here is a workaround to perform this task. The method to drop a partition
and its data is as follows:

1. Create a nonpartitioned table with the same structure as the table that you want to
prune.

2. Move the partition to be removed to the new table.

3. Drop the new table and all of its data.

This workaround is very easy to do, and it can facilitate the removal of old data. This
method is much faster than using DELETE. Following is an example using parttable1.

As a refresher, the current partition distribution in the sample table parttable1 is viewed
with the following query:

SELECT o.name, p.partition_number, p.rows

FROM sys.objects o

JOIN sys.partitions p ON (o.object_id = p.object_id)

WHERE o.type = ‘U’ AND o.name = ‘parttable1’

ORDER BY p.partition_number;

This query yields the following results:

name partition_number rows

------------ ---------------- ------

parttable1 1 6

parttable1 2 5

parttable1 3 2

parttable1 4 3

532 Part IV Microsoft SQL Server 2005 Architecture and Features
parttable1 5 3

parttable1 6 22

(6 row(s) affected)

In addition, let’s look at the first two partitions:

SELECT $PARTITION.partfunc1(col1) AS Partition,

 col1 AS [Data] FROM parttable1

WHERE col1 < 3000

ORDER BY Partition ;

This yields the following data:

Partition Data

----------- -----------

1 10

1 999

1 1000

1 993

1 10

1 999

1 1000

2 2000

2 2000

2 1993

(10 row(s) affected)

First, create a new table using the following SQL statements:

CREATE TABLE nonparttable1

(

 col1 int,

 col2 int,

 col3 int

) ;

Chapter 19 Data Partitioning 533
This creates a new nonpartitioned table with the same column definitions as the parti-
tioned table. Once the new table has been created, switch the first partition to the new
table as shown here:

ALTER TABLE parttable

 SWITCH PARTITION 1 TO nonparttable ;

Let’s look at the data in both the partitioned and nonpartitioned table after the partition
switch:

SELECT $PARTITION.partfunc1(col1) AS Partition,

 col1 AS [Data] FROM parttable1

WHERE col1 < 3000

ORDER BY Partition ;

This yields the following results:

Partition Data

----------- -----------

2 2000

2 2000

2 1993

(3 row(s) affected)

To get information from the partitioned table, we run this SQL statement:

SELECT $PARTITION.partfunc1(col1) AS Partition,

 col1 AS [Data] FROM nonparttable1

WHERE col1 < 3000

ORDER BY Partition ;

The statement yields the following data:

Partition Data

----------- -----------

1 10

1 999

1 1000

1 993

534 Part IV Microsoft SQL Server 2005 Architecture and Features
1 10

1 999

1 1000

(7 row(s) affected)

Now that the data has been moved to the nonpartitioned table, the entire nonpartitioned
table can be dropped with the following SQL statement:

DROP TABLE nonparttable1 ;

At this point, the data from what used to be partition one in the partitioned table is gone.
For very large tables, this process can be much faster than the DELETE statement.

Repartitioning Tables
If you want to repartition a table, you have several options. The first option is splitting the
partitions as shown above. The other option is converting the partitioned table into a
nonpartitioned table (see the following section) and then converting it back to a parti-
tioned table.

Partitioning a Nonpartitioned Table
There are several methods for partitioning a nonpartitioned table. The first method is cre-
ating a partitioned clustered index on the table using CREATE INDEX. This partitioned
clustered index has the effect of partitioning and clustering the table. If there is already a
partitioned clustered index on this table, you can create a new partitioned clustered
index with the DROP EXISTING = ON clause.

The second method is using the ALTER TABLE SWITCH statement and moving the non-
partitioned table to a partitioned table of the same data definitions. Once this has been
accomplished, the ALTER PARTITION FUNCTION command can be used to split the
partitioned table into the desired new partitions.

Unpartitioning a Table
Converting a partitioned table into a nonpartitioned table simply involves using the
ALTER PARTITION FUNCTION statement with the MERGE RANGE argument to
remove all of the partitions. In essence, this leaves you with a partitioned table with one
partition, which is essentially a nonpartitioned table with a partition function. Techni-
cally, you can then move the remaining partition of the partitioned table to a nonparti-
tioned table using the ALTER TABLE SWITCH statement.

Chapter 19 Data Partitioning 535
Dropping Partition Functions and Schemes
If a partition function and partition scheme are no longer being used, they can be
dropped either by using SQL Server Management Studio or by using SQL statements.
The scheme can be dropped with the DROP PARTITION SCHEME statement, and the
partition function can be dropped with the DROP PARTITION FUNCTION statements.
Both statements take the scheme or function name as a parameter. If any partitioned
objects are using these functions or schemes, they cannot be dropped.

Using Partitions
As with indexes, partitions require proper usage. In this section, you will learn how to
best take advantage of partitions and how to properly use partitions. Later in this chapter,
you will also be presented with a number of scenarios in which partitioning is useful and
can help improve the performance of your system.

Inserting Data into Partitioned Tables
Inserting data into a partitioned table is completely automatic. The data is routed to the
correct partition without any intervention by the SQL Server engine. Simply insert data
into the table.

Selecting Data from Partitioned Tables
Selecting data from a partitioned table is as simple as inserting data into the partitioned
table. As with insertion, data is automatically selected from the appropriate partition or
partitions. As with an index, if no partition column is mentioned in the WHERE clause of
the SQL statement, all partitions will be used, thus bypassing the primary benefit of the
partitioned table.

Selecting Data from a Specific Partition
It is possible to select data from a specific partition by using the $PARTITION function.
However, this serves the same purpose as simply putting the proper WHERE clause into
the query. Hence, partitioning is essentially automatic. In order to view information
about the partitions and their configuration, see the earlier sections of this chapter.

Real World Include the Partition Column

I once consulted for a client using a third-party application intended for a hosted
environment. The application vendor built partitioning into every table because of
this model. For all of their pre-built queries and stored procedures, the partition

536 Part IV Microsoft SQL Server 2005 Architecture and Features
column was included. The issue occurred when ad-hoc users began querying the
database by using another reporting tool. Some of the users did not include the par-
tition column in their queries, thus causing the partition and sometimes the
indexes to be bypassed, causing queries to run much more slowly than they should
have run. So, remember to include the partition column in your query.

Partitioning Scenarios
As discussed earlier in this chapter, there are a number of good reasons for using parti-
tioning. This section presents a few scenarios of where and how partitioning can be espe-
cially beneficial.

Scenario 1: Partitioning Historical Data
In the first scenario, we will look at how partitioning can benefit systems by partitioning
based on historical data. This is probably the most beneficial type of partitioning because
most financial systems include data that has a date attached to it. As mentioned earlier in
this chapter, I generally do not recommend indexing on date fields.

Probably the most effective method of partitioning a financial database is on date. Not all
tables include date fields, but the largest tables (for example, general ledger and sales)
have date fields. Remember, earlier in the chapter you were told that the following two
questions must be answered when partitioning a table:

1. What column will be partitioned?

2. How will that column be partitioned?

The answer to the first question is that the general ledger table will be partitioned on
date. Depending on the exact table definition of your general ledger table, this is based on
how dates are stored.

The answer to the second question depends on the size of your database and how queries
are run. In addition, any performance problems that you are experiencing should be
included in the decision process. The more granular the partitioning, the more effective
the partitioning will be when you take advantage of it.

In many cases, database administrators decide to partition financial systems by quarter,
both to simplify the partitioning itself and to accommodate the end-of-quarter process-
ing. Queries that involve aggregates by day, week, or month might benefit from more

Chapter 19 Data Partitioning 537
granular partitioning, but a balance must be struck between managing many partitions
and query benefits.

In summary, a financial system can benefit from partitioning sales and general ledger
data by date. The granularity of the partitioning depends on your particular needs. In
addition, other large table such as customers can benefit from additional partitioning on
region and so on.

Scenario 2: Storage Partitioning
Partitioning for storage is becoming less and less necessary as storage systems improve.
However, there are still benefits of packing older, historical data on slower storage. This
is purely for cost savings. If you have sufficient disk capacity, both space and perfor-
mance, there is really no need to physically separate the partitions into different file-
groups. However, you will see a benefit from partitioning based on the reduction in I/Os
that SQL Server must do in order to perform some operations.

Scenario 3: Partitioning for Maintenance Optimization
Partitioning for maintenance can be very beneficial. Let’s look at Scenario 1 above. In
most financial systems, you must keep data for a specified period of time for tax report-
ing or Sarbanes-Oxley compliance. In some cases, this is seven years or more. Prior to
partitioning, old data must be removed by using the DELETE statement and putting
the range of data to be deleted into the WHERE clause. This pruning of data can be a
very expensive and time-consuming operation. As shown above, in the section on
deleting partitions, SQL Server partitioning can greatly speed this operation. A work-
around for deleting a partition can be done quickly and easily, as described earlier in
this chapter.

This allows you to easily and quickly prune a table. This is possible because you have
used partitioning on the historical data in the database.

Scenario 4: Spatial Partitioning
Often data is stored spatially in a database. For example, data might be stored by region
or state. If there is a large amount of data in this database, you can benefit by partitioning
by city, state, region, and so on. An example of partitioning by region is shown here:

CREATE PARTITION FUNCTION partfunc4 (char(2))

AS RANGE

FOR VALUES (‘E’, ‘N’, ‘NE’, ‘NW’, ‘S’, ‘SE’, ‘SW’, ‘W’);

CREATE PARTITION SCHEME partscheme4

538 Part IV Microsoft SQL Server 2005 Architecture and Features
AS PARTITION partfunc4

ALL TO (‘PRIMARY’);

CREATE TABLE parttable4

(

 col1 int,

 col2 int,

 col3 int,

 region char(2)

)

ON partscheme4 (region);

Note The partition function has to have the values of the partitioning column
in alphabetical order, due to a SQL Server 2005 requirement. It might look a little
strange here, but it works.

As with all partitioning, once the partitions have been created, they can then be used in
an automatic manner. The key to partitioning is in the partitioning column.

Scenario 5: Account Partitioning
In this scenario, let’s look at a table which stores data related to a large number of accounts.
Partitioning an account table that has only one row per account is very inefficient, but a
sales or other data table with a large number of rows per account that is queried or aggre-
gated by account is very effective. By splitting up this aggregated data, you reduce the
amount of time necessary for processing the data and the number of I/O operations.

Scenario 6: Join Partitioning
In the final scenario, let’s look at how join performance can be improved. Join perfor-
mance can be a large issue in many SQL Server systems because equijoins on columns
often involve full table scans. Although table scans might not be avoidable, some of the
join performance can be improved through partitioning.

By joining two tables that are partitioned on the same column and that include the
same number of partitions, the query optimizer actually joins the tables on a partition-
by-partition basis, thus improving performance. To make sure that the tables use the
same partitioning methodology, use the same partition function and partition scheme
on both tables. This ensures that the join performance is improved.

Chapter 19 Data Partitioning 539
Scenario Summary
The scenarios in this section focus on partitioning on one type of data. However, parti-
tioning a database should not be limited to one partitioning type. For example, the finan-
cial system will benefit from partitioning on dates because the typical general ledger has
data stored by date. However, other tables in the same financial database might benefit
from partitioning on account or region.

Don’t be held to one particular partitioning method. Consider each database individu-
ally, and partition each table as appropriate. In addition, keep in mind that join perfor-
mance can be improved by joining on partition columns.

Summary
In this chapter, you learned about SQL Server 2005 table and index partitioning. This
partitioning works on a range of values and will store the data in the proper partition
based on the contents of the partition column. SQL Server 2005 partitioning benefits the
database in several ways. By working in conjunction with SQL Server Query Optimizer,
only the necessary partitions will be accessed. This helps with the primary goal of perfor-
mance tuning—reducing the amount of data being accessed.

Data partitioning has existed in a primitive form since SQL Server 7.0 and SQL Server
2000 using the UNION ALL view. As mentioned earlier, the UNION ALL view multiple
tables are created, each with the same data structure, and are joined together with a view
that is a UNION ALL between all partitions. This method works but is not optimal. It sim-
ply works better with SQL Server 2005 native partitioning.

In this chapter, you learned about the fundamentals of data partitioning in SQL Server
2005, why you would want to use data partitioning, and how it can benefit your database.
You also learned how to create, modify, and monitor partitions. Data partitions can be a
powerful tool when created and used correctly. In order to use them correctly, they must
be both designed and accessed correctly. This chapter gives information and tips on how
to do both.

Keep in mind that partitioning, like indexing, is very specific to the database and the data
in the database. You have been provided with a number of scenarios in which partition-
ing might help, but as with most things, individual circumstances may vary. As the data-
base administrator, you must decide how to partition based on your database, what it
does, and what the data is like. The better you know your database, the better you can
partition and take advantage of this powerful new feature.

Part V
Microsoft SQL Server 2005
Business Intelligence

Chapter 20
Replication. .543

Chapter 21
Integration Services .607

Chapter 22
Analysis Services .659

Chapter 23
Reporting Services .711

Chapter 24
Notification Services and Service Broker .757

Chapter 20

Replication

Replication Fundamentals .544

Uses of Replication .545

Replication Concepts .547

Types of Replication .549

Components of Replication .550

Configuring Replication .553

Creating a Publication with SQL Statements .565

Creating a Subscription with SQL Statements .573

Configuring an Oracle Publication .574

Managing Replication .579

Monitoring and Tuning Replication. .585

Summary .606

Replication is one of the best features of Microsoft SQL Server 2005. SQL Server repli-
cation is a very mature product and is very stable and high-performing. SQL Server rep-
lication is used primarily to distribute data between multiple locations within your
business. Replication can also be used for many other purposes, including:

■ Creating read-only reporting servers, thus relieving some of the load from the OLTP
server

■ Distributing pricing data

■ Combining sales data

Note Occasionally, replication has been used to create a pseudo-disaster
recovery server; however, replication is not the best solution for disaster recovery
because replication does not guarantee that the subscriber database has not
changed from the primary database.
543

544 Part V Microsoft SQL Server 2005 Business Intelligence
In this chapter, you will learn about the fundamentals of SQL Server replication, ways to
use SQL Server replication, the different types of replication, and how to configure, man-
age, and tune replication.

Real World The Best Things About SQL Server

I am often asked what I like best about SQL Server, and I always give the same
response: the SQL Profiler and SQL Server replication. I have helped many clients
implement replication with great success. In one instance, we helped replicate a call
center database so that reporting functions could be offloading, thus allowing bet-
ter performance and faster response times.

I have also helped implement replication for a large grocery store chain. Communi-
cation between the main office and stores is done via transactional replication. Each
morning, pricing data is replicated out to the stores, and each night, sales data is
replicated back to the main office. Replication provides an easy to use and reliable
transport mechanism for moving data.

Because transactional replication keeps track of which transactions have been rep-
lication, it is unnecessary to implement complicated handshaking mechanisms. If
the communication link between publisher and subscriber goes down for a while,
replication will catch up when the link is reestablished.

I am a fan of SQL Server replication, but especially of transactional replication.
Transactional replication incurs very little overhead on the publisher, is fast, and is
easy to use. The reliability and flexibilty makes SQL Server replication one of my
favorite things about SQL Server.

Replication Fundamentals
SQL Server replication is designed to replicate or copy data from one system to another.
Replication allows you to replicate as little as a single table or as much as all of the tables
in the database. It is very flexible and configurable.

With SQL Server replication technology, the task of distributing and copying data is auto-
mated (once it has been configured and tested). No user intervention is needed to repli-
cate data once replication has been set up and configured. Since the replication data and
processing is carried out within a SQL Server database, there is additional stability and
recoverability. As with any SQL Server transaction, if a failure were to occur, operations

Chapter 20 Replication 545
resume at the point of failure once the problem was fixed. Because of this, many people
prefer replication over other methods of moving data between systems.

Depending on your configuration options, replication can be set up in a number of dif-
ferent ways. For example, you can specify how much or how little data will be replicated,
you can specify whether the replicated copies will be read-only or can be modified, and
you can specify how often the data is replicated. We’ll explore these options and others
in the section “Configuring Replication” later in this chapter.

Uses of Replication
There are a number of applications for replication, including sales data distribution and
collection, pricing distribution, offloading of reports, and more. Since replication takes a
database or subset of a database and keeps it up-to-date on another server, the uses are
quite extensive. Uses of replication can include:

■ Scaling out applications

■ Data warehousing

■ Distributing and consolidating data from satellite locations

■ Offloading report processing

Let’s look at some of these uses of replication.

Scaling Out Applications
Application scaling is usually defined as either scale up or scale out. Scale up refers to a sin-
gle server that can support larger and more processors. As you add more resources to the
server, the performance increases. An example of scale up is replacing a 2-CPU 1-GHz
system with an 8-CPU 3-GHz system. This provides for more performance and capacity,
but does not allow for redundancy.

Scale out refers to distributing an application such as SQL Server to several systems,
thus allowing for both increased capacity and some redundancy. In addition, the servers
can be tuned for a specific function or type of activity. Scale out requires some sort of
application or tools in order to distribute and maintain the application in a distributed
environment.

SQL Server replication can be used to scale out applications by providing copies of the
database or parts of the database on multiple systems. By distributing the database, the
workload from the users can be distributed, allowing for a high degree of parallelism and
scalability. Although this can be effective, it does not work with all applications.

546 Part V Microsoft SQL Server 2005 Business Intelligence
Data Warehousing
Data warehousing typically involves extracting data from an online transactional process-
ing (OLTP) database and inserting it into a data warehouse database. This task often
involves manipulating that data as it is being transferred between databases. In fairly sim-
ple cases where there is not much transformation of data and where that transformation
is not very complex, replication can be used. In more sophisticated cases, you might find
that SQL Server Integration Services is a more appropriate tool. SQL Server Integration
Services is covered in Chapter 21, “Integration Services.”

If the transformation between the OLTP system and the data warehouse is basic enough,
replication can be the right tool for the job. Replication is easy to set up and maintain. By
configuring the agents, you can schedule updates to the subscriber to meet your needs.

Distributing and Consolidating Data
Since SQL Server replication is designed to move data from a central location (the data-
base) to one or more subscribers, it is ideal for replicating data that is used at satellite
locations. In addition, data at the satellite location can be replicated back to the central
location. This can be pricing data, sales data, inventory, and so on. By using replication,
these tasks can be automated.

Real World Replicating Store Data

In one of my consulting jobs, I worked on a replication system that took pricing
information and replicated it out to over 100 stores. The application was designed
so that daily pricing data was copied into a table on the publisher and replicated to
all of the stores during the night. Thus, the main system was configured as the pub-
lisher, the pricing table was configured as a publication, and each store was config-
ured as a subscriber.

In addition, each day’s sales data was taken from every store and replicated into the
master database in the home office. Thus, each store had a table that was config-
ured as a publication and replicated to a single table on the main system. Replica-
tion was configured to add the store name to a column in this table. The same
system that was configured as a subscriber for pricing data was configured as a pub-
lisher for sales data.

This system was very effective and is still working well. The only major issue that we
ran into was network bandwidth. At the time, some of the stores were configured
with only a 64-K link. This proved to be the bottleneck in our system.

Chapter 20 Replication 547
Offloading Report Processing
One of the most common uses of replication is for offloading reports. Systems where both
OLTP and reporting functions co-exist can sometimes experience performance problems
because of the tendency of the reporting functions to consume most of the resources in
the system, leaving the OLTP users to suffer poor performance.

By offloading the reporting functions, which are primarily read-only, using transactional
replication, the OLTP users can experience better performance, while at the same time
multiple reporting servers offer better reporting performance for those users.

Real World Reporting Servers

I have personally been involved in many cases where we have offloaded reporting
using transactional replication. This typically results in much better performance
for both the OLTP and reporting users. The OLTP system can be replicated to one
or many reporting servers, depending on the frequency and amount of reporting.
Because transactional replication creates very little overhead on the source system,
performance can be improved without adding additional load to the system.

Replication Concepts
Before jumping into configuring and using replication, let’s look at a few replication con-
cepts. First we’ll look at the “publish and subscribe” metaphor and the three types of rep-
lication, then we’ll examine replication data and data propagation, and last we’ll discuss
replication agents.

Replication Components
SQL Server 2005 replication is based on the “publish and subscribe” metaphor first used
to implement replication in SQL Server 6.0 and enhanced in SQL Server 7.0 and SQL
Server 2000. This metaphor is built on the concepts of publishers, subscribers, and dis-
tributors. A publisher is a database that makes data available for replication. A subscriber
is a server that receives replicated data and stores the replicated database. A distributor is
the server that contains the distribution database or metadata used to maintain and man-
age the replication.

Publishers
The publisher is the system that provides the data to be replicated. Depending on the
type of replication chosen, the publisher may do some work involved in the replication or

548 Part V Microsoft SQL Server 2005 Business Intelligence
do very little work. The publisher consists of a Windows server running a SQL Server
2005 database. This database offers data to be replicated to other systems. In addition,
the SQL Server database keeps track of which data has changed so that it can be effec-
tively replicated. The publisher also maintains information about which data is config-
ured for replication.

A replicated environment can contain multiple subscribers, but any given article can have
only one publisher. Having only one publisher for a particular set of data does not imply
that the publisher is the only system that can modify the data. If configured to do so, both
publishers and subscribers can modify data. However, this can get a little tricky as you
will see.

The data to be replicated is grouped in an object called a publication. This publication is
made up of one or more articles as described here.

Publications
A publication is created in order to publish data to other systems. A publication is a logi-
cally related set of one or more articles. Once you have created a publication, it is config-
ured and maintained for distribution to other systems. This is much easier than having to
maintain each individual table since most replication activities involve either an entire
database or at least a substantial portion of it.

Articles
An article is an individual component of data that is to be replicated. An article can be an
entire table, specific columns in a table, specific rows in a table, or a stored procedure.
Articles can be configured by using filters, as described below.

Distributors
The distributor is the server that contains the distribution database and stores metadata,
history data, and other information. The publisher and the distributor are not required to
be on the same server. In fact, it is usually recommended that you have a dedicated dis-
tributor for replication. Each publisher must be assigned a distributor.

Note Metadata is data about data. In this case, metadata is the data that keeps
track of the current state of the replication. It is also the data that is propagated
to other members of the replication set, including information about the proper-
ties of data, such as the type of data in a column (numeric, text, and so on) or the
length of a column, and information about the structure of data.

Subscribers
Subscribers are the database servers that store the replicated data and receive updates.
Beginning with SQL Server 7.0, updates can be made by subscribers and publishers. In

Chapter 20 Replication 549
SQL Server 2005 this has been enhanced to include peer-to-peer replication. It’s also pos-
sible for a subscriber to serve as a publisher to other systems.

Subscription
A subscription is a request by a subscriber to receive a publication. The subscription
defines what published data will be sent to the subscriber. This subscription defines what
and how the replication occurs on the subscriber side.

Types of Replication
SQL Server 2005 replication offers three types of replication: snapshot, transactional, and
merge. These replication types offer varying degrees of data consistency within the repli-
cated database, as well as different levels of overhead.

Snapshot Replication
Snapshot replication is the simplest and most straightforward of the replication types.
With snapshot replication, a picture, or snapshot, of the database is taken and propa-
gated to the subscribers. The main advantage of snapshot replication is that it does not
involve continuous overhead on the publishers and subscribers. The main disadvan-
tage is that the database on the subscriber is only as current as when the snapshot was
taken.

In many cases, as you will see later in this chapter, snapshot replication is sufficient and
appropriate—for example, when the source data is modified only occasionally, you
should perform replication only occasionally. Applications such as phone lists, price lists,
and item descriptions can easily be handled using snapshot replication. These lists can be
updated once per day during off hours.

Transactional Replication
Transactional replication can be used to replicate both tables and stored procedures.
With transactional replication, any changes made to the articles are captured from the
transaction log and propagated to the distributors continuously and automatically. Using
transactional replication, you can keep the publisher and the subscriber in almost exactly
the same state, depending on how you configure the replication.

Transactional replication should be used when it is important to keep all of the replicated
systems current. Transactional replication uses more system overhead because each
transaction that changes data in the system must be individually applied to the replicated
system, but it keeps the systems in a more consistent state.

550 Part V Microsoft SQL Server 2005 Business Intelligence
Merge Replication
Merge replication is similar to transactional replication in that it keeps track of the
changes made to articles. However, instead of propagating transactions that have made
changes, merge replication periodically transmits all changes that have been made to the
database. These changes can be batched and sent as necessary. Merge replication is some-
thing like a combination of transactional and snapshot replication because changes are
sent as a batch.

Components of Replication
Replication is made up of the replication data as well as the processes, or agents, that
actually execute the replication functions. These components are what makes replication
function so well. In this section, we will examine the various components that make up
replication.

Replication Data
The replicated data is made up of collections of articles known as publications. These arti-
cles can be tables, subsets of rows, subsets of columns, or even stored procedures.

Articles
As previously discussed, an article is a table or a subset of a table that is being replicated.
Subsets are created by using filters. A filter that is used to create a subset of rows is called
a horizontal filter. A filter that is used to create a subset of columns is called a vertical filter.
Horizontal and vertical filters are covered in more detail later in this chapter.

Note Filters are defined and work differently in merge replication than they do
for snapshot and transactional replication.

Publications
A publication is a set of articles grouped together as a unit. Since a database typically
consists of multiple tables, publications enable this grouping to be maintained. For
example, to replicate a database, it is preferable to group all articles together and repli-
cate the entire database in one publication rather than individually replicating each arti-
cle. Publications provide the means of replicating logical groupings of articles as one
replication object.

A publication can consist of a single article, but it almost always contains more than one
article. However, a subscriber can subscribe only to publications, not to articles. Therefore,

Chapter 20 Replication 551
if you want to subscribe to a single article, you must configure a publication that contains
only that article and then subscribe to that publication.

Push and Pull Subscriptions
Replicated data can be propagated in a number of ways. All propagation methods are
based on either push subscriptions or pull subscriptions. A subscriber can support a mix-
ture of push and pull subscriptions simultaneously.

Push Subscriptions
When using a push subscription, the publisher is responsible for providing updates to
the subscribers. Updates are initiated without any request from the subscriber. A push
subscription is useful when centralized administration is desired because the replication
is controlled and administered by the publisher rather than by multiple subscribers. In
other words, the initiation of the replication and the scheduling of the replication is han-
dled on the publisher.

Push subscriptions allow a lot of flexibility for when changes are propagated. Push sub-
scriptions can be configured to keep the replication close to real time or to perform
updates on a regular schedule. You’ll learn more about these options in the section “Con-
figuring Replication” later in this chapter.

Pull Subscriptions
Pull subscriptions allow subscribers to specify when changes are propagated, or they can
be based on periodic updates (without subscribers knowing when changes have
occurred). Pull subscriptions are useful when you have a large number of subscribers and
when the subscribers are not always attached to the network. Because pull subscriptions
are initiated by subscribers, subscribers not always connected to the network can period-
ically connect and request replication data. The initiation of the replication is done on the
subscriber system, not the distributor.

Replication Agents
Several agents are used to perform the subscription actions: the Snapshot Agent, the Log
Reader Agent, the Distribution Agent, the Merge Agent, and the Queue Reader Agent. In
this section, you’ll learn what these agents are, what they do, and how to manage them.

The Snapshot Agent
The Snapshot Agent is used for creating and propagating the snapshots used in snap-
shot replication. The Snapshot Agent prepares the original replication data and cre-
ates the information that is used by the Distribution Agent to propagate that data.
The Snapshot Agent stores the snapshot on the distributor or anywhere else that you

552 Part V Microsoft SQL Server 2005 Business Intelligence
specify. The Snapshot Agent is also responsible for keeping information about the
synchronization status of the replication objects; this information is stored in the dis-
tribution database.

The Snapshot Agent is dormant most of the time, and it periodically awakens to perform
its tasks based on the schedule that you have configured. Each time the Snapshot Agent
runs, it performs the following tasks:

1. The Snapshot Agent establishes a connection from the distributor to the publisher.
If a connection is not available, the Snapshot Agent will not proceed with the snap-
shot. Once the connection has been established, the Snapshot Agent locks all of the
articles in the replication to ensure that the snapshot is a consistent view of the
data. (For this reason, it is not a good idea to schedule snapshots during peak
times.)

2. The Snapshot Agent establishes a connection back from the publisher to the dis-
tributor. Once this connection has been established, a copy of the schema for each
article is written to the distributor.

3. The Snapshot Agent takes a snapshot of the actual data on the publisher and writes
it to a file on the distributor. If all systems involved in the replication are SQL Server
systems, the file is stored as a native bulk copy program. If mixed types of systems
are involved in the replication, the data is stored in text files. At this point, synchro-
nization information is set.

4. After the data has been copied, the Snapshot Agent updates information in the
distribution database.

5. The Snapshot Agent releases the locks on the articles and logs the snapshot into the
history file.

As you can see, the Snapshot Agent is responsible only for creating the snapshot but not
for distributing it to the subscribers. These tasks are performed by other agents. There
are only a few cases in which the snapshot needs to be refreshed. These cases include the
following:

■ The snapshot should be refreshed prior to initiating snapshot replication on a sub-
scriber. Beware of copying old snapshots to a subscriber. If the data in the publica-
tion database never changes, the snapshot does not need to be refreshed. How
often it needs to be refreshed depends on the frequency of changes to the database.

■ The snapshot should be refreshed before the initial snapshot for transactional and
merge replication.

Chapter 20 Replication 553
Note When transactional or merge replication is being used but is not
frequently refreshed, it is unnecessary to refresh the snapshot.

The Log Reader Agent
The Log Reader Agent is used for transactional replication. The Log Reader Agent moves
information from the transaction log on the publisher to the distribution database. Each
database that is using transactional replication has its own Log Reader Agent on the
publisher.

The Distribution Agent
The Distribution Agent propagates snapshots and transactions from the distribution data-
base to the subscribers. The Distribution agent works with snapshot and transactional rep-
lication. Each publication that is set up for immediate propagation has its own Distribution
Agent. Publications that are not set up for immediate distribution share Distribution
Agents. If you are using a push subscription, the Distribution Agent runs on the distributor.
If you are using a pull subscription, the Distribution Agent runs on the subscriber.

The Merge Agent
The Merge Agent is used for merge replication and reconciles, or merges, incremental
changes that have occurred since the last reconciliation. When you use merge replica-
tion, there is no Distribution Agent or Snapshot Agent—the Merge Agent communicates
with both the publisher and the distributor. There is one merge agent for each merge
subscription.

The Queue Reader Agent
The Queue Reader Agent is used with transactional replication with the queued updating
option. This is a distributor system-based agent, and it takes changes that have occurred
at the subscriber and applies them to the publisher. There is only one Queue Reader
Agent per database.

Configuring Replication
Replication is configured from SQL Server Management Studio. There are several major
steps that must be followed in order to configure replication. These steps are:

■ Configure the distributor

■ Configure the publication

■ Configure one or more subscribers

554 Part V Microsoft SQL Server 2005 Business Intelligence
Without a distributor, you cannot configure replication. The distributor can be on the
same system as the publisher, the same system as the subscriber, or on its own system.
Let’s look at these steps in some detail.

Configure the Distributor
The distributor is configured from SQL Server Management Studio:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. In the navigation pane, right-click Replication and select Configure Distribution.
This invokes the Configure Distribution Wizard. You are greeted with the Config-
ure Distribution Server Welcome page (not shown). Click Next.

3. You will now see the Distributor page, as shown in Figure 20-1. On the Distributor
page, select whether you want to create a new distributor or to configure replication
to use an existing distributor. Click Next.

Figure 20-1 The Distributor page.

4. Since the SQL Server Agent is required for replication, you are prompted to set it to
start automatically in the SQL Server Agent Start page, as shown in Figure 20-2, (if
it is not configured to start automatically). Click Next.

Chapter 20 Replication 555
Figure 20-2 The SQL Server Agent Start page.

5. Next, you are prompted to set the snapshot folder in the Snapshot Folder page, as
shown in Figure 20-3. This page allows you to set the snapshot location. This value
can be changed later if you decide to change the snapshot location, or you can use
the default location, which is usually fine. Microsoft recommends that you use a
network folder for the snapshot location. This network location should be accessi-
ble by all systems using this snapshot.

Figure 20-3 The Snapshot Location page.

556 Part V Microsoft SQL Server 2005 Business Intelligence
6. If you have chosen to create a new distribution database, the next page, the Distri-
bution Database page, allows you to set the name and file locations for the distribu-
tion database, as shown in Figure 20-4. This must be a local drive. Once you have
completed this, click Next.

Figure 20-4 The Distribution Database page.

7. Next, you are prompted to select publishers that can use this distribution data-
base. You can select as many publishers as you want. The Publishers page is
shown in Figure 20-5. You can add publishers by clicking the Next button and
selecting the publisher. Click Next to proceed.

Figure 20-5 The Publishers page.

Chapter 20 Replication 557
8. The Wizards Action page (not shown) gives you the option of configuring distribu-
tion, saving a script to configure distribution with SQL statements, or both. If you
want to document the distribution configuration, you can save the script, which can
be used again, or modified for slightly different configurations. Click Next to proceed.

9. Finally, you will see the Complete The Wizard page, shown in Figure 20-6. This
page allows you to indicate whether to continue or cancel the configuration. When
you click Finish, the configuration of the distributor begins.

Figure 20-6 The Complete The Wizard page.

10. Once you are satisfied and click Finish, the distribution configuration process begins.
You will see progress in the Configuration Progress page, as shown in Figure 20-7. If
any errors occur, you will see them on this screen. Once it has completed, you have
the option of viewing a report on the screen, saving the report to a file, or e-mailing
the report. If everything succeeded, there is no need to save the report.

11. Once this has completed successfully, you are notified and are then ready to start
creating publications. Click Close to exit the wizard.

Configure Publications
To create a publication using SQL Server Management Studio, follow these steps from the
Object Explorer:

1. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

2. Navigate to Replication then Local Publications. Right-click Local Publications and
select New Publication. This invokes the New Publication Wizard.

558 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 20-7 The Configuration Progress page.

3. The first page of the New Publication Wizard welcomes you to the wizard (not
shown). Click Next to proceed.

4. The Publication Databases page allows you to pick the database from which the
publication will be selected. In this example, there are six databases: Production,
Test, DBADB (every DBA should have a database for storing performance informa-
tion, testing SQL, and so on), profile (where I store profiler traces) and, of course,
AdventureWorks and AdventureWorksDW. Select the database that will be the source
of the publication. A publication can originate in only one database, although it can
consist of one or more objects in that database. In this example, AdventureWorks has
been selected. This is shown in Figure 20-8. Click Next to continue.

Figure 20-8 Choose A Publication Database page.

Chapter 20 Replication 559
5. Once you select the source database, you are prompted to select the replication
type. The following are the choices for the publication type:

❑ Snapshot publication

❑ Transactional publication

❑ Transactional publication with updatable subscriptions

❑ Merge publication

These publication types were all described earlier in this chapter. Choose the
desired type of publication. For this example, transactional has been chosen, as
shown in Figure 20-9. Click Next to continue.

Figure 20-9 The Publication Type page.

6. After you select the type of publication, the Articles page appears. This page allows
you to select the objects, such as tables, stored procedures, views, and so on, that
will be part of this publication. As you see in this walkthrough, I have created a table
in the AdventureWorks database that is not eligible for replication. This is because
transactional replication requires a primary key on each article table. By clicking on
this table, text is shown that explains that this table is not a candidate for replica-
tion because it does not have a primary key defined, as shown in Figure 20-10. The
other tables in this database have been selected to be included in this article, as
shown in Figure 20-10. Click Next to continue.

Note The AdventureWorks database does not have a table that is lacking
a primary key. I added this table specifically for this example.

Some of the AdventureWorks tables do not work with replication. For this
example I have chosen only a few tables so that the example works.

560 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 20-10 The Articles page.

7. In addition to selecting the articles to be included into this publication, you can
set specific article properties either by highlighting the article and clicking the
Article Properties button and selecting Set Properties of Highlighted Table Arti-
cle, or by selecting Set Properties of All Table Articles. The latter invokes the Arti-
cle Properties page, as shown in Figure 20-11. Here you can set many article
properties. There is typically no need to change these properties. Click OK to exit
this box.

Figure 20-11 The Article Properties page.

Chapter 20 Replication 561
8. If you have chosen transactional publication with updating subscribers, you will
see the Article Issues page as shown in Figure 20-12. This informs you and prompts
you for verification that a unique identifier column needed to be added to the
tables. This is a requirement of updating subscribers. If you have chosen this
option, click Next to continue.

Figure 20-12 The Article Issues page.

9. Once you have selected the Articles, you will see the Filter Table rows page. As
mentioned earlier in this chapter, a table can be either vertically or horizontally
filtered. The Filter Table Rows page allows you to either continue on or to click on
the Add, Edit, or Delete buttons to add or modify row filters. This is shown in Fig-
ure 20-13. Clicking the Add button allows you to add a filter. Clicking Next con-
tinues to the next page.

Figure 20-13 The Filter Table Rows page.

562 Part V Microsoft SQL Server 2005 Business Intelligence
10. By clicking Add, you see the Add Filter page. This page allows you to add a
WHERE clause to the replication filter to select only specific rows. In most
cases, you will not want to filter the table rows; instead, you will replicate the
entire table. The Add Filter page is shown in Figure 20-14. Select the table, mod-
ify the WHERE clause for all tables that you want to filter, and click OK when
you are done.

Figure 20-14 The Add Filter page.

11. If you have added filters, you are returned to the Filter Table Rows page, but the
new filter is visible. Otherwise, the Filter Table rows page stays the same.

Note Multiple filters can be added to the same publication.

12. Once you have created the filter and selected the Next button, the Snapshot
Agent page appears. On this page, you can indicate that the snapshot should
run immediately, on a regular schedule, or neither, as shown in Figure 20-15.
The Change button allows you to schedule the agent. This invokes the Job
Scheduler Properties page that you have seen several times in this book. Click
Next to continue.

13. In the Agent Security page, you must specify the security account for each of the
agents that will be running. This example uses a Transactional publication. There-
fore, it is necessary to supply credentials for the Snapshot Agent and the Log Reader
Agent, as shown in Figure 20-16. If we had chosen a Transactional publication with
updatable subscriptions, it would have been necessary to supply credentials for the

Chapter 20 Replication 563
Snapshot Agent, the Log Reader Agent, and the Queue Reader Agent. Select the
Security Settings button to set the security of each agent.

Figure 20-15 The Snapshot Agent page.

Figure 20-16 The Agent Security page.

14. Each of the Agent security pages is slightly different from the others but contains
basically the same information as the Snapshot Agent security page, as shown in
Figure 20-17. Select the security appropriate for your needs and configuration.
Select OK when you have completed the security settings.

564 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 20-17 The Snapshot Agent Security page.

15. The Shapshot Agent Security page includes both the Snapshot Agent security set-
tings for the process on the distributor and the security settings for the account run-
ning against the publisher. Once you have set all of the security settings, you are
returned to the agent security page. However, this time the security settings are
filled in. Click Next to continue.

16. When you have completed all of the agent specification pages, you will see the Wiz-
ard Actions page. This page allows you either to create the publication or to script
the steps necessary to create the publication. It is a good idea to keep a copy of the
steps necessary to create the publication by scripting them. In the event that you
need to recreate the publication, you can run the script. If you choose to script the
publication, the Script File Properties page prompts you for the filename and type
of the script file.

Figure 20-18 The Wizard Actions page.

Chapter 20 Replication 565
17. Once you have completed all of these steps, you will be presented with the Com-
plete The Wizard page. This page allows you to review all of your choices, name the
publication, and to create the publication. If you find problems at this stage, you
can use the Back button, or you can select Finish in order to create the publication.
Click Finish in order to create the publication. You are now informed of the
progress of the publication creation process and its success. It is also possible to
create the publication using SQL statements. The statements used to create the
example in this section are shown in the following example.

Creating a Publication with SQL Statements
The following is an example that shows the creation of the publication shown above
using SQL statements, rather than the wizard.

The following stored procedures are used:

■ sp_replicationdboption sets database options for replication.

■ sp_addpublication creates and configures the publication.

■ sp_addpublication_shapshot creates the snapshot agent.

■ sp_addarticle will add the various articles to the publication.

The example is shown here:

use [AdventureWorks]

exec sp_replicationdboption @dbname = N‘AdventureWorks’,

@optname = N‘publish’, @value = N‘true’

GO

use [AdventureWorks]

exec sp_addpublication @publication = N‘AWPub’,

@description = N‘Transactional publication of database’ ‘AdventureWorks’ ‘from
Publisher’ ‘PTC9’ ‘.’,

@sync_method = N‘concurrent’, @retention = 0,

@allow_push = N‘true’, @allow_pull = N‘true’, @allow_anonymous = N‘true’,

@enabled_for_internet = N‘false’, @snapshot_in_defaultfolder = N‘true’,

@compress_snapshot = N‘false’,

@ftp_port = 21, @ftp_login = N‘anonymous’,

@allow_subscription_copy = N‘false’, @add_to_active_directory = N‘false’,

@repl_freq = N‘continuous’, @status = N‘active’, @independent_agent = N‘true’,

566 Part V Microsoft SQL Server 2005 Business Intelligence
@immediate_sync = N‘true’, @allow_sync_tran = N‘false’, @autogen_sync_procs =
N‘false’, @allow_queued_tran = N‘false’,

@allow_dts = N‘false’, @replicate_ddl = 1,

@allow_initialize_from_backup = N‘false’,

@enabled_for_p2p = N‘false’, @enabled_for_het_sub = N‘false’

GO

exec sp_addpublication_snapshot @publication = N‘AWPub’,

@frequency_type = 1, @frequency_interval = 0,

@frequency_relative_interval = 0, @frequency_recurrence_factor = 0,

@frequency_subday = 0, @frequency_subday_interval = 0,

@active_start_time_of_day = 0, @active_end_time_of_day = 235959,

@active_start_date = 0, @active_end_date = 0,

@job_login = null, @job_password = null,

@publisher_security_mode = 1

use [AdventureWorks]

exec sp_addarticle @publication = N‘AWPub’, @article = N‘Address’,

@source_owner = N‘Person’, @source_object = N‘Address’,

@type = N‘logbased’, @description = null,

@creation_script = null, @pre_creation_cmd = N‘drop’,

@schema_option = 0x000000000803509F,

@identityrangemanagementoption = N‘manual’,

@destination_table = N‘Address’, @destination_owner = N‘Person’,

@vertical_partition = N‘false’,

@ins_cmd = N‘CALL sp_MSins_PersonAddress’,

@del_cmd = N‘CALL sp_MSdel_PersonAddress’,

@upd_cmd = N‘SCALL sp_MSupd_PersonAddress’

GO

Note This step repeats for all tables that were selected as articles for replication.

use [AdventureWorks]

exec sp_addarticle @publication = N‘AWPub’,

@article = N‘WorkOrderRouting’,

@source_owner = N‘Production’, @source_object = N‘WorkOrderRouting’,

@type = N‘logbased’, @description = null,

Chapter 20 Replication 567
@creation_script = null, @pre_creation_cmd = N‘drop’,

@schema_option = 0x000000000803509F,

@identityrangemanagementoption = N‘manual’,

@destination_table = N‘WorkOrderRouting’, @destination_owner = N‘Production’,

@vertical_partition = N‘false’,

@ins_cmd = N‘CALL sp_MSins_ProductionWorkOrderRouting’,

@del_cmd = N‘CALL sp_MSdel_ProductionWorkOrderRouting’,

@upd_cmd = N‘SCALL sp_MSupd_ProductionWorkOrderRouting’

GO

Once the publication has been created, you are ready to start configuring one or more
subscribers. Regardless of whether subscribers are created, replication commences as
soon as the publications are configured.

Configure Subscribers
Once publications have been created, subscriptions can be created. For each publica-
tion, you can have as many subscriptions as the performance of the system can support.
The distributor is very efficient, but the number of publishers and subscribers that can
be supported depends on the number of CPUs and amount of memory configured in
that system.

Real World The Distributor Is Very Efficient

One of the first replication systems that I did took me by surprise. We were repli-
cating an enormous amount of data, and yet the distributor was not working very
hard. The replication agents are extremely efficient; the transactions being done
within the distribution database are fairly lightweight, thus not creating much of a
load. I wish that I could give you the magic calculation for sizing the distributor, but
there isn’t one. The load varies based on how many transactions, how many arti-
cles, and how many subscribers there are. My recommendation is to get something
that you can upgrade if you need to, but don’t oversize the distributor.

To create subscriptions using SQL Server Management Studio, navigate to Replication
and then to Local Subscriptions. Then follow these steps:

1. Right-click Local Subscriptions and select New Subscriptions. This invokes the
New Publication Wizard. This wizard begins with the standard welcome screen,
not shown. Click Next to proceed.

568 Part V Microsoft SQL Server 2005 Business Intelligence
2. The first step in configuring a subscription is to select the publication that will be
used for this subscription. If there is more than one publication, select the one that
you want to use for this subscription, as shown in Figure 20-19. Click Next.

3. Once you have selected the publication to be replicated, you are prompted to select
the location where the Distribution Agents will run. It is possible for the Distribu-
tion Agent to run at either the distributor or the subscriber, depending on whether
this is a push or pull subscription. Select push or pull at the Distribution Agent
Location page, as shown in Figure 20-20. Click Next.

Figure 20-19 The Publications page.

Figure 20-20 The Distribution Agent Location page.

4. Once you have selected the Distribution Agent location, you then select the sub-
scriber system and database. Here you can select the system and the database, or

Chapter 20 Replication 569
you can choose to create a new database. First, select the box by the SQL Server
instance to which you want to subscribe. If you don’t see the one that you want,
select the Add Subscriber button and connect to the SQL Server instance. Once you
have selected the instance, select the database using the dropdown or create a new
database (by selecting New Database as the database selection) to use as the sub-
scription database, as shown in Figure 20-21. When you have selected all of the sub-
scriber databases, click Next.

Figure 20-21 The Subscribers page.

5. As with the New Publication Wizard, the New Subscription Wizard also requires
you to set the security connection to both the distributor and the subscriber. This
is done on the Distribution Agent Security page, as shown in Figure 20-22.

Figure 20-22 The Distribution Agent Security page.

570 Part V Microsoft SQL Server 2005 Business Intelligence
6. In order to set the security accounts click the ellipses button. This invokes another
Distribution Agent Security page. Here you are required to set the security connec-
tion to both the distributor and the subscriber, as shown in Figure 20-23. This page
is similar to the one seen earlier in this chapter when configuring the publication.
Click Next to continue.

Figure 20-23 The Distribution Agent Security page.

7. Once you have completed setting the security accounts for these connections, you
will again see the original Distribution Agent Security page with the security infor-
mation now set. Click Next to continue.

Important These examples have used the SQL Server Agent service
account for distribution security. This was done for convenience, but it is
not recommended. It is recommended that a domain account be used for
SQL Server replication.

8. Next you are prompted to set the Synchronization Schedule. The following are
options for synchronizing replication:

❑ Run Continuously Here the agents are constantly running.

Chapter 20 Replication 571
❑ Run on Demand Only With this option, the agent runs only when manu-
ally initiated.

❑ Define Schedule This invokes the New Job Schedule page where you can
set your own schedule.

The Synchronization Schedule page is shown in Figure 20-24. Click Next to
continue.

Figure 20-24 The Synchronization Schedule page.

9. If you are creating an updatable transactional subscription, you are prompted to
select to update subscriptions simultaneously or to queue updates to be commit-
ted when possible. This is done on the Update Subscriptions page. With updat-
able subscriptions, you must additionally provide a login to the publisher in
order to make changes on the publisher. This is a login on the publisher and must
be a SQL Server login. Once you have filled out this screen (if applicable), click
Next to continue.

Note If you are subscribing to a Transactional Subscription with Updat-
able Subscriptions you will be prompted to selected an existing linked
server or to create a new linked server connection. The subscriber must be
linked to the publisher in for this type of subscriber.

10. Select either Immediately or At First Synchronization from the drop-down list to
specify when to initialize the subscription. The Initialize Subscriptions page is
shown in Figure 20-25.

572 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 20-25 The Initialize Subscriptions page.

11. When you have completed all of the agent specification pages, you will see the Wiz-
ard Actions page. This page allows you to either create the subscription or to script
the steps necessary to create the subscription. It is a good idea to keep a copy of the
steps necessary to create the subscription by scripting them. In the event that you
need to recreate the subscription, you can run the script. If you choose to script the
subscription, the Script File Properties page prompts you for the filename and type
of the script file.

12. Once you have completed all of these steps, you are presented with the Complete
The Wizard page, as shown in Figure 20-26. This page allows you to review all of
your choices and to create the subscription. If you find problems at this stage, you
can click the Back button, or you can click Finish to create the publication.

Figure 20-26 The Complete The Wizard page.

Chapter 20 Replication 573
When you click Finish, the Creating Subscriptions page appears and begins to inform
you of the progress of the subscription creation and its success.

It is also possible to create the publication using SQL statements. The statements used to
create the example in this section are shown in the following sections.

Creating a Subscription with SQL Statements
The following is an example that shows the creation of the publication shown above
using SQL statements, rather than the wizard.

The following stored procedures are used:

■ sp_addsubscription stored procedure adds a subscription to a publication and sets
the subscriber status. The stored procedure runs on the publication database on
the publisher.

■ sp_addpushsubscription_agent stored procedure adds a new scheduled agent job.
This job is used to synchronize a push subscription to a transactional publication.
It is also executed on the publisher on the publication database.

The example is shown here:

-----------------BEGIN: Script to be run at Publisher ‘PTC9’-----------------

use [AdventureWorks]

exec sp_addsubscription @publication = N‘AWPub’,

@subscriber = N‘PTC8’, @destination_db = N‘AWReplica’,

@subscription_type = N‘Push’, @sync_type = N‘automatic’,

@article = N‘all’, @update_mode = N‘read only’,

@subscriber_type = 0

exec sp_addpushsubscription_agent @publication = N‘AWPub’,

@subscriber = N‘PTC8’, @subscriber_db = N‘AWReplica’,

@job_login = null, @job_password = null, @subscriber_security_mode = 1,

@frequency_type = 64, @frequency_interval = 0,

@frequency_relative_interval = 0, @frequency_recurrence_factor = 0,

@frequency_subday = 0, @frequency_subday_interval = 0,

@active_start_time_of_day = 0, @active_end_time_of_day = 235959,

@active_start_date = 20060722, @active_end_date = 99991231,

@enabled_for_syncmgr = N‘False’,

574 Part V Microsoft SQL Server 2005 Business Intelligence
@dts_package_location = N‘Distributor’

GO

-----------------END: Script to be run at Publisher ‘PTC9’-----------------

Replication begins immediately or when scheduled, depending on some of the decisions
that you have made in the previous example. Once replication has begun, you can move
on to the stage of managing and tuning replication.

Configuring an Oracle Publication
As mentioned earlier in this chapter, it is possible to replicate an Oracle publication to
Microsoft SQL Server 2005. This is a several step process. In order to create an Oracle
publication, the following steps must be performed:

1. Create a replication administrative user. This is done with a SQL Script that
Microsoft provides. This script is <drive>:\\Program Files\Microsoft SQL
Server\<InstanceName>\MSSQL\Install\oracleadmin.sql. Run this script from the
Oracle sqlplus tool:

cd <Install Directory>\<Instance>\MSSQL\Install

sqlplus system/password@inst @oracleadmin.sql

This is shown in the following example:

C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Install>sqlplus
system/ptc12
3@orcl @oracleadmin

SQL*Plus: Release 10.2.0.1.0 - Production on Sun Jul 23 07:36:43 2006

Copyright (c) 1982, 2005, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 -
ProductionWith the Partitioning, OLAP and Data Mining options

User to create for replication: sqlrep

Replication user passsword:

Default tablespace: system

Chapter 20 Replication 575
old 1: CREATE USER &&ReplLogin IDENTIFIED BY &&ReplPassword DEFAULT
TABLESPACE

&&DefaultTablespace QUOTA UNLIMITED ON &&DefaultTablespace

new 1: CREATE USER sqlrep IDENTIFIED BY sqlrep DEFAULT TABLESPACE
system QUOTA

 UNLIMITED ON system

User created.
old 1: GRANT CREATE PUBLIC SYNONYM TO &&ReplLogin
new 1: GRANT CREATE PUBLIC SYNONYM TO sqlrep

Grant succeeded.

old 1: GRANT DROP PUBLIC SYNONYM TO &&ReplLogin
new 1: GRANT DROP PUBLIC SYNONYM TO sqlrep

Grant succeeded.

old 1: GRANT CREATE SEQUENCE TO &&ReplLogin
new 1: GRANT CREATE SEQUENCE TO sqlrep

Grant succeeded.

old 1: GRANT CREATE PROCEDURE TO &&ReplLogin
new 1: GRANT CREATE PROCEDURE TO sqlrep

Grant succeeded.

old 1: GRANT CREATE SESSION TO &&ReplLogin
new 1: GRANT CREATE SESSION TO sqlrep

Grant succeeded.

old 1: GRANT CREATE TABLE TO &&ReplLogin
new 1: GRANT CREATE TABLE TO sqlrep

Grant succeeded.

old 1: GRANT CREATE VIEW TO &&ReplLogin
new 1: GRANT CREATE VIEW TO sqlrep

576 Part V Microsoft SQL Server 2005 Business Intelligence
Grant succeeded.

old 1: GRANT CREATE ANY TRIGGER TO &&ReplLogin
new 1: GRANT CREATE ANY TRIGGER TO sqlrep

Grant succeeded.
Disconnected from Oracle Database 10g Enterprise Edition Release
10.2.0.1.0 - Production

With the Partitioning, OLAP and Data Mining options

2. Next, grant SELECT access to the newly created Oracle user on all tables that you
want to replicate. This is done with the Oracle GRANT command as follows:

GRANT SELECT on object TO user;

For this example, we will use the scott schema and its objects:

SQL> GRANT SELECT ON scott.emp TO sqlrep;

Grant succeeded.

SQL> GRANT SELECT ON scott.dept TO sqlrep;

Grant succeeded.

SQL> GRANT SELECT ON scott.bonus TO sqlrep;

Grant succeeded.

SQL> GRANT SELECT ON scott.salgrade TO sqlrep;

Grant succeeded.

3. Next, configure the required Oracle software on the SQL Server distributor. This
includes the OLE DB provider and Oracle client software.

4. Next, include Oracle for publication and create publications and articles. To create
an Oracle publication using SQL Server Management Studio, navigate to Replica-
tion. Right-click Replication and select Distributor Properties.

Chapter 20 Replication 577
5. From the Distributor Properties page, select the Publishers tab. From the Publish-
ers tab, click the Add button and select Add Oracle Publisher. This will invokes the
Add Server dialog box.

6. Fill in information on the Oracle net service name, the user name of the SQL Server
replication account that we just created, and its password. This is shown in Figure
20-27. Click Connect when done.

Figure 20-27 The Add Server dialog box for Oracle.

7. You will now see the Distributor Properties page, but with an Oracle publisher
listed along with the SQL Server publisher(s). This is shown in Figure 20-28.

Figure 20-28 The Distributor Properties page.

578 Part V Microsoft SQL Server 2005 Business Intelligence
8. To create an Oracle publisher using SQL Server Management Studio, navigate to
Replication. Right-click Replication and select New, then Oracle Publication. This
invokes the New Publication Wizard. Of course, it starts with the welcome page
(not shown). Click Next to continue.

9. The Oracle Publisher page allows you to select an Oracle publisher that you have
previously configured or to configure a new Oracle publisher. Clicking the Add
Oracle Publisher button invokes the same Distributor Properties page that we just
used. Select the Oracle publication as seen in Figure 20-29 and click Next.

Figure 20-29 The Oracle Publisher page.

10. The next page allows you to select snapshot or transactional replication. These are
the only options available when replicating from Oracle to SQL Server. For this
example, I’ve selected transactional replication, as shown in Figure 20-30. Click
Next to proceed.

Figure 20-30 The Publication Type page.

Chapter 20 Replication 579
11. The Articles page lets you select tables just like with a SQL Server publication. As
with SQL Server, if a table is not eligible for replication, you will be informed. The
articles page is shown in Figure 20-31.

Figure 20-31 The Articles page.

12. The remaining pages are the same as with a SQL Server publication and include the
Filter Table Rows page, the Snapshot Agent page, the Agent Security page, the Wiz-
ard Actions page, and the Complete The Wizard page.

Once you have created the publication, the publication can be subscribed to in the same
way that you would subscribe to a SQL Server publication.

Real World Oracle and SQL Server Interoperability

Replication between Oracle and SQL Server is a great step forward in interoperabil-
ity between Oracle and SQL Server. In addition to replication, it is now possible to
monitor Oracle using a plug-in for Microsoft Operations Manager. This interopera-
bility allows you to manage your entire operation from one console, thus easing the
administration burden.

Managing Replication
Replication is managed from SQL Server Management studio or via SQL statements.
Once replication has been configured, it requires regular monitoring and maintenance.

580 Part V Microsoft SQL Server 2005 Business Intelligence
Maintenance tasks can be performed either via SQL Server Management Studio or via
SQL statements. In order to invoke many of the replication maintenance tasks, right-click
Replication.

On the menu that appears, you can select from the following utilities:

■ Publisher Properties Used to change properties of the publisher. From this page
you can add or remove databases as a publication. Available replication types are
transactional and merge.

■ Distributor Properties Used to view and change properties of the distributor.

■ Disable Publishing and Distribution Used to disable publishing, distribution,
or both.

■ Launch Replication Monitor Used to invoke the Replication Monitor, with
which you can both monitor and manage replication. The Replication Monitor is
covered in this and the following section.

■ Generate Scripts Used to create scripts for rebuilding the publisher and/or dis-
tributor.

■ Update Replication Passwords Used to update replication passwords through-
out the replication system. This keeps you from having to update passwords in mul-
tiple locations.

■ New Used to invoke an additional list of options, including New Publication,
New Oracle Publication, and New Subscriptions.

■ Refresh Used to refresh the replication objects.

These utilities are described in more detail in the following sections.

Publisher Properties
This utility iis used to change properties of the publisher. From this page you can add
or remove databases as a publication. Available replication types are transactional and
merge. This doesn’t seem like much, but it can have a huge impact on the functionality
of replication.

Important Clearing the publication permissions box on a database deletes all
publications and subscriptions on that database.

Distributor Properties
This utility is used to view and change properties of the distributor. Here you can set
options, such as the retention policy and the history retention. The General window of

Chapter 20 Replication 581
the Distributor Properties utility is shown in Figure 20-32. A new distribution database
can be created by clicking the New button.

Figure 20-32 The Distributor Properties General window.

By clicking on the ellipses button, you can configure the transaction retention period and
the history retention periods for the selected database from the Distribution Database
Properties window. In addition, the security for the Queue Reader Agent can be set by
clicking the Security Settings button. The Distribution Database Properties window is
shown in Figure 20-33.

Figure 20-33 The Distribution Database Properties window.

582 Part V Microsoft SQL Server 2005 Business Intelligence
From the Main Distributor Properties window, you can modify agent properties by click-
ing the Profile Defaults button. This invokes the Agent Profiles window. This window
gives you the option of modifying agent properties and tuning the replication agents, as
shown in Figure 20-34. Tuning agents is covered in the next section of this chapter.

Figure 20-34 The Agent Profiles window.

The Publishers window of the Distributor Properties utility allows you to change or add
publishers to the distributor. You can add either a SQL Server or an Oracle publisher to
the distributor. In addition, you can set the administrative link password that is used by
the publisher to connect to the distributor. This window is shown in Figure 20-35.

Figure 20-35 The Distributor Properties Publishers window.

Chapter 20 Replication 583
Disable Publishing and Distribution
The Disable Publishing and Distribution Wizard walks you through the steps of dis-
abling publishing, distribution, or both. Within the wizard, you can select specific publi-
cations to disable, or you can choose to disable all publications. In addition, you can
disable distribution and remove the distribution database from the system. This wizard is
easy to use.

Launch Replication Monitor
This utility invokes Replication Monitor, with which you can monitor and manage rep-
lication. Replication Monitor is useful for monitoring replication agents and viewing
the replication configuration. Replication Monitor allows you to invoke several admin-
istrative tasks that are also available through SQL Server Management Studio directly.
The initial window of Replication Monitor is shown in Figure 20-36. Replication Mon-
itor is described in more detail in the next section of this chapter.

Figure 20-36 Replication Monitor.

Generate Scripts
This very useful utility helps you to create scripts that can be used to manage the pub-
lisher and distributor. From the Generate SQL Script tool, shown in Figure 20-37, there
are many options for generating scripts associated with creating or dropping the dis-
tributor or selected publications. This can also be a very good tool for documenting
your configuration and copying it to another system.

584 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 20-37 The Generate SQL Script window.

Update Replication Passwords
This utility updates replication passwords throughout the replication system. This keeps
you from having to update passwords in multiple locations. The Update Replication Pass-
words window is shown in Figure 20-38.

Figure 20-38 The Update Replication Passwords window.

This utility can save you a lot of work and help you avoid mistakes by updating all pass-
words from one utility.

Chapter 20 Replication 585
New
This option invokes an additional list of options including New Publication, New Ora-
cle Publication, and New Subscriptions. These utilities were covered earlier in this
chapter, in the “Configuring Replication section.”

Refresh
This utility refreshes the replication objects.

Other replication tasks involve monitoring and tuning replication. This is an important
part of managing replication and should be done on a regular basis. Monitoring and tun-
ing replication is covered in the following section.

Monitoring and Tuning Replication
In some ways, tuning replication involves the normal tuning that you do with any SQL
Server system. In other ways, tuning replication involves tuning the specific replication
agents. In this section you will see some standard replication tuning tips and techniques,
along with specific tasks that must be done in order to tune specific replication types.

Monitoring Replication with perfmon
The SQL Server agents can be monitored via the Windows performance monitor tool
(perfmon). Perfmon can be invoked by selecting it from the Start menu, then All Pro-
grams, Administrative Tools, and then Performance, or by selecting Run from the Start
menu and typing perfmon. From the performance monitor, the SQLServer: Replication
Agents object provides a count of the number of agents of each type running on the sys-
tem. The following are the agents that can be selected:

■ Distribution

■ Logreader

■ Merge

■ Queuereader

■ Snapshot

The previous counters are not particularly useful for tuning—only for making sure that
the required components are up and running.

586 Part V Microsoft SQL Server 2005 Business Intelligence
While some counters are not useful for monitoring performance, other counters are very
useful for monitoring performance. For all replication types, it is useful to monitor the fol-
lowing performance objects:

■ PhysicalDisk These counters are very useful since many performance problems
related to snapshot, transactional, and merge replication are I/O related.

■ Processor It is always a good idea to monitor the system processors. CPU usage
might be critical because the reason for doing replication in many cases is to offload
reports or data warehouses.

■ System This counter gives you a good overview of the entire system. Counters
such as context switches, processes, and threads can be useful information.

The following are things to watch for:

■ I/O bottlenecks Are I/O rates too high? Look for I/Os per second and seconds
per I/O.

■ Network bottlenecks It is difficult to find a network bottleneck, but you may be
able to determine if you have one by calculating the network throughput and com-
paring that with the snapshot replication time.

■ CPU time If the CPU time is too high, especially on the distributor, you might
want to add another CPU.

By looking for I/O and network problems and solving them if they exist, you will be able
to improve snapshot replication performance.

Monitoring Replication with the Replication Monitor
SQL Server 2005 has added the Replication Monitor. With the Replication Monitor you
can monitor, configure, and even tune replication. The Replication Monitor can be
invoked by right-clicking Replication in the SQL Server Management Studio and select-
ing Launch Replication Monitor. The Replication Monitor is shown earlier in this chapter
in Figure 20-36.

The main window of the Replication Monitor, shown in Figure 20-36, lists the publica-
tions and their status. This gives you a quick view of how publishing is running.

The Subscription Watch List tab lists the subscriptions associated with this replication
system. All of the subscriptions for each type are listed, as shown in Figure 20-39.

By right-clicking the subscription, you can select View Details, Start Synchronization (if
stopped), Stop Synchronization (if started), Reinitialize Subscription, Properties, and
Agent Profile.

Chapter 20 Replication 587
Figure 20-39 The Replication Monitor Subscriptions Watch List window.

The View Details page shows the agent status and some history. This window may pro-
vide your first indication of a problem with the Distribution Agents. The Distributor to
Subscriber History is shown first simply because of where it has been invoked. This win-
dow is shown in Figure 20-40.

Figure 20-40 The Replication Monitor Distributor to Subscriber Details window.

If you select the Publisher to Distributor History tab, you will see the log reader history.

The third tab in the View Details page is Undistributed Commands. This window pro-
vides information on commands that have been issued but not applied to the subscriber.

These pages provide status and error information on the various agents and tasks that are
taking place in the replicated system. The Replication Monitor is a very good place to find
how replication is performing and whether there are errors.

588 Part V Microsoft SQL Server 2005 Business Intelligence
By further expanding the Replication Monitor so that the publications are visible (by
clicking +) and selecting a publication, you will see its subscriptions. This window shows
the subscriptions, the performance, and the latency of the subscription. This information
can indicate issues with the subscription and how well it is performing. The latency
describes how long a change takes to propagate from the publisher to the subscriber. The
default replication tuning parameters usually result in a change taking 10 to 20 seconds
to propagate. If the latency is too high (greater than 40 seconds or so), you might have a
problem that you need to investigate. Of course, if you have tuned replication to propa-
gate faster, these values will change.

The Tracer Tokens window allows you to artificially insert a token into the replication
stream and time its application. This allows you to periodically test replication and its per-
formance. The Tracer Token is a great way to test replication. This window is shown in
Figure 20-41.

Figure 20-41 The Replication Monitor Tracer Tokens window.

The final tab brings up the subscriptions Warnings and Agents window. This is where
you can configure alerts . This window is shown in Figure 20-42.

Figure 20-42 The Replication Monitor Warnings and Agents window.

Chapter 20 Replication 589
In the next few sections, you will see how to tune replication for each replication type. As
you will see, snapshot, transactional, and merge replications are tuned differently.

Tuning for Snapshot Replication
The snapshot replication system is different from the other replication methods in that
the entire replication task takes place at once. With transactional and merge replication,
a snapshot is propagated to the subscribers, and then replication is constantly being
applied to these systems. Snapshot replication is a full refresh of the database and is
therefore much more straight-forward.

Since snapshot replication essentially takes an existing database and copies it to the dis-
tributor, then to the subscriber, the limiting performance factor in snapshot replication is
the ability to move large amounts of data. Factors that can limit snapshot data include the
following:

■ I/O performance on the publisher Since the entire database, or parts of it, is
copied from the publisher, the performance of the I/O subsystem on the publisher
can be a limiting factor. The snapshot task is more I/O intensive than CPU inten-
sive, thus CPU power is not usually a factor.

■ I/O performance on the distributor As with the publisher, the distributor
receives large amounts of data at one time and at some later time distributes that
data. A slow I/O subsystem bogs down transactional replication.

■ I/O performance on the subscriber As with the other components, the distrib-
utor will attempt to distribute a database or subset of a database to the sub-
scriber in one shot. If the I/O subsystem is inadequate, replication performance
will suffer.

■ The bandwidth of the network between the publisher, distributor, and
subscriber Since large amounts of data are being transferred, the network can
easily become a bottleneck. Make sure that your network does not limit replication
performance.

As you can see, there are several factors that can limit performance. By reducing the effect
of these factors by properly sizing and configuring the snapshot replication system, per-
formance will be optimal.

Monitoring the Snapshot System
Monitoring the snapshot system is done via the Windows performance monitor, perf-
mon. Within perfmon, there are a number of objects that are added when SQL Server

590 Part V Microsoft SQL Server 2005 Business Intelligence
replication is present. In addition there are a number of standard perfmon objects that
are useful for monitoring snapshot replication. These objects include:

■ SQLServer:Replication Agents Provides counts of each type of agent that is running.

■ SQLServer:Replication Dist Provides information on distribution latency.

■ SQLServer:Replication Snapshot Provides information on snapshot performance.

These counters give you a fairly good idea of how much activity is occurring in the agent.
In addition, the Snapshot Agent Status page can be a good place to find information
about how the snapshot performed. In SQL Server Management Studio expand Replica-
tion, then Local Publications. Right-click on the publication that you want to monitor and
select View Snapshot Agent Status. This is shown in Figure 20-43.

Figure 20-43 The Snapshot Agent Status window.

Tuning the Snapshot System
Tuning the snapshot system usually just involves proper configuration, as mentioned
above. The critical things to look for during snapshot replication are I/O and network
problems. In order to determine if you are network bound, you should look at the perfor-
mance of the network and then determine if that network is sufficient for your replication
needs. Let’s look at an example.

Suppose you have a database that is 5 GB in size. Using a 10baseT network, there is a
theoretical maximum bandwidth of 10 megabit per second, which is approximately 1
MB (megabyte) per second. Thus, a 5 GB database will take 5,120 seconds, or 1.4 hours
(5 GB x 1,024 (Mbyte/Gbyte)) / 1 (Mbyte/sec), to replicate this database. In contrast, a
100baseT network can perform the same replication in 8.3 minutes. In addition, a Gigabit

Chapter 20 Replication 591
network can do this same task in 51 seconds. The network comparison is summarized in
the following table:

As you can see, the size of your network really does count. By performing calculations like
this, you should get a good idea of how long the replication should take. If these tasks are
taking much longer, you probably are experiencing a bottleneck somewhere else.

The Snapshot Agent can be tuned by setting the Snapshot Agent properties. The Snap-
shot Agent Configuration window can be invoked from the Distributor Properties win-
dow. In SQL Server Management Studio, right-click Replication and select Distributor
Properties. In the Distributor Properties General window, select Default Profiles. Here
you can create or modify agent profiles. There are only a few parameters that can be set
in the Snapshot Agent Default Configuration window, shown in Figure 20-44.

Figure 20-44 The Snapshot Agent Default Configuration window.

Table 20-1 Network Speed Comparison*

*This table uses a theoretical maximum bandwidth of the published network speed. Your actual speed will
be much less than the theoretical maximum.

Network Speed
Theoretical Time to Perform a Snapshot of a 5 GB data-
base

10baseT 5,120 seconds or 85.3 minutes or 1.4 hours

100baseT 516 seconds or 8.3 minutes

Gigabit 51 seconds

592 Part V Microsoft SQL Server 2005 Business Intelligence
Once you have created a new profile, you can use the Replication Monitor in order to set
that profile to be used by each agent. Right click the publication or the subscription and
select Agent Profile. Here you can select the profile to run for each agent.

Snapshot is the most straightforward of the replication types, but in many ways, the
most performance challenging (because all tuning issues are in the hardware), since
everything is copied at once. This requires a great deal of I/O and network band-
width.

Tuning the Distributor
In order to tune the replication system, it is necessary to tune the distributor. The distrib-
utor is a SQL Server database that is used as a repository of replication data as well as
metadata. This data is held in a SQL Server database for several reasons. These reasons
include the following:

■ Performance SQL Server performance is ideal for the distributor because the job
of the distributor is to acquire, hold, and then distribute data. What better perform-
ing repository for data is there than SQL Server itself?

■ Reliability Because SQL Server supports a high level of recoverability, the replica-
tion data cannot have a better place to reside. Using the transaction log, SQL Server
is able to recover from system failures without losing any data.

■ Ease of use Because SQL Server replication communicates directly to the distrib-
utor via SQL Server communications protocols, setting up and configuring the dis-
tributor is very easy to do.

As mentioned above, the distributor uses a SQL Server database to process replication
information. Thus, the distributor must be configured and tuned like any other SQL
Server database. The default distribution configuration may work for smaller replication
systems, but based on the amount of work being done, you will most likely want to con-
figure the distributor manually.

Configuring the Distributor
Since the distributor uses a SQL Server database, it is necessary to configure this database
for optimal performance. By default, the SQL Server Replication Wizard will not place the
SQL Server transaction log and data files optimally. This is up to you to do.

Depending on the frequency of modifications to your database, the amount of activity in
the distributor can be quite high. Since the distributor uses a SQL Server database, all
modifications to the distributor must be logged in the transaction log. Keeping these in

Chapter 20 Replication 593
mind, you should optimally configure the distribution database and log to be large
enough to perform the work required and fast enough to perform it efficiently. These top-
ics were covered in detail in Chapter 4, “I/O Subsystem Planning and RAID Configura-
tion.” Here are a few guidelines for configuring the distribution database:

■ Use a RAID controller on the distribution database system. By using a hard-
ware RAID controller, the fault-tolerance features that are needed will be performed
in hardware, thus more efficiently that using software RAID.

■ Configure the distribution database’s transaction log on a RAID-1 volume.
The transaction log should be isolated in order to allow for the higher performance
that is achieved with sequential I/Os.

■ Configure the transaction log large enough so that it is not necessary to con-
stantly backup the transaction log. Depending on your needs, it may be possi-
ble to run all day without backing up the transaction log and performing that task
at night.

■ Never run in truncate log on checkpoint mode. The distribution database is
critical to replication and must be safeguarded from system failures.

■ Configure the distribution database on a RAID-1 or RAID-10 volume. RAID-
5 is not appropriate due to the high number of writes to the distribution database.

■ Configure the distribution database to be large enough to hold extra replica-
tion data. If a subscriber were to fail, you may have to hold several days worth of
replication data.

■ Tune the distribution database as you would any other SQL Server database.
By optimally configuring the distribution database in the beginning, you may be
able to avoid costly performance problems later.

Tuning the Distributor
As mentioned earlier, the distributor is tuned in the same manner as any other SQL
Server systems. There are, however, a few differences that you should keep in mind.
When snapshot replication is running, including the initial snapshot for other replication
types, a large number of I/Os will occur at one time. Since so much data is being written
to the distributor, it is possible that the I/O subsystem may become overloaded. If this is
the case, the time it takes to perform this snapshot increases. Therefore, it is a good idea
to specifically monitor the system during the snapshot.

Performance of the distributor can be enhanced by proper sizing, although as you have
seen earlier in this book, sizing is not always an easy task. In the case of the distributor,

594 Part V Microsoft SQL Server 2005 Business Intelligence
it may be better to give it a little extra capacity. The distributor is the link between the
publishers and the subscribers, and it should be optimally configured so that it is not a
bottleneck. Some tips on configuring and tuning the distributor include the following:

■ Tune the I/O subsystem. It is important that there be sufficient I/O perfor-
mance capacity for the distributor, just as any other SQL Server system.

■ CPU power is not usually a problem. In most cases, the type of operations that
are involved in being a distributor are not extremely CPU-intensive. It is, however,
advisable that a multiprocessor system with at least 2 CPUs be used. This allows
concurrent operations to take place.

■ Tune Windows. Typically there is not much Windows tuning that is necessary.
However, there are a few things that can be done. Configure the Server service to
maximize throughput for network applications. This configures the memory sys-
tem to favor applications over file services. This is configured within the Network
Connections application within the control panel. Also, remove any unnecessary
services that won’t be used, such as FTP services.

■ Tune SQL Server. Using the techniques and guidelines given within this book,
tune the SQL Server system.

By properly configuring and tuning, the distributor replication will be enhanced.

Tuning for Transactional Replication
In this section, you will learn how to configure and tune a transactional replication sys-
tem for optimal performance. Transactional replication is different from snapshot repli-
cation in that each transaction is replicated from the publisher, to the distributor, and
then to the subscriber in small chunks, rather than all at once. Transactional replication
begins with a snapshot; however, once this snapshot has been completed, replication is
continuous. This section begins with a review of the attributes of transactional replication
followed by configuration, monitoring, and tuning guidelines.

Attributes of Transactional Replication
Transactional replication starts with a snapshot that is copied to the distributor (or snap-
shot location) and then to the subscriber. Once the snapshot has been completed, the
Log Reader Agent reads the transaction log of the publisher, either on a continual basis
or on a regular schedule. This is determined by how you configure the Log Reader Agent.

This is the only additional overhead that is incurred on the publisher. The Log Reader
Agent itself runs on the distributor and connects to the publisher in order to read the
transaction log. On the distributor, the transactions that are read from the transaction log

Chapter 20 Replication 595
on the publisher are put into the distribution database. These transactions are then even-
tually sent to the subscribers. Factors that can limit snapshot data include the following:

■ I/O performance on the publisher’s transaction log The transaction log on
the publisher is read in order to determine what changes have been made.
Because the transaction log is now being read and written, the sequential nature
of the transaction log may be disrupted. This may cause a bottleneck if it is not
carefully configured.

■ Performance of the distributor Depending on how much replication is being
done and how many publishers are using the distributor, a performance problem
may develop. Earlier in this chapter, you learned how to configure and tune the dis-
tributor.

■ Performance of the subscriber Depending on what activity is occurring on the
subscriber, a performance problem may develop. Normal SQL Server tuning
should be done.

As you can see, there are several factors that can limit performance. By reducing the effect
of these factors by properly sizing and configuring the systems involved, performance
will be optimal.

Configuring for Transactional Replication
As discussed in the previous section, the transaction log on the publisher may be experi-
encing additional overhead. Tuning of the publisher, distributor, and subscriber mainly
involves proper configuration of the I/O subsystem on these systems. There are, however,
some configuration choices that can make a great deal of difference when configuring
snapshot replication. Here are some guidelines for configuring transactional replication
system:

■ Configure sufficient I/O capacity Follow general I/O capacity guidelines as pre-
sented in Chapter 4. In addition, there are some specific I/O changes that should be
made on the publisher.

■ Increase the commit batch size on the distributor Tune the Log Reader Let’s
look at each of these configuration guidelines.

Configure Sufficient I/O
By configuring sufficient I/O capacity, the performance of the entire replication process
may be enhanced. As with any SQL Server system, the transaction log should be located
on its own RAID-1 volume for data protection. The data files should be located on one or
more RAID-10 or RAID-5 volumes. Unlike snapshot replication, there are only minor I/O
considerations on the publisher, distributor, and subscriber because of transactional rep-
lication. Those considerations are described here in the upcoming sections.

596 Part V Microsoft SQL Server 2005 Business Intelligence
Configure the I/O Subsystem on the Publisher
In general, the publisher should follow normal SQL Server configuration guidelines as
shown throughout this book. In addition to the normal configuration guidelines, you
may need to increase the I/O capacity of the transaction log. Normally it is recommended
that the transaction log be configured on a RAID-1 volume. If necessary and depending
on how busy your system is, you may need to use more disk drives in a RAID-10 volume.
RAID-5 is not appropriate for the transaction log.

Configuring the I/O Subsystem on the Distributor The distributor should be con-
figured so that the distribution database has its transaction log on a dedicated RAID-1
disk volume. This allows the distribution database to achieve maximum transaction log
performance, thus improving the performance of the distributor.

Configuring the I/O Subsystem on the Subscriber Transaction replication does
not specifically call for any special I/O configuration on the subscriber. Simply follow
general sizing and configuration guidelines as shown throughout this book.

Increase the Commit Batch Size on the Distributor
The commit batch size on the distributor determines how many replication transactions
are committed in a single batch. While the distribution database is being updated, there
are locks held on the distribution tables. Increasing the batch size causes more rows to be
committed at a time, thus increasing the time that those locks are held. Decreasing the
batch size causes fewer rows to be committed at a time, thus giving other processes a
chance to access the distribution database.

If there is a large amount of activity on the distribution database from several different
sources (in other words, the publisher and several subscribers), you may want to try
reducing the batch size. If the Log Reader Agent is running on a periodic schedule and
has a lot of transactions to insert into the distribution database, you may benefit from a
larger batch size. There may actually be no need to change it, but if you do, compare the
impact of both increasing and decreasing the batch size in order to determine which is
better.

The commit batch size can be configured through SQL Server Management Studio (or
the Replication Monitor) by selecting the properties of the Distribution Agent. In SQL
Server Management Studio, select Distributor Properties. In the Distributor Properties
window click Profile Defaults button, as shown earlier in this chapter. Here you can set
the agent properties.

In the Replication Monitor, this is found under Agent Profiles. Here you can choose a dif-
ferent agent profile or select to modify the currently selected profile, which in this case is
the Default Profile, as shown in Figure 20-45.

Chapter 20 Replication 597
Figure 20-45 Distribution Agent Profile window.

Click the ellipses button to modify the Distributor Default Profile, as shown in Figure
20-46. Here you can change parameters such as the polling interval and batch size.

Figure 20-46 Distribution Agent Default Configuration window.

598 Part V Microsoft SQL Server 2005 Business Intelligence
Best Practices Never change the default profile. Always create a new profile if
you wish to change a parameter. Leave the default profile as it is.

Tune the Log Reader
By configuring the log reader, you may be able to reduce its effect on the publisher’s trans-
action log. There are several ways to make the log reader process more efficient. One way
is to use a caching controller for the log drive volume. Since log reader Agent reads from
the log drive, a cache on a controller allows the read to take place from the cache, rather
than causing a random I/O to occur.

Another way to tune the log reader is by modifying the frequency that it runs. The log
reader can run on a continuous basis, or it can be configured to run periodically. On a
system that is not experiencing a large amount of update activity, it may be acceptable for
the log reader to run continuously, but on systems where the transaction log is busy, con-
figuring the log reader to run less frequently can improve performance of the publisher.
You are not reading from the transaction log as often, thus allowing the transaction log
I/Os to remain sequential. Reads from the transaction log tends to randomize the other-
wise sequential I/Os.

Tuning the log reader to run periodically is done through the scheduling of the agent. If
the log reader is scheduled to run continuously, you can set the polling interval, which
sets how often the Log Reader Agent checks the transaction log. The default value of five
seconds is usually sufficient; however, if you cannot accept a five-second delay, this num-
ber can be tuned down to a lower value. The polling interval on Log Reader Agent and on
the Distribution Agent determines the time that a change could take to propagate
through the system.

Another way to make the Log Reader Agent more efficient in heavily used systems is to
increase the read batch size. This specifies how many transactions are read from the
transaction log and copied to the distributor at a time. In heavily used systems, increasing
this parameter can improve performance. In addition, when increasing the polling inter-
val, it may be useful to increase the batch size. If you increase the read batch size on Log
Reader Agent, it is advisable to increase the commit batch size on the distributor to cor-
respond to the new read batch size.

The Log Reader Agent can also be configured through SQL Server Management Studio
(or the Replication Monitor) by selecting the properties on Log Reader Agent. In SQL
Server Management Studio, this is found through the Distributor Properties tool under
Agent Profiles and the Profile Defaults button. In the Replication Monitor, this is found
under Agent Profiles. Here you can choose a different agent profile or select to modify the
currently selected profile, which in this case is the Default Profile (if you haven’t changed
it), as shown in Figure 20-47.

Chapter 20 Replication 599
Figure 20-47 The Log Reader Agent Default Configuration page.

Monitoring the Transactional Replication System
As with the other replication types, monitoring transactional replication is done via the
Windows performance monitor (perfmon). Within perfmon there are a number of
objects that are added when SQL Server replication is present. These objects include the
following:

■ SQLServer:Replication Agents Gives counts of each type of agent that is running.

■ SQLServer:Replication Dist Provides information on distribution latency. Long
latencies can be a sign that the distributor is overloaded.

■ SQLServer:Replication Logreader Provides data on Logreader activity and
latency. Look for long latencies, which can be an indication that there is a problem
reading the transaction log on the publisher. Also watch the number of Delivered
Transactions per second. If this is high, you may need to add more I/O capacity to
the transaction log disk volumes.

By using the Windows performance monitor and monitoring these values, you can some-
times determine if there is a performance problem in the Log Reader Agent or in the dis-
tributor. This perfmon data provides a lot of valuable information but may not always
identify problems.

600 Part V Microsoft SQL Server 2005 Business Intelligence
In addition to monitoring with perfmon, the Replication Monitor is a good place to see
how replication is doing. This can be done by looking at the replication latency output as
well as through the use of tracer tokens.

Tuning the Transactional Replication System
The main steps in tuning the transactional replication system are to properly configure
the system and monitor it as shown above. In addition, after the system is in production
and you can monitor it, you may need to modify the read batch size and the polling inter-
val. The default value of 10 seconds is usually pretty good. By increasing the polling inter-
val (making it smaller), you replicate transactions faster at the expense of more overhead
on the transaction log. By decreasing the polling interval (making it longer), you reduce
the overhead on the transaction log but leave transactions in the log longer before they
are replicated.

In update intensive systems, you may need to increase the read batch size. This will let the
Log Reader Agent read more transactions out of the transaction log at a time. By increas-
ing this value and leaving the polling interval at 10 seconds, you are able to replicate more
transactions with less additional overhead.

As with snapshot replication, it is also necessary to monitor and increase the capacity of
the network if necessary. If your system appears to be performing optimally, such as CPU
and I/O usage within their capacity limits, yet the replication process seems to be taking
too long, you may have a network problem. Unfortunately, network problems cannot be
diagnosed via perfmon. A network monitor such as SMS (System Management Server)
should be used. Look for network usage near the capacity of the network card. In addi-
tion to these tuning guidelines, remember that the publisher, distributor, and subscribers
are SQL Server systems just like any other SQL Server system.

Tuning Transactional Replication with Updating Subscriptions
If you are running transactional replication with updating subscriptions, you will have
the additional task of monitoring the Queue Reader Agent. As with the other agents, the
Queue Reader Agent also has a polling interval. As with the other agents, the Queue
Reader Agent polling interval can be changed.

The Queue Reader Agent can also be configured through SQL Server Management Stu-
dio (or the Replication Monitor) by selecting the properties on the Queue Reader
agent. In SQL Server Management Studio, this is found through the Distributor Prop-
erties tool under Agent Profiles and the Profile Defaults button. In the Replication Mon-
itor, this is found under Agent Profiles. Here you can create a new agent profile or
modify the currently selected profile, which in this case is the Default Profile, as shown
in Figure 20-48.

Chapter 20 Replication 601
Figure 20-48 The Queue Reader Agent Default Configuration window.

Under normal circumstances, the Queue Reader Agent properties should not be
changed.

Monitoring and Tuning the Merge Replication System
In this section, you will learn how to configure and tune a merge replication system for
optimal performance. This section begins with a review of the attributes of merge repli-
cation, followed by configuration, monitoring, and tuning guidelines. Unlike transac-
tional replication and snapshot replication (except for updating subscribers), merge
replication is not a one-way replication. Modifications can be made on either the pub-
lisher or any number of subscribers. Another difference is that where transactional repli-
cation is done external to the normal operations of SQL Server by reading the transaction
log, merge replication triggers are created on the replicated tables in order to track
changes to them. In this way, merge replication is very different.

Attributes of Merge Replication
Merge replication begins with a snapshot, but since it occurs only once, it is not extremely
important to tune this snapshot. The merge system creates tables both on the publisher
and distributor in order to perform the replication. In addition, a new column is added to
every replicated table that holds a unique row identifier. This is used to uniquely identify
each row so that the replication agent can effectively track changes.

602 Part V Microsoft SQL Server 2005 Business Intelligence
When a row is inserted or modified, the trigger marks that row as needing replication. At
a later time when the Merge Agent runs, it collects all of these rows and sends them to the
distributor for replication. At the same time, the Merge Agent modifies any rows on the
publisher that have been modified on the subscriber system or systems. In this way, two
way replication is accomplished.

Real World Merge Replication Overhead

I have been using and implementing replication with SQL Server for many years.
Because of the additional overhead incurred involved with a trigger-based replica-
tion system, I always recommend transactional replication or transactional replica-
tion with updating subscribers before I recommend merge replication.
Transactional replication incurs much less overhead on the publisher than merge;
thus, I like it better.

Configuring for Merge Replication
As with transactional replication and snapshot replication, the I/O subsystem and net-
work are very important. In addition to configuring sufficient I/O for merge replication, it
is also possible to improve merge replication by configuring the merge batch size. By
increasing the batch size, you have fewer batches that are larger and therefore more effi-
cient. In addition to the merge batch size, you may want to tune snapshot replication, as
described above. However, the snapshot occurs only once, so this step can be skipped. I/O
configuration and the other considerations are described here in the following sections.

Configure Sufficient I/O
By configuring sufficient I/O capacity, the performance of the entire replication process
may be enhanced. As with any SQL Server system, the transaction log should be
located on its own RAID-1 volume for data protection. The data files should be located
on one or more RAID-10 or RAID-5 volumes. Like transactional replication, there are
only minor I/O considerations on the publisher, distributor, and subscriber because of
merge replication.

Configuring the I/O Subsystem on the Publisher In general, the publisher should
follow normal SQL Server configuration guidelines as shown throughout this book.
Unlike transactional replication, no additional load is put on the transaction log, so just
follow normal tuning guidelines.

Configuring the I/O Subsystem on the Distributor The distributor should be con-
figured such that the distribution database has its transaction log on a dedicated RAID-1

Chapter 20 Replication 603
disk volume. This allows the distribution database to achieve maximum transaction log
performance, thus improving the performance of the distributor.

Configuring the I/O Subsystem on the Subscriber Since merge replication is mul-
tidirectional, the subscriber and publisher are similarly tuned. As with merge replica-
tion, just follow general sizing and configuration guidelines as shown throughout this
book.

Configure the Merge Batch Size
In busy systems, it is possible to improve merge replication performance by configuring
the merge batch size. The merge batch size determines how many changed rows at a time
are copied to the distributor. By increasing the batch size, fewer batches that are larger are
sent, which may be more efficient.

The Merge Agent can also be configured through SQL Server Management Studio (or the
Replication Monitor) by selecting the properties on the Merge Agent. In SQL Server Man-
agement Studio, this is found through the Distributor Properties tool under Agent Pro-
files and the Profile Defaults button. In the Replication Monitor, this is found under
Agent Profiles. Here you can choose a different agent profile or select to modify the cur-
rently selected profile, which in this case is the Default Profile (if you haven’t changed it),
as shown in Figure 20-49.

Figure 20-49 Merge Agent Default Configuration page.

604 Part V Microsoft SQL Server 2005 Business Intelligence
Monitoring the Merge Replication System
Monitoring the distributor is done via the Windows performance monitor (perfmon).
Within perfmon there are a number of objects that are added when SQL Server replica-
tion is present. These objects are the following:

■ SQLServer:Replication Agents Gives counts of each type of agent that is running.

■ SQLServer:Replication Merge Provides data on Merge rates. This provides infor-
mation on conflicts per second, uploads per second, and downloads per second.
This information provides rate information but does not really help with tuning
merge replication.

The SQL Sever merge replication counters are not extremely helpful for determining per-
formance problems. The best way to tune a merge replication system is to simply tune the
SQL Server system as normal and pay special attention to the network. Look for normal
performance bottlenecks, and follow the guidelines in this chapter to determine if the
distributor is overloaded.

As with the other replication types, merge replication can also be monitored from the
SQL Server Management Studio. Right-click Replication and select Replication Monitor.
Select the Merge Replication subscription. This shows you information about merge sub-
scriptions, as shown in Figure 20-50. Look for things like Delivery Rate, Duration and
when it was last synchronized. This can indicate problems.

Figure 20-50 The Replication Monitor and Merge Subscriptions window.

Tuning the Merge Replication System
The main steps in tuning the merge replication system are properly configuring the sys-
tem and monitoring it as shown above, with a special emphasis on I/O and network per-
formance. Once you have put the system into production, you can monitor it via
perfmon, but you will not find very useful merge data. Instead, you must rely on other
SQL Server counters and Windows counters to tune the system.

Chapter 20 Replication 605
As mentioned earlier, you may want to modify the BCP (Bulk Copy Program) and batch
sizes if your system is doing a lot of updates. By increasing the BCP size, you increase the
performance of the original snapshot. By increasing the batch sizes, you move more
changes at a time, which may be more efficient. By moving more changes at a time, you
affect the system fewer times, but each time you do, you perform more work, thus causing
a larger effect on the system.

In addition to those changes mentioned above, it is also possible to change the polling
interval. It is recommended that this not be changed. The default polling interval usually
works fine. Before tuning the polling interval, try changing the batch sizes instead. If you
feel that you need merge replication to run more or less frequently, then change the poll-
ing interval.

Merge Agent can also be configured through SQL Server Management Studio (or the Rep-
lication Monitor) by selecting the properties on Merge Agent. In SQL Server Management
Studio, this is found through the Distributor Properties tool under Agent Profiles and the
Profile Defaults button. In the Replication Monitor, this is found under Agent Profiles.
Here you can create a new agent profile or modify the currently selected profile, which in
this case is the Default Profile, as shown in Figure 20-51.

Figure 20-51 The Merge Agent Default Configuration window.

As with other replication types, it is also necessary to monitor and increase the capacity
of the network if necessary. If your system appears to be performing optimally, such as

606 Part V Microsoft SQL Server 2005 Business Intelligence
CPU and I/O usage within their capacity limits, and if the replication process seems to be
taking too long, you may have a network problem. Perfmon does not have a counter that
will show you network problems. A network monitor such as SMS (System Management
Server) should be used. Look for network usage near the capacity of the network card.
What can you do if you are near the capacity of your network? Either purchase faster net-
work cards, or add a private network for replication and/or backup and recovery to use.
In addition to these tuning guidelines, remember that the publisher, distributor, and sub-
scribers are SQL Server systems just like any other SQL Server system and follow the
same tuning guidelines given throughout this book.

Summary
In this chapter, you have been introduced to SQL Server 2005 replication. You have seen
what replication can be used for, what makes up a replicated system, and the different
types of replication. You have also learned the basics of configuring, managing, and tun-
ing replication. It might seem difficult at first, but once you have set up replication a few
times, you will see that it isn’t as hard as it first seems.

Although replication appears at first to run itself and doesn’t need any administration, it
is important to monitor it regularly. Check the logs regularly, look for errors or problems,
and correct them as soon as possible. Be sure to monitor the network and I/O subsystem
as well as space on the publisher, distributor, and subscriber.

Chapter 21

Integration Services

What Is Integration Services? .607

Designing Packages .614

Deploying Packages .650

Summary .658

Moving data between data stores can sometimes be a challenging task, especially when
multiple data structures are involved or data needs to be changed before it’s placed in a
new location. The goal of SQL Server 2005 Integration Services, also known as Integra-
tion Services or SSIS, is not only to simplify such data transfer task but also to provide
rich functionality in support of more complex extract, transform, and load (ETL) require-
ments for data warehousing. The goal of this chapter is to introduce you to the key con-
cepts of Integration Services. We’ll explore how to build basic packages using the new
design environment and how to use some of this product’s features to monitor, trouble-
shoot, and log package execution. We’ll also take a look at the administrative tasks asso-
ciated with Integration Services.

What Is Integration Services?
Integration Services is the data integration component of SQL Server 2005. Data integra-
tion activities can be as simple as moving data between data sources or as complex as
consolidating large volumes of data from multiple data sources in different formats,
applying rules to modify or cleanse data content, and loading the resulting data into data
warehouses designed for reporting and analytical applications. Even if you’re not respon-
sible for creating and maintaining a data warehouse, you’ll find the features in Integration
Services quite useful for routine database administration tasks and any activities requir-
ing you to move data in any form.
607

608 Part V Microsoft SQL Server 2005 Business Intelligence
Integration Services Versus Data Transformation Services
Integration Services is the successor to Data Transformation Services (DTS), a data utility
first introduced in SQL Server 7.0. DTS simplified the process of migrating data between
database systems and was even used as an ETL tool in many data warehouse implemen-
tations. Despite its extensive capabilities, DTS had some limitations in performance, port-
ability, and manageability that led Microsoft to develop an entirely new architecture for
improved data integration functionality in SQL Server 2005.

Some Important Enhancements
Ask ten DBAs who have started using Integration Services which enhancements are the
most important, and you’re likely to get ten different lists. The official comprehensive list
of enhancements can be found in the SQL Server Books Online topic, “Integration Services
Enhancements.” In this section, we’ll limit the discussion to the features that typically get
strong positive reactions from DBAs during their introduction to Integration Services.

If you were already satisfied with DTS, you’re going to be happier with Integration Ser-
vices. For example, during the development cycle, you can take advantage of the debug-
ging capabilities to monitor package execution more efficiently. If you’re part of a team,
you can use source control, such as Microsoft Visual SourceSafe, for your data integration
projects to manage collaboration within the group. Building complex workflows that
included loops or conditional branches was not impossible in DTS, but it was challeng-
ing; now Integration Services provides special components to handle these workflow
requirements. When you’re ready to move your work from one server to another, such as
migrating from development to production, you’ll find deployment is much simpler in
Integration Services. Of course, there are many other features, discussed later in this
chapter, which you’ll also appreciate.

If, on the other hand, the limitations of DTS kept you from making use of this tool, now’s
the time to see how Integration Services measures up to your data integration require-
ments. The biggest improvement is the new architecture of Integration Services replacing
the DTS Data Pump with an engine optimized to process and transport large data vol-
umes more efficiently and much faster. Another important new feature is the checkpoint
support, which allows you to restart data integration processes from a specific check-
point rather than the beginning of the package. You also have more options for respond-
ing to events during execution and for logging results during execution.

Migration from DTS to Integration Services
Several key concepts and terminology applicable to DTS still exist in Integration Services.
A package, for example, is still an executable unit of work that encapsulates the objects
that connect to data sources, perform tasks, transform data, and manage workflows.
However, because the new architecture of Integration Services has replaced or eliminated

Chapter 21 Integration Services 609
DTS objects, you need to recreate your packages in Integration Services to benefit from its
scalability and performance features. To support backward compatibility, all SQL Server
2005 editions (except Express) include the SQL Server 2000 DTS run-time engine. Con-
sequently, you can use Integration Services to develop new packages, convert those DTS
packages that will benefit most from the performance enhancements of Integration Ser-
vices, and then selectively convert the remaining DTS packages at your convenience.

Important If you need to edit DTS packages after upgrading the server to
Integration Services but before converting the packages, download the Microsoft
SQL Server 2000 DTS Designer Components available at
http://www.microsoft.com/downloads/details.aspx?familyid=D09C1D60-A13C-4479-
9B91-9E8B9D835CDC&displaylang=en. There are several items available for down-
load. Search for SQLServer2005_dts.msi to locate the applicable download link.

To convert DTS packages, use the Package Migration Wizard. This utility does its best to
create an Integration Services package that matches the original DTS package, but
changes to the underlying object model and the run-time engine in Integration Services
mean that any DTS object model references as well as certain tasks cannot be converted.
Before you use the Package Migration Wizard, review the information in this section to
understand both what it will and what it won’t do.

The following list outlines the DTS tasks that are replaced by Integration Services tasks
without requiring additional package modifications:

■ ActiveX1

■ Bulk Insert

■ Copy SQL Server Objects2

■ Data Mining Prediction 3

■ Execute Package4

■ Execute Process

■ Execute SQL

■ File Transfer Protocol

■ Message Queue

■ Send Mail

1 ActiveX script converts successfully only if it contains no references to the DTS object model.

2 Transfer SQL Server Objects in SSIS

3 Data Mining Query in SSIS

4 Execute DTS 2000 Package in SSIS

610 Part V Microsoft SQL Server 2005 Business Intelligence
■ Transfer Databases

■ Transfer Error Messages

■ Transfer Jobs

■ Transfer Logins

■ Transfer Master Stored Procedures

For DTS tasks that cannot be migrated at all, described in the following list, the Package
Migration Wizard inserts an Execute DTS 2000 Package Task to encapsulate the function-
ality for backward compatibility which you can replace with Integration Services tasks or
leave as is:

■ Analysis Services Processing5

■ Custom

■ Data Pump

■ Data Driven Query

■ Dynamic Properties

■ Parallel Data Pump

■ Transform Data

You need to modify the migrated package to provide replacement functionality for the
deprecated DTS tasks described here:

■ Data Driven Query Consider replacing with a Conditional Split Transformation, an
OLE DB Command Transformation, or a Slowly Changing Dimension Transformation.

■ Dynamic Properties Use property expressions or package configurations.

■ Transform Data Create a Data Flow Task with any data flow components that rep-
licate the transformation.

Several package-specific items won’t migrate. For example, even though SQL Server
2005 allows you to use package passwords with the Execute DTS 2000 Package Task, the
package password on the DTS package migrates only to the Execute DTS Package
tasks and does not migrate to the Integration Services package itself. If you have a
package that does not contain Execute DTS 2000 Package Tasks after migration, the orig-
inal package password is not migrated. (In all cases, you will be prompted for the pack-
age password before you can migrate the package.) Therefore, if you want a package
password on the migrated package, you must manually add the new password to the

5 The SSIS Analysis Services Execute DDL Task and Analysis Services Processing Task cannot interact with an
Analysis Services 2000 database.

Chapter 21 Integration Services 611
PackagePassword package property. Also, if you’ve added annotations, package logging,
or error handling to your DTS package, you’ll need to add them manually using Inte-
gration Services features.

There is no absolute rule you can apply to determine whether you should rebuild your
DTS packages manually or try the migration. If your packages are relatively straightfor-
ward, you can get much accomplished by choosing migration. To use the Package Migra-
tion Wizard, follow these steps:

1. Click the Start button, and then point to All Programs. Point to Microsoft SQL
Server 2005, and then click SQL Server Business Intelligence Development Studio.

2. On the File menu, point to New, and then click Project.

3. Ensure that the Project Type is set to Business Intelligence Projects, which is the
default selection, and then click the Integration Services Project template.

4. Type a name for the project, specify a folder used for storing project-related files,
and then click OK.

5. In the Solution Explorer window, right-click the SSIS Packages folder, click
Migrate DTS 2000 Packages, and then click Next on the Welcome page of the
wizard.

Note To launch the Package Migration Wizard from SQL Server Manage-
ment Studio, connect to the Database Engine, expand the Management
folder and then the Legacy folder, right-click the Data Transformation Ser-
vices folder, and then click Migration Wizard.

6. On the Choose Source Location page of the wizard, specify the storage location of
the package. If the package is stored in SQL Server 2000, provide a server name
and, if required, SQL Server credentials. If the package is stored as a Structure Stor-
age File, select this option in the Source drop-down list and provide the location of
the package.

7. Click Next to display the Choose Destination Location page, and then specify a
location where the wizard will store the converted package.

8. Click Next to display the List Packages page, and then select the check box next to
each package to convert.You can provide a new name for each selected package by
typing the name in the Destination Package column.

9. Click Next to display the next page of the wizard. If the original package does not
require a password, continue to the next step. If, on the other hand, the package
requires a password, you see the Package Authentication page of the wizard. Select

612 Part V Microsoft SQL Server 2005 Business Intelligence
the package in the Encrypted Packages list, and then click Password. Type the pack-
age owner password in the Package Password dialog box, and then click OK. Click
Next to continue the wizard.

10. On the Specify A Log File page, specify a location for the log file.

11. Click Next to display the Complete The Wizard page, and then click Finish. The sta-
tus of the package migration displays in the Migrating The Packages page of the
wizard. Click Close.

12. The new package appears in the Solution Explorer window. Double-click the pack-
age name to open the package in the development environment.

Review the workflow to locate tasks that might not have converted successfully and tasks
that have been stored in Execute DTS 2000 Package Task. You’ll need to decide on a task-
by-task basis how to resolve these migration issues.

Integration Services Fundamentals
Integration Services shares some common characteristics with DTS. These characteristics
are common in name only because the underlying architecture of these objects have been
redesigned. A package is still the main container of objects defining which operations,
known as tasks, should be performed. The sequence of operations is defined by prece-
dence constraints. Optionally, you can use a container, a new object in Integration Services,
to group tasks and other containers.

Each of these objects—containers, tasks, and precedence constraints—is an element of the
control flow architecture new to Integration Services which manages the run-time activi-
ties of each package. The Integration Services run-time engine also provides services to
each package, such as connection management, transaction commitment, debugging,
logging, event handling, and variable management. We’ll take a closer look at these ser-
vices later in this chapter.

Another key component in the Integration Services architecture is the data flow engine,
also known as the data pipeline. Data flow activities are encapsulated within the Data Flow
Task, an object for which the control flow engine merely provides operational support
and to which precedence constraints are applied just like any other task. For its execu-
tion, however, the Data Flow Task relies on a separate engine that performs the data
extractions, manipulates the data according to defined transformations, and then depos-
its the resulting data set into a destination.

To achieve maximum performance, the data flow engine uses buffers to manipulate
data in memory. Source data—whether it’s relational, structured as XML data, or stored
in flat files like spreadsheets or comma-delimited text files—is converted into a table-like

Chapter 21 Integration Services 613
structure containing columns and rows and then loaded directly into buffers without
staging the data first in temporary tables. Transformations are data flow objects that
operate on the buffered data, by sorting, merging, modifying, or enhancing the data
before sending it to the next transformation or to its final destination. By avoiding the
overhead of reading from and writing to disk, the processes required to move and
manipulate data can operate at optimal speed. Integration Services can even provide
data directly to an application by storing it in an ASP.NET DataReader. Using this
method, you don’t have to place the data in a persistent data store, an important step
towards enabling near-real-time data delivery.

Integration Services Components Overview
Integration Services includes several components, tools, and utilities for developing,
deploying, and managing packages. The following list introduces these items, many of
which are explained in more detail later in this chapter:

■ Integration Services Service Manages storage of packages in .dtsx files or in the
MSDB database and monitors their execution

■ Integration Services Runtime Saves package layout, applies configurations, exe-
cutes packages, manages connections and transactions, and supports logging and
debugging

■ Integration Services Runtime Executables Includes package, containers, tasks,
custom tasks, and event handlers

■ Integration Services Data Flow Manages data sources, data destinations, trans-
formations, and any custom components you add to a Data Flow Task, and provides
the in-memory buffers used to transport data from source to destination

■ Business Intelligence Development Studio Supports the development and test-
ing of Integration Services packages; supports collaboration with source code man-
agement and version control; provides debugging tools such as breakpoints,
variable watches, and data viewers; and includes the SQL Server Import and Export
Wizard to jumpstart package development

■ SQL Server Management Studio Provides access to the Execute Package utility,
imports and exports packages to and from available storage modes (MSDB data-
base or SSIS Package Store), and monitors running packages

■ SQL Server Import and Export Wizard Copies data from one location to another

■ Package Migration Wizard Converts SQL Server 2000 DTS packages to Integra-
tion Services packages

614 Part V Microsoft SQL Server 2005 Business Intelligence
■ Package Installation Wizard Deploys an Integration Services project prepared
by a deployment utility

■ Execute Package Utility (dtexecui) Provides a user interface for preparing pack-
ages for execution as well as executing packages

■ dtexec Runs a package at the command prompt

■ dtutil Provides package management functionality at the command prompt to
copy, move, or delete packages or to confirm a package exists

■ Integration Services Object Model Includes application programming inter-
faces (APIs) for customizing run-time and data flow operations and automating
package maintenance and execution by loading, modifying, and executing new or
existing packages programmatically

Designing Packages
Whether you’re migrating a DTS package or creating a new Integration Services package,
you use SQL Server Business Intelligence Development Studio. This development envi-
ronment is rich with features that can initially seem overwhelming but is much easier to
navigate once you understand how package objects are classified and how they fit
together to achieve a data integration goal. In this section, we’ll focus on commonly used
components and important features of the development environment.

The Development Environment
SQL Server Business Intelligence Development Studio is the graphical interface you use
to design, test, and execute a package. While Business Intelligence Development Studio
appears to be a distinct application, it’s actually just a shortcut to Microsoft Visual Studio
2005. If you already use Visual Studio, then the installation of Integration Services inte-
grates the business intelligence designers with your existing development environment. A
designer is a collection of design tools, including a workspace, toolbox, dialog boxes, and
various windows, used to build a project.

Starting an Integration Services Project
When you work in Visual Studio, you work in the context of a solution and a project.
A solution is simply a container for one or more projects. Each project can be a different
type. For example, you can have a single solution that contains an Integration Services
project that includes all of the packages used to perform the ETL processes for a data
warehouse, an Analysis Services project that uses data from that data warehouse, and

Chapter 21 Integration Services 615
a Reporting Services project with all reports used to present Analysis Services data. You
organize projects into solutions to make it easier to save and retrieve files that might be
related.

An Integration Services project contains four folders: Data Sources, Data Source Views,
SSIS Packages, and Miscellaneous. At a minimum, you’ll add one or more package files to
the SSIS Packages folder, but the other folders are optional. To add a new package to the
SSIS Packages folder, follow these steps:

1. Start SQL Server Business Intelligence Development Studio.

2. On the File menu, point to New, and then click Project.

3. Ensure that the Project Type is set to Business Intelligence Projects, and then click
the Integration Services Project template.

4. Type a name for the project, My Package, change the location for the project to a
folder of your choice, and confirm the Create Directory For Solution check box is
selected.

5. Click OK to continue to create the package in the Integration Services package
designer, as shown in Figure 21-1.

Figure 21-1 A new package in the Integration Services package designer.

616 Part V Microsoft SQL Server 2005 Business Intelligence
The main Visual Studio windows you’ll use during package development are described in
the following list:

■ Solution Explorer By default, this window displays in the upper right corner of
your screen. When you add a new package to your project, you’ll see a file like Pack-
age.dtsx added to the SSIS Packages folder. You can rename this file, but be sure to
keep the .dtsx extension or your package won’t work.

■ Properties This window displays in the bottom right corner of your screen by
default. If you select an object added to your package, you can view and modify its
properties in this window.

■ Toolbox This windows displays by default on the left side of your screen. The
contents of the toolbox change according to the current workspace visible in the
designer.

■ Integration Services Package Designer The designer is the main window that
represents your workspace. There are five tabs in the designer window that you
use while building and testing your package: (Only four of these tabs are shown
in Figure 22-1 because the fifth tab, Progress, appears only after you execute the
package.)

■ Control Flow Use this tab to manage tasks, containers, and precedence con-
straints in the package workflow.

■ Data Flow Use this tab to define the flow of data between sources and destina-
tions, as well as any transformations applied to the data during transfer.

■ Event Handlers Use this tab to add tasks that execute only when specific events
have occurred, such as a task failure.

■ Package Explorer Use this tab to review package objects in a tree view and to
access object properties.

■ Progress Use this tab during or after executing a package within the develop-
ment environment to review the status of executables, the duration of completed
executables, and any errors or warnings generated during package execution. This
tab appears only when you execute the package.

Using Data Sources
A data source is a file that contains the connection string and credentials used by Integra-
tion Services to connect to a data store. Right-click the Data Sources folder and click New
Data Source to start the Data Source Wizard which steps you through building a data
source. When you have many packages that extract or load data into the same data store,
you can use a data source to define the connection once and reuse it many times. If you

Chapter 21 Integration Services 617
modify the connection string in the data source, the connection managers are similarly
updated. The data source is used only during development and is not saved with the
package when you put it into production. Instead, the value of the connection string
defined by the data source when the package is saved is stored in the connection manager.

Using Data Source Views
A data source view (DSV) is a file that shows selected tables or views from a data source in
your project. Right-click the Data Source Views folder and click New Data Source View to
start the Data Source View Wizard, which steps you through the selection of a data source
and specification of the database objects you want to include in the DSV. You can add rela-
tionships between tables or add custom expressions to the DSV to create derived columns,
which is handy if you don’t have permissions to change the data structure at the source.
When you use the DSV with a data flow component, the package designer translates the rela-
tionships and custom expressions into an SQL statement that is stored with the component.

Using the SQL Server Import and Export Wizard
The SQL Server Import and Export Wizard is designed to copy data from one database
to another or to load data into SQL Server databases from flat files, spreadsheets, and
OLE DB sources when an ETL solution is not required. To use the SQL Server Import and
Export Wizard for building an Integration Services package, follow these steps:

1. To follow this example, you must complete the steps described in the previous
example. Right-click the SSIS Packages folder, and then click SSIS Import And
Export Wizard.

2. Click Next to bypass the Welcome page and to display the Choose A Data Source
page.

3. Select a data source from the Data Source drop-down list. The default data source
is SQL Native Client. For this example, select AdventureWorks in the Database drop-
down list. Click Next.

You can choose from the following additional data source options:

❑ .NET Framework Data Providers (ODBC, Oracle, and SQL Server)

❑ Flat File Source

❑ Microsoft Access

❑ Microsoft Excel

❑ Microsoft OLE DB Providers (Analysis Services 9.0, Data Mining Services,
OLAP Services 8.0, Oracle, and SQL Server)

618 Part V Microsoft SQL Server 2005 Business Intelligence
Note You might see additional Microsoft OLE DB Providers listed if
you have applications installed on your machine that include an OLE
DB provider, such as Microsoft Project 9.0, for example.

❑ SQLXMLOLEDB and SQLXMLOLEDB 4.0

When you select a different data source, the Choose A Data Source page changes to
prompt you for options required to connect to the selected data source. For exam-
ple, the .NET Framework Data Provider for ODBC requires you to provide a con-
nection string, a Data Source Name (DSN), and the name of the ODBC driver to
use.

4. On the Choose A Destination page, you select a destination for the data you’re
importing from the selected data source. The data destination options are the same
as the types that you can choose as a data source. You can even choose a destination
that doesn’t exist yet. When you create a new database, you can specify options for
Data File Size and Log File Size, which are explained in more detail in Chapter 10,
“Creating Databases and Database Snapshots.” In this example, we’ll specify a new
database, MyAdventureWorks. Click the New button, type MyAdventureWorks in
the Name text field, and then click OK.

5. Set the authentication type applicable to your server configuration: Windows or
SQL Server authentication. If you use SQL Server authentication, you must type a
SQL Server username and password in the appropriate text box. Click Next.

6. On the Specify Table Copy Or Query page, you choose how you want to define
which data to extract from the data source. Select Copy Data From One Or More
Tables Or Views when you want all data from tables and views that you select on a
subsequent page of the wizard. If you need only a subset of data, such as fewer rows
or fewer columns, select the Write A Query To Specify The Data To Transfer option.
For this example, leave the default option, Copy Data From One or More Tables Or
Views, selected. Click Next.

Note Users of SQL Server 2000 DTS notice right away that the option
Copy Objects And Data Between SQL Server Databases is missing from this
page of the wizard. Instead, open SQL Server Management Studio, right-
click the database to copy, point to Tasks, and then click Copy Database to
start the Copy Database Wizard.

7. On the Select Source Tables And Views page, you choose the tables or views to
copy from the source by selecting the corresponding check boxes in the Source
column, and then choose the table into which data is to be loaded by selecting

Chapter 21 Integration Services 619
it from the drop-down list in the Destination column. Alternatively, you can type
a name to create a new table in the data destination. You can resize columns or
the dialog box itself to improve your view of available objects. You can also click
the Preview button to confirm you will be copying the correct data. For this
example, select the [AdventureWorks].[HumanResources].[Department] table in the
Source column.

8. Click the Edit button in the Mapping column of the selected row to display the Col-
umn Mappings dialog box. Here you can apply transformations to the data during
the import by specifying conversion of null values or changing the precision. If the
destination table already exists, you can choose to delete rows from the table before
loading the copied data or to append rows to the table.

9. If the destination table is new, click Edit SQL if you need to modify the CREATE
TABLE statement. Click OK to close the Column Mappings dialog box, and then
click Next to display the Complete The Wizard page. The package is saved as a .dtsx
file in the folder specified for the current Integration Services project and is not exe-
cuted immediately.

10. Click Finish to create and save the package, and then click the Close button to
close the wizard. Your package is now visible in the package designer, as shown
in Figure 21-2.

Figure 21-2 The Integration Services package designer.

620 Part V Microsoft SQL Server 2005 Business Intelligence
By creating and saving a package to copy data from one location to another, you can
repeat the data transfer quickly and easily at a later time as many times as you wish or you
can make changes to this package to meet your needs more specifically.

Note Alternatively, by launching the wizard in SQL Server Management Studio,
you can use this tool simply to copy data without producing a package.

Adding Documentation to a Package
The Integration Services package designer includes two features that you can use to doc-
ument your packages for easier reading as described here:

■ Name property Either right-click the object to rename in the package designer,
click Rename, and then type a new name for the object, or select the object in the
designer, and type a name in the Name box in the Properties window. The object
name is completely visible in the designer and is included in logs when you enable
package logging.

Note Establish a consistent naming convention by including the type of
task or transformation and a description of the object’s function in the name.

■ Annotation Right-click the designer work surface, click Add Annotation, and
then type an annotation in the new text box. Annotations do not automatically
wrap within the text box, so press Ctrl+Enter to force a new line, or drag the han-
dles to resize the text box as needed. To change the font, font style, size, or color,
right-click the annotations box, and click Set Text Annotation Font. Use annotations
in a data source view to describe the tables and relationships it contains or on any
package designer work surface—control flow, data flow, or event handler (compo-
nents described later in this chapter)—to explain the overall objective of the pack-
age or describe the business rules being applied by package objects. Annotations
are not included in package logs.

Executing a Package in Visual Studio
While your package is still in development, you can use Visual Studio to run the package.
During execution, you can watch the progress of the package as each task executes, and
the success or failure of each task is indicated by color. If a task is yellow, it is currently
running. A green task has completed successfully, while a red task has failed. To execute
a package and review execution results in Visual Studio, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions. Right-click the package in the SSIS Packages folder in Solution Explorer and
then click Execute Package. The results of package execution display in the package

Chapter 21 Integration Services 621
designer, as shown in Figure 21-3. Notice the package in Figure 21-3 also illustrates
renamed objects and an annotation as described in the previous section.

Note There are several other ways to execute a package. You can
choose Start Debugging on the Debug menu, press F5, or click the Start
Debugging button on the Debug toolbar. However, if you have other pack-
ages or other projects included in your solution, Visual Studio might
attempt to build a project or execute a package other than the package
you are viewing.

Figure 21-3 The results of package execution on control flow shown in the package
designer.

2. Click the Data Flow tab of the package designer to view the number of rows copied
to the destination, as shown in Figure 21-4.

3. Click the Progress tab of the Integration Services package designer to view informa-
tion related to package execution, such as the start and finish time of package exe-
cution and the elapsed time for the package and each step, as shown in Figure 21-5.
The Progress tab is useful for troubleshooting packages when a step fails because the
error message will be available on this tab.

622 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 21-4 The results of package execution on data flow shown in the Integration
Services package designer.

Figure 21-5 The progress information for package execution shown in the package
designer.

Chapter 21 Integration Services 623
4. In Visual Studio, the debugger remains active even when the package execution
has ended. You won’t be able to edit or close the package until you stop the debug-
ger using one of the following methods: Choose Stop Debugging on the Debug
menu, press Shift+F5, click the Stop Debugging button on the Debug toolbar, or,
at the bottom of the package designer click the link Package Execution Completed.
Click Here To Switch To Design Mode, Or Select Stop Debugging From The Debug
Menu.

Control Flow Components
Now that we’ve created a simple package and briefly explored the development environ-
ment, let’s take a closer look at the components you can use to manage the control flow
of tasks in a package. As mentioned, there are three basic types of control flow compo-
nents: tasks, containers, and precedence constraints. A set of tasks can optionally be orga-
nized into a logical grouping called a container. The order of operations in which each
task or container is executed is determined by the sequence in which these objects are
linked together by using precedence constraints.

Tasks
When you view the Control Flow tab of the Integration Services package designer, the
Visual Studio Toolbox contains a wide variety of tasks you can add to your package. In
the following list, tasks are grouped by function:

■ Extract, transform, and load data task

❑ Data Flow Task encapsulates a set of data flow components used to extract
data from a source, optionally perform transformations, and load data into a
destination

■ Execute SQL Server tasks

❑ Bulk Insert Task performs high-speed copying of data into a SQL Server
database

❑ Execute SQL Task runs single or multiple SQL statements or stored proce-
dures; you must optimize queries elsewhere as Integration Services will not
do it for you; you can use parameterized queries and map the results to a vari-
able.

❑ Transfer Database Task transfers a database between two SQL Server
instances. Either instance can be SQL Server 2000 or SQL Server 2005

❑ Transfer Error Messages Task transfers user-defined messages (with iden-
tifier greater than or equal to 50,000) between SQL Server instances

624 Part V Microsoft SQL Server 2005 Business Intelligence
❑ Transfer Jobs Task transfers one or more SQL Server Agent jobs between
SQL Server instances

❑ Transfer Logins Task transfers one or more logins (except sa) between SQL
Server instances

❑ Transfer Master Stored Procedure Task transfers one or more user-
defined stored procedures between master databases in separate SQL Server
instances

❑ Transfer SQL Server Objects Task transfers one or more objects—tables,
views, stored procedures, user-defined functions, defaults, user-defined data
types, partition functions, partition schemes, schemas, assemblies, user-
defined aggregates, user-defined types, or XML schema collections—between
SQL Server instances

■ Prepare data

❑ File System Task creates, moves, or deletes directories or files or sets
attributes on directories or files

❑ FTP Task downloads or uploads files or manages directories on an FTP
server

❑ Web Service Task executes a web service method

❑ XML Task retrieves XML documents, applies operations using Extensible
Stylesheet Language Transformations (XSLT) documents or XPATH expres-
sions, merges documents, or validates, compares, or saves updated docu-
ments to files or variables

■ Communicate with other processes

❑ Execute Package Task runs another package as part of the current package
workflow

❑ Execute DTS 2000 Package Task runs a package developed for SQL Server
2000

❑ Execute Process Task runs a command-line application or batch file

❑ Message Queue Task sends or receives messages between packages or appli-
cations using Microsoft Message Queuing

❑ Send Mail Task sends an e-mail message

❑ WMI Data Reader Task runs a Windows Management Instrumentation
(WMI) query to return information about a computer

❑ WMI Event Watcher Task watches for and responds to WMI events

Chapter 21 Integration Services 625
■ Extend package functionality with scripts

❑ ActiveX Script Task runs ActiveX script—included for backward compatibil-
ity only; new script should be developed in Script Task

❑ Script Task runs custom code for functions not available in built-in tasks or
transformations

■ Work with Analysis Services objects

❑ Analysis Services Processing Task processes Analysis Services cubes, dimen-
sions, or mining models

❑ Analysis Services Execute DDL Task runs an XML for Analysis command
encapsulating an Analysis Services Scripting Language (ASSL) DDL statement

❑ Data Mining Query Task runs a prediction query based on an Analysis Ser-
vices data mining model

■ Maintain database objects

❑ Back Up Database Task backus up one or more SQL Server databases

❑ Check Database Integrity Task checks the allocation and structural integ-
rity of objects in one or more databases

❑ Execute SQL Server Agent Job Task runs a SQL Server Agent Job

❑ Execute T-SQL Statement Task runs a Transact-SQL statement. Use the Exe-
cute SQL Statement Task instead if you need to run a parameterized query or
save the result to a variable

❑ History Cleanup Task deletes entries in these tables: backupfile, backupfile-
group, backupmediafamily, backupmediaset, backupset, restorefile, restorefi-
legroup, and restorehistory

❑ Notify Operator Task sends a notification message to SQL Server Agent
operators

❑ Rebuild Index Task rebuilds indexes in tables or views in one or more SQL
Server databases

❑ Reorganize Index Task reorganizes indexes in tables or views in one or
more SQL Server databases

❑ Shrink Database Task shrinks database and log files for one or more SQL
Server databases

❑ Update Statistics Task updates statistics for one or more SQL Server data-
bases

626 Part V Microsoft SQL Server 2005 Business Intelligence
To add the Execute SQL Task to the control flow, follow these steps:

1. To follow this example, you must complete the steps described in the previous
sections, beginning with “Starting an Integration Services Project.” Click the
Control Flow tab if it’s not already open, and locate the task to be added in the
Toolbox.

Note If the Toolbox isn’t visible, choose Toolbox on the View menu.

2. Drag the task to the control flow work surface. For this example, drag the Execute
SQL Task to the designer, as shown in Figure 21-6. The red icon that appears in the
task box indicates further configuration is required. In this case, the task requires a
connection.

Figure 21-6 Adding a task to the control flow.

Each task has properties you configure to define its behavior when the package executes.
To configure the Execute SQL Task properties, follow these steps:

1. Right-click Execute SQL Task, and then click Edit to display the Task Editor.

2. Type Truncate Table in the Name box, select DestinationConnectionOLEDB in the
Connection drop-down list (or create one by selecting <New Connection> in the
Connection drop-down list and completing the OLE DB Connection Manager

Chapter 21 Integration Services 627
configuration). Type truncate table HumanResources.Department in the SQL-
Statement box, as shown in Figure 22-7. For longer statements, you might find it
easier to click the ellipsis button in the SQLStatement box and then type the
statement in the Enter SQL Query dialog box.

An Execute SQL Task requires a connection manager, explained in more detail later
in this chapter, and a SQLStatement. You can type directly in the SQLStatement
box as shown in this example, you can click Build Query to open the Query Builder
window, or you can click Browse to locate a SQL file and import its contents as a
SQLStatement. You can use multiple SQL statements terminated by semicolons
here, and you can insert a GO command between statements to create multiple
batches.

Another option is to change the SQLSourceType property from the default, Direct
Input, to FileConnection to specify a SQL file in the FileConnection property
(which appears when you change SQLSourceType) if you want to maintain the SQL
Statement externally from the package. Yet another option is to select Variable as
the SQLSourceType and provide a SourceVariable that will contain one or more
SQL statements at package run-time.

Figure 21-7 Configuring properties of an Execute SQL Task.

3. Click OK to close the editor.

Each task has its own set of properties that you configure in the task editor or by
changing the property value in the Properties window. While only some tasks will

628 Part V Microsoft SQL Server 2005 Business Intelligence
require you to specify a connection, all tasks have a page where you can associate an
expression with a task property—an advanced feature that makes Integration Ser-
vices very flexible.

Containers
You can group related tasks into containers. Because you can collapse or expand a con-
tainer, using a container just for grouping makes it easier to navigate a package workflow
that contains many tasks. Add a container to the control flow of a package just as you add
a task. Drag other tasks or other containers into the newly added container. There are
three different types of containers, as described here:

■ For Loop Container This type of container creates a workflow that repeats the
tasks in the container until the EvalExpression defined for the container evaluates as
false. You also must assign a value to the container’s InitExpression which is a start-
ing value used for items like a counter, and is incremented according to the con-
tainer’s AssignExpression.

■ ForEach Loop Container This type of container creates a workflow that repeats
the tasks in the container for each item found in a collection, such as rows in a table,
files in a folder, objects in a variable, among others. When configuring this con-
tainer, you specify the type of collection and configure the location of the items in
the collection.

■ Sequence Container This type of container groups tasks together as a single unit
in the workflow.

Precedence Constraints
Use precedence constraints to link tasks or containers, also known as executables,
together into an order of operations. In addition to defining the sequence of operations,
you define the conditions under which each subsequent step in the workflow is exe-
cuted. To add a precedence constraint, click the first executable, and then drag the green
arrow that appears at the base of the executable to a second executable so that the two
objects are connected by the arrow, as shown in Figure 21-8.

By default, adding a precedence constraint between two executables causes the second
object to execute only if the first object executes successfully. You can change the con-
straint to cause the second executable to run only if the first executable fails. This
option is useful for handling error conditions within a package and could be as simple
as sending an email to an administrator when a task fails. A third option is to define the
constraint to run the second executable after the first executable runs, regardless of
success or failure. To change the constraint, right-click the connector, and select Suc-
cess, Failure, or Completion as necessary.

Chapter 21 Integration Services 629
Figure 21-8 Adding a precedence constraint.

You can also create a complex precedence constraint based on the evaluation of an expres-
sion or on both the execution result of the preceding executable as well as the expres-
sion’s result. For example, let’s say that you want to run a second executable only if the
first executable completes successfully and some condition is true, such as the existence
of a file on a network share. You could use a Script Task to check for the existence of the
file and set the value of a variable to True, and then require the precedence constraint to
evaluate the variable’s value. To add a complex precedence constraint, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions, beginning with “Starting an Integration Services Project.” Right-click the con-
nector between the Data Flow Task and the Execute SQL Task and then click Edit to
display the Precedence Constraint Editor dialog box, as shown in Figure 21-9.

Figure 21-9 The Precedence Constraint Editor.

630 Part V Microsoft SQL Server 2005 Business Intelligence
Possible values for Evaluation Operation are Constraint, Expression, Expression
And Constraint, and Expression Or Constraint. Thus, you can specify one or the
other condition, or both conditions, to control whether the next executable in the
workflow executes. When you select an option that includes Constraint, you must
specify a Value of Success, Failure, or Completion. When you select an option that
includes Expression, you must define an expression in the editor. To continue the
example requiring the existence of a file, you prefix the variable name with @; if
your variable name is FileFound, use this expression: @FileFound == True. Your
expression must also include a logical operator and a comparison value in the
expression and must evaluate as a Boolean data type.

When an executable has multiple constraints placed on it—that is, when two or
more worfkflow connectors lead to a single executable—be sure to specify in the
Precedence Constraint Editor whether both constraints must evaluate as True for
that executable to run (Logical AND), or whether either one of the constraints
must be True (Logical OR). This setting is ignored if there is only one constraint on
the executable.

2. Select Logical OR. One Constraint Must Evaluate To True, as shown in Figure 22-9,
and then click OK.

Connection Managers
A connection manager is an Integration Services object that contains the information
required to create a physical connection to data stores and the metadata describing the
structure of the data. In the case of a flat file, a connection manager contains the file path,
file name, and metadata identifying rows and columns. A connection manager for a rela-
tional data source contains the name of the server, the name of the database, and the cre-
dentials for authenticating access to the data. Connection managers are the bridge
between package objects and physical data structures, used by tasks that require a con-
nection (such as the Execute SQL Task), by data adapters that define sources and desti-
nations, and by transformations that perform lookups to a reference table. To add and
configure an OLE DB connection manager, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions, beginning with “Starting an Integration Services Project.” Right-click the Con-
nections Manager tray at the bottom of the Control Flow, Data Flow, or Event
Handlers tab of the package designer, and click New OLE DB Connection.

2. Select a defined connection in the Configure OLE DB Connection Manager dialog
box, or click New to define a new connection in the Connection Manager dialog
box. For this example, click New.

Chapter 21 Integration Services 631
3. Select a provider in the Provider drop-down list and specify a server name and
authentication credentials. You can type a database name or select a database in the
Select Or Enter A Database Name drop-down list. For this example, type localhost
in the Server Name box and select AdventureWorks in the Select Or Enter A Data-
base Name drop-down list, as shown in Figure 22-10. (If you’re working with a SQL
Server on a separate server, replace localhost with the applicable server name.)

Figure 21-10 The Connection Manager dialog box.

4. Click OK twice to close each dialog box.

Data Flow Components
So far, we’ve seen how control flow components get things done in package, but the real
power of Integration Services is the data flow engine. Now we’re ready to examine the
components used by the data flow engine. To work with data flow components, you first
add a Data Flow Task to the control flow, then define one or more sources as the begin-
ning of one or pipelines within the data flow. A single Data Flow Task could manage mul-
tiple pipelines if the order of operations doesn’t matter. Each pipeline will run in parallel,
more or less. (The degree of parallelism depends on system resources and the data vol-
umes in each pipeline). Otherwise, you’ll need to create multiple Data Flow Tasks and use
precedence constraints to manage sequencing.

It’s helpful to think of the data flow pipeline as a physical pipeline with discrete start
and end points and with individual channels running through this pipeline, as shown
in Figure 21-11. Each channel corresponds to a column in the row of data currently in

632 Part V Microsoft SQL Server 2005 Business Intelligence
the pipeline. As columns are removed during transformations, the number of channels
in the pipeline is reduced downstream. Conversely, as new derived columns are added
to the pipeline, the number of channels downstream is increased. Both the data type
and the size of the data traveling through a particular channel must stay constant unless
a transformation like Data Conversion modifies the channel metadata. While the pipe-
line is a useful metaphor, in actuality the data is placed in a buffer and transformed in
place; only certain transformations physically move data from one buffer to another.

Figure 21-11 The data flow pipeline.

Input columns

Destination

Error output

Output

Input

Input

File Database

External columns

Output columns

Output columns

Input columns

Source

Error output

Input columns

Destination

Input columns

Destination

Output

Transformation

Error output

Destination

Chapter 21 Integration Services 633
Data Sources and Data Destinations
Every data flow path starts with a source and usually ends with a destination. Data
sources and data destinations are data flow components that sit between the physical
connection to the data storage and the buffers created in memory to transport the data to
another location. In most cases, the type of data storage accessed as a source can also be
accessed as a destination. The direction the data flows out of or into this type of object
determines whether it is a data source or a data destination. There are, however, some
special data destinations for which there is no corresponding data source. As you work
with these objects, you’ll notice that a data source has two outputs, one for normal data
flow and one for error output. By contrast, a data destination has only one input and one
error output. Table 21-1 lists the available data adapters and their use as source, destina-
tion, or both.

If you’re already responsible for accessing data in a variety of structures, you’ll likely have
no trouble applying what you know to the configuration of data sources and data desti-
nations. Some of these objects, however, warrant further explanation:

■ Data Mining Model Training You can automate the process of training an Anal-
ysis Services data mining model by using this destination. Before using this desti-
nation, be sure you understand the content and structural requirements of the data
mining model.

Table 21-1 Available Data Adapters and Their Uses

Data Adapter Source Destination

Data Mining Model Training — √

DataReader √ √

Dimension Processing — √

Excel √

Flat File √ √

OLE DB √ √

Partition Processing — √

Raw File √ √

Recordset — √

Script Component √ √

SQL Server — √

SQL Server Mobile — √

XML √ —

634 Part V Microsoft SQL Server 2005 Business Intelligence
■ DataReader As a destination, the DataReader destination can expose the data in
the pipeline to applications than can access the ADO.NET DataReader interface.
Using this approach, for example, you can load data directly into a Reporting Ser-
vices report without persisting the data in a file or relational table.

■ Dimension Processing Use this destination to automate updating dimension
objects in Analysis Services databases. Dimension processing is explained in Chap-
ter 22, “Analysis Services.”

■ Partition Processing This destination is used to load fact table data into an Anal-
ysis Services partition, which is also explained in Chapter 22.

■ SQL Server This destination type can be used only if the package executes on the
same server hosting the target database in SQL Server 2005. Because this destina-
tion actually sends data to the database directly from memory without requiring a
connection, performance can be up to 25 percent faster than using an OLE DB
connection.

Note If you’re loading data to a SQL Server destination on another
server, use the OLE DB destination. In the OLE DB Destination Editor,
select Table Or View–Fast Load or select Table Name Or View Name Vari-
able–Fast Load in the Data Access Mode drop-down list to get the best
performance.

To start a data flow and add a data source adapter to the data flow, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions, beginning with “Starting an Integration Services Project.” On the Control
Flow tab of the package designer, open the Toolbox window if necessary and drag
the Data Flow Task to the design surface, and add a precedence constraint between
the Execute SQL Task and the Data Flow Task.

2. Double-click the new task to open the corresponding Data Flow tab, as shown in
Figure 21-12. Notice the contents of the Toolbox window change to show only
sources, destinations, and transformations instead of the tasks it contains when the
Control Flow tab is open.

3. Drag the OLE DB Source from the Toolbox onto the design surface, and then double-
click the data adapter to open the OLE DB Source Editor.

Chapter 21 Integration Services 635
Figure 21-12 The Data Flow tab of the package designer.

4. Select a connection in the OLE DB Connection Manager drop-down list, or click the
New button to configure a new connection manager to use with this data source.
Specify a Data Access Mode. The default is Table Or View which you select in the
Name Of The Table Or The View drop-down list. To continue the example, select
the localhost.AdventureWorks connecton manager and select the [HumanRe-
sources].[Department] table, as shown in Figure 21-13.

Instead, you could choose to get the the name of a table or a view from a variable,
in which case you select Table Name Or View Name Variable as the data access
mode and then specify the name of the variable in the Variable Name drop-down
list. Other options include getting the name from executing a SQL command that
you include in the data source adapter as SQL Command Text (when you choose
the SQL Command data access mode) or getting the table or view name from a vari-
able that contains a SQL command (when you choose the SQL Command From
Variable data access mode).

5. Click Columns in the left pane of the dialog box to display the column mappings
between the data store and the output columns used to send data to the next data
flow component, as shown in Figure 21-14. Configuring error output will be
explained later in this chapter. Click OK.

636 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 21-13 The OLE DB Source Editor dialog box.

Figure 21-14 The OLE DB Source Editor’s column mappings.

The External Column and Output Column mappings generate automatically.

Chapter 21 Integration Services 637
Note You should clear the selection of any column in the Available Exter-
nal Columns box that won’t be used downstream to prevent memory from
being unnecessarily allocated to the column.

If your goal is to copy data directly from a source to a destination, your next step is to add
a destination to the data flow. On the other hand, if you need to transform the data before
loading it into the destination, you must add each transformation object to the data flow
first because the buffer structures created for the data flow are dependent on the defini-
tion of upstream objects.

Transformations
Transformations are data flow objects that operate on data in the data flow pipeline.
Most transformations have one input, one regular output, and one error output. Some
transformations have multiple inputs to consolidate data from separate pipelines, and
some transformations have multiple outputs to separate data into separate pipelines.
Not all transformations have error output.

The type of transformations in the pipeline affect the data flow engine’s management of
buffers. Row transformations, like Data Conversion or Derived Column, are very efficient
at reusing existing buffers. Multiple rows are received into the buffer from an upstream
component in batches, data in the buffer is manipulated on a row-by-row basis, and then
these rows in the buffer are operated on by the next component. This process continues
until all rows from the source have been transformed.

Other transformation types must create new buffers to store output before allowing the
next component access to the data, and they will consequently place the greatest
demands on system resources. Transformations operating on rowsets, like Aggregate or
Sort, must read all input before creating any output. Transformations that combine input,
such as Merge or Union All, are somewhere in between the other transformation types,
reading some input before creating output, but they do copy that output to a different
buffer and thus have greater resource requirements. The available transformations and
the relationship between input and output rows are described here:

■ Row transformations

❑ Character Map applies string functions, commonly Uppercase or Lowercase,
to character data in a column and overwrites the column with the new string
or adds a column to the output row

❑ Copy Column creates new columns in the output row from existing col-
umns in the input row for subsequent transformation

638 Part V Microsoft SQL Server 2005 Business Intelligence
❑ Data Conversion applies data conversion functions to change data type, col-
umn length, or precision and scale to an input column and adds a column
with the new data to the output row

❑ Derived Column applies expressions to an input column to create a new
value for a new column in the output row or as a replacement value for the
existing column

❑ Script runs custom code against data in the pipeline

❑ OLE DB Command runs a SQL statement (optionally parameterized)
against each row in the pipeline

■ Rowset transformations

❑ Aggregate applies an aggregate function (for example, Sum, Minimum, Max-
imum, and so on) to grouped records and produces new output records from
aggregated results; output records contain only the columns used for group-
ing and the aggregated values

❑ Sort applies an ascending or descending sort to one or more columns and
optionally removes rows with duplicate values in the sort columns

❑ Percentage Sampling creates a random sample set of output rows by select-
ing a specified percentage of input rows; commonly used for data mining

❑ Row Sampling creates a random sample set of output rows by selecting a
specified number of input rows; used primarily for testing packages with a
subset of representative data

❑ Pivot reduces normalization in a normalized data set by pivoting on a col-
umn value, producing a smaller dataset

❑ Unpivot increases normalization in a denormalized data set by creating
multiple output rows from a single input row based on a common column
value

■ Split and Join Transformations

❑ Conditional Split separates input rows into separate output pipelines based
on a Boolean expression configured for each output; a single input row is
passed to the first output row which the condition is true or to a default out-
put defined for rows which meet no conditions

❑ Multicast copies all input rows to two or more outputs

❑ Merge combines two sorted datasets with the same column structure into a
single output

Chapter 21 Integration Services 639
❑ Merge Join combines two sorted datasets using a FULL, LEFT, or INNER
join to produce output rows with more columns than the input rows from
either dataset

❑ Union All combines two or more datasets with the same column structure
into a single output

❑ Lookup joins input rows with columns in a reference dataset (from a table,
view, or SQL statement) that match exactly to add one or more columns to
the output row

■ Data quality transformations

❑ Fuzzy Lookup finds close or exact matches between one or more columns
(DT_WSTR and DT_STR data types only) in the input row and a row in a ref-
erence table; adds selected columns from the matched row and columns for
fuzzy matching metrics

❑ Fuzzy Grouping finds close or exact matches between input rows based on
one or more columns and adds columns to the output identifying matches
and similarity scores

■ Data mining transformations

❑ Data Mining Query runs a prediction query based on an Analysis Services
data mining model against the input rows and creates output rows from the
query result set

❑ Term Extraction extracts nouns or noun phrases (or both) from an input
column containing English text, places the extracted terms into a column in
the output row, and adds another column for the score; multiple output rows
per input row are created when multiple terms are extracted from an input
column

❑ Term Lookup matches text in an input column with a reference table,
counts the number of occurrences of the term in the dataset, and adds a term
and frequency column to the output row; as with Term Extraction, multiple
output rows per input row can be created

■ Special transformations

❑ Export Column reads a file name from an input column and inserts data
from another column in the same row into the specified file.

❑ Import Column reads a file name from an input column and inserts data
from the specified file into a new output column for the same row

❑ Audit adds the value of a system variable, such as MachineName or Execu-
tionInstanceGUID, to a new output column

640 Part V Microsoft SQL Server 2005 Business Intelligence
❑ Row Count counts the number of rows currently in the data flow and stores
the value in a variable

❑ Slowly Changing Dimension manages inserts and updates in a data ware-
house

Real World Metadata Validation

You can add one or more transformations to the design surface of a data flow, but
you cannot configure a transformation until you connect it to the regular or error
output of an upstream component. Because metadata about the pipeline is main-
tained in the pipeline connections (the red and green arrows between compo-
nents) and transformations, you must add transformations in the correct sequence
or you will encounter validation errors that must be resolved before you can exe-
cute the package. Similarly, if you delete columns, change a column’s data type,
change a string column’s length, or change a numeric column’s precision or scale,
you will encounter errors in downstream components. Sometimes, if you double-
click the first downstream component, a message displays to indicate a metadata
problem exists and offers to fix the problem automatically. Click Yes, and continue
this process with each subsequent component in the pipeline. You can override
metadata validation by setting a transformation’s ValidateExternalMetadata prop-
erty to False, but property applies only during design time. Metadata problems pre-
vent packages from executing.

Error Output Configuration
When data cannot be passed into the regular output of a data source or a transformation,
you ignore the error completely, redirect the row to the component’s error output, or fail
the component. To configure error output, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions, beginning with “Starting an Integration Services Project.” Drag a destination
component, such as the OLE DB Destination to follow this example, from the Tool-
box to the data flow design surface, click the OLE DB Source, and then drag the red
connector to the destination to complete the connection.

2. In the Configure Error Output dialog box, select a value in the Error drop-down list
and in the Truncation drop-down list for a specific column. For example, select
Ignore Failure in the Error drop-down list for the ModifiedDate column and select
Redirect Row in the Truncation drop-down list, as shown in Figure 21-15. Click OK.

Chapter 21 Integration Services 641
Figure 21-15 Configuring error output.

3. Double-click the destination to open the OLE DB Destination Editor, select a connec-
tion to a data source to which you want to send the error rows (or click New to cre-
ate a new connection), select a data access mode, and provide a table name or
applicable property value based on the selected data access mode. For this exam-
ple, select DestinationConnectionOLEDB in the OLE DB Connection Manager drop-
down list.

4. Click New to create and execute a script for a new table. You can modify this script
by changing the default name or by changing column names. The script is gener-
ated from the metadata associated with the input to the destination. Click OK to
return to the OLE DB Destination Editor, as shown in Figure 21-16. To continue this
example, replace [OLE DB Destination] with [DepartmentErrors]. When you use
the fast load option, you can set options such as keeping identity values from the
source data, keep null values, lock the table for loading, check constraints during
the load, and specify batch sizes.

5. Click Mappings in the left pane of the dialog box to display the column mappings
between the input columns and the output columns used to send data to the des-
tination. Click OK.

642 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 21-16 The OLE DB Destination Editor.

Debugging Tools
Sometimes you need to step through execution of a package to troubleshoot a problem or
to confirm that tasks or transformations are behaving as you intend. The difference
between architectures in the control flow engine and the data flow engine requires differ-
ent tools for debugging control flow and data flow. They all allow you to pause the action
and review the current state of information about the package.

Control Flow Breakpoints
In Control Flow, you can use breakpoints to pause package execution and review informa-
tion in Visual Studio debug windows. You can define a breakpoint before control flow
begins or after it ends, as well as before or after an executable runs within the control
flow. You can even add or delete breakpoints while debugging. To add a breakpoint, fol-
low these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions, beginning with “Starting an Integration Services Project.” On the Control
Flow tab of the package designer, right-click anywhere in the design surface, and

Chapter 21 Integration Services 643
then click Edit Breakpoints. Select the Break When The Container Receives The
OnPreExecute Event check box, as shown in Figure 21-17. Click OK to close the
Edit Breakpoints window.

Figure 21-17 The Set Breakpoints dialog box.

You can set a breakpoint for events raised by executables, which are simply tasks,
containers, and even packages. Events are essentially messages like “I’m starting,”
“I’m done now,” and “I had a problem.”

2. In Solution Explorer, right-click the package and click Execute Package to start
debugging. The Visual Studio windows change, but nothing happens yet because
your breakpoint stopped the action before it even got started. However, this pause
gives you the opportunity to add another breakpoint. Right-click a component,
such as the first Data Flow Task created by the SSIS Import and Export Wizard in a
previous example, click Edit Breakpoints, and then select the Break When The Con-
tainer Receives The OnPostExecuteEvent check box. This breakpoint will stop the
action when this task finishes. Click OK.

3. Press F5 or click the Continue button in the Debug toolbar. Notice the breakpoint
symbol on the Data Flow Task to indicate the point where execution has paused, as
shown in Figure 21-18.

644 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 21-18 Debugging Control Flow.

Now you can go exploring. Here are some of the things you can do:

❑ Open the Data Flow for this task to see how many rows were transferred.

❑ Open the Progress tab to view warning or error messages as well as status
information on completed tasks or tasks in progress.

❑ Open other debugging windows. Choose Output on the View menu or point
to Windows on the Debug menu and then choose one of the following win-
dows: Breakpoints, Watch, Locals, Call Stack, or Threads. Multiple debug
windows can be open simultaneously.

4. Press Shift+F5 or click the Stop Debugging button in the Debug toolbar to end pack-
age execution. You don’t have to run a package through all tasks before stopping.

5. Choose Delete All Breakpoints on the Debug menu when you have completed your
debugging activities.

Important If you choose to delete all breakpoints, configured data
viewers (discussed in the next section) are also deleted from the data flow.
You can selectively clear breakpoints on the Debug menu by pointing to

Chapter 21 Integration Services 645
Windows and choosing Breakpoints. In the Breakpoints window, you can
clear the check box for individual breakpoints.

Data Flow Data Viewers
You can add a data viewer to the pipeline to monitor the rows passing through it. It’s like
having a window into your pipeline; you can see actual data rows before and after a trans-
formation by placing a data viewer on either side of the transformation. For large volumes
of data, viewing each row might be impractical, so you have other data viewers that can
consolidate the information into a histogram, scatter plot, or column chart. Experiment
with each viewer to discover how each best meets your needs. To add a data viewer, follow
these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions, beginning with “Starting an Integration Services Project.” Click the Data Flow
tab of the package designer. In the Data Flow Task drop-down list at the top of the
package designer, select the first Data Flow Task (which contains the Source–Depart-
ment and Destination–Department objects) created in a previous example in the
Data Flow Task drop-down list.

2. Right-click on the connector between two component objects, and then click Data
Viewers.

3. In the Data Flow Path Editor, click Add to open the Configure Data Viewer dialog
box, as shown in Figure 22-19. Click OK. If you want to limit the columns you see
in the data viewer, click the Grid tab and remove columns from the Displayed Col-
umns list.

4. Click OK to return to the Data Flow Path Editor. You can continue adding other
data viewers to this path. Each data viewer displays in a separate window during
debugging. Click OK. The Data Flow work surface now includes an icon to indicate
a data viewer has been added.

5. In Solution Explorer, right-click the package and click Execute Package. The data
viewer acts as a breakpoint and stops when it receives input, as shown in Figure 22-20.
You might need to resize the data viewer window.

6. Scroll through the contents of the window to view columns by row. When you are
finished, click the green arrow button at the top of the data viewer to continue pack-
age execution. The package will stop at any additional breakpoints in the package,
or run to completion.

646 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 21-19 The Configure Data Viewer dialog box.

Figure 21-20 Debugging with the grid data viewer.

Chapter 21 Integration Services 647
Logging
As shown in the previous section, you have several options for monitoring the progress of
package execution during the development cycle, but these options are useful only when
you are executing the package manually. Once you place a package into production, how-
ever, you need a different way to monitor the results. Integration Services provides a vari-
ety of formats for logging and allows you to configure the level of detail to be logged at the
package, container, and task levels. You can configure logging to one or more providers,
as described here:

■ Text Saves as CSV file with .log extension; easy to view package results using this
format

■ SQL Server Profiler Writes trace file with .trc extensions; useful for monitoring
package execution time over a period of time

■ SQL Server Writes data to a sysdtslog90 table in a specified database; easy to
query with SQL

■ Event Log Writes to the Application Log in the Windows Event log; good for use
in conjunction with Microsoft Operations Manager

■ XML File Writes data to file with .xml extension; with XSLT, easy to share as web
page and to consolidate log files from multiple sources

To configure logging, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions, beginning with “Starting an Integration Services Project.” In the package
designer, choose Logging on the SSIS menu. Select a log provider, such as SSIS Log
Provider for SQL Server, in the Provider Type drop-down list. Click Add.

2. Next, associate the log provider with one or more executables. For this example,
select the Package1 check box and then select the newly added log in the Select The
Logs To Use For The Container. By default, all child executables are selected.

3. To configure the log provider, select a connection manager in the Configuration
drop-down list, such as DestinationConnectionOLEDB, as shown in Figure 21-21.

4. Click the Details tab and select the events to be logged. For this example, select
OnError and OnPostExecute, as shown in Figure 22-22. If you click Advanced,
you can select or clear specific columns to be logged by event, such as Computer,
Operator, MessageText, and others. All available columns are selected by default.
Click OK.

648 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 21-21 Configuring package logging.

Figure 21-22 Selecting events to log.

5. Run the package, and then use SQL Server Management Studio to view the con-
tents of the sysdtslog90 in the target database specified in the connection you asso-
ciated with the log provider.

Chapter 21 Integration Services 649
Important Keep in mind that logging adds overhead to package execu-
tion and can tax system resources.

Advanced Integration Services Features
There are so many features available in Integration Services, but there is so little space to
discuss all of them in detail. In this section, we’ll review a few other features you should
be familiar with but which you may not need to implement right away if your data inte-
gration needs are still relatively simple.

Variables
Variables are the means by which you can add infinite flexibility to your packages. The
subject of variables was introduced previously in this chapter in the context of passing a
variable value as a parameter in a SQL statement used in an Execute SQL Task. Variables
can also be used in expressions, most commonly for changing an executable’s properties
at run-time. There are two kinds of variables available in Integration Services, as
described in the following list:

■ System variables Defined by Integration Services on creation of a package, con-
tainer, task, or event handler. You cannot add or update a system variable. You can
access the value of a variable only at run-time. For example, you can read the
MachineName and then change properties of other tasks to modify package behav-
ior when executing on a specific machine.

■ User variables Defined by the package developer. You can use this type of variable
to dynamically set values and control processes during package execution. You can
assign a literal value to the variable or derive a value by evaluating an expression. As
explained in a previous example, you can test for the existence of a file, store the
result as True or False in a variable, and then test the variable in a precedence con-
straint before allowing an executable to run.

Note Variable names are case sensitive in Integration Services.

Event Handlers
An event handler is a special type of container—think of it as a mini-package that has its
own tasks and containers. An event handler executes only in response to the event for
which it is configured. The following list provides a few examples of how you might use
an event handler.

650 Part V Microsoft SQL Server 2005 Business Intelligence
■ Delete a file on a network share after its presence has been detected and has caused
an executable to run.

■ Determine if the computer has enough memory to run a package.

■ Send an e-mail message to you when an error causes a component to fail.

Checkpoints
Using checkpoints allows you to restart a package restart from a point of failure instead of
the beginning of package. This capability allows you to save a lot of time, particularly
when you’re extracting large volumes of data from another server or processing Analysis
Services objects. As the package executes, information about its progress is written to a
checkpoint file. If the package fails, the checkpoint file is read by Integration Services to
determine the point at which the package should be restarted.

An important concept to understand, however, is the relationship between nested con-
tainers and checkpoints if a package is restarted, for example, if you use a loop container
that in turn holds other containers. If failure occurs before all loops of the parent con-
tainer are complete, then the loop starts at the beginning even if tasks in the child con-
tainers completed successfully before the failure.

Deploying Packages
Once you’ve developed and tested your package, what’s next? You probably don’t want
to run the package manually in Visual Studio on a regular basis. In this section, we’ll
review package configuration options, deployment and security considerations when
moving packages into production, and tasks related to package management after
deployment.

Package Configuration
Package configurations allow you to customize how a package runs in different circum-
stances. For example, when you run the package on a development server, you might
want to connect to sample databases for extracting and loading data, but when you
run the package on a production server, you want to connect instead to real data
sources. You aren’t limited to changing connection information; by using variables and
expressions liberally when configuring properties for executables and data flow com-
ponents, you can manage run-time values externally. These values can be stored as
environment variables, registry entries, or SQL Server tables, or passed from a parent
package to a child package as a variable. While the possibilities seem limitless, the

Chapter 21 Integration Services 651
most common reason for using package configuration is to change the connection
string when moving the package to another server. To define package configuration,
follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions, beginning with “Starting an Integration Services Project.” In the package
designer, choose Package Configurations on the SSIS menu. Select the Enable Pack-
age Configurations check box, and then click Add to start the Package Configura-
tion Wizard. Click Next on the Welcome page of the wizard to display the Select
Configuration Type page

2. Select an item in the Configuration Type drop-down list, such as XML Configura-
tion File. Your selection changes the boxes in this page of the wizard that define the
location of the configuration information. In this example, we’ll use an XML file
because it’s easy to view and change later. Type MyConfig.dtsConfig in the Config-
uration File Name box, as shown in Figure 21-23. Click Next.

Figure 21-23 The Select Configuration Type page of the Package Configuration Wizard.

3. On the Select Properties To Export page of the wizard, as shown in Figure 21-24,
you can select as many properties of executables, connection managers, log provid-
ers, the package itself, and package variables as you want to manage externally in
the configuration file. For this example, scroll up to locate the Connection Manag-
ers folder, expand the SourceConnectionOLEDB and the Properties folders, and

652 Part V Microsoft SQL Server 2005 Business Intelligence
then select the ConnectionString property. The current attributes associated with
the selected property display in the dialog box. Click Next.

4. Type a Configuration Name such as Source ConnectionString, and then click Fin-
ish. The configuration is now listed in the Package Configurations Organize, as
shown in Figure 21-25. You can create multiple configurations for a single package.
When you later deploy the package, you can control which configurations to apply
at run-time. Click Close.

Figure 21-24 The Package Configurations Organizer.

Figure 21-25 The Select Properties To Export page of the Package Configuration
Wizard.

Chapter 21 Integration Services 653
Now that a package configuration exists, you can open the configuration container,
which in this case is an XML file, and edit the contents directly. For example, you can
change the value of the connection string to have the package connect to a different
server when you use this configuration the next time the package executes.

Package Deployment
Integration Services makes it very easy to deploy your package to an Integration Services
server. Use Visual Studio’s Build command to create a manifest file and a set of package
and configuration files from your Integration Services project which you can then move
to the new server. After moving the files, you launch the Package Installation Wizard by
double-clicking the manifest file. The wizard steps you through the process of selecting a
target server and a storage method for your package. If you have a package configuration,
the wizard also allows you to change configured values before the package is installed on
the server. To deploy a package, follow these steps:

1. To follow this example, you must complete the steps described in the previous
sections, beginning with “Starting an Integration Services Project.” Right-click
the project name in the Solution Explorer window and then click Properties. In
the Property Pages dialog box for your project, click Deployment Utility. Set the
CreateDeploymentUtility property to True. If you want to allow package config-
uration changes on deployment, be sure the value of the AllowConfiguration-
Changes property is True. Also, take note of the DeploymentOutputPath. This is
the folder where your utility will be stored. Click OK.

2. Right-click the project in the Solution Explorer window again, but this time click
Build. If the deployment utility is built successfully, the status bar at the bottom of
the screen will display Build Succeeded.

3. Using Windows Explorer, navigate to the solution folder for your project and then
navigate to the folder specified by DeploymentOutputPath in Package Properties.
Here you will find the copies of your packages (the .dtsx files), a copy of the con-
figuration file (with extension .dtsConfig), and a special SSISDeploymentManifest
file. This file details the files to be deployed together to the new server.

4. To install your packages on a new server, copy the contents of the Deployment
folder to a location on the other server. For this example, you can just leave the files
where they are and continue as if the files were relocated. Double-click the SSISDe-
ploymentManifest file to start the Package Installation Wizard, and then click Next
on the Welcome page.

5. On the Deploy SSIS Packages page of the wizard, select SQL Server Deployment,
which is the recommended option. Regardless of the deployment option you

654 Part V Microsoft SQL Server 2005 Business Intelligence
choose, you can optionally validate your package after deployment to ensure it still
works after being copied and transferred. Click Next.

6. Provide a target server name and credentials if you’re using SQL Server authentica-
tion. You can optionally choose to apply SQL Server security by selecting Rely On
Server Storage For Encryption on this page. Click Next.

7. Note the default folder to which the package is installed. Click Next twice to start
installation.

8. On the Configure Packages page of the wizard, you can change the value of proper-
ties you included in the package configuration file. For this example, you can keep
the current value. Click Next, and then click Finish to complete the wizard.

9. To confirm the package is installed on the server, open SQL Server Management
Studio. Choose Connect Object Explorer on the File menu, select Integration Ser-
vices in the Server Type drop-down list, change the Server Name if necessary, and
then click Connect.

10. Expand the Stored Packages and MSDB folders to view a list of the installed pack-
ages. If you previously selected the file system for installation, your packages will be
visible in the File System folder.

Package Security
There are several ways to use Integration Services security to protect sensitive data, such
as passwords and property values defined in a package, and data produced by the pack-
age, such as configurations, checkpoints, and logs. The key points about security are
outlined in this section.

Protecting Data
Integration Services considers some component properties to be sensitive. That is, the
values supplied for those properties should be treated as confidential, such as a con-
nection string or a password. Whether you provide this value directly to the property or
by using a variable to pass in a value at run-time, Integration Services will detect the
components with sensitive properties and then suppress or encrypt the values based
on the protection level defined for the package. You can use different protection levels
for each environment in which the package exists. For example, on your development
computer, you might use a different level of protection than you configure for a package
deployed to the server. To set the protection level of a package in Visual Studio, click
anywhere on the Control Flow tab, select the package in the drop-down list at the top

Chapter 21 Integration Services 655
of the Properties window. Change the Protection Level to an appropriate value, as
described in the following here:

■ DontSaveSensitive Marks sensitive information when the package is saved and
replaces the information with blanks if a different user opens the package

■ EncryptSensitiveWithUserKey Encrypts sensitive information with a key based
on the user and replaces the information with blanks if a different user opens the
package; package execution fails for a different user

■ EncryptSensitiveWithPassword Encrypts sensitive information with the Pack-
agePassword value and replaces the information with blanks if a different user
opens the package and cannot supply the password; any user providing the pass-
word can execute the package.

■ EncryptAllWithPassword Saves the PackagePassword value with the encrypted
package; any user providing the password can open the package in the package
designer or execute the package using dtexec

■ EncryptAllWithUserKey Encrypts the package with a key based on the user cre-
ating or exporting the package; only that user can open the package in the package
designer or execute the package using the dtexec utility

■ ServerStorage Uses SQL Server database roles to protect the package, only when
the package is saved to the SQL Server MSDB database

The content of a package isn’t the only information you might need to protect. You also
may need to protect configuration files, checkpoint files, and log files. You should use the
SQL Server Configuration Type for package configurations and the SQL Server log pro-
vider for logging so you can apply database security to this information. If you must save
any information to a file, then configure operating system security on the folder where
the configuration, checkpoint, or log file is stored.

Using Digital Signatures
A package that has been digitally signed and later modified cannot be executed. You must
update the digital signature if you later need to change the package. You won’t be able to
sign a package without a digital certificate available on your computer. Once you have a
certificate, choose Digital Signing from the SSIS menu in the package designer, click Sign,
and select the certificate. When the package is deployed to the server, you can specify an
execution option to require validation of the signature.

Protecting Packages
Packages installed in the MSDB database on a SQL Server 2005 instance can be associ-
ated with a reader role and a writer role. In SQL Server Management Studio, connect to

656 Part V Microsoft SQL Server 2005 Business Intelligence
Integration Services, right-click a package in the MSDB folder, and click Package Roles. As
shown in Figure 22-26, you can select one or more database-level roles for each package
role. In addition, be aware the Windows administrators on the server can view and stop
all packages currently running while SQL Server administrators can view and stop only
those packages they started.

Figure 21-26 The Package Roles dialog box.

Package Execution
To manually start package execution, you can use the dtexec command prompt utility,
but this method requires that you know the syntax for the command, which can be tricky
if you want to specify additional execution options such as a change in connection string
or property value. This utility gives you one more way to manage package execution with-
out using configuration files. However, it’s easiest to build the command and arguments
for the dtexec utility by using the Execute Package Utility (also known as the dtexecui
utility), which provides a graphical interface for specifying run-time options.

To start this utility in SQL Server Management Studio, you connect to Integration Ser-
vices, right-click a package in either the File System or MSDB folder, and click Run Pack-
age. You can also run dtexecui from the command-line. In the Execute Package Utility
dialog box, you navigate through each page and select execution options. For example,
click Configurations to select a different configuration file. This file doesn’t have to be
stored on the same server, but it does need to be in a location accessible by Integration
Services during package execution. When you have finished selecting options, click Com-
mand Line to view the command line string generated, as shown in Figure 22-27. If you
select different options in the Execute Package Utility dialog box, the command line
string will not match this example.

Chapter 21 Integration Services 657
Note You can copy the command line string and append it to the dtexec com-
mand to create a job step in a SQL Server Agent job when you want the package
to run on a regular schedule.

Figure 21-27 The Command Line page of the Execute Package Utility.

Package Management
There are several places where you can store packages for use by Integration Services. You
can register a package with the Integration Services service by storing it in either the
MSDB database or the SQL Server Package Store, but you can also reference a package file
on the file system without registering it. In that case, you simply have to supply a path
and package name. In SQL Server Management Studio, you can review the registered
packages in the Stored Packages folder list, which is further divided into two folders, File
System and MSDB. The File System folder contains packages that have been placed in the
<SQL Server install directory>\90\DTS\Packages folder during package deployment.
The MSDB folder lists packages that are stored in the sysdtspackages90 table of the
MSDB database. The usual method of storing packages in this location is to use the pack-
age deployment utility, but you can also use the Import Package command (by right-click-
ing on the File System or MSDB folder) to locate, register, and store packages in the
respective storage mode.

658 Part V Microsoft SQL Server 2005 Business Intelligence
Monitoring Packages
Use the Running Packages folder to view a list of packages currently executing. When
you click this folder in the Object Explorer window and then click the Report button in
the Summary page toolbar, general information about running packages displays, such
as the amount of time a package has been running. Refresh the folder to view the most
recent information because it does not refresh automatically. If you click a specific
package on the Summary page, you can view additional information about the package
such as its version and description. To stop a package, right-click the package and then
click Stop.

Summary
In this chapter, you’ve learned a lot about Integration Services, from fundamental con-
cepts to designing and managing packages. Far from being a complete reference for Inte-
gration Services, this chapter introduced you to the most important things you need to
know to start building basic packages and to put packages into production. Some
advanced features were also briefly discussed so you can consider their usefulness for
more complex data integration projects you tackle once you gain more experience. As
data continues to proliferate in organizations, there will be plenty of opportunities to
expand your data integration skills and take full advantage of the flexibility that Integra-
tion Services offers.

Chapter 22

Analysis Services

What Is Analysis Services?. .659

Designing Analysis Services Projects .668

Managing Analysis Services .689

Summary .709

Business systems capture data from ongoing operations, whether the data is entered by
a human being or generated by an automated process, and often store this data in a rela-
tional database. As a database administrator, you’re already familiar with the virtues of a
relational database for supporting business operations. You’ve also likely encountered its
limitations when people want to start using the relational database as a source for analy-
sis. At its simplest, the preparation of data for analysis requires summarization of detailed
transaction data. However, data preparation becomes more difficult when you need to
support analysis of data over time, such as year-over-year growth, or to discover patterns,
such as the characteristics of people who are likely to buy a particular product.

SQL Server 2005 Analysis Services, also known as Analysis Services, enables you to easily
implement an infrastructure that supports a wide range of analytical capabilities, from ad
hoc queries to data mining. Because there are too many features to cover in-depth in a sin-
gle chapter, we’ll focus instead on the basic Analysis Services concepts required to build
a functional database. We’ll also review important administrative activities to manage a
database after it is placed in production.

What Is Analysis Services?
Analysis Services is the SQL Server 2005 component that provides two very different,
but complementary, analytical capabilities: online analytical processing (OLAP) and data
mining. An OLAP engine is popular for enabling fast ad hoc queries by end users. A
user can interactively explore data by drilling, slicing and dicing, or pivoting. By drilling,
a user can navigate from summarized data into successively more detailed data when
659

660 Part V Microsoft SQL Server 2005 Business Intelligence
querying an OLAP database to narrow the focus of analysis. A user slices and dices by
placing data in a cross tab report with categories on both rows and columns to see the
intersecting values. A user pivots by switching categories between rows and columns
or by moving categories from the cross tab into a filter or out of the report altogether.
A data mining engine, on the other hand, is more often used behind-the-scenes by
technical specialists and subject matter experts to uncover hidden patterns in corpo-
rate data. These patterns can be used to develop profiles of people or events which can
then be used to support decisions, such as which prospects to target in a marketing
campaign or which products to promote together. Data mining can also be used for
prediction, such as determining which customers are likely to stop using your prod-
ucts or services.

Analysis Services 2005 Versus Analysis Services 2000
Analysis Services 2005 is the next generation of Analysis Services 2000, which itself was
based on technology first introduced in SQL Server 7.0 as Microsoft OLAP Services. Data
mining capabilities were added in Analysis Services 2000, hence the change in the com-
ponent name in the SQL Server 2000 release. While conceptually the types of analysis
supported by Analysis Services 2000 and Analysis Services 2005 are similar, the Analysis
Services 2005 architecture is much different to support a broader array of analytical
requirements than Analysis Services 2000.

A Selective Look at New Features
The new architecture of Analysis Services provides a rich set of features that support more
complex design models, enhance manageability, and improve scalability. Whether your
job is to build or to maintain an Analysis Services database, there are a number of enhance-
ments that simplify your efforts. You can find a complete list of these new features in the
SQL Server Books Online topic “Analysis Services Enhancements.” Let’s briefly review the
most important changes to understand as you get familiar with Analysis Services.

Experienced Analysis Services developers and administrators immediately notice the
separation of the development and administration environments. Developers now use
an integrated development environment, SQL Server Business Intelligence Develop-
ment Studio, in which they can switch easily between different types of database
objects, debug complex calculations, and manage team development using a source
control application such as Microsoft Visual SourceSafe. Integration with the .NET
Framework enables developers to embed Analysis Services functionality into custom
applications or to create stored procedures as better-performing replacements for user-
defined functions. Administrators can access a variety of tools in a single management
environment, SQL Server Management Studio, where they can configure and manage
multiple servers, develop and execute XML for Analysis (XMLA) scripts to automate

Chapter 22 Analysis Services 661
routine tasks, and configure properties for database objects. Importantly, the security
model has been improved in Analysis Services so you can limit the administrative tasks
that can be performed by specific users to certain databases or even selected database
objects.

Developers of Analysis Services databases now have several new considerations for
designing a dimension, a key component of an Analysis Services database. Dimensions
add context to numerical data under analysis by providing labels to describe the time,
place, or people involved in a transaction or event. Analysis Services 2000 imposed
certain restrictions on the size, structure, and content of dimensions that have been
eliminated in Analysis Services 2005. For example, now that dimension data is no
longer stored in memory, you can work with very large dimensions without impacting
server memory and without developing workarounds for the limit of 64,000 children
per parent.

Another significant difference in the structure of dimensions is the shift from a hierarchy-
driven design to an attribute-driven design. If you used member properties in Analysis
Services 2000, for example, you’ll now use attributes to present this data. More impor-
tantly, however, this new approach enables queries to support summarizations of values
by arbitrary groupings, easily done in SQL queries against relational data but problematic
when querying traditional OLAP structures. As a result, Analysis Services now blurs the
line between relational and multidimensional reporting.

You also have new options for managing data integrity. While ETL processes should pre-
vent data integrity issues in your source data, you can now gracefully accommodate
orphaned records in the fact table for which a dimension reference does not yet exist by
using a placeholder member. By taking advantage of this feature, you can ensure the val-
ues in the OLAP database always match the values in the source system. If, on the other
hand, this behavior is not desirable, you can either force an error or ignore the error. If
you force an error, you can fix the problem before the database is available for querying.
While ignoring the error is a valid option, it’s not recommended unless you’re working
on a prototype and are focused on getting the correct design before resolving data integ-
rity issues.

Dimensions are still organized into a multidimensional structure called a cube, but there
are some important conceptual differences between Analysis Services 2000 and Analysis
Services 2005. In Analysis Services 2000, a single database can contain multiple cubes.
Each cube corresponds to one, and only one, fact table in a relational data mart or ware-
house. You can combine multiple cubes by creating a virtual cube when you need to ana-
lyze data across one or more fact tables. A common use for a virtual cube is to compare

662 Part V Microsoft SQL Server 2005 Business Intelligence
daily level actual sales with monthly level budgeted sales. In Analysis Services 2005, you
can still create multiple cubes within one database, but best practice is to create one cube.
This single cube contains one or more measure groups, each of which corresponds to one
fact table. Thus, a measure group is analogous to a cube in Analysis Services 2000, and an
Analysis Services 2005 cube is analogous to a virtual cube.

If you had to deal with semiadditive measures in Analysis Services 2000, you’ll appreciate
the new aggregate functions available in Analysis Services 2005. A semiadditive measure
is a numerical value that you can add up across any dimension except time. A very com-
monly encountered semiadditive measure is Inventory Count, a value representing the
number of units currently in inventory at a specific point in time. Because you can add
inventory values across products but not across time, this numerical value is considered
semiadditive. Handling semiadditive measures in Analysis Services 2000 requires you to
add special calculations to a cube, but now there are several aggregate functions you can
use in Analysis Services 2005, including FirstChild, LastChild, FirstNonEmpty, LastNon-
Empty, AverageOfChildren, and ByAccount.

After putting an Analysis Services 2000 database into production, you must schedule
periodic processing to include new records added to the data warehouse since the last
update. In Analysis Services 2005, you can still manage processing on a scheduled basis,
but you also have the option to use proactive caching to trigger processing only when the
source data changes. By using proactive caching, you can manage the latency of the data
and keep data available for queries during processing. If the time required to reprocess a
cube is longer than the configured latency period, queries can be resolved directly from
the relational source systems.

If you’ve used the data mining features in Analysis Services 2000, or even if you’re new to
data mining, you’ll really enjoy working with the new modeling tools and data mining
algorithms included in Analysis Services 2005. In addition to the Decision Trees and
Clustering previously available, you now have access to Linear Regression, Logistic
Regression, Naive Bayes, Neural Network, Sequence Clustering, and Time Series algo-
rithms. The data mining tools in Analysis Services are easy to implement, but you should
take care to appropriately prepare your data for the type of data mining you want to do
and to understand which algorithm is applicable to the business problem you want to
solve.

More Info Take the time to read Data Mining with SQL Server 2005 by ZhaoHui
Tang and Jamie MacLennan for a good comparison of the algorithms and practi-
cal examples.

Chapter 22 Analysis Services 663
Migration from Analysis Services 2000
Because Analysis Services 2005 includes a new architecture for dimensions and cubes,
you can’t continue to use your existing Analysis Services 2000 databases with the
Analysis Services 2005 server. You must rebuild the database objects from scratch, or
you can use the Analysis Services Migration Wizard to recreate database objects in
Analysis Services 2005. The wizard merely reconstructs these objects using equivalent
(or near-equivalent) Analysis Services 2005 objects and doesn’t attempt to implement
an optimal design. You can, of course, make changes to the migrated database objects.
In this section, we’ll review the migration process.

More Info For a thorough explanation of cube design issues that can impact
migration and mapping of features before and after migration, refer to “Analysis
Services 2005 Migration” at http://www.microsoft.com/technet/prodtechnol/sql/
2005/asmigrtn.mspx.

To use the Analysis Services Migration Wizard, follow these steps:

1. Start SQL Server Management Studio. In the Connect to Server dialog box, select
Analysis Services in the Server Type drop-down list. In the Server Name drop-down
list, select the instance to host the migrated databases, right-click the server in the
Object Explorer window, and then click Migrate Database. On the Welcome page
of the wizard, click Next.

2. On the Specify Source And Destination page of the wizard, type the name of the
Analysis Services 2000 server hosting the databases to migrate. Notice you can
choose Script File as an alternate destination if you want to generate an XMLA
script to perform the migration another time. For this example, we’ll perform the
migration now. Click Next.

3. On the Select Databases To Migrate page of the wizard, all available databases on
the source server are selected. Clear the selection of any databases that you don’t
want to migrate now. You can also change the Destination Database name on this
page, if desired. Click Next.

4. On the Validating Databases page of the wizard, a validation log is generated. This
log lists any warnings or errors that could affect migration, as shown in Figure 22-1.
In this example, the migration of the Foodmart 2000 sample database (included
with Analysis Services 2000) is validated, but warnings indicate that virtual dimen-
sions will be renamed. You can click View Log to filter the validation log to show

664 Part V Microsoft SQL Server 2005 Business Intelligence
only errors, warnings, or successes. You can also click Save Log to save the results as
a text file. Click Next.

Figure 22-1 The Validating Databases page of the Analysis Services Migration Wizard.

5. On the Migrating Databases page of the wizard, you monitor the progress of the
migration. When migration is complete, click Next.

6. The final page of the wizard displays a view of the database objects in the migrated
database. Click Finish to complete the wizard.

Only metadata is migrated by the Analysis Services Migration Wizard. You still must load
data into the cubes, but first you should make any necessary modifications to the data-
base design. You make design changes by creating a project in SQL Server Business Intel-
ligence Development Studio and importing the database object definitions into the
project. To import an Analysis Services database into the development environment, fol-
low these steps:

1. Start SQL Server Business Intelligence Development Studio. On the File menu,
point to New, and then click Project.

2. Ensure that the Project Type is set to Business Intelligence Projects, and then click
the Import Analysis Services 9.0 Database template. Type a name for the project,
change the location for the project to a folder of your choice, and confirm that the
Create Directory For Solution check box is selected.

Chapter 22 Analysis Services 665
3. Click OK to start the Import Analysis Services 9.0 Database Wizard, and then click
Next to bypass the Welcome page.

4. On the Source Database page of the wizard, type the name of the Analysis Services
server and select the migrated database in the Database drop-down list, click Next,
and then click Finish. The project now contains files corresponding to each data-
base object in the selected database.

5. To open a particular file, double-click the file name in the Solution Explorer window.

Later in this chapter, we’ll review some of the more important features of the main data-
base objects and how to make changes to the object definitions.

Analysis Services Fundamentals
Before you start building an Analysis Services database, it’s helpful to have a general
understanding of OLAP concepts. There are many vendors that sell products labeled as
OLAP, but unfortunately there is no consistent definition of OLAP that encompasses all
these products. In 1993, E.F. Codd, of relational database fame, published a paper that
spelled out twelve rules for OLAP. Because the paper was sponsored by a vendor and
wasn’t a true research paper, these rules were never broadly accepted. A couple of years
later, FASMI was introduced in The OLAP Report (www.olapreport.com/fasmi) and is now
commonly cited in explanations of OLAP.

FASMI is the acronym for a collection of rules—Fast Analysis of Shared Multidimensional
Information. In this section, we’ll explain the most important things you need to know
about how Analysis Services satisfies these rules.

Fast is defined by The OLAP Report as a response in five seconds or less. Ideally, an ad
hoc query should return a result in subseconds. To achieve this quick response time,
most OLAP products, including Analysis Services, use aggregations. Aggregations are
summarized values derived from detailed source data and stored on the server. If aggre-
gations are designed correctly, then queries against OLAP aggregations are faster than
queries against a relational aggregate table. Analysis Services makes it easy to design and
maintain aggregations for enabling fast query performance.

An OLAP product should support analysis by providing the results of complex business
calculations without requiring the end user to learn a programming language to access
those results. An Analysis Services cube encapsulates business logic and stores calcula-
tions in a single location for easy access by users. Not only does use of an Analysis Ser-
vices cube ensure everyone uses the same calculation definition every time, Analysis
Services is specifically designed for performing sophisticated analytical calculations on
large volumes of data, such as time series analysis, currency conversions, and budget allo-
cations, to name a few. Analysis Services also supports key performance indicators (KPIs),

666 Part V Microsoft SQL Server 2005 Business Intelligence
which are measurements over time that compare actual business results to predefined
goals, and includes several data mining algorithms for more advanced statistical analysis.

A shared OLAP solution must support access to data by many users in two important
ways. First, sensitive data must be secured adequately. Analysis Services not only
includes security to control access to specific databases but also supports securing data
at more granular level, such as limiting access to selected dimensions, sections of a
dimension, or even particular cells in a cube. Second, users must be able to write data
back to the cube. Analysis Services provides support for write-back, often a requirement
for budgeting solutions, but you’ll need to use a client application that also supports
write-back to take advantage of this feature.

Multidimensionality is the one rule that must absolutely be met for a product to be
accepted as OLAP compliant. Where a relational database is a two-dimensional represen-
tation of data stored in tables containing rows and columns, an OLAP database stores
data in a multidimensional structure called a cube. Unlike the geometrical cube which is
limited to three dimensions, an OLAP cube can have n dimensions. In practice, a cube
requires at least one dimension but usually has seven to twelve dimensions. This range is
considered only a design guideline to avoid confusing users with too much information.
A dimension is a set of logically related labels that give context to the values you analyze.
Often, you can recognize a dimension when you see or hear the word “by” used in the
description of a request for information. For example, when I want to get sales by year by
product, I would create a query with two dimensions—Time and Product. (Technically,
Sales is in a third dimension for measures, but that’s a special type of dimension that is
designed differently.)

Dimensions have members, which represent the labels that are presented during analysis.
For example, the result of the query to get sales by year by product might return 2003,
2004, and 2005, each of which is a member of the Time dimension. Likewise, Bikes,
Accessories, and Clothing are members of the Product dimension. Whereas a dimension
comes from one or more related tables, members come from the same column in the
dimension table, which is defined as an attribute in Analysis Services. Traditionally, OLAP
products organize members of a dimension into a hierarchy that contains multiple levels.
In the Time dimension, days roll up to months, months roll up to quarters, and quarters
roll up to years. Days, Months, Quarters, and Years are levels of the hierarchy which each
contain its own set of members.

In Analysis Services 2000, you build dimensions by mapping dimension columns to hier-
archy levels. Analysis Services breaks with tradition by mapping dimension columns to
attributes that can then be organized into a user hierarchy. A user hierarchy might be a nat-
ural grouping of attributes, like Day, Month, Quarter, and Year, in which an attribute has
a many-to-one relationship with one other attribute in the hierarchy. Or a user hierarchy

Chapter 22 Analysis Services 667
could be a grouping that users find helpful for analysis, regardless of the cardinality of the
relationship between attributes. For example, if a user hierarchy includes Color and Size
attributes in the Product dimension, the size L could be related both to Blue and to Red,
although of course the values associated with Blue L products could be different from
Red L products.

Lastly, the Information rule in FASMI refers to the volume of data that an OLAP product
can support. Of course, an OLAP product’s ability to manage large data volumes is depen-
dent to a significant degree on available hardware resources, such as RAM and disk space.
Analysis Services has been architected specifically for scalability. You can select the phys-
ical storage mode appropriate for the data volumes you must support and create parti-
tions to locate data on separate drives or even separate servers as well as to minimize the
time required to add new data.

Once you have built an Analysis Services database and made it available for users to
query, you need to implement processes for keeping cube data up-to-date with minimal
downtime. Analysis Services provides several options for managing updates, such as
incremental processing to load only the newest data and limit the time required to recal-
culate aggregations. Analysis Services can even be configured to respond to queries while
data is being updated.

Integration with SQL Server 2005 Components
After you define the dimension and cube structures during the development phase of an
Analysis Services database, you must run processes to read the source data and load it
into storage on a regular basis, although certain types of storage don’t require physically
moving and restructuring the data. It’s generally not practical to run these processes
manually. You can use Integration Services to access source data, prepare new storage
structures if necessary, and then process database objects to add new records or to refresh
dimensions and cubes. Use SQL Server Agent to schedule execution of Integration Ser-
vices on a periodic basis. After processing, the cube is ready for browsing by end users. A
cube can also be a data source for reports developed for use with Reporting Services and
a source for a Notification Services event provider to send information when a defined
condition is met.

Analysis Services Components Overview
Analysis Services includes several tools for developers and administrators to use when
designing, deploying, processing, and managing Analysis Services databases and related
objects. Analysis Services also includes client components to send commands and que-
ries from user applications to the Analysis Services server. Many of these components are

668 Part V Microsoft SQL Server 2005 Business Intelligence
discussed in more detail later in this chapter. For now, review the following list of Analy-
sis Services components to get a general idea of each component’s purpose:

■ Analysis Services Service Manages database object metadata and server resources,
processes transactions, creates aggregations, stores data, and responds to client
application queries.

■ Unified Dimensional Model (UDM) Combines relational and dimensional mod-
els of one or more underlying data sources to centralize common business calcula-
tions and other business logic and to support ad hoc queries while shielding end
users from the technical details about the data sources

■ Business Intelligence Development Studio Supports the development, testing,
and deployment of the UDM

■ SQL Server Management Studio Provides administrative support for Analysis
Services servers, databases, and database objects

■ SQL Server Profiler Supports debugging, auditing, and playback of Analysis Ser-
vices activities

■ Analysis Services Deployment Wizard Automates deployment of an Analysis
Services database to a specified server

■ Synchronize Database Wizard Copies metadata and cube data from a source
server database to a destination server database

■ Migration Wizard Converts an Analysis Services 2000 database to an Analysis
Services 2005 database

■ Analysis Management Objects (AMO) Object Model Includes application pro-
gramming interfaces (APIs) for creating, changing, or deleting Analysis Services
database objects, applying security, or processing objects

■ XML for Analysis (XMLA) protocol for client applications Sends commands
and queries to an Analysis Services server and receives responses

■ Local Cube Engine (Msmdlocal.dll) Supports the use of local cubes and local
mining models on client workstations

Designing Analysis Services Projects
You perform all design work using SQL Server Business Intelligence Development Stu-
dio, which is introduced in Chapter 21, “Integration Services.” If you skipped that

Chapter 22 Analysis Services 669
chapter, you should turn back to review one section, “The Development Environ-
ment,” for an overview of this integrated development environment. First-time users of
this environment are often initially confused by the many windows to work in and by
the number of properties associated with each database object. With practice comes
familiarity, so be patient. It won’t take long to learn how to navigate the interface effec-
tively to build rich analytical solutions. Unfortunately, space doesn’t permit a thor-
ough explanation of all features in this interface, but you will learn enough in this
section to build a basic solution and begin experiencing some of the benefits that Anal-
ysis Services has to offer.

More Info For a solid introduction to Analysis Services using hands-on tutori-
als, refer to Microsoft SQL Server 2005 Analysis Services Step by Step, by Reed
Jacobson, Stacia Misner, and Hitachi Consulting, Microsoft Press, 2006. A deeper
discussion of Analysis Services, with an emphasis on developing applications
based on Analysis Services, is available in Applied Microsoft Analysis Services 2005
by Teo Lachev, Prologika Press, 2005. To learn how to integrate Analysis Services
into a complete data warehousing architecture using Microsoft technology, take a
look at The Microsoft Data Warehouse Toolkit: With SQL Server 2005 and the
Microsoft Business Intelligence Toolset by Joy Mundy, Warren Thornthwaite, and
Ralph Kimball, Wiley, 2006.

Data Preparation
An OLAP database is often built as an extension of a data warehouse. In fact, Analysis Ser-
vices 2000 requires data to be structured as a star schema or snowflake schema, two
types of schemas commonly used in a data warehouse. Both schemas include fact tables
and dimensions tables. A fact table is a table that contains detailed data, such as sales
transactions, with one or more numeric columns for measures like counts, dollars, or
units. A fact table also has foreign key columns that relate to primary keys in one or more
dimension tables. A dimension table contains descriptive information about the measures
in the fact table, such as the date or time of a transaction, the customer who made the pur-
chase, or the product sold.

Rather than build an Analysis Services database directly on top of a star schema or snow-
flake schema, you build a Unified Dimensional Model (UDM) as an intermediate layer
between the data source and the Analysis Services database. With this layer in place, you
can work on the design of database objects without maintaining a connection to the
source while you work. You still need tables that resemble fact tables or dimension tables,
but you are no longer limited to using either of the schema structures required by Analy-
sis Services 2000.

670 Part V Microsoft SQL Server 2005 Business Intelligence
Starting an Analysis Services Project
To build an Analysis Services database, you work in the context of solutions and projects
just like developers using Microsoft Visual Studio to build applications in C# .NET or
Visual Basic .NET, as explained in Chapter 21. In fact, Business Intelligence Development
Studio is Visual Studio; it simply has a different name listed in the Microsoft SQL Server
2005 program group. An Analysis Services project contains eight folders: Data Sources,
Data Source Views, Cubes, Dimensions, Mining Structures, Roles, Assemblies, and Mis-
cellaneous. To start a new Analysis Services project, follow these steps:

1. Start SQL Server Business Intelligence Development Studio. On the File menu,
point to New, and then click Project.

2. Ensure that the Project Type is set to Business Intelligence Projects, and then click
the Analysis Services Project template. Type a name for the project, such as My
Adventure Works to follow the examples in this chapter. Change the location for
the project to a folder of your choice, and confirm that the Create Directory For
Solution check box is selected.

3. Click OK to create the project in Visual Studio, as shown in Figure 22-2.

Figure 22-2 A new Analysis Services project in Business Intelligence Development
Studio.

Chapter 22 Analysis Services 671
You’ll use several Visual Studio windows during project development, as described in the
following list:

■ Solution Explorer By default, this window displays in the upper-right corner of
your screen. When you add a new object to your project, you’ll see a file added to
the object’s folder. You can rename this file, but be sure to keep the assigned file
extension (such as .dim or .cube) or your Analysis Services database won’t work.

■ Properties This window displays in the lower-right corner of your screen by
default. If you select an object in one of the designers, you can view and modify its
properties in this window.

■ Designers A designer is a collection of design tools, including a workspace, dia-
log boxes, and various windows used to create database objects. Business Intelli-
gence Development Studio includes the following Analysis Services designers:

❑ Data source view designer Add or remove tables and views to the Data
Source View, make structural changes by adding named calculations or
named queries and by creating logical keys or logical relationships between
tables, organize tables into diagrams, and explore source data.

❑ Cube designer Add or delete measure groups and measures, change prop-
erty values, associate dimensions with measure groups, add calculations,
build KPIs, design actions, create partitions, design aggregations, add per-
spectives, include translations, and browse a cube.

❑ Dimension designer Add or delete dimension attributes, work with user
hierarchies, change property values, add translations, and browse dimension
members by attribute hierarchy or by user hierarchy.

❑ Data mining designer Add, change, or delete mining structures; manage
and process mining models; and browse or query a mining model.

❑ Role designer Secure databases, cubes, dimensions, dimension members,
or cells by user role.

Using Data Sources
A data source created for an Analysis Services project is much like an Integration Services
data source, as discussed in Chapter 21. It’s just a file that contains the connection string
and credentials used to browse data when exploring the data store or to read data from
the source when processing an Analysis Services database object. Typically, the data
source refers to the database hosting a data warehouse that contains the dimension and
fact tables you use to build an Analysis Services database. However, you could use any

672 Part V Microsoft SQL Server 2005 Business Intelligence
relational data source or even another Analysis Services database. To create a Data
Source, follow these steps:

1. If necessary, create or open an Analysis Services project in Visual Studio as
described in the previous section. Right-click the Data Sources folder in the Solu-
tion Explorer window, and then click New Data Source. The first time you start the
Data Source Wizard, you see the Welcome page. You can permanently disable this
page by selecting the Don’t Show This Page Again check box. Click Next.

2. On the Select How To Define The Connection page of the wizard, select a data con-
nection if you have data connections already defined on your workstations, or click
New if you need to create one. Alternatively, you can choose Create A Data Source
Based On Another Object if you are working with multiple Analysis Services
projects and want to keep the current project synchronized with a data source in
another project. In this example, we’ll assume you have no connections created yet
and want to create a new one, so click New to continue.

3. In the Connection Manager dialog box, you can select a different provider. The
default provider is SQL Native Client, which you can use to access data in any ver-
sion of SQL Server. You can choose from the following provider options:

❑ .NET Framework Data Providers (Oracle and SQL Server)

❑ Microsoft OLE DB Providers (Jet 4.0, Analysis Services 9.0, Data Mining Ser-
vices, DTS Packages, Indexing Service, Microsoft Directory Services,
MSDataShape, OLAP Services 8.0, Oracle, Simple Provider, SQL Server, and
SQL Server Replication for DTS)

Note You might see additional Microsoft OLE DB Providers listed if
you have applications installed on your machine that include an OLE
DB provider, such as Microsoft Project 9.0 for example.

❑ SQL Native Client

❑ SQLXMLOLEDB, and SQLXMLOLEDB 4.0

If you have another type of data source that cannot be accessed with these provid-
ers, you can develop your own .NET managed provider. This should be considered
a last resort, however, as best practice dictates the use of an OLE DB provider when-
ever possible.

4. Type a server name or select the server name from the drop-down list, select an
authentication method (Windows or SQL Server), and select a database. For this
example, select the AdventureWorks database, which is a sample database that ships

Chapter 22 Analysis Services 673
with SQL Server 2005. The authentication method and any credentials you specify
here are used to connect to the data source when browsing relational data in the
Visual Studio environment.

Note To follow the examples provided in this chapter, it’s helpful to use
the SQL Server 2005 sample databases. They don’t install by default, how-
ever. During installation, you must click Advanced and select Documenta-
tion, Samples, and Sample Databases on the Components To Install page.
After installation, the AdventureWorks and AdventureWorksDW databases will
be available for use. AdventureWorks is a sample online transaction process-
ing (OLTP) system and AdventureWorksDW is a sample data warehouse. For
more information, refer to Chapter 8, “Installing and Upgrading Microsoft
SQL Server 2005.”

5. Click OK to return to the Data Source Wizard. With the new data source selected,
click Next. On the Impersonation Information page of the Data Source Wizard,
shown in Figure 22-3, you need to assign credentials for Analysis Services to use
when processing database objects.

Figure 22-3 The Impersonation Information page of the Data Source Wizard.

Important Not all impersonation options are applicable to all tasks that
might be executed by Analysis Services. For example, neither Use A Specific
User Name And Password nor Use The Credentials Of the Current User can
be used when Analysis Services processes database objects. Choose

674 Part V Microsoft SQL Server 2005 Business Intelligence
Default to allow Analysis Services to determine when to use the service
account credentials or the current user. It’s also a best practice to assign a
domain account to the Analysis Services service to avoid problems authen-
ticating when connecting to a data source on a separate server.

6. Select Default, click Next, change the Data Source Name if desired, and then click
Finish.

Using Data Source Views
A data source view (DSV), first introduced in Chapter 21, is a central component of the
UDM. At minimum, it provides an abstracted layer of the source data structures so you
can work on your Analysis Services project without maintaining a connection to the
source as previously mentioned. Typically, however, you enhance the DSV to provide
user-friendly names, enforce business rules, and create relationships between tables for
referential integrity. Some people consider it a best practice to perform these enhance-
ments back in the source database, but the DSV gives you the flexibility to make changes
when you don’t have the appropriate permissions in the database. To create and modify
a DSV, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions of this chapter. In Solution Explorer, right-click the Data Source Views folder,
click New Data Source View, and then click Next if the Welcome page displays.

2. Select an available data source. Notice you have the option to create a data source
now by clicking New Data Source if you started the Data Source View Wizard
before creating a data source. To continue the example from the previous section in
which you create a data source, select AdventureWorks and then click Next.

3. Double-click a table or view to add it to the Included Objects list. Alternatively, you
can select one or more tables and then click the arrow buttons to add to the list. You
can also add a table and then click the Add Related Tables button to automatically
add tables that have a foreign key relationship with the selected table. For this
example, add the following tables: Production.Product, Production.ProductCategory,
Production.ProductSubcategory, and Sales.SalesOrderDetail, as shown in Figure 22-4.
When you are finished, click Next.

Note As discussed previously, an OLAP database is often created using
tables from a data warehouse, and that’s still the preferred approach when
a data warehouse exists. However, you might want to work directly with an
OLTP schema while you’re prototyping the Analysis Services database
objects or when you want to take advantage of near-real-time analysis of

Chapter 22 Analysis Services 675
OLTP data. We’re using AdventureWorks in this example to illustrate this
point.

Figure 22-4 The Select Tables And Views page of the Data Source Wizard.

4. Change the DSV name if desired, and then click Finish.

5. Right-click the table header for the SalesOrderDetail table, point to Replace Table,
and then click With New Named Query. A named query is similar to a view in a rela-
tional database. You use a Transact-SQL statement to construct a result set that pro-
duces a subset of the original data, adds derived columns to concatenate data or
compute new values, or combines data from multiple tables. The DSV must have at
least one table or view added before you can create a named query.

Note If you plan to add only a derived column, another option is to cre-
ate a named calculation. Right-click a table header in the data source view,
click New Named Calculation, and provide an expression in the SQL syntax
applicable for the data source. There are no performance differences
between a named query and a named calculation.

6. Above the diagram pane, you see the Query Definition toolbar. The last button on
this toolbar is the Add Table button. Click the Add Table button, double-click

676 Part V Microsoft SQL Server 2005 Business Intelligence
SalesOrderHeader (Sales) to add it to the query, and then click Close. You don’t
need to add a table to the DSV before you include it in a Named Query.

7. In the SalesOrderHeader (Sales) table, select OrderDate, DueDate, and ShipDate to
add these columns to the query. You might need to scroll through the table to
locate all columns. You can, of course, add expressions to the SELECT statement in
addition to, or instead of, adding columns. Click OK to create the named query.
Notice the icon that appears in the SalesOrderDetail header to indicate this object is
a named query instead of a table.

You will use this named query as a fact table for the cube you build later in this
chapter. It contains all the necessary components of a fact table—foreign key col-
umns and numeric columns. However, it’s not currently related to any dimen-
sions. You need to add a relationship between the named query and a dimension
table.

8. Locate the Product table, drag ProductID from the SalesOrderDetail named query
and drop on ProductID in the Product table.

When you create a relationship between two objects in the DSV, you should start
with the object that has the foreign key column and then connect it to the object
containing the primary key column. If you reverse this process, the Edit Relation-
ship dialog box displays a warning message and gives you the option to reverse the
direction of the relationship.

Dimension Design
As you learned in a previous section of this chapter, a dimension is a logical grouping of
labels for numerical values being analyzed. A dimension often describes a person, place,
or thing—such as a customer, a sales territory, or a product. In Analysis Services, each
dimension is a collection of attributes corresponding to columns in one or more tables.
Analysis Services supports several different dimensional models, but we’ll limit our
examination of dimensions in this section to two types—a standard normalized structure
and a server-based time dimension.

Using the Dimension Wizard
After you create the DSV, you can use the Cube Wizard to automatically create the defi-
nitions for the dimensions and cube from the DSV. However, you’ll likely find building
dimensions one-by-one using the Dimension Wizard is a more productive approach.
The Dimension Wizard lets you take either a top-down approach or a bottom-up
approach to building a dimension. Following the top-down approach, such as when

Chapter 22 Analysis Services 677
you’re prototyping a business intelligence solution, you define the dimension design
first and then generate a schema for you to load with data later. More often, though,
you’ll use the bottom-up method to design a dimension based on an existing relational
schema. To create a dimension, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions of this chapter. In Solution Explorer, right-click the Dimensions folder, click
New Dimension, and then click Next on the Welcome page of the wizard.

2. On the Select Build Method page of the wizard, keep the default selections, Build
The Dimension Using A Data Source , Auto Build, and Create Attributes And Hier-
archies, and then click Next. Selecting Auto Build means that the Dimension Wiz-
ard reviews the data in the tables you specify on a subsequent page of the wizard to
create attributes and hierarchies.

Note For absolute control over your dimension, you can disable Auto
Build and then create attributes and hierarchies manually. You can also
build a dimension without a data source if you want to prototype a struc-
ture first and then create a schema later. You can even use a template to
help you build the dimension model.

3. Click the Adventure Works DSV if it is not already selected. The tables used to build
the dimension must be included in the DSV. Click Next.

4. Keep the default option, Standard Dimension, in this example. You’ll learn more
about the other options later in this chapter. Click Next.

The Main Table defaults to Production.Product since it is first alphabetically in the
list of tables contained in the data source view. On this page of the wizard, you
select the table that represents the leaf level of the dimension. The leaf level is the
table with the most atomic data. In other words, it’s the table that will join to the
fact table when the data is loaded into the cube.

5. On the Select The Main Dimension Table page of the wizard, you also need to select
the key column or columns that uniquely identify each dimension member, which
in this example is ProductID. It’s selected for you because the key column was
defined in the DSV. By default, a dimension uses the same column for the key col-
umn and name column, but you can override this behavior by selecting a different
name column. Because ProductID isn’t particularly meaningful to end users, select
Name in the Column Containing The Member Name (Optional) drop-down list, as
shown in Figure 22-5. Click Next.

678 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 22-5 The Select The Main Dimension Table page of the Dimension Wizard.

6. The Production.ProductCategory and Production.ProductSubcategory tables are already
selected as related tables because they are related to the main table, Production.Prod-
uct, in the DSV. Data in these two tables should be considered for attributes and
hierarchies in the dimension, so you should keep the default selection of these
tables on this page. Click Next.

7. On the Select Dimension Attributes page of the wizard, clear the check boxes next
to the following attributes, which all appear together at the bottom of the attribute
list on the Select Dimension Attributes page of the wizard: Name, Product Subcate-
gory – Rowguid, Product Subcategory – Modified Date, Product Category – Name, Prod-
uct Category – Rowguid, and Product Category – Modified Date.

All columns from the main table and related tables are selected as dimension
attributes by default. You can eliminate any attributes that aren’t appropriate for
your analytical solution, such as the Rowguid and Modified Date columns that are
used to manage data in the OLTP but aren’t useful at all for analysis.

8. To better view the contents of the dropdown lists on this page of the wizard, max-
imize the dialog box. Locate the row for Product Subcategory, and then select Produc-
tion.ProductSubcategory.Name in the Attribute Name Column drop-down list. Next,
locate the row for Product Category, and then select Production.ProductCate-
gory.Name in the corresponding Attribute Name Column drop-down list. Just as the

Chapter 22 Analysis Services 679
main table can have a key column and name column defined, you can also distin-
guish between key columns and name columns for other attributes in a dimension.
Click Next.

Note You can also change the name of the attribute on this page of the
wizard. For example, you might want to simplify Product Category and Prod-
uct Subcategory to Category and Subcategory, respectively. Just click in the
Attribute Name column and type a more desirable name. You can also
rename the attributes later by modifying the attribute’s Name property
directly in the dimension designer.

9. On the Specify Dimension Type page of the wizard, the default dimension type is
Regular. Some client applications can use dimension types to display information a
certain way. For example, a dimension type of Geography might be used by a map-
ping application to overlay Analysis Services data on maps. For this example, keep
the default setting for this dimension. Click Next to continue.

10. On the Define Parent-Child Relationship page, you do not need to make changes
since the tables with which you are working do not contain self-referencing tables
required for a parent-child relationship. (Refer to the books recommended at the
beginning of this chapter for more information about parent-child relationships.)
Click Next to continue to the next step of the wizard.

11. After the Detecting Hierarchies task is complete, click Next to review the hierar-
chies automatically created by the wizard. You can only remove levels from a
hierarchy on this page. You can make all other changes to the hierarchies, such
as adding levels or renaming levels, in the dimension designer. Click Next to
continue.

12. Change the name of the dimension if desired, and then click Finish. When the wiz-
ard completes, Product.dim is added as a new object in the Dimensions folder of the
Solution Explorer window. In the main window of Visual Studio, you see the
dimension designer, shown in Figure 22-6. The dimension designer has three tabs:
Dimension Structure, Translations, and Browser.

The Dimension Structure tab displays a list of dimension attributes and a diagram
of each table in the DSV used to build the dimension. If you click an attribute in the
list, you can view the attribute’s properties in the Properties window in the lower
right corner.

13. In the Hierarchies and Levels pane of the Dimension Structure tab, right-click Prod-
uct Category – Product Subcategory, click Rename, and then type Category. The

680 Part V Microsoft SQL Server 2005 Business Intelligence
Dimension Wizard automatically creates this user hierarchy based on the relation-
ships between the three tables selected for this dimension.

Figure 22-6 The Dimension Designer.

Using the Dimension Browser
You can review the members in each attribute and each user hierarchy on the Browser tab
of the dimension designer. However, before you browse the dimension, you must process
the dimension, which requires you first to deploy the dimension definition to the Analy-
sis Services server and then process the entire Analysis Services database. Details about
deployment and processing are explained later in this chapter. To deploy and browse a
dimension, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions of this chapter. Click the Browser tab. Because the dimension in this case has
not yet been deployed to the Analysis Server, an error message displays to indicate
the dimension is unavailable for browsing.

2. Right-click the project in the Solution Explorer window, and then click Deploy.

Note The default target server for deployment is the local server. To
deploy to a different server, right-click the project in the Solution Explorer

Chapter 22 Analysis Services 681
window, click Properties, click Deployment in the Configuration Properties
tree, and then change the Server property to the correct server.

3. When deployment is complete, click the Reconnect button in the Browser toolbar.
Any change to an object in an Analysis Services project requires a deployment of
those changes to the server. Afterwards, you always use the Reconnect button in the
Browser tab of a designer to reestablish the client-server connection.

4. Notice Category is automatically selected in the Hierarchy drop-down list. .Click the
plus sign to the left of the All member in the Category hierarchy tree to view the
members of this user hierarchy, as shown in Figure 22-7. You can also view each
attribute hierarchy, which consists of an All member on the top level and distinct
attribute members on the leaf level.

Figure 22-7 The Browser tab of the Dimension Designer.

Building a Server Time Dimension
If your source database is not a standard data warehouse and if the fact table also con-
tains a datetime column, you can create a Server Time Dimension to facilitate analysis by
time. To create a Server Time Dimension, follow these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions of this chapter. In Solution Explorer, right-click the Dimensions folder, click

682 Part V Microsoft SQL Server 2005 Business Intelligence
New Dimension, and then click Next three times (or twice if you have disabled the
Welcome page of the wizard). These steps might seem counterintuitive because you
really don’t have a data source, but your goal is to get to the Select The Dimension
Type page of the wizard. Here you select Server Time Dimension, and then click
Next.

Note If you do, in fact, have a time dimension table available in a data
warehouse, it’s considered best practice to build an Analysis Services
dimension from that table. Instead of selecting Server Time Dimension on
the Select the Dimension Type page of the wizard, you select Time Dimen-
sion and choose the specific table in the available drop-down list. Whether
you create a Server Time Dimension or a Time Dimension, it’s important to
note that these dimension types are different from any other dimension
because they relate to time. Analysis Services has several features that
depend on the existence of a correctly typed Time dimension, such as spe-
cial calculation functions and aggregation behaviors.

2. Set values for First Calendar Day and Last Calendar Day on the Define Time Peri-
ods page of the wizard. The date range you specify here must include all dates
found in the fact table, or an error will be raised during processing. In the Adven-
tureWorks SalesOrderHeader table, the earliest OrderDate is July 1, 2001, and the lat-
est OrderDate is July 31, 2004, so set First Calendar Day and Last Calendar Day to
these dates, respectively. Click the arrow in the drop-down list to set specific dates
using a calendar control.

3. In the Time Periods list, select Year, Quarter, and Month. Date is automatically
selected because it’s required to create the dimension. Click Next.

4. The Select Calendars page of the wizard gives you an opportunity to choose other
calendars for alternate reporting purposes, such as Fiscal Calendar or Manufactur-
ing Calendar. For more information about these calendar types, refer to the topic
“Time (SSAS)” in SQL Server Books Online. To continue this example, you won’t
select any additional calendars. Click Finish twice to complete the wizard. Take a
moment to review the new dimension, as shown in Figure 22-8.

Cube Design
When you build a cube, you select measures from one or more fact tables and define the
type of relationships present between fact tables and dimension tables. For example, a
regular relationship between a fact table and dimension table includes properties to spec-
ify the key columns in each table that are related. This relationship type will likely satisfy
your design requirements most of the time, but you can also define Data Mining, Fact,

Chapter 22 Analysis Services 683
Many-To-Many, and Reference relationships. (You can learn more about defining these
relationships by reading “Dimension Relationships (SSAS)” in SQL Server Books
Online.) Start cube design by using the Cube Wizard to establish the basic definition of
the cube, and then make changes using the cube designer. As you work, you can period-
ically deploy and process the Analysis Services project to test your design by browsing the
cube.

Figure 22-8 A Server Time Dimension.

Using the Cube Wizard
The Cube Wizard steps you through the process of identifying tables and selecting mea-
sures. The wizard also examines the DSV to determine how tables are related so that ini-
tial dimension relationships can be added to the cube definition. To create a cube, follow
these steps:

1. To follow this example, you must complete the steps described in the previous sec-
tions of this chapter. In Solution Explorer, right-click the Cube folder, and then
click New Cube to launch the New Cube Wizard.

2. Click Next until you reach the Identify Fact And Dimension Tables. Clear the Pro-
duction.ProductCategory and Production.ProductSubcategory check boxes, as shown
in Figure 22-9.

684 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 22-9 The Identify Fact And Dimension Tables page of the Cube Wizard.

The wizard requires the selection of one related dimension table for each selected
fact table. This requirement is met only when the DSV includes a foreign key rela-
tionship between the two tables.

3. Click Next, and then click >> to move all available dimensions—Product and Time—
to the Cube Dimensions list, and then click Next.

4. Select the top check box to clear the default selection of all measures, and then
select the check boxes to the left of Order Qty and to the left of Line Total. Type
Order Quantity as a new name for Order Qty and Sales Amount for Line Total. You
can also type a new name of the measure group here if you wish, or you can edit the
name in the cube designer.

5. Click Next twice, change the cube name to My Adventure Works, and then click
Finish to view the cube designer, as shown in Figure 22-10.

The Cube Structure tab provides access to properties of measure groups, measures,
and dimensions in the cube. When you click an object on this tab, you can view its
properties in the Properties window and make any necessary changes. You can, for
example, rename an object by typing a new name in the Name property box if you
missed this step while using the Cube Wizard.

Chapter 22 Analysis Services 685
Figure 22-10 The Cube Designer.

6. Expand a measure group, such as SalesOrderDetail in this example, in the Measures
pane to view its measures. To access properties for a measure group or for a mea-
sure, such as Order Quantity, right-click the object in the Measures pane and then
click Properties. The Properties window displays all properties associated with the
selected object. The first property you should change for each measure is the For-
matString property so that measures display properly in the cube browser. You can
use standard format strings by selecting a value in the FormatString property drop-
down list, or you can type a custom format string into the box. For example, you
might want to replace the Currency format with $#,# if you want to exclude decimal
places in currency values. To continue this example, change the FormatString prop-
erty for Order Quantity to #,# and change this property for Sales Amount to $#,#.

Note Not all cube browsers use the FormatString property. Before you
spend a lot of time adjusting this property, be sure you know whether the
users’ client applications will use this property to format values.

7. Notice the Time dimension is not visible in the Dimensions pane in the lower left
corner of the Cube Structure tab. Because the Cube Wizard didn’t recognize which
datetime column to use with this dimension, you must manually relate the Server
Time dimension with the measure group. Right-click anywhere in the Dimensions
pane, click Add Cube Dimension, click Time, and click OK.

686 Part V Microsoft SQL Server 2005 Business Intelligence
8. Click the Dimension Usage tab (the second tab in the cube designer), click the
intersection of Time and Sales Order Detail, and then click the ellipsis button that
displays in the intersection, as seen in Figure 22-11.

Figure 22-11 The Dimension Usage tab of the Cube Designer.

9. In the Define Relationship dialog box, select Regular in the Select Relationship
Type drop-down list, click Date in the Granularity Attribute drop-down list, and
then click OrderDate in the Measure Group Columns drop-down list, as shown in
Figure 22-12. Click OK. By defining the relationship type, the data in the measure
group can be correctly analyzed by the Time dimension.

Figure 22-12 The Define Relationship Dialog Box.

10. Right-click the project in the Solution Explorer window, and then click Deploy.

Chapter 22 Analysis Services 687
Using the Cube Browser
As with dimensions, you must deploy a cube before you can browse it. Visual Studio
deploys and processes only those changes made to the database design since the last
deployment. It has no way of recognizing whether changes to underlying data have been
made, so you will need to manually start processing if you know data has changed but
there are no design changes to trigger processing.

The Browser tab of the cube designer includes a Microsoft Office Web Components
(OWC) pivot table control with a special metadata pane not available in standard OWC.
The metadata pane organizes database objects—measure groups, measures, and dimen-
sions—in a tree view, as shown in Figure 22-13.

Figure 22-13 The Browser tab in the Cube Designer.

You can select items in the metadata tree to do any of the following tasks:

■ Drag measures together or individually to the pivot table section labeled Drop
Totals or Detail Fields Here to view aggregated values.

■ Drag one or more attributes or user hierarchies to Drop Row Fields Here or Drop
Column Fields Here to slice and dice, or drill between levels of a user hierarchy or
from one attribute to another attribute on the same axis (rows or columns). To
pivot, you can move an attribute to the opposite axis, such as from rows to columns.

688 Part V Microsoft SQL Server 2005 Business Intelligence
■ Filter aggregated values by dragging one or more attributes to Drop Filter Fields
Here.

■ Create a subcube, which is a subset of a cube based on a filter defined at the top of
the Cube Browser. By reducing the scope of data to query from a full cube to a sub-
cube, you can improve query performance.

Note Each time you drag a database object into or out of the pivot table
control or the subcube filter, you execute a new query. If you are working
with a cube containing a large amount of data, you might find performance
improves if you create a subcube first and then create your query. Inciden-
tally, the subcube filter included on the Cube Browser tab issues a CREATE
SUBCUBE statement. This statement is new to the multidimensional expres-
sions (MDX) language used to query and model Analysis Services. It’s not
supported by the standard OWC pivot table control. This control has been
adapted for use with the cube browser in Visual Studio and SQL Server
Management Studio.

Reviewing Advanced Cube Design Features
There is much, much more you can do to enhance the design of a cube that you can learn
about in any of the books referenced at the beginning of this chapter. You can also study
the design of Microsoft’s sample database and use the SQL Server 2005 Analysis Services
Tutorial in SQL Server Books Online to learn more about the more advanced design fea-
tures you can use. You must explicitly install the sample databases during installation of
SQL Server, as explained earlier in this book. Using Visual Studio, open the Adventure
Works solution located in the %Program Files%\Microsoft SQL Server\90\Tools\Sam-
ples\AdventureWorks Analysis Services Project\Enterprise folder. Double-click the
Adventure Works.cube file in Solution Explorer to open the cube designer, and then nav-
igate to each of the tabs described in the following list to study the implemented design
techniques:

■ Dimension usage Shows which dimensions are associated with which measure
groups. If an icon exists, it indicates a special relationship type, such as Many-To-
Many. Click the intersection of a dimension and measure group, and then click the
ellipsis button in the intersection to view the columns used to define the relation-
ship between tables.

■ Calculations Lists the MDX calculations used to add new measures, new dimen-
sion members, and sets to the cube. These calculations may be visible to end users
for use in a query, or they may be hidden if used as an intermediate step in a more
complex calculation. You can view all calculations in the form of a complete MDX
script if you click the Script View button in the toolbar. When using Script View,

Chapter 22 Analysis Services 689
you can use Visual Studio’s debugging feature to step through the script and mon-
itor the changes to the cube values as each calculation is executed.

Note A good resource for getting started with MDX is Fast Track to MDX
Second Edition by Mark Whitehorn, Robert Zare, and Mosha Pasumansky,
Springer, 2005. MDX unleashes the power of Analysis Services cubes and is
well worth the effort to learn if you are responsible for cube development.

■ KPIs Lists the KPI calculations added to a cube. You must use a client application
that supports Analysis Services KPIs to enable end user access to the results of
these calculations.

■ Actions Lists commands that execute in the context of the user’s current position
in the cube. This feature requires a client application that supports Analysis Ser-
vices actions to drillthrough to underlying source data, open a related Reporting
Services report, or execute a generic action. For example, an action can navigate to
a specific URL (defined by the object the user clicked to launch the action) using
Microsoft Internet Explorer.

■ Partitions Lists the partitions, storage methods, and aggregation design for each
measure group. You can also work with partitions using SQL Server Management
Studio as explained later in this chapter.

■ Perspectives Organizes measure groups and dimensions into smaller sets of
database objects to simplify the user experience.

■ Translations Defines the translated captions for database objects, such as mea-
sures, calculations, dimensions, and so on.

Managing Analysis Services
If you’re responsible for maintaining a cube once the development phase is complete, the
remainder of this chapter should be of high interest to you. Now it’s time to switch to a
new environment, SQL Server Management Studio, to review its features for managing
Analysis Services servers, including server configuration and deployment options for
moving Analysis Services databases between servers. We’ll also review your options for
managing scalability with partitioning, storage modes, and aggregations. Then, we’ll take
a look at the various processing methods available for keeping cubes as up-to-date as pos-
sible and at security for managing access to cube data. Finally, we’ll briefly examine the
use of SQL Server Profiler and the Windows Performance Tool for monitoring and trou-
bleshooting Analysis Services.

690 Part V Microsoft SQL Server 2005 Business Intelligence
Analysis Server Configuration
There are many Analysis Services server properties you can configure to manage the
behavior of the server. Using SQL Server Management Studio, you can change settings
that define folder locations for storing Analysis Services databases, specify server security
rules, or manage memory, network connectivity, or availability of data mining algo-
rithms, to name a few uses. To configure an Analysis Services server, follow these steps:

1. Start SQL Server Management Studio. In the Connect to Server dialog box, select
Analysis Services in the Server Type drop-down list. In the Server Name drop-down
list, select the Analysis Server instance to configure. Click OK.

2. In Object Explorer, right-click the Analysis Server instance and then click Proper-
ties. To make changes, you type a new value in the Value column. An example of a
change you might want to make is the default port on which the server is listening
for client requests. The Port property is accessible when you select the Show
Advanced (All) Properties check box.

As the Restart column shown in Figure 22-14 indicates, certain properties require
the server to restart. Other properties are in effect when you click OK to close the
Analysis Server Properties dialog box.

Figure 22-14 Analysis Services Server Properties.

Chapter 22 Analysis Services 691
Deployment Options
The development cycle of an Analysis Services project is usually an iterative process in
which database objects are designed in Visual Studio on a client workstation, the defini-
tion of these objects is copied to the Analysis Services server, and then the objects are pro-
cessed on a development server to create the physical structure of these objects and load
the structures with data. When the development cycle is complete, you need to move the
database to a production server. In this section, we’ll show you three different ways that
you can move a database from one server to another.

Note You can work directly with the database objects on the server if you
select Open from the File menu in Visual Studio and then select Analysis Services
Database. In the Connect To Database dialog box, specify a server and database
name. Visual Studio creates a project, but your changes are applied to the server
object as soon as you save its definition file and usually require reprocessing the
object. Reprocessing can impact users if the database is in production.

Best Practices Nothing prevents two developers from making changes to the
same object and overwriting each other’s work. Therefore, it’s recommended that
you work in the disconnected design mode, which is the default mode when you
create a new Analysis Services project in Visual Studio. Development teams can
check out objects when using source control to ensure that only one person at a
time is working on a particular object definition.

Using the Analysis Services Deployment Wizard
You can configure project properties in Visual Studio to specify a target server for deploy-
ment and then deploy directly from the design environment. However, once an Analysis
Services database is in production, there is a risk that your project definition files no
longer match the current definitions on the server because an administrator might mod-
ify partitions or security using SQL Server Management Studio. Fortunately, you have the
option to use the Analysis Services Deployment Wizard which asks you whether to main-
tain or replace existing partition, security, and configuration settings. You can run this
wizard in either of two modes:

■ Interactive deployment Use this mode to run deployment immediately on com-
pletion of the wizard.

■ Script deployment Use this mode to define deployment properties and generate
a script to run deployment later. The script can be executed manually in SQL Server
Management Studio or scheduled as part of a SQL Server Agent job.

692 Part V Microsoft SQL Server 2005 Business Intelligence
Before using the deployment wizard, you need to create a set of input files for the wizard.
Just right-click the project in Visual Studio’s Solution Explorer, and click Build. A set of
four XML files—Analysis Services Database Deployment Contents, Analysis Services
Database Deployment Configuration Settings, Analysis Services Database Deployment
Options, and Analysis Services Database Deployment Targets—are created and placed in
your project’s bin folder. You can leave these files in place or move them to another server
that has Analysis Services components installed. When you start the Analysis Services
Deployment Wizard, you provide the path to these files.

If you prefer to use interactive deployment, you can access the Deployment Wizard from
the Microsoft SQL Server 2005/Analysis Services program group. As you step through
the wizard, you are prompted for the path to the database file, the target server and data-
base name, options for replacing or ignoring partition and security settings as shown in
Figure 22-15, configuration changes such as the data source or data source imperson-
ation information, and processing options.

Figure 22-15 The Specify Options For Partitions And Roles page of the Deployment
Wizard.

The wizard builds the necessary structures on the target Analysis Services server and load
data into these structures. If the database already exists on the target server, the wizard
deploys updates, just as deployment from Visual Studio behaves. The wizard then deter-
mines which objects require processing and processes these objects in sequence.

Chapter 22 Analysis Services 693
Using the Synchronize Database Wizard
An alternative to rebuilding and reprocessing structures on another server is synchroniz-
ing data. When you synchronize databases, only the changed objects are affected. Users
can continue to query the original version of the database, and then the Analysis Services
server gracefully replaces the original version with the synchronized version when syn-
chronization is complete. To start the Synchronize Database Wizard, connect to the tar-
get server in SQL Server Management Studio, right-click the Databases folder, and then
click Synchronize. After you specify the source server and database, you choose the
extent to which security should also be synchronized. You can synchronize all security
settings, synchronize roles without membership, or bypass security synchronization alto-
gether. Another important optional setting in the wizard is Use Compression When Syn-
chronizing Databases, which can reduce the impact of send large data volumes across
your network. As with the Deployment Wizard, you can run the synchronization when
you finish the wizard, or you can generate a script to use later.

Backing Up and Restoring a Database
Certainly, making regular backups should be a standard administration task, but it’s also
one more way to move a database from one server to another. In SQL Server Management
Studio, connect to Analysis Services, right-click the Analysis Services database, and click
Back Up. When you create a backup, both the data and the metadata are stored in a single
file. There is no restriction on the size of the database. When you create the backup, you
can control whether an existing backup can be overwritten, specify whether the backup
file should be compressed, or encrypt the backup file with a password by selecting the
applicable options, as shown in Figure 22-16.

Note You can automate this process by using SQL Server Agent. In the Backup
Database dialog box, click Script in the toolbar and select Script Action To Clip-
board. Create a new SQL Server job and then create a new step. (For more infor-
mation about creating and automating jobs, refer to the SQL Server Books Online
topic, “Creating Jobs.”) Change the Type to SQL Server Analysis Services Com-
mand and then paste the script into the Command box.

When you need to restore the backup, right-click the Databases folder for the Analysis
Services instance in SQL Server Management Studio, provide a name for the database,
and provide the path to the backup file. You can specify whether to overwrite an existing
database and whether to restore security information from the backup. If you encrypted
the database during backup, you’ll need the password to restore it.

694 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 22-16 The Backup Database dialog box.

Partitions
Every Analysis Services cube has one partition for each measure group by default. If the
fact table on which a measure group has fewer than 50 million rows, you don’t need to
worry about adding more partitions. However, for larger fact tables, partitioning is a crit-
ical strategy for managing physical storage, minimizing processing time, and boosting
query performance. While you can use Developer Edition to design and implement par-
titions on a development server, you must use Enterprise Edition for your production
server.

Creating a Partition
You can design partitions on the Partitions tab of the cube designer in Visual Studio, but
once a database is in production you’ll likely use SQL Server Management Studio to cre-
ate, modify, or delete partitions. Both environments use the Partition Wizard to create a
new partition. To use the Partition Wizard in SQL Server Management Studio, follow
these steps.

1. In SQL Server Management Studio, connect to Analysis Services, and then expand
the following folders: Databases, Adventure Works DW, Cubes, Adventure Works,
Measure Groups, Internet Sales, and Partitions. There are four existing partitions
for the Internet Sales measure group, as shown in Figure 22-17.

Chapter 22 Analysis Services 695
Note To follow this example, deploy the sample Adventure Works solu-
tion using the Analysis Services Deployment Wizard which is described in
the previous section of this chapter. The location of the database file is
<drive>:\<SQL Server install directory>\90\Tools\Samples\AdventureWorks
Analysis Services Project.

Figure 22-17 Reviewing partitions in SQL Server Management Studio.

You can double-click a partition in Object Explorer to open the Partition Properties
dialog box. Each of the Internet Sales partitions is configured identically, except the
source data for each partition is based on a different query which separates the fact
table into four sets of sales transactions, one for each year of data.

2. Right-click the Partitions folder, click New Partition, and then click Next on the
Welcome page. Select the fact table associated with the measure group, which in
this case is dbo.FactInternetSales, and then click Next.

3. On the Restrict Rows page of the Partition Wizard, you define which data will be
selected from the fact table and loaded into the partition. If you maintain separate
fact tables for each partition, you’re done with the wizard and can click Finish.
However, if you plan to create multiple partitions from a single fact table, you need
to create a SELECT statement with a WHERE clause to specify which data should
be loaded into this partition. Select the Specify A Query To Restrict Rows check box.

696 Part V Microsoft SQL Server 2005 Business Intelligence
The Query box is automatically populated with a SELECT statement that includes
all columns in the fact table as defined in the Data Source View.

4. Scroll to bottom of the Query box and type orderdatekey > 1280 after WHERE to
add a filter to the SELECT statement. This query is now modified to include data
for sales occurring after the last date included in the Internet_Sales_2004 partition.
In your own partition, you should use a WHERE clause that specifies both a begin-
ning and ending range. Click the Check button to confirm the query parses cor-
rectly, and then click Next.

Important Be very careful when defining the WHERE clause here. There
will be no warning if rows selected by this query overlap with rows in
another partition’s source query.

5. On the Processing And Storage Locations page of the Partition Wizard, you can
override the default settings and specify a different location for the partition. It
could be in a different location than the existing partitions or even on a different
server. Before you decide to implement remote partitions, however, be sure to read
“Creating and Managing a Remote Partition” in SQL Server Books Online to verify
that you can meet the requirements. Click Next.

6. Change the name of the partition, and select Design Aggregations Later. (You’ll
learn more about aggregations in a later section of this chapter.) You can option-
ally process the partition at this point. Since there is no data in the fact table
that meets the criteria you specified in the query, you can skip processing. Click
Finish.

The new partition displays in the Partitions folder. At this point, you’ve defined
only which data from which fact table will be loaded into the partition. You can
also use SQL Server Management Studio merge partitions if you want to combine
data from multiple partitions into a single partition, but you’ll need to redefine
the source query for the final partition because the query won’t change automat-
ically. You can change the source query in the partition’s Partition Properties dia-
log box.

Specifying a Storage Mode
With each partition, you need to consider how the data will be stored physically. Con-
ceivably, if you had three partitions in a cube, each partition could be designed with a

Chapter 22 Analysis Services 697
different storage mode. Both dimensions and partitions can be designed to use one of
the following three storage modes:

■ Multidimensional OLAP (MOLAP) Keeps detailed data and aggregations in a
multidimensional compressed proprietary structure. With this method, the rela-
tional source is accessed only during processing, and queries are resolved entirely
from the multidimensional store. It provides the fastest query performance, but it
requires a periodic refresh to stay consistent with the relational data. On average,
the amount of space required to maintain a copy of detailed data into the MOLAP
store is about 20 percent more than the space required for the relational source
(without indexes). The query performance gained by using MOLAP more than
compensates for additional space required.

■ Hybrid OLAP (HOLAP) Keeps aggregations only in the multidimensional store
and leaves detailed data in the relational source. Processing is faster than MOLAP
because the activities are limited to calculating and storing the aggregations. Que-
ries that require detailed data are slower than queries that can be resolved using
aggregations. This option may be best for historical data that is infrequently
accessed.

■ Relational OLAP (ROLAP) Keeps detailed data and aggregations in the rela-
tional source. Queries run more slowly as a consequence and processing runs
more slowly when aggregations are involved. The most common reason to use
ROLAP is to support real-time analysis when the source database is continually
updated.

Note Unless you have a good reason not to, you should always use the
MOLAP storage mode. It’s optimized specifically for best performance and
processing and provides efficient storage, all important characteristics for
an OLAP product.

To configure the storage mode of a partition in SQL Server Management Studio, follow
these steps:

1. In SQL Server Management Studio, connect to Analysis Services, expand the Data-
bases folder, expand any database folder, expand the Cubes folder, and then
expand the appropriate Measure Groups and Partitions folders. Right-click a parti-
tion, click Properties, and then click Proactive Caching.

2. Move the slider to a different storage setting, as shown in Figure 22-18. Here you
have many more options than the three storage modes explained at the begin-
ning of this section, but they are simply variations on the same theme. Each of

698 Part V Microsoft SQL Server 2005 Business Intelligence
the MOLAP modes corresponds to a different processing option, which will be
explained later in this chapter. Click OK.

Figure 22-18 The Proactive Caching page of the Partition Properties dialog box.

Designing Aggregations
We mentioned previously that one important benefit of partitioning is the ability to
design aggregations differently for each partition. Proper design aggregation is a balanc-
ing act between the impact on processing, the additional storage required for aggrega-
tions, and the effect on query performance. From a practical perspective, you don’t need
to worry much about aggregations if you don’t have data large enough to require adding
partitions to your cube. For large data volumes, aggregations help Analysis Services
respond to queries more quickly. As an example, if I ask for yearly sales data and if an
aggregated value for each year is already stored, Analysis Services can return those values
rather than compute the sum of each year at query time.

Analysis Services uses a special algorithm to factor the number of attributes against the
number of rows in a partition so that it can weigh the cost of calculating and storing the
aggregation against the benefit of having the aggregation ready to respond to a query.
You use the Aggregation Design Wizard to provide counts by partition and by attribute
as input values for the algorithm. You can start this wizard on the Partitions tab of the
cube designer in Visual Studio, or you can start it from the Partitions folder in SQL

Chapter 22 Analysis Services 699
Server Management Studio. To design aggregations in SQL Server Management Studio,
follow these steps:

1. Start SQL Server Management Studio, and connect to Analysis Services. In the
Object Explorer of SQL Server Management Studio, expand the Cubes folder in any
database, and then expand one of the nested Measure Groups. Right-click the Par-
titions folder, and then click Design Aggregations. Click Next to skip the Welcome
page of the wizard.

2. On the Select Partitions To Modify page of the wizard, select the partitions for
which you want to design aggregations. Click Next.

Note Because you can design both storage mode and aggregations
using this wizard, any storage settings you might have previously defined
for the selected partitions are replaced by the storage mode you select on
the next page of the wizard.

3. Change the storage setting if desired, and then click Next.

4. On the Specify Object Counts page of the wizard, click Count. The wizard counts
rows in the fact table and in the partition. You can also enter an Estimated Count or
a Partition Count directly. Estimated Count is the default count for the partition,
but if you type a Partition Count, the number you provide is used instead of Esti-
mated Count. The wizard won’t design aggregations if both counts are zero. Click
Next.

Note There is considerably more to learn about working with counts on
this page of the wizard to design efficient aggregations. This example pro-
duces a reasonable design but perhaps not the most optimal one that
could be created for your data volumes. Refer to the books recommended
at the beginning of this chapter for more complete coverage of this topic.

5. On the Set Aggregation Options page of the wizard, click Performance Gain
Reaches, change the corresponding percentage value if desired, and then click
Start. The wizard reviews all possible aggregations that are expected to produce the
specified performance gain (unless you click Stop). Usually, the default perfor-
mance gain setting of 30% percent is adequate. You can repeat this process with dif-
ferent percentages and test the cube by running queries to gauge the effect of
adding or decreasing aggregations. When the wizard finishes its calculations, the
number of aggregations that have been designed displays at the bottom of the page,
as shown in Figure 22-19 in which the default value of 30 was retained. Click Next.

700 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 22-19 The Set Aggregation Options page of the Aggregation Design Wizard.

6. You can choose to process the partition now, which includes calculating and stor-
ing the aggregations, or you can save the aggregation design if you want to defer
processing to a later time. Click Finish.

Note If you have C# .NET installed in Visual Studio 2005, you can open
the AMOBrowser sample application included by Microsoft. To launch the
samples installer, click Microsoft SQL Server 2005 Samples in the Microsoft
SQL Server 2005/Documentation and Tutorials/Samples program group.
Then, using Visual Studio, open the AMOBrowser.sln in the <drive>:\Pro-
gram Files\Microsoft SQL Server 2005 Samples\AnalysisServices\Program-
mability\AMO\AmoBrowser\CS folder.

Real World Usage-Based Optimization

The Aggregation Design Wizard uses a mathematical algorithm to determine opti-
mal aggregations based on data density, but it’s entirely possible that end users cre-
ate queries that never use the resulting aggregation. Of course, that defeats the
whole purpose of using processing time and disk storage space in the first place.
You want aggregations that help user queries run faster, but there’s no way to know
in advance what those queries might be. Consequently, the Aggregation Design
Wizard is merely an interim step so that you have some aggregations that might
help some queries and, if you’re lucky, most aggregations will help many queries.

Chapter 22 Analysis Services 701
To take aggregation design to the next step, you need to know what kind of queries
are executing. Fortunately, Analysis Services provides two tools to help you improve
aggregations based on actual user activity. First, there is a query log that you must
activate on the server to store information about queries. Second, you use the
Usage-Based Optimization Wizard to analyze the query log and redesign aggrega-
tions accordingly.

To activate the query log, follow these steps:

1. Open SQL Server Management Studio, connect to Analysis Services, right-click
the Analysis Server in the Object Explorer window, and then click Properties.

2. Change the Log \ QueryLog \ CreateQueryLogTable property in the Value
column to True.

3. Type a server name in the Log \ QueryLog \ QueryLogConnectionString
property, specify authentication, and provide a database name. A table will be
added to this database for storing query details when you close the Properties
dialog box. Notice that the Log \ QueryLog \ QueryLogTableName property
defaults to OlapQueryLog. You can change this name if you like.

4. Optionally, you can change Log \ QueryLog \ QueryLogSampling property if
you want a different sampling rate for queries. You probably don’t need to
capture each and every query, but you do want to capture enough to be rep-
resentative of normal user activity.

You should allow sufficient time for data to build up in the query log. Every situa-
tion is different, but a week should be the minimum amount of time that you cap-
ture data for the query log. Usually a month provides a better sampling of queries.
Be sure to deactivate the query log by changing the sampling rate to 0 when you
have finished redesigning aggregations because query sampling just adds unneces-
sary overhead. You can launch the Usage-Based Optimization Wizard in either
Visual Studio or SQL Server Management Studio, just like the Aggregation Design
Wizard. Simply right-click the Partitions folder or a specific partition, and then click
Usage Based Optimization. You’ll first use the Usage Analysis Wizard, which allows
you to select the logged queries to analyze and then launches the Aggregation
Design Wizard. In the Usage Analysis Wizard, you select criteria to filter the queries
for optimization by any or all of the following criteria: Beginning Date, Ending Date,
Users, and Most Frequent Queries. If you change the design of any dimension
object, you should manually clear out the query log and start a new sampling ses-
sion to ensure the optimizations apply only to the most current design.

702 Part V Microsoft SQL Server 2005 Business Intelligence
Processing Data
Recall our earlier discussion of MOLAP, which pointed out that partition data does not
stay synchronized with the relational source data. You must process the partitions man-
ually or on a scheduled basis to refresh the data. Whether this occurs nightly, weekly, or
even less frequently depends on how often the relational source changes and how cur-
rent the information needs to be for users. To manually process an object, just right-click
the object in Visual Studio or SQL Server Management Studio, click Process, and then
choose your processing options. You can also use Integration Services to schedule pro-
cessing of individual database objects, such as dimensions or partitions, as well as entire
databases. As a third alternative, you can generate XMLA scripts that you schedule for
execution using SQL Server Agent. One more approach, which we’ll explain more fully
later in this section, is to use Proactive Caching to process automatically when the rela-
tional data source changes.

Processing Options
Once you have determined when processing should occur, you need to think about what
data will be processed. The easiest approach is to do a full process each time, which
rebuilds the physical structures and reloads all data from the partition’s source table or
source query. If any problems occur during processing, the database is rolled back to its
original state. Performing a full process is a perfectly reasonable approach if you have
small data volumes or if you need to process relatively infrequently.

Another approach particularly well-suited for partitioned cubes is incremental process-
ing. As with full processing, you can use an Integration Services task or scripting to man-
age incremental processing. If your partitions are filtered by time slices, such as by year or
by month, you need only to load data into the most current partition and process that
partition independently. Although you can do a full process of the single partition, you
can optimize processing performance by configuring an incremental process to use a
query that selects records for loading into the partition. Typically, this query returns a rel-
atively small number of records that can be easily appended to existing records in the par-
tition. Aggregations are also updated during processing. The most important thing to
know about incremental processing is that you must be extremely careful not to dupli-
cate data already in the partition.

More Info There are several more processing options available. A good refer-
ence describing these options and the impact of processing on dependent
objects is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsql90/html/sql2k5_asprocarch.asp.

Chapter 22 Analysis Services 703
Proactive Caching
In most organizations, using scheduled processing remains the preferred approach for
most analytical solutions that are strategic in nature and therefore more concerned with
high-quality historical data. As hardware and software improvements enable faster access
to, transformation of, and delivery of information, the demand for real-time analytical
solutions that rely on operational data without first storing information in a data ware-
house is rising. Proactive caching provides an alternative to scheduled processing by “lis-
tening” for changes to the relational source systems and processing the affected object
soon afterwards. As an administrator, you need to decide how Analysis Services is noti-
fied about changed data and how queries are answered while processing is underway.
You can configure proactive caching for individual partitions as well as for dimensions.
To configure Proactive Caching for a partition, follow these steps:

1. Start SQL Server Management Studio and connect to Analysis Services. In Object
Explorer, expand the Cubes folder in any database, and then expand the appropri-
ate Measure Groups and Partitions folders.

2. Right-click a partition, click Properties, and then click Proactive Caching.

3. Move the slider to Automatic MOLAP, and then click Options to view the Storage
Options dialog box, shown in Figure 22-20. If you select either of the other two
MOLAP options, Medium-Latency MOLAP or Low-Latency OLAP, and then click
Options, you see the same dialog box with different selections configured. You can,
of course, override the settings here regardless of which MOLAP option you
selected on the slider.

Proactive Caching must be selected on this page to configure Cache Settings. The
following list outlines the effect of the main settings:

❑ Silence interval The amount of time to wait after updates to the data source
have stopped. Once this period of time has elapsed, processing begins.

❑ Silence override interval The amount of time to wait before processing
starts if updates are still streaming into the relational source. In other words,
if changes to the source are detected and activity is still ongoing after the
period specified by the Silence Override Interval, Analysis Services will take a
snapshot to isolate the records to include in the update process and plunge
forward with processing.

❑ Drop outdated cache The amount of time to wait before blocking access to
the multidimensional store that is now outdated. If processing takes a long
time, you can keep the outdated cache available to respond to user queries

704 Part V Microsoft SQL Server 2005 Business Intelligence
meanwhile. However, at some point, you might want to have the queries
resolved directly from the relational source. Dropping the cache does just
that. Use this option when having fresh data is more important than having
queries that run quickly. Keep this option disabled if you want to continue to
provide the older data from the cache.

❑ Update the cache periodically The amount of time to rebuild the multidi-
mensional store if no changes have been detected in the relational source.
This option is typically used independently of the other options to force a
periodic refresh of data without using other scheduling methods.

4. Click the Notifications tab, shown in Figure 22-21, to change settings as desired.
The notification options define how Analysis Services is notified about data
changes in the relational source. The default value is SQL Server, which applies to
SQL Server 2000 or higher. Any dimension and fact tables used for the current par-
tition are monitored for changes, but you can also specifically identify tables to be
monitored. Alternatively, choose Client Initiated if a client application can send
notification of changes, or choose Scheduled Polling if your relational source is not
a SQL Server database. For more information about polling queries, refer to SQL
Server Books Online.

Figure 22-20 The General tab of the Storage Options dialog box.

Chapter 22 Analysis Services 705
Figure 22-21 The Notifications tab of the Storage Options dialog box.

Note If you use a named query in the data source view, you must explic-
itly specify tracking tables when using SQL Server notification or use Sched-
uled Polling instead.

Security Management
Analysis Services integrates with Windows authentication and then uses a role-based
security model to authorize access to a database and its objects. Security can be applied
at either the macro or micro level, giving you a degree of control over what people can do
or see that should satisfy any security requirement you might have. There are two role
types used by Analysis Services to manage security—a server role and a database role. You
must add Windows users and groups to one or both of these roles before they can access
Analysis Services.

When Analysis Services is installed, all local and domain administrators are enrolled as
members of the server role. They are granted server-wide permissions to perform any
task on that server. The server role is a fixed role that cannot be renamed or deleted. To
manage the server role, connect to Analysis Services in SQL Server Management Studio,
right-click the Analysis Services server, click Properties, and then click Security. Here you

706 Part V Microsoft SQL Server 2005 Business Intelligence
can add or remove Windows users or groups to the server role. Members of this role can
perform the following tasks:

■ Create or delete database objects and set properties for these objects using SQL
Server Management Studio or Visual Studio.

■ Execute programs using AMO to perform administrative tasks.

■ Add, change, or delete database roles.

■ Use SQL Server Profiler to run traces against Analysis Services.

Note You must also be a member of a database role and have process
permissions to run traces for processing events.

As mentioned, a member of the server role creates a database role for users who need
access to objects for processing or users who need to view data. You can even grant a
database role member permissions to manage security for a specific database. Adding a
member to a database role gives that member access only to the server. You must explic-
itly grant permissions to the database cubes and dimensions before the member can
browse data. To create a database role in SQL Server Management Studio, follow these
steps:

1. Start SQL Server Management Studio and connect to Analysis Services. In Object
Explorer, expand the Databases folder, expand the database for which you want to
create a role, right-click the Roles folder, and then selectclick New Role.

2. On the General page of the Create Role dialog box, provide a name for the role and
an optional description. If this role should have some administrative permissions,
you can select one or more of the following database permissions:

❑ Full control (administrator) As the name implies, the role is granted com-
plete access to all objects in the database.

❑ Process database Members of a role limited to this permission can process
the database but can’t view its data using any client application (including
SQL Server Management Studio) unless they belong to another role granting
read access.

❑ Read definition Members of a role limited to this permission can access
metadata but can’t view data.

Note When a user belongs to more than one role with different
permissions, the user is granted all permissions from each role.

Chapter 22 Analysis Services 707
3. Click Membership. On this page, you add or remove Windows users or groups.

4. Click Data Sources. By default, roles are not granted access to the data source since
users query the data in the cube. Notice you can grant Read Definition permissions
here.

5. Click Cubes. A new role has no access to cubes in the database by default. When
you grant cube access to a role, you need to specify whether access is read only or
read/write (for users of writeback applications only). You can also grant permis-
sions for the role to use drillthrough and, optionally, to create a local cube for offline
analysis. The role can also have permissions to process specific cubes, but this
should be limited to a small number of users.

6. Click Dimensions. When you grant a role Read or Read/Write access to a cube,
then you automatically grant Read access to each dimension in the cube. You can
modify permissions here if you need to prevent access to certain dimensions. If you
grant permissions here without granting cube permissions, the role members will
not be able to view data. Click OK to save the role and close the dialog box.

Most security requirements can be satisfied by controlling access to databases, cubes, and
dimensions. To implement security at a more granular level, refer to the topic “Permis-
sions and Access Rights (Analysis Services)” in SQL Server Books Online.

Performance Management
If you’re working with small databases, you’re not likely to experience performance prob-
lems. As noted several times throughout this chapter, Analysis Services is designed to per-
form well. As databases get larger, you use partitioning to compensate for the growing
data volumes, which in effect makes many smaller cubes that should perform well collec-
tively. You may have to fine-tune your partitioning strategy to get the best performance.
To help measure the impact on the server as you work through performance tuning activ-
ities, you can use SQL Server Profiler and the Performance Monitor. In this section, we’ll
explore a few ways you can use these tools to gain a better understanding of what’s hap-
pening “under the covers.”

SQL Server Profiler
You can use SQL Server Profiler to capture Analysis Services events, whether you just
want to monitor activity or you need to troubleshoot performance. Instructions for using
SQL Server Profiler are provided in Chapter 30, “Using Profiler, Management Studio, and
Database Engine Tuning Adviser.” In this section, we’ll explain the types of events you
can monitor with this tool.

708 Part V Microsoft SQL Server 2005 Business Intelligence
Your operating system includes Windows Management Instrumentation (WMI) to raise
events. An event provides information about running processes. SQL Server Profiler can
listen for events and display them for your review. The following list describes the event
categories specific to Analysis Services:

■ Command events Tasks that perform an action on the server, such as deploy-
ment, processing, and other database administrative activities, whether performed
interactively or through scripting

■ Discover events Queries to retrieve metadata, such as a list of attribute members
in a dimension

■ Discover server state events Queries to determine the current state of the
server, such as locks on objects or current sessions

■ Errors and warnings events Information about error conditions, such as severity
level and the application causing the error

■ Notification events Information about tasks performed automatically, such as
detection of changed data for proactive caching

■ Progress reports events Information about the current state of an activity, such
as processing a dimension or building aggregations

■ Queries events MDX queries received by the server, including execution time

■ Security audit events Login and logout information

■ Session events Session start and session end information

A particularly handy tool that you can use with SQL Server Profiler is the Flight Recorder.
The Analysis Services server has a property, Log \ FlightRecord \ Enabled, that is True by
default. When enabled, the Flight Recorder updates a file, FlightRecorderCurrent.trc, in
the <SQL Server installation directory>\MSSQL.2\OLAP\Log folder. You can open this
file in SQL Server Profiler and replay the trace by pressing F5. SQL Server Profiler simu-
lates the state of the server at the time the trace was captured, which can be helpful for
troubleshooting failed queries or processes.

Performance Counters
Another way to monitor activity on the Analysis Services server is to use performance
counters available in the Windows Performance tool. You can use this tool interactively to
select specific performance counters and monitor the current values in a graph, or you
configure the performance tool to update a log with performance counter values over a
period of time. At the time of this writing, Analysis Services performance counters are not
documented in SQL Server Books Online.

Chapter 22 Analysis Services 709
Note A Microsoft TechNet white paper, “Microsoft SQL Server 2000 Analysis
Services Performance Guide,” contains performance counter information and
guidelines that are still applicable to Analysis Services 2005. You can find this
information at http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/
ansvcspg.mspx. All Analysis Services 2005 counters begin with MSAS 2005. You
might have to explore different counter groups to find the Analysis Services 2005
equivalent for an Analysis Services 2000 counter.

To start using the Windows Performance tool, follow these steps:

1. In SQL Server Profiler, click the Performance Monitor button.

Note Alternatively, in Windows 2003, select Administrative Tools from the
Start menu, and then click Performance.

2. Click the New Counter Set button in the toolbar.

3. Right-click anywhere in the graph, and then click Add Counters.

4. Click Use Local Computer Counters, and then, in the Performance Object drop-
down list, select a category, such as MSAS 2005: Connection.

5. In the Select Counters From List, select a counter, such as Current User Sessions,
and then click Add.

Note Click Explain to view a description of the selected counter. You can
leave this message box open while you click on other counters.

6. Click Close to close the Add Counters dialog box. Refer to your operating system’s
help file for more information about using this tool.

Summary
In this chapter, you’ve learned about the key features of Analysis Services and how to
develop a basic database using the Dimension Wizard and the Cube Wizard. You also
learned how to configure server properties, manage large databases through partitioning,
keep databases up-to-date, secure Analysis Services databases, and monitor server perfor-
mance. You should now have a good understanding of how Analysis Services works and
how you might use this SQL Server component to expand the data management capabil-
ities of your organization.

Chapter 23

Reporting Services

What Is Reporting Services? .711

Authoring Reports .716

Managing Reporting Services .739

Summary .756

Information locked away in relational or OLAP databases does little to help people make
decisions. Although many business applications include reports to present data cap-
tured by those applications, these reports have limited value because they don’t integrate
information with other business applications and because they don’t always satisfy the
day-to-day business questions that arise. To address these information requirements,
organizations often have a team of analysts who are trained to query databases and pack-
age the results, whether in a hard-copy report, an Excel spreadsheet, or a professional
polished report.

Microsoft SQL Server 2005 Reporting Services, also known as Reporting Services, makes
these process easier by providing integrated tools for these analysts to share results
across organizations and by enabling non-analysts to develop ad hoc reports. Reporting
Services provides an infrastructure for developing, managing, and sharing reports across
any size enterprise. More than an application, it’s a development platform as well. In this
chapter, we’ll focus on the basics to show you how to create simple reports and manage
the reporting environment.

What Is Reporting Services?
Reporting Services is the SQL Server 2005 component that uses the Microsoft .NET
Framework to support both a Web service and an application programming interface
(API) to provide an end-to-end reporting solution for any environment. By end-to-end
reporting solution, we mean this component fully supports the reporting life cycle, a three-
stage process which begins with report authoring, continues with report management,
711

712 Part V Microsoft SQL Server 2005 Business Intelligence
and concludes with delivery of the report to the user community. Many organizations use
Reporting Services as a set of applications quite satisfactorily without customization or
add-ons. Others use Reporting Services as a development platform to create third-party
commercial applications, integrate in-house applications that require reporting, or
extend the standard features of Reporting Services with additional capabilities to meet
specific requirements of the organization.

Reporting Services 2005 Versus Reporting Services 2000
Compared to other SQL Server 2005 components, Reporting Services has changed the
least because it was added to the SQL Server 2000 platform in 2004. On the surface,
nothing looks much different. The architecture and the functionality remains the same,
but there are several important changes to the product that affect report developers,
Report Server administrators, and the user community. In this section, we’ll look at a few
of the more significant enhancements. You can find more in-depth information in the
SQL Server 2005 Books Online topic, “Reporting Services Enhancements.”

Reporting Services 2005 Enhancements
Let’s start our review of Reporting Services 2005 enhancements with changes that affect
report authoring. Report developers will notice several new data source options. While
Reporting Services 2000 allows you to connect to an Analysis Services 2000 database,
you must use an OLE DB provider and then type the query statement using the Multidi-
mensional Expression (MDX) language. Reporting Services 2005 includes a Microsoft
SQL Server Analysis Services provider, which has a special query builder interface to
eliminate the need to write MDX. Another new data source is an Integration Services
package. Instead of persisting transformed data in a data warehouse, you can leverage the
Integration Services engine to extract and transform data efficiently and on demand only,
and then display the results directly in a report. Also, newly available is the ability to cre-
ate a dynamic connection that uses an expression to generate the connection string at
run-time based on conditions you define in the expression.

During report development, it’s common to enhance data retrieved from source systems
by adding expressions that perform calculations or set properties of items in the report.
The Expression Editor in the Report Designer is much improved, including Intellisense
features that provide context-sensitive information about functions, help complete state-
ments, and validate syntax directly within the editor. Report developers also commonly
add flexibility to reports by using parameters. Reporting Services 2005 now supports
multivalue parameters, enabling users to select one or more values for a single parameter,
and adds a calendar control for parameters with a DateTime data type.

Report developers can also choose to add new interactive features to a report. For a report
that requires scrolling to view all data on a page, a report developer can lock column or

Chapter 23 Reporting Services 713
row headers in place to enhance the report’s readability. Another useful feature is inter-
active sorting, which allows the user to easily change sort direction of data in the entire
report or within a specific data structure while viewing a report.

A significant new feature in Reporting Services 2005 is the ad hoc report authoring tool
named Report Builder. This tool is intended for use by users who don’t know how to
develop queries for relational or OLAP data but do know what information they need to
answer a question. Often, information technology staff can’t keep up with the requests
for more reports, so Report Builder is intended to alleviate the resulting bottleneck and
empower users to get quick answers on their own. To support this capability, you must
first build a report model that packages the data structures and table relationships in a
user-friendly way. Users can then drag and drop items from the report model into a sim-
ple report design layout and then run the report to execute the resulting query and view
the data.

Looking at the management features of Reporting Services 2005, we find additional tools
to simplify administrative tasks. In Reporting Services 2000, you use the Report Manager
Web application, command-line utilities, and configuration files to manage server
resources and performance. Those tools still exist in Reporting Services 2005, but you
can choose to perform many of the same functions with a different tool. First, there is the
Reporting Services Configuration tool you can use to configure a local or remote Report
Server. In addition, you can use SQL Server Management Studio to access one or more
Report Servers within a single interface and perform any of the administrative functions
available to you in Report Manager. Next, the SQL Server Surface Area Configuration tool
allows you to change the current status of the Report Server Window service, disable
scheduling and delivery of reports, disable the Report Server Web service, or disable Win-
dows integrated security for external data sources. Lastly, the SQL Server Configuration
Manager provides access to the Windows service properties. You’ll find some functional-
ity overlaps between tools, but you benefit by having access to management tools in the
environment in which you most frequently work.

Migration from Reporting Services 2000
Migrating from Reporting Services 2000 is quite simple, and much of the work is done
automatically if you upgrade an existing instance. The upgrade procedure changes the
definitions of reports on the server, both published reports and report snapshots, to con-
form to the latest version of Microsoft’s Report Definition Language (RDL) schema. If you
have report definitions stored elsewhere, such as in a source control system, you can
open them in Report Designer, where you are prompted whether to upgrade. Alterna-
tively, if you publish or upload a Reporting Services 2000 report definition directly to a
Reporting Services 2005 server, the report definition is automatically upgraded. Once
upgraded, the report definition file can no longer be used with Reporting Services 2000.

714 Part V Microsoft SQL Server 2005 Business Intelligence
Important If your Reporting Services 2000 implementation uses written cus-
tom scripts or applications, you need to test them again to confirm they still work
in Reporting Services 2005. Enhancements to the Report Definition Language
have also led to changes in the APIs used for scripting or custom development
that may require you to rewrite existing applications. For example, the implemen-
tation of multivalue parameters has resulted in new methods and properties and
rendered others obsolete.

Reporting Services Fundamentals
As mentioned, Reporting Services provides a platform to fully support authoring, man-
aging, and delivering reports. In this section, we’ll introduce important Reporting Ser-
vices concepts to help you understand how the subcomponents of Reporting Services fit
together to provide an end-to-end reporting solution.

Reporting Services supports two types of report authoring—enterprise reporting and ad
hoc reporting. Regardless of type, the output of an authoring session is a report defini-
tion file, with fie extension .rdl, which describes the data, layout, and properties of a
report using RDL. RDL is an open schema developed by Microsoft to support the
exchange of report definitions between applications creating reports and applications
displaying reports. You could manually or programmatically produce the RDL, but the
Report Designer is a much easier way.

With enterprise reporting, you can access data from a wide variety of sources, from rela-
tional online transactional processing (OLTP) systems and data warehouses to online
analytical processing (OLAP) systems like Analysis Services. Enterprise reporting often
requires precise layout, use of standard formatting, and insertion of images. While a
report could be limited to a single data structure such as a table, an enterprise report
quite often combines a table or matrix with a chart. If a report will be distributed pri-
marily in print, page layout and pagination are critical features supported by Reporting
Services. If, on the other hand, a report will typically be accessed online, the ability to
add interactive features is important. To name just a few interactive features: Reporting
Services supports navigation within a report and between reports, parameter selection
to filter report contents or change report behavior, and dynamic visibility to switch
between a hidden and visible state of selected report items.

Reporting Services supports management activities by providing tools for publishing
content to a Report Server and for performing other administrative tasks. Such tasks
include setting report properties, managing report execution, and applying security. You
can change data content of a report by changing its properties, such as the data source to
which it connects or the value of parameters used to filter content. To effectively manage

Chapter 23 Reporting Services 715
server and network resources, you can control when and how reports execute—on
demand or on a scheduled basis—and whether users access the reports directly or from
a cache. Security management includes controlling not only what people can see when
viewing the catalog of available reports, but also what tasks they can perform, such as
adding or deleting reports, changing report properties, or using subscriptions.

Finally, Reporting Services supports all activities related to distributing reports from a
central location to the user community. Some users might access reports directly online,
others might receive reports as e-mail attachments on a scheduled basis as a subscription,
and yet another group might retrieve a collection of reports saved to a network file share.
These reports can be selectively rendered in many formats, such as HTML, Microsoft
Excel, and Adobe Portable Document Format (PDF), among others. Users can also main-
tain a private folder called My Reports to organize specific reports of interest for easier
access.

Although most users will likely access enterprise reports, power users will make frequent
use of the ad hoc reporting capabilities to quickly obtain information not available in
enterprise reports. Report Builder is a significantly simpler development environment
than Report Designer. In Report Builder, the user works with only one data source, either
a SQL Server database or an Analysis Services database, and can use only one data struc-
ture: a table, a matrix, or a chart. Rather than construct a SQL or MDX query to retrieve
data from the source database, the ad hoc report author selects items from a report
model, which is prepared in advance by someone with a strong technical understanding
of the source data. Even within this limited environment, the ad hoc report author can
add expressions, apply formatting, and insert filter or sorts to produce useful reports
which can even be saved to the Report Server for distribution to others.

Reporting Services Components Overview
Review the following list of Reporting Services components to get a general idea of each
component’s purpose:

■ Report Server Receives and responds to client requests and activates applicable
subcomponents to handle data processing, report rendering, security management,
scheduling, and report delivery

■ Report Manager Provides a Web-based user interface for the user community to
access and interact with reports online and for administrators to manage content
and configure report execution and subscription options

■ HTML Viewer Adds interactive capabilities through a Report Manager toolbar for
navigating between pages of a report, searching a report for a text string, refreshing

716 Part V Microsoft SQL Server 2005 Business Intelligence
a report, exporting the report to a different format, and adjusting magnification,
among other capabilities

■ Report Builder Supports ad hoc report development based on a predefined
report model

■ Business Intelligence Development Studio Includes the Report Server Project
Wizard to accelerate the report development process, a report designer for develop-
ing, testing, and deploying enterprise reports, and a model designer to develop,
tune, and deploy report models used for ad hoc reporting

■ SQL Server Management Studio Provides administrative support for Report
Servers and SQL Server databases used as a common repository for Reporting
Services

■ Reporting Services Configuration Tool Provides a user interface for configur-
ing local or remote Reporting Services instances

■ Command-line utilities (Rsconfig, Rskeymgmt, and Rs) Support routine adm-
inistrative tasks on local or remote Report Servers

■ ReportServer and ReportServerTempDB databases Provide centralized storage
for reports, cached reports, and report-related information, such as security, data
sources, parameter values, and schedules

■ Reporting Services programmability Includes several application program-
ming interfaces (APIs) for building custom reporting or report management appli-
cations, or for extending the capabilities of the Reporting Services platform

Authoring Reports
Enterprise reports are developed using SQL Server Business Intelligence Development
Studio, introduced in Chapter 21, “Integration Services.” This integrated development
environment is simply Visual Studio with business intelligence templates. The Report
Server Project template provides many tools you can use to build feature-rich reports, but
we can provide only a brief introduction of the possibilities in this chapter.

More Info For more hands-on tutorials covering the complete enterprise
reporting life cycle, refer to Microsoft SQL Server 2005 Reporting Services Step by
Step by Stacia Misner and Hitachi Consulting, Microsoft Press, 2006. Professional
SQL Server 2005 Reporting Services by Paul Turley, Todd Bryan, James Counihan,
George McKee, and Dave DuVarney, Wrox Press, 2006, explains Reporting Ser-
vices from a developer’s perspective and provides a variety of examples of stan-
dard and customized solutions. You can learn how Reporting Services fits into a

Chapter 23 Reporting Services 717
data warehousing architecture by reading The Microsoft Data Warehouse Toolkit:
With SQL Server 2005 and the Microsoft Business Intelligence Toolset by Joy Mundy,
Warren Thornthwaite, and Ralph Kimball, Wiley, 2006.

Enterprise Reports
An enterprise report is formatted information that is formally distributed within a work-
group, to all employees in an organization, or even to external recipients such as custom-
ers or shareholders. This type of report is typically accessible from a central location with
security applied, but it may also be distributed on a regular schedule via e-mail or added
as a link to a corporate portal. The key tasks related to authoring an enterprise report
include defining the queries used to retrieve data for the report, organizing the data into
a specific layout, and formatting the report to enhance its appearance.

Starting a Reporting Services Project
When you start a new project in Visual Studio, you select the Report Server Project tem-
plate in the Business Intelligence Projects folder and provide a name and location for
your project. A Report Server Project provides several windows for report develop-
ment, as shown in Figure 23-1, which illustrates a report you develop using examples
in this section. The windows you use while building this report are described in the fol-
lowing list:

■ Solution Explorer By default, this window displays in the upper right corner of
your screen. As you add data sources and reports to your project, a corresponding
file is added to the applicable folder in this window. You can rename this file, but be
sure to keep the assigned file extension (such as .rds or .rdl), or they won’t work.

■ Properties This window displays in the bottom right corner of your screen by
default. If you select an object added to your report, you can view and modify its
properties in this window.

■ Toolbox This window contains all of the items that you can add to a report, such
as a table, an image, or a freestanding textbox, for example.

■ Datasets This window displays a tree view of all data fields that you can add to
your report as placeholders for actual data during report development.

■ Report Designer This window is the main workspace in which you will work to
develop a report. The report designer separates your work activities into the follow-
ing three tabs.

❑ Data On this tab, you define which data will be included in the report,
including its current location.

718 Part V Microsoft SQL Server 2005 Business Intelligence
❑ Layout Here you organize the report data into structures, such as tables or
charts, and add enhancements to control appearance and behavior by chang-
ing report item properties.

❑ Preview You use this tab to test the report before deploying it to the Report
Server.

Figure 23-1 A Report Server project in Visual Studio.

Note There are two other project templates applicable to Report-
ing Services: Report Server Project Wizard and Report Model Project.
If you choose Report Server Project Wizard, you step through a wiz-
ard to build a basic table or matrix report using a single data source.
This wizard is useful for jumpstarting report development. Using the
Report Model Project template is explained later in this chapter.

Defining Queries
To define a query for a report, you create a data source and a dataset to identify the loca-
tion of the data and to specify which data to retrieve from the source.

Creating a Data Source
A data source can be embedded into a report or can be defined as a separate project item
for sharing among many reports. In either case, it includes the connection string and

Solution Explorer

Properties

Toolbox

Data sets

Report Design

Data

Layout

Preview

Chapter 23 Reporting Services 719
credentials used by Reporting Services to connect to a data store. It may be tempting to
reuse a data source created for Integration Services or Analysis Services, but at the time
of this writing you must create and use data sources specifically for Reporting Services.
To create a new shared data source, follow these steps:

1. Start SQL Server Business Intelligence Development Studio. On the File menu,
point to New, and then click Project.

2. Ensure that the Project Type is set to Business Intelligence Projects, and then click
the Report Server Project template. Type a name for the project, such as Adventure
Works Reports in this example, change the location for the project to a folder of
your choice, and confirm that the Create Directory For Solution check box is
selected. Click OK to create the project in Visual Studio.

3. Right-click the Shared Data Sources folder in the Solution Explorer window, and
then click Add New Data Source.

4. Type a new name for the data source if desired, select a data source type, and then
type a connection string such as the following, which connects to the Adventure
Works DW database on a local server:

Data Source=(local);Initial Catalog=AdventureWorksDW

The specific connection string you use depends on the data source types you
choose. Supported data source types include the following:

❑ Microsoft SQL Server Connects to SQL Server 7.0 or later

❑ OLE DB Connects to SQL Server 6.5 or earlier, SQL Server 2000 Analysis
Services, or any data source supporting an OLE DB provider

❑ Microsoft SQL Server Analysis Services Connects to SQL Server 2005
Analysis Services

❑ Oracle Connects to Oracle only if Oracle client tools are installed on the
report author’s workstation and the report server

❑ ODBC Connects to data sources using native ODBC drivers

❑ XML Connects to XML documents, Web services, or applications accessed
with a URL using a syntax applicable to the data source

❑ Report Server Model Connects to a report server to which as report model
has been published and uses the syntax:

server=http://<machinename>/reportserver;
datasource=/<folderpath>

720 Part V Microsoft SQL Server 2005 Business Intelligence
where <machinename> is the server hosting Reporting Services and <folderpath> is
the path to the report model from the Home folder and the model name, such as /
Models/Adventure Works Model.

On the General tab of the Shared Data Source dialog box, you can click the Edit but-
ton to access the Connection Properties dialog box for all data source types except
XML or Report Server Model. Using this interface, you can make selections to build
a connection string automatically. If you plan to use Windows or SQL Server
authentication, you don’t need to change settings on the Credentials tab of the
Shared Data Source dialog box.

5. Click the Credentials tab to specify an authentication method, and then click OK to
close the Shared Data Source dialog box. As shown in Figure 23-2, the following
four types of credentials are available:

❑ Use Windows Authentication (Integrated Security) Recommended for
data sources that use Windows authentication when Kerberos is enabled or
the database server is in the same domain as the report server

❑ Use A Specific Name And Password Used for data sources that depend
on database security to authenticate users

❑ Prompt For Credentials Used only for reports that run on demand and
require access to confidential data; Reporting Services prompts the user to
supply credentials before the report executes

❑ No Credentials Not generally recommended, but available for databases
for which there are no security requirements

Figure 23-2 The Credentials tab of the Shared Data Source dialog box.

Chapter 23 Reporting Services 721
Best Practices It’s a best practice to use a shared data source because you
can make changes, such as using a different server or different authentication
method, in one place rather than open each report individually to adjust report-
specific data sources.

Creating a Dataset
A dataset is a collection of several items—a pointer to a data source, a query that defines
how to retrieve data for the report, and a set of fields created to describe each column
returned by the query. When you create a new dataset, you select an existing shared data
source or create a new report-specific data source, and then provide a query. Whereas a
shared data source is created outside the context of a specific report, a dataset is always
associated with a specific report and cannot be shared by many reports. To create a new
report and add a dataset, follow these steps:

1. In Visual Studio, start a new Report Server Project and add a data source as
described in the previous example.

2. Right-click the Reports folder in the Solution Explorer window, point to Add, and
then click New Item.

Note When you right-click the Reports folder, you have the option to
click Add New Report, which starts the same wizard launched when you
select the Report Server Project Wizard template for a new project.

3. In the Add New Item dialog box, click the Report template. Replace the default
report name, Report.rdl, with a more suitable name, such as Reseller Sales.rdl in
this example, and then click Add.

Note The name of the report you provide here will be the report name
the user sees when navigating through the list of available reports. Report
names should be user-friendly and should provide information about the
contents of the report. You can use spaces to separate words in the report
name. Be sure to keep the file extension!

4. On the Dataset toolbar located on the Data tab of the Report Designer, select New
Dataset in the drop-down list. In the Dataset dialog box, replace the default name of
the dataset, DataSet1, with a more meaningful name if desired. You can create a
report-specific data source for the report by selecting New Data Source in the Data
Source drop-down list. For this example, select the shared data source created in
the previous example.

722 Part V Microsoft SQL Server 2005 Business Intelligence
Note The dataset name cannot include a space. If your report will use
only one dataset, the name isn’t important, but when you have many
datasets in the same report, it’s helpful to choose a name that distinguishes
the current dataset from others.

5. You can type directly in the Query String box of the Dataset dialog box, or you can
click OK to type a query string on the Data tab of the Report Designer. For simple
reports, you do not need to access the other tabs in this dialog box. For more infor-
mation about using this dialog box, refer to the related SQL Server Books Online
topic, such as “Dataset (Fields Tab, Report Designer),” or the books recommended
at the beginning of this chapter. To continue this example, click OK without pro-
viding a query string here.

6. Click Generic Query Designer, the fourth button on the Dataset toolbar, to toggle
from the Generic Query Designer to the Query Builder. When the Query Builder is
available, the Data tab contains the following four panes:

❑ Diagram pane In this pane, you can add or remove tables, select columns
from tables, or create joins between tables, among other tasks, by using a
graphical interface.

❑ Grid pane Use this pane to modify columns, such as adding an alias, spec-
ifying a sort order, or applying a filter.

❑ SQL pane You use this pane to view the SQL statement created from the
selections made in the Diagram or Grid panes or to modify the statement
directly.

❑ Results pane This pane shows you the query results if you click the Run
button in the Dataset toolbar to execute the query.

7. Modify the statement in the SQL pane to produce a statement like the following:

SELECT

DimTime.CalendarYear, DimReseller.BusinessType, DimReseller.ResellerName,
SUM(FactResellerSales.SalesAmount) AS TotalSales

FROM

FactResellerSales

INNER JOIN

DimReseller ON FactResellerSales.ResellerKey = DimReseller.ResellerKey
INNER JOIN

DimTime ON FactResellerSales.OrderDateKey = DimTime.TimeKey

Chapter 23 Reporting Services 723
GROUP BY DimTime.CalendarYear, DimReseller.BusinessType,
DimReseller.ResellerName

Note Use a view or a stored procedure for easier maintenance of the
business logic producing the report data. To use a stored procedure, you
need to switch to the Generic Query Designer, select StoredProcedure in
the Command Type drop-down list, and then type the name of the stored
procedure in the Query pane.

8. Click Run, the button represented as an exclamation point on the Dataset toolbar,
to validate the query syntax and view the result set, as shown in Figure 23-3. The
result set is not stored with the report definition but is available here simply to con-
firm you get the data you expect. Each column in the Result pane is added to the
Fields collection for the dataset. The data type of each column is also included in
this collection.

Figure 23-3 The Data tab of the Report Designer.

Note Because the data type of each column is also included in the
dataset’s Fields collection, you need to take extra steps to update the
report definition if the data type of any column changes later. The easiest

724 Part V Microsoft SQL Server 2005 Business Intelligence
way to update data types is to open the dataset on the Data tab of the
Report Designer, and then click the Refresh button on the Dataset toolbar.

Organizing Data
After using the Data tab of the Report Designer to define the data fields and data types of
each query’s result set, you use the Layout tab to organize the fields into structures called
data regions, such as a table, matrix, list, or chart. A field can also be used in a report item
such as free-standing textboxes. A report item is anything that can be added to a report,
which can be a data region or a textbox as mentioned, a graphical element such as an
image or a line, or a container such as a rectangle or subreport. In this section, we’ll focus
only on adding a table to a report because it’s the most common data region type and
because the same basic steps apply to each data region. To add a table to the report lay-
out, follow these steps:

1. In Visual Studio, open the Adventure Works Reports Report Server Project created
and updated in the previous two examples. In Solution Explorer, double-click the
Reseller Sales.rdl to open the Report Designer.

2. In the Report Designer, click the Layout tab. The design grid of the report’s body is
visible in the window. There are horizontal and vertical rulers to help you position
report items as you add them to the report body.

Note The size of the report body defaults to 6.5 inches wide and 2
inches high, but you can adjust the default size. One way to reset the size
is to select Body in the drop-down list at the top of the Properties window,
expand the Size category, and then type new values for the Width and
Height properties. Alternatively, you can drag the bottom or right edges of
the body to a different size. If you add a report item requiring more space
than is currently available, the height and width will increase to accommo-
date the new item.

3. Double-click Table in the Toolbox window to add it to the report body. You can also
drag the item from the window onto the report body for greater control over its
position.

Note By default, the Toolbox window displays on the left side of your
screen. If the Autohide feature for this window has been enabled, then you
will see a Hammer and Wrench icon over which you can hover the cursor
pointer to open the window. Otherwise, you can click Toolbox on the View
menu to display the Toolbox window.

Chapter 23 Reporting Services 725
A table is a collection of textboxes organized into a structure with a fixed number
of columns and a variable number of rows based on the query result set. Each
textbox can contain either static text or an expression that refers either to a field
from a dataset or a more complex calculation. When you add a table to the report
layout, it contains three columns and three rows. The first and last rows are the
table header and table footer respectively, which appear only once in the table,
and the middle row is a detail row which repeats for each row in the dataset’s
result set.

4. In the Datasets window, which by default displays on the left side of your screen,
expand the dataset you created, and then drag a field into a textbox in the table.
To continue the previous example, drag ResellerName to the first cell of the detail
row. When you add a field to the table, its name is also automatically placed in the
table header textbox of the same column. Notice the expression added to the
detail row looks like this: =Fields!ResellerName.Value. This expression refers
to the Fields collection that belongs to the dataset from which you selected the
field. When the report is processed, the expression is evaluated for each row pro-
duced by the dataset query and is replaced with the value in the ResellerName
column.

Note If you don’t see the Datasets window, click Datasets on the View
menu.

5. In the Datasets window, drag TotalSales to the second cell of the detail row.

6. Now drag TotalSales to the textbox in the second column of the table footer, as
shown in Figure 23-4. The Report Designer automatically adds a Sum function to
the field expression when you drag a field to a table header or table footer. These
rows should contain only aggregated numeric values. If you don’t use an aggregate
function with the field expression, the value from the first row in the result set is
used to evaluate the expression.

7. Click the first textbox of the table footer, and then type Grand Total. In addition
to using expressions in a textbox, you can use a constant value such as a text
string.

8. Click the Preview tab to view your report, as shown in Figure 23-5. You can see one
row for the table header and one detail row for each row in the query’s result set.
Click the Next Page button in the Preview toolbar to continue to the next page,
where you can see additional table rows, or click the Last Page button to view the
table footer containing the Grand Total at the bottom of the page.

726 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 23-4 A table on the Layout tab of the Report Designer.

Figure 23-5 A report on the Preview tab of the Report Designer.

Chapter 23 Reporting Services 727
When a report has many detail rows, it is often useful to organize the detail rows into
groups. A group is a set of detail rows that are related to a common value, which can be a
field or an expression. To add two groups to the table created in the previous example,
follow these steps:

1. Click the Layout tab, click the table if necessary to display the row and column han-
dles. The row and column handles are the gray borders added to the left and top
edges of a table. Right-click the row handle at the left edge of the detail row (con-
taining the icon with three horizontal bars), click Insert Group to display the
Grouping And Sorting Properties dialog box, click the first Expression drop-down
list to view available values, and then select =Fields!CalendarYear.Value, as shown
in Figure 23-6. Each item in the list is an expression formed from each field in the
dataset. Notice the default selection of the group header and group footer, which
you can clear if desired. There are also several tabs available in this dialog box to
manage properties, such as filters and sorts, for the group.

Figure 23-6 The Grouping and Sorting Properties dialog box.

2. Click OK, right-click the row handle at the left edge of the detail row, click Insert
Group, select =Fields!BusinessType.Value in the first Expression drop-down list,
and then click OK.

Note The position of a new group depends on which row you right-click
in the table. When you right-click a detail row to insert a new group, the
group is added between any existing groups and the detail row. When you

728 Part V Microsoft SQL Server 2005 Business Intelligence
select an existing group, the new group is placed between the selected
group and other existing groups or between the selected group and the
detail row if no other groups exist.

3. Drag CalendarYear from the Datasets window to the first textbox in the first group
header row, which is the row just below the table header row. Drag BusinessType to
the first textbox in the second group header row, which is the row just above the
detail row. By adding fields to the group header rows, you provide context to the set
of detail rows within each group. Instead of using a field expression in the group
header, you can use static text or an expression that includes a reference to a field.
Usually, group headers include the same expression used to define the group, but
you might use an expression to concatenate a field value with static text.

4. Type Year Total in the first textbox of the group footer row corresponding to the first
group, which is the row just above the table footer. Drag TotalSales from the Datasets
window to the second textbox in the same row. As with the table footer row, you use
aggregate functions in the group header or footer row to create subtotals. Although
Sum is the default aggregate function, you can use other familiar functions, such as
Avg, Min, Max, or Count. Complete the table so that it looks like the one shown in
Figure 23-7 by adding text for Business Type Total and adding an expression to sum
TotalSales to the appropriate textboxes on the applicable group footer row.

Figure 23-7 A table with two groups and one detail row in the report layout.

Chapter 23 Reporting Services 729
5. To resize a column, position the cursor pointer on the column handles (the gray
area above the table’s textboxes) at the right edge of the column and drag to widen
or narrow the column. For this example, widen the first column to 2 inches.

6. Click the Preview tab to see how the table will appear when deployed to the
Report Server. The report is rendered as HTML by default, as shown in Figure
23-8, but you can export to other formats for testing. Designing a report for
online viewing doesn’t always produce a report that renders nicely in another
format, so be sure to test the formats users are likely to select for rendering. You
can also click the Print Layout button on the Preview toolbar to test the printed
version of the report.

Figure 23-8 Preview of a report with table grouping.

Your report is now complete, but you can continue to refine it by adding other data
regions, images, or freestanding textboxes. For example, you can drag the table to a lower
position in the report body and then add a textbox into which you could type a static title
or create an expression for a title that changes according to current report conditions. You
can also add a subreport to embed an existing report into the current report to employ a
“build once, reuse many times” strategy. Even though the number of report items you can
use in a report is relatively small, they can be combined and nested in very creative ways
to produce an amazing variety of report styles.

730 Part V Microsoft SQL Server 2005 Business Intelligence
Adding Report Enhancements
After creating a data set and organizing data in the report, you might enhance the report
by setting properties to control behavior and appearance. At minimum, you’ll use prop-
erties to apply formatting. You can select one textbox individually or select multiple text-
boxes to apply the same property settings to the selected textboxes (although not all
properties support this technique). However, there are several properties available to
control behavior as well, such as visibility, interactive sorting, and actions for navigation.
For a complete review of your options, refer to the topics “Designing the Report Layout”
and “Adding Interactive Features” in SQL Server Books Online. When you have finished
authoring a report, you publish the report definition to the report server, as described
later in this chapter.

Ad Hoc Reports
An ad hoc report is simpler than an enterprise report because the emphasis is on answering
a specific question rather than on rich data content and presentation. Many ad hoc reports
might be created, but only a few are saved for sharing with others. In Reporting Services, a
report model must be created before a user can develop an ad hoc report. Once the report
model is available on a report server, the user can then organize items from the model into
a table, matrix, or chart, and add formatting or basic interactive features as needed.

Report Model Projects
A report model insulates users from the technical details about the tables and columns
found in a data source. Whereas a report definition is stored as an RDL file, a report
model is stored as an SMDL (Semantic Model Definition Language) file. Like RDL, SMDL
is an open XML schema that can be used by another application to eventually produce a
report. When the user of such a client application selects items from the report model to
build a report, the client application constructs a query based on the placement of these
objects in a report layout designer. To create a new model based on a SQL Server data
source, follow these steps:

1. Start SQL Server Business Intelligence Development Studio. On the File menu,
point to New, and then click Project.

2. Ensure that the Project Type is set to Business Intelligence Projects, and then click
the Report Model Project template. Type a name for the project, such as Adventure
Works Model in this example, change the location for the project to a folder of your
choice, and confirm that the Create Directory For Solution check box is selected.
Click OK to create the project in Visual Studio.

3. Right-click the Data Sources folder in Solution Explorer, click Add New Data
Source to open the Data Source Wizard, click Next to go past the Welcome page,
and then click New.

Chapter 23 Reporting Services 731
4. In the Connection Manager dialog box, type the server name or select the server in
the Server Name drop-down list, select a source database (AdventureWorksDW in
this example) in the Select Or Enter A Database Name drop-down list, and then
click OK. To finish the wizard, click Next and then click Finish.

A data source for a report model project is similar to a data source for a report
project because it defines the connection and authentication information required
to retrieve data from the source, but a data source created for a report project can’t
be added to a report model project. Furthermore, a data source for a report model
project can use the SQL Server provider only at the time of this writing.

5. Right-click the Data Source Views folder in Solution Explorer, and then click Add
New Data Source View to open the Data Source View Wizard. Click Next to bypass
the Welcome page, click Adventure Works DW in the Relational Data Sources list if
it isn’t already selected, and then click Next.

6. Move the following tables from the Available Objects list to the Included Objects
list: DimGeography, DimReseller, DimTime, and FactResellerSales. Click Next, and
then click Finish to close the wizard.

7. Double-click Adventure Works DW.dsv in Solution Explorer to open the data
source view. Notice that the existing foreign key relationships defined in the rela-
tional database are indicated by connecting related tables in the data source view,
as shown in Figure 23-9. The data source view also includes a key icon to identify
the primary key in each table.

Figure 23-9 A report model’s data source view.

732 Part V Microsoft SQL Server 2005 Business Intelligence
8. Right-click the Report Models folder in Solution Explorer, and then click Add New
Report Model. Click Next on the Welcome page of the wizard, click Adventure
Works DW.dsv on the Select Data Source Views page if it is not already selected,
and then click Next.

9. Keep the default selections on the Select Report Model Generation Rules page, and
then click Next. Since you just created a data source view, the statistics in that file
are current. Click Next to continue the wizard.

Note You can learn more about the purpose of each rule at
http://msdn2.microsoft.com/en-us/library/ms183622.aspx.

10. Name the model Adventure Works Reseller Sales, click Run to generate the report
model, and then click Finish when the button is enabled. If a message box displays
to indicate the file has been modified outside the source editor, click Yes. The
report model is now ready to deploy to the Report Server, but usually the report
model requires some adjustments to maximize its usefulness to ad hoc reporting
community.

Note You can also generate models using SQL Server Management
Studio or Report Manager. In fact, the only way to generate a report
model from an Analysis Services cube is to use one of these management
tools after you have added an Analysis Services data source to the report
server. For details about adding a data source, refer to the SQL Server
Books Online topics, “How to: Create, Delete, or Modify a Shared Data
Source (Report Manager)” and “Connecting to a Data Source.” In SQL
Server Management Studio, connect to Reporting Services, right-click an
existing data source, and then click Generate Model. In Report Manager,
open a shared data source, and then click Generate Model. The report
model is automatically deployed to the report server after it is generated.
To edit a report model based on a SQL Server database, you can down-
load it from the report server and use the report model designer to make
any desired changes. However, you can’t edit a report model based on an
Analysis Services cube.

The report model designer, as shown in Figure 23-10, has two views: Tree View and
Detail View. The Tree View on the left side of the designer contains a list of entities.
One entity is created for each table in the data source view. To the right of the Tree
View, the Detail View displays the objects associated with the entity currently
selected in the Tree View, which in this example is Fact Reseller Sale.

Chapter 23 Reporting Services 733
Figure 23-10 A report model in the Report Model Designer.

Each entity contains a collection of attributes corresponding to the collection of col-
umns in the related table as well as special attributes not found in the data source
view, such as expressions or aggregations. For each numeric attribute in the model,
the Report Model Wizard creates Total, Avg, Min, and Max numeric aggregations. In
addition, year, quarter, month, and day variations, as well as a first and last aggre-
gation, are created for date attributes. These additional attributes add flexibility to
the report model and reduce the amount of work required to produce the desired
results in a report. A symbol in front of each attribute indicates its data type, as
described in the following list:

■ a a string data type

■ # decimal, float, or integer data types

■ Calendar icon date time data type

■ Check box icon Boolean data type

An entity might also contain a role to define a relationship between entities. A role
indicated by a multilayer icon defines a one-to-many relationship between the two
tables. When two tables have a one-to-one relationship, a single-layer icon is used
for the role.

734 Part V Microsoft SQL Server 2005 Business Intelligence
11. To publish a report model to a local report server, use Visual Studio’s Deploy com-
mand, located on the Build menu, or right-click the report model project in Solu-
tion Explorer and click Deploy. If the report server is not local, before you deploy,
right-click the project in Solution Explorer, click Properties, and change the
TargetServerURL to http://<servername>/ReportServer.

A report model that you create from the management tools, either Report Manager or
SQL Server Management Studio, is automatically deployed after it’s generated. Once a
report model has been deployed, you’ll need to apply security to restrict access to the
report model to authorized users. Reporting Services security is explained later in this
chapter.

A report model is rarely ready to be used immediately after it’s created. The following list
describes tasks you might perform before deploying a report model which makes it avail-
able to users:

■ Rename entities, attributes, and roles Change the name of the object either by
changing its (Name) property value in the Properties window or by renaming it
directly in the designer.

■ Adjust the DefaultAggregateAttribute property for a numeric attribute This
property determines which aggregate a Report Builder user will see first when
browsing the attributes associated with a specific entity.

■ Modify object properties to change default behavior, such as formatting and
sorting For example, you can update the Format property of numeric attributes
using the same Visual Basic .NET formatting strings you use in the Report Designer.

More Info For more information, refer to the topic “Attribute Object (Model
Designer)” in SQL Server Books Online.

■ Rearrange objects to make it easier for users to find and use the report model
objects You can rearrange and reorganize objects using one of the following
methods:

❑ Create folders to group similar objects together Right-click an item, such
as an entity or even the Model object, in the Tree View, point to New, and then
click Folder. After creating a folder, you can then drag items from any Detail
View to the new folder.

❑ Create a perspective to focus the model on commonly used entities and
attributes Right-click Model in the Tree View, point to New, and then click
Perspective. In the Edit Perspective dialog box, you can clear entities, roles, and
attributes to exclude from the perspective.

Chapter 23 Reporting Services 735
❑ Change the sequence of objects by placing frequently used objects at the
top of a list Right-click an item in the Detail View for any entity and then click
Move Up or click Move Down to reposition the item.

❑ Delete any unwanted objects Right-click an object in Tree View or Detail
View, and then click Delete.

❑ Add expressions Right-click an entity in Tree View, point to New, and then
click Expression. In the Define Formula dialog box, you double-click fields,
operators, and functions to create an expression that performs logical oper-
ations, manipulates strings or dates, converts data types, or aggregates
numerical data.

Note If new columns are added to a table in the underlying data source, you
can update the report model by manually adding source fields that correspond to
these new columns or by regenerating the report model. However, any objects
you deleted previously are added to the report model again if you regenerate the
report model.

Report Builder
Once a report model has been deployed to a report server, then users can build ad hoc
reports using Report Builder. This ClickOnce application can be accessed directly
from Report Manager or from a URL (http://<servername>/reportserver/reportbuilder/
reportbuilder.application or http://<servername>/reportserver/reportbuilder/reportbuilder-
localintranet.application depending on the trust level under which Report Builder runs).
If you are working on a local machine, you can use localhost instead of a specific server
name in the URL. Report Builder allows you to navigate through the report model by
selecting an entity to review its attributes, which you can add to the report layout, or by
selecting a role to view attributes for a related entity. To use Report Builder with the report
model created and deployed in the previous example, follow these steps:

1. In Internet Explorer, open Report Manager at http://localhost/Reports (or specify a
server name if you are working with a Reporting Services instance that is not
located on your computer), click Report Builder on the Report Manager toolbar,
and then click Run if the Application Run – Security Warning dialog box displays.
This dialog box appears only the first time the Report Builder application is
launched on a client workstation.

2. In the Source of Data list in the right-hand pane, select a model, such as the Adven-
ture Works Model created in the previous example. If a perspective exists, you can
expand the parent report model and then select the perspective. On this screen,

736 Part V Microsoft SQL Server 2005 Business Intelligence
you also select the report layout, which by default is a table, but you can instead
choose to create a matrix or a chart. When you click OK to continue, you have
access to three panes in the Report Builder window, as shown in Figure 23-11.

Figure 23-11 A new report in Report Builder.

The Explorer pane on the left displays two lists. At the top of the Explorer pane, you
see a list of entities and folders in the report model. The Fields list, below the Enti-
ties list, displays the attributes for the currently selected object in the Entities list.
The largest pane in the Report Builder window is the design area in which you
define the report layout.

3. In the Entities list, click Dim Time. To add an attribute to the report, you can dou-
ble-click the attribute in the Fields list or drag it to the desired location in the report
layout. When you add a field to a detail table, two rows are created in the new col-
umn—a header row to display the field name and a detail row to display the field
value. For this example, double-click Calendar Year in the Fields list.

4. Click a role to navigate from entity to entity within a model. Remember from the
previous section that a role relates a foreign key in one table with a primary key in
another table. To continue this example, in the Entities list click Fact Reseller Sales
and then click Reseller. In the Fields list, double-click Business Type.

5. Double-click Total Sales Amount in the Fields list.

Chapter 23 Reporting Services 737
Note Subtotals are automatically added to the table for each numeric
field. To disable this behavior, right-click the column header or the column’s
detail row and clear the Show Group Subtotals selection.

6. To add a title, double-click the textbox above the table, and then type the report
title, such as Reseller Sales By Year.

7. Click Run Report on the toolbar to generate the report, as shown in Figure 23-12.
Report Builder constructs a query to retrieve data from the source based on the
attributes and their relationships defined in the report model.

Figure 23-12 A report executed in Report Builder.

8. Double-click the cell immediately below the Total Sales Amount column heading in
the 2001 Specialty Bike Shops row to view details for the selected cell, as shown in
Figure 23-13. You can identify a field that supports clickthrough when the cursor
changes to a hand as you hover the pointer over a cell.

By using the clickthrough feature of Report Builder, you can generate report after
report to see progressively more detailed reports. The number of relationships
between entities and the fields contributing to the cell you select for clickthrough
determines how many new reports can be created. As long as the information
retrieved by clickthrough is related to multiple records in the source database,

738 Part V Microsoft SQL Server 2005 Business Intelligence
Report Builder displays the information in a table. When you clickthrough to a sin-
gle record, Report Builder displays a list of attributes for the selected record.
Because you don’t have access to the clickthrough report layout to fix formatting,
take the time to review the formatting of each attribute in the report model during
its design, and adjust as needed.

Figure 23-13 A clickthrough report in Report Builder.

Note Clickthrough is available only with SQL Server Enterprise edition.

9. Optionally, you can save an ad hoc report for future reference or for sharing with
others. To do this, click Save on the toolbar, name the report, and then click Save in
the Save Report dialog box. You can place the report in the Home folder. If other
folders have been created on the report server, you can place the report in any other
folder to which you have access.

After building an ad hoc report, you can add a variety of enhancements. Report Builder
includes a formatting toolbar for you to select a different font, font size, font color, and
other standard formatting options. You can also type different text in the column head-
ings or total rows to replace the default text. In addition, you can add a filter, which
adds a WHERE clause to the query generated by Report Builder, to make it easy to cre-
ate different versions of the same report. Finally, you can add new fields to the field list
by creating a formula, although it’s considered a best practice to include any commonly
used calculations in the report model to ensure consistency.

Chapter 23 Reporting Services 739
Managing Reporting Services
System administrators are typically responsible for configuring and tuning the report
servers for optimal performance. Along with certain power users, they may be responsi-
ble for managing content on the server, such as publishing reports, setting report prop-
erties, or applying security. In this section, we’ll review the key administrative tasks
required by Reporting Services to set up and maintain the report server and to manage
reports and other resources in a production environment.

Report Server Configuration
For many Reporting Services implementations, the default configuration of each subcom-
ponent is adequate, but you have several tools available to tune the configuration follow-
ing installation. The Reporting Services Configuration tool is an easy way to reconfigure
report servers, but you can also use command line utilities, such as Rsconfig and
Rskeymgmt, about which you can learn more in SQL Server Books Online. Although this
configuration tool allows you to set many important report server properties, you might
need to edit configuration files directly. We’ll review both the configuration tool and con-
figuration files in this section.

Reporting Services Configuration Tool
Before you can publish reports to the server, you must identify the report server database
to be used for storing content and create a virtual directory for accessing the server and
for using Report Manager. Use the Reporting Services Configuration tool, located in the
Microsoft SQL Server 2005 program group in the Configuration Tools folder, to define
these settings after installation and to change properties for components of Reporting
Services if the reporting environment changes later. When you start Reporting Services
Configuration, you specify the report server instance you want to configure, which can be
local or remote.

Note You must have local system administrator access to the report server
instance you plan to configure.

The Reporting Services Configuration tool includes several pages described in the follow-
ing list:

■ Report Server Status On this page, you can start or stop the Report Server Win-
dows service and view the server’s initialization status.

■ Report Server Virtual Directory Settings The virtual directory used by applica-
tions to access Reporting Services is created on the Default Web Site in Internet

740 Part V Microsoft SQL Server 2005 Business Intelligence
Information Services (IIS) at installation, but you can use this page to choose a dif-
ferent Web Site defined in IIS. You can also use this page to secure data sent to
browser or client applications with Secure Sockets Layer (SSL) encryption, but you
must first install an SSL certificate.

■ Report Manager Virtual Directory Settings Just like the Report Server virtual
directory, you can reconfigure the virtual directory used to launch the Report Man-
ager application.

■ Windows Service Identity Use this page to update the password for the service
account or to change the account used to run the service.

■ Web Service Identity Use this page to update the security identity or application
pool for the Web service if the operating system for the report system is Windows
Server 2003. For Windows XP or Windows 2000, you must use the ASP.NET secu-
rity identity and cannot edit the security identity here.

■ Database Connection Select a local or remote SQL Server instance that will
host the Reporting Services database and specify an account to be used by Report-
ing Services to connect to this database at run time. The account can be the
Report Server Windows service account, a domain user account, or a SQL Server
login. These credentials are encrypted and stored in an Reporting Services config-
uration file.

■ Encryption Key Manage the symmetrical key used to encrypt and decrypt the
connection string and credentials used to connect to the Reporting Services data-
bases, the credentials used to run unattended reports, and stored credentials for
selected data sources.

Important If you move the ReportServer database to a different
instance, the symmetric key is invalidated and Reporting Services cannot
decrypt the connection strings or credentials. The symmetric key is also
invalidated when you rename the server or change the service account that
runs the Report Server Windows service. If you lose the backup of the
encryption key (or forget the password) and the symmetric key is invali-
dated, use the Reporting Services Configuration tool to delete the
encrypted data in the ReportServer database. You’ll then need to use this
tool to add the database credentials back to the Report Server configura-
tion file. In addition, for each report and shared data source that uses
stored credentials, you’ll need to update the credentials individually in one
of the management tools, Report Manager or SSMS, and you’ll need to
open and save each subscription. To avoid all this extra work, take care to
back up the symmetric key! Simply making a backup of the symmetric key
to a local drive is not sufficient protection, however. You should move the
symmetric key backup to a secure, off-site location.

Chapter 23 Reporting Services 741
■ Initialization View the initialization status of a report server. Initialization is
required before encrypted data can be stored or to configure a scale-out deployment.

■ E-mail Settings Specify the name of the e-mail server and the sender address that
Reporting Services should use for e-mail delivery of reports generated by a subscription.

■ Execution Account Define an account to be used by Reporting Services when
connecting to a data source that doesn’t require credentials or to retrieve resources,
such as image files, from another server.

Reporting Services Configuration Files
Reporting Services uses four configuration files stored as XML files that you can edit as
needed. You can find the configuration files in subfolders located in the default installa-
tion folder for the Reporting Services instance, such as Program Files\Microsoft SQL
Server\MSSQL.3\Reporting Services. The configuration files, and the subfolders in
which each is located, are described in the following list:

■ Rsreportserver.config (in the ReportServer subfolder) Configures the Report
Server engine used by the Report Server Web service and Report Server windows ser-
vice, stores the encrypted connection string for the ReportServer database, and con-
tains settings for thread and memory management, timeout values, the SMTP server,
and the number of open connections allowed for a single user. This file also contains
configuration settings for delivery, rendering, data, and security extensions.

■ ReportingServicesService.exe.config (in the ReportServer\bin subfolder)
Controls the trace log files, including the amount of detail in these files. To disable
logging, change the value of the DefaultTraceSwitch to 0. Other valid values range
from 1 for minimal logging to 4 for the most verbose logging. In addition, you can
change the number of days for which trace logs are kept. There are four trace logs,
stored by default in the %Program Files%\Microsoft SQL Server
2005\MSSQL.3\Reporting Services\LogFiles folder, as described here:

❑ ReportServerService_main_timestamp.log Records act ivit ies of the
Report Server Windows and Web services, such as server resource allocation
and initialization of the services

❑ ReportServerService_timestamp.log Logs information about service
operations, such as initialization and the status of polling activities related to
schedules, subscriptions, and delivery notifications

❑ ReportServerWebApp_timestamp.log Stores details about Report Man-
ager operations, such as HTTP headers, stack trace information, SOAP enve-
lopes, and exceptions

742 Part V Microsoft SQL Server 2005 Business Intelligence
❑ ReportServer_timestamp.log Captures exceptions and warnings gener-
ated by the Report Server or calls to perform actions like processing reports,
creating folders, or deleting items

■ RSWebApplication.config (in the ReportManager subfolder) Contains infor-
mation used by Report Manager to manage open connections and to display a
default delivery extension and default rendering formats for each delivery
extension

■ RSReportDesigner.config (in the Program Files\Microsoft Visual Studio
8\Common 7\IDE\PrivateAssemblies folder) Contains information about
extensions used by Visual Studio’s Report Designer when previewing reports

Important Be sure to review configuration properties carefully in SQL
Server Books Online. If you make an invalid change, Reporting Services
logs an error to the Windows application log and either fails to start the
service or reverts to the default value.

Content Management
Tasks related to content management range from placing resources on the report server
to organizing content already on the server, configuring report properties, and applying
security. To perform these tasks, you must be granted Content Manager permissions,
explained later in this chapter, or be a local system administrator.

Publishing Content
Before you can manage a report on the report server, you must publish the report. There
are three ways to publish a report, as described here:

■ Deploy from Visual Studio First, define deployment properties for each project
to be deployed, choose what you want to deploy—the solution, specific projects, or
selected reports—and then use Visual Studio’s Deploy command. Deployment
properties, accessible when you right-click a project in Solution Explorer and
choose Properties, are described here:

■ OverwriteDataSources Controls whether shared data sources in the project will
be published to the server if the data source file already exists. By default, a shared
data source is deployed to the server only if the data source doesn’t already exist.

■ TargetDataSourceFolder The folder in which the data source will be placed. This
folder will be created if it does not already exist.

Chapter 23 Reporting Services 743
■ TargetServerURL A valid URL to the report server, such as http://<servername>/
ReportServer where <servername> is the name of the computer hosting Reporting
Services which can be localhost if you are working with a local Reporting Services
instance. The URL will not be validated until you try to deploy. If you have multiple
instances of Reporting Services on a server, use the following syntax for the URL:
http://<servername>/ReportServer$<instancename> .

■ TargetReportFolder The folder in which the deployed items are placed. This
folder is created if it does not already exist.

Important If you redeploy a report that already exists in the TargetRe-
portFolder, the report on the server will be replaced without warning.

■ Upload files using Report Manager Navigate to the target folder on the report
server, and then click the Upload File button on the Report Manager toolbar. You
can upload one file at a time—a report or any other file, such as a Microsoft Word
document. If the file already exists in the current folder, an error message displays
when you click OK unless you select the Overwrite Item If It Exists check box.

■ Execute the RS utility The RS utility uses an input file with an .rss file extension
written in Microsoft Visual Basic .NET to execute commands on the Report Server.
To use this utility, you need to provide at least two arguments, the name of the
input file and the URL for the Report Server, like this: rs –i inputfile –s Report-
ServerURL. You can optionally include arguments to pass a specific user name and
password. For more information, refer to the SQL Server Books Online topic “rs
Utility” or the recommended books mentioned at the beginning of this chapter.

Note For an example script, review the PublishSampleReports.rss file
located in the %Program Files%\Microsoft SQL Server 2005 Sam-
ples\ReportingServices\Script Samples folder. This script is available only if
you first install the Microsoft SQL Server 2005 Samples from the Samples
program group, which is located in the Documentation and Tutorials pro-
gram group of Microsoft SQL Server 2005. Alternatively, if you choose to
install samples when installing Reporting Services, you can find this script in
the %Program Files%\Microsoft SQL Server\90\Samples\Reporting Ser-
vices\Script Samples folder.

To publish the report created in the examples in the previous sections of this chapter, fol-
low these steps:

1. Start SQL Server Business Intelligence Development Studio. On the File menu,
point to Open, and then click Project/Solution. Navigate to the folder containing

744 Part V Microsoft SQL Server 2005 Business Intelligence
the solution file (with file extension .sln) for the Report Server Project described
earlier in this chapter. Select the solution file in the Open Project dialog box, and
then click Open.

2. In Solution Explorer, right-click the Adventure Works project, and then click
Properties.

3. In the Adventure Works Property Pages dialog box, change the TargetReport-
Folder property value to AdventureWorks Sample Reports and change the Tar-
getServerURL property value to the URL for your Reporting Services instance,
such as http://localhost/ReportServer. Click OK to close the dialog box.

4. In Solution Explorer, right-click the Adventure Works project, and then click
Deploy. When the report is published successfully to the server, you see Deploy
Succeeded in the status bar at the bottom of the Visual Studio window.

Organizing Content
Use folders to organize reports and resources on the server and to apply security to items
in a folder as a group. Using Report Manager, you can perform the following tasks to
manage folders:

■ Create a folder Navigate to a folder to become the parent folder (or navigate to
the Home page if the folder will not be nested), click the New Folder button in the
Report Manager toolbar, and then provide a name, and optionally a description.

■ Change folder properties Navigate to the folder, and then click the Properties
tab. You can rename the folder, add a description, hide the folder name from the list
view in Report Manager, or modify security to the folder here.

■ Move a folder Click the Show Details button on the Report Manager toolbar,
select the check box for the folder, click the Move button on the toolbar, and select
a new folder from the tree view of available folders.

Note You can use this same technique to move a report to a different
folder.

■ Delete a folder Click the Show Details button on the Report Manager toolbar,
select the check box for the folder, and then click the Delete button on the toolbar.
All folder contents are also deleted, so be careful.

Note Reserved folders—Home, My Reports, and Users Folders—cannot
be moved, renamed, or deleted. The latter two folders are created only if
you enable My Reports on the Report Server. To enable My Reports in
Report Manager, click Site Settings in the upper right corner of the

Chapter 23 Reporting Services 745
browser, select the Enable My Reports To Support User-Owned Folders For
Publishing And Running Personalized Reports check box, and then click
Apply.

Working with Report Properties
When you author a report, you are focused on data and layout, but when you publish a
report, you must consider how the report will be used and how to optimize report prop-
erties for people who will access the report. In Visual Studio, you can define the data
source properties, but you have many more properties for the report that you can set in
Report Manager (or SQL Server Management Studio). These properties are managed
entirely on the server and are not overwritten if you later republish the report definition
to the report server. To modify report properties in Report Manager, navigate to the report
and click the Properties tab. You can then select the appropriate page for the properties
you want to set, as described in this section.

General
The General page displays information about who created or modified the report defini-
tion and when. In addition, this page allows you to change the report name, add a
description, or access and update the report definition. From this page, you can use the
links and buttons described in the following list:

■ Edit link Saves the report definition to the file system for read-only purposes; any
edits you make to this file do not change the report definition used by the Report
Server until you republish the report.

■ Update link Replaces report definition used by the Report Server with a specified
file.

■ Create Linked Report button A linked report uses the same report definition as
the report on which it is based, but it can have its own execution, parameter, secu-
rity, and subscription properties.

Important If you delete the base report, all linked reports are also
deleted.

■ Change Link button Available only for linked reports; allows you to associate the
current report with a different report definition.

■ Delete button Deletes the current report from the current folder and associated
subscriptions, schedules, or history.

■ Move button Allows you to move the linked report from the current folder to
another location in the Report Server’s folder hierarchy.

746 Part V Microsoft SQL Server 2005 Business Intelligence
Parameters
You can view and change parameter values on this page if the report design includes
parameters. Parameters either modify a query or filter a result set after the query exe-
cutes. You can change parameter values when you create a linked report to create multi-
ple versions of the same report, which can then be individually secured. You can also
clear the Prompt User check box, as shown in Figure 23-14 which illustrates the Adven-
tureWorks Sales sample report bundled with Reporting Services, to prevent users from
changing a parameter value when viewing the report.

Note To view this report on your machine, you need to install the Microsoft
SQL Server 2005 Samples which you can launch from the Microsoft SQL Server
2005/Documentation and Tutorials program group. Using Visual Studio, open the
AdventureWorks Sample Reports.sln and then deploy the project as described in
the previous section, “Publishing Content.”

Figure 23-14 The Parameters properties page of a report in Report Manager.

Data Sources
On this page, you can update a report’s data source properties, including connection
type, connection string, and credentials. The OverwriteDataSources property for the
project in Visual Studio controls whether republishing a report replaces any changes you
make here. Commonly, report development is performed using a data source connecting

Chapter 23 Reporting Services 747
to a development database, and a published report’s data source properties are modified
to use a data source connecting to a production database. Importantly, you use this page
to configure a report to use stored credentials. You must use stored credentials with a
data source if a report is to be executed as an unattended process, such as for a scheduled
snapshot or a subscription. Stored credentials are stored in reversible encryption in the
ReportServer database and are not stored in the report definition itself.

Execution
Use the Execution properties page, as shown in Figure 23-15, to control when queries
execute, to control whether reports are cached, and to build a history of reports on a man-
ual or scheduled basis. When users need data that is relatively recent and the report
query can execute and return results in a reasonable amount of time, use the On Demand
execution options. For users who need access to historical data or if a report takes a long
time to process, consider using Scheduled execution options.

Figure 23-15 The Execution properties page of a report in Report Manager.

An overview of execution options is provided in the following list:

■ On Demand—Not Cached By default, Reporting Services processes a report on
demand each time a user requests the same report, which results in a new query
for each request. To improve performance, Reporting Services uses session man-
agement. A session starts when a user requests a report. The intermediate report, a

748 Part V Microsoft SQL Server 2005 Business Intelligence
version of the report created after query execution but before rendering, is placed
in the session cache and is retrieved each time the user requests the report until
the user closes the browser or client application. If the report definition changes
while a user is viewing it in an active session, the user will not see the updated ver-
sion of the report until manually refreshing the report, which retrieves the current
version from the ReportServer database.

■ On Demand—Cached A cached instance of a report is similar to a report placed
into the session cache except the same intermediate report can be shared between
multiple users. This intermediate report is flagged as a cached instance and is ren-
dered on demand until the cached instance expires on a regular interval or accord-
ing to a specific schedule. You configure the expiration method applied to the
cached instance on the report’s Execution properties page. If a report uses query
parameters, the query parameters are applied when the cached instance is created.
If a user selects a different parameter value, a new cached instance is created but
only if a cached instance with that parameter value doesn’t already exist. By con-
trast, a filter based on a report parameter value is applied to the existing cached
instance and doesn’t create a new cached instance. A cached instance is configured
to expire at regular intervals or according to a schedule. The report’s data source
must be configured to use stored credentials.

■ Scheduled Snapshot When you configure a report as a scheduled snapshot,
Reporting Services executes the query and creates an intermediate report before
a user opens the report. You can create a snapshot manually or on a scheduled
basis. Query parameters are applied when the snapshot is created and can’t be
changed later because a snapshot is not an interactive report. However, report
parameter values used as filters are applied against the snapshot during brows-
ing. Because only one snapshot can exist at a time, each new snapshot of a report
replaces the previous one. You must configure the report to use a data source with
stored credentials.

Note Before you can begin scheduling reports, you must define a sched-
ule. You can create a schedule for each report or create a shared schedule
to be used by several activities, such as cache expiration or subscription
delivery. To create a shared schedule, click the Site Settings link on any
page of Report Manager, click the Manage Shared Schedules link, click the
New Schedule button, and then enter schedule details. Before you add a
schedule, however, be sure SQL Server Agent is running. If not, you’ll
receive an error when you try to save the schedule.

Chapter 23 Reporting Services 749
■ Report History Snapshots can be saved for future reference if you enable a
report’s history properties. Each new snapshot also adds the snapshot to report his-
tory whether you create the snapshot manually or on a schedule. Because the
report is executed as a snapshot, the report must use a data source that draws on
stored credentials. You have the option of specifying a maximum limit of accumu-
lated snapshots, or you can keep an unlimited number of snapshots in report his-
tory. You can also delete individual snapshots in report history manually.

Security Management
Reporting Services uses a role-based security system in which Windows groups or users
are assigned to roles which define groups of activities by function. There are 16 pre-
defined user activities, or tasks, and nine predefined system tasks. To associate a specific
list of tasks with a role, you can create a role definition. Reporting Services includes five
predefined item role definitions and two predefined system role definitions. While you
can’t add or delete tasks, you can change the available role definitions or create your own.
To implement security, you can use either Report Manager or SQL Server Management
Studio.

Adding an Item Role Assignment
A role assignment is the assignment of a specific user or a group to a role for a specific item
on the report server. For any one item, a user or group can have only one such role assign-
ment, but a user can be a member of a group with a role assignment for the same item, in
which case the user has permissions for all the tasks in both role definitions. To add a role
assignment to the Home folder, follow these steps:

1. Open Report Manager in Microsoft Internet Explorer at http://<servername>/
Reports.

2. Click the Properties tab. The default role assignment for the Home folder is Con-
tent Manager, to which the local system administrators group, BUILTIN\Adminis-
trators, is assigned.

3. Click New Role Assignment on the Report Manager toolbar.

4. Click the Browser link to view the tasks in the role definition, as shown in
Figure 23-16. A full description of each task is available on this page. You can add
or remove tasks from the role definition by selecting or clearing each task as
appropriate. When finished, click OK to apply the changes. Any changes you
make here are applied server-wide.

750 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 23-16 The Edit Role page for the Browser role in Report Manager.

Note You can also reach this page to add a new role or edit an existing
role at any time by using the Site Settings link at the top of any Report
Manager page. Follow the Configure Item-Level Role Definitions link to
access the Item-Level Roles page.

5. On the New Role Assignment page, type a valid Windows group or user name in
the Group Or User Name box, and then select the check box for each role to assign.
To assign all roles to the specified group or user, select the Role check box above the
list of roles.

Note It’s easiest to manage security at the folder level. Each item within
the folder inherits the role assignments specified for the parent folder. You
can override security inheritance for any nested folders or for individual
reports within the parent folder. All users must be granted at least Browser
access to the Home folder in order to access other folders.

Chapter 23 Reporting Services 751
The following table shows the default association of tasks by role in order from most
restrictive security on the left to least restrictive security on the right:

Adding a System Role Assignment
A system role assignment associates a Windows user or group with a system role to define
who can perform administrative tasks on the Report Server, such as managing schedules.
System role assignments are independent of item role assignments. For example, if a user
is assigned only to a system role and is not a local system administrator, the user can’t
view folders or reports on the Report Server. Reporting Services has two default system
roles: System User and System Administrator. The System User role allows access to the
Site Settings page for viewing server properties and shared schedules, which is required

Table 23-1 Default Assignments by Role

Default Task Browser
Report
Builder

My
Reports Publisher

Content
Manager

Consume reports ✓ ✓

Create linked reports ✓ ✓ ✓

Manage all subscrip-
tions

✓

Manage data sources ✓ ✓ ✓

Manage folders ✓ ✓ ✓

Manage individual
subscriptions

✓ ✓ ✓ ✓

Manage models ✓ ✓

Manage report history ✓ ✓

Manage reports ✓ ✓ ✓

Manage resources ✓ ✓ ✓

Set security for individ-
ual items

✓

View data sources ✓ ✓

View folders ✓ ✓ ✓ ✓

View models ✓ ✓ ✓

View reports ✓ ✓ ✓ ✓

View resources ✓ ✓ ✓ ✓

752 Part V Microsoft SQL Server 2005 Business Intelligence
if a user needs to use a shared schedule. The System Administrator role includes tasks for
viewing and editing server properties, shared schedules, system role assignments, and
role definitions. This role can also manage running jobs. To configure system roles, follow
these steps:

1. In Report Manager, click the Site Settings link at the top-right corner of the Home
page. This link is available only if you have a system role assignment that includes
View Report Server Properties or Manage Report Server Properties.

2. Click the Configure Site-Wide Security link. The default system role assignment of
the local system administrators group, BUILTIN\Administrators, is System Admin-
istrator. You’ll always need at least one System Administrator role assignment. Even
if you delete the BUILTIN\Administrators system role assignment, however, local
system administrators always have access to security settings.

3. Click New Role Assignment on the Report Manager toolbar and type a user or
group name. You can assign a user or group to multiple roles.

The following table shows the default association of system tasks by role:

Performance Management
In this section, you’ll discover several ways you can monitor activity on a report server
and techniques you can use to proactively manage the resources on your server. You’ll
also learn how Reporting Services uses SQL Server databases and which tables to moni-
tor for growth. Lastly, you’ll learn how to implement execution logging to get a detailed
perspective of activity on the report server.

Table 23-2 Default System Assignments

Default Task System Administrator System User

Execute report definitions ✓ ✓

Generate events

Manage jobs ✓

Manager report server properties ✓

Manage report server security ✓

Manage roles ✓

Manage shared schedules ✓

View report server properties ✓

View shared schedules ✓

Chapter 23 Reporting Services 753
Performance Counters
You can use the Windows Performance tool, described in more detail in Chapter 6,
“Capacity Planning,” to monitor Reporting Services activity. Counters associated with
MSRS 2005 Windows Service can help you monitor both interactive and scheduled activ-
ity on the server. Review the counters associated with MSRS 2005 Web Service to moni-
tor activity initiated by a scheduled operation. Details about the performance counters
themselves are in SQL Server Books Online. The following list describes some perfor-
mance counters you might monitor regularly:

■ Active Sessions Counts active browser sessions

■ Reports Executed/Sec Volume of successful report execution

■ Total Processing Failures Number of failures since the service started

■ Total Requests Number of requests since the service started

Server Resource Management
To manage server resources, you must be able to prevent certain activities from consum-
ing too much memory or running too long. Sometimes you need to temporarily suspend
activities for server maintenance or troubleshooting problems. Some common manage-
ment tasks related to resource management are described in the following list:

■ Source Query Timeout Each dataset in a report has its own query timeout set-
ting which you can edit only within Visual Studio. To change this setting, open a
report in Visual Studio, click the Data tab of the report designer, select a dataset in
the Dataset drop-down list, click the Edit Dataset button to the right of the drop-
down list, and type a value in the Timeout box. If the query doesn’t finish before the
query timeout is exceeded, the report execution will fail. Use a source query time-
out to protect against unexpectedly long-running queries.

■ Report Execution Timeout Each report’s execution properties include a timeout
setting which you can use to override the global timeout. Alternatively, you can
change the global timeout, which by default is 1,800 seconds, on the Site Settings
page of Report Manager.

■ Cancel Jobs From the Site Settings page in Report Manager, you can access the
Manage Jobs page to view jobs currently executing. Here you can cancel one or
more jobs, but be aware you may also need to kill the corresponding process in the
source database.

754 Part V Microsoft SQL Server 2005 Business Intelligence
■ Disable a Shared Data Source In Report Manager, open a data source and clear
the Enable This Data Source check box when you need to temporarily prevent
reports or subscriptions from executing.

■ Pause a Shared Schedule On the Site Settings page of Report Manager, click Man-
age Shared Schedules, select the check box for each shared schedule to pause, and
then click the Pause button on the Report Manager toolbar. When you pause a shared
schedule, all related jobs, such as report executions and subscriptions, are sus-
pended. Use the Resume button when you’re ready for jobs to execute on schedule.

Reporting Services Databases
Reporting Services requires two SQL Server 2005 databases to operate. The ReportServer
database is used to store report definitions, configuration information, security assign-
ments, and schedules. The ReportServerTempDB database is used to store data only tem-
porarily, such as session and caching information. In general, the tables in each database
don’t require much space. The exception is the ChunkData table in the ReportServer data-
base. This table contains the intermediate reports for snapshots and report history.
Because an intermediate report includes all report data, it requires more disk space than
other items stored in the same database. The ChunkData table in the ReportServer-
TempDB database also contains intermediate reports for the session cache and the cached
instances, so it also requires a large amount of disk space relative to other tables but
doesn’t persist this data over the long-term. Each Reporting Services implementation is
unique in its disk space requirements, so we can’t provide you with a specific formula to
use for estimating disk space. However, the following list identifies the items that will
have an impact on disk space consumption:

■ Total number of reports

■ Total number of snapshots

■ Total number of snapshots saved in report history

■ Total size of intermediate reports (which include report data) in snapshots and
report history

■ Total number of cached instances resulting from different combinations of report
parameters

■ Total number of users affecting session cache

■ Session cache timeout length

Note Be sure to back up the ReportServer database regularly along with
the master and msdb databases. User accounts for Reporting Services are
stored in the master database and msdb stores scheduled jobs. You need

Chapter 23 Reporting Services 755
only back up the ReportServerTempDB database one time for disaster recov-
ery since it contains cached data that can be recreated as users browse
reports later.

Real World Execution Logs

A great way to monitor report server usage is to implement execution logging. You
can review the duration and success rate of report executions and uncover bottle-
necks in report execution. The information stored in the ExecutionLog table of the
ReportServer database isn’t useful for direct reporting and analysis, but you can peri-
odically export and transforms records in this table to load into your own logging
database. Use the Site Settings page in Report Manager to start or stop execution
logging at any time. By default, execution logging is enabled, but log records are
kept for only 60 days. To implement execution logging, follow these steps:

1. Start SQL Server Management Studio and connect to the Database Engine.

2. Create a new SQL Server database, as described in Chapter 10, “Creating
Databases and Database Snapshots,” named RSExecutionLog.

3. On the File menu, point to Open, and then click File. Navigate to the %Pro-
gram Files%\Microsoft SQL Server\90\Samples\Reporting Services\Report
Samples\Server Management Sample Reports\Execution Log Sample
Reports folder, and open the Createtables.sql file. When you open this file,
you’ll be prompted to connect to the Database Engine.

4. Select RSExecutionLog in the Available Database drop-down list on the SQL
Server Management Studio SQL Editor toolbar, and then click Execute on the
same toolbar.

5. In Windows Explorer, double-click the RSExecutionLog_Update.dtsx file
in the %Program Files%\Microsoft SQL Server\90\Samples\Reporting
Services\Report Samples\Server Management Sample Reports\Execution
Log Sample Reports folder to start the Execute Package Utility. There are
several pages you can review in the Execute Package Utility dialog box, but
you do not need to make any changes for this example. Click Execute to
start running the package, and then click Close twice when package execu-
tion completes.

6. Using Visual Studio, open the Execution Log Sample Reports.rptproj file in
the %Program Files%\Microsoft SQL Server\90\Samples\Reporting Ser-
vices\Report Samples\Server Management Sample Reports\Execution Log

756 Part V Microsoft SQL Server 2005 Business Intelligence
Sample Reports folder. The shared data source in this solution assumes the
database is on the local server, but you can edit the data source if you need to
reference the database on a different server.

7. Right-click the ExecutionLog project, and then click Deploy. When the
project successfully deploys, open the Home page in Report Manager, and
navigate to the Execution Log Reports folder. In this folder, you can find sev-
eral reports that present execution logging information: Execution Status
Codes, Execution Summary, and Report Summary. You can, of course, mod-
ify these reports to suit your needs more specifically or develop new reports.

Summary
This chapter introduced the use of Reporting Services throughout to support the report-
ing life cycle. Basic report authoring techniques were discussed for both enterprise and
ad hoc reports, and you learned how to build a report model to support ad hoc report
development in Report Builder. You also learned how to perform administrative tasks to
manage report server content, control report server behavior, and monitor performance.
With this foundation, you have enough knowledge to begin using Reporting Services for
delivering information easily throughout your organization.

Chapter 24

Notification Services
and Service Broker

What Is Notification Services? .757

Developing Notification Services Applications .761

Using Notification Services Applications .792

What Is Service Broker? .803

Implementing Service Broker Applications .805

Managing Service Broker Applications .810

Summary .811

Transferring data, preparing data for analysis, and sharing data in reports are important
information management activities that Microsoft SQL Server 2005 supports. But wait,
there’s more! SQL Server 2005 can also help you share information across, or even
beyond, the organization with notification and asynchronous messaging applications.
Using Notification Services, you can run applications that deliver messages when events
of interest occur or on a scheduled basis. Service Broker is also involved in the delivery of
messages but instead acts as the central clearinghouse for applications that are unable to
communicate directly. In this chapter, we’ll introduce the basic functionality of these two
technologies for you to evaluate the possibilities they enable in your data environment.

What Is Notification Services?
Notification Services is a bundled component of SQL Server 2005 Enterprise, Standard,
and Developer editions used to create and run notification applications. A notification
application delivers a notification, typically in the form of an e-mail message or a file, to a
subscriber. A subscriber is an individual who receives notifications on a scheduled basis or
when an event occurs. An event is something of interest that happened, such as a change
in a key performance indicator tracked in an Analysis Services cube or new data available
757

758 Part V Microsoft SQL Server 2005 Business Intelligence
in a transactional database meeting certain conditions. Each subscriber has one or more
subscriptions that define the rules for generating a notification.

To use Notification Services, you first build the application components, which can be as
simple or as sophisticated as you need. You use XML files or the Notification Services
application programming interface to define the database object structures and the rules
for generating notifications. The definitions and rules you create are used by Notification
Services to build a pair of databases for storing events, subscribers, and subscriptions
when you instantiate the application. You can optionally build applications using man-
aged code to collect events and to add or update subscribers and subscriptions, or you
can create stored procedures to perform these activities.

Notification Services 2005 Versus Notification Services 2.0
Microsoft SQL Server Notification Services 2.0 was introduced in 2002 as a download-
able add-on component to SQL Server 2000. Now a newer version of Notification Ser-
vices is officially bundled with SQL Server 2005. This newer version includes several
performance improvements, support for high availability, and new features to simplify
the development and management of notification applications.

To start, let’s consider how Notification Services 2005 improves upon certain features in
Notification Services 2.0. As one example, the Notify() function in Notification Services
2.0 used stored procedures to load notification data into the application database, which
sometimes had a negative effect on performance. Now, you need to write your own Trans-
act-SQL statements to insert data into a view for notifications, but this process is much
more efficient comparatively. As another example, the vacuuming process, which period-
ically removes stale data from the application database, runs as much as 150 percent
faster than it did in 2.0. Finally, if you need high availability, you can now configure
failover clustering for Notification Services independently from other cluster resource
groups, including the database engine.

Performance and availability improvements are great, but you’ll also like the new features
for building and managing notification applications in Notification Services 2005.
Instead of using command-line utilities to create, start, or stop instances of Notification
Services, you can perform these and other administrative tasks using a graphical inter-
face in SQL Server Management Studio. Alternatively, you can use the new management
object model to create custom applications for building and maintaining Notification Ser-
vices applications. Furthermore, you can integrate the Notification Services engine into
your custom applications rather than use a Windows service for running Notification Ser-
vices components.

Regardless of whether you work with custom applications, you’ll find that working with the
Notification Services 2005 databases is simpler than working with Notification Services 2.0

Chapter 24 Notification Services and Service Broker 759
databases because there are new views available for inserting data for events, subscriptions,
and notifications and for writing queries to monitor events and generate notifications. You
can also take advantage of condition actions to give subscribers the ability to define a
WHERE clause for the subscription query, thereby enabling more complex subscription
rules. Finally, you can build an application that monitors events in an Analysis Services
cube by using a new event provider to send Multidimensional Expression (MDX) queries
to the cube and storing the results as events.

Note After you upgrade an existing SQL Server 2000 instance to SQL Server
2005, you can use SQL Server Management Studio or a command-line utility to
upgrade the Notification Services instances. You can migrate Notification Services
2.0 running on SQL Server 2000 Standard Edition to either SQL Server 2005 Stan-
dard or Enterprise Edition, but you can migrate Notification Services running on
SQL Server 2000 Enterprise Edition only to SQL Server 2005 Enterprise Edition.
You can find instructions explaining how to migrate a Notification Services 2.0
instance in the SQL Server Books Online topic “Migrating Notification Services
Instances.”

Notification Services Fundamentals
Notification Services is not itself an application but a platform for the development and
management of notification applications. Each notification application repeats a similar
cycle. Using an interface that you create, subscribers and subscriptions are defined.
Events are collected by Notification Services in batches by periodically executing queries
and inserting the results into a view for that type of event. Notification Services then
attempts to match events and subscriptions. When a match is found, Notification Ser-
vices generates and formats a notification for each subscriber with a subscription for the
matched event. Lastly, Notification Services sends the formatted notification to a delivery
service, which in turn sends the notification to the subscriber’s specified device, such as
an e-mail account or a PDA device.

A Notification Services instance is a host for one or more applications. The instance has a
configuration shared by all applications, such as the same SQL Server instance for
instance and application databases. Each application has its own collection of database
objects used to store information required to collect events and generate notifications.
When you build a Notification Services application, you define the instance configura-
tion, the structure of the application’s database objects, and the rules for matching events
to subscriptions and sending notifications.

You can run the Notification Services engine on the database server when your notifica-
tion application is small and used internally. On the other hand, if you have a large appli-
cation, you should use a dedicated server to take advantage of the scalability and high

760 Part V Microsoft SQL Server 2005 Business Intelligence
availability features of SQL Server 2005. For example, if notifications require complex for-
matting, you might consider using a dedicated Notification Services server to manage this
process rather than requiring your application to compete for resources with a database
engine installed on the same server.

Notification Services Components Overview
Notification Services includes many components for you to build and maintain applica-
tions. The following list provides an overview of each component:

■ Event providers Adds events to the Notification Services application database
and monitors external data sources for changes using built-in event providers, such
as the file system watcher to monitor directories, the SQL Server event provider to
monitor SQL Server databases, the Analysis Services event provider to monitor
Analysis Services databases, or custom event providers you create to monitor other
types of data sources

■ Generator Looks for matches between events and subscriptions on a periodic
basis using a T-SQL query defined by the application developer, creates a notifica-
tion when a match is detected, and creates a batch of notifications for the distribu-
tor

■ Distributor Receives a batch of notifications from the generator, formats each
notification using an XML style sheet (XSLT) defined by the application developer
to render output for specific device and sends the notification to a delivery channel

■ Delivery channel Sends formatted notifications to a specific device using a cus-
tom delivery protocol created by the application developer or a built-in protocol,
such as the SMTP protocol, File protocol, or HTTP protocol

■ Notification Services engine Runs the event provider, generators, and distrib-
utors as a Windows service or as a custom application or process

■ SQL Server Management Studio Provides administrative support for Notifica-
tion Services and the SQL Server databases used to manage data used by Notifica-
tion Services

■ Nscontrol utility Creates, registers, repairs, and updates Notification Services
applications at the command prompt

■ Instance and application databases Stores event, subscriber, subscription,
and notification data as well as application metadata

■ Notification Services Management Objects (NMO) Includes application
programming interfaces (APIs) for adding subscribers, managing subscriptions,
collecting events, and delivering notifications

Chapter 24 Notification Services and Service Broker 761
Developing Notification Services Applications
If you’re an application developer, you might prefer to build a notification application
using the .NET Framework 2.0 and the Notification Services Management Objects, an
API for Notification Services. Even if you’re not an application developer, you can easily
build an application using XML and T-SQL. In this chapter, we’ll focus exclusively on the
latter approach to show you how to build an instance configuration file (ICF) and an
application definition file (ADF). The ICF contains information about the instance used
to run the application, the SQL Server hosting the instance, the path to files used by the
application, and parameters you can use to build an application once but reuse many
times by changing parameter values. The ADF contains information describing the struc-
ture of database objects related to events, subscriptions, and notifications, in addition to
information about components used to run the application.

In the following sections, we’ll review the sections of an ICF and ADF file individually and
then show you how to construct these files to build a simple Notification Services appli-
cation that sends notifications to subscribers interested in monitoring the sales activity of
customers in a specific sales territory. This notification application monitors all sales
transactions and records events when sales are made. When a subscription matches any
of these events, the application generates a notification, applies formatting to the notifi-
cation, and sends it to the subscribing sales representative.

More Info For more in-depth information about Notification Services, read
Microsoft SQL Server 2005 Notification Services, by Shyam Pather (Sams, 2006).

Creating an Instance Configuration File
Each application must be associated with a Notification Services instance, so that’s where
we begin our development. When you build an application using XML, the Notification
Services instance requires an ICF to define the name of the instance, identify and config-
ure the databases hosting the instance, specify the applications to manage within the
instance, and provide configuration settings for protocols and delivery channels used by
the instance.

On the CD The following sections illustrate the code required to develop an
ICF. You will find a complete sample ICF file, SalesActivityICF.xml, on the book’s
companion CD in the \Scripts\Chapter 24 folder.

762 Part V Microsoft SQL Server 2005 Business Intelligence
Starting a New Instance Configuration File
An ICF file describes a single instance of Notification Services in a valid, well-formed XML
file, which means it must contain one or more elements, with the root element containing
all other elements. The root element of an ICF file is NotificationServicesInstance. Addition-
ally, the ICF must conform to the ConfigurationFileSchema which is included as a default
namespace in the file. Here is the code to begin a new ICF, to which we’ll add required ele-
ments later in this chapter:

<?xml version="1.0" encoding="utf-8"?>

<NotificationServicesInstance

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.microsoft.com/MicrosoftNotificationServices/
ConfigurationFileSchema">
 <!—- Insert required elements here -->

</NotificationServicesInstance>

Note Rather than type each section and element directly into the file, you can
find a basic template to use as a starting point for developing an ICF in the topic
“Minimal ICF Template” in SQL Server Books Online. A template that includes all
optional sections is available in the “Complete ICF Template” topic. If you type the
code rather than use a template, take care not to add white space to the text on
any line.

Adding an Instance Name
Each SQL Server instance can host one or more Notification Services instances. Accord-
ingly, each Notification Services instance requires a unique name. By default, the instance
name is also used as the name of the Windows service for the instance and as part of the
name for the database used to store instance data. For this reason, you must conform to
certain naming guidelines when specifying a name for the Notification Services instance.
Specifically, the length of the name cannot exceed 64 characters and cannot contain quo-
tation marks. Standard naming rules for object identifiers also apply. Here is the syntax
for an instance named SalesActivity, using the required element InstanceName:

<InstanceName>SalesActivity</InstanceName>

Defining the Host SQL Server Instance
Instance metadata and subscriber data is stored in a database for a specific Notification
Services instance. Each application also has its own metadata as well as event, subscrip-
tion, and notification data that must be stored in a database. Here is the syntax for the
required element SqlServerSystem using a parameter instead of a specific value:

Chapter 24 Notification Services and Service Broker 763
<SqlServerSystem>%_DBEngineInstance_%</SqlServerSystem>

In this example, %_DBEngineInstance_% is a parameter for which you can optionally
define a default value in the ParameterDefaults section of the ICF, as explained later in this
chapter. By including an underscores in the parameter name, you separate the name
from the percent symbols and can therefore more easily read the name. You can also over-
ride the default value when you deploy the instance on the Notification Services server.

Note Whether you add the SQL Server instance here or specify an instance as
a parameter value elsewhere, be sure to use the SQL Server instance name, not
its alias or IP address. If the SQL Server instance is in a failover cluster, use the vir-
tual server name.

Defining the Instance Database
Typically, Notification Services creates databases to host the instance and application
databases described in the previous section. The Database section of the ICF is optional.
If you omit this section from the ICF, Notification Services creates a database named
<InstanceName>NSMain</InstanceName> using the model database as a template. The
name you provide in the InstanceName element of the ICF becomes part of the database
name, such as SalesActivityNSMain to continue the previous example. If you prefer a dif-
ferent name, you must include the Database section and add the DatabaseName and Sche-
maName elements to this section. You can also use additional elements to specify
database properties, such as filegroups and log files, if the model database properties are
not sufficient for your application’s needs. As an alternative, you can use the Database sec-
tion of the ICF to specify the name and schema of an existing database in which Notifi-
cation Services will create instance objects.

More Info For more information about using elements to define the instance
database, refer to the topic “Database Element (ICF)” in SQL Server Books Online.

Defining Hosted Applications
A single Notification Services instance can host one or more applications. Each applica-
tion hosted by one instance shares subscribers and delivery channels to simplify and cen-
tralize administration. Using the ICF, you use the Applications section to identify which
applications are hosted by the instance by providing a name for the ApplicationName ele-
ment, a path to the ADF using the ApplicationDefinitionFilePath element, and a path to the
directory containing supplemental files for the application using the BaseDirectoryPath
element. You can provide this information directly in the ICF, or you can use parameters
to reuse this ICF in other environments. Here is the syntax for the Applications section of
the ADF for the TerritorySales application using parameters for the paths:

764 Part V Microsoft SQL Server 2005 Business Intelligence
<Applications>

 <Application>

 <ApplicationName>TerritorySales</ApplicationName>

 <BaseDirectoryPath>%_InstancePath_%</BaseDirectoryPath>

 <ApplicationDefinitionFilePath>

%_InstancePath_%\TerritorySales\TerritorySalesADF.xml

 </ApplicationDefinitionFilePath>

 </Application>

</Applications>

In this example, %_InstancePath_% is another parameter for which you can provide a
value in the ParameterDefaults section or when you create the instance. When you create
the ADF, you must place the file in the path specified here, or the application will fail.

Defining Delivery Channels
A delivery channel is an endpoint to which Notification Services delivers notifications
using a specified protocol. A Notification Services instance can support multiple delivery
channels. When a subscriber creates a subscription, a device is associated with the sub-
scription, such as an e-mail account. The selection of the device determines which deliv-
ery channel will be used to send notifications to that subscriber. Each delivery channel
requires a unique name and is associated with a delivery protocol. If the delivery protocol
requires arguments, you must also include values for these arguments in the ICF. Notifi-
cation Services includes two built-in delivery protocols, SMTP Delivery and File Delivery.
Here is the syntax for using the File Delivery protocol, including an argument to specify
the file name receiving notifications:

<DeliveryChannels>

 <DeliveryChannel>

 <DeliveryChannelName>FileChannel</DeliveryChannelName>

 <ProtocolName>File</ProtocolName>

 <Arguments>

 <Argument>

 <Name>FileName</Name>

 <Value>

 %_InstancePath_%\TerritorySales\Notifications\FileNotifications.htm
 </Value>

 </Argument>

 </Arguments>

Chapter 24 Notification Services and Service Broker 765
 </DeliveryChannel>

</DeliveryChannels>

Notice this example sends notifications to a file in a subdirectory of the instance path, but
you can certainly define any directory and file name that meets your needs. You must
grant the Notification Services engine write permissions to the defined directory, as
explained later in this chapter.

Note You can find instructions for defining a delivery channel using SMTP Deliv-
ery in the SQL Server Books Online topic, “Defining an SMTP Delivery Channel.”

You can also use custom delivery protocols if you include the definition in a Protocols section
of the ICF. This section is normally omitted when you use only the built-in delivery protocols.

Adding Parameter Default Values
By using parameters in an ICF, you can make your applications more portable and flexi-
ble. For example, in the previous examples, %_InstancePath_% is used to define the
path once. The same path can then be used as a value for multiple elements. When you
need to change the instance path, you need only to change the parameter value once, but
the change applies to many values in the ICF. You can use parameters without including
default values in the ICF, but instance deployment is made easier if you do include
parameter defaults. Even if you include them, you can override the default values when
you deploy the instance. Here is the syntax for assigning a default value, C:\NS, to the
%_InstancePath_% parameter:

<ParameterDefaults>

 <Parameter>

 <Name>_InstancePath_</Name>

 <Value>C:\NS</Value>

 </Parameter>

</ParameterDefaults>

Creating an Instance Configuration File by Using Visual Studio
You can use your favorite XML editor or Visual Studio to create a new ICF. You can also
edit an ICF by opening the file in SQL Server Management Studio. To begin a new ICF
using Visual Studio, follow these steps:

1. Using Windows Explorer, create a directory for your Notification Services instance
and applications, such as C:\NS. If you prefer a different location or name, be sure
to change the default parameter value for %_InstancePath_% in the ICF.

766 Part V Microsoft SQL Server 2005 Business Intelligence
2. Click Start, point to All Programs, point to Microsoft SQL Server 2005, and then
click SQL Server Business Intelligence Development Studio. Despite its name in the
Microsoft SQL Server 2005 program group, this item is actually a shortcut to Visual
Studio.

3. Insert the CD-ROM provided with this book into your CD-ROM drive.

4. On the File menu, point to Open, and then select File.

5. In the Open File dialog box, navigate to the CD-ROM drive, open the Scripts\Chap-
ter 24 folder, select the SalesActivity.ICF file, and then click Open. Here is the code
in the file:

<?xml version="1.0" encoding="utf-8"?>.

<NotificationServicesInstance

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.microsoft.com/MicrosoftNotificationServices/ConfigurationFileSchema">

 <InstanceName>SalesActivity</InstanceName>

 <SqlServerSystem>%_DBEngineInstance_%</SqlServerSystem>

 <Applications>

 <Application>

 <ApplicationName>TerritorySales</ApplicationName>

<BaseDirectoryPath>%_InstancePath_%</BaseDirectoryPath>

 <ApplicationDefinitionFilePath>

%_InstancePath_%\TerritorySales\TerritorySalesADF.xml

 </ApplicationDefinitionFilePath>

 <Parameters>

 <Parameter>

 <Name>_DBEngineInstance_</Name>

 <Value>%_DBEngineInstance_%</Value>

 </Parameter>

 <Parameter>

 <Name>_InstancePath_</Name>

<Value>%_InstancePath_%\TerritorySales</Value>

 </Parameter>

Chapter 24 Notification Services and Service Broker 767
 </Parameters>

 </Application>

 </Applications>

 <DeliveryChannels>

 <DeliveryChannel>

<DeliveryChannelName>FileChannel</DeliveryChannelName>

 <ProtocolName>File</ProtocolName>

 <Arguments>

 <Argument>

 <Name>FileName</Name>

 <Value>

%_InstancePath_%\TerritorySales\Notifications\FileNotifications.htm

 </Value>

 </Argument>

 </Arguments>

 </DeliveryChannel>

 </DeliveryChannels>

 <ParameterDefaults>

 <Parameter>

 <Name>_InstancePath_</Name>

 <Value>C:\NS</Value>

 </Parameter>

 </ParameterDefaults>

</NotificationServicesInstance>

6. On the File menu, select Save SalesActivityICF.xml As. In the File Name dialog
box, type C:\NS\SalesActivityICF.xml, and then click Save. Your ICF file is now
complete.

Creating an Application Definition File
The ADF is the main file used to describe the events, rules, subscriptions, and rules for
notification that comprise a Notification Services application. As previously mentioned in
this chapter, Notification Services uses a SQL Server database to manage the tasks per-
formed by the application and to store associated data. The ADF defines the schema of

768 Part V Microsoft SQL Server 2005 Business Intelligence
the database objects and the queries used to collect events, match events to subscrip-
tions, and generate notifications. You can optionally add indexes to improve application
performance.

A basic ADF file includes definitions for an event class, a subscription class, a notification
class, one or more providers, a generator, distributors, and application execution settings.
Specific information about each of these definitions is provided in the following sections
in which we walk you through the process of building an ADF. By default, Notification
Services creates a database for the application named <InstanceName><ApplicationName>
using the model database as a template. You can override this default behavior by includ-
ing a Database section in the ADF, just as you can in the ICF. In the example application
we’re building, we’ll let Notification Services create a database, so we’ll omit this section
and focus only on the basic requirements.

Note For more information about using elements to define the application
database, refer to the topic “Database Element (ADF)” in SQL Server Books
Online.

On the CD The following sections illustrate the code required to develop an
ADF. You will find a complete sample ADF file, TerritorySalesADF.xml, on the
book’s companion CD in the \Scripts\Chapter 24 folder.

Starting a New Application Definition File
An ADF is an XML file just like the ICF, so you can use any XML editor or Visual Studio
to create and edit the file. You can also edit the file using SQL Server Management Studio.
The root element for an ADF file is Application. An ADF must conform to the Configura-
tionFileSchema, which is included as a default namespace in the file. Here is the code to
begin a new ADF, to which we’ll add required elements later in this chapter:

<Application

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.microsoft.com/MicrosoftNotificationServices/ApplicationDefinitionFileSchema">

 <!—- Insert required elements here -->

</Application>

Note As with the ICF templates, you can find two templates in SQL Server
Books Online to help you build an ADF more rapidly. Locate the topics “Minimal

Chapter 24 Notification Services and Service Broker 769
ADF Template” and “Complete ADF Template” to find templates you can copy into
your ADF file.

Adding an Event Class
First, you need to understand how to collect events from a source. A Notification Services
event provider allows you to query a data source and return the results as events to your
application. If the source data is in an XML format or in a relational database, you can
use the built-in providers to access the data for insertion into the Notification Services
databases. Otherwise, you need to develop a custom provider and include it in your
application.

Next, you define an event class to describe the properties of the tables, views, basic
indexes, and stored procedures used to store and manage events in the application data-
base. If you need to track different types of events within a single application, you can cre-
ate separate event classes. An event class has several elements:

■ EventClasses Contains one or more EventClass elements to define event classes

■ EventClass Contains several child elements to define a single event: EventClass-
Name, Schema, FileGroup, IndexSqlSchema, ChronicleRule, and Chronicles

■ EventClassName Defines the name of table and view objects in the application
database related to an event; must be unique and must conform to standard nam-
ing rules for database objects

■ Schema Contains Field elements used for a single event

■ Field Contains several elements defining a column in tables and views used for
storing and displaying information about an event: FieldName, FieldType, and Field-
TypeMods

■ FieldName Defines the name of a field; must confirm to SQL Server identifier
rules

■ FieldType Defines a SQL Server data type for a field

■ FieldTypeMods Defines a table column modifier for a field; must conform to
T-SQL syntax

■ IndexSqlSchema Contains one or more SqlStatement elements used to create
indexes on an event table

■ SqlStatement Contains a T-SQL statement used by Notification Services to cre-
ate an index on an event table

770 Part V Microsoft SQL Server 2005 Business Intelligence
More Info This list contains only elements we’ll be using in the sample appli-
cation in this chapter. You can learn more about the other elements by locating
the element name in SQL Server Books Online index, such as “FileGroup Element.”

The definition of additional indexes to be created by Notification Services using the
IndexSqlSchema and SqlStatement elements is optional. Notification Services creates
indexes for the system fields EventID and EventBatchID that are automatically added to
the event. Any custom indexes you define are added only to the view for the event class,
which contains only current batches in the event class table for performance reasons.

Note For more information about adding your own indexes to an event class,
refer to the topic “Defining Indexes for an Event Class” in SQL Server Books
Online.

If your application supports scheduled subscriptions or maintains a history of events,
you can add an event chronicle. An event chronicle is a separate collection of tables, views,
indexes, and stored procedures used to archive events. Archiving events is required for
applications which do not send notifications on detection of events or when a new event
needs to be compared to prior events because events are periodically deleted from the
application database by the vacuuming process.

Note For more information about working with event chronicles, see the topic
“Defining Chronicles for an Event Class” in SQL Server Books Online.

Here is the syntax of an EventClass named MyEventData with a single field MyField to
which an index on MyField is added:

<EventClasses>

 <EventClass>

 <EventClassName>MyEventData</EventClassName>

 <Schema>

 <Field>

 <FieldName>MyField</FieldName>

 <FieldType>nvarchar(35)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <!-- Insert additional fields here -->

Chapter 24 Notification Services and Service Broker 771
 </Schema>

 <IndexSqlSchema>

 <SqlStatement>

 CREATE INDEX MyIndex ON MyEventData (MyField);

 </SqlStatement>

 </IndexSqlSchema>

 </EventClass>

</EventClasses>

Adding a Subscription Class
Subscription data describes the types of events that interest each subscriber and is stored,
like event data, in the application database. Typically, a custom application is developed
to allow subscribers to manage their own subscriptions. When you develop your Notifi-
cation Services application, you need to plan the structure of the data captured by the
subscription management application and determine whether to support multiple types
of subscriptions. As an example, if your Notification Services application monitors infor-
mation about customer sales, you could offer an event-driven subscription and a sched-
uled subscription. For the event-driven subscription, a subscriber could identify the
specific customers triggering a notification when a sale is made. As an additional option,
the subscriber could also create a scheduled subscription to receive a monthly sales activ-
ity report for the customers of interest.

You define a subscription class for each type of subscription in your application. The sub-
scription class defines the properties of the tables, views, basic indexes, and stored pro-
cedures used to store and manage subscriptions in the application database. Like event
classes, a subscription class has core elements that you must define in the ADF:

■ Subscriptionclasses Contains one or more Eventclass elements to define sub-
scription classes

■ Subscriptionclass Contains several child elements to define a single subscrip-
tion: Subscriptionclassname, Schema, Filegroup, Indexsqlschema, Eventrules,
Scheduledrules, and Chronicles

■ Subscriptionclassname Defines the Name Of Table And View Objects in the
application database related to a single subscription; must be unique and must con-
form to standard naming rules for database objects

■ Schema Contains Field elements used for a single subscription

772 Part V Microsoft SQL Server 2005 Business Intelligence
■ Field Contains several elements defining a column in tables and views used for
storing and displaying information about a subscription: FieldName, FieldType, and
FieldTypeMods

■ FieldName Defines the name of a field; must confirm to SQL Server identifier
rules

■ FieldType Defines a SQL Server data type for a field

■ FieldTypeMods Defines a table column modifier for a field; must conform to
T-SQL syntax

■ EventRules Contains one or more EventRule elements to define how notifica-
tions are generated for a single subscription

■ EventRule Contains several child elements to define a notification rule: Rule-
Name, EventClassName, ActionTimeout, and either Action or ConditionAction but
not both

■ RuleName Defines a unique name for the notification rule within the applica-
tion

■ EventClassName Associates an event class with the notification rule

■ Action Contains a T-SQL statement used by Notification Services to create a notifi-
cation

More Info This list contains only elements we’ll be using in the sample applica-
tion in this chapter. You can learn more about the other elements by locating the
element name in SQL Server Books Online index, such as “ScheduledRules Element.”

Most Notification Services applications also include a schema in the subscription class to
enhance the default subscription fields with standard and custom fields. Each type of
field is described in the following list:

■ Default subscription fields The following fields are always added as columns
to the subscription table: SubscriptionID, SubscriberID, and Enabled. These fields are
reserved and must not be duplicated elsewhere in the same subscription class
schema. An additional default field, ScheduleID, is included when the subscription
class has a scheduled rule.

■ Standard subscription fields The following fields are not required, but you can
include them in the subscription class schema to use for formatting and delivering
notifications: DeviceName and SubscriberLocale. If you omit these fields from the
schema, you must provide static values for the device and the locale in the notifica-
tion generation rule.

Chapter 24 Notification Services and Service Broker 773
■ Custom subscription fields Fields that subscribers can use to further custom-
ize a subscription are added as columns to the subscription table. If you include
custom subscription fields in the schema, you must also define the field’s data type
and any applicable field modifiers.

Note For more information about defining fields in the subscription class
schema, refer to the SQL Server Books Online topic “Defining the Subscription
Schema.”

In addition to a schema, most Notification Services applications also include at least one
subscription rule to define the conditions under which a notification is generated. In
principle, a subscription rule creates a notification record by joining an event with a sub-
scription. There are two types of subscription rules:

■ Scheduled rule Generates a notification at a time specified by the subscription
schedule

■ Event rule Generates a notification when a batch of events is collected

Regardless of the type of subscription rule you use, the rule includes an action, which is
the T-SQL query used by Notification Services when it runs the rule. There are two types
of actions you can create:

■ Action Accepts a parameter value defined by the subscriber for use as a limited
filter in the query

■ Condition action Accepts a condition expression for use in the query for use as
a more complex filter in the query

Note If your query includes XML-reserved characters, you need to replace
these characters with the corresponding entity reference. Each entity reference
begins with an ampersand (&) and ends with a semicolon(;). Replace > with >,
replace < with <, replace & with &, and replace % with %.

To improve application performance, you can add custom indexes to be created by Noti-
fication Services. By default, Notification Services creates an index for the system field
ScheduleID. The custom indexes you define are added to the subscription table corre-
sponding to the subscription class.

Note For more information about adding a custom index to the subscription
class, see the topic “Defining Indexes for a Subscription Class” in SQL Server
Books Online.

774 Part V Microsoft SQL Server 2005 Business Intelligence
You can optionally add a subscription chronicle to keep track of previous notifications.
Your subscription rule can check the subscription chronicle before sending a new notifi-
cation, for example, if your application has a requirement to limit the frequency of notifi-
cations. Each subscription class can have one or more chronicle tables.

Note The SQL Server Books Online topic “Defining Chronicles for a Subscrip-
tion Class” provides details about implementing subscription chronicles.

Here is the syntax of a SubscriptionClass named MySubscription with standard fields and
a custom field MyField with an event rule and a basic action, with a comment as a place-
holder for a T-SQL query:

<SubscriptionClasses>

 <SubscriptionClass>

<SubscriptionClassName>MySubscription</SubscriptionClassName>

 <Schema>

 <Field>

 <FieldName>DeviceName</FieldName>

 <FieldType>nvarchar(255)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <Field>

 <FieldName>SubscriberLocale</FieldName>

 <FieldType>nvarchar(10)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <Field>

 <FieldName>MyField</FieldName>

 <FieldType>nvarchar(35)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 </Schema>

 <EventRules>

 <EventRule>

 <RuleName>MyEventRule</RuleName>

Chapter 24 Notification Services and Service Broker 775
 <EventClassName>MyEventData</EventClassName>

 <Action>

 <!-- Insert Transact-SQL Query here -->

 </Action>

 </EventRule>

 </EventRules>

 </SubscriptionClass>

</SubscriptionClasses>

Note An example of a T-SQL query as a basic action in an event rule is pro-
vided later in this chapter in the section titled “Creating an Application Definition
File by Using Visual Studio.”

Adding a Notification Class
The ADF for your application must include a notification class for each type of notification
to be generated. The notification class creates the tables, views, and stored procedures
used to store notifications in the application database. In addition, the notification class
defines the content formatters for notifications and the delivery protocols used to send
the notifications to subscribers. Core properties of the notification class are described in
the following list:

■ NotificationClasses Contains one or more NotificationClass elements to define
notification classes

■ NotificationClass Contains several child elements to define a single notification:
NotificationClassName, Schema, FileGroup, ContentFormatter, DigestDelivery,
MulticastDelivery, NotificationBatchSize, Protocols, and ExpirationAge

■ NotificationClassName Defines the name of table and view objects in the appli-
cation database related to a single notification; must be unique and must conform
to standard naming rules for database objects

■ Schema Contains Field and optional ComputedField elements used for a single
notification table

■ Field Contains several elements defining a column in tables and views used for
storing and displaying information about a notification: FieldName, FieldType, and
DigestGrouping

■ FieldName Defines the name of a field; must confirm to SQL Server identifier
rules

776 Part V Microsoft SQL Server 2005 Business Intelligence
■ FieldType Defines a SQL Server data type for a field

■ ContentFormatter Contains several child elements used by Notification Ser-
vices to format the raw data of a notification as a user-friendly message: ClassName,
AssemblyName, and Arguments

■ ClassName Defines the namespace and class that provides formatting function-
ality if you create a custom content formatter; specify XlstFormatter (without a
namespace) to use the built-in content formatter

■ Arguments Contains one or more Argument elements to be passed by the dis-
tributor to the content formatter

■ Argument Defines a single argument for a content formatter

■ Protocols Contains one or more Protocol elements to be used with the notifica-
tion class

■ Protocol Contains several child elements to define a delivery protocol: Protocol-
Name, Fields, and ProtocolExecutionSettings

■ ProtocolName Defines a name for the delivery protocol which must be a built-
in protocol (SMTP or File) or be specified in the ICF

More Info This list contains only elements we’ll be using in the sample appli-
cation in this chapter. You can learn more about the other elements by locating
the element name in SQL Server Books Online index, such as “DigestGrouping
Element.”

Optionally, the notification class defines the behavior of notifications, such as whether
notifications are sent in individually or in digest mode and whether notifications can be
multicast. You can also manage the size of notification batches to take advantage of par-
allel processing. Finally, you can specify a notification expiration age to end attempts to
deliver a notification after a certain period of time.

When you define the schema for the notification class, you need to take care not to create
custom fields that conflict with the default fields created by Notification Services. The fol-
lowing list describes the types of fields available to your notification class:

■ Default notification fields The following fields are always added as columns to
the notification table: NotificationID, NotificationBatchID, SubscriberID, DeviceName,
and SubscriberLocale. These fields are reserved and must not be duplicated else-
where in the same notification class schema.

■ Custom notification fields Some fields are added as columns to the notifica-
tion table for consolidating information as a notification. Custom fields must match

Chapter 24 Notification Services and Service Broker 777
data created by the subscription rule, and you must define each field’s data type
and any applicable field modifiers.

■ Default notification delivery fields The following fields are added to the noti-
fication table to track notification delivery: DeliveryStatusCode, SentTime, and Lin-
kNotificationID. These fields are reserved and must not be duplicated elsewhere in
the same notification class schema.

■ Computed fields These fields use T-SQL expressions to compute a value for a
notification field immediately before formatting.

Here is the syntax of a NotificationClass named MyAlerts with standard fields and a single
custom field MyField and the File delivery protocol defined in the ICF:

<NotificationClasses>

 <NotificationClass>

 <NotificationClassName>MyAlerts</NotificationClassName>

 <Schema>

 <Fields>

 <Field>

 <FieldName>MyField</FieldName>

 <FieldType>nvarchar(35)</FieldType>

 </Field>

 <!—- Insert additional fields here -->

 </Fields>

 </Schema>

 <ContentFormatter>

 <ClassName>XsltFormatter</ClassName>

 <Arguments>

 <Argument>

 <Name>XsltBaseDirectoryPath</Name>

 <Value>C:\TransformDirectory</Value>

 <Argument>

 <Argument>

 <Name>XsltFileName</Name>

 <Value>MyTransform.xsl</Value>

 <Argument>

778 Part V Microsoft SQL Server 2005 Business Intelligence
 <Argument>

 <Name>DisableEscaping</Name>

 <Value>true</Value>

 <Argument>

 </Arguments>

 </ContentFormatter>

 <Protocols>

 <Protocol>

 <ProtocolName>File</ProtocolName>

 </Protocol>

 </Protocols>

 </NotificationClass>

</NotificationClasses>

Adding an Event Provider
An event provider collects data about events on a periodic basis by sending a query to the
data source. If the query returns results, the result set is added to the event class view as
an event batch. An event provider can be hosted or nonhosted. A hosted event provider
is managed by the Notification Services engine. A nonhosted event provider is an external
application that submits events.

If you use a hosted provider but your data sources are not accessible by the standard
event providers included with Notification Services, you can develop a custom event pro-
vider to retrieve data from these sources. However, you should be able to use these stan-
dard event providers for most event collection scenarios:

■ File System Watcher Event Provider monitors a specified directory for new
event files with an .xml extension, validates data in the file using a specified XML
schema file, writes event data into the event table, and renames the event file to indi-
cate the files has been processed

■ SQL Server Event Provider sends T-SQL queries to a relational data source and
uses the event submission stored procedures to insert the selected events into the
event table; optionally uses T-SQL queries to process events after collection

■ Analysis Services Event Provider sends an MDX query to an Analysis Services
data source, maps the result set to the event class fields, and inserts the result set as
events into the event table; uses either a static MDX query or a dynamic MDX query
generated when the subscription rule fires

Chapter 24 Notification Services and Service Broker 779
Note Details for defining the properties of these event providers are provided in
the topic “Standard Event Providers” and its subtopics in SQL Server Books Online.

Here is the syntax for a hosted SQL Server Event Provider named MyProvider that polls
every 60 seconds for events to be added to the MyEventData event class:

<Providers>

 <HostedProvider>

 <ProviderName>MyProvider</ProviderName>

 <ClassName>SQLProvider</ClassName>

 <SystemName>%_DBEngineInstance_%</SystemName>

 <Schedule>

 <Interval>P0DT00H00M60S</Interval>

 </Schedule>

 <Arguments>

 <Argument>

 <Name>EventsQuery</Name>

 <Value>SELECT MyField FROM MyTable</Value>

 </Argument>

 <Argument>

 <Name>EventClassName</Name>

 <Value>MyEventData</Value>

 </Argument>

 </Arguments>

 </HostedProvider>

</Providers>

When you use a SQL Server event provider, you must provide values for the following
required elements:

■ ProviderName Must be unique

■ ClassName Must be SQLProvider but do not provide an AssemblyName element
as required when you define a content formatter

■ SystemName Name of server to run the event provider, name of virtual server if
running on a failover cluster, or a parameter

780 Part V Microsoft SQL Server 2005 Business Intelligence
■ Interval Frequency used to run event provider using the pattern PnYnMnDT-
nHnMnS, where nY is the number of years, nM is the number of months, nD is the
number of days, T is the date/time separator, nH is the number of hours, nM is the
number of minutes, and nS is the number of seconds.

Note You can optionally include a ProviderTimeout element using a value pat-
terned like the Interval value, such as PT5M to specify a five minute timeout.

Each event provider has a set of elements for which you must provide values. The SQL
Server event provider shown in this example uses only the two required elements, but
accepts a total of three elements in any order. The following are the other acceptable
elements:

■ EventClassName Name of the event class for which this event provider collects
events

■ EventsQuery A T-SQL query or stored procedure used to gather events on the
local server or a linked server; must return columns that map to the event class
fields

■ PostQuery An optional T-SQL query or stored procedure used to process col-
lected event data

Note When using a stored procedure in either of the query arguments, be sure
to include the EXECUTE statement in front of the stored procedure name.

Adding a Generator
Each application has one generator, which is usually hosted by the Windows service run-
ning the Notification Services instance components. The generator is responsible for pro-
cessing the rules defined in the application. Rules are processed in groups, beginning
with event chronicle rules, followed by subscription event rules, and ending with sub-
scription scheduled rules. Here is the basic syntax for a generator:

<Generator>

 <SystemName>%_DBEngineInstance_%</SystemName>

</Generator>

Notice the use of a parameter for the SystemName element. When you configure the
instance, you provide a value for this parameter. The value is either the name of the server

Chapter 24 Notification Services and Service Broker 781
on which the generator runs or the name of the virtual server if the generator is on a
failover cluster. Alternatively, you can use a parameter.

Note By default, the generator thread pool size is 1, which limits processing to
one rule at a time. The maximum thread pool size in Standard Edition is 1, but if
you use Enterprise or Developer edition you can increase the thread pool size to
allow more rules of the same type to process in parallel. All rules of a specific type
must be processed before the next rule type can be processed. If you set the
thread pool size to 0, Notification Services uses as many threads as possible up to
a maximum of 25. To configure thread pool size, add the following code to the
Generator section of the ADF.

<ThreadPoolSize>0</ThreadPoolSize>

Adding a Distributor
Each application has at least one distributor. The distributor manages the formatting and
delivery of notifications. If you have a scale-out configuration to run a Notification Services
instance, you can run one distributor on each computer using the instance’s Windows ser-
vice if you are using Enterprise or Developer edition. Using multiple distributors is recom-
mended when you have a high volume of notifications requiring complex formatting.

In the ADF, you define the time interval, called a quantum, used by the distributor to
check for new notifications. If notifications are available, the distributor calls the content
formatter defined in the ADF to format the data and sends the results to the delivery
channel. If the notifications cannot be distributed and no expiration age is configured,
the distributor tries again at the next interval.

Here is the basic syntax for a distributor with a quantum configured for 15 seconds.

<Distributors>

 <Distributor>

 <SystemName>%_DBEngineInstance_%</SystemName>

 <QuantumDuration>PT15S</QuantumDuration>

 </Distributor>

</Distributors>

The value for SystemName element is a parameter, as shown in this example, or the
name of the server running the distributor. If the distributor is on a failover cluster, use
the virtual server name. The QuantumDuration element defines a time interval in the
formatPnYnMnDTnHnMnS, as described previously in this chapter in the section titled
“Adding an Event Provider.”

782 Part V Microsoft SQL Server 2005 Business Intelligence
Note By default, the distributor uses all available threads. If you use Enterprise
or Developer edition, the thread pool size is unlimited and notifications can be
processed in parallel. Notification Services will determine the optimal thread size
if you don’t configure a value. If you use Standard Edition, the default thread pool
size is 3, but you can lower this value to 1 or 2 to limit parallel processing if your
application produces a low volume of notifications or if you want to minimize the
distributor’s consumption of system resources. To configure thread pool size for 2
threads, add the following code to the Distributor section of the ADF.
<ThreadPoolSize>2</ThreadPoolSize>

Configuring Application Execution Settings
Application execution settings can improve the performance of your application and
manage the volume of data accumulated by the application. Although configuring appli-
cation execution settings for your application is optional, you should at minimum config-
ure the following elements:

■ ApplicationExecutionSettings Contains several optional child elements to con-
figure execution settings for the application: QuantumDuration, ChronicleQuantum-
Limit, SubscriptionQuantumLimit, ProcessEventsInOrder, PerformanceQueryInterval,
EventThrottle, SubscriptionThrottle, NotificationThrottle, DistributorLogging, and Vacuum

■ QuantumDuration Applies to the generator to define the frequency of firing
event and subscription rules; independent of the distributor quantum duration

■ DistributorLogging Contains child elements used to log delivery information
for all deliveries which consume database resources: LogBeforeDeliveryAttempts,
LogStatusInfo, and LogNotificationText; enabled by default and should be disabled if
your service level agreements don’t require this information because all failed deliv-
eries are already logged

■ LogBeforeDeliveryAttempts Indicates whether a row should be inserted into
the distribution log before notification delivery

■ LogStatusInfo Indicates whether a row should be inserted into the distribution
log for all deliveries or failed deliveries only

■ LogNotificationText Indicates whether notification text ix logged for all deliv-
eries or failed deliveries only

■ Vacuum Contains child elements used to vacuum data from the event, notifica-
tion, and distribution tables and related control tables in the application: Retention-
Age and VacuumSchedule

■ RetentionAge Defines a minimum retention age for application data

Chapter 24 Notification Services and Service Broker 783
■ VacuumSchedule Contains the Schedule element to define the vacuuming
schedule to remove data that is older than the specified retention age

■ Schedule Contains the StartTime and Duration elements that are used to define
the vacuuming schedule

■ StartTime Defines the start time in Universal Coordinated Time (UTC) format
for daily vacuuming

■ Duration Defines the length of the vacuuming period in the format PnYn-
MnDTnHnMnS

Note For more information about these and other application execution set-
tings, refer to the SQL Server Books Online topic, “Specifying Application Execu-
tion Settings.”

Here is the syntax for the ApplicationExecutionSettings section to specify a quantum dura-
tion of 15 seconds, disable distributor logging for normal deliveries, and remove data
older than one day beginning at 11 P.M. for a duration of two hours.

<ApplicationExecutionSettings>

 <QuantumDuration>PT15S</QuantumDuration>

 <DistributorLogging>

 <LogBeforeDeliveryAttempts>false</LogBeforeDeliveryAttempts>

 <LogStatusInfo>false</LogStatusInfo>

 <LogNotificationText>false</LogNotificationText>

 </DistributorLogging>

 <Vacuum>

 <RetentionAge>P1D</RetentionAge>

 <VacuumSchedule>

 <Schedule>

 <StartTime>23:00:00</StartTime>

 <Duration>P0DT02H00M00S</Duration>

 </Schedule>

 </VacuumSchedule>

 </Vacuum>

</ApplicationExecutionSettings>

784 Part V Microsoft SQL Server 2005 Business Intelligence
Creating an Application Definition File by Using Visual Studio
You can use your favorite XML editor or Visual Studio to create a new ADF, and you can
edit an existing ADF by opening the file in SQL Server Management Studio. To begin a
new ADF using Visual Studio, follow these steps:

1. Using Windows Explorer, create a folder for your Notification Services application,
such as C:\NS\TerritorySales, for this example.

2. Create a folder for the file delivery of notifications, Notifications, in the C:\NS\Ter-
ritorySales folder.

3. In the Start menu, point to All Programs, point to Microsoft SQL Server 2005, and
then click SQL Server Business Intelligence Development Studio. Despite its name
in the Microsoft SQL Server 2005 program group, this item is actually a shortcut to
Visual Studio.

4. Insert the companion CD provided with this book into your CD-ROM drive.

5. On the File menu, point to Open, and then select File.

6. In the Open File dialog box, navigate to the CD-ROM drive, open the Scripts\Chap-
ter 24 folder, select the TerritorySalesADF.xml file, and then click Open. Here is the
code in the file.

<?xml version="1.0" encoding="utf-8"?>.

<Application

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.microsoft.com/MicrosoftNotificationServices/ApplicationDefinitionFileSchema">

 <EventClasses>

 <EventClass>

 <EventClassName>TerritorySalesData</EventClassName>

 <Schema>

 <Field>

 <FieldName>Territory</FieldName>

 <FieldType>nvarchar(50)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <Field>

Chapter 24 Notification Services and Service Broker 785
 <FieldName>CustomerName</FieldName>

 <FieldType>nvarchar(100)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <Field>

 <FieldName>OrderDate</FieldName>

 <FieldType>datetime</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <Field>

 <FieldName>SalesOrderNumber</FieldName>

 <FieldType>nvarchar(25)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <Field>

 <FieldName>SalesAmount</FieldName>

 <FieldType>money</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 </Schema>

 <IndexSqlSchema>

 <SqlStatement>

 CREATE INDEX MyIndex ON

 TerritorySalesData (Territory);

 </SqlStatement>

 </IndexSqlSchema>

 </EventClass>

 </EventClasses>

 <SubscriptionClasses>

 <SubscriptionClass>

 <SubscriptionClassName>

 SalesActivityTerritory

786 Part V Microsoft SQL Server 2005 Business Intelligence
 </SubscriptionClassName>

 <Schema>

 <Field>

 <FieldName>DeviceName</FieldName>

 <FieldType>nvarchar(255)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <Field>

 <FieldName>SubscriberLocale</FieldName>

 <FieldType>nvarchar(10)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 <Field>

 <FieldName>Territory</FieldName>

 <FieldType>nvarchar(50)</FieldType>

 <FieldTypeMods>not null</FieldTypeMods>

 </Field>

 </Schema>

 <EventRules>

 <EventRule>

 <RuleName>TerritoryEventRule</RuleName>

<EventClassName>TerritorySalesData</EventClassName>

 <Action>

 INSERT INTO TerritoryAlerts(SubscriberId,

 DeviceName, SubscriberLocale, Territory,

 CustomerName, OrderDate, SalesOrderNumber,

 SalesAmount)

 SELECT s.SubscriberId, s.DeviceName,

 s.SubscriberLocale, e.Territory,

 e.CustomerName, e.OrderDate,

 e.SalesOrderNumber, e.SalesAmount

 FROM TerritoryData e, SalesActivityTerritory s

Chapter 24 Notification Services and Service Broker 787
 WHERE e.Territory = s.Territory;

 </Action>

 </EventRule>

 </EventRules>

 </SubscriptionClass>

 </SubscriptionClasses>

 <NotificationClasses>

 <NotificationClass>

<NotificationClassName>TerritoryAlerts</NotificationClassName>

 <Schema>

 <Fields>

 <Field>

 <FieldName>Territory</FieldName>

 <FieldType>nvarchar(50)</FieldType>

 </Field>

 <Field>

 <FieldName>CustomerName</FieldName>

 <FieldType>nvarchar(100)</FieldType>

 </Field>

 <Field>

 <FieldName>OrderDate</FieldName>

 <FieldType>datetime</FieldType>

 </Field>

 <Field>

 <FieldName>SalesOrderNumber</FieldName>

 <FieldType>nvarchar(25)</FieldType>

 </Field>

 <Field>

 <FieldName>SalesAmount</FieldName>

 <FieldType>money</FieldType>

 </Field>

 </Fields>

788 Part V Microsoft SQL Server 2005 Business Intelligence
 </Schema>

 <ContentFormatter>

 <ClassName>XsltFormatter</ClassName>

 <Arguments>

 <Argument>

 <Name>XsltBaseDirectoryPath</Name>

<Value>%_InstancePath_%\TerritorySales</Value>

 </Argument>

 <Argument>

 <Name>XsltFileName</Name>

 <Value>TerritoryTransform.xslt</Value>

 </Argument>

 </Arguments>

 </ContentFormatter>

 <Protocols>

 <Protocol>

 <ProtocolName>File</ProtocolName>

 </Protocol>

 </Protocols>

 </NotificationClass>

 </NotificationClasses>

 <Providers>

 <HostedProvider>

 <ProviderName>TerritoryProvider</ProviderName>

 <ClassName>SQLProvider</ClassName>

 <SystemName>%_DBEngineInstance_%</SystemName>

 <Schedule>

 <Interval>P0DT00H00M30S</Interval>

 </Schedule>

 <Arguments>

 <Argument>

 <Name>EventsQuery</Name>

Chapter 24 Notification Services and Service Broker 789
 <Value>

 SELECT t.Name AS Territory,

 c.LastName + ‘, ‘ + c.FirstName

 AS CustomerName,

 OrderDate, SalesOrderNumber, SubTotal

 AS SalesAmount

 FROM AdventureWorks.Sales.SalesOrderHeader so

 JOIN AdventureWorks.Sales.SalesTerritory t

 ON so.TerritoryID = t.TerritoryID

 JOIN AdventureWorks.Person.Contact c

 ON c.ContactID = so.CustomerID

 WHERE OrderDate = ‘2006-04-30’

 </Value>

 </Argument>

 <Argument>

 <Name>EventClassName</Name>

 <Value>TerritorySalesData</Value>

 </Argument>

 </Arguments>

 </HostedProvider>

 </Providers>

 <Generator>

 <SystemName>%_DBEngineInstance_%</SystemName>

 </Generator>

 <Distributors>

 <Distributor>

 <SystemName>%_DBEngineInstance_%</SystemName>

 <QuantumDuration>PT15S</QuantumDuration>

 </Distributor>

 </Distributors>

 <ApplicationExecutionSettings>

790 Part V Microsoft SQL Server 2005 Business Intelligence
 <QuantumDuration>PT15S</QuantumDuration>

 <DistributorLogging>

<LogBeforeDeliveryAttempts>false</LogBeforeDeliveryAttempts>

 <LogStatusInfo>false</LogStatusInfo>

 <LogNotificationText>false</LogNotificationText>

 </DistributorLogging>

 <Vacuum>

 <RetentionAge>P1D</RetentionAge>

 <VacuumSchedule>

 <Schedule>

 <StartTime>23:00:00</StartTime>

 <Duration>P0DT02H00M00S</Duration>

 </Schedule>

 </VacuumSchedule>

 </Vacuum>

 </ApplicationExecutionSettings>

</Application>

In this example, the event class TerritorySalesData stores the following data col-
lected about sales: Territory, CustomerName, OrderDate, SalesOrderNumber and Sale-
sAmount. This data is collected by the hosted provider, TerritoryProvider, based on a
query that captures information based on the last order date. This query would
require modification in a production environment to collect only new events, but it
suits our purposes here as an example. This query will fail as written unless you
give the service account running the instance permissions to read the Adventure-
Works database. In a production system, you might choose to implement an event
chronicle and then select only source records with a SalesOrderNumber greater than
the last one in the event chronicle. When the subscription rule fires, as defined in
the subscription class, SalesActivityTerritory, event data is compared to subscription
data, and a notification containing all fields is created for each subscriber and
inserted into the view for the TerritoryAlerts notification class.

Note Use a stored procedure instead of a query as the EventsQuery value
to simplify maintenance of the business logic used to collect events.

Chapter 24 Notification Services and Service Broker 791
7. On the File menu, select Save TerritorySalesADF.xml as type C:\NS\Territo-
rySales\TerritorySalesADF.xml in the File Name dialog box, and then click Save.
Your ADF file is now complete.

Creating an XSLT File
The Notification Services content formatter requires an XSLT file to transform the raw
notification data into a nicely formatted message. You configure the application to use an
XSLT in the ContentFormatter section of a notification class.

On the CD You will find a complete sample XSLT file, TerritoryTransform.xslt,
on the book’s companion CD in the \Scripts\Chapter 24 folder.

To begin a new XSLT using Visual Studio, follow these steps:

1. Click Start, point to All Programs, point to Microsoft SQL Server 2005, and then
click SQL Server Business Intelligence Development Studio. Despite its name in the
Microsoft SQL Server 2005 program group, this item is actually a shortcut to Visual
Studio.

2. Insert the companion CD provided with this book into your CD-ROM drive.

3. On the File menu, point to Open, and then select File.

4. In the Open File dialog box, navigate to the CD-ROM drive, open the Scripts\Chap-
ter 24 folder, select the TerritoryTransform.xslt file, and then click Open. Here is
the code in the file.

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="notifications">

 <html>

 <body>

 <xsl:apply-templates/>

 <i>AdventureWorks Territory Sales Notifications</i>

 </body>

 </html>

</xsl:template>

<xsl:template match="notification">

792 Part V Microsoft SQL Server 2005 Business Intelligence
 On <xsl:value-of select="OrderDate" />,

 <xsl:value-of select="CustomerName" />

 placed order <xsl:value-of select="SalesOrderNumber" />

 for $<xsl:value-of select="SalesAmount" />

 in <xsl:value-of select="Territory" />

</xsl:template>

</xsl:stylesheet>

Note For more information about using an XSLT file to format notifica-
tions, see “Creating XSLT Files” in SQL Server Books Online.

5. On the File menu, select Save TerritoryTransform.xslt as type C:\NS\Territo-
rySales\TerritoryTransform.XSLT in the File Name dialog box, and then click Save.

Using Notification Services Applications
If you built your Notification Services application using NMO, you can also use NMO to
deploy and manage your application, but this type of programmability is beyond the
scope of this book. In the following sections, we’ll show you how to use SQL Server Man-
agement Studio to deploy Notification Services applications created based on ICF and
ADF files on a single server. We’ll also show you how to simulate adding subscribers and
subscriptions and submitting events, so you can view notifications generated by the
application.

Deploying a Notification Services Application
Once the ICF and ADF are prepared, you are ready to deploy your Notification Services
application. First, you create a new Notification Services instance to a server. When a
new instance is created or a new application is added to an instance, Notification Ser-
vices creates databases and database objects according to the definitions in the ICF and
ADF. After the databases are created, you configure security for Notification Services to
manage data in these databases and grant permissions to directories on the file system

Chapter 24 Notification Services and Service Broker 793
as needed. When the databases are created and security is configured, you can start the
application.

Installing a Notification Services Engine
The Notification Services engine is either a Windows service that you create when you
register the instance on a computer or a process hosted by a custom application. You
must install and run the Notification Services engine on each computer specified by the
SystemName values in the ADF. When you start the Notification Services engine, it con-
nects to the instance and application databases to determine which components are
enabled and which enabled components are configured to run on the local server. Noti-
fication Services builds the instance and application databases and creates objects for the
event, subscription, and notification classes. To follow this example, you must first com-
plete all steps in the section “Developing Notification Services Applications.” To install
the Notification Services engine for the application created in the previous sections of
this chapter, follow these steps:

1. Start SQL Server Management Studio. In the Connect To Server dialog box, select
the name of the SQL Server 2005 server hosting the Notification Services instance
in the Server Name drop-down list, select the applicable authentication mode, and
provide credentials if required.

2. In Object Explorer, right-click Notification Services, and then click New Notifica-
tion Services Instance.

3. Click Browse, navigate to the folder containing the instance configuration file,
which in this example is C:\NS, and open the SalesActivityICF.xml file.

4. Type the name of your SQL Server instance in the Value box for the
DBEngineInstance parameter in the New Notification Services Instance dialog
box, shown in Figure 24-1.

Notice the _InstancePath_ value is provided automatically because the ParameterDe-
faults section of the ICF configured this value. If you saved the ICF and ADF files to
a different folder, you can override the value for this parameter in the New Notifi-
cation Services Instance dialog box by typing a new value.

5. Select the Enable Instance After It Is Created check box, and then click OK.
Enabling an instance allows the instance and application components to run. You
can choose to enable the instance manually later if you prefer. Once Notification
Services builds the databases, the instance will start collecting events. You need to
add subscribers and subscriptions before notifications can be generated, however.

6. When the instance is successfully created, click Close.

794 Part V Microsoft SQL Server 2005 Business Intelligence
Figure 24-1 The New Notification Services Instance dialog box.

Creating a Windows Service Account for a Notification Services
Instance
A Notification Services instance requires at least one user account available to perform
the following functions:

■ Deploy Notification Services instances To create an instance, you must log in
using an account with membership in the local Administrators group in the oper-
ating system and membership in the SQL Server sysadmin role because this task
creates databases and modifies the registry.

Note Other administrative tasks can be performed using an account with
lower privileges. For more information, refer to the topic “Permissions
Required to Deploy and Administer Notification Services” in SQL Server
Books Online.

■ Run the Windows service for the Notification Services Instance This service,
NS$<instancename>, runs the hosted event providers, generator, and distributors
for applications associated with the instance. You can choose between a built-in
account, a local user account, or a domain user account.

Chapter 24 Notification Services and Service Broker 795
Note Microsoft discourages the use of NT AUTHORITY\Local Service, NT
AUTHORITY\Network Service, or the Local System account for running a
Notification Services instance because many services can use these
accounts and gain access to network resources or SQL Server databases
through Notification Services.

■ Log in to a SQL Server instance and access the instance and application
databases You must create a database account for the Windows service using
either Windows or SQL Server authentication and grant permissions to each data-
base used by the instance. If the instance runs on a single server, add the database
account to the NSRunService role for each database. If components are distributed
across multiple servers, you can add the database account on each server to a more
restrictive role as appropriate to the component: NSEventProvider, NSGenerator, or
NSDistributor.

■ Send notifications using the SMTP service If your application sends notifica-
tions using SMTP, the Windows service running the Notification Services instance
must be a member of the local Administrators group.

■ Read and write to the operating system The Windows service running the
Notification Services instance must be able to access the file system. When you reg-
ister the instance, Notification Services grants the following permissions to the ser-
vice account:

❑ Read and execute in the Notification Services folder (<SQL Server install
folder>\90\Notification Services\<n.n.nnn>) and subfolders

❑ Read and write registry keys used by Notification Services

❑ Write to the Windows application log

❑ Read and write in folders used by the File System Watcher Event Provider

❑ Read the folders used by the File Delivery protocol

❑ Read the folders containing XSLT files used by the content formatter

To configure security for the application described in this chapter, we’ll add a service
account for running the Notification Services instance and for connecting to the data-
bases used by this instance. To create the service account, follow these steps:

1. Click Start, point to Administrative Tools, and then click Computer Management.

2. Expand the Local Users And Groups node, right-click the Users folder, and then
select New User.

796 Part V Microsoft SQL Server 2005 Business Intelligence
3. Enter a user name: NSSalesActivity.

4. Add a description: Account used for running the Notification Services Sales
Activity instance.

5. Provide a strong password.

6. Clear the User Must Change Password At Next Logon check box, select the User
Cannot Change Password check box, select the Password Never Expires check box,
and then click Create.

7. Click Close, and then close the Computer Management console.

Granting Permissions to a Notification Services Instance
Your next step is to grant permissions to the Notification Services Windows service to
access these databases. This Windows service needs permissions to log in to the SQL
Server instance and to access the relevant databases so events can be added to the events
table and notifications can be generated. In addition, you need to give the Windows
account the appropriate permissions to the application folder to use the XSLT content
formatter and to write to the notifications folder if you use the File Delivery protocol. To
follow this example, you must first complete all steps in the section “Developing Notifi-
cation Services Applications” and the previous two sections. To grant permissions for the
NS$SalesActivity instance, follow these steps:

1. Start SQL Server Management Studio, and connect to the SQL Server 2005 server
hosting the Notification Services.

2. In Object Explorer, expand Security, right-click Logins, and then click New Login.

3. If your SQL Server instance uses mixed mode authentication, type <server-
name>\NSSalesActivity in the Login Name dialog box, replacing <servername> with
the name of your server. If your SQL Server instance uses SQL Server authentication,
type NSSalesActivity in the Login Name dialog box, select SQL Server Authentica-
tion, and type a strong password in the Password and Confirm Password boxes.

4. Click the User Mapping page, select the check box to the left of the AdventureWorks
database, then select db_datareader in the Database Role Membership list to give
the application’s event provider access to the source database.

5. Select the check box to the left of the SalesActivityNSMain database, and then select
the NSRunService check box in the Database Role Membership list.

6. Select the check box to the left of the SalesActivityTerritorySales database, select the
NSRunService check box in the Database Role Membership list, and then click OK.

7. Open Windows Explorer and navigate to the C:\NS folder.

Chapter 24 Notification Services and Service Broker 797
8. Right-click the TerritorySales folder, select Sharing And Security, click the Security
tab, and then click Add.

9. In the Enter the Object Names to Select box, type <servername>\NSSalesActivity,
where <servername> is the name of your server, and then click OK.

10. With NSSalesActivity selected, clear all permissions in the Allow columns, select
Write in the Allow column, and then click OK, as shown in Figure 24-2.

Figure 24-2 The TerritorySales Properties dialog box.

Starting a Notification Services Instance
Registering the Notification Services instance creates registry entries and performance
counters for the instance. If you are not hosting the Notification Services instance in a
custom application, you create a Windows service when you register the instance and you
associate a Windows user account with the service. Also, if you use SQL Server authenti-
cation on the server hosting the instance and application databases, you must provide
the SQL Server login to associate with the service. To follow this example, you must first
complete all steps in the section “Developing Notification Services Applications” and the
previous three sections. To register the SalesActivity instance, follow these steps:

1. Start SQL Server Management Studio and connect to the SQL Server 2005 server
hosting the Notification Services instance.

798 Part V Microsoft SQL Server 2005 Business Intelligence
2. In Object Explorer, expand Notification Services, right-click SalesActivity, point to
Tasks, and then click Register.

3. In the Register Instance — SalesActivity dialog box, select the Create Windows Ser-
vice check box.

4. In the Account box, type <servername>\NSSalesActivity, where <servername> is
the name of your server, and type the password for this account in the Password
box, as shown in Figure 24-3.

Figure 24-3 The Register Instance — SalesActivity dialog box.

5. Skip this step if your SQL Server instance uses Mixed Mode authentication. Select
SQL Server Authentication, type NSSalesActivity in the Login Name box, and type
the password you created for this login in the Password box.

6. Click OK, and then click Close when the instance registers successfully.

7. Right-click SalesActivity, click Start to start the Windows service, and then click
Close when the service starts successfully.

Testing a Notification Services Application
Using a custom application, you add subscribers and subscription data, which are
required to launch the event collection process. Because developing custom applications

Chapter 24 Notification Services and Service Broker 799
is beyond the scope of this book, we’ll simulate the output of a custom application by
using T-SQL statements to add subscribers, subscriptions, and events to your applica-
tion. If your application is properly designed, the generator will create notifications for
any events that match a subscription, format the notifications as defined by the content
formatter, and send the notification to the delivery channel. In this section, we’ll review
each stage of this process in greater detail.

More Info You can find details about the Notification Services subscription
management API used to build your own custom application in the topic, “Devel-
oping Subscription Management Interfaces” in SQL Server Books Online.

Adding Subscribers
The simplest possible method for adding subscribers to your application is using a T-SQL
query. Rather than work directly with the NSSubscribers table in the instance database,
you use the NSSubscriber view to add, change, or delete subscriber records. Before you
can insert records into this view, subscribers must be enabled, which occurs automati-
cally when you enable the Notification Services instance as described in the previous
topic “Deploying a Notification Services Application.” You can disable and enable sub-
scribers manually when you right-click the instance in the Notification Services folder
(such as SalesActivity to continue the example in this chapter), select Properties, click
Subscribers, and then select or clear the Enable check box.

In addition, each subscriber requires one or more devices to which notifications will be
sent. You use the NSSubscriberDeviceView to add, change, or delete subscriber device
records. You must associate the device with a delivery channel configured for the
instance.

Here is the T-SQL syntax to add a subscriber and a subscriber device to the SalesActivity
instance described previously in this chapter:

USE SalesActivityNSMain;

INSERT INTO dbo.NSSubscriberView (SubscriberId, Enabled)

VALUES (N’TestUser1’, 1);

INSERT INTO dbo.NSSubscriberDeviceView

(SubscriberId, DeviceName, DeviceTypeName,

 DeviceAddress, DeliveryChannelName)

VALUES (N’TestUser1’, N’Work e-mail’, N’e-mail’,

 N’carol2@adventure-works.com’, N’FileChannel’);

800 Part V Microsoft SQL Server 2005 Business Intelligence
Adding Subscriptions
Notifications are generated only when events match a subscription, so you need to cap-
ture subscription information to make it available to your application. As with subscrib-
ers, the simplest way to do this is by using a T-SQL query to add, change, or delete
subscription records in the NS<SubscriptionClassName>View view in the application data-
base. Here is the syntax to add subscriptions to the TerritorySales application described
previously in this chapter:

USE SalesActivityTerritorySales;

INSERT INTO NSSalesActivityTerritoryView

 (SubscriberId, Enabled, DeviceName, SubscriberLocale, Territory)

VALUES

 (N’TestUser1’, N’Enabled’, N’Work e-mail’, N’en-US’, N’Southeast’);

Note This example illustrates a conditional subscription. If your application
supports scheduled subscriptions, the query to insert a subscription record omits
a column for the condition and includes ScheduleStart and ScheduleOccurrence
columns to assign a start date/time and frequency for the schedule. For more
information about scheduled subscriptions, see the SQL Server Books Online
topic “Adding a Subscription.”

Submitting Events
Once you have subscribers and subscriptions added to the instance and application data-
bases, your application is up and running. As events are collected by the application’s
event provider, these events are compared to enabled subscriptions. Because we’re work-
ing with a sample application, we don’t have real events to trigger notifications. Instead,
we’ll simulate sales activity in the AdventureWorks database by submitting events directly
to the stored procedures that manage event batches. In a production system, the event
provider performs this task transparently. Here is the syntax to submit events to the Ter-
ritorySales application described previously in this chapter:

USE SalesActivityTerritorySales;

INSERT INTO dbo.TerritorySalesData (Territory, CustomerName,

 OrderDate, SalesOrderNumber, SalesAmount)

VALUES (N’Southeast’, N’Price, Jeff’, GetDate(), N’SO75160’,42463.53);

To view the batch details, use this code:

USE SalesActivityTerritorySales;

DECLARE @LastBatch bigint;

Chapter 24 Notification Services and Service Broker 801
SET @LastBatch = (SELECT max(EventBatchId) FROM dbo.NSEventBatchView);

EXEC dbo.NSEventBatchDetails

 @EventClassName = TerritorySalesData,

 @EventBatchId = @LastBatch;

Viewing Notifications
When Notification Services finds a match between submitted events and subscriptions,
the generator creates the notifications, sends the notifications to the content formatter
configured for the application, and then sends them to the delivery channels specified in
the subscriptions. When you first test an application, you should use the File Delivery
protocol because it is the easiest to implement and you can easily view the results in a file
first. Once you are certain the application is working correctly with this protocol, you can
then introduce other delivery protocols into your application. To follow this example,
you must first complete all steps in the section “Developing Notification Services Appli-
cations” and the previous six sections. To view notifications for the TerritorySales applica-
tion, follow these steps:

1. Wait at least 30 seconds after submitting events to give Notification Services time to
generate notifications.

2. Start Windows Explorer, navigate to C:\NS\TerritorySales\Notifications, and open
FileNotifications.htm, which is shown in Figure 24-4.

Figure 24-4 The FileNotifications.htm file created by Notification Services.

802 Part V Microsoft SQL Server 2005 Business Intelligence
When you use the File Delivery protocol, all notifications generated for a subscrip-
tion class are added to one file. As additional events are submitted, any resulting
notifications are appended to this file. Notice that there is a header for each notifi-
cation that shows subscription information, such as subscriber ID and device
address. The actual text and formatting of the notification is visible after Body.

3. In SQL Server Management Studio, right-click the instance and then select Disable
when you’re finished testing the application to prevent unnecessary firings of the
rules on your server.

Real World Troubleshooting Notification Services

If the notification file isn’t created, first check to see if there are records in the
NS<applicationname>AlertsNotificationDistribution view. If no records are in the
NS<applicationname>AlertsNotificationDistribution view, make sure events are being
collected properly. Check the queries in your ADF file in the event class and in the
subscription class for logic or syntax errors. Verify there are records in the NS<sub-
scriptionclassname>View view. Look to see whether events matching these subscrip-
tions have been submitted in the NSEventBatchView.

If records exist in the NS<applicationname>AlertsNotificationDistribution view, check
the DeliveryStatusDescription column. If you see notifications with a value “Delivery
failed” in this column, check the Windows Event Viewer’s Application log for more
information. Also, check permissions on the folder to which the notifications file
should be written. If the notification file is created, but is empty, check the XSLT file
used for formatting for accuracy.

If you don’t see a value for DeliveryStatusDescription, check to be sure the Windows
service and Notification Services components are running. In SQL Server Manage-
ment Studio, you can right-click the instance, click Properties, and select the appli-
cation in the Application drop-down list to view whether the components are
enabled. If enable is pending, try restarting the service. Until the components are
enabled, notifications will not generate. Click Windows Services to verify the ser-
vice and associated components are running. You can stop or start the service on
this page.

Notification Services includes several diagnostic tools as stored procedures in both
the instance and application databases. Look for stored procedures beginning with
NSDiagnostic. You can find more information about these stored procedures by
finding the corresponding topic in SQL Server Books Online, such as “NSDiagnos-
ticDeliveryChannel (Transact-SQL).”

Chapter 24 Notification Services and Service Broker 803
What Is Service Broker?
Service Broker is a framework included in SQL Server 2005 you use to develop and man-
age asynchronous messaging applications. An asynchronous messaging application is a
layer between an initiator application, a producer of information, and a target application,
a consumer of information. Because these two applications may not be online at the same
time or may not even be in the same network environment, asynchronous messaging is
used to enable sharing information between them. To facilitate sharing, Service Broker
uses message queues stored in a SQL Server 2005 database to temporarily store messages
from the initiator application. In addition, Service Broker manages the sequence of mul-
tiple messages to ensure they are retrieved only once and in the correct order by the target
application.

To use Service Broker, you must first have an initiator and a target application available.
However, you don’t integrate these applications with Service Broker using an API.
Instead, you independently create Service Broker objects using T-SQL statements or
stored procedures written in T-SQL or any .NET language. Then, you exchange messages
between applications, also by using T-SQL statements. Typically, applications send these
statements using Microsoft ADO .NET.

Service Broker Fundamentals
Service Broker is not itself an application but rather a collection of components that work
together to support external applications that need to exchange messages. In other
words, you build applications that use Service Broker, but you don’t build Service Broker
into applications. The initiator application starts a conversation, a session that can be
maintained indefinitely with a target application. The duration of this session might be
very short-term, lasting only seconds, or very long-term, lasting over a year. Within the
context of this conversation, the two applications share a dialog in which one participant
creates a message, a file in binary or XML format, and the other participant receives it.
Each participant application can be a sender or receiver at any time in the dialog. To send
or receive messages, each application sends T-SQL commands to SQL Server and then
responds to the results.

By leveraging the performance capabilities of SQL Server’s database engine, Service Bro-
ker can efficiently manage messages in the queue without requiring a separate service to
manage distributed transactions. Service Broker does not commit a message operation
until the current transaction commits. In this way, Service Broker can prevent messages
from being sent or received unless the participant commits the transaction. If the trans-
action rolls back, then the message operation is not completed. To take advantage of this

804 Part V Microsoft SQL Server 2005 Business Intelligence
feature, the participant applications must process messages and perform database
updates in one transaction.

Service Broker is also able to use SQL Server’s database security features. Another benefit
of integration into the database engine is the ability to incorporate backups and restora-
tion of the data into standard administrative routines established for SQL Server. Service
Broker is also highly scalable because it can take advantage of multiple instances of SQL
Server and can dynamically adapt its consumption of system resources according to
demand.

Perhaps the most difficult tasks associated with messaging applications is the manage-
ment of access to messages, including the sequence of message delivery and the delivery
of the same message to multiple readers. Service Broker makes sure that each target appli-
cation receives a particular message only once. If multiple messages in the same conver-
sation are in the queue for the same target application, Service Broker ensures the
messages are received in the order in which they were sent. Service Broker allows only
one reader at a time to read messages in a conversation group.

Service Broker Components Overview
There are three types of components used by Service Broker to support messaging
between applications: conversation components, services components, and routing and
security components. Conversation components are components that exist only at run-
time. Service components are persisted database objects used in conversations. Routing
and security components support the messaging infrastructure by managing the mes-
sage exchange process and securing messages in transit.

The following list describes Service Broker’s conversation components:

■ Message Data shared between two applications, such as XML or binary data

■ Dialog Bidirectional conversation between two Service Broker services

■ Conversation A session that persists over time

■ Conversation group A collection of conversations working together on the same
task

The following list describes Service Broker’s service components:

■ Message type Metadata describing a message and optionally validating the con-
tents of the message

■ Contract Metadata describing which message types are allowed in a conversation

■ Queue SQL Server table used to store messages

Chapter 24 Notification Services and Service Broker 805
■ Service An endpoint from which messages are received or to which messages are
sent

The following list describes routing and security components of Service Broker:

■ Remote service bindings Dialog encryption and authorization for conversations
with remote services

■ Route Location information for service to receive messages in a conversation

■ Service broker endpoint SQL Server object used to send and receive messages
across a network using a specific TCP port number

Implementing Service Broker Applications
The process of implementing a Service Broker application includes creating Service Bro-
ker objects and enabling participating applications to send and receive messages from
Service Broker. Development of participating applications and preparing these applica-
tions to send and receive messages using Service Broker is not the focus of this book.
However, you do need to understand how these applications will interact with Service
Broker using T-SQL statements.

In this section, we’ll explore how to implement a very simple Service Broker application
that exchanges messages between two services. By separating the operations of the sys-
tems, the initiating system can simply hand off information and thereby scale to process
more transactions because it doesn’t need to wait for a response from the target system.

More Info You can learn much more about using Service Broker in The Ratio-
nal Guide to SQL Server 2005 Service Broker, by Roger Wolter (Rational Press, 2006).

Creating Service Broker Objects
When you implement a Service Broker application, you create at least two services as
addressable names to perform specific tasks when a conversation between the services is
started. Before you create the services, you create a contract and message types to control
the content and direction of messages between the services, and a queue to store mes-
sages awaiting delivery to the target. If you need to configure routes between services or
encrypt messages, you need to create two more Service Broker objects, routes and remote
service bindings. When you are ready to implement your Service Broker application, you
create all of these objects using Service Broker Data Manipulation Language (DML).

806 Part V Microsoft SQL Server 2005 Business Intelligence
Note Space does not permit inclusion of a complete reference to Service Bro-
ker Data Manipulation Language in this chapter. Instead, the focus is on the gen-
eral usage to provide an overview of using Service Broker. For more information
about creating objects, refer to the applicable topic in SQL Server Books Online.
As an example, to learn more about creating the message type object, refer to
“CREATE MESSAGE TYPE (Transact-SQL).”

Creating Message Types
Each service that will participate in conversations must include message type objects with
the same name. Message type objects are used to validate messages on receipt. If the
method of validation is not specified, any message will be accepted, which is generally not
a good practice. To ensure an application sends or receives messages only of the proper
type, you should specify the validation method to use when you create the message type
object. Your options are to receive an empty message, a message with well-formed XML,
or a message containing XML that conforms to a specified schema. If the contents of a
received message do not validate correctly, Service Broker discards the message and
returns an error message to the service sending the invalid message. Here is the syntax for
creating a message to contain well-formed XML and an empty response message:

USE MyDatabase;

CREATE MESSAGE TYPE MyRequest

 VALIDATION = WELL_FORMED_XML;

CREATE MESSAGE TYPE MyRequestResponse

 VALIDATION = EMPTY;

Note MyDatabase is used here and throughout the sections covering Service
Broker. Be sure to replace this database name with the existing database on your
server in which you intend to execute Service Broker’s T-SQL statements.

Creating a Contract
After you define message types, you create a contract object to specify which message
types can be used in a conversation between services and which participants in the con-
versation can send each message type. When the initiating service starts a conversation,
the service also identifies the contract to govern conversation. Here is the syntax to create
a contract defining the usage of the message types described in the previous section:

USE MyDatabase;

CREATE CONTRACT MyContract

Chapter 24 Notification Services and Service Broker 807
(

 MyRequest SENT BY INITIATOR,

 MyRequestResponse SENT BY TARGET

);

Creating a Queue
A queue is required to store a message until it can be received by a target application. You
must identify the database and schema to store the database and provide a unique name
for the queue. When you create the queue, you can specify whether it is available imme-
diately. You might, for instance, prefer to make the queue unavailable until you have
installed and tested the participating applications. Here is the basic syntax to create a
queue available at creation:

USE MyDatabase;

CREATE QUEUE MyRequestQueue;

An activation stored procedure can be used to read a queue and process messages on
arrival. You must create the activation stored procedure before you create the queue with
which you associate it. Using a stored procedure for queue activation is called internal
activation. Alternatively, you can use external activation by using Service Broker to produce
an event as an indicator to a custom application to start reading the queue.

Note Some applications might not require any type of activation. See the SQL
Server Books Online topic, “Service Broker Activation,” for details concerning
activation options.

Creating a Service
You create a service for each task or set of tasks to be performed. This service is associated
with a queue and a contract so that Service Broker knows which queue receives the mes-
sage and how to enforce the contract. The queue must be in the same database as the ser-
vice. If a service only initiates conversations, you can omit the contract. You can omit the
contract specification if the service will be a target only. Here is the syntax for creating two
services:

USE MyDatabase;

CREATE SERVICE MyRequestService

 ON QUEUE MyRequestQueue (MyContract);

CREATE SERVICE MyResponseService

 ON QUEUE MyRequestQueue (MyContract);

808 Part V Microsoft SQL Server 2005 Business Intelligence
Managing Conversations
While the specific implementation of Service Broker can vary according to application
requirements, the general steps used to send and receive messages are similar. The initia-
tor application starts a conversation and begins sending messages using extended T-SQL
statements for Service Broker operations. The target message also sends statements to
receive messages and to respond, if permitted. In this section, we’ll look at the common
statements used in a conversation.

Starting a Conversation
An initiator application uses the BEGIN DIALOG CONVERSATION statement to define
the endpoint services and the service contract to govern the conversation. First, you
declare a variable for a system-generated conversation handle returned by this statement.
You should start a transaction prior to starting the conversation as a best practice and end
the transaction after sending a message to the queue, as described in the next section.
Here is the syntax for starting a new conversation, which you should combine with the
code for sending a message before executing:

USE MyDatabase;

DECLARE @MyRequestHandle uniqueidentifier;

BEGIN TRANSACTION;

 BEGIN DIALOG CONVERSATION @MyRequestHandle

 FROM SERVICE MyRequestService

 TO SERVICE ‘MyResponseService’

 ON CONTRACT MyContract

 WITH ENCRYPTION = OFF;

If a conversation has already been started previously, you can use the BEGIN DIALOG
statement, using the same syntax shown above, to continue the conversation. Recall that
a conversation persists until it is explicitly ended, as described later in this chapter.

Note By default, the dialog is encrypted. Adding With ENCRYPTION = OFF
allows you to add messages to the queue without certificates in place. You can
omit this argument if you add a certificate to the database. Dialog security is
explained in more detail in the SQL Server Books Online topic “Service Broker
Dialog Security.”

Chapter 24 Notification Services and Service Broker 809
Sending a Message
You can send one or messages as part of the same dialog. You send a message using the
SEND statement and defining the dialog handle, the message type, and the message
data. After creating all messages, add a COMMIT statement to end the transaction. Here
is the syntax for sending a simple message which should be included with the code for
starting a conversation, as shown in the previous section before executing:

SEND ON CONVERSATION @MyRequestHandle

 MESSAGE TYPE MyRequest (N’Here is my request’);

COMMIT;

When you send a message, Service Broker stores the message in the queue you created in
the database. Until messages are received from the queue, you can view the metadata
stored in the queue for sent messages as explained in the section “Querying a Queue”
later in this chapter. The message itself is stored in binary format and cannot be viewed.

Receiving a Message
You can wait indefinitely for messages to arrive in the queue, wait for a specified interval,
or simply request receipt of available messages on demand. You have a variety of options
for using the RECEIVE statement to retrieve only the messages you need at the time you
need them. It is considered a best practice to begin a new transaction before receiving
messages and to commit the transaction after messages have been successfully received.
Here is the syntax for receiving all messages on arrival in the queue:

USE MyDatabase;

BEGIN TRANSACTION;

WAITFOR(

 RECEIVE * FROM MyRequestQueue

);

COMMIT;

Ending Conversations
A conversation persists as long as needed until an END CONVERSATION statement is
used by either the initiator or target application. When one participant receives a message
containing END CONVERSATION, an END CONVERSATION message is sent back in
response. When both participants have sent this type of message, the conversation ends.
At that time, neither participant can send or receive messages using the ended conversa-
tion. If you don’t maintain the conversation handle in the data store for your application,

810 Part V Microsoft SQL Server 2005 Business Intelligence
you can use the sys.conversation_endpoints and sys.services tables to locate the conver-
sation handle. Here is the syntax for ending a conversation where conversation_handle is
the applicable conversation handle.

USE MyDatabase;

END CONVERSATION conversation_handle;

Managing Service Broker Applications
From time to time, you’ll need to perform maintenance on Service Broker applications.
In this section, we’ll review the more commonly used commands for managing your
applications.

Stopping a Service Broker Application
When you stop a Service Broker application, the application prevents initiator applica-
tions from sending messages to the queue and target applications from receiving mes-
sages from the queue. You might need to do this when you need to make updates to the
applications or to an activation stored procedures used by the application. Target appli-
cations that attempt to receive a message from the queue receive an error message.
Incoming messages to the queue are held in the database transmission queue until the
stopped queue becomes available, with no error sent to the initiating application. Here is
the syntax to stop the queue in a Service Broker application:

USE MyDatabase;

ALTER QUEUE dbo.MyRequestQueue WITH STATUS = OFF;

Starting a Service Broker Application
When you create a queue object for a Service Broker application, you may decide to create
in an unavailable state to prevent messages from accumulating before all application
objects are created, or you may have stopped an application using an activation stored
procedure for maintenance reasons. In either case, the process to start the application is
the same. If the queue has messages and has an activation stored procedure, the activa-
tion stored procedure starts immediately. Here is the syntax to restart a Service Broker
application:

USE MyDatabase;

ALTER QUEUE dbo.MyRequestQueue WITH STATUS = ON ;

Chapter 24 Notification Services and Service Broker 811
Backing Up and Restoring a Service Broker Application
When you run backup and restore procedures for the database in which you created the
Service Broker objects, these objects are automatically included with the other database
objects. If your application uses other components that are not part of the database, then
you need to establish a separate procedure for backing up and restoring those compo-
nents. Be aware that some components used by Service Broker are stored on SQL Server
independently of the application database. Specifically, the msdb database contains
routes, while the master database contains Service Broker endpoints and transport secu-
rity configuration.

In addition, Service Broker uses a unique identifier in each database for message delivery.
If you restore a backup as a replacement for a database on the same server, make sure you
don’t change the identifier so that Service Broker applications can locate the database
correctly. If you were to attempt to attach a database with the same identifier as another
database in the same SQL Server instance, message delivery in the database you’re attach-
ing is disabled by SQL Server to prevent two databases from having the same identifier.
To reactive Service Broker on a restored database and retain the existing identifier, use the
following syntax:

ALTER DATABASE MyDatabase SET ENABLE_BROKER;

If you restore the database to a different instance, you need to change the identifier by
using the NEW_BROKER option instead. Any existing conversations will be ended
because those conversations will not be associated with the new identifier.

Querying a Queue
You can use a SELECT statement to query a queue by using the queue name in the FROM
clause as if it were a source table or view. Be sure to use the NOLOCK hint so applications
attempting to read the queue are not blocked inadvertently. However, you cannot use an
INSERT, UPDATE, DELETE, or TRUNCATE statement to modify the queue. Here is an
example to query the queue described earlier in this chapter:

USE MyDatabase;

SELECT * FROM dbo.MyRequestQueue WITH (NOLOCK);

Of course, you need messages in the queue awaiting retrieval to see the results.

Summary
After reading this chapter, you should have a general understanding of how Notification
Services and Service Broker can be used to share information. Whether sending messages

812 Part V Microsoft SQL Server 2005 Business Intelligence
to subscribers when events of interest occur or exchanging messages asynchronously
between applications, these technologies expand the potential of your SQL Server envi-
ronment. The basic examples provided in this chapter are simply a starting point for the
development of your skills with these messaging components. Be sure to read the recom-
mended materials to gain a deeper understanding of Notification Services and Service
Broker in preparation for developing production-ready systems for your organization.

Part VI
High Availability

Chapter 25
Disaster Recovery Solutions .815

Chapter 26
Failover Clustering Installation and Configuration831

Chapter 27
Log Shipping and Database Mirroring .871

Chapter 25

Disaster Recovery Solutions

What Are High Availability and Disaster Recovery?816

Fundamentals of Disaster Recovery and Disaster Survival817

Microsoft SQL Server Disaster Recovery Solutions820

Summary .829

Database administrators are constantly plagued with how to ensure that their business
and mission critical databases are always available. Failure to ensure availability can
adversely affect revenues and customer satisfaction. To protect the company’s data
resources, you must establish an architecture that can account for each component of the
data infrastructure to provide high availability and recoverability. However, high availabil-
ity and disaster recovery are not synonymous concepts, as they each provide a different
level of database protection.

There are many types of protection that provide for many types of disaster scenarios.
Disasters can take the form of a natural disaster such as Hurricane Katrina, or a man-
made disaster such as the DBA deleting a table in the production database when it should
have been deleted in the test database. Whether the disaster is major, such as the loss of
a data center, or as minor as the loss of a single table, the effect can be just as devastating.

There is not one single solution that will protect you from all disasters. You should build
upon a number of technologies to protect you from different failure scenarios. For example,
you might choose to set up a standby database, which is very good. However, this should
not preclude you from using a RAID I/O subsystem to protect you against a disk failure.

Creating a highly available, robust system involves many layers, starting with redundant
components such as disk drives to protect you against disk failure, backups to protect
you against user error, hardware failures and software failures, and redundant data cen-
ters to protect against a large-scale disaster such as the loss of the data center. No one
solution will cover everything.

In addition, the disaster recovery components and plan must be thoroughly documented
and tested. The person putting together the plan might not be available when it is neces-
sary to put it into play; therefore, it must be well documented. The entire IT staff must be
815

816 Part VI High Availability
familiar with and able to implement this plan if necessary. A plan that is based on one per-
son being available is doomed to fail.

So, how does a database administrator decide the level of protection required by the busi-
ness and the methods that should be utilized? In this chapter, we will review how high
availability and disaster recovery differ and what options are available to the Microsoft
SQL Server DBA to implement these solutions.

Note It has always been a good idea to implement a disaster recovery plan,
but it hasn’t always been a priority for companies because of the cost. Because it
was not always a priority, the Sarbanes-Oxley Act of 2002 mandated certain min-
imum standards for disaster recovery, including testing. Many companies always
had disaster recovery planning as a priority, but now they have no choice.

What Are High Availability and Disaster Recovery?
High availability refers to the availability of a system’s resources in the wake of component
failures in that system. Assured system and data accessibility can be achieved by a combi-
nation of solutions that ensure redundancy of hardware and of custom or off-the-shelf
software solutions. To achieve a highly available database system, all single points of fail-
ure must be addressed and a method for failing over to redundant components must be
established. Disaster recovery, on the other hand, refers to the ability to continue to pro-
vide continuous data availability in the event of a disaster in which the primary database
or the entire data center is unrecoverable. A major disaster scenario is a company located
in a coastal town destroyed by a hurricane. Imagine that the company provides to custom-
ers nationwide a critical internet Web application that queried its database. It would be
imperative to the business that this application and data continue to remain available,
despite the fact that its primary site has been destroyed. How would you ensure this? With
a disaster recovery plan.

As mentioned earlier, the key points to address are the single points of failure of your
database system. A single point of failure refers to any component of your system and each
component that, in a failed state, renders your data unavailable. These points can include
computer hardware, software, and the network infrastructure. The most common point
of failure in most computer systems is the hardware. Without redundant hardware, a fail-
ure can stop your database system in its tracks. In a typical server configuration, any com-
ponent, including the CPU, memory, storage, and network interface card, can fail at any
moment. Normally, when this happens, you have to replace the failed part, which can
take as long as a few days, depending on the replacement part’s availability. Typically, this

Chapter 25 Disaster Recovery Solutions 817
is not an option with your business and mission critical database servers. Such a lengthy
downtime can leave a business in ruins.

Note Many hardware vendors have redundancy built into their hardware to
avoid a single point of failure. This is especially true of storage subsystems where
there are redundant caches, redundant busses, redundant disk drives, and redun-
dant cables. Since a disk drive is mechanical in nature, it is the most likely compo-
nent to suffer a physical failure. Thus, if you have a limited budget and are
interested in high availability, the I/O subsystem is a good place to start.

In addition to hardware failure, software can be a single point of failure as well. At some
point in time, a database may become corrupt, or the operating system itself may need
repair or reinstallation. Either can cause the system to be down for a significant amount
of time. A software problem can, under certain conditions, be more devastating than a
hardware problem. In cases where a power failure causes the system to go down for a
short period of time, the system might be back very quickly. If the database were to
become corrupt, a restore must be done, which can take many hours depending on
where the backup is stored and the size of the database.

Real World Plan for the Worst

Consider this: Your datacenter, which hosts all of your mission-critical database
servers, is located on the beautiful east coast of sunny Florida. One day, in early
autumn, Florida’s east coast is devastated by a hurricane. How will your company
continue to do business? In this case, not only is redundant computer hardware
and software necessary, but redundant sites are required as well. Obviously, there
are many things to consider when planning for disaster recovery. Most of it truly
depends on your company’s needs and willingness to spend the money required to
ensure availability. Thus, this involves a commitment all the way up to the CIO and
maybe even the CEO.

Fundamentals of Disaster Recovery and Disaster
Survival

The most important part of implementing a disaster recovery plan is the plan itself. The
many aspects to consider when designing your plan include these questions:

■ What is the level of availability my business requires for this data?

■ How much downtime can the business sustain before enduring loss?

818 Part VI High Availability
■ How much money do I have to spend to implement a disaster recovery plan?

■ What are my risk factors?

You will most likely not be the person who needs to answer these questions, but you def-
initely need to be involved in the process and understand the answers in order to design
a suitable solution. Behind the answers to these questions are things that many IT pro-
fessionals do not consider when architecting IT solutions. Because many businesses are
now dependent on technology, outages can have a great impact on the survival of a busi-
ness (and your job).

There are other monetary costs incurred when mission-critical systems go down. Not only
can your business lose potential revenue, but if systems and data aren’t working, then nei-
ther are people. Moreover, if your company uses its data to provide service to external cus-
tomers and your data is not available, then what does that do to your customer service
scorecards? What is the cost to your organization of losing valuable customers? Remem-
ber, understanding the impact that system downtime has to your business is one of the
most important things you can do.

Based upon the answers to the preceding questions, you will need to identify the level of
redundancy that is required to assure you will meet your company’s goals of availability.
This needs to be done at the highest levels of the IT department and the highest levels of
the company. If the CIO and CEO decide not to invest in disaster recovery, they need to
be aware of the implications of that decision. Not all businesses are alike, and although
each would like to have 100 percent uptime, executives need to be realistic about the
company thresholds for acceptable downtime. For instance, organizations like NASA or
your local Emergency Dispatch Center require higher levels of system uptime than, say,
your local pizza online ordering system. Obviously, downtime for the fast food restaurant
will not have consequences as dire as NASA mission control when trying to land a space
shuttle.

Most organizations fall somewhere between these two examples. So, what I mean by level
of redundancy is, what components of your system do you need to make redundant to
meet the company requirements? Your company may have decided that it can afford to
wait for that piece of hardware to be replaced or for the database to be restored from
backup. However, you may find that you will need to ensure that every piece of hardware,
including the CPU, memory, disk storage, network card, power supply, and server itself
is duplicated. You may also need to provide redundant electrical circuits and environ-
mental control units in your datacenter. In addition, you may need to establish a com-
pletely redundant system at a location that cannot be harmed by a hurricane that flattens
your coastal datacenter.

Chapter 25 Disaster Recovery Solutions 819
Real-life disaster plans are greatly influenced by the level of funding available, and many
companies cannot afford to build another location to accommodate a disaster recovery
site. So, do as much as you can with the money you have. Thus, prioritization is extremely
important. Gathering the numbers to show executives the negative impact of a disaster
on business is a great tool for getting disaster plan budgets approved.

Assuming that you have designed your plan to include a separate disaster recovery site,
what will you do if and when your primary site is back up and running? You must decide
whether it is appropriate to fail back to the primary site to run in normal configuration.
However, you may find it is not necessary. If you do decide to fail back to your primary
database servers, you will need to have in place a process and the necessary bandwidth.
The driving factors that will help you clarify your need to fail back are scalability, cost
(how much is the standby site costing you), and resources (do you have the personnel
available to fail back the system).

Scalability is important because most organizations cannot afford to set up disaster recov-
ery sites with the same size hardware as their primary systems. Due to financial limita-
tions, organizations more often than not will purchase the minimum required hardware
configurations needed to provide database availability, with no room for scalability.
Therefore, when the primary systems come back online, a fail back to the more powerful
servers is necessary. Obviously, with all implementations, scalability and cost are always
factors in deciding what will be your solution. If you can get away with less powerful serv-
ers in order to establish a disaster recovery site, then by all means, do.

If you have sufficient scalability at the disaster recovery site, you must then determine the
costs of running at that site. This cost might be power, hotels for staff, and so on. The
resources are also very important. Typically, the staff at the disaster recovery site is a skel-
eton crew that does not offer the same level of support as the primary site. However, once
the primary site is up, the disaster recovery site can often be managed remotely.

Note Many of the topics mentioned in this section are within the realm of the
DBA, such as redundant systems, SQL Server backups, and so on. However, there
are many topics mentioned that are not in the realm of the DBA, such as com-
puter room backup generators, UPS power, and redundant network components.
So, disaster recovery planning is a team effort that involves the database admin-
istrators, system administrators, network administrators, facilities, and manage-
ment. Disaster recovery planning cannot be done on your own. The single point
of failure concept must be applied to the IT staff as well. Multiple people must be
involved in the disaster recovery planning and implementation process.

820 Part VI High Availability
Microsoft SQL Server Disaster Recovery Solutions
There are many disaster recovery solutions that can be used with SQL Server. Some of
these solutions are SQL Server–specific, and other solutions are independent of SQL
Server. Some solutions work regardless of the software involved in the system. Our
discussion of the options assumes that waiting days for hardware replacement is unac-
ceptable. You will see that each of the options varies in cost and recovery speed.
Although the SQL Server 2005 features and other disaster recovery options provide
high availability, your application code should be able to handle the failover to the
disaster databases as well.

Using Database Backups for Disaster Recovery
The most basic, and probably the most common disaster recovery method, is the use of
existing database backups (as covered in Chapter 14, “Backup Fundamentals,” and
Chapter 15, “Restoring Data”). Database backups can be restored onto the same or dif-
ferent hardware in order to restore the database to the state that it was at the time of the
backup. In conjunction with transaction log backups, the database can be restored to the
point of failure (assuming that the system still exits). Database backups should be done
on a regular basis, stored on a system other than the database system, and taken offsite
as soon as possible. It is always a good idea to keep at least one set of database and trans-
action log backups on disk, if possible, for immediate restore if needed.

Important If you are relying on database backups as your primary method of
disaster recovery and your data center is destroyed or unavailable, you will be
able to restore only up to the point of the last backup that was taken offsite. This
backup could be very old.

Database backups can be considered a disaster recovery method, although it is not gen-
erally considered such because of the time needed to restore the backups. Database back-
ups in conjunction with a remote system can be a somewhat effective disaster recovery
solution even though the time needed to restore the backup can be excessive.

Real World Using Backups for Disaster Recovery

The following process was actually used by a well-known telecommunications com-
pany in the United States. Daily database backups were taken of all critical data-
bases to network attached storage (NAS). The backup files were then backed up
onto DLT tapes, which were transported over 800 miles to the disaster recovery
location via courier, where another process restored the databases to a standby

Chapter 25 Disaster Recovery Solutions 821
server farm, which mirrored the primary site. This disaster recovery process, as
shown in Figure 25-1, occurred on a daily basis, and although it was extremely
tedious, it was the only option due to existing financial and technological limita-
tions. In actuality, the accumulated fees for the courier over the course of three
years were enough to have purchased a sophisticated disaster recovery system. One
of the key reasons for employing the courier for transport of the backup files to the
disaster recovery site is the lack of network bandwidth across the WAN to copy
them. Unfortunately, this process forced the potential for up to 24 hours of lost data
in the event of an unexpected disaster.

Figure 25-1 Using backups for disaster recovery.

The additional benefit of using backups as a disaster recovery solution is that once the
backup has been restored on the disaster recovery system, you are certain that it is a good
backup and that it can be used to restore the system in the event of a failure. It is always
a good idea to test your backups.

Best Practices Test your backups regularly (based on your standards and
requirements). At the time it is needed, it is too late to find out that the backup or
restore processes aren’t working correctly.

Depending upon your infrastructure, you can set up variations of this process. As long as
you can copy your backups and transaction logs to your disaster recovery site, you can
use this method.

Log Shipping
As discussed throughout the book, SQL Server 2005 contains features specifically
designed for high availability and disaster recovery. Log shipping was an unsupported

Primary database server Standby database server

Fly tape to standby data center

Backup
database to

tape

Restore
database to

tape

822 Part VI High Availability
utility in SQL Server 2000, but Microsoft has incorporated it as a built-in feature in SQL
Server 2005. Log shipping allows for automatic copying of transaction logs from a pri-
mary database to a secondary database to allow transactions to be duplicated on the sec-
ondary database, as shown in Figure 25-2. With this configuration, you will need to
ensure that the primary and secondary database servers have mutual connectivity and
that the pipe between them is large enough to handle the load.

Figure 25-2 Using log shipping for disaster recovery.

Note Log shipping is not a dual write process. The transactions that occur on
the secondary database are completely isolated from the transactions on the pri-
mary server.

Through the configuration options, you can identify how often you would like the trans-
action logs backed up and transferred. In a disaster scenario, the disaster recovery data-
base will be as up-to-date as the last transaction log it received and applied, so there is a
risk of some data loss. That loss will depend greatly on your shipping interval. Also, you
will need to recover your database for use, and your applications will need to then point
to your disaster recovery site. This re-mapping of servers can be done by changing the
application or can be done at the DNS server or even with application logic.

Real World Disaster Recovery Architecture

There are several methods for configuring access from the application server to the
primary and database server. Your choice is based on your specific budget, infra-
structure, and needs. One option is to allow a failover of database servers and appli-
cation servers independently. In this case, the mapping between the application

Primary database server Standby database server

File copied via network to standby site

Transaction
log backup

Transaction
log restore

Transaction
log backup

Transaction
log backup

Chapter 25 Disaster Recovery Solutions 823
server and the database server will have to change, so that the existing application
server points to the standby database server. The other option is to configure and
test the standby application server or servers and database server as a set. Thus, if
a disaster occurs, only the mapping to the application server needs to change
because the standby application server or servers are already pointing to the
standby database server.

Database Mirroring
A SQL Server 2005 feature that is designed for high availability and disaster recovery is
database mirroring, which is covered in Chapter 27, “Log Shipping and Database Mirror-
ing.” Mirroring is a concept that is based largely on log shipping. However, there are a few
important differences between the two technologies. Log shipping relies on transaction log
backups in order to keep the secondary system in sync; thus, the secondary is always one
log backup behind. Mirroring uses the transaction log itself, thus allowing more real-time
mirroring of the databases. Mirroring also allows for automatic failover in the event of a sys-
tem failure, thus requiring a witness. The three components of a comprehensive mirroring
configuration are the principal, the mirror, and the witness, as shown in Figure 25-3.

Figure 25-3 Using database mirroring for disaster recovery.

The principal is the server that is the source database, and the mirror is the target database.
The witness is a server instance that performs no database transactions but instead allows

Primary database server Standby database server

Transacton
log write Recovery

Witness server

Transacton
log

Transacton
log

824 Part VI High Availability
for automatic failover to the mirrored server instance when running in synchronous
mode. The three modes available to database mirroring are asynchronous, synchronous,
and synchronous with automatic failover. Asynchronous mode configures all database
transactions to commit changes on the principal database before sending the changes to
the mirror. Conversely, synchronous mode will send the transaction to the mirror and await
acknowledgement that the mirror had committed the transaction on its database before
committing on the principal database.

With synchronous with automatic failover mode, the witness comes into play. If the wit-
ness notices any failures with the heartbeat of the principal server, it automatically fails
over the active control of the database to the mirror. This is one of the key benefits that
mirroring has over log shipping. With this type of failover, no code change is necessary
for your client applications. The failover is transparent to the client. Moreover, the risk of
data loss is decreased with database mirroring.

Replication
Similar to the two previous features, which utilized some form of transactional processing
on multiple databases, transactional replication, which is covered in Chapter 20, “Repli-
cation,” is another way to ensure high availability and disaster recovery. An option that
greatly distinguishes replication from log shipping and mirroring is the granularity for
which transactions can be configured. While the previous two technologies allow for
database level duplication, transactional replication can be configured for objects at the
table or view level. Replication is also a little more difficult to configure, but the premise
is the same. The log reader is a component of replication. Its function is to read the logs
on the principal database and determine if any transactions need to be sent to the disas-
ter recovery database, as shown in Figure 25-4. If the log contains transactions, then they
are applied to the secondary database.

Figure 25-4 Using replication for disaster recovery.

Primary database server Replica database server

Distribution database

Transactional replication

Chapter 25 Disaster Recovery Solutions 825
Because there is no validation of commit at the principal and secondary databases, there
is also a risk of data loss. Just as with log shipping, there is no automatic failover to the
disaster recovery site without some coding and/or DBA intervention.

Important I do not recommend that you use replication as a disaster recovery
solution. There is no guarantee that the secondary database is in sync with the
principal database. Replication is not designed for disaster recovery.

SQL Server Clusters
The next SQL Server 2005 option for high availability is failover clustering. Unlike the
other technologies, implementing this feature is more costly and complicated. With
failover clustering, your database system consists of two or more servers that are physi-
cally connected and share data storage and software resources to serve as a single unit.
The technology is largely based upon Microsoft Clustering Services (MSCS), where the
clustered servers are connected to shared disk devices via Fibre Channel or SCSI links,
but reads and writes are arbitrated such that no two servers can access the disks simulta-
neously. A Microsoft cluster is shown in Figure 25-5.

Figure 25-5 Using clustering for high availability.

The most common clustered configuration, the clustered servers run in active/passive
mode, which means one server owns all of the resources and data storage and performs
all of the processing, while the other server node sits passive until it is needed. When any
failure on the primary node occurs, the cluster software detects it and fails over the
resources to the node on standby. Depending on the number of resources defined on
your cluster system, it can take from 30 to 90 seconds for the failover to occur, so users
may experience a brief outage.

Primary database server Standby database server

Database on
shared disk

826 Part VI High Availability
Note A Microsoft cluster is a high-availability system designed to keep the
database up as much as possible. It does this by resuming processing on the sec-
ondary server in the event of a failure on the principal server. Since the data
resides on a shared disk, a Microsoft cluster will not survive a data corruption.
This technology is high availability, not disaster recovery. All data resides in the
same data center and on the same disk. A cluster can be used with other tech-
nologies, such as database mirroring.

Normally, there is only a single instance of any application running at a given time on a
cluster system; however, clustering technology does allow for full use of hardware
resources if distinct instances of an application are created. Individual cluster resources
can be run on any node within the cluster, and as in the active/passive scenario, if any
node fails, the resources are simply failed over to a running node.

In SQL Server 2005 clustering, the number of cluster nodes that are supported is depen-
dent upon the operating system. With the 32-bit Microsoft Windows Server 2003 Data-
center version, up to eight cluster members are supported, while the 64-bit version
supports only four members. The hardware requirements for clustering are not dictated
by SQL Server requirements but, instead, by the clustering technology itself.

Note The best way to ensure that your cluster installation is supported by
Microsoft is to refer to the Microsoft hardware compatibility list, or HCL, or the
Windows Server 2003 Catalog, under the cluster solution category.

In addition, you will need to consider the level of redundancy within the cluster architec-
ture. Not only will you have duplicate servers, but you can also duplicate your power dis-
tribution units (PDUs),UPSs, SCSI paths to disk storage, disks, network interfaces, and
the cluster system itself. What I mean by a duplicate cluster is that you can try to separate
the nodes of a cluster, but note that there are distance limitations. While Fibre Channel
technology limitations are measured in miles, SCSI technology is supported only up to a
few meters. Even in the Fibre Channel configuration, the distance separating the hard-
ware may not suffice in a true disaster recovery plan. Instead, you can install a full cluster
system at your primary site and duplicate the cluster at another location for the highest
level of high availability and disaster recovery. Again, cost will be a huge issue.

Important One often overlooked component of the entire system is the cool-
ing infrastructure. I have heard of several occasions where the computer room’s
air conditioning system has gone out, and it is not until servers begin failing that

Chapter 25 Disaster Recovery Solutions 827
the IT staff is alerted. At that point it is too late, and permanent damage might
have been done to the servers. Similarly, a broken water pipe could cause the
same problem. Environmental warning systems should be on your high availability
and disaster recovery shopping list.

As I stated earlier, the installation and configuration of a failover cluster are slightly more
complicated. Aside from the hardware requirements, there are software prerequisites for
SQL Server 2005 clustering as well. The installation procedure for failover clustering is
explained in Chapter 26, “Failover Clustering Installation and Configuration.”

We have briefly discussed the various high availability and disaster recovery options
offered by Microsoft and SQL Server 2005. However, there are other methods of imple-
menting a disaster recovery solution that do not rely on Microsoft-specific technology at
all. One such option is to apply trigger-based replication. This entails creating insert,
update, and delete triggers on all pertinent tables which will, in effect, duplicate the
transactions on the remote, disaster database. The problem with this option though is
the increased overhead on database processing and the manageability of the data integ-
rity. While the transactions are duplicated, there is not true acknowledgement that the
remote updates were successful. Yet, this option provides you with a form of redun-
dancy without excessive hardware and software cost. The only cost burden is the labor
hours to support it.

Another disaster recovery solution that is not Microsoft-based is SAN-based replication.
SAN, or storage area network (as described in Chapter 4, “I/O Subsystem Planning and
RAID Configuration,” and Chapter 7, “Choosing a Storage System for Microsoft SQL
Server 2005”), technology has matured greatly in the past five to ten years. Many SAN
solutions now offer a block-level-based data replication in which the SAN handles the
copying of data from the primary site to the disaster site. Most SAN solutions require a
storage management system of some sort, whether it is vendor-supplied hardware or
software to be installed on an existing server within your infrastructure, which can insti-
gate and manage the replication of disk block changes real-time. In this configuration,
SQL Server is connected to the SAN storage, where your actual database files are
located. As SQL Server commits changes to disk, the data blocks on your SAN storage
also change. The SAN technology can track and monitor these blocks and automatically
send the changes to a duplicate SAN at the disaster recoery site. Basically, the data at
your disaster site should mirror the data at the primary site, only in read-only mode. In
the event of a failure at the primary site, you can switch the replicated data to read/write
mode, attach the database files to the disaster SQL servers, and continue running. Yet
again, the client applications will need to be able to point to the disaster site’s database
servers. This solution requires SAN expertise and the additional cost of the SAN soft-
ware and hardware, but it can isolate the management of data duplication to only the

828 Part VI High Availability
storage. This technology has been gaining popularity in recent years and has been
proven effective in production environments.

Overview of High Availability and Disaster Recovery
Technologies

The following table illustrates the types of technologies that are available and the pros
and cons of each.

Table 25-1 Comparison of SQL Server High Availability Technologies

Solution Pros Cons

Database Backups • Cheap and easy to do.

• No additional technologies needed.

• Should already be done.

• Must be taken offsite or they
won’t help in the event of a
disaster.

• Slow to recover.

Log Shipping • No single point of failure; separate disk
and server usually.

• Databases can be in geographically
dispersed areas.

• Secondary server can act as a reporting
server.

• Simpler to administer; just another data-
base in recovery mode.

• All objects in database are moved, not
just the data.

• Recovery is fast.

• Protects against logical corruption; for
example, DBA accidentally drops a table.

• Failover is not automatic.

• Higher latency because log
has to be copied over and
applied.

• All or nothing; cannot specify
tables, and so on.

• Will not copy logins from
master database over.

• When log is being restored,
users cannot access the data.

• In the event of a failover, you
could use an entire log’s worth
of data.

Mirroring • Automatic fail over with witness in place.

• Data immediately applied after commit.

• All objects are moved over.

• Easy to administer.

• No single point of failure.

• Can use in conjunction with snapshots
for reporting performance.

• Works over large geographic
distances.

• Only one mirror allowed.

• Synchronous mirroring can be
slow on a WAN.

• Does not protect against
logical corruption.

Chapter 25 Disaster Recovery Solutions 829
Summary
The core of any business is its data and its ability to serve its customers. With most busi-
nesses moving to a “paperless” environment, they have turned to SQL Server as their pri-
mary storage of company data. As the database administrator, it is your job to ensure that
this data is available at all times and can be recovered in the event of a disaster. However,

Replication • Data moved to target server rapidly; less
lag in access to it.

• Administrator controls exactly which data
is moved between the systems.

• Access to data while the system is online.•

• Typically used for a subset of
tables, not whole databases.

• Administrative burden for
anything more than a few
tables.

• Solution is hand crafted. Not
out of the box.

• Only data is moved between
databases. Objects like stored
procedures are not.

• Performance is adequate, but
not as fast as a BACKUP/
RESTORE operation.

• Failover is not automatic.

• Database server can take a
performance hit on the CPU.

• Database is not guaranteed to
be consistent with the pub-
lisher database.

Clustering • Automatic failover.

• Data in sync, shared disk solution.

• Single point of failure; shared
disk.

• Servers physically close to each
other and prone to exposure to
same disaster.

• More complex to administer;
for example, patching.

• DBA needs additional training.

• Solution is more expensive due
to extra hardware and
redundancy.

Table 25-1 Comparison of SQL Server High Availability Technologies (continued)

Solution Pros Cons

830 Part VI High Availability
ensuring both high availability and disaster recovery can be a daunting task. You must
learn to understand the business impact of your data, and you must be able to provide an
appropriate solution by balancing your infrastructure capabilities, business require-
ments, and cost. The options previously listed are only examples of how you can develop
a disaster plan, and with some creativity, you can create a plan that will suit your organi-
zation’s needs. Whatever you do, you need to ensure you have covered every possible
disaster scenario. This undertaking should not be your responsibility on your own, but
you are responsible for the database disaster recovery plan. Make sure your goals align
with your company’s, and you will have done your job. Just make sure you have a plan.
You don’t want to be caught by surprise without one.

Chapter 26

Failover Clustering Installation
and Configuration

What Is a Cluster? .831

Clustering Concepts .832

Overview of MSCS .832

Examples of Clustered Systems .845

Planning Your Configuration .848

Installing and Configuring Windows 2003 and SQL Server 2005
Clustering .850

Summary .868

In recent years, computer systems have become more and more reliable. However, sys-
tems are still subject to failures. In order to speed the recovery from these failures and
provide higher availability, Microsoft has developed the failover cluster. The failover clus-
ter is designed to restart Microsoft Windows and Microsoft SQL Server quickly to resume
normal operations as soon as possible. Failover clusters are useful for both hardware and
software failures.

What Is a Cluster?
A cluster is a group of computers that back up each other in the case of malfunction. In
this chapter, you’ll learn how Microsoft Cluster Services (MSCS) works and how to con-
figure it, as well as how to plan for and recover from disasters. MSCS itself cannot make
your system fault tolerant. You must combine this technology with careful planning to
make your system capable of recovering from failures.

Microsoft Cluster Services is not a load balancing cluster technology. Microsoft Cluster
Services is a failover cluster only. With MSCS, you do not get any more performance from
a two-node cluster than you get from a single system. In fact, it is slightly slower because
of the additional overhead incurred by the cluster. The benefit of a SQL Server cluster
831

832 Part VI High Availability
with MSCS is the creation of a system with a higher degree of high availability. High Avail-
ability and Disaster Recovery is covered in Chapter 25, “Disaster Recovery Solutions.”

Clustering Concepts
As a database administrator, your primary job is to keep the database up and running
optimally during specific time periods, which are usually outlined in a service level agree-
ment. This service level agreement probably specifies the amount of uptime your system
must provide, as well as performance rates and recovery time in the event of a failure.
Using MSCS can increase the amount of uptime and decrease recovery time. Although
server hardware, Windows 2003, and SQL Server are usually stable and reliable, compo-
nents sometimes fail. In fact, a variety of types of failures can occur in a complex com-
puter system, including the following:

■ Disk drive failure Disk drive technology has improved, but a disk drive is still a
mechanical device and, as such, is subject to wear. The disk drive is one of the most
common areas of failure.

■ Hardware component failure Hardware failures can occur because of wear and
tear on the components, primarily from heat. Even the best-made computer equip-
ment can fail over time.

■ Software component failure Some software flaws are discovered only under rare
conditions. Your system might run for months or years until a specific set of condi-
tions uncovers a problem. In addition, adding applications to a stable environment
might modify a critical library or file and cause problems.

■ External failure A system can fail because of external causes, such as power out-
ages. Whether your system can survive such a failure depends on whether you are
using an uninterruptible power supply (UPS) and redundant power sources.

■ Human error Clustering does not usually protect a system against failures caused
by human error, such as accidentally deleting a table or a Windows 2003 file sys-
tem partition.

Failures are unavoidable. How to best prepare for some of these failures will be our focus
in this chapter.

Overview of MSCS
MSCS is a built-in service of Windows 2003 Enterprise and Datacenter Editions. MSCS
is used to form a server cluster, which, as mentioned earlier, is a group of independent

Chapter 26 Failover Clustering Installation and Configuration 833
servers working collectively as a single system. The purpose of the cluster is to preserve
client access to applications and other resources in the event of a failure or planned out-
age. If one of the servers in the cluster is unavailable for any reason, the resources and
applications move to another node in the cluster.

When we talk about clustered systems, we generally use the term “high availability”
rather than “fault tolerant.” Traditionally, the term “fault tolerant” refers to a specialized
system that offers an extremely high level of redundancy, resilience, and recovery by
reducing single points of failure. This type of system normally uses highly specialized
software to provide a nearly instantaneous recovery (or in some cases, no loss of service
whatsoever) from any single hardware or software failure. Fault-tolerant systems are sig-
nificantly more expensive than systems without fault tolerance (although disk fault tol-
erance using RAID controllers is relatively inexpensive).

Clustered systems, which offer high availability, are not as costly as fault-tolerant systems.
Clustered systems are generally composed of standard server hardware and a small
amount of cluster-aware software in the operating system. As the availability needs of the
installation increase, systems can be added to the cluster with relative ease. Though a
clustered system does not guarantee continuous operation, it does provide greatly
increased availability for most mission-critical applications.

A system running MSCS provides high availability and a number of other benefits. Some
of the benefits of running MSCS are described here:

■ High availability System resources, such as disk drives and IP addresses, are auto-
matically transferred from a failed server to a surviving server. This is called failover.
When an application in the cluster fails, MSCS automatically starts the application
on a surviving server, or it disperses the work from the failed server to the remain-
ing nodes. Failover happens quickly, so users experience only a momentary pause
in the service.

■ Failback When a failed server is repaired and comes back online, MSCS automat-
ically rebalances the workloads in the cluster. This is called failback.

■ Manageability The Cluster Administrator software allows you to manage the
entire cluster as a single system. You can easily move applications to different serv-
ers within the cluster by dragging the cluster objects in Cluster Administrator. You
can move data in the same manner. These drag-and-drop operations can be used to
manually balance server workloads or to “unload” a server to prepare it for planned
downtime and maintenance. Cluster Administrator also allows you to monitor
(from anywhere in the network) the status of the cluster, each node, and all the
resources available. Figure 26-1 shows an example of the Cluster Administrator
window.

834 Part VI High Availability
Figure 26-1 The Windows 2003 Cluster Administrator.

■ Scalability As the demands of the system increase, MSCS can be reconfigured to
support the increase. Nodes can be added to the cluster when the overall load
exceeds the capabilities of the cluster.

Basic Concepts
MSCS reduces downtime by providing failover between multiple systems using a server
interconnect and a shared disk system, as Figure 26-2 illustrates. The server interconnect
can be any high-speed connection, such as an Ethernet network or other networking
hardware. The server interconnect acts as a communication channel between the servers,
allowing information about the cluster state and configuration to be passed back and
forth. The shared disk system allows the database and other data files to be equally
accessed by all of the servers in the cluster. This shared disk system can be SCSI, SCSI
over Fibre Channel, or other proprietary hardware. The shared disks can be either stand-
alone disks or a RAID system. (RAID systems are described in Chapter 4, “I/O Subsystem
Planning and RAID Configuration,” and Chapter 7, “Choosing a Storage System for
Microsoft SQL Server 2005.”)

Important If the shared disk system is not fault tolerant and a disk subsystem
fails, MSCS will fail over to another server, but the new server will still use the
same failed disk subsystem. Be sure to protect your disk drives by using RAID
because these mechanical devices are the components most likely to fail.

Chapter 26 Failover Clustering Installation and Configuration 835
Figure 26-2 The components of a cluster.

Once a system has been configured as a cluster server, it is transformed from a traditional
server into a virtual server. A virtual server looks like a normal server, but the actual phys-
ical identity of the system has been abstracted away. Because the computer hardware that
makes up this virtual server might change over time, the user does not know which actual
server is servicing the application at any given moment. Therefore, the virtual server, not
a particular set of hardware, serves user applications.

A virtual server exists on a network and is assigned an IP address used in TCP/IP. This
address can switch from one system to another, enabling users to see the virtual server
regardless of what hardware it is running on. The IP address actually migrates from one
system to another to maintain a consistent presentation of the virtual server to the out-
side world. An application directed to a specific address can still access the address if a
particular server fails, even though the address then represents a different server. The vir-
tual server keeps the failover operations hidden from the user, so the user can keep work-
ing without knowing what’s happening behind the scenes.

Cluster Components
Several components are required to create a cluster: cluster management software, a
server interconnect, and a shared disk system. These components must be configured in
conjunction with cluster-aware applications to create a cluster. In this section, you’ll learn
about the various components and how they work together to create the cluster. In the
section “SQL Server Cluster Configuration” later in this chapter, you’ll learn how to con-
figure a SQL Server cluster.

MSCS Cluster Management Software
The cluster management software is actually a set of software tools used to maintain, con-
figure, and operate the cluster. It consists of the following subcomponents, which work
together to keep the cluster functioning and to perform failover if necessary:

Shared disk
Server BServer A

Server interconnect

Network

836 Part VI High Availability
■ Node Manager Maintains cluster membership and sends out “heartbeats” to
members (nodes) of the cluster. Heartbeats are simply “I am alive” messages sent
out periodically. If a node’s heartbeats stop, another node will take steps to take
over its functions. Node Manager is one of the most critical pieces of the cluster
because it monitors the state of the cluster and its members and determines what
actions should be taken.

■ Database Manager Maintains the cluster configuration database. This database
keeps track of all of the components of the cluster, including the abstract logical ele-
ments (such as virtual servers) and physical elements (such as the shared disks).
This database is similar to the Windows 2003 registry.

■ Failover Manager Starts and stops MSCS. Resource Manager/Failover Manager
receives information (such as the loss of a node, the addition of a node, and so on)
from Resource Monitor and Node Manager.

■ Membership Manager Monitors the cluster membership and the health of the
nodes in the cluster. This component maintains a current list of which nodes are up
and which are down.

■ Event Service Sends event messages to and from applications and to and from the
cluster service components. This allows important event information to be dissem-
inated within the cluster.

■ Event Log Replication Manager Replicates event information among compo-
nents of the cluster.

■ Global Update Manager Communicates cluster state information (including
information about the addition of a node to a cluster, the removal of a node, and so
on) to all nodes in a cluster.

■ Resource Monitor Monitors the condition of the various resources in the cluster
and provides statistical data. This information can be used to determine whether
any failover action needs to be taken in the cluster.

■ Checkpoint Manager Saves application registry keys in a location on the shared
quorum. This is to make sure that the cluster can survive a resource failure. When
a resource is brought online, the checkpoint manager checks the registry keys.
When a resource is taken offline, the checkpoint manager writes checkpoint data to
the quorum.

■ Log Manager Writes changes to recovery logs on the quorum resource. The log
manager and the checkpoint manager work together to assure recoverability in the
event of a resource failure.

Chapter 26 Failover Clustering Installation and Configuration 837
■ Backup/Restore Manager Works with the failover manager and database man-
ager to back up the quorum log file and checkpoint files.

■ Time Service Ensures that all nodes in the cluster report the same system time. If
Time Service was not present, events might seem to occur in the wrong sequence,
resulting in bad decisions. For example, if one node reported that it was 2 P.M. and
contained an old copy of a file and another node reported that it was 10 A.M. and
contained a newer version of that file, the cluster would erroneously determine that
the file on the first system was the most recent.

Server Interconnect
The server interconnect is simply the connection between the nodes in the cluster. Because
the nodes in the cluster need to be in constant communication (via Time Service, Node
Manager, and so on), it is important to maintain this link, so the server interconnect must
be a reliable communication channel between these systems.

In many cases, the server interconnect is an Ethernet network running TCP/IP. This
setup is adequate. Because the interconnect is used only for status information, the band-
width requirements are fairly low.

More Info A complete list of approved server interconnect devices is available
from the hardware compatibility list on the Microsoft Windows Server Catalog
Web site at http://www.windowsservercatalog.com/.

Shared Disk System
Another key component of cluster creation is the shared disk system. If multiple com-
puter systems can access the same disk system, another node can take over if the pri-
mary node fails. This shared disk system must allow multiple computer systems to have
equal access to the same disks—in other words, each of the computers must be able to
access all of the disks. In the current version of MSCS, only one system can access the
disk at a time.

Note In the following sections, several different types of shared disk systems
are introduced, including SCSI, Fibre Channel SAN, and iSCSI. New disk sub-
systems are being introduced which might work well with a Windows Server Clus-
ter. Check the hardware matrix and check with your vendor to make sure that
your hardware will work optimally in a clustered environment.

Several types of shared disk systems are available, as covered in Chapter 7, and new disk
technology is always being developed. The SCSI disk subsystem has always supported

838 Part VI High Availability
multiple initiators. With multiple initiators, you can have multiple SCSI controllers on
the same SCSI bus, which makes SCSI ideal for clustering. In fact, SCSI systems were the
first disk subsystems to be used for clustering.

Technologies such as Fibre Channel and some proprietary solutions are designed to sup-
port clustering. Fibre Channel systems allow disks to connect over a long distance from
the computer system. Most Fibre Channel systems support multiple controllers on the
same Fibre Channel loop. Some RAID controllers are designed or have been modified to
support clustering. Without modification or configuration changes, most disk control-
lers do not support clustering.

Whereas network attached storage was not previously supported with MSCS, the intro-
duction of iSCSI technologies has changed this. With an iSCSI storage system or even a
fileserver that supports iSCSI, you can now cluster to a disk subsystem across the net-
work. The newly introduced Windows Storage Server can present its storage as iSCSI disk
drives, thus making it a suitable candidate for MSCS.

Controller caches that allow writes to be cached in memory are also an issue with clus-
tering when the cache is located on the controller itself, as shown in Figure 26-3. In this
case, each node contains its own cache, and we say that the cache is “in front of” the disk
sharing because two caches share the same disk drives. If each controller has a cache and
a cache is located on a system that fails, the data in the cache might be lost. For this rea-
son, when you use internal controller caches in a cluster configuration, they should be set
as read-only. (Under some conditions, this setting might reduce the performance of some
systems.)

Figure 26-3 Controller caches in front of disk sharing.

Other solutions to the shared-disk problem involve RAID striping and caching in the disk
system itself. In this configuration, the cache is shared by all nodes, and we say that the
cache is “behind” the sharing, as shown in Figure 26-4. Here, the striping mechanisms
and the cache are viewed identically by all of the controllers in the system, and both read
caching and write caching are safe.

Shared disk

Server A
Server interconnect

Server B

Disk
controller

cache

Disk
controller

cache

Chapter 26 Failover Clustering Installation and Configuration 839
Figure 26-4 Controller cache behind disk sharing.

Fibre Channel and iSCSI disk subsystems allow the RAID controller to be in the disk
enclosure, rather than in the computer system. These systems offer good performance
and fault tolerance. In fact, many RAID systems of this type offer fully redundant control-
lers and caches. Many of the newer RAID systems use this type of architecture. Let’s look
at some disk subsystems in detail:

■ I/O Subsystems As mentioned, various types of I/O subsystems support cluster-
ing. The three main types of I/O subsystems are as follows:

❑ SCSI JBOD This is a SCSI system with multiple initiators (controllers) on a
SCSI bus that address JBOD (short for “just a bunch of disks”). In this setup,
the disks are individually addressed and must be either configured into a
stripe using Windows 2000 striping or addressed individually. This sub-
system is not recommended.

❑ Internal RAID A RAID controller is used in each server. The disadvantage of
this subsystem is that the RAID logic is on the board that goes in the server
and, thus, the controller caches must be disabled.

❑ External RAID The RAID controller is shared by the systems in the cluster.
The cache and the RAID logic are in the disk enclosure, and a simple host bus
adapter (HBA) is used to communicate with the external controller. External
RAID can be implemented either via a Storage Area Network (SAN) or Net-
work Attached Storage (NAS) that includes iSCSI.

■ SAN The Storage Area Network (SAN) is an ideal platform for clustering because
of its robustness as well as the redundancy typically built into a SAN. In addition,
SAN storage typically has significant capacity and is high performance.

■ iSCSI The iSCSI storage subsystem is a new technology that uses the SCSI proto-
col encapsulated in an IP packet. iSCSI provides the flexibility and cost benefit of
network storage while providing a robust and efficient transport layer that supports
clustering.

Disk
controller

Disk
controller

Shared disk

Cache

Server interconnect
Server A Server B

840 Part VI High Availability
The next two sections address only the two RAID solutions. The SCSI JBOD solu-
tion is not advisable unless the cluster is small and cost is a major issue.

Internal RAID
Internal RAID controllers are designed such that the hardware that controls the RAID
processing and the cache reside in the host system. With internal RAID, the shared disk
system is shared behind the RAID striping, as shown in Figure 26-5.

Figure 26-5 Internal RAID controller.

Because the cache is located on the controller, which is not shared, any data in the cache
when the system fails will not be accessible. This is a big problem when a relational data-
base management system (RDBMS) is involved. When SQL Server writes data to disk,
that data has been recorded in the transaction log as having been written. When SQL
Server attempts to recover from a system failure, these data blocks will not be recovered
because SQL Server thinks that they have already been written to disk. In the event of a
failure in this type of configuration, the database will become corrupted.

Therefore, vendors certify their caching RAID controllers for use in a cluster by disabling the
cache (or at least the write cache). If the cache has been disabled, SQL Server is not signaled
that a write operation has been completed until the data has actually been written to disk.

Note SQL Server performs all writes to disk in a nonbuffered, noncached mode.
Regardless of how much file system cache is available, SQL Server will not use it.
SQL Server completely bypasses the file system cache, as do most RDBMS products.

In certain situations, using the controller cache can provide a great performance benefit.
This is particularly true when you are using a RAID-10 (aka RAID-0/1 or -1/0) or RAID-
5 configuration because writes incur additional overhead with these RAID levels. To use

Shared disks

Server interconnect
Server A Server B

RAID
controller

RAID
controller

Chapter 26 Failover Clustering Installation and Configuration 841
a controller write cache in a cluster configuration, you must use an external RAID system
so that the cache is shared and data is not lost in a failover.

External RAID
In an external RAID system, the RAID hardware is outside the host system, as shown in
Figure 26-6. Each server contains an HBA whose job is to get as many I/O requests as pos-
sible out to the RAID system as quickly as possible. The RAID system determines where
the data actually resides. External RAID systems might be SAN or iSCSI NAS devices.

Figure 26-6 External RAID subsystem.

An external RAID subsystem is sometimes referred to as “RAID in the cabinet” or “RAID in
the box” because RAID striping takes place inside the disk cabinet. The external RAID sub-
system has many advantages. Not only is it an ideal solution for MSCS, but it’s also a great
solution overall. The advantages of the RAID-in-the-cabinet approach include the following:

■ Allows easier cabling Using internal RAID, you need multiple cables—one for
each disk cabinet—coming from the RAID controller. With external RAID, you run
one cable from the HBA to the RAID controller, and then you run cables from the
controller to form a daisy chain connecting each of the disk cabinets, as illustrated
in Figure 26-7. External RAID makes it easy to connect hundreds of drives.

■ Allows RAID redundancy Many of the external RAID solutions allow one storage
controller to communicate with both a primary and a secondary RAID controller,
allowing full redundancy and failover.

■ Allows caching in a cluster You can configure a caching RAID solution much more
easily using external RAID. If you use external RAID, you can enable both caching
and fault tolerance without having to worry about cache consistency between con-
trollers because there is only one cache and one controller. In fact, using the write

Host bus
adapter

Host bus
adapter

Shared disks

Server interconnect
Server A Server B

RAID
controller

842 Part VI High Availability
cache is safe if you use external RAID controllers. You still run some risks if you are
caching RDBMS data, but you reduce those risks if you use external RAID controllers.
Be sure that your external RAID system vendor supports mirroring of caches. Mir-
rored caches provide fault tolerance to the cache memory in case a memory chip fails.

Figure 26-7 Internal RAID cabling versus external RAID cabling.

■ Supports more disk drives In the case of large or high-performance systems, it is
sometimes necessary to configure a large number of drives. The need for a large
number of drives was illustrated in Chapter 4 and Chapter 6, “Capacity Planning,”
where you learned about RAID and how to size the system. External RAID devices
let you connect hundreds of disks to a single HBA. Internal RAID systems are lim-
ited to a few dozen drives per controller, as are SCSI systems.

Of the disk subsystems available today that support clustering, external RAID cabinets are
preferable for large clusters. Of course, cost might be a consideration, and some clusters
are too small to justify using external RAID. However, in the long run, an external RAID
solution provides the best performance, reliability, and manageability for your cluster.

Cluster Application Types
Applications that run on systems running MSCS fall into one of four categories:

■ Cluster-unaware applications Applications of this type do not have any interaction
with MSCS. Although they might run adequately under normal conditions, they
might not perform well if a failure occurs, forcing them to fail over to another node.

■ Cluster-aware applications These applications are aware of MSCS. They take
advantage of MSCS for performance and scalability. They react well to cluster
events and generally need little or no attention after a component fails and the
failover occurs. SQL Server 2005 is an example of a cluster-aware application.

Internal RAID

RAID
controller

Disk drive
cabinets

Host bus
adapter

RAID
controller

Disk drive
cabinets

External RAID

Chapter 26 Failover Clustering Installation and Configuration 843
■ Cluster management applications Applications of this type are used to monitor
and manage the MSCS environment.

■ Custom resource types These applications provide customized cluster manage-
ment resources for applications, services, and devices.

Figure 26-8 illustrates the application types and their interaction with MSCS.

Figure 26-8 Application types and MSCS.

MSCS Modes
You can run SQL Server 2005 cluster support and MSCS in different modes. In active/
passive mode, one server remains in standby mode, ready to take over in the event of a sys-
tem failure on the primary server. In active/active mode, each server runs a different SQL
Server database. In the event of a failure on either of the servers, the other server takes
over. In this case, one server ends up running two databases. In this section, we’ll exam-
ine the advantages and the disadvantages of using each of these modes.

Other cluster
nodes

Resource monitor

Cluster
API

Cluster
configuration

database
(local node)

Cluster-aware
application

Application
resource DLL

Failover
manager

Node
manager

Database
manager

Global update
manager

Resource monitor

844 Part VI High Availability
Active/Passive Clusters
An active/passive cluster uses the primary node to run the SQL Server application, and
the cluster uses the server in the secondary node as a backup, or standby, server, as illus-
trated in Figure 26-9.

Figure 26-9 Active/passive cluster.

In this configuration, one server is essentially unused. This server might go for months
without ever being called into action. In fact, in many cases, the backup server is never
used. Because the secondary server is not being used, it might be seen as a costly piece of
equipment that is sitting idle. Because this server is not available to perform other func-
tions, other equipment might have to be purchased in order to serve users, making the
active/passive mode potentially expensive.

Although the active/passive mode can be expensive, it does have advantages. With the
active/passive configuration, if the primary node fails, all resources of the secondary
node are available to take over the primary node’s activity. This reliability can be impor-
tant if you’re running mission-critical applications that require a specific throughput or
response time. If this is your situation, active/passive mode is probably the right choice
for you.

It is highly recommended that the secondary node and the primary node have identical
hardware (that is, the same amount of RAM, the same type and number of CPUs, and so
on). If the two nodes have identical hardware, you can be certain that the secondary sys-
tem will perform at nearly the same rate as the primary system. Otherwise, you might
experience a performance loss in the event of a failover.

Virtual
server
SALES

Virtual
server
SALES

Primary node Secondary/Fail
over node

Network

Server A Server B
Server interconnect

Shared disk

Chapter 26 Failover Clustering Installation and Configuration 845
Active/Active Clusters
In an active/active cluster, each server can run applications while serving as a secondary
server for another node, as illustrated in Figure 26-10.

Figure 26-10 An active/active cluster.

Each of the two servers acts both as a primary node for some applications and as a sec-
ondary node for the other server’s applications. This is a more cost-effective configura-
tion because no equipment is sitting idle waiting for another system to fail. Both systems
are actively serving users. In addition, a single passive node can act as a secondary node
for several primary nodes.

One disadvantage of the active/active configuration is that, in the event of a failure, the
performance of the surviving node will be significantly reduced because of the increased
load on the secondary node. The surviving node now has to run not only the applications
it was running originally but also the applications from the primary node. In some cases,
performance loss is unacceptable, and the active/passive configuration is required.

Examples of Clustered Systems
In this section, we’ll look at four sample clustered systems that use MSCS. These exam-
ples will help you decide what type of cluster best suits your needs and environment.

Example 1—High-Availability System with Static Load
Balancing

This system provides high availability for multiple applications on the cluster. It does,
however, sacrifice some performance when only one node is online. This system allows
the maximum utilization of the hardware resources because each node is being accessed.
Figure 26-11 illustrates the configuration of this cluster, which is an active/active cluster.

Capacity to host
SALES

Network

Shared disk

Server interconnectServer A Server B

SALES server INVENTORY server

Capacity to host
INVENTORY

846 Part VI High Availability
Figure 26-11 High-availability cluster with static load balancing.

Each node of this cluster advertises its own set of resources to the network in the form of
virtual servers. Each node is configured with some excess capacity so that it can run the
other node’s applications when a failover occurs. Which client services from the failed
node will be available depends on the resources and the server capacity.

Example 2—Hot Spare System with Maximum Availability
This system provides maximum availability and performance across all the system
resources. The downside to this configuration is the investment in hardware resources
that, for the most part, are not used. One of the nodes acts as the primary node and sup-
ports all client requests. The other node is idle. This idle node is a dedicated hot spare
and is accessed only when a failover occurs. If the primary node fails, the hot spare node
immediately takes over all operations and continues to service the client requests. Figure
26-12 illustrates the configuration.

Figure 26-12 Hot spare system with maximum availability.

Shared
disk

Capacity to host
SALES

Network

Server interconnect

Capacity to host
INVENTORY

SALES server INVENTORY server

Capacity to host
SALES

SALES server

Network

Server interconnect

Shared
disk

Chapter 26 Failover Clustering Installation and Configuration 847
This configuration is best suited for the most mission-critical applications. If your com-
pany depends on sales over the Internet, your Web/commerce server could be run in this
configuration. Because business depends on the system’s being up and running, it is eas-
ier to justify the hardware expense associated with having an idle system.

Example 3—Partial Server Cluster
The partial server cluster configuration demonstrates how flexible MSCS can be. In this
system, only selected applications are allowed to fail over. As shown in Figure 26-13, you
can specify that some applications will be available when their node is down but that oth-
ers won’t.

Figure 26-13 Partial server cluster.

This configuration is ideal when you need to maximize hardware resource usage but still
provide limited failover capability for mission-critical applications. In addition, this con-
figuration supports applications that are not cluster aware while providing failover for
applications that are cluster aware.

Example 4—Virtual Server Only, with No Failover
Our final sample system is not a true cluster, but it does exploit MSCS and its support of
virtual servers. This configuration, illustrated in Figure 26-14, is a way of organizing and
advertising resources. The virtual server feature allows you to specify meaningful and
descriptive names for resources, rather than the normal list of server names. In addition,
MSCS automatically restarts an application or a resource after a server failure. This feature
is useful with applications that do not provide an internal mechanism for restarting
themselves. Implementing the configuration described in this example is also excellent
preparation for true clustering. Once you have defined the virtual servers on a single
node, you can easily add a second node without changing the server definitions.

Network

Server interconnect

Shared
disk

Capacity to host
SALES
server

SALES server

INVENTORY server

EMPLOYEE server

848 Part VI High Availability
Figure 26-14 Virtual server only, with no failover.

Planning Your Configuration
The first step in planning a SQL Server cluster is determining the type of hardware to be
used and the mode of operation in which the cluster will run. The cluster can comprise
systems with many hardware configurations, and it can operate in active/passive mode or
active/active mode. The mode determines the amount and type of hardware you will
need and should be used to justify the hardware costs to management.

Active/passive cluster configurations should consist of identical systems, each capable of
handling the entire workload. Because the active/passive mode does not use the second-
ary system during normal operation, nor does it use the primary system after a failure has
occurred, the performance of the virtual server will remain constant. Users will not expe-
rience any performance change if the primary system fails over to an identical secondary
system.

Active/active cluster configurations should consist of two systems that are each running
a specific workload. If a failure occurs, the surviving system will take over the workload
of the failed system. In this case, two workloads will then be running on a single system,
offering lower performance to all users. If you have planned carefully, the performance
delivered by this system will still remain within acceptable limits, but that performance is
not guaranteed. In planning the active/active cluster configuration, you must prepare for
some performance loss by planning to eliminate some services or by warning users that
performance will be degraded in the event of a failover.

The next step you must perform when you are configuring SQL Server for a cluster is to
check and possibly change several SQL Server settings. The next three sections examine
these settings.

SALES server

INVENTORY server

EMPLOYEE server

Network

Chapter 26 Failover Clustering Installation and Configuration 849
Setting the Recovery Time
In tuning SQL Server, you might have set the configuration parameter recovery interval to
something other than the default value of 0. Changing this setting increases the time
between checkpoints and improves performance but also increases recovery time. (The
system must recover after it has failed over.) In a clustered system, the default value of 0,
which specifies automatic configuration, should not be changed. (Having a system to
which another system can fail over is the primary reason for using MSCS and should out-
weigh performance considerations.) This setting causes a checkpoint to occur approxi-
mately every minute, and the maximum recovery time is also about one minute.

More Info For more information, check the SQL Server Books Online index for
“Recovery Interval Option.”

Note A checkpoint operation causes all modified data in the SQL Server cache
to be written to disk. Any modified data that has not been written to disk at the
time of a system failure is cleaned up by SQL Server at startup by rolling forward
committed transactions and rolling back noncommitted transactions.

Configuring SQL Server for Active/Passive Clusters
To create an active/passive cluster configuration, you might have to change one setting in
SQL Server. If your secondary server is identical to the primary server, no change is nec-
essary. If the secondary server has fewer resources than the primary server, you should
set the SQL Server configuration parameter min server memory to 0. This setting instructs
SQL Server to allocate memory based on available system resources.

More Info For more information, check the Books Online index for “Min Server
Memory Option” or “Server Memory Options.”

Configuring SQL Server for Active/Active Clusters
In an active/active cluster configuration, you must set the SQL Server configuration
parameter min server memory to 0. If this configuration parameter is set to Manual, SQL
Server might over-allocate memory after a failover. Because Windows 2003 is a virtual-
memory system, it is possible to allocate more memory than is physically available. In
fact, this problem frequently arises causing paging. For example, if each SQL Server sys-
tem allocates 75 percent of the system’s memory and a failover occurs, the combined
SQL Server services would demand 150 percent of the available memory, essentially
bringing the system to a standstill.

850 Part VI High Availability
Installing and Configuring Windows 2003 and SQL
Server 2005 Clustering

Creating the Windows Cluster
To create a SQL Server cluster, you must first create a Windows cluster. The Windows
cluster in Microsoft Windows 2003 (Enterprise Edition and Datacenter Edition) is a
built-in feature that does not require any additional software to be installed. Nodes in the
cluster can have different hardware, but the operating system must be the same across all
nodes in the cluster:

1. To create the cluster from the Start menu, select Administrative Tools and then
select Cluster Administrator. This invokes the Cluster Administrator tool.

Note Prior to creating the cluster, the shared disk and network intercon-
nect should have been configured. The interconnect can be an Ethernet
connection through a switch or a crossover cable (for two node clusters).
The shared disk must be visible by both nodes in the cluster. You must have
one partition for the Quorum and at least one partition for data.

2. Because there currently is not a cluster defined, the Open Connection to Cluster
dialog box appears with the Open Connection to Cluster option selected in the
drop-down list. Click the drop-down list and select Create New Cluster, as shown in
Figure 26-15. This invokes the New Server Cluster Wizard.

Figure 26-15 The Cluster Administrator.

Chapter 26 Failover Clustering Installation and Configuration 851
3. You are greeted with the typical Welcome to the Wizard page (not shown). Click
Next to proceed to the Cluster Name And Domain page. Here you are prompted for
the domain (usually already filled in) and the name of the new cluster to create. If
you will have multiple clusters in your domain, it is useful to have a descriptive
name. If you only have one SQL Server cluster, it is OK to name it something
generic like SQLCLUSTER, as shown in Figure 26-16. Click Next to continue.

Figure 26-16 The Cluster Name And Domain page.

4. On the Select Computer Name page, you must select the name of the system on
which to create the cluster. You must have privileges on this system, and being part
of an Active Directory domain is recommended. By default, you will get a full cluster
installation. If you wish to select a minimal configuration, click the Advanced but-
ton. Enter the system name, as shown in Figure 26-17 (the system that you are on
is defaulted). Select Next to continue.

Figure 26-17 The Select Computer Name page.

852 Part VI High Availability
5. Once you have selected the computer system, a check is made of the various compo-
nents in the system. You will see the Analyzing Configuration window, shown in Fig-
ure 26-18, when the analysis has completed. If there is a problem, you are notified,
and you should correct that problem before proceeding. Hopefully, the warnings and
diagnostic information should be enough to help you locate and fix the problem.

Figure 26-18 The Analyzing Configuration page.

Once the analysis is completed and successful (all green) you can proceed by click-
ing Next. If there are any warnings you should review and correct them.

6. You are now required to provide an IP address for the Windows cluster. This is a
cluster-wide IP address that is used for communication to the cluster manager. Fill
in the blanks (with information specific to your environment), as illustrated in Fig-
ure 26-19. Click Next to proceed.

Figure 26-19 The Cluster IP Address page.

Chapter 26 Failover Clustering Installation and Configuration 853
7. On the Cluster Service Account page, you are prompted to supply a username, pass-
word, and domain name for an account that will be used to run the cluster service.
Depending on your corporate standards, the name and type of account might vary.
This screen is shown in Figure 26-20. Click Next to continue.

Figure 26-20 The Cluster Service Account page.

8. You are now presented with the Proposed Cluster Configuration page. Here you
can review your settings before proceeding. This page is shown in Figure 26-21.
Click Next to continue.

Figure 26-21 The Proposed Cluster Configuration page.

9. When you click Next to continue, the cluster creation process begins. The Creating
the Cluster page shows you the progress of the cluster creation and notifies you
when it has completed successfully. Even though it has completed successfully

854 Part VI High Availability
there still might be warnings. If there are any issues, you should investigate and cor-
rect them. The completed Creating the Cluster page is shown in Figure 26-22.

Figure 26-22 The Creating The Cluster page.

10. You are finally presented with the Completing The New Server Cluster Wizard page
(not shown). There should be no errors at this point, and you can click Finish to
exit the wizard.

Once the cluster has been configured you are brought back into the Cluster Admin-
istrator program, as seen in Figure 26-23. From this window, you can see that the
cluster has one node and several resources.

Figure 26-23 The Cluster Administrator.

Chapter 26 Failover Clustering Installation and Configuration 855
A cluster made up of one node is not much better than not having a cluster at all, so the
next task is to add a second node to the cluster. Before proceeding, you should check the
location of the quorum drive and the order of network interfaces to use for cluster com-
munication by right-clicking the cluster and selecting Properties. If all of the properties
are set the way you want them to be, you proceed with creating the second node of the
cluster. If there are issues, such as the wrong IP address, Quorum drive, etc., you should
correct them before proceeding:

1. To add a node to the cluster either select New, then Node from the File menu, or
select the Open icon and choose Add Nodes To Cluster from the action menu. In
either case you are greeted with the Welcome To The Add Nodes Wizard page.
Click Next to begin adding a node to the cluster.

2. The Select Computers page prompts you to enter the name of one or more comput-
ers to add to the cluster, as shown in Figure 26-24. Type in or browse for the com-
puter names and click Add to add them to the list. When you have added all of the
nodes that you desire, click Next to continue.

Figure 26-24 The Add Nodes wizard.

3. The Analyzing The Configuration page is used to check various components of the
second node in the cluster to make sure that it is capable of joining the cluster.
Once all of the conditions necessary to add a node to the cluster are satisfied, as
shown in Figure 26-25, click Next to proceed.

Important If there are errors, do not proceed. Make sure everything is
compliant before proceeding.

856 Part VI High Availability
Figure 26-25 The Analyzing The Configuration page.

4. The Cluster Services Account page prompts for the password of the cluster account,
as shown in Figure 26-26. The account name is the same as the one with which you
originally created the cluster. Fill in the password, and click Next to proceed.

Figure 26-26 The Cluster Services Account page.

5. The Proposed Cluster Configuration page displays a summary of the cluster node
addition as it will be added, as shown in Figure 26-27. Review this page and click
Next to continue.

6. Once you have clicked Next, the Adding Nodes To A Cluster page appears and
the node addition process commences. You will see the progress of the node
addition while it is occurring by both the task completed bar and checkmarks
next to the steps that have been run. If any errors occur, you are informed of it by

Chapter 26 Failover Clustering Installation and Configuration 857
a red X next to the step and (depending on the severity) the progress bar turning
red. When the successful node addition has completed, you are informed, as
shown in Figure 26-28.

Figure 26-27 The Proposed Cluster Configuration page.

Figure 26-28 The Adding Nodes To The Cluster page.

7. The Completing The Add Nodes Wizard page (not shown) provides an opportu-
nity to view the log that was generated by the cluster creation. When you are fin-
ished, click the Finish button to exit the wizard.

You are now returned to the cluster administrator again. However, this time you will
see both systems in the cluster. This is shown in Figure 26-29.

858 Part VI High Availability
Figure 26-29 The Cluster Administrator.

Here you can view the properties of the cluster, such as the resources managed by the
cluster, the cluster groups, and the configuration of the cluster. Before continuing on to
creating the SQL Server cluster, make any necessary changes to the Windows cluster.
These modifications might include:

■ Changing the network connectivity You can set network adapters to be either
internal (cluster) communication only, public, or both.

■ Network priorities You can set the cluster up to favor one network over others.

■ Cluster Groups Cluster groups represent resources that work together. For exam-
ple, if you have four cluster disks that will all be used for one SQL Server cluster,
they should be moved to the same group. For example, the SQL Server instance
and all the disks used by that instance should be put into the same group.

Once you have completed configuring and testing the cluster, you are ready to move on
to the next step, creating the SQL Server cluster.

Note In order to create an active/passive cluster, you must have one shared
disk resource in addition to the Quorum disk. For an active/active cluster you
must have two shared disk resources in addition to the Quorum.

Creating the SQL Server Cluster
The SQL Server cluster is created as part of the installation process. Because installing
SQL Server is covered in Chapter 8, “Installing and Upgrading Microsoft SQL Server
2005,” it will not be repeated here. However, specifics involving clustering will be
pointed out:

Chapter 26 Failover Clustering Installation and Configuration 859
1. The SQL Server 2005 should be done on one node in the cluster. The installation
process works exactly the same as the stand-alone installation. This includes the
License Agreement window, the Installation of Prerequisites window, the Server
Installation Wizard Welcome window, the System Configuration Check, and the
Registration Information window.

2. The installation is no different from the stand-alone installation until the Compo-
nents to Install page, as shown in Figure 26-30. Here there is now an option to cre-
ate a SQL Server failover cluster and Analysis Services failover cluster (if you are
installing Analysis Services). Check this box and the boxes of any other compo-
nents that you want to install, and click Next.

Figure 26-30 Installing SQL Server 2005.

3. On the Instance Name page, you should select a named instance if you intend to
create an active/active cluster. If you are creating an active/passive cluster and have
no intention of ever adding another instance, you can choose to use the Default
instance. It is recommended that you use a named instance, just in case you ever
want to add another instance. The Instance Name page is shown in Figure 26-31.
Click Next to continue.

4. When creating a SQL Server 2005 cluster, you must provide a name and IP address
for the SQL Server virtual server.

Note The virtual server name (and associated IP address) is the interface
that the users will use to connect to SQL Server. In the event of a failover,
this virtual name and IP address will fail over to another node in the cluster.
Thus, the connection to SQL Server will always be the same, where the
resources reside will change.

860 Part VI High Availability
Figure 26-31 The Instance Name page.

On the Virtual Server Name page you must provide this name, as shown in Figure
26-32. This name can be the same as the instance name or different. Click Next to
continue.

Figure 26-32 The Virtual Server Name page.

5. On the Virtual Server Configuration page, as shown in Figure 26-33, you must
select the proper network adapter and type the IP address of the SQL Server virtual
server. The network adapter chosen is the one over which client traffic connects to
the virtual server. Input the IP address, and click the Add button. When you are fin-
ished, click Next to continue.

Chapter 26 Failover Clustering Installation and Configuration 861
Figure 26-33 The Virtual Server Configuration page.

6. The Cluster Group Selection page is where you select the cluster group that will be
used for this installation. Choose the group that contains the disks that you wish to
use. If you are planning on using more than one shared disk, you will move those
disks into this group later. You can also later rename this group to something more
specific . This screen is shown in Figure 26-34. Click Next to continue.

Figure 26-34 The Cluster Group Selection page.

7. The Cluster Node Configuration page allows you to choose the nodes on which the
SQL Server cluster can run. The node on which you are installing is required. In this
walkthrough, the second node (ptc4) has already been selected.

862 Part VI High Availability
Note If you are creating a multi-node cluster, select all of the nodes that
you want to add. If you choose to add one at a time you will need to run
the entire add-node process again later.

Click Next to continue.

Figure 26-35 The Cluster Node Configuration page.

8. The Remote Account Information page is where you provide a password to the
account that will be adding SQL Server to the cluster, as shown in Figure 26-36.
Type the password for the pre-selected user, and click Next to continue.

Figure 26-36 The Remote Account Information page.

9. As with the stand-alone configuration, you must provide a service account under
which the SQL Server services run. It is recommended that an active directory

Chapter 26 Failover Clustering Installation and Configuration 863
domain account is used, as shown here in Figure 26-37. Put in the account informa-
tion for the SQL Server active directory domain account that the services will run
under, and click Next to continue. This account can be the same as in the previous
step, or can be different.

Figure 26-37 The Service Account page.

10. The SQL Server service accounts must be made a member of an Active Directory
security group in the Domain Groups For Clustered Services page. For each service
account, specify the Security Group name, as shown in Figure 26-38. Click Next to
continue.

Note The SQL Server security group that you intend to use must already
be configured by your domain administrator.

Figure 26-38 The Domain Groups For Clustered Services page.

864 Part VI High Availability
11. From this step on you are back to the normal SQL Server installation process. The
Authentication Mode page, as shown in Figure 26-39, lets you configure for Win-
dows authentication (recommended) or SQL Server and Windows authentication.
Make your selection, and click Next to continue.

Figure 26-39 The Authentication Mode page.

12. The Collation Settings page is used to select the collation designator and sort order.
The default is sufficient for most cases. This is shown in Figure 26-40. Click Next to
continue.

Figure 26-40 The Collation Settings page.

Chapter 26 Failover Clustering Installation and Configuration 865
13. Next is the Error and Usage Report settings page. Here you can determine what
information is sent to Microsoft on errors. This page is not shown. Click Next to
Continue.

14. You are now at the Ready to Install page. Click Next to move to the Setup Progress
page (not shown). The installation has now begun. You will see the installation
progress screen and the status as it completes each step. You will notice that the
Setup Progress page includes a drop-down list that includes each node in the clus-
ter. You can select any node to view the progress of that node.

Note You might receive an error message when trying to install SQL
Server 2005. This error message could be caused by the error described in
the Microsoft Knowledge Base article 910851. To resolve this, make sure
that you are not currently logged into the second node of the cluster, only
the node that you are installing from.

15. When the installation has completed (on both nodes), you are informed of it in the
Setup Progress page. Click Next to finish the setup process. The Completing the
Microsoft SQL Server 2005 Setup page allows you to view the logs and review the
setup. Click Finish to exit the wizard.

Additional Steps
At this point, there are several additional steps that can be taken. They include modifying
the cluster configuration, upgrading SQL Server 2005 to the latest service pack, and cre-
ating an Active-Active cluster. Each of these tasks are independent of each other and will
be described here.

Modifying the Cluster Configuration
There might be a few modifications to the cluster configuration that you will want to do.
In addition, you should check and make sure that all of the names, IP addresses, and so
on, are correct. Other things to validate include the following:

■ Install SQL Server Client Tools By default, the SQL Server client and administra-
tion tools are installed only on the first node of the cluster. You might choose to
install them on the second node as well. This depends on whether you administer
your system locally or via a remote system. If you administer it remotely, the client
and administrative tools are not really necessary on the server.

■ Cluster Group Name I personally prefer to rename the cluster group to some-
thing descriptive, such as SQL1.

866 Part VI High Availability
■ Failback If you prefer one node over another, you can set the cluster up to fail back
to that node, either immediately upon that node returning to the cluster or during
a certain time period that you specify.

■ Dependencies You might want to add dependencies for additional disk drives
and so on.

■ Test the cluster Move the SQL Server resources from one node to another and
verify that you can still connect to SQL Server from another system.

There usually are not significant modifications that you have to make to the cluster itself.

Upgrading the Cluster
Upgrading SQL Server to the latest service pack does not raise any special considerations
because you are on a cluster. Run the service pack on the node of the cluster that cur-
rently owns the resources. The service pack is automatically applied to all nodes in the
cluster. To verify that the service pack has been properly applied, move the resources (by
right clicking on the resource and selecting Move Resource) from one node to the other.
Look at the startup messages in the SQL Server log in order to make sure that both nodes
are running the same version of SQL Server. Each time SQL Server restarts, the following
lines are placed into the SQL Server Error log:

2006-08-16 20:10:58.22 Server Microsoft SQL Server 2005 - 9.00.1399.06
(Intel X86)

Oct 14 2005 00:33:37
Copyright (c) 1988-2005 Microsoft Corporation
Developer Edition on Windows NT 5.2 (Build 3790: Service Pack 1)

2006-08-16 20:10:58.24 Server (c) 2005 Microsoft Corporation.
2006-08-16 20:10:58.24 Server All rights reserved.

Notice that the SQL Server 2005 build number is listed as 9.00.1399.06. In a later error
log, after SP1 has been applied, the following is observed:

2006-08-17 09:21:34.30 Server Microsoft SQL Server 2005 - 9.00.2047.00
(Intel X86)
Apr 14 2006 01:12:25
Copyright (c) 1988-2005 Microsoft Corporation
Developer Edition on Windows NT 5.2 (Build 3790: Service Pack 1)

2006-08-17 09:21:34.31 Server (c) 2005 Microsoft Corporation.
2006-08-17 09:21:34.31 Server All rights reserved.

Chapter 26 Failover Clustering Installation and Configuration 867
The build number of SQL Server 2005 SP1 is 2047. Verify this for all nodes in the cluster.

Real World Trust Yet Verify

Even though it looks as if the service pack installations have succeeded, I always
want to verify. On one of my very first SQL Server 2005 engagements, I configured
an active/active cluster with database mirroring. After updating to SP1, I noticed an
anomaly and discovered that SQL Server had been updated on only three of the
four nodes. If a cluster failover were to occur, database mirroring would fail because
that copy of SQL Server was not at SP1. So, make sure you verify that the upgrade
has worked.

Before upgrading to the latest service pack, make sure to back up all of your databases.

Create an Active/Active Cluster
An active/active cluster is simply two active/passive clusters using the same hardware.
There is still only one quorum disk, but you must have a separate disk, name, and IP
address resource for the second active node in the cluster. In addition, SQL Server
resources must be configured such that the system can run properly even if both SQL
Server instances are running on the same node in the cluster.

To install an active/active SQL Server cluster, simply install SQL Server again (preferable
from the other node) and give it a different instance name. It is acceptable to install the
second instance on the same node on which you installed the first time, but by using the
second node, you get the additional advantage of the opportunity to install the SQL
Server tools, such as SQL Server Management Studio, Profiler, and so on.

Once you have installed the second SQL Server instance, you must also upgrade that
instance to the latest service pack. As before, verify that all nodes have been updated.

Using a Three-Tier Application
Most applications establish a direct connection to a database. The application submits
transactions, and the database responds to those transactions. In the event of a system
failure, the transaction times out and the application fails. In many cases, this is the
best setup—if the transaction is not completed, you want the application to fail. If you
implement a failover cluster, however, the database soon becomes available and able
to respond to transactions after a failure. By carefully designing a three-tier applica-
tion, you can help ensure that the application takes advantage of this fast restoration
of service.

868 Part VI High Availability
In a three-tier application, the middle layer can detect that the server has stopped
responding, wait a specified amount of time, and resubmit the transaction. The user will
experience a longer delay waiting for the transaction to be completed, but the delay might
be preferable to the transaction failing. To succeed, the application must be able to detect
that the connection to the server has failed and must know to reconnect. In addition, the
application should inform the end user that this process is taking place by displaying a
message box or through some other means.

With a three-tier application, seamless failover is possible. The application must be clus-
ter aware and must know that the virtual server will soon be up and functioning. Because
the SQL Server cluster will soon fail over and be back up and running, the three-tier appli-
cation must be coded such that upon a failure it will wait a designated amount of time
and then retry. Remember that failing over a SQL Server cluster can take several minutes.
Using a three-tier application framework in conjunction with MSCS can provide both
application and data robustness.

Summary
We’ve examined the basics of MSCS and how SQL Server works within that architecture.
We’ve also seen how SQL Server can survive some types of catastrophic hardware and
software failures and be back up and running transactions in a short time. To achieve
this degree of fault tolerance, you must not only enable MSCS but also take other mea-
sures. Two important steps are performing regular and effective backups and preparing
a disaster recovery plan. The procedures for backing up your system and preparing a
disaster recovery plan are described in detail in Chapter 14, “Backup Fundamentals,”
and Chapter 15, “Restoring Data,” as well as Chapter 27, “Log Shipping and Database
Mirroring.” Clustering servers and creating RAID storage are not alternatives to perform-
ing backups. In many cases, neither of these technologies can help you if your system
crashes and you have not performed a backup. These situations can include the follow-
ing types of failures:

■ Hardware failures In rare cases, hardware failures can corrupt data. If the primary
system experiences a hardware failure that corrupts the database, the secondary
server fails over to a corrupted database.

■ Software failures Regardless of how well software has been developed and tested,
occasional bugs can sneak in. If one of these rare software bugs corrupts the data-
base, failover to that database is of no avail. RAID technology simply offers a fault-
tolerant copy of corrupted data.

■ Human error Users commonly delete their data by mistake. Neither clustering
technology nor RAID solves this problem.

Chapter 26 Failover Clustering Installation and Configuration 869
Chapter 25 explains more about planning for a disaster and enabling your system to sur-
vive one. The preceding examples simply illustrate the fact that clusters and failover serve
specific purposes and are only two weapons in the battle to provide constant data access
and data integrity.

Chapter 27

Log Shipping and Database
Mirroring

Log Shipping .872

Database Mirroring .893

Summary .920

Log shipping has been a method for creating a standby database since SQL Server 2000.
In fact, if you count homemade methods, log shipping has been around even longer. In
SQL Server 2005, log shipping is still available, but it has been enhanced with the addi-
tion of SQL Server mirroring. SQL Server mirroring builds on log shipping technology
but allows the standby system to be completely in sync with the primary system.

In this chapter, you will learn how to configure and manage both log shipping and data-
base mirroring. As you have seen in Chapter 25, “Disaster Recovery Solutions,” both of
these can be used as a disaster recovery solution designed to keep your company in busi-
ness in the unfortunate event of a disaster.

Note Database mirroring has been supported only since Service Pack 1 of SQL
Server 2005. Service Pack 1 or later is required for database mirroring.

Log shipping is designed as a disaster recovery solution and is not intended as a high
availability solution. Database mirroring can actually be used as a disaster recovery and/
or a high availability solution. In this chapter, you will learn how to configure mirroring
for both. It is possible that at some point in the near future database mirroring will make
SQL Server clusters obsolete.

Log shipping and database mirroring are designed to create a standby database that can
be used in the event of a catastrophic failure that renders your production database unus-
able. Both log shipping and database mirroring can be used locally within the datacenter
to provide protection against the loss of a system or can be configured in a remote loca-
tion to protect against the loss of the entire data center. Because these products create a
copy of the production database, they can protect you against many types of data loss.
871

872 Part VI High Availability
Types of Data Loss
In general, there are two types of data loss: physical and logical. Physical corruption of
data typically happens when there is a hardware or software malfunction. For example, a
hard drive crashes or a firmware/driver flips bits incorrectly and corrupts the data. Logical
corruption is usually induced by end users. Examples of this include someone not putting
a WHERE clause on a DELETE statement and accidentally deleting all the rows in a table
instead of just a few or a DBA accidentally mistaking a table for a view and dropping it.

Log Shipping
Log shipping is a technology that has been around for many years. It’s stable, reliable,
and easy to implement. Simply put, log shipping gives you the ability to have a warm
standby database or databases running in case something bad happens. The standby
database can be located physically close to the primary database or on another continent.
You can have one standby or multiple standby databases geographically dispersed. Addi-
tionally, log shipping gives you a very granular level of control over the current state of
the standby database.

On the surface, this may sound trivial—distance and chronological history—but in reality,
these are very real concerns. For example, with clustering either at the server level or at
the disk storage level, physical restraints are present in even the most expensive solu-
tions. The constraints are usually limited to a few kilometers at best. What happens if
there is an earth quake or flood in a city? If you have clustering in place, both sites could
very easily be taken down. With regards to chronological history, what if a user acciden-
tally deletes important data? Clustering is a shared disk solution that provides redun-
dancy at the hardware level, not at the data level. A change on one node instantly is
reflected in the other. Log shipping removes these two chief concerns.

Often in recovery, going to a tape backup is the last resort. If you can recover from a more
immediate source, then you have more options available to you. There are a variety of dif-
ferent reasons for this logic. The primary reason that tape is a solution of last resort is
because of performance. Tapes can take a long time to restore, and if the tape you need
has been archived offsite, it can take even longer.

Often a consideration when recovering a database is the quality of the data itself, not nec-
essarily the performance of the database server. In an OLTP environment, high through-
put and many spindles are a chief consideration when architecting a solution. In
recovery, you first and foremost want the data back—then you worry about performance.
Log shipping gives you the ability to ship to a less powerful machine. For example, you
can log ship to an older server with a few high capacity/low performance disk drives. This
creates an inexpensive and quick recovery option while the primary server is being

Chapter 27 Log Shipping and Database Mirroring 873
rebuilt. With other technologies, it is strongly recommended that like hardware be used
for both the source and target systems.

Important Although it is possible to log ship to a smaller, less powerful sys-
tem, this decision should be made with care. In the event of a long-term outage,
your performance could suffer for an extended period of time. This is a judgment
that you must make.

At a high level, log shipping consists of a source database and a target database. Changes
that are made on the source database are backed up, copied over to the target database,
and then applied. These tasks can all be controlled via SQL Agent jobs that are created
and scheduled through SQL Server Management Studio. In the following sections of this
chapter, we’ll explore each one in depth and examine the considerations you should
make for them.

Note Log shipping can be used only with either full- or bulk-logged recovery
models enabled.

Log shipping technology is easy to configure and helps provides a strong database, high
availability strategy. In principle, it’s possible for you to log ship to the same SQL Server,
but in reality, it should be on a separate physical server. The basic process involves back-
ing up the primary database to the secondary system and constantly restoring transac-
tion log backups. This is shown in Figure 27-1.

Figure 27-1 General overview of log shipping.

Restore to
secondary

database with
NORECOVERY

Backup T-log
on primary

Change roles
of the services

Users now
in database

Backup
primary

database

Apply T-log to
secondary

database with
NORECOVERY

Fail over?
Yes

No

Copy T-log to
secondary
database

Recover the
secondary
database

Backup tail of
log on primary
if possible and

apply to
secondary

Repoint
application,
users log in

Sync users

874 Part VI High Availability
In order to configure log shipping (and database mirroring), it is first necessary to con-
figure security.

Configuring Security for Log Shipping and Database Mirroring
Prior to configuring log shipping or database mirroring, there are two steps that must be
completed:

1. Surface area configuration

2. Service account configuration

For security reasons, SQL Server by default turns off remote access so hackers cannot get
to the database. For example, if you try to connect from Server A to Server B and remote
connections is not configured, then the connection is refused and the query does not run.

Enabling surface area communication allows the servers talk to each other. Ensuring
proper service account permissions allows two SQL Servers access to each other’s file sys-
tems and other resources. For example, Server B needs to copy over the transaction log
backup from Server A. If the wrong account is used, then they are not able to access each
other’s directories to copy the files.

Important If these features are not enabled, you will get errors saying it can-
not find files and directories on the remote servers. For example, issuing the SQL
command:

RESTORE FILELISTONLY
FROM DISK = '\\srvbox000fm\h$\sql\backup\prod.bak'

results in the following error message when a remote connection can be created
to the remote server:

Msg 3201, Level 16, State 2, Line 3
Cannot open backup device
'\\srvbox000fm\h$\sql\backup\prod.bak'. Operating system error
5(Access is denied.).
Msg 3013, Level 16, State 1, Line 3
RESTORE FILELIST is terminating abnormally.

Surface Area Configuration Process
Follow these steps to enable remote access:

1. Using SQL Server Management Studio or sqlcmd, confirm that the SQL Server
parameter “remote access” is enabled. In SQL Server Management Studio, right-
click the SQL Server instance and select Properties. In the Server Properties win-
dow, select the Connections page. On this page, make sure that the box is checked
next to Allow Remote Connections to This Server.

Chapter 27 Log Shipping and Database Mirroring 875
2. From the Start menu, select All Programs, then select Microsoft SQL Server 2005,
then select Configuration Tools, and finally select Surface Area Configuration Tool.

3. In the Service Area Configuration tool, select the Surface Area Configuration For
Services And Connections option, and then select the Remote Connections compo-
nent in the left pane. If you do not see the Remote Connections component listed,
expand the Database Engine component under your server instance.

4. Select the Local And Remote Connections and Using Both TCP/IP And Named
Pipes options, as shown in Figure 27-2.

Figure 27-2 The SQL Server Surface Area Configuration choices.

5. Click OK to exit the SQL Server 2005 Surface Area Configuration tool.

SQL Server Service Account Configuration
The SQL Server service configuration includes the user account under which this service
will run. Often when you install SQL Server, you take the defaults and use the local sys-
tem user account to start up the services. While this works in a local environment, it will
fail to work properly in a larger landscape where communication and sharing of
resources is needed between machines. There are several ways to solve this problem:

■ Create local Windows accounts on both servers using the same account name and
passwords on both machines.

■ Use a domain account that both machines can share.

For administrative purposes, it’s typically easier to have one domain account that is used
for all SQL Servers. The primary reason is password management. When the password is

876 Part VI High Availability
changed on one machine, it’s changed on all of them. Make sure the locally cached cre-
dentials get flushed and refreshed on each server.

Note Set the user account and password on all dependent SQL Server services
(on all participating systems) to be the same, preferably a domain account, for
example, SQL Server service and SQL Server Agent service using the same
account. This helps keep all the permissions in sync when exchanging data.

Finally, make sure that the appropriate firewall ports are open for the SQL Server
instance, as well as any additional ports that may be needed for mirroring.

Configuring Log Shipping
Configuring log shipping is done via the log shipping configuration tool. This tool creates
SQL Agent jobs on both the primary and secondary database servers, which then per-
form log shipping tasks automatically. Log shipping can be configured from SQL Server
Management Studio. In SQL Server Management Studio, expand the SQL Server
instance, and then expand Databases. Right-click the source database, select Tasks, and
then select Ship Transaction Logs. This invokes the Database Properties window in
which you will configure log shipping. In the Database Properties window, perform the
following steps:

1. Make sure Transaction Log Shipping is selected in the left pane of the window.

Figure 27-3 Database Properties—Transaction Log Shipping.

Chapter 27 Log Shipping and Database Mirroring 877
2. Select the Enable This As A Primary Database In A Log Shipping Configuration
check box, and then click Backup Settings.

Note If the database is not currently using the full recovery model, you
will get an error message and be required to set it up that way at this time.

3. From this window, you must define the network path to the backup folder. This
path is used by the SQL Server agent to copy the backup file from the primary
server to the standby server. This is a common directory to which both systems
must have access. In addition to defining the network backup folder and local
name, if applicable, you can also define the frequency of backups, the name of the
job, and the frequency that the job is run. You can also disable the job from here.
Once you have completed this page, click OK to continue. This returns you to the
Database Properties window.

Note Before configuring the backup location in this window, make sure
both systems service accounts have proper permissions to get to this loca-
tion, as shown in Figure 27-4.

Figure 27-4 The Transaction Log Backup Settings window.

4. Once you have set up the initial backup, you must add a secondary server for
SQL Server to which to log ship. In the Database Properties window, click Add.

878 Part VI High Availability
This invokes the Secondary Database Settings window. Click Connect to open
the Connect To Server window, and enter (or browse for) the name of the sec-
ondary database server. In this window, you will specify the credentials to con-
nect to the secondary server. Once you have properly entered the server and
authentication information, click Connect to return to the Secondary Database
Settings window.

5. Three tabs in the Secondary Database Settings window define how the database is
set up on the secondary server. The Initialize Secondary Database tab defines how
the database is initially established, as shown in Figure 27-5. SQL Server can back
up the database on the primary server and copy it over, or you can restore the data-
base manually. It may be necessary to copy the database manually if you have a very
large database and the copy/restore over a network will take too long. In this case,
you might need to back up the database to tape, send this tape to the remote loca-
tion, and restore it there.

Note If you are restoring a database manually, remember to use the
NORECOVERY syntax, or else no transaction logs can be applied, for
example:

RESTORE DATABASE prod
 FROM DISK= 'F:\sql\backup\prod.bak' WITH NORECOVERY;

Figure 27-5 The Initialize Secondary Database tab.

Chapter 27 Log Shipping and Database Mirroring 879
6. The Copy Files tab specifies where the backups of the transaction logs and ini-
tial backup are put, as shown in Figure 27-6. Again, make sure the appropriate
permissions are in place, or the copy job will not work after it has been config-
ured. The Delete Copied Files After parameter controls how long the transac-
tion log backup is saved after it has been sent to the secondary database server.
This value should be determined by your backup schedule.

The default schedule for the backup transaction log, copy files, and restore transac-
tion log is every 15 minutes. This schedule is adjustable. See the “Advanced Log
Shipping Strategies” section in this chapter for more information on strategies for
changing these parameters. Generally, 15 minutes should be sufficient.

Figure 27-6 The Copy Files tab.

7. Finally, the Restore Transaction Log tab defines the database on the secondary
server to which the logs are applied, how the logs are applied, and the frequency
with which they are applied, as shown in Figure 27-7. The default application of the
log is set to zero, which means the log is applied as soon as the job is run. While on
the surface this may sound obvious, there are reasons why you might not want this
setting. For example, if someone accidentally deletes all the rows in a table and the
application of the log on the secondary server is set to immediate, then the delete is
also immediately propagated. If the latency of the application is delayed by an hour,
then you have one hour to catch the error and recover the data on the secondary

880 Part VI High Availability
server before it’s deleted. As with the copy job, the defaults provided are usually
good enough to get started with.

Remember, application of the log is in chronological time. The “real” time to
apply the logs and catch up is usually very fast. For example, you might configure
immediate copy of the transaction logs and a one-hour latency delay in the appli-
cation of the log on the secondary database, but it will only take a few minutes to
roll that hour of “chronological time” delay forward in case the database needs to
be brought online immediately. Once you have configured the Secondary Data-
base Settings appropriately, click OK to exit this window. You are now returned to
the Database Properties window in the Ship Transaction Logs tab.

Figure 27-7 The Restore Transaction Log tab.

8. Finally, configure the log shipping monitor. This tool helps you track statistics, sta-
tus, and errors that could happen during log shipping, for example, if network con-
nectivity goes down between the two servers and the copy job fails. Define where
the log shipping monitor will reside. In large implementations, there may be one
central server that tracks all log shipping.

Select the Use A Monitor Server Instance check box. Then click Settings. In the Log
Shipping Monitor Settings window (see Figure 27-8), connect to a monitor instance
as you did above with the secondary database instance, define the retention history
as needed, and then click OK. This exits the Secondary Database Settings window,
and you are now back in the Database Properties window in the Transaction Log
Shipping tab.

Chapter 27 Log Shipping and Database Mirroring 881
Figure 27-8 The Log Shipping Monitor settings.

9. Click OK and SQL Server creates all the needed jobs on the primary and secondary
servers, as shown in Figure 27-9.

Figure 27-9 Log Shipping successfully installed.

The jobs can be seen when the SQL Server Agent is expanded on the primary and
secondary servers. The primary has the backup and monitor jobs. The secondary
has the copy and restore jobs.

Monitoring Log Shipping
As with any mission critical application, you need to monitor log shipping. The process
of monitoring log shipping is accomplished in three ways:

1. Running the transaction log shipping status report

882 Part VI High Availability
2. Looking at the SQL Server Agent job history

3. Checking the SQL Server log

Running the Transaction Log Shipping Status report
To run the transaction log shipping status report, follow these steps. In the summary
pane of SQL Server Management Studio, highlight the SQL Server instance, click the
Report drop-down menu, and select the Transaction Log Shipping Status report.

This interrogates the job history in internal SQL Server tables and generates a report that
provides information on when the last events occurred. A sample of the output is seen in
Figure 27-10.

Figure 27-10 The Transaction Log Shipping Status report.

In the case of an alert, the report reads in red and shows which job failed and how far
behind the job is.

SQL Server Agent Job History
Checking the job history is an easy process. In the Object Explorer pane of SQL Server
Management Studio, expand SQL Server Agent, and then expand the Jobs folder. The log
shipping jobs are listed. Right-click the appropriate job and select View History.

This shows a listing of the jobs, their frequency, and whether any errors happened during
the job run. This information is often useful for debugging errors, for example, when per-
missions have changed on a share and the job is no longer able to access it. It helps for
also figuring out when something has broken and for root-cause analysis.

Checking the SQL Server Log
The SQL Server Log can be viewed in SQL Server Management Studio by expanding
the SQL Server instance, then expanding Management, and then expanding the SQL
Server Logs folder. Select a log and double-click. Look for the last time that the log was
backed up and when it was last applied. If any of these jobs are not running as sched-
uled, investigate the root cause by looking through the log. Additionally, the SQL

Chapter 27 Log Shipping and Database Mirroring 883
Server error log can be found in the %PROGRAM FILES%\Microsoft SQL
Server\MSSQL.1\MSSQL\LOG directory (will be MSSQL.2 for second instance, etc.).
When debugging issues, it’s usually best to sort by date and time stamp. Typically, the
problem you had last is written as the last entry in the last log. From a DOS command
window, you can run the DIR /OD command in the LOG directory and get this listing.

Real World Problem Resolution

There can be any number of reasons that log shipping could fail. How to debug and
solve the problem really depends on the problem itself. The log files are the best
place to start, followed by the Windows event log and any other monitoring that
you might have, such as MOM monitoring. Common problems affecting log ship-
ping include network connectivity, space, and system problems. Follow the logs
and look for the obvious.

Metadata: Transact-SQL for Database Mirroring Information
The following is a list of system stored procedures for adding, removing, and monitoring
log shipping on both the primary and secondary databases. These stored procedures
require permissions from the sysadmin role. SQL Server Books Online provides a com-
plete explanation of each.

Of particular interest are the following stored procedures:

■ sp_help_log_shipping_monitor

■ sp_resolve_logins

sp_help_log_shipping_monitor provides an overview of the log shipping landscape, and
sp_resolve_logins is needed to resolve logins to users after secondary database post fail-
over.

Log Shipping Failover
Failing over the database in an emergency is a straight-forward process that involves sev-
eral steps. As one would expect, there are different approaches based on whether the pri-
mary server is still available. For example, if a natural disaster strikes the primary
datacenter on the East Coast, then the datacenter on the West Coast is not able to back
up the tail of the transaction log, thereby exposing the company to loss of data that is in
the final log. The recovery plan and business service level agreement need to factor this
in when designing the overall high availability strategy and how often the transaction log

884 Part VI High Availability
on the primary server is backed up and copied to the secondary. The failover process
includes the following steps:

1. Back up the master..syslogins Table to a text file. This file will be used to synchro-
nize sysusers to syslogins on the secondary server when failover occurs. If you
don’t have this ready, you will have orphaned connections and users will not be
able to properly log in to the secondary database after failover.

To get this information, run the following command at a DOS command window.
Alternately, you can script it into a SQL Agent job that runs nightly after your
backup:

C:\tmp>bcp master..syslogins out c:\tmp\syslogins.dat -N -S . -T

Note The –T option specifies use of the trusted (windows) authentication.
You can substitute –Usa –Ppassword for –T if needed..

2. Disable log shipping on the primary if it’s still available. Disabling log shipping on
the primary requires going into the transaction log shipping configuration window,
as described in “Configuring Log Shipping” previously in this chapter, and shown
in Figure 27-3. Click the Backup Settings button in the center of the window. Next,
select the Disable This Job check box, as seen in Figure 27-11. This keeps the log
shipping jobs intact but suspends the database transaction log backup.

Figure 27-11 Log Shipping Backup Job.

Chapter 27 Log Shipping and Database Mirroring 885
3. Back up the tail of the transaction log. If the primary server is still accessible, back
up the tail of the transaction log. This contains the last few records prior to the data-
base coming down. To back up the tail of the transaction log, run the following
command:

USE master ;

BACKUP LOG prod

 TO DISK='\\srvbox000fm\h$\sql\backup\tail.trn' WITH NO_TRUNCATE,INIT ;

Note You can also back up the primary log file using the “NORECOVERY”
syntax puts the primary database in a recovery state. This allows the sec-
ondary to repoint back to the primary once the failed server is fixed. How-
ever, this option requires the database to be in single user mode, thus
requiring a restart before proceeding.

4. Restore the tail to the secondary and recover the database manually. Now restore
the last transactions from the tail of the transaction log to the secondary server and
recover the database so users can access it:

USE master ;

RESTORE LOG prod

 FROM DISK='\\srvbox000fm\h$\sql\backup\tail.trn' WITh RECOVERY ;

5. Resolve logins. Run the following stored procedure to resolve the logins between
the primary and secondary databases (using your own database names):

EXEC sp_resolve_logins @dest_db = 'prod',

 @dest_path = '\\srvbox000fm\h$\',

 @filename = 'syslogins.dat'

GO

Note See the section titled “Failovers: Users, Logins” in this chapter for a
complete explanation of syslogins and sysusers in the recovery process.

Note Substitute your database destination and path in this command.

At this point, users can now log into the database using their login and passwords
that they use on the primary database server.

6. Next point this application to the new database server IP address or change the
ODBC DSN connection string and other specifications so the application can find

886 Part VI High Availability
the new database server. Additionally, depending on the configuration, you may
need to take the new primary database server (that was previously the secondary)
and point to a new secondary server. This requires going through the configuration
process again. All of this is application-dependent and dependent on how it fits into
your site’s high availability plan for business continuity.

While this may seem cumbersome, you should have all of this scripted out, and it should
not take more than a few minutes to complete all of the steps during an emergency.

Note The keys to successful failover are planning, documentation, and testing.
Have all of the processes debugged and scripted well in advance. The last thing
a DBA needs is to debug a recovery process in an emergency situation. In addi-
tion to documenting the system, also have a tape recall policy, support and
account numbers, management escalation paths, hotels, and 24-hour food out-
lets documented.

Removing Log Shipping
Removing log shipping is very easy. Simply go into the log shipping configuration win-
dow as discussed in the section “Configuring Log Shipping” and then clear the Enable
This As A Primary Database In A Log Shipping Configuration check box, as shown in
Figure 27-3, and click OK to continue. You are prompted that this will remove log ship-
ping. Next, a window pops up that shows you the status of the log shipping jobs being
removed.

Tuning Log Shipping: Operations and Considerations
Log shipping can be planned in two basic configurations: one for data availability, and
the other for performance and availability. In the former case, the company is looking for
access to the data not for performance reasons but for recovery times and accessibility
that are faster than going to a backup tape and rebuilding a system. The reasons for this
might be an offline reporting server, staggered copies of the data for advanced recovery
scenarios, or just having another option in their recovery choices. In this scenario, older
systems are typically used. Performance is not a key consideration.

In the latter scenario, availability and performance, companies are planning on failing
over a production environment to a secondary disaster database. In this case, the com-
pany needs a system that can handle as many users and batch processes on the database
server as the primary server. The hardware requirements for this case are significantly dif-
ferent than having a system that is used as a reporting server.

Chapter 27 Log Shipping and Database Mirroring 887
With this in mind, tuning log shipping is really a function of several variables that are
independent and yet act together. They consist of hardware, network speed, and log
shipping configuration jobs, as mentioned throughout this book:

■ Database server hardware

■ Number of disks participating in the disk volumes and how they are configured
(RAID level, and so on)

■ Speed of the disk

■ Speed of the LAN/WAN

■ Frequency of the copy job

■ Frequency of the apply job

■ Frequency of size of the transaction log backups

Hardware Considerations
As with any computer configuration, you can go only as fast as your slowest component,
which tends to be a disk. If you are planning on a reporting or data-only configuration,
older hardware can be used. However, this is not recommended. In the unfortunate event
of a failover, the slower backup hardware will not be able to keep up with your current
load, and your performance might suffer dramatically. It is recommended that sufficient
hardware be allocated as the secondary server.

Network Considerations
Network can be a significant bottleneck, depending on the location of the secondary
database and the size of the transaction volume. Just as with a disk, you can go only as
fast as your slowest network segment allows. For example, your network may be on a
gigabit fabric switch, but your data may be going over a VPN connection where a router
on a distant network is running very slowly. In this case, you can go only as fast as the
slow router on the remote network even though your gear is highly optimized.

Networks tend to be tough issues to diagnose. At a rudimentary level, basic information
can be attained by running a tracert command. This shows you how many hops the
packets have to go over the routers and how long it takes for each hop to take place. With
a disaster recovery site on the other side of the country, it’s feasible to be hopping over 20
or 30 routers, each taking a significant amount of time. If the copy jobs are taking a long
time, debug with the tracert command and try taking the database out of the equation
by just XCOPY a file from one server to the other and measuring the times. If the network
is too slow to keep up with copying the transaction log backups, the network must be
enhanced or log shipping will not work for you.

888 Part VI High Availability
How Often Should the Transaction Log Be Backed Up?
This is a common question that we are often asked. The answer basically comes down to
how much data the company can be exposed to if the transaction log device is lost. In a
perfect world, the data is never lost. The next best scenario is that the risk of loss is mit-
igated through various high availability technologies such as RAID devices at the disk
level, geospatial replication at the disk subsystem, log shipping, and database mirroring.
The reality is that data loss does happen because disks are mechanical devices that can
and do break.

Backing up the database transaction log once an hour is going to involve the same total
amount of data as backing up the database multiple times during the same hour. For
example, one 100 MB transaction log backup once an hour is going to take up the same
disk space as four 25M transaction log backups done every 15 minutes during that same
time frame. The only difference is that if the company lost the log device during that one
hour backup, it could lose all 100M of data in it. If the company backed up once every
15 minutes, then data loss exposure could be 25M, hence limiting the exposure to loss
of data.

On large mission-critical databases, such as an ERP system, backing up the transaction
log is done more often than on data warehouses because data is updated more frequently
in an ERP system. The more frequent the transaction log backups are done, the less effect
it has on the system. However, performing transaction log backups too frequently can
cause extra contention on the log disks.

Log Shipping Job Configuration
There are two considerations to keep in mind when tuning the jobs: recovery time and
size of transactional volume. If the company has a high transactional volume, then the
failure to move the data over to the remote site in an expedited way means exposure to
data loss. Conversely, if the transactional volume is low, then the need to move the data
over could be less.

Within the context of moving the data over, the copy job of log shipping can be changed
to reflect this concern. Typically, the company wants the data over to the remote site as
soon as the transaction log is backed up. The default, 0, copies the data over as soon as
the transaction log is backed up. There really are not that many reasons not to copy the
data over to the remote server as soon as it’s backed up—it mitigates the risk of a single
point of failure on the primary server.

The application of the transaction log can be staggered based on the company’s recovery
strategy. This can be tuned by changing the Delay Restoring Backups option in the
Restore Transaction Log tab on the Secondary Database Settings screen in the log ship-
ping configuration window. To reach this screen, select the database that is being log

Chapter 27 Log Shipping and Database Mirroring 889
shipped in the Object Explorer by expanding databases. Right click the database and
select Tasks, and then select Ship Transaction Logs. In the Transaction Log Shipping
page, click the ellipses button next to the secondary database to invoke the Secondary
Database Settings screen. From here, click the Restore Transaction Log tab.

Real World Why Delay?

The primary reason for keeping the secondary database up to date on the copy but
delayed behind on the application of the transaction log, is to protect from logical
corruption. Take this scenario, for example: The secondary database is backed up
every 15 minutes, delayed by one hour, and the copy is immediate. A developer
accidentally drops a table on the primary at 10 a.m. and discovered his error at
10:08 a.m. You could go to the secondary server, which would be at 9 a.m. in recov-
ery, and you could stop the log shipping, apply all the transaction logs until 10 a.m.,
and then recover the table. If the copy and apply were immediate or if mirroring
was used, then the data would have been dropped on both the primary and sec-
ondary databases, forcing you to go to tape for a restore on a server and then rolling
forward many transaction logs until 10 a.m. Having the delay built in can protect
the company and help on the recovery issues.

Practical Log Shipping Advice
Log shipping in itself is a simple and strong strategy. This is not to be confused with being
simplistic. It offers a robust and resilient tool in your high availability strategy. There are
a variety of permutations to consider when implementing log shipping.

Real World Not Just “A” Database: Multiple Secondaries

Many environments require not just single redundancy, but multiple redundant
systems. This provides a much higher degree of redundancy and thus a greater
chance that a standby system is available. Log shipping provides that kind of cov-
erage. You can configure multiple secondary servers as shown in Figure 27-12.

By having multiple standby servers, you can take advantage of the performance
provided by having the standby system local and still provide for a standby system
in another part of the country or world. Because of network speed and latency, the
distant system might be further behind, but it will provide for redundancy in the
event of a regional disaster.

890 Part VI High Availability
Figure 27-12 Multiple secondary database servers.

Log shipping has the ability to control the frequency of many of its components, for
example, how often the transaction log is backed up, copied, and then restored.
Take advantage of these parameters in creative ways. In my production support
role, we backed up the transaction log every five minutes, copied it immediately,
but applied the log with a one-hour delay. This gave us the following advantages:

■ The ability to have all but five minutes of the data on the remote systems in
case of recovery.

■ A one hour delay to catch any catastrophic errors. For example, once a devel-
oper dropped what he thought was a view but was in reality a table. We were
able to go to the secondary server and recover the data all the way up to the
moment before the table was dropped.

■ Even though we were behind one hour (12 transaction logs = 60 min./5 min.
logs), rolling the logs forward in case of emergency was done in less than a
few minutes. One hour of chronological time does not take very long to catch
up. This time, of course, depends on the size of your transaction load.

Extending this idea further, one server could be 10 minutes behind, another server
could be 30 minutes behind, and another one hour behind. Offering even more
recovery options.

Script Log Shipping
Log shipping also has the flexibility of scripting. All jobs that are run through the GUI can
be generated into SQL scripts. This can help with standardizing deployments by ensuring
that exactly the same script is run on all servers. When configuring log shipping, simply

Primary

Secondary A Secondary B

Failed server

Primary Secondary

Chapter 27 Log Shipping and Database Mirroring 891
click the Script Configuration button, and then choose where to script it to. You can select
to script it to the clipboard, a new query window, or to a file.

Using Mirroring and Log Shipping Together
Database mirroring and log shipping are two different technologies that can be deployed
independently or together to mutually complement each other. The primary reason for
using both technologies at the same time is the limitation that only one mirror server is
definable per database. Hence, if your high availability strategy is in need of multiple
standby databases for extra resiliency in your landscape, then you will need log shipping
deployed, too. Additionally, log shipping gives you the ability to control the latency when
applying a transaction log in log shipping, which cannot be controlled with mirroring. A
typical landscape for this configuration can be seen in Figure 27-13. On the left, the land-
scape is up and running properly. On the right, the principal has failed, and the mirror
has become the new principal and is now the log shipping.

Figure 27-13 Log shipping and database mirroring deployed simultaneously.

Log
ship to

Log
ship to

Principal
primary

Mirror

Mirrors
to

Secondary BSecondary A

Witness

Log
ship to

Principal Mirror
primary

Mirrors
to

Secondary BSecondary A

Time

Witness

892 Part VI High Availability
Test Failing Over
Arguably the most important concept that is often not performed is practice recoveries.
Many times DBAs configure log shipping but don’t actually test it. For example, you
recover the database but do not have the user logins to sync, or the sync script does not
work as expected. Now, you have a database, but users cannot log into it. Or, as in the
above “not just a database,” the failover is a bit more sophisticated. A secondary data-
base is converted to a primary database and then is repointed to another secondary
database. This is not difficult, but it needs to be documented and tested thoroughly.
The bottom line is that at least once a year, if not more frequently, recoveries should be
tested.

Backups and Log Shipping
In a very indirect way, log shipping tests the validity of your transaction log files. For
example, if you cannot restore a transaction log file in log shipping, chances are good
that the file was corrupted, perhaps via a controller error or a bad block on the disk.
Needless to say, this provides an early warning mechanism that it’s time to do a full
backup of your primary database due to the breaking of the log chain. Please note that
this is not a substitute for testing your backups. SQL Server’s development team mantra
is “You are only as good as your last restore.” They will not guarantee future restores. The
simple reason is that backup media can go bad. In addition, tapes should be rotated and
tested. This is covered in detail in Chapter 14, “Backup Fundamentals,” and Chapter 15,
“Restoring Data.”

What You Will Not Be Protected From
You can log ship a corrupted database. I have experienced a customer who had a very
robust high availability solution which included clustering and log shipping to two
remote sites and a SAN with triple mirroring. The problem was that the SAN firmware
corrupted the database and log shipped the corruption to the remote locations. Addi-
tionally, they also backed up the corruption onto tape and overwrote their last good
backup. The only element missing in their solution was running DBCC CHECKDB on
their database, which would have caught the issue. Log shipping and mirroring do not
protect you against such failures. A RESTORE command does not check the validity of
the data structures on the restored pages.

Backup Log Frequency
As pointed out in the log shipping tuning section above, minimize your data loss expo-
sure by frequently backing up the transaction log. You will not save disk space by making
fewer and larger backups. The only exposure you have is massive data loss if that one
large file is corrupted or the log device is lost prior to backing it up. Shipping the log at

Chapter 27 Log Shipping and Database Mirroring 893
many small points in time provides less chance for data loss by moving the data over to
the log shipping server in more frequent intervals. Experiment on your hardware. Take
tests and measurements. Figure out what your company’s data loss exposure is. Talk with
the managers to understand the service level agreement between IT and the business
units. Reflect these realities in the scheduling of the transaction log backups and the over-
all database recovery strategy.

Log Shipping Summary
Log shipping and mirroring are just technologies that help facilitate high availability. In
and of themselves, they are not a substitute for a strategy. High availability is a goal, and
how you get there is the strategy. Log shipping and mirroring fit in well and compliment
each other in the array of choices a company has for deploying a high availability solu-
tion. They fit in well with clustering, replication at the SAN level (dark fiber), a robust
backup solution, and so on. Take full advantage of them. They are a terrific out-of-the-box
solution that will save you time and the company a lot of money, both in development
hours and reduction in lost data.

Database Mirroring
Database mirroring is a new high availability technology that was introduced in SQL
Server 2005. Primarily, it is used as part of an overall high availability solution, but it can
also be used as a database reporting solution. It can be used in a variety of ways: stand
alone or in conjunction with log shipping, clustering, or database snapshots. Mirroring
provides a hybrid solution: a copy of database like with log shipping, rapid failover capa-
bilities like with clustering, and elimination of the issues associated with shared disk
solutions.

Mirroring in a minimal configuration consists of two database servers: the principal and
the mirror. The principal database is the primary database that is online and accessible to
users. The mirror database is a copy of the principal that is in a restoring state and has the
changes applied to it from the principal database as they occur. The failover method for
this configuration is manual.

A more robust configuration consists of three database servers: principal, mirror, and the
witness. The witness server is an active observer of the principal/mirror combination. If
the principal goes down, the witness automatically fails over to the mirror and brings it
online.

These configurations are explained in this chapter, in addition to practical uses of each
and how they fit into an overall high availability solution.

894 Part VI High Availability
Configuring Database Mirroring
Like log shipping, database mirroring starts with a backup copy of the primary database,
but unlike log shipping, the writes to the transaction log are transmitted to the standby
system immediately, not when a log backup occurs. This allows the mirror system to
remain in sync with the primary system. Because of this, it is much more flexible in terms
of the protection it provides; however, the performance considerations of the network are
more restrictive.

Planning and Considerations for Database Mirroring
Designing a highly available system requires understanding of the technologies to be
deployed, how they work together, and the advantages and disadvantages of each. Mir-
roring is no different. The solution offers compelling benefits and several options in the
configuration of the solution that must be decided upon before implementation. The
main considerations to take into account when designing database mirroring are the per-
formance characteristics of the mirror and recovery method.

By considering these options prior to configuring database mirroring, you will end up
with a more successful design.

Note To run database mirroring, the recovery model has to be set to FULL. For
example, ALTER DATABASE prod SET RECOVERY FULL or via the database
properties screen in the SQL Server Management studio.

The database mirroring solution is a high availability and disaster recovery solution that
serves a specific purpose. It is not a substitute for database backups.

Note You cannot mirror system databases: master, tempdb, msdb, or model.

Major Parts in a Mirror Pair
Database mirroring consists of several main components. They are the principal data-
base, mirror database, the witness, and the endpoints. The various combinations of these
help define how the operating modes of mirroring work in a highly available environ-
ment. First, let’s start off by defining the basic components:

■ Principal The principal is the originating database in the mirror pair. There can be
only one principal database, and it has to be on a separate SQL Server instance than
the mirror database.

■ Mirror The mirror is the receiving database in the mirror pair. Every DML and
DCL command that goes into the transaction log on the principal database is

Chapter 27 Log Shipping and Database Mirroring 895
applied to the mirror database. There can be only one mirror for each principal
database. The mirror needs to be on its own separate SQL Server instance, prefera-
bly on a separate physical server.

■ Witness The witness (optional) provides the mechanism to ensure a highly avail-
able solution. It monitors the mirrored pair and ensures that both database servers
are in proper operating order. The witness is a separate SQL Server instance, pref-
erably on a separate physical server than the principal or mirror. One witness server
can monitor multiple mirror pairs. If any of the servers go down (witness, principal,
or mirror), the whole database landscape halts until either the down server
becomes available and reconnects or the witness is disabled. This ensures the integ-
rity of the entire mirroring environment. If a witness is not defined and either the
principal or mirror goes down, the landscape stays up. You will just have to recover
the mirror database and repoint the application in the case of the principal going
down, or you repair the mirror database if it malfunctions and users will be running
just on the principal as usual.

■ Quorum A quorum is the relationship between the witness, the principal, and the
mirror. Each operating mode has different quorum states and recovery scenarios
depending on which node in the relationship is lost. This will be discussed later in
this chapter.

■ Mirrored Pair A principal and mirror operating together are called a mirrored pair.
The changes on the principal database are reflected in the mirrored database.

■ Endpoint An endpoint is the method that the SQL Server Database Engine uses to
communicate with applications. Within the context of a database mirrored pair, the
endpoint is the method that the principal uses to communicate with the mirror.
The mirror listens on a port defined in the endpoint. The default is TCP port 5022.
Each database mirror pair listens to its own unique port. To see a list of all database
mirror endpoints, run:

SELECT * FROM sys.database_mirroring_endpoints ;

To see a list of all endpoints, run:

SELECT * FROM sys.tcp_endpoints ;

Defining the endpoints can be done in T-SQL or through the GUI tool when setting
up the mirror. This is covered later in this chapter.

Operating Modes
SQL Server provides three operating modes for database mirroring, as shown in Table
27-1. The differentiators between the operating modes is determined by whether a witness

896 Part VI High Availability
is present to handle automatic failover and the performance of the communication
method between the principal and mirror databases. The communication method will
help determine the performance characteristics of the overall application
.

High availability mode provides the most robust coverage. It consists of a principal, a mir-
ror, and a witness in synchronous communication. In this mode, SQL Server ensures that
each transaction that is committed on the principal database is committed on the mirror
database prior to continuing on to the next database operation on the principal. The
costs for this configuration are the need for a witness database instance and the overhead
of running in synchronous communication. If the network does not have bandwidth, a
bottleneck could form, causing performance issues on the principal. If the principal data-
base is lost, the mirror can automatically take over.

 High protection mode consists of a principal and a mirror in synchronous communica-
tion. It offers transactional consistency without the need for a witness instance. As with
high availability mode, it ensures that each transaction that is committed on the principal
database is committed on the mirror database prior to continuing on to the next database
operation on the principal. The protection it affords is guaranteed transactional consis-
tency between the principal and the mirror. The cost for this configuration is the over-
head of synchronous communication for the confirmation acknowledgement. There is
no automatic failure to this mode.

 High performance mode consists of only a principal and a mirror in asynchronous com-
munication. It does not require a witness or the overhead of synchronous communica-
tion. The mirror database maintains transactional consistency but may not be real-time
up-to-date because high performance mode uses asynchronous communication. Asyn-
chronous communication guarantees that the databases remain transactional consistent
but not necessarily real time. There may be an arbitrary small amount of time the mirror
usually lags behind, but the lag can increase if the principal database is under heavy
stress. The performance increase comes from the originating application not having to
wait for confirmation of the log records being applied to the mirror server. The applica-
tion can keep doing work while the principal database queues and applies the records to

Table 27-1 Database Mirroring Operating Modes

Mode Name

Transaction

Safety

Mirroring

Method

Witness

Required

Automatic

Failover

Possible?

High availability Set to FULL Synchronous Yes Yes

High protection Set to FULL Synchronous No No

High performance Set to OFF Asynchronous No No

Chapter 27 Log Shipping and Database Mirroring 897
the mirror database as quickly as it can. High performance mode is recommended when
the mirror is a significant distance away from the principal and the network latency can
cause performance issues. There is no automatic failover in this mode.

Synchronous and Asynchronous Explained
Mirroring offers two methods for exchanging data. The performance characteristics of
each have tradeoffs. The two are:

■ Synchronous

■ Asynchronous

Synchronous mirroring requires that the mirror receive the data, confirm that the opera-
tion has been committed on the mirror database, and then send an acknowledgement, or
ack, back to the principal confirming that the operation has been completed prior to com-
mitting on the principal and the client proceeding to the next operation. The key concept
is that the client waits until the operation is complete on the remote mirror database.

If the network is fast, then there is not much penalty. If the network is slow, then the wait
for the commit on the remote mirror can become a performance issue. This is the most
secure method for assuring that data is absolutely correct on the principal and mirror
combination, but it’s also the slowest method due to the overhead of the principal having
to wait for the ack to be sent back. The penalty of the waiting for an ack is directly pro-
portional to the network speed and bandwidth available as illustrated in Figure 27-14. If
the mirror is on a local gigabit Ethernet network, then the penalty may be minimal.

Important If the mirror is on the other side of the country, synchronous com-
munication may be impractical to use due to network latency issues across a
WAN connection. If the mirror is on the other side of the world, synchronous
communication will definitely be impractical.

Figure 27-14 Synchronous: Waiting for acknowledgement.

Principal

Wait for Ack

Send

Mirror

Synchronous

898 Part VI High Availability
Asynchronous mirroring is a “give and go” type method. The data is sent to the mirror
server as resources are available, but the client does not wait for the ack to be sent back
before continuing. The transactional consistency between the principal and the mirror is
always maintained. The mirror database may receive the log records at some arbitrary
time in the future. It may be immediately or 20 seconds from the commit on the principal,
depending on how heavy the transactional volume. (This latency can be observed in the
data mirroring monitor.)

The application and user do not wait for the ack to be sent back from the mirror,
hence allowing more operations to go forward in a higher performance configuration.
The “give and go” nature of asynchronous method allows the principal and mirror to
be in physically different areas, still maintain the database integrity, and have high
performance, even though it may be over a slower WAN connection as illustrated in
Figure 27-15.

Figure 27-15 Asynchronous: Does not wait for acknowledgement.

SQL Server Database Mirroring Version Support
Database mirroring is available on all versions of SQL Server in some method,
whether as a full participant or as just a witness. The following matrix compares the
different versions of SQL Server and the levels of support that are provided in a mir-
rored environment. For example, only the Developer and Enterprise Editions provide
Different, the mechanism for asynchronous mirroring, thus enabling the High Perfor-
mance mode.

Principal

Do NOT wait for Ack

Send

Mirror

Asynchronous

Chapter 27 Log Shipping and Database Mirroring 899
Tuning Database Mirroring
Much like log shipping, performance tuning in database mirroring is directly propor-
tional to server speed, network bandwidth and speed, and disk drive characteristics. Per-
formance is also strongly influenced by the safety model chosen and the underlying
communication method it employs, as seen in the previous section. Specifically, high
availability and high protection use synchronous mirroring, and high performance uses
asynchronous. These decisions are usually taken in conjunction with the business users
and are part of the service level agreement for acceptable recovery times, costs of the sys-
tem being designed, and acceptable exposure levels.

Failing Over with Database Mirroring
Failing over in a mirrored environment can happen in several different ways depending
on the operating mode of the witness (optional) and mirror, and whether the principal
database is available. In general, there are two types of failover: automatic and manual.
For automatic to be in place, the high availability mode must be used. For high protection
and high performance modes, the failover is manual.

The recovery path for each mode is dependent on which nodes in the quorum are avail-
able at any given time. For example, if the principal database in the high performance
database is not accessible, then the tail of the transaction log cannot be backed up, and
because the communication method in this mode is asynchronous, then all of the log

Table 27-2 SQL Server Database Mirroring Version Support Matrix*

Database
Mirroring
Feature

Enterprise

Edition

Developer

Edition

Standard

Edition

Workgroup

Edition

SQL

Express

Partner Yes Yes Yes No No

Witness Yes Yes Yes Yes Yes

Safety = FULL Yes Yes Yes No No

Safety = OFF Yes Yes No No No

Available During
UNDO After Failure

Yes Yes Yes No No

Parallel Redo Yes Yes No No No

Database Snapshots Yes Yes No No No

*Source: Microsoft TechNet Web site paper:
http://www.microsoft.com/technet/prodtechnol/sql/2005/dbmirror.mspx.

900 Part VI High Availability
records may not be on the mirror. Hence, data loss may occur. Conversely, in a high pro-
tection mode, this may not be the case because of synchronous communication ensuring
that the log records were applied to the mirror. The role of the quorum in recovery can be
seen in the following table.

The following diagrams illustrate the recovery paths when failing over in database mir-
roring, depending on the operating mode and quorum of available nodes.

Highly Available
In the highly available mode, a full quorum is defined as the principal, mirror, and wit-
ness being available and communicating with each other. Figure 27-16 explains the
recovery path depending on which server or servers are up and available. If the principal
is lost and the witness and mirror are available, then failover is automatic.

High Protection
In the high protection mode, a full quorum is defined as the principal, the witness
and the mirror being available and communicating with each other. Figure 27-17
explains the recovery path depending on which server or servers are up and available.
If the principal is lost and the mirror is available, then you have to manually fail the
system over.

Table 27-3 Quorum Scenarios in Database Mirroring

State Description Role in Failover

Full Quorum This is when the principal,
mirror, and witness can all
communicate with each
other.

If principal is lost and witness is
up and running, automatic
failover to mirror.

Quorum This state exists if the
witness and either partner
can communicate with it.

If mirror is lost, principal retains
control.

If witness is lost and principal and
mirror are up and running, then
partner-to-partner quorum
established.

Partner-to-Partner
Quorum

When only the principal
and mirror can communi-
cate with each other.

In this case only the witness is
missing and no failover occurs.

Chapter 27 Log Shipping and Database Mirroring 901
Figure 27-16 Recovery tree for highly available mode.

High availability
recovery path

Automatic recover
not available.

System is still running.

Automatic
recover not

available. System
is still running.

Catastrophic failure.
Recall tapes.

Rebuild everything

Mirror will be offline.
Principal will start queuing
log records. Be aware that

transaction log on the principal
may fill up. Consider breaking

the mirror to avoid this problem.

Yes Yes

No

No

No

No

Is the
principal
available?

No

Diagnose &
repair witness

Diagnose &
repair witness

Automatic
recover not

available. System
is still running.

Diagnose &
repair witness

Recovery not
needed. All is
working fine.

Repair the mirror. If mirror
was broken, reinstate it.

Failover is
automatic

Create and/or
synchronize logins

on the mirror server
that existed on the

principal prior to failure.

Add/start backup
DB/log jobs on the

new principal database.

Re-point application to
new production database

as needed. ADO.NET &
SNAC can auto redirect

connections to the mirror.

Once failed principal
is operational, it

automatically assumed
the role of the mirror,

but remains in a SUSPENDED
state. DBA needs to manually
RESUME the mirroring session.

No

Is the
witness

available?

Is the
mirror

available?

Is the
mirror

available?

Is the
mirror

available?

Is the
mirror

available?

902 Part VI High Availability
Figure 27-17 Recovery tree for high protection mode.

High Performance
In the high performance mode, a full quorum is defined as the principal and the mirror
being available and communicating with each other. Figure 27-18 explains the recovery
path depending on which server or servers are up and available. If the principal is lost

Catastrophic failure.
Recall tapes.

Rebuild everything.

Yes Yes

Yes

High availability
recovery path

No

No

Is the
principal
available?

Recovery not
needed. All is
working fine.

Begin the failure process
from the principal

to the mirror.

Run this command on the mirror :
ALTER DATABASE <database name>

SET PARTNER OFF
RESTORE DATABASE <database name>

WITH RECOVERY

Failure is
NOT automatic.

Create and/or
synchronize logins

on the mirror server
that existed on the

principal prior to failure.

Add/start backup
DB/log jobs on the

new principal database.

Re-point application to
new production database

as needed. ADO.NET &
SNAC can auto redirect

connections to the mirror.

Once failed principal
is operational, it

automatically assumed
the role of the mirror,

but remains in a SUSPENDED
state. DBA needs to manually
RESUME the mirroring session.

Is the
mirror

available?

Mirror will be offline.
Principal will start queuing
log records. Be aware that

transaction log on the principal
may fill up. Consider breaking

the mirror to avoid this problem.

No

Repair the mirror. If mirror
was broken, reinstate it.

Is the
mirror

available?

Chapter 27 Log Shipping and Database Mirroring 903
and the mirror is available, then you have to manually fail the system over with possible
data loss.

Figure 27-18 Tree for high performance mode.

Catastrophic failure.
Recall tapes.

Rebuild everything.

Yes Yes

Yes

High availability
recovery path

No

No

Is the
principal
available?

Recovery not
needed. All is
working fine.

Begin the failure process
from the principal

to the mirror.

Potential loss of data because
log records were not moved
over prior to principal failure.

Run this command on the mirror.
ALTER DATABASE <database name>

SET PARTNER OFF
RESTORE DATABASE <database name>

WITH RECOVERY

Failure is
NOT automatic.

Create and/or
synchronize logins

on the mirror server
that existed on the

principal.

Add/start backup
DB/log jobs on the

new principal database.

Re-point application to
new production database

as needed. ADO.NET &
SNAC can auto redirect

connections to the mirror.

Once failed principal
is operational, it

automatically assumed
the role of the mirror,

but remains in a SUSPENDED
state. DBA needs to manually
RESUME the mirroring session.

Is the
mirror

available?

Mirror will be offline.
Principal will start queueing
log records. Be aware that

transaction log on the principal
may fill up. Consider breaking

the mirror to avoid this problem.

No

Repair the mirror. If mirror
was broken, reinstate it.

Is the
mirror

available?

904 Part VI High Availability
Failover Scenario: High Performance
The following recovery scenario assumes that database mirroring is set up in high perfor-
mance mode (i.e., the safety is off, and it’s running asynchronously) and the principal
database server is down:

1. From the mirror, run the command ALTER DATABASE <database_name> SET
PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS. For example:

ALTER DATABASE prod
 SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS ;

This causes the mirror to stop and become the new principal. When the original
principal becomes available, it is marked as mirroring in a suspended state.

Note If the principal is still up and the command ALTER DATABASE
prod SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS is run on the
mirror, you will get an error that the database is not in the correct state to
become the principal database.

2. Ensure that the users and logins are in sync by, for example, running the
sp_resolve_logins system stored procedure or restoring the master database from a
previous backup of the original principal.

3. Repoint to the new principal server any applications that pointed to the original
principal.

Failover Scenario: High Protection
The following recovery scenario assumes that database mirroring is set up in high pro-
tection mode (i.e., the safety is on, and it’s running synchronously) and the principal
database server is unavailable:

1. From the mirror, run the command ALTER DATABASE <database name> SET
PARTNER OFF command. At this point, the mirroring is broken and the database
needs to be recovered.

2. To recover the database, run the RESTORE DATABASE <database name> WITH
RECOVERY command. As with the high performance recovery path, the users and
logins must be synced and then the applications pointed to the standby server.

3. Ensure that the users and logins are in sync by, for example, running the
sp_resolve_logins system stored procedure or restoring the master database from a
previous backup of the original principal.

4. Repoint to the new principal server any applications that pointed to the original
principal.

Chapter 27 Log Shipping and Database Mirroring 905
Failovers: Users, Logins
An important and often overlooked concept is how SQL Server handles users and logins,
especially during a failover. This happens in both log shipping and mirroring. The main
idea is SQL Server has the concept that a person logs into a database server and then is
a user in a specific database on that server. For example, an accountant logs into the data-
base server but needs specific permissions to access the accounts payable database. It is
very possible that a person could have a login into a database server and NOT be a user
in any databases.

The following queries show the correlation between users and logins. In the first query,
there is one login on the database server called frankmcband one user in the prod data-
base called frankmcb. The login is stored in the syslogins table in the master database.
The user is stored in the sysusers table in the user database. If a user logs into this data-
base server, everything goes as expected. Note how the SID values are the same:

SELECT l.name 'syslogins name', l.sid 'syslogins sid',
 u.name 'sysusers name', u.sid 'sysusers sid'
FROM master..syslogins l JOIN prod..sysusers u ON
 l.name = u.name AND l.sid = u.sid;

syslogins name syslogins sid
--------- ----------------------------------
frankmcb 0xC5E95662C3583A4CBCF39C459376AE9

sysusers name sysusers sid
--------- ---
frankmcb 0xC5E95662C3583A4CBCF39C459376AE9

(1 row(s) affected)

If you failed over the database from principal to mirror and the logins and users had not
been properly synchronized, running the same query will result in no rows being
returned.

Note that the user ID exists in the user database but not in the logins for the new princi-
pal database server:

SELECT u.name 'sysusers name', u.sid 'sysusers sid'

FROM prod..sysusers u

WHERE u.name = 'frankmcb';

SELECT l.name 'sysusers name', l.sid 'sysusers sid'

FROM master..syslogins l

WHERE l.name = 'frankmcb';

906 Part VI High Availability
sysusers name sysusers sid
--------- ---
frankmcb 0xC5E95662C3583A4CBCF39C459376AE9

(1 row(s) affected)

Important If you try to log into the new principal prior to synchronizing the
logins and users, you get an error message that the login failed.

As with log shipping mentioned earlier, to get around this issue, the logins and users
must be synchronized on the database that was failed over to. This is the case regardless
of whether it was manual or automatic failover. The process has two simple steps if the
original principal database is still available:

1. Run the BCP command to get the data from the syslogins table:

C:\tmp>bcp master..syslogins out c:\tmp\syslogins.dat -N -S . -T ;

Note If you wish to use SQL Server authentication, substitute –Usa –
Ppassword for –T (trusted authentication).

2. Run the system stored procedure to import it into the new principal server:

EXEC sp_resolve_logins @dest_db = 'prod',
 @dest_path = '\\srvbox000fm\h$\',
 @filename = 'syslogins.dat'
GO

Alternately if the original principal database is not available, you have these two
choices:

1. Restore the master database to another server and extract the syslogins table there
and then sp_resolve_logins to the new principal server.

2. If the master database was not backed up, key the user logins by hand.

However you look at it, the database server logins (syslogins) and the database users
(sysusers) must be in sync for the user to get data out of a SQL Server database. Plan for
this as part of the recovery documentation, daily backup processes, and mock tests and
recovery scenarios.

Chapter 27 Log Shipping and Database Mirroring 907
Note This is why it is very important to backup the master database every time
you back up the principal database. Typically, the master database is less than 10
megabytes in size. It is also a very good idea to backup the msdb database
because it contains all of the SQL Server job definition and history.

Configuring Database Mirroring
Mirroring can be configured in three ways:

1. High availability mode

2. High protection mode

3. High performance mode

As explained earlier in this chapter, each has its own advantages and disadvantages
depending on the desired high availability needs and dependent hardware and network-
ing capacity.

At the very minimum configuration (high performance and high protection), the mir-
ror database serves as a hot standby. This means that the database is in a recovery state
waiting for the last transactions to be applied either automatically via the mirroring
definition, forced role switch, or manually when you back up the tail of the log (pre-
suming it’s available), and applies it to the mirror and then recovers the database for
users to access it. When the landscape is configured in the high availability mode,
there are more resilient features offered, such as automatic failover between the princi-
pal and mirror.

The following example shows how to configure two database servers in high perfor-
mance mode. The steps are to define the servers, set up security, and establish endpoints:

1. In the SQL Server Management Studio, expand the SQL Server instance and then
expand Databases. Right-click the target database and select “Tasks,” and then
select “Mirror.” This invokes the Database Properties window, from which mirror-
ing will be configured.

2. The Database Properties window for the database appears with Mirroring
selected. Click the Configure Security button at the top right of the window, as
seen in Figure 27-19.

3. At this point, a configuration wizard pops up, walking you through the database
mirroring security. The first screen you see is the introductory screen (not shown).
Click the Next button to continue.

908 Part VI High Availability
Figure 27-19 Database Properties—Configure Security.

4. The first question asked is whether there is a witness server in the landscape.
Remember that the witness server is what provides the automatic failover mecha-
nism, but it also requires the dependency of running in synchronous communica-
tion. In this example, we are running in high performance mode, which does not
require a witness server and runs in asynchronous communication mode as shown
in Figure 27-20. In this example, “No” and “Next” are selected.

Figure 27-20 Include witness server.

Chapter 27 Log Shipping and Database Mirroring 909
5. Because we are already on the principal server, the option is grayed out, and we
need to select the server that will be the mirror as shown in Figure 27-21. Select the
Mirror Server Instance checkbox, and then click the Next button.

Figure 27-21 Server instance selection.

6. The next two pages ask for information about the principal and mirror server
instances. This information is used to configure the endpoints. As discussed earlier,
the endpoints are the ports to which SQL Server will listen when exchanging infor-
mation. Specifically with mirroring, these are the ports in which the principal server
sends over the log records to be applied to the mirror server and the acknowledge-
ment of the application confirmed back to the principal. The following screens ask
you to select the listener ports (default is 5022), whether the data transmitted is to
be encrypted (default is yes), the name of the mirror server, and the name of the end-
point on each server itself, as shown in Figure 27-22, for the principal server.

Figure 27-22 Principal server port and security configuration.

910 Part VI High Availability
Note Make sure your various firewalls have port 5022 open or else com-
munication between the servers will not be available for mirroring. Note
that SQL Server’s normal port for other communications is different than
5022, so just because you can run T-SQL against SQL Server does not
ensure that mirroring will be available as well.

7. Repeat this for the mirror server as shown in Figure 27-23.

Figure 27-23 Mirror server port and security configuration.

8. If different account names are used, then supply them in the screen shown in Fig-
ure 27-24. If the servers use the same domain account and password or the same
user account and password on the local servers, then you can leave the information
blank and click the Next button.

Figure 27-24 Service account configuration.

Chapter 27 Log Shipping and Database Mirroring 911
9. At this point, all of the information for configuration of the endpoints and security
has been defined. The Complete The Wizard screen gives an overview of all of the
various data input (not shown). Click the Finish button.

10. If everything is set up correctly and the services can communicate properly, SQL
Server establishes the endpoints on both the principal and mirror servers, as seen
in Figure 27-25.

Figure 27-25 Successful endpoint configuration.

11. The following two windows after the endpoint configuration announce that mir-
roring has been configured but has not started. The Database Properties win-
dow for the database now shows that the “Server network addresses” show the
principal and mirror configured and listening on TCP port 5022 as shown in
Figure 27-26.

12. Prior to starting database mirroring, the mirror server must have a copy of the
principal’s database in a recovery state. If the database has been restored and is in
a recovery state, then start mirroring in this pair by clicking the Start Mirroring
button.

Note Prior to starting the mirror, make sure the database has been
restored on the mirror. Additionally, make sure that at least one transaction
log has been applied there, too.

912 Part VI High Availability
Figure 27-26 Database Properties window showing mirror definition populated.

If you do not have a database in recovery state on the mirror, you get an error instruct-
ing you to restore the principal database. The following scripts illustrate how to prop-
erly restore a database and transaction log and leave it in recovery state. This then
allows you to click the Start Mirroring button and mirroring to start successfully.

The following script restores the database from a backup from the principal database’s
server share. Please note the final clause, “NORECOVERY.” This keeps the database
closed so that the transaction log can be applied:

RESTORE DATABASE prod

 FROM DISK = '\\srvbox000fm\h$\sql\backup\prod_mirror.bak'

 WITH MOVE 'data_file' TO 'c:\sql\data\data_file.mdf',

 MOVE 'log_file' TO 'c:\sql\log\log_file.ldf',

 NORECOVERY;

For mirroring to be properly initialized, one transaction log has to be applied to the mir-
ror database. The following script applies one log, and as with the RESTORE, it leaves the
database in NORECOVERY mode so that when mirroring is started, the log records from
the principal can be applied properly.

Chapter 27 Log Shipping and Database Mirroring 913
RESTORE LOG prod

 FROM DISK = '\\srvbox000fm\h$\sql\backup\prod_mirror.trn'

 WITH NORECOVERY ;

Once you have clicked the Start Mirroring button and the mirror database has been prop-
erly restored, then mirroring will be running, as seen in the Status pane on the Database
Properties window as shown in Figure 27-27.

Figure 27-27 Successful completion of mirroring.

At this point, mirroring has been completed for the high performance mode configura-
tion. As the Database Properties window options show, there are several options available
at this point. You can monitor the status of the mirror, pause the mirrored pair, or insti-
gate a failover from the principal database to the mirror database and change roles (pre-
suming the principal database is still operational). If you go back into the Object Explorer
in the SQL Server Management Studio, you can see that the principal database is in a syn-
chronized state and that the mirror database is designated in working condition with a
green arrow and also shown in a synchronized and restoring state.

914 Part VI High Availability
Monitoring Database Mirroring
SQL Server provides six methods to monitor database mirroring:

■ The status screen in SQL Server Management Studio

■ SQL Server errorlog

■ Metadata with T-SQL

■ Window’s Performance Monitor (perfmon.exe)

■ SQL Server Profiler

■ Database Mirroring Monitor

The following sections describe each method.

SQL Server Management Studio
SQL Server Management Studio provides a very rudimentary overview of the mirroring
landscape. It displays whether the principal and mirror are in sync and up-to-date, and if
not displays graphically that the nodes are not communicating properly or are offline.

Simply expand Databases on the principal and Database Snapshots on the mirror. A
green upward pointing arrow on the mirror means all is running well. A red arrow indi-
cates problems that need to be investigated.

SQL Server errorlog
The SQL Server errorlog file is the chronological repository of all SQL Server notifica-
tions. When experiencing any mirroring issues, one of the first places you should look is
here. The log is located in the LOG directory, typically under the MSSQL directory, for
example:

%PROGRAM FILES%\Microsoft SQL Server\MSSQL.1\MSSQL\LOG>

The SQL Server log provides information on the establishment and status of mirroring.
If an error occurs it will be logged in the SQL Server error log. In addition, errors will be
logged in the Windows event log as well.

Metadata: T-SQL for Database Mirroring Information
To look at the state of the mirror in real time using T-SQL, you can query the SQL Server
metadata. This data provides the name, role, state, safety level, mirroring pair, and so on.
This type of information is good for scripting out automatic notifications in jobs or
reports that can be generated from SQL Agent.

The following are the most typical queries for this type of reporting. The first query shows
the mirroring pair data:

Chapter 27 Log Shipping and Database Mirroring 915
SELECT d.name, d.database_id,
 dm.mirroring_role_desc, dm.mirroring_state_desc,
 dm.mirroring_safety_level_desc,
 dm.mirroring_partner_name, dm.mirroring_partner_instance,
 dm.mirroring_witness_name, dm.mirroring_witness_state_desc
FROM sys.database_mirroring dm, sys.databases d
WHERE dm.database_id = d.database_id AND
 dm.mirroring_state_desc IS NOT NULL ;

The second query displays information regarding the witness for the pair:

SELECT principal_server_name, mirror_server_name,

 database_name, safety_level_desc

FROM sys.database_mirroring_witnesses ;

The last query displays information regarding the endpoints:

SELECT dme.name, dme.protocol_desc, dme.type_desc,

 dme.role_desc, dme.state_desc,

 te.port, dme.is_encryption_enabled, dme.encryption_algorithm_desc,

 dme.connection_auth_desc

FROM sys.database_mirroring_endpoints dme, sys.tcp_endpoints te

WHERE dme.endpoint_id = te.endpoint_id ;

Performance Monitor
In addition to log files and metadata, you can also monitor mirroring using Window’s
Perfomance Monitor tool (perfmon). Perfmon can provide real-time information showing
the status of multiple metrics in the pair concurrently, for example, the log send queue
size and bytes sent per second. To run perfmon, simply click the Start button, then select
All Programs, select Administrative Tools, and then select Performance.

Add the performance object “SQLServer:Database Mirroring” by clicking the plus button
and choose the counters (such as Bytes Received/sec, Bytes Sent/sec, Transaction Delay,
and so on) as needed in the window.

Note Perfmon is typically used for diagnosing real-time issues as they are
occurring. An overlooked benefit of perfmon is trending over time. Set up a per-
fmon trace to sample every 15 minutes and log it. Over time this can be used for
performance trending, establishing base lines, estimating when networks need to
be upgraded, and so on. This data can be used for projecting when new hard-
ware will be needed in budget and capacity planning cycles.

916 Part VI High Availability
Note Microsoft Operations Manager (MOM) is a good place to look for long-
term perfmon data as described in Chapter 24, “Notification Services and Service
Broker.”

SQL Server Profiler
Simply put, SQL Server Profiler gives the best view inside the database kernel of any tool
available. One of the many events that SQL Server Profiler provides is the state of the
database mirror. Use of the profiler is covered in detail in Chapter 30, “Using Profiler,
Management Studio, and Database Tuning Advisor.”

Database Mirroring Monitor
Arguably, the best tool SQL Server 2005 provides is database mirror monitoring. The pack-
age shows you all of the statistics about where the log records are in both the principal and
mirror databases. With this tool, you can see an overview of the entire mirroring landscape.

To invoke the Mirroring Monitor, follow these steps:

1. In the SQL Server Management Studio in the navigation pane, expand Databases.

2. Right-click on the principal database, select Tasks, and select Launch Database Mir-
roring Monitor.

3. At this point, no databases are known to the monitor. Click Register Mirrored Data-
base, and then select the drop-down item “Server Instance” and click the Connect
button.

4. Register the principal, mirror, and witness (if needed) into the monitor and click
OK, as shown in Figure 27-28.

Figure 27-28 Registered mirror databases.

Chapter 27 Log Shipping and Database Mirroring 917
At this point, you will see the mirrored landscape and see the status of the pair. A
quick overview is provided in this screen with a date and time showing the current
state of both the principal and mirror, as shown in Figure 27-29.

Figure 27-29 Overview of mirror landscape.

5. For more detailed information, click History to show the Database Mirroring His-
tory screen, as shown in Figure 27-30, and then select the filter criteria and choose
the settings. This is good for seeing the overall health of the system over time. For
example, if there were times when the network may not have been keeping up well
with the database, and so on.

Figure 27-30 Detailed history of mirror.

918 Part VI High Availability
Using Mirroring and Snapshots for Reporting Servers
A basic issue is the conflict between high performance database needs and business
requirements of large aggregating for reports. On the surface, it may sound trivial. Data is
data, and just get it all from the same place. What materializes soon after this strategy is
deployed is database gridlock. The online system for normal users consist of quick, short,
and discrete transactions. The needs of the reporting server are long-running queries that
grind out large amounts of disk I/O. Fundamentally, these two different requirements
conflict. Hence, the need for a dedicated database just for reporting users.

SQL Server 2005 provides a technology called snapshots that provides a read-only copy
of an OLTP database. It’s easy to configure and deploy. The main issue is that by itself, a
snapshot is on the local SQL Server as the production OLTP database. Hence, even
though reporting users and OLTP users are on separate databases, they still share the
same SQL Server instance memory, CPU, and probably disk subsystem.

Mirroring fixes this contention issue of OLTP and reporting on the same server. By itself,
users cannot run queries against a mirror database because it’s in a state of recovery. The
solution is for you to snapshot copies off the mirror. These snapshots are read-only and
let users access them directly for reporting. What’s more, there is also the flexibility of
having multiple snapshots of the same database. This is seen in Figure 27-31.

Figure 27-31 Database mirroring and snapshots.

PROD PROD

Principal Mirror
PROD_

SS1

PROD_
SS2

PROD_
SS3

Run reports
from snapshots

Witness

Read only
copies

Chapter 27 Log Shipping and Database Mirroring 919
Configuring the reporting snapshot consists of obtaining the description of the principal
database’s file names and then creating the snapshot with those descriptors. The follow-
ing simple example shows the syntax and process for creating a snapshot:

CREATE DATABASE prod_ss4

 ON (NAME = 'data_file',

 FILENAME = 'c:\sql\data\prod_ss4.SNP')

 AS SNAPSHOT OF prod ;

USE prod_ss3;

SELECT COUNT(*) FROM from test_table;

If the user tries to drop the table in the snapshot, it fails because it’s a read-only copy and
changes are not allowed. This is seen in the following script:

USE prod_ss3;

DROP TABLE test_table ;

which generates the following error message:

Msg 3906, Level 16, State 1, Line 2

Failed to update database "prod_ss3" because the database is read-only.

To delete a snapshot that is not needed anymore, simply use the same syntax as you
would if it was a normal database.

DROP DATABASE prod_ss4 ;

Note You need to run the sp_helpdb on the principal database. If you try to run
sp_helpdb on the mirror database, you get a no permission to access database
error due to the inaccessibility of the mirror during recovery:

The above is a simple example, but the premise is the same for databases of other sizes.
Considerations of speed and space still exist—how much disk I have for snapshots and
how fast are the disk themselves. The good news is that reporting can be offloaded onto
slower, less expensive disk space and save money on the OLTP solution. The combina-
tion of mirroring as part of a high available solution and snapshots for reporting make a
compelling technological solution at an economical price point that both DBAs and busi-
ness users will like.

920 Part VI High Availability
Summary
Log shipping and database mirroring provide two key elements in the high available
solution that Microsoft SQL Server offers. They are resilient and easy to set up, and offer
a good price point in the overall choices you have. The key is that these are individual
technologies that need to fit within the context of the overall SLA with the business units.
Business users do not care how fast the database can failover if the overall ERP system
does not come up at all in a catastrophe.

These technologies are just that; they provide parts of a solution and are not ends in
themselves. Other parts of a highly available system are backups, clustering of the data-
base server, redundancy in controllers, disk RAID levels, and so on. The recovery of the
entire system needs to be planned as a whole, fully documented, and, most importantly,
tested regularly for it to be considered adequate.

Part VII
Performance Tuning and
Troubleshooting

Chapter 28
Troubleshooting, Problem Solving, and Tuning Methodologies 923

Chapter 29
Database System Tuning .939

Chapter 30
Using Profiler, Management Studio, and
Database Engine Tuning Advisor .981

Chapter 31
Dynamic Management Views .1041

Chapter 32
Microsoft SQL Server 2005 Scalability Options .1085

Chapter 33
Tuning Queries Using Hints and Plan Guides. .1113

Chapter 28

Troubleshooting, Problem
Solving, and Tuning
Methodologies

Troubleshooting and Problem Solving .923

Performance Tuning and Optimization. .932

Troubleshooting and Tuning Methodology .933

The Need for Documentation .937

Summary .938

Problem solving is one of the most complex intellectual functions. Problem solving
involves determining a way to achieve a goal where it is not obviously apparent. Trou-
bleshooting is the systematic search for the source of a problem. One of the fundamental
components of troubleshooting and problem solving is the need for a system or meth-
odology. This is also a key component of Microsoft SQL Server tuning. This chapter
provides methodologies and techniques for systematically finding problems and solv-
ing those problems. It is through a systematic approach that you will more easily deter-
mine the cause and solutions to any type of problem—not just SQL Server or hardware
problems.

This chapter is separated into two main sections. The first section covers troubleshooting
and problem solving, which share the goal of solving a particular problem or issue. The
second section covers tuning, which is different in that you might or might not have a
problem, and there might or might not be a solution.

Troubleshooting and Problem Solving
Troubleshooting and problem solving both involve a number of personal characteristics
that not everybody has, including patience, endurance, and a positive attitude.
923

924 Part VII Performance Tuning and Troubleshooting
The Problem Solving Attitude
Of all of the tasks that a DBA performs, troubleshooting and problem solving typically
involve the most pressure, the most skill, and the best attitude. I’ve personally found that
those who are best at troubleshooting typically have the most positive attitude about it.
Troubleshooting involves 50 percent skill, 50 percent experience, and 50 percent atti-
tude. Yes, troubleshooting involves 150 percent of your effort. This section provides some
tips and techniques for having a good and winning attitude that can help you be a suc-
cessful troubleshooter.

Don’t Give Up or Get Discouraged
In order to be successful at troubleshooting, start with a “can do” attitude. Know that if
you persist in your efforts, eventually you can succeed. Don’t get me wrong—there are
some things that simply won’t work, but if you are attempting an achievable goal, don’t
give up. Stop and consider the problem. If it’s something that should work, retrace your
steps and try again.

Real World Even Simple Problems Are Difficult

Recently, I purchased a new notebook computer. In order to install SQL Server
2005, I copied the contents of the two CDs to my hard disk because I had plenty of
space on the new notebook. I named the contents of the CDs Disk1 and Disk2 (not
knowing any better). The installation of the SQL Server Database and Integration
Services succeeded, but the client components and SQL Server Books Online
failed. There was an error message about the installation failing, but it didn’t pro-
vide enough information to lead me to the solution.

Since I have installed SQL Server 2005 before, I knew that the installation process
worked. Therefore, I just had to troubleshoot this problem. It took several tries and
multiple trips to the Microsoft Knowledge Base, but I eventually solved the prob-
lem. (The solution was that if you install from hard disk, the directories [for the
CDs] must be named Server and Tools.)

The point of the previous example is that you must persist when you know that the end
result is something achievable. However, a different problem is posed if you do not know
whether the result is achievable.

Strive for the Achievable
In order to be successful, you must take on tasks that are feasible and possible. There are
times when the task presented to you does not have a solution, or at least not one that

Chapter 28 Troubleshooting, Problem Solving, and Tuning Methodologies 925
you can achieve in the allotted time frame or the allotted budget. In these cases, it is nec-
essary to set expectations up front and, in some cases, you might have to decline the job:

You got to know when to hold ’em, know when to fold ’em,
know when to walk away, and know when to run.

Don Schlitz, as sung by Kenny Rogers

My specialty is performance tuning and optimization. In rare cases, a performance prob-
lem can be solved in a very short time frame by miraculously rebuilding or creating
indexes. However, this is very unlikely. Typically, there are multiple performance prob-
lems, and they are solved only by investigating all of them, analyzing the system, and
making multiple changes.

Thus, when we get a client who wants a one-day-or-fewer performance tuning engage-
ment, we usually turn it down because the goals cannot be met in such a short time
frame. The consultant ends up frustrated, and the customer ends up disappointed in
the results. Thus, you should not give up, but on the other hand, don’t try to achieve
the impossible.

Success Comes from Enthusiasm
As I mentioned in the beginning of this chapter, successful troubleshooting has a lot to do
with attitude and enthusiasm. If you don’t have a good attitude, you won’t be very good
at troubleshooting. In addition, if you are not enthusiastic, your co-workers or clients
might not have faith in your abilities. Personally, I really enjoy the challenge of tackling a
tough problem and trying to solve it. When I have finished, I get a great deal of satisfac-
tion and a feeling of a job well done.

It is often very difficult to remain enthusiastic and maintain a positive attitude when
everything around you seems to be falling apart. This is when you have to dig in, keep up
a good attitude, and give it another shot:

Now remember, things look bad and it looks like you’re
not gonna make it, then you gotta get mean. I mean plumb,
mad-dog mean. ’Cause if you lose your head and you give
up then you neither live nor win. That’s just the way it is.

Clint Eastwood, in The Outlaw Josie Wales

A great attitude is crucial for the ability to properly troubleshoot a problem, but it is only
one piece of the effort. You must also have skill and experience. In the next few sections,
you will learn techniques (skill), and you will learn from some of our experiences.

926 Part VII Performance Tuning and Troubleshooting
Stay Focused
When troubleshooting, it is easy to lose focus and stray from your goals. This often
occurs when outside pressure is applied. In order to complete the task at hand, it is nec-
essary to stay on target. Staying focused on the problem at hand means that you should
always keep in mind what the problem is and not be distracted by other less important
tasks.

Take a Break
When troubleshooting a problem, especially one that involves downtime and loss of ser-
vice, you should be careful not to become too fatigued. When too much time is spent on
a problem without a break, you can begin to make mistakes. Sometimes, the mistakes can
be worse than the original problem. Even when there is significant pressure to quickly fix
an out-of-service system, it is important not to make things worse.

If you need a break, take it. Falling asleep at the keyboard does not help anything. Get
some rest or a bit of fresh air to help clear your head.

Ask For Help
There is nothing wrong with asking for help. There are many consultants with extensive
experience in many different areas. By engaging an expert, you not only bring extensive
experience to your problem, but you also have an excellent way to enhance your own
skills. If your consultant is not willing to work with you, you should try to find another
consultant. Bringing in additional expertise should be a learning experience for you.

Learn Something New
Every troubleshooting task should also be a rewarding learning experience. It is also
important to keep notes or records of what you have learned in a format that is easy to
find and search. Otherwise, you might have to relearn the same thing over again.

Troubleshooting Techniques
Now that you are motivated and enthusiastic, you are ready to learn some troubleshoot-
ing techniques. These techniques are helpful for developing a structured, scientific
approach to troubleshooting and to performance tuning. These techniques are designed
to help with defining a problem. Once you have defined the problem, then you can
attempt to solve it.

The first step—or in some cases the only step—in troubleshooting a problem is to deter-
mine what the problem is. It may be that once you determine the problem, the solution
is obvious. In other cases, determining the problem is only the beginning. In this section,
a number of problem discovery techniques are presented. Often you must combine two

Chapter 28 Troubleshooting, Problem Solving, and Tuning Methodologies 927
or more of these techniques to ultimately define the problem, and sometimes the result
of one technique leads you to another technique.

The troubleshooting techniques that are covered here include the following:

■ Splitting the problem This provides a choice for further investigation.

■ Finding the error logs Often they are not easy to find.

■ Interpreting the error logs Once you have the logs, you must decide whether
they provide any useful information.

■ Retracing your steps This technique is good for determining where you went
wrong.

■ Test for the sake of the problem Sometimes a change or test has nothing to do
with improving the situation, but you do it only for the sake of learning something.

These are some of the techniques that can be very helpful in defining—or at least pointing
you in the direction of—the problem.

Splitting the Problem
Probably the most important technique involved in troubleshooting is to split the problem.
This technique is used to make a binary decision between one problem area and another.
For example, the problem can be split into network problems or SQL Server problems, or
the problem can be split into memory or I/O problems. There may be many ways to split
a problem.

Here are just a few examples to illustrate how to split a problem in order to eliminate
issues that are not the cause of the problem. You must be careful to determine whether
your understanding of the problem itself might be flawed.

Example 1: Is network an issue?
In order to determine whether a problem is related to the network or to SQL Server, elim-
inate the network by running a test locally. If you are having problems running a query
remotely but can run it locally, this tells you that the problem is probably in the network
area. On the other hand, if it doesn’t work locally, it doesn’t necessarily mean that the net-
work still isn’t the problem.

Example 2: Is I/O an issue?
If you are experiencing a performance problem that you think is I/O related, it might be
difficult to split the problem without getting more disk drives, but there are a few things
that you can try. Try reducing the data set so that all of the activity occurs in memory. If
you see a reduction in I/O via perfmon but you still have the same problem, then you
might not have an I/O problem.

928 Part VII Performance Tuning and Troubleshooting
Example 3: Is blocking an issue?
If you believe that a query or transaction is blocking, split the problem by running this
query or transaction with nothing else on the system running. If it runs well, this is an
indication that blocking may be a problem. If it runs poorly, this test might not be very
useful because blocking still might be a problem being masked by something else. For
example, if the program simulating the user community is the bottleneck, no changes
that you make on the database will have any effect because the simulation program can-
not go any faster.

Splitting the Problem Summary
Splitting the problem into things that can be tested can be very useful for eliminating pos-
sibilities. Keep in mind that sometimes only one result provides useful data. For example,
a positive reaction to a test might prove that your theory was right, but a negative reaction
might be inconclusive. Be careful not to make the wrong conclusion.

Finding the Error Logs
One of the first steps in tracking down a problem is to look in the error logs. In order to
look in the error log, it is first necessary to find the error log. With SQL Server, this is easy.
The error log is located in

C:\%PROGRAM FILES%\Microsoft SQL Server\MSSQL.1\MSSQL\LOG

Of course this will be different if you have multiple instances, but the SQL Server log is
not the only log that you might need to be concerned with. The log is rotated, so you will
see the files ERRORLOG, ERRORLOG.1, ERRORLOG.2, and so on. You should look
through all error logs. There are also SQL Agent logs. You can also view the logs from
within SQL Server Management Studio. In the navigation pane, expand the SQL Server
instance, then expand Management, and then expand SQL Server Logs. Here you can
open any of the SQL Server logs by right-clicking the log and selecting View SQL Server
Log. This invokes the Log File Viewer.

It is recommended that SQL Server systems be used only for the database server and that
the application tier should run on a separate system, but you might still have some com-
ponents of the application that run on the database tier. Look for logs and take note of
where they reside.

In addition to the SQL Server logs, the Windows event log is also a good place to look for
error messages. These alerts can be very useful, but they often do not provide enough
information to debug a problem. Also, don’t forget that you can turn on additional log-
ging for some applications, such as ODBC.

Chapter 28 Troubleshooting, Problem Solving, and Tuning Methodologies 929
Interpreting Error Logs
Interpreting the error log varies depending on what type of error log it is. If the error log
is very large, as is often the case, you can search on error, err, or sql. If you are viewing the
log with a text editor, use that editor’s search function. If you are viewing the log with the
SQL Server Management Studio, use the Search button in the Log File Viewer. Look for
specific problems and work backwards in order to try to determine the original cause of
the problem. The error log can often be the first and best place to look when trying to
troubleshoot a problem.

Help Desk Details
One area of troubleshooting that is often overlooked is the help desk. It is very important
to analyze the data that you receive from the help desk in order to properly debug a prob-
lem. Often this data can be the key to solving the problem.

Real World Details Are Everything

Several years ago, I was working with a company that was experiencing severe per-
formance problems. The help desk reported sporadic and random problem
reports. Upon pressing the help desk for more information, we were able to piece
together a list of user accounts that were reporting errors. Upon correlating that
data with system information, we were able to determine that all of the users report-
ing problems were located in a satellite office. This indicated that the problem was
a network problem and not a SQL Server problem. The problem was eventually
solved by information we received from the help desk, but these details were not
readily available. If the help desk had collected more details originally, we might
have saved significant time piecing together the details on our own.

The DBA and the help desk should work together to determine what information should
be logged in order to better debug problems and to collect good data that can aid in prob-
lem solving.

Note The help desk staff can’t read your mind. Tell them what to look for, what
questions to ask, and what to document. They will appreciate your input.

Retracing Your Steps
If you have trouble performing a task that you’ve performed in the past but aren’t able to
determine the reason why it isn’t working now, retrace your steps. It is often helpful to
document your steps. By thinking through the problem and retracing your steps, you
might be able to identify differences and therefore be better able to solve the problem.

930 Part VII Performance Tuning and Troubleshooting
Real World Talk It Over

In a previous example, I described a situation in which I was having trouble install-
ing SQL Server 2005, even though I had done it many times before. It was only by
recounting my steps and thinking about each one and whether it differed from pre-
vious installations that I was able to determine that my problem had to do with not
installing from CD. When I have a problem like this, I often talk it over with one of
my co-workers, and before I finish explaining all of my steps, I discover the problem
and the solution.

Test for the Sake of the Problem
Sometimes it is necessary to perform tests that have no chance of improving the situation.
These tests are done purely for the sake of trying to determine the cause of the problem.
This is often related to splitting the problem. For example, removing the network from
the test will not improve performance, because the network is necessary for functionality,
but it can help point out the reason for your performance problem.

Don’t be afraid to test for the sake of problem determination. This is often the only way
to discover the root cause of your problem. However, once you have the results of this
test, try to focus back on the problem and don’t be distracted for too long.

The Search for Knowledge
Once you have discovered the cause of your problem through exhaustive troubleshoot-
ing procedures, it still might be difficult to find the solution to this problem. Once you
arrive at this stage, the search for knowledge has begun. This search can take on many
forms and involve many mediums. Today, we are fortunate to have many different ways to
search for knowledge.

The beginning of knowledge is the discovery of
something that we do not understand.

Frank Herbert

We not only have magazines and books, such as this one, but now there are Internet sites
that specialize in SQL Server. In addition, Microsoft has an excellent knowledge base that
can assist with problem solving. In this section, you will learn a number of tips on how
to find, retain, and absorb knowledge.

Finding Knowledge Bases
There are many knowledge bases available today on the Internet. In fact, in the last few
years, the number of SQL Server Web sites has increased dramatically. In addition to the

Chapter 28 Troubleshooting, Problem Solving, and Tuning Methodologies 931
Microsoft Knowledge Base, there are a number of discussion forums on the Microsoft
Forums site: http://forums.microsoft.com. Select SQL Server and choose the forum that
you want to view.

Note It is a good idea to find a knowledge base or bulletin board that you like
and stick with it. By doing this, you will become used to the format and to other
members, which makes it easer to ask questions and offer suggestions.

With all of the information available online today, you must be a little skeptical because
not all of this information has been validated and is accurate. In the case of really leading
edge problems, you may not find much information on the Internet, but as the problem
becomes more commonplace, more solutions will be available online.

Developing Your Own Knowledge Base
It is often useful to create your own knowledge base. This knowledge base can be as sim-
ple as a directory that contains documents and notes or as sophisticated as a knowledge
base that is completely searchable and modifiable. You can use products such as
Microsoft SharePoint or a bulletin board product. By using a bulletin board or notes
board, you can insert information entries and then add to those entries as appropriate.

Note I use a bulletin board, where I post notes with my personal experiences
and with problems I have resolved. By using a bulletin board, I can organize my
knowledge into various groups and grant access to it to my co-workers.

It is critical to keep records about what you’ve done in the past. If you do not properly
document what you have learned, you will likely debug the same problem again a few
years later. A little bit of documentation can help you easily and quickly solve some prob-
lems that you have previously encountered.

Those who cannot learn from history are doomed to repeat it.

George Santayana

Learn from Others (Find a Mentor)
Troubleshooting is an acquired skill as well as a technique. It is often beneficial to work
with someone who is an expert troubleshooter in order to learn his or her techniques
and methods. Most good troubleshooters are willing to share their experiences and
techniques with you.

To acquire knowledge, one must study; but to acquire wisdom, one must observe.

Marilyn vos Savant

932 Part VII Performance Tuning and Troubleshooting
If you can find a good mentor, you should consider yourself very fortunate. A mentor
shares his or her experience and knowledge with you, and not only helps you to do your
job better but can help to improve your career as well. You might find a mentor, or at least
get to network with people of similar interests at user groups and conferences.

Performance Tuning and Optimization
Performance tuning is the process of modifying a computer system or software in order to
make the entire system or some aspect of that system run faster. Optimization is the pro-
cess of modifying a computer system in order to maximize its efficiency. Performance
tuning and optimization are a regular part of administering a SQL Server database. Let’s
look at some of the basics of performance tuning and optimization.

Tuning and Optimization Basics
Unlike troubleshooting and problem solving, where you have a specific problem that
needs to be uncovered and solved, tuning and optimization involves more gradual
changes to the system. In some cases, the performance of the system can be optimized by
making changes in the application or in the way SQL Server has been configured. In
other cases, there is not much that you can do besides adding more hardware.

In order to create the most optimal system possible, you must complete many of the steps
that you do when troubleshooting a problem. However, before you proceed, you must
determine if there is an actual problem. This is not always easy. When tuning a SQL
Server system, it is usually recommended that you take the approach to tune the applica-
tion first and then tune the SQL Server instance.

Tuning the Application
It is recommended that the application and SQL statements be tuned first and then the
database system. This is to allow the possibility of reducing system resources by using
more efficient indexes, partitioning, and hints. By reducing resources such as CPU utili-
zation, memory, and I/Os, you can improve performance while at the same avoiding the
need to increase hardware resources.

Tuning the Instance
Tuning the SQL Server instance typically involves adding more hardware to allocate more
memory to SQL Server or adding more disk drives to reduce I/O latencies. As you know,
there aren’t a lot of SQL Server parameters that can be modified. SQL Server instance tun-
ing typically is done by adding more hardware, which can be costly. If the application is
not optimal, you can easily add more and more hardware and still end up with a poorly
performing system.

Chapter 28 Troubleshooting, Problem Solving, and Tuning Methodologies 933
In order to properly troubleshoot or tune a system, you must follow a structured meth-
odology. This methodology allows you to be scientific in your approach and to continu-
ally move forward in your tasks.

Troubleshooting and Tuning Methodology
Now that you have some idea of the attitude and skills that are required for trouble-
shooting and performance tuning, it is time to look at some of the processes and meth-
odologies for these tasks. Both troubleshooting and tuning benefit from using a
standard methodology. So, what is a methodology? A methodology is a set of rules,
processes, and steps that you follow in order to perform a task in a scientific and repeat-
able manner.

Developing a Methodology
In this section, you are introduced to performance tuning, optimization, and troubleshoot-
ing methodologies. This is the methodology that I have used for several years. You can
take this methodology as a guideline and adapt it to your own needs. This methodology
has several steps:

1. Make an initial assessment and establish a baseline.

2. Monitor the system.

3. Analyze the results.

4. Create a hypothesis.

5. Propose a solution.

6. Implement changes.

7. Test the solution.

8. If other problems still exist, return to Step 2; if not, exit.

These steps are covered in detail in the following sections.

Step 1: Initial Assessment
The first step in tuning and troubleshooting is to understand the environment. It is
important to begin by gathering information in order to learn about the application and
begin to understand what problems, if any, exist in the system. Some things that should
be done and completely documented in this step are as follows:

■ Learn about the application

■ Ask about how it works and what it does

934 Part VII Performance Tuning and Troubleshooting
■ Determine what the reported problem is

■ Document database size, tuning parameters, and so on

■ Look at the system as a whole

■ Validate parameters

By performing these steps, you can get a feeling for where things are and how to
approach the problem. This is a good time to talk with IT staff as well as end users, if
possible, in order to learn from them about the issues. Inquire what they are doing
when the problem occurs. Do some good investigative work to help you determine the
problem.

Step 2: Monitor the System
Monitoring the system is the primary method of discovering the problem or tuning the
system. Monitoring the system can take a number of forms, including viewing error logs,
viewing perfmon data, and looking at application data. The goal of this step is to gather
baseline information and to make an initial determination of the possible problems.
Tools to monitor the system include the following:

■ Operating system tools: perfmon, task manager, event viewer

■ SQL Server tools: error log, sys tables

■ Third-party tools

■ Analyze operating system and SQL Server configuration parameters

Baseline information is important so that you can determine initial issues and see
whether changes make an improvement. As with every step of the methodology, this step
should be documented with great detail.

Step 3: Analyze Results
Once you have done an initial assessment and collected data, you must analyze and inter-
pret this data. The analysis is important because it allows you to determine the problem
and its cause. The analysis should be done carefully and deliberately and should include
several areas of study:

■ Analyze monitoring data

■ Review error logs

■ View customer performance data from their monitoring software

Chapter 28 Troubleshooting, Problem Solving, and Tuning Methodologies 935
This assessment should be documented; it will be the basis of your report to your cus-
tomer or management. As part of a full SQL Server assessment, this data should include
the following data:

■ CPU utilization

■ I/O utilization and response time

■ Memory utilization

■ Errors reported in the error log

■ Wait stats (if available)

By carefully analyzing performance data, you might immediately be able to determine the
problem, or you might be able to formulate a theory about possible contributing factors
of the problem. This step and the next can benefit from having more than one person par-
ticipate in order to provide ideas, experience, and guidance.

Step 4: Create a Hypothesis
Once you have analyzed the monitoring and log data, you are ready to postulate a theory
about the cause of the problem. This might sound more complicated than it actually is.
Formulating a hypothesis is as simple as formulating a theory and documenting it. If you
don’t document the hypothesis, it can be easy to stray from proper testing of this hypoth-
esis. The goal is to determine what the problem is; components of this step include the
following:

■ Formulate a theory: I/O problem, locking problem, and so on

■ Document your theory

■ Back up that theory with data

Once you have developed the theory, you should be able to develop a solution or test.

Step 5: Propose Solution
Once you have formulated the hypothesis, you are ready to develop a solution to the per-
formance problem. In many cases, you will not be able to immediately solve the problem.
You might instead have to develop a test to further narrow down the problem. Your test
might be designed to split the problem or to improve some aspect of the system. Compo-
nents of the solution include the following:

■ Developing a solution

■ Developing a validation plan

■ Documenting expected results

936 Part VII Performance Tuning and Troubleshooting
Keep in mind that these tests often provide useful results only by providing either a pos-
itive or negative result, but not both—for example, if you believe that you have an I/O
problem and propose a solution to solve this problem by changing the RAID level or add-
ing more disk drives. Upon implementing this change, if performance improves, you have
validated that I/O was a performance problem. If you implement a change and no
improvement occurs, this does not prove that there was not an I/O problem. The I/O
problem could still exist, but it might be masked by something else.

You must also determine the metrics of the results. With I/O problems, the result of the
change might not be to improve query performance but to reduce I/O latencies. By antic-
ipating the positive and negative outcome of your change, you will be better prepared to
analyze and interpret the results of the tests.

Step 6: Implement Change
Once you have theorized the problem and developed a solution or test, it is time to imple-
ment change. These change implementations might take the following forms:

■ A hardware change

■ A configuration parameter change

■ Adding an index

■ Changing a query or using a hint

Implementing a change should be done very carefully. Changes should be categorized to
no risk, moderate risk, and high risk. If at all possible, test the changes on a test system
first before implementing a change on the production system. Follow the doctor’s mantra
of “do no harm.”

Step 7: Test Solution
Of course, the final step is to actually run the test. If at all possible, perform this test in a
nonproduction environment; however, low-risk changes such as indexes can be done on
production systems. A few tips and best practices for changes are as follows:

■ Change only one thing at a time

■ Document the result of the change

■ Compare performance after the test to the baseline metrics

■ If possible, test the change in a nonproduction environment

■ If possible, run load tests

Chapter 28 Troubleshooting, Problem Solving, and Tuning Methodologies 937
The testing phase is a very important part of the troubleshooting and testing methodol-
ogy. When tests are done too quickly and too many at a time, you often lose track of
which ones actually helped and which ones actually hurt. Documentation is critical.

Step 8: Go to Step 2.
Once you have started Step 7, you should return to Step 2; monitor the system in order
to gather data about the state of the system while the test is going on. Follow the meth-
odology until you run out of time, budget, or problems.

By documenting each step, you will not only get better results, but you will be better able
to create professional and complete reports on the engagement, the problem, the solu-
tion, and the results.

The Need for Documentation
Documentation is the most crucial component of performance tuning. If testing hasn’t
been documented, how can you reproduce it or even know what was done to improve
the problem? On the other hand, documentation is the part of the job that we all dislike
the most. It is tedious and a lot of work. Here are a few tips to ease the documentation
burden:

■ Create an outline of your report before you begin work on it. By outlining the
report, all you have to do is fill in parts of it as you get results.

■ Work on the report during the engagement or duration of the test. Don’t wait
until all of your testing is done before putting together the report. Work on it a lit-
tle each day.

■ Get feedback. Get someone else to look at it and provide feedback on the scope of
the report and the outline that you have done.

■ Editorial review. Have someone critique the final report before it is sent to the cus-
tomer.

Documentation is no fun, but it is a necessary part of each tuning and troubleshooting
exercise.

Note In our company, no documentation goes to the client before it receives a
thorough internal review. This improves quality and consultant efficiency. In addi-
tion, we keep a great deal of internal documentation that is used for training pur-
poses and to improve our skills companywide.

A good document makes a good project, and poor documentation invalidates the entire
project.

938 Part VII Performance Tuning and Troubleshooting
Summary
Problem solving is considered one of the most complex of all intellectual functions. This
chapter provides tips, techniques, and methods to more easily perform troubleshooting
and tuning exercises. With all these tasks, process is very important. It is through a sys-
tematic approach that you can more easily determine the cause and solutions to any type
of problem—not just SQL Server or hardware problems.

Chapter 29

Database System Tuning

Monitoring and Tuning Hardware .940

Monitoring and Tuning SQL Server .954

Tuning the Database Layout .974

Tuning the tempdb System Database .978

Summary .979

As we saw in Chapter 3, “Roles and Responsibilities of the Microsoft SQL Server 2005
DBA,” one of the responsibilities of the DBA is to tune the system monitor and perfor-
mance tune the SQL Server solution. When deciding on a tuning methodology there are
basically two approaches you can take:

■ Proactive approach You monitor your SQL Server solution and tune the database
system when you notice capacity reaching resource limits.

■ Reactive approach You wait until events occur, such as users complaining about
slow queries or batch processes failing and then tune the database system as
required.

Realistically, a combination of both approaches is required because you usually do not
have the resources required to monitor everything, nor can you forsee every problem that
may occur because SQL Server is a complex, concurrent client-server architecture. The
most important factors are typically the most difficult to predict: users and how they are
using the database solution.

When tuning a complex, concurrent environment, you must be aware of the different
components that might impact overall performance. These factors can be categorized the
following way:

■ Hardware Includes components such as the server, available memory, number of
processors, and disk subsystem

■ Network infrastructure Includes the network cards, switches, and the rest of your
LAN or WAN
939

940 Part VII Performance Tuning and Troubleshooting
■ Operating system Can have a major impact on the overall performance of your
database solution. It is important to ensure that it has been optimally configured for
running SQL Server.

Note Do not overlook the importance of tuning the operating system.
There is a lot that you can do to improve the performance, security, and
stability of your SQL Server solution. For example, disabling all of the
superfluous services is a very good start.

■ Database engine Although SQL Server 2005 is self-tuning, there are still a num-
ber of tuning techniques that you can use to maximize performance. It is always
ideal to know both the SQL Server architecture and your operational environment
and requirements.

■ Database There are a number of way in which you can tune the databases, from
the layout of files to database options.

■ Client application The way client applications connect and work with your SQL
Server solution can impact dramatically the overall database solutions performance
and functionality.

In this chapter we will concentrate on tuning the hardware and SQL Server instance.

Real World The Best Thing About SQL Server

I am often asked what I like best about SQL Server. For me, it’s the ability to see
how the underlying database engine and related technology can easily be moni-
tored and consequently tuned through a variety of graphical tools and commands.
Not only does this ability help to diagnose and troubleshoot performance prob-
lems, it offers a great way of teaching both Microsoft SQL Server and relational data-
base theory because it combines the theoretical with the real world.

Monitoring and Tuning Hardware
Although your primary duty as a DBA is to monitor your SQL Server solution, this does
not mean that you should not pay attention to the hardware and operating system. I have
always stressed to my students the importance of learning the underlying operating sys-
tem and keeping abreast of hardware technology because this knowledge enables a DBA
to diagnose performance problems more easily and optimally tune a SQL Server solution.

Chapter 29 Database System Tuning 941
It also allows a DBA to recommend the appropriate hardware and software solution to
meet a new SQL Server solution’s requirements and allow for future growth.

Tools for Monitoring and Tuning Hardware
The Windows operating system has many tools and commands that can be used to mon-
itor and diagnose hardware issues so you can tune your SQL Server solution for optimal
performance. It is important to use the tool most appropriate for the metrics you want to
gather and your processing requirements. Commonly used tools used for monitoring
and tuning hardware include the following:

■ Network Monitor Agent Used to analyse network traffic and diagnose network-
related problems

■ Performance Logs and Alerts Used to gather performance-related metrics and to
generate an alert when a gathered metric reaches a user-defined threshold

■ System Monitor (perfmon) Tracks resource usage of various components of the
operating system and installed applications, such as SQL Server, through an
Object/Counter model

■ Task Manager Can be used as a quick way to gather key metrics about which pro-
cesses are running on the local SQL Server instance, the processor utilization, and
network utlilization

The primary resources used by a DBA are the System Monitor and the Performance Logs
and Alerts tools.

System Monitor (PERFMON.EXE)
The System Monitor tool allows you to monitor the hardware and operating system
resources on your SQL Server server. Through the System Monitor, you can collect per-
formance-related data about the various performance objects and their corresponding
counters. You typically use the System Monitor to perform benchmarks, monitor perfor-
mance, or investigate performance-related issues.

Although we have encountered the System Monitor tool in earlier chapters, this chapter
highlights and recommends some of the more important performance objects and counters
that you should monitor when tuning both your hardware and SQL Server solution.

You can use System Monitor to view performance metrics from multiple servers simula-
taneously, which can be useful in a production and testing environment. You can also cre-
ate charts and export the performance data.

Note Monitoring performance on a local computer through the System Moni-
tor tool can add a performance overhead. This performance overhead can be

942 Part VII Performance Tuning and Troubleshooting
reduced by monitoring fewer counters, increasing the sampling interval, or log-
ging the collected data to another disk. More commonly though, DBAs monitor a
SQL Server instance from a remote machine, an approach that has the least per-
formance overhead, although it does generate additional network traffic.

■ Using the System Monitor Tool To monitor your hardware or SQL Server
instance using the System Monitor tool, follow these steps:

1. To start the System Monitor tool, click Start, then click Administrative Tools,
and then click Performance. (If you do not see Administrative Tools from your
Start menu, navigate to Control Panel first.) Ensure the System Monitor folder
is selected.

System Monitor supports a number of different ways in which you can view
performance counter data. The toolbar at the top has three buttons represent-
ing the Graph, Histogram, and Report views. To the left are two buttons that
allow you either to see the current activity or to open up performance data
that has been previously saved in either a file or database table. Figure 29-1
shows the default chart view with no performance object counters added.

Figure 29-1 System Monitor.

2. To add performance object counters to the current activity view, click the plus
sign button on the toolbar. This opens the Add Counters dialog box, as
shown in Figure 29-2. Notice that you can monitor performance object

Chapter 29 Database System Tuning 943
counters on both the local and remote computers. Click to select the Use
Local Computer Counters option to add performance objects counters from
the computer on which you are running System Monitor, or click to select the
Select Counters From Computer option and select or type the NetBIOS com-
puter name or IP address of the SQL Server instance you want to monitor.

Figure 29-2 The Add Counters dialog box.

3. Click the Performance Object drop-down list, as shown in Figure 29-3. This
shows the list of Windows and SQL Server performance objects that are avail-
able on the computer. The performance objects listed depend on the operat-
ing system and software installed on the monitored computer. Click the
performance object, such as the Process performance object counter shown
in Figure 29-3, which you want to monitor.

4. Once you have chosen the performance object, you can specify the perfor-
mance object counter that you want to monitor in the scroll box below the
Performance Object drop-down list, as shown in Figure 29-4. If you want to
observe all of the performance objects counters, click the All Counters option.
For specific counters, click the Select Counters From List option and then
select the specific counter from the scroll box. You can select multiple
counters by holding down the Ctrl key when selecting the counters. In some
cases, as with the Processor\%Processor Time performance object counter
being selected in Figure 29-4, you can further choose whether you want to
monitor all instances of the performance object counter or a combination of
specific instances. Click the All Instance option to select all instances, or click
the Select Instances From List option and select the specific instances.

944 Part VII Performance Tuning and Troubleshooting
Figure 29-3 The Performance Object drop-down list.

Figure 29-4 The Add Counters dialog box.

5. To read more information about what the performance object counter moni-
tors, click the Explain button. The Explain Text dialog box opens with

Chapter 29 Database System Tuning 945
explanatory information, as shown in Figure 29-5. This explanatory informa-
tion can be very useful because there are hundreds of performance object
counters in SQL Server 2005 alone, let alone the rest of the operating system.

Figure 29-5 The Explain Text dialog box.

6. Click the Add button to add the combination of counters you have selected to
the Performance window. You can continue to add more performance object
counters by repeating the above process. When you are ready to return to the
Performance window, click the Close button. The Performance Window
starts to gather and display performance metrics at the default schedule,
which is every one second. Figure 29-6 shows the System Monitor graph dis-
playing performance metrics for a number of the SQL Server-related process
instances using the Processor\%Processor Time performance object counter.

Figure 29-6 System Monitor graph view.

7. You can highlight performance object counters in System Monitor to help you
more easily view and interpret the performance metrics being returned. To
highlight a particular performance object counter, click its name in the bot-
tom pane and press Ctrl+H. The performance object counter is highlighted,
as showm in Figure 29-7.

946 Part VII Performance Tuning and Troubleshooting
Figure 29-7 Highlighted performance monitor counter.

8. Alternatively, you might want to use the histogram view to help you more eas-
ily identify which performance monitor counter is consuming the most
resources. Click the View Histogram button in the toolbar or press Ctrl+B.
Figure 29-8 shows the histogram view in System Monitor.

Figure 29-8 System Monitor histogram view.

Chapter 29 Database System Tuning 947
Performance Logs and Alerts
The Performance Logs and Alerts tool is used to log performance-related metrics and gen-
erate alerts when an event occurs or a user-defined threshold is met. The Performance
Logs and Alerts tool can be configured to run as a service and collect performance data
automatically, which means that it does not require user interaction.

The performance data can be displayed in a number of formats, including comma-sepa-
rated, tab-separated, and a number of binary file formats. These files can be subsequently
opened for analysis by the System Monitor tool, so they are a great way of sending per-
formance data to other DBAs for analysis.

Note You can also collect the performance data directly to a SQL Server data-
base, which I particularly find useful because you can then use your querying
skills to manipulate the collected data.

When configuring alerts, you can specify a number of actions to be triggered when the
alert fires, including these:

■ Sending a network message

■ Starting a performance data log

■ Running a program

Note You should not use the Performance Logs and Alerts tool to generate
alerts based on SQL Server 2005 performance object counters. The ability of SQL
Server Agent in SQL Server 2005 to create alerts based on the same performance
object counters is far superior. Creating SQL Server performance condition alerts
through SQL Server Agent is covered in Chapter 30, “Using Profiler, Management
Studio, and Database Engine Tuning Advisor.”

■ Using the Performance Logs and Alerts Tool The ability to collect performance
metrics for further analysis, for benchmarking, or for establishing a basline is a
powerful capability of the Performance Logs and Alerts tool. To set up logging of
performance counters using the Performance Logs and Alerts tool, follow these
steps:

1. Click Start, Administrative Tools, and Performance to start the System Mon-
itor tool. (If you do not see Administrative Tools from your Start menu, nav-
igate to Control Panel first.) Ensure the Performance Logs and Alerts folder
is selected. Figure 29-9 shows the default Performance Logs and Alerts
folder.

948 Part VII Performance Tuning and Troubleshooting
Figure 29-9 Performance Logs and Alerts.

2. Expand the Performance Logs and Alerts folder in the left pane of the Perfor-
mance window. Right-click the Counter Logs folder and select the New Log
Setting menu option. Type an appropriate name for your log settings in the
New Log Settings dialog box, shown in Figure 29-10. Click the OK button to
continue.

Figure 29-10 New Log Settings dialog box.

3. A window with the same name that you entered for your log file appears. The
General tab, shown in Figure 29-11, allows you to add either performance
objects or specific performance object counters from the local and remote
computers. To add performance objects, click the Add Objects button. Alter-
natively, to add performance object counters, click the Add Counters button.
Both buttons pop up the appropriate dialog box, allowing you to select the
combination of performance monitor objects and counters you are interested
in logging, as covered earlier.

Chapter 29 Database System Tuning 949
Figure 29-11 Counter Log Properties dialog box.

4. Once you have chosen the combination of performance monitor objects and
counters you want to monitor, confirm that the sampling interval is appropri-
ate for your requirements. Figure 29-12 shows the Process, SQLServer:Data-
bases, SQLServer:General Statistics and SQLServer:Locks performance
objects being selected and the interval changed to 10 seconds.

Figure 29-12 General tab of the Counter Log Properties dialog box.

950 Part VII Performance Tuning and Troubleshooting
5. Click the Log File tab to set additional properties of the log file. Log files can
either binary or text files. Additionally you can save the log to a SQL data-
base. One of the advantages of using text files is that they can be opened in
range of various tools. Configure the appropriate log file settings by choos-
ing the appropriate type from the Log File Type drop-down list and config-
uring the location and name via the Configure button. Once you are back in
the Log Files tab you can further configure the suffix properties for the file
name and provide a comment if required. Figure 29-13 shows the log config-
ured as a comma-delimited text with a suffix denoting the date. Click the
Schedule tab.

Figure 29-13 The Log Files tab of the Counter Log Properties dialog box.

6. The Schedule tab allows you to configure whether the log file will be automat-
ically generated according to a schedule or manually controlled. To configure
the log to be started and stopped manually choose the option buttons as
shown in Figure 29-14 and click the OK button.

7. Once configured, the log can be started and stopped manually in the Perfor-
mance window. To start logging performance counters to a particular log,
click the log and then click the Start button located in the toolbar. The log

Chapter 29 Database System Tuning 951
should change color from red to green to indicate that it is running. Figure
29-15 shows a log running.

Figure 29-14 The Schedule tab of the Counter Log Properties dialog box.

Figure 29-15 Log running in the Performance Logs and Alerts tool.

Determining Hardware Bottlenecks
Determing hardware bottlenecks and tuning your operating system environment can be a
bit of an art form, which comes with experience and mastery of the skills discussed in
Chapter 28, “Troubleshooting, Problem Solving, and Tuning Methodologies.” You
should never make assumptions by looking at one set of gathered metrics but try to cor-
roborate it through correlated data. When determining hardware bottlenecks, you need
to identify which hardware susbsytem you should be examining.

952 Part VII Performance Tuning and Troubleshooting
Processor Subsystem
Identifying whether your processors are the bottleneck in your SQL Server solution is
a relatively straightforward process. Use the following guidelines to determine if your
processor subsystem represents the bottleneck:

■ The Processor: %Processor Time counter should not be greater than 80 percent for
a sustained period.

■ The System: Processor Queue Length counter should not be greater than two for a
sustained period.

■ The Processor-Context Switches/sec counter should not be excessively high per
processor. (Use 8,000 as a very rough threshold.)

The first step after identifying a processor bottleneck is to determine whether SQL Server
or some other operating system or application process is responsible. This can be done
by examining all the instances of the Process Object: % Processor Time counter. If your
SQL Server instance is responsible for the high processor utilization, there are a number
of techniques discussed later in this chapter for diagnosing and solving this problem.
Otherwise, you will have to determine why the other process is consuming so much pro-
cessor resources on your SQL Server solution.

Solving processor bottlenecks generally involves purchasing additional or faster proces-
sors. That is why you should try to purchase server hardware that can scale with your
growing processor requirements.

Memory Subsystem
Memory is probably the most important factor in SQL Server performance for most envi-
ronments. I suppose you can never have enough memory, but SQL Server takes signifi-
cant advantage of what it has been given through a complex caching architecture.
Symptoms of bottleneck problems with the memory subsystem include generally poor
performance, no available memory, and lots of I/O caused by either the lazywriter or
checkpoint processes and operating system paging. Use the following guidelines to
determine whether your memory subsystem is causing the bottleneck:

■ Examine the Physical Memory and Commit Charge values in the Performance tab
of the Task Manager.

■ Examine the Memory: Available KBytes (or Memory: Available Mbytes) counter for
a lack of available memory in System Monitor.

■ Examine the Memory: Pages/sec and Memory: Page Faults/sec counters in System
Monitor. Ideally they should be as close to zero as possible. Sustained values
greater than two, for example, indicate a problem.

Chapter 29 Database System Tuning 953
■ You should always also examine the following set of performance counters in Sys-
tem Monitor for correlating metrics:

❑ The Memory: System Cache Resident Bytes, Memory: Committed Bytes, and
Memory: Commit Limit counters.

❑ The Process: Working Set and Process: Private Bytes counters for all the pro-
cesses running on your server.

Once you have determined that your SQL Server solution has a memory bottleneck, the
first thing you must identify is whether this is due to external or internal memory pres-
sures. Is it a problem at the operating system level? Or is it related to the way your SQL
Server instance has been configured and is managing the memory allocated to it inter-
nally? This can be done only by gathering a number of performance metrics and analyz-
ing this information.

Solving memory bottlenecks generally involves purchasing more memory. As with your
processor subsystem, you should always try to purchase server hardware that has the
capacity to grow with your growing memory requirements. You can also reduce the mem-
ory footprint of your operating system through a number of techniques, such as disabling
unnecessary services and reconfiguring the registry. Additionally, you can reduce the
amount of memory your SQL Server instance requires through appropriate indexing
strategies and efficient queries. Inefficient queries tend to use tablescans and hash oper-
ators, which can consume a lot of memory.

I/O Subsystem
The main I/O hardware bottleneck to look for is for your disk array subsystem as cov-
ered in Chapter 4, “I/O Subsystem Planning and RAID Configuration,” and Chapter 7,
“Choosing a Storage System for Microsoft SQL Server 2005.” Unfortunately, disk drive
technology has not improved exponentially over the last decade, unlike advances with
processors, networking infrastructure, and, to a degree, memory. Ultimately, databases
are stored on this slower secondary media. This is why SQL Server has such an exten-
sive caching architecture and why memory is the most important performance-deter-
mining factor.

Unfortunately, memory is a finite and relatively expensive resource. Consequently, you
can still experience bottlenecks in you I/O subsystem for a number of reasons, such as
the operational environment. To determine if you have a bottleneck with your I/O susb-
sytem, use the following guidelines as a basis:

■ The PhysicalDisk: %Disk Time counter should not be greater than 50 percent for a
sustained period.

954 Part VII Performance Tuning and Troubleshooting
■ The PhysicalDisk: Avg. Disk Queue Length counter should not be great than two
for a sustained period.

■ The PhysicalDisk: Avg. Disk Reads/Sec and PhysicalDisk: Avg. Disk Writes/Sec
counters should consistently be less than 85 percent of your disk subsystem’s
capacity.

Use the following guidelines when monitoring your PhysicalDisk: Avg. Disk Sec/Read
and PhysicalDisk: Avg. Disk Sec Write counters:

■ <10 ms : Very good

■ 10-20 ms : OK

■ 20-50 ms : Slow, needs attention

■ >50 ms : Serious I/O bottleneck

When monitoring these counters, you must look at your disk subsystem as a whole. If
you are using a RAID array, for example, you must adjust the above values to account for
your RAID array as follows:

For example, you determine that your RAID-1 disk array has a Disk Reads/sec value of
60, a Disk Writes/sec value of 80, and an Avg. Disk Queue Length of 4. Taking into
account the RAID-1, your disk array is experiencing 110 I/O operations per disk and
your Avg. Disk Queue Length per disk is 2. This represents a borderline I/O bottleneck.

Solving I/O subsystem bottlenecks generally involves purchasing additional disk drives
to separate out the I/O, redistributing the location of relevant database files, reconfigur-
ing your RAID array, or changing/optimizing the type of SAN (see Chapter 7).

Monitoring and Tuning SQL Server
As with monitoring and tuning your hardware, you need to know how SQL Server oper-
ates and what to look for when monitoring and tuning your SQL Server solution. You
need to choose the appropriate tool that will allow you to gather the information you
need to correctly analyze any existing problems and respond accordingly.

RAID Level I/Os Per Disk

RAID-0 (Reads+Writes)/Number of Disks

RAID-1 [(Reads+(2×Writes)]/2

RAID-5 [(Reads+(4×Writes)]/Number of Disks

RAID-10 [(Reads+(2×Writes)]/Number of Disks

Chapter 29 Database System Tuning 955
Tools for Monitoring and Tuning SQL Server
SQL Server has a rich set of tools and command that can be used to monitor and tune
your SQL Server instance. As a DBA, you need to identify the correct tool to use to solve
your monitoring or tuning requirements. The more commonly used tools that come with
SQL Server include the following:

■ DBCC Commands A set of commands used to perform administrative tasks and
return various types of information useful to the DBA.

■ Dynamic Management Views Expose the internal workings of the SQL Server
instance as views. The various DMVs supported by SQL Server 2005 are described
in Chapter 31, “Dynamic Management Views.”

■ SQL Server Profiler An external tool that allows you to trace user activity against
your SQL Server instance.

■ SQL Server Management Studio The main tool used by DBAs to administer SQL
Server instances and execute Transact-SQL commands and statements. SQL Server
Managment Studio allows you to see the currenty activity.

■ System Stored Procedures SQL Server comes with a number of stored proce-
dures written by Microsoft that can be used to monitor and tune your SQL Server
instance.

■ SQL Trace Also allows you to trace user activity.

We will look at how to use SQL Server Profiler, SQL Server Management Studio environ-
ment, and Database Engine Tuning Advisor in more detail in Chapter 30.

System Monitor
The System Monitor tool is covered in more detail earlier in this chapter. Although it is
part of the operating system, a default installation of SQL Server installs a number of per-
formance objects and their related counters that are specific to SQL Server. This set of
counters is extremely useful for determining the cause of any performance bottlenecks
that you might have within your SQL Server 2005 instance.

Some of the more commonly used SQL Server related counters for performance analysis
include the following:

■ SQLServer:Access Methods–Full Scans/sec Collects the number of unrestricted
full scans of base tables or indexes

■ SQLServer:Buffer Manager–Buffer Cache Hit Ratio Collects the percentage of
pages found in the buffer pool without reading from disk

956 Part VII Performance Tuning and Troubleshooting
Note The Cache Hit Ratio is calculated over time differently in SQL
Server 2005 than in earlier versions of SQL Server. It is more accurate now.

■ SQLServer:Databases–Log Growths Collects the total number of log growths for
the selected database

■ SQLServer:Databases–Percent Log Used Collects the percentage of space in the
log that is in use for the selected database

■ SQLServer:Databases–Transactions/sec Collects the number of transactions
started for the selected database

■ SQLServer:General Statistics–User Connections Collects the number of users
connected to the system

■ SQLServer:Latches–Average Latch Wait Time Collects the average latch wait time
in milliseconds for latch requests that had to wait

■ SQLServer:Locks–Average Wait Time Collects the average amount of wait time
milliseconds for each lock request that resulted in a wait

■ SQLServer:Locks–Lock Waits/sec Collects the number of lock requests that could
not be satisfied immediately and required the caller to wait

■ SQLServer:Locks–Number of Deadlocks/sec Collects the number of lock
requests that resulted in a deadlock

■ SQLServer:Memory Manager–Memory Grants Pending Collects the current
number of processes waiting for a workspace memory grant

More Info You can also define you own custom counters through SQL
Server:User Settable performance objects. For more information, search for
the “SQL Server, User Settable Object” topic in SQL Server 2005 Books
Online.

SQL Server Profiler
SQL Server Profiler, shown in Figure 29-16, is the main tool used to capture a trace, which
basically represents the activity between client applications and a SQL Server instance.
Not only does this trace potentially capture the T-SQL statements and stored procedure
calls, it also captures “internal” database engine information, such as what locks were
acquired and released, what security permissions where checked, and relevant deadlock
information.

Chapter 29 Database System Tuning 957
Figure 29-16 SQL Server Profiler.

With SQL Server 2005, SQL Server Profile can also be used to trace activity against an
Analysis Services instance, as discussed in Chapter 22, “Analysis Services.” You also have
the ability to correlate your captured trace with your Windows performance log data to
get a better picture of what is happening with your SQL Server instance. We will show
you how to use SQL Server Profiler in Chapter 30.

As a DBA, it is typically up to you to determine whether a client application is at fault.
Tools such as SQL Server Profiler can be extremely helpful in this case.

Real World United Nations

In 2001, I was consulting for the United Nations in East Timor. Specifically, I was
asked to analyse a mission-critical database system for this emerging nation. The
Civil Registry database was going to be used for elections and would act as the foun-
dation for the country’s civil services. Unfortunately, the design and implementa-
tion had been rushed due to various pressures, and there was a concern about it’s
efficacy, so I was asked to perform an audit and analysis.

There was no documentation for the database design, nor, more importantly, the
various Visual Basic applications that had been written. In my opinion, the data-
base design was not optimal, and there were a lot of custom software components

958 Part VII Performance Tuning and Troubleshooting
used due to the obvious security requirements of a database solution that had col-
lected data on the entire population of East Timor.

It is only through the use of SQL Server Profiler that I was able to reverse-engineer
how the application and entire database solution worked. Importantly, it also pro-
vided me with the evidence required to justify my conclusions and recommenda-
tions to management.

Without SQL Server Profiler, there would have been a lot of guesswork and conjec-
ture. I highly recommend you invest the energy and time in learning how to use this
very powerful and important tool.

SQL Trace
Another technique for tracing the activity between client applications and a SQL Server
instance is to create traces through a set of system stored procedures instead of using
SQL Server Profiler.

More Info For more information on how to create traces manually, see the
topic “Introducing SQL Trace” in SQL Server 2005 Books Online.

Dynamic Management Views and Functions
Dynamic Management Views (DMV) and Functions are relational entities that expose
SQL Server in memory structures and can be queried using your standard DML state-
ments. They are quick to query and have a low overhead as they expose information that
needs to be maintained by the database engine. This information is ideal for performance
tuning and troubleshooting your SQL Server instance. We will examine DMVs in more
detail in Chapter 31.

Table 29-1 SQL Trace Stored Procedures

Stored Procedure Description

fn_trace_geteventinfo Returns information about events included in a trace.

fn_trace_getfilterinfo Returns information about filters applied to a trace.

fn_trace_getinfo Returns information about a specified trace. (Or all existing traces.)

sp_trace_create Creates a trace definition

sp_trace_generateevent Creates a user-defined event

sp_trace_setevent Adds or removes an event class or column to a trace

sp_trace_setfilter Applies a filter to a trace

sp_trace_setstatus Closes, starts or stops a trace

Chapter 29 Database System Tuning 959
Note DMVs are not exactly new, as they did exist in earlier versions of SQL
Server. The sysprocesses “system table” is one such example.

Determining SQL Server Performance Bottlenecks
Once you have determined that you have a performance bottleneck problem and that it
is related to your SQL Server instance, you need to further drill down into the appropriate
SQL Server subsystem to determine the cause of the bottleneck and hopefully be able to
tune your SQL Server solution.

Determining Processor Bottlenecks
Once you have identified that your SQL Server instance is consuming the processor
resources, as explained above, you must identify the cause. The following DMVs can be
queried to gather more metrics about how the SQL Server database engine is utilizing the
processors:

■ Look for high values in the runnable_tasks_count column of the
sys.dm_os_schedulers DMV, that would indicate a processor bottleneck.

■ Query the sys.dm_exec_query_stats DMV, as shown below, aggregating the
total_worker_time and execution_count columns to help determine which queries
are consuming the most processor resources. The plan_handle value can be passed
to the dm_exec_query_plan dynamic management function to see the execution
plan for further analysis.

SELECT plan_handle,

 SUM(total_worker_time) AS total_cpu_time,

 SUM(execution_count) AS total_execution_count,

 COUNT(*) AS number_of_statements

FROM sys.dm_exec_query_stats AS QueryStats

GROUP BY plan_handle

ORDER BY sum(total_worker_time) DESC;

The main causes for high processor utilization for a SQL Server instance include the
following:

■ Excessive compilation or recompilation

■ Inefficient query plan

■ Intra-query parallelism

960 Part VII Performance Tuning and Troubleshooting
Otherwise, you will need to determine the cause of the high processor utilization of your
SQL Server instance by determining the root cause.

Excessive Recompilations
To determine whether excessive recompilations are the cause of your high processor uti-
lization, examine the following metrics:

■ SQL Server: SQL Statistics object in System Monitor. Examine the Batch Requests/
sec, SQL Compilations/sec, and SQL Re-Compilations/sec counters. A high ratio
of SQL Re-Compilations/sec to Batch Requests/sec would indicate excessive
recompilations.

■ The SP:Recompile and SQL:StmtRecompile events in SQL Trace.

■ The optimizations and elapsed time counter values in the
sys.dm_exec_query_optimizer_info DMV. The elapsed time counter is the average
elapsed time (in seconds) per optimization of an individual query).

■ The plan_generation_num, which returns the number of times the plan has been
recompiled and the execution_count columns of the sys.dm_exec_query_stats
DMV. To determine the query, you can use the sql_handle value to query the
sys.dm_exec_sql_text(sql_handle) DMV, as demonstrated in Chapter 31.

If you have determined that your SQL Server instance is experiencing excessive recompi-
lations, examine the T-SQL batches that are the cause. There are a number of techniques
that your developers can use to reduce the excessive recompilation that you might be
experiencing. It might also be caused by a problem with statistics or poor indexes. Con-
sider running the Database Engine Tuning Advisor, discussed in Chapter 30, to see what
it recommends.

More Info For more information on recompilation issues, read the “Batch
Compilation, Recompilation, and Plan Caching Issues in SQL Server 2005” white
paper available at http://www.microsoft.com/technet/prodtechnol/sql/2005/
recomp.mspx

Inefficient Query Plans
Another potential cause of excessive processor utilization is a high number of compute-
intensive query plans being generated. Use the sys.dm_exec_query_stats DMV, together
with the sys.dm_exec_sql_text(sql_handle) DMV as shown below, to find these processor
intensive queries by looking for queries that have consumed the most CPU resources
(total_worker_time column).

Chapter 29 Database System Tuning 961
SELECT *

FROM sys.dm_exec_query_stats AS QueryStats

CROSS APPLY sys.dm_exec_query_plan(QueryStats.plan_handle)

ORDER BY total_worker_time DESC ;

Another approach is to look for compute-intensive operators such as Hash Matches and
Sorts in the sys.dm_exec_cached_plans DMV. This can be done by running the following
query and filtering for either '%Hash Match%' or '%Sort%' on the query_plan column:

SELECT *

FROM sys.dm_exec_cached_plans AS CachedPlans

CROSS APPLY sys.dm_exec_query_plan(CachedPlans.plan_handle) ;

As with excessive recompilations, you will need to identify the poorly executing queries
and present your findings to your developers. Again, the cause might be related to poor
statistics or inappropriate indexes, so consider running the Database Engine Tuning
Advisor. Otherwise, your developers will have to examine their queries and the indexing
strategy of the database. They might have to use query hints to override the optimizer,
but this should be considered a last resort.

Intra-Query Parallelism
Queries that are executed using parallel execution plans can be expensive and can be the
cause of your high processor utilization. Use the following techniques to identify whether
your SQL Server instance is running a large number of parallel queries running:

■ Look for where the CPU value is greater than the duration value in the RPC:Com-
pleted event class using SQL Trace.

■ Look for cached execution plans thathave the Parallelism operator indicating they
will potentially run in parallel depending on the activity on your SQL Server
instance:

SELECT *

FROM sys.dm_exec_cached_plans ASCachedPlans

CROSS APPLY sys.dm_exec_query_plan(CachedPlans.plan_handle) AS QueryPlan

CROSS APPLY sys.dm_exec_sql_text(CachedPlans.plan_handle) AS SQLText

WHERE CachedPlans.cacheobjtype = 'Compiled Plan'

AND QueryPlan.query_plan.value('declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/showplan";

max(//ns:RelOp/@Parallel)', 'float') > 0 ;

962 Part VII Performance Tuning and Troubleshooting
■ The sys.dm_exec_requests, sys.dm_os_tasks, sys.dm_exec_sessions,
sys.dm_exec_sql_text and sys.dm_exec_cached_plan DMVs can be queried, as
shown below to, to determine whether any currently executing queries are running
in parallel. For queries running in parallel, you will see multiple rows for the
session_id and request_id columns of the sys.dm_os_tasks DMV. You can retrieve
the Transact-SQL code via the sys.dm_exec_sql_text DMV and the execution plan
from the sys.dm_exec_cached_plan through their respective handles.

SELECT Requests.session_id,

 Requests.request_id,

 MAX(ISNULL(exec_context_id, 0)) AS number_of_workers,

 Requests.sql_handle,

 Requests.statement_start_offset,

 Requests.statement_end_offset,

 Requests.plan_handle

FROM sys.dm_exec_requests AS Requests

JOIN sys.dm_os_tasks AS Tasks

ON Requests.session_id = Tasks.session_id

JOIN sys.dm_exec_sessions AS Sessions

ON Requests.session_id = Sessions.session_id

WHERE Sessions.is_user_process = 0x1

GROUP BY

Requests.session_id,

 Requests.request_id,

Requests.sql_handle,

 Requests.plan_handle,

Requests.statement_start_offset,

 Requests.statement_end_offset

HAVING MAX(ISNULL(exec_context_id, 0)) > 0;

■ Where total_worker_time column value is greater than the total_elapsed_time col-
umn value for the sys.dm_exec_query_stats DMV as shown below. Not all parallel
queries will exhibit this behavior.

SELECT *

FROM sys.dm_exec_query_stats AS QueryStats

CROSS APPLY sys.dm_exec_sql_text(QueryStats.plan_handle) AS SQLText

WHERE total_worker_time > total_elapsed_time ;

Chapter 29 Database System Tuning 963
Once you have identified the problem, use the same techniques as with inefficient query
plans discussed above to reduce processor resource utilization. Alternatively, you can
control how SQL Server 2005 uses parallel execution plans through the Cost Threshold
for Parallelism SQL Server configuration option, discussed later.

Determining Memory Bottlenecks
As discussed earlier in this chapter, the first step in analyzing a potential memory bottle
neck is identifying whether it is due to external or internal pressue.

Because of the way SQL Server’s dynamic buffer pool works, memory bottlenecks typi-
cally manifest themselves as specific memory-related error messages that are show in
Table 29-2. Otherwise, your SQL Server solution should start exhibiting general slow per-
formance and higher I/O utilization as Windows starts excessively paging.

Determining the cause of a memory bottleneck is probably the most difficult of all the
bottlenecks because it requires a good knowledge of SQL Server, Windows, virtual and
physical memory, the virtual address space (VAS), potentially AWE, and so on. Use the
following guidelines to help you identifying the cause of your memory bottleneck:

■ Examine the values of the Mem Usage and VM Size columns for the SQL Server
process (sqlservr.exe) in the Processes tab of the Windows Task Manager to see the
amount of memory they are consuming relative to the amount of memory available
on your server.

■ You should see a drop in the value for SQL Server: Buffer Manager: Buffer Cache Hit
Ratio performance object counter. The general rule of thumb used in the industry
is around 90 percent, but you need to correlate that with other metrics because
your SQL Server solution might never be able to achive 90 percent due to opera-
tional factors.

Table 29-2 Error Messages Indicating Memory Pressure

Error Number Error Message

701 There is insufficient system memory to run this query.

802 There is insufficient memory available in the buffer pool.

8628 A timeout occurred while waiting to optimize the query. Rerun the query.

8645 A timeout occurred while waiting for memory resources to execute the query.
Rerun the query.

8651 Could not perform the requested operation because the minimum query
memory is not available. Decrease the configured value for the Min Memory
Per Query server configuration option.

964 Part VII Performance Tuning and Troubleshooting
■ Look for an increase in SQL Server: Buffer Manager: Checkpoint Pages/sec and
SQL Server: Buffer Manager: Lazy Writes/sec performance object counters because
SQL Server 2005 starts to flush pages out of the buffer pool cache under memory
pressure.

■ Examine the following set of performance counters in System Monitor:

❑ The Process: Private Bytes counter should be close to the Process: Working
Set for the SQL Server instance, indicating that there have not been a lot of
memory paged out. A discrepancy would indicate some sort of external mem-
ory pressure.

❑ SQL Server: Buffer Manager: Page Life Expectancy counter should not be too
low.

■ Examine the Buffer Distribution, Buffer Counts, Global Memory Objects, Query
Memory Objects and Gateways values of the DBCC MEMORYSTATUS output to
help determine if there is any internal memory pressure. Ideally the Target value in
the Buffer Counts section will account for most of the memory consumed by your
SQL Server instance. This Target value represents the target size of the buffer pool,
as periodically recalculated by SQL Server 2005, represented by 8KB pages. Com-
pare the amount of memory shown by the Target value (Target x 8KB) to the Pro-
cess: Private Bytes performance object counter discussed above. If this amount is
substantially less this would be indicative of internal memory pressure from com-
ponents that are using memory from outside the buffer pool.

More Info For more information on the DBCC MEMORYSTATUS com-
mand, read the “How to use the DBCC MEMORYSTATUS command to
monitor memory usage on SQL Server 2005” Knowledge Base article located
at http://support.microsoft.com/kb/907877.

■ Examine the following DMVs, discussed in more detail in Chapter 31 for correlat-
ing metrics:

❑ sys.dm_os_memory_cache_clock_hands

❑ sys.dm_os_memory_cache_counters

❑ sys.dm_os_memory_clerks,

❑ sys.dm_os_ring_buffers

❑ sys.dm_os_virtual_address_dump

The strategy for eliminating your memory bottleneck depends on the outcome of your
analysis. You might have to correlate a lot of metrics to determine whether the bottleneck

Chapter 29 Database System Tuning 965
is due to external or internal memory pressures. You can obviously add more memory,
but you can also control how SQL Server consumes the available memory through a
number of configuration options discussed later in this chapter. Be aware that it might
not be possible to eliminate a memory bottleneck if your SQL Server solution has out-
grown the available resources.

Determing I/O Subsystem Bottlenecks
Bottleneck problems with your I/O subsystem typically manifest themselves as timeout
error messages and generally slow response times. The performance object counters dis-
cussed earlier should clearly indicate that the I/O subsystem is operating near its maxi-
mum capacity. Use the following guidelines to help you identify the cause of your I/O
subsystem bottleneck:

■ Query the sys.dm_os_wait_stats DMV shown below to see the statistics on the I/O
latch waits, which basically indicate that a page requested was not found in the
buffer pool and consequently a worker thread had to wait for the page to be fetched
from disk.

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type LIKE 'PAGEIOLATCH%' ;

■ Examine the output of the sys.dm_io_pending_io_requests and
sys.dm_io_virtual_file_stats(db_id, file_id) DMVs, as shown below, to see whether
there are are any currently pending I/O requests.

SELECT *

FROM sys.dm_io_pending_io_requests AS PendingIORequests

JOIN sys.dm_io_virtual_file_stats(NULL, NULL) AS VirtualFileStats

WHERE PendingIORequests.io_handle = VirtualFileStats.file_handle ;

■ Examine the output of the sys.dm_exec_query_stats DMV to see which cached
querie plans are generating the most I/O. Use the execution_count column in com-
bination with the following columns to analyze the I/O operations being per-
formed by these queries and the most expensive queries :

❑ last_logical_reads

❑ last_logical_writes

❑ last_physical_reads

❑ max_logical_reads

❑ max_logical_writes

❑ max_physical_reads

966 Part VII Performance Tuning and Troubleshooting
❑ min_logical_reads

❑ min_logical_writes

❑ min_physical_reads

❑ total_logical_reads

❑ total_logical_writes

❑ total_physical_reads

For example, to find the top 10 queries that generate the most amount I/O operations in
a single execution, you would execute:

SELECT TOP 10 *

FROM sys.dm_exec_query_stats

ORDER BY (total_logical_reads + total_logical_writes)/execution_count ;

I/O subsystem bottlenecks are typically a result of SQL Server moving extents and pages
between your memory and disks, so increasing the amount of memory made available to
your SQL Server should obviously help alleviate the problem. Other causes include trans-
action log activity and tempdb system database activity, examined next.

Resolving I/O bottlenecks does not necessarily involve just improving your I/O sub-
system with faster drives, faster controllers, more drives, or separating various database
files. Inefficient queries that have to perform large tables scans can result in excessive
I/O, as will a memory bottleneck. So you might also have to look at rewriting queries and
reconfiguring how SQL Server utilizes the available memory to resolve a bottleneck.

Determing tempdb System Database Bottlenecks
I will discuss the importance of, and how to tune the tempdb system database at the end
of the chapter. It is sufficient at this stage to say that it plays a much more important role
in SQL Server 2005 than in earlier versions and, consequently, can represent a potential
bottleneck in your SQL Server solution. In earlier versions of SQL Server, it was difficult
to determine whether your tempdb system database was a bottleneck in your SQL Server
solution.

In SQL Server 2005, Microsoft has included a number of DMVs that can be used to see
which users are accessing the tempdb system database, the internal objects being used,
and version store sizes:

■ sys.dm_db_file_space_usage

■ sys.dm_db_session_space_usage

■ sys.dm_db_task_space_usage

Chapter 29 Database System Tuning 967
Note In SQL Server 2005, these DMVs apply only to the tempdb system
database.

You can use SQL Server:Transactions object: Version Generation rate (KB/s) and SQL
Server:Transactions object: Version Cleanup rate (KB/s) performance object counters to
monitor the row versioning usage of your SQL Server solution.

The main way of reducing contention in your tempdb system database is to capacity plan
and correctly size and configure the system database. However, inefficient queries can
create excessive internal temporary objects, so you can also take advantage of the query
tuning techniques discussed previously in this chapter.

Tuning Microsoft SQL Server Configuration Options
Althought a lot of SQL Server 2005 configuration options are dynamic, responding to
various software and hardware pressures automatically, you can still alter the way your
SQL Server 2005 instance behaves through the modification of certain settings using the
sp_configure system stored procedure or SQL Server Management Studio environment.

To configure the SQL Server 2005 options using T-SQL, use the sp_configure system
stored procedure, which has the following syntax:

sp_configure 'option_name', value

When executing the sp_configure system stored procedure, you typically run the
RECONFIGURE command afterwards, which updates the currently configured value to
the new value stipulated. To enable the Common Language Runtime (CLR) in SQL
Server 2005, execute the following:

EXEC sp_configure 'clr enabled', 1 ;
RECONFIGURE ;
GO

It is generally easier to change most options through SQL Server Managment Studio. To
change the configuration options through SQL Server Management Studio, follow
these steps:

1. Start SQL Server Management Studio and connect to your SQL Server instance.

2. Right-click your SQL Server instance in SQL Server Management Studio and select
the Properties menu item.

3. Click on the appropriate page in the pane located on the left side of the Server Pro-
perites dialog box. Figure 29-17 shows the Advanced page.

968 Part VII Performance Tuning and Troubleshooting
Figure 29-17 Changing SQL Server 2005 configuration options.

4. Change the desired SQL Server 2005 configuration option and click the OK button.

The following SQL Server configuration options can be used to fine tune your SQL Server
solution.

The Affinity I/O Mask (Affinity64 I/O Mask) Option
The Advanced Affinity I/O Mask option is new to SQL Server 2005 and controls which
processors are used for processing SQL Server disk I/O threads. The default value is zero
and uses all of the available processors. Internal SQL Server processes such as the lazy-
writer and logwriter are impacted by this option. A binary bitmask is used to bind specific
processors for I/O operations. Reconfiguring the affinity I/O mask option requires you to
restart the SQL Server instance.

As an example, to reconfigure your SQL Server 2005 instance to only use the first (0) and
third (2) processors for disk I/O threads and shutdown the SQL Server 2005 instance,
you would execute the following:

EXEC sp_configure 'affinity I/O mask', 5

RECONFIGURE ;

GO

SHUTDOWN ;

GO

Chapter 29 Database System Tuning 969
In most cases, the default affinity I/O mask provides the best performance. The affinity
I/O mask is typically configured as a fine tuning mechanism for SQL Server instances
where you want to separate I/O processing from computational processing.

The Affinity Mask (Affinity64 Mask) Option
The Affinity Mask option dynamically binds which processors the SQL Server instance
will use. Unlike earlier versions, changing the affinity mask option does not require a
restart of the SQL Server instance. When this option is changed, SQL Server either
enables a new scheduler or disables an existing scheduler. New schedulers are considerd
for incoming batches. Current batches continue to execute on existing schedulers until
the complete, when SQL Server deallocates that scheduler.

The Affinity Mask option is typically used as a fine-tuning mechanism where you have a
multi-instance cluster or multiple instances of SQL Server installed on a multi-processor
server and need to guarantee a certain level of performance, for example, to meet service
level agreements, for example. It can also be used to fine tune performance SQL Server
solutions that are experiencing heavy loads and, consequently, might have CPU caches
repeatedly reloaded with data.

You also might want to affinitize your schedulers to only the physical processors, not the
logical procesors, if you have determined that hyperthreading is having a detrimental
affect on the performance of your SQL Server solution. Another alternative is to turn off
hyperthreading at the BIOS level.

Important When you configure the affinity mask and affinity I/O mask options,
the RECONFIGURE command checks to ensure that the affinity settings are mutu-
ally exclusive. You can override this safety check via the RECONFIGURE WITH
OVERRIDE option, but it is not recommended.

The Cost Threshold for Parallelism Option
The Cost Threshold for Parallelism option dynamically controls the threshold at which
SQL Server starts to consider parallel execution plans over serial execution plans. Parallel
execution plans take longer to work out but execute more quickly on multi-processor
servers. It does not apply to a uniprocessor server.The default value of five seconds
indicates that SQL Server should use a parallel execution plan when it estimates that a
serial plan will take longer than that threshold to execute on a specific hardware con-
figuration.

The Cost Threshold for Parallelism option is considered a fine-tuning mechanism and
typically left alone.

970 Part VII Performance Tuning and Troubleshooting
The Lightweight Pooling Option
The Lightweight Pooling option controls whether SQL Server switches to fiber mode
scheduling. A fiber is a lightweight thread that requires fewer processor resources
because it avoids the need for context switching. The Lightweight Pooling option may
reduce the system overhead associated with execessive context switching sometimes
experienced in multiprocessor servers. Reconfiguring the Lightweight Pooling option
requires you to restart the SQL Server instance.

Be careful with the lightweight pooling option because certain SQL Server 2005 compo-
nents, such as the Common Language Runtime (CLR), are not supported under light-
weight pooling.

You should consider evaluating the need of using the Lightweight Pooling option only
if you are experiencing both high processor utilization and excessive context switching.
You should monitor your SQL Server solution using System Monitor both before and
after changing the Lightweight Pooling option to determine whether it is appropriate.

Important Microsoft has rewritten the way SQL Server 2005 works in fiber
mode scheduling. The lightweight pooling option is not supported on Windows
2000 and Windows XP.

The Locks Option
The Locks option controls the amount of memory allocated by SQL Server for managing
locks; each lock consumes 96 bytes. The default value of zero allows SQL Server to
dynamically allocate and deallocate memory used for managing locks. This dynamic lock
pool does not exceed 60 percent of the memory allocated to the SQL Server instance. The
Locks option also controls lock escalation. Reconfiguring the Locks option requires you
to restart the SQL Server instance.

The Locks option is typically left alone and considered a fine-tuning mechanism. Con-
sider changing the locks option if your SQL Server instance is generating lock errors.

The Max Server Memory Option
The Max Server Memory option dynamically controls the upper limit of the amount of
memory (in MB) that the SQL Server instance’s buffer pool uses. The default value of
zero allows the SQL Server instance to respond to external memory pressure and dynam-
ically uses up to all of the available memory.

The Max Server Memory option is typically used as a fine-tuning mechanism where you
have a multi-instance cluster, multiple instances of SQL Server, or other software running
on your SQL Server solution, where you want to limit the amount of memory your SQL
Server instance consumes.

Chapter 29 Database System Tuning 971
The Max Degree of Parallelism Option
The Max Degree of Parallelism option dynamically controls the number of processors the
SQL Server instance uses for parallel execution plans. You can set the max degree of par-
allelism to one to prevent SQL Server from using parallel execution plans. The default
value of zero uses all of the available processors, both physical and logical, taking into
account the affinity mask setting.

The Max Degree of Parallelism option is typically used as a fine-tuning mechanism where
you have a multi-instance cluster or multiple instances of SQL Server. It is recommended
that you adjust the Max Degree of Parallelism option to match the number of physical
processors in a hyperthreaded environment for optimal performance.

Note Queries can override the max degree of parallelism option through the
MAXDOP optimizer hint, which specifies the maximum number of processors that
can be used for parallelism, when creating the query execution plan. For more
information on the MAXDOP optimizer hint see “Query Hint (Transact-SQL)” topic
in SQL Server 2005 Books Online.

The Max Worker Threads Option
The advanced Max Worker Threads option dynamically controls the number of worker
threads SQL Server uses for execution on the schedulers. Each worker thread consumes
512KB of stack space. Normally, each user connection consumes a worker thread; however,
if you have more user connections than worker threads, SQL Server starts to share user con-
nections between worker threads through a process known as thread pooling. The default
value of zero allows SQL Server to automatically configure the number of worker threads at
startup, depending on the number of processors available as seen in Table 29-3.

In most cases, you should let SQL Server configure the max worker threads automati-
cally. You can increase the number of worker threads to service more user connections
concurrently, but you have to be careful not to saturate your processors. Conversely, if
you have installed a multi-instance cluster or multiple instances of SQL Server, you might
want to reduce the Max Worker Threads option.

Table 29-3 Default Automatic Configuration of Max Worker Threads by SQL
Server 2005

Number of Processors 32-bit Architecture 64-bit Architecture

<= 4 256 512

8 288 576

16 352 704

32 480 960

972 Part VII Performance Tuning and Troubleshooting
Important Microsoft recommends that you do not configure the Max Worker
Threads option beyond 1,024 on a 32-bit architecture and 2,048 on a 64-bit
architecture.

The Min Memory Per Query Option
The Min Memory Per Query option controls the minimum amount of memory (in KB)
that SQL Server allocates for the execution of any single query. The default is 1,024 KB.

The Min Memory Per Query option is typically left alone and considered a fine-tuning
mechanism. Increasing the Min Memory Per Query option may improve performance for
some small to medium-sized queries, but it could lead to internal memory pressure.

The Min Server Memory Option
The Min Server Memory option dynamically controls the lower limit of the amount of
memory (in MB) that the SQL Server instance’s buffer pool uses. As with the Max Server
Memory option, the default value of zero allows the SQL Server instance to respond to
external memory pressure and dynamically decrease the amount of memory it uses until
this lower limit is hit.

The Min Server Memory option is typically used as a fine-tuning mechanism to guarantee
a SQL Server instance a certain amount of memory so as to guarantee a certain level of
performance.

Best Practices Typically DBAs either leave the Min Server Memory and Max
Server Memory options alone or set them both to a predetermined value. Don’t
forget that you can also just adjust the min server memory to a level above the
default but below the max server memory. As an example, you might have two
SQL Server instances running on a server with 4 GB of memory. To guarantee that
both SQL Server instances perform well, you configure both SQL Server instances
to a min server memory setting of 1 GB and leave the max server memory at the
default value. This guarantees that both SQL Server instances perform well
because they will always have a minimum of 1 GB of memory to use. However, as
users heavily utilize a particular SQL Server instance, or batch processes and large
transactions run, that particular SQL Server instance can “grab” more of the
remaining memory from the other SQL Server instance. This methodology allows
you to guarantee a certain level of performance while maximizing your available
memory.

The Open Objects Option
The Open Objects option has no effect in SQL Server 2005 and has been included for
backward compatibility only.

Chapter 29 Database System Tuning 973
The Priority Boost Option
The Priority Boost option increases the priority of SQL Server threads to High (13). This
can improve performance because the SQL Server threads are not preempted by other
applications running on the operating system. Conversely, other applications might be
adversely affected because they do not have a high enough priority to preempt SQL
Server’s threads.

The priority boost option is typically left alone and considered a fine-tuning mecha-
nism. You might also want to evaluate its use in a server environment where you have
multiple instances of SQL Server running and certain instances have certain SLAs that
need to be met.

The Query Governor Cost Limit Option
The Query Governor Cost Limit option dynamically controls whether queries that the
query optimizer estimates will take longer than the configured value will execute. The
default value of zero turns off the query governor.

Configuring this option allows you to prevent run-away queries or expensive queries
(such as Cartesian products), from executing and potentially having a detrimental impact
on your SQL Server instance’s performance. Be careful when configuring this option
because SQL Server 2005’s query optimizer compares its estimate of how many seconds
it has predicted the query will take to execute, although the actual execution time taken
might be less.

The Recovery Internal Option
The Recovery Interval option dynamically controls how often the checkpoint process
runs. This is probably one of the least-understood configuration options. The recovery
interval value does not indicate how frequently the checkpoint process should run; it
indicates the worst-time scenario in minutes for recovering a database. In other words,
the frequency of how often the checkpoint process runs is based not on a time-based
value but on an estimate made by SQL Server of how long it will take to write all data
modifications that have occurred to the database since the last checkpiont. The default
value of zero does not indicate that the checkpoint process runs every minute, as is com-
monly thought; it indicates that SQL Server checks every minute to see whether it should
issue a checkpoint depending on a number of factors, including how many data modifi-
cations have occurred and how long it will take SQL Server to write them back to disk,
how busy the SQL Server instance is at that moment, and what percentage of the trans-
action log is full. In practice, this typically translates to recovery time of less than a minute
and a checkpoint that runs every minute for active databases.

The Recovery Interval option is typically left alone and considered a fine-tuning
mechanism. You should consider changing the Recovery Interval option only if you

974 Part VII Performance Tuning and Troubleshooting
have determined that your SQL Server database solution’s performance is being
degraded by checkpoint.

The Set Working Set Size Option
The Set Working Set Size option has no effect in SQL Server 2005 and has been included
for backward compatibility only.

Tuning the Database Layout
In Chapter 10, “Creating Databases and Database Snapshots,” we examined creating
databases in detail. We also also looked at disk I/O subsytems and the various levels of
RAID in Chapter 4 and Chapter 7. There are a number of techniques that you can use to
optimize performance at the database level.

Database Layout
Perhaps one of the easieist techniques that a DBA can employ to tune his or her databases
is to take advantage of the file and filegroup architecture supported by SQL Server data-
bases. Don’t forget that you can change your file and filegroup strategies once a database
has been created.

Note Don’t forget to put your transaction log onto a separate spindle for your
OLTP databases to separate your sequential transaction log I/O from your ran-
dom database I/O.

Files
You can improve performance in a mulitprocessor server environment by using multiple
data files in your database. By using multiple secondary data files, you can take advantage
of SQL Server’s multithreaded architecture because it will use one thread per database
file to perform concurrent I/O operations. There is no point, from a performance point of
view, in creating more files than the number of processors available on the server, taking
into account any affinity settings, because SQL Server allocates only enough threads, up
to the number of processors for the I/O operations.

So how large should database data files be? One tip I commonly suggest is limiting data-
base file to the capacity of current CD/DVD technology. For example, if you limit your pri-
mary database file and secondary database file to 4.7 GB you can easily burn them onto
DVDs for offsite backup purposes or for shipping databases to a remote site for attaching.
With larger databases, you could obviously take advantage of new technology such as
DVD+/-DL, Blue-Ray and HD-DVD.

Chapter 29 Database System Tuning 975
Filegroups
Another technique which requires more planning is taking advantage of file groups. As
we saw in Chapter 10, filegroups allow you give a logical name to a set of strategically
placed database files. You can then bind database objects, such as tables and indexes, to
these database file sets using the logical name.

So, for example, you could create two files groups that consist of two sets of files located
on separate disk drives. You could then create your tables on one filegroup and the non-
clustered indexes on the other. The end result is a separation of your table I/O from your
index I/O, which improves performance.

In another example, you could create two separate file groups for your Sales and Market-
ing departments and then create their respective tables on these two separate file groups.
Again, you have improved performance by separating the I/O between the two depart-
ments at the disk drive level, potentially ensuring certain SLAs are met.

There are many examples of where to use file groups. Data archiving is yet another com-
monly used example.

I have always been a fan of keeping only the system tables on your primary file group, so
for larger enterprise clients I recommend that databases always be created with a small
primary data file and a secondary data file that is bound to a filegroup that has been con-
figured as the default file group. It’s an elegant separation of the system tables from the
user data that has a number of benefits.

Database Options
We examined various database options when we looked at how to create databases in
Chapter 10. Although database options are normally functional in nature, the DBA can
take advantage of a number of database options to potentially improve the performance
of the database.

You can change the database options in SQL Server 2005 by using the ALTER DATABASE
T-SQL statement. You should not use the sp_dboption system stored procedure that was
predominantly used in earlier versions of SQL Server because it is being deprecated and
will be removed in future versions of SQL Server. To change the AdventureWorks database
to be read-only, execute the following statement:

ALTER DATABASE AdventureWorks SET READ_ONLY ;

More Info For more information about the syntax of the ALTER DATABASE
statement see the “ALTER DATABASE (Transact-SQL)” topic in SQL Server 2005
Books Online.

976 Part VII Performance Tuning and Troubleshooting
It is much easier, and more common, to change the database options through SQL Server
Managment Studio. To change the configuration options through SQL Server Manage-
ment Studio, follow these steps:

1. Start SQL Server Management Studio and connect to your SQL Server instance.

2. Expand the Database folder and right-click the database you want to configure.
Select the Properties menu item.

3. Click on the Options page in the pane located on the left side of the Database Pro-
perites dialog box. Figure 29-18 shows the Options page.

Figure 29-18 Changing the database options.

4. Change the desired database option(s) and click the OK button.

When tuning your databases through these database options, you should make sure you
understand the implications of setting these options and monitor your database solution
before and after the modification to ensure you have realized expected performance
goals.

Chapter 29 Database System Tuning 977
AUTO_UPDATE_STATISTICS_ASYNC Database Option
SQL Server 2005 supports a new AUTO_UPDATE_STATISTICS_ASYNC database
option that can be used to fine tune your database solution. Normally when an executing
query triggers an automatic updating of statistics through the query optimizer, the query
has to wait until the statistics are updated before continuing. In other words, it is a syn-
chronous process. The AUTO_UPDATE_STATISTICS_ASYNC database option can be
used to turn off the waiting that such queries have to perform. In other words, the query
does not wait until the statistics are updated before continuing on with its execution.
However, it will be using out of date statistics and consequently might not have an opti-
mal execution plan generated, unlike subsequent queries.

Note The AUTO_UPDATE_STATISTICS_ASYNC database option has no effect if
the AUTO_UPDATE_STATISTICS database option is turned off.

DATE_CORRELATION_OPTIMIZATION Database Option
The DATE_CORRELATION_OPTIMIZATION database option is another new database
supported by SQL Server 2005 that can be used to fine tune your database solution. The
DATE_CORRELATION_OPTIMIZATION database option can be used to improve equi-
join performance between two tables that have a correlated datetime column. This
datetime column must be part of the search argument. SQL Server 2005 keeps additional
correlation statistics on the related columns between the two tables, which helps the
query optimizer potentially determine more efficient query plans.

More Info For more information on where to use the
DATE_CORRELATION_OPTIMIZATION database option, see the topic “Optimizing
Queries That Access Correlated datetime Columns” in SQL Server 2005 Books
Online.

PARAMETERIZATION Database Option
SQL Server 2005 supports another new PARAMETERIZATION database option that
can be used to fine tune your database solution. You might improve performance in
your database solution by turning on forced parameterization because you might
reduce the frequency of compilations and recompilations in your OLTP database
solution.

More Info For more information about simple and forced parametrization, see
the topics “Simple Parameterization” and “Forced Parameterization” in SQL Server
2005 Books Online.

978 Part VII Performance Tuning and Troubleshooting
READ_ONLY Database Option
Setting the READ_ONLY database option prevents DML operations from being per-
formed on the database. However, few DBAs realize that if you do set the option on, you
can realize a performance benefit, as no locking needs to be managed within the data-
base. This can translate to better query performance and less overhead on the Lock Man-
ager of the Database Engine. So if your databases are read-only, turn on this option.

Tuning the tempdb System Database
The tempdb system database plays a particularly important role in SQL Server 2005,
which uses this temporary workspace for operations involving temporary tables, table
variables, cusrors, hash-joins, and row versioning. Athough you might not be using any of
these explicitly, your SQL Server instance might be implicity using tempdb for operations
such as for DML after triggers, Multiple Active Result Sets (MARS), and online index
operations, all of which use row-versioning in the background. DBCC checks also use
row-versioning as a means of checking a consistent state of the tables or indexes.

Consequently, it is important to optimize performance of your tempdb system database,
especially for an intensive OLTP environment. You can optimize the performance of the
tempdb using a combination of the following recommendations:

■ Capacity plan and pre-allocate adequate space. By correctly capacity planning and
pre-allocating adequate initial space to the tempdb system database, you are hope-
fully avoiding automatic growth which slows down performance because it repre-
sents a context switch. You should still consider leaving autogrow on to
accommodate unexpected tempdb activity.

■ Separate the log file. As with all databases, separating the log file or files from the
database files or files realizes performance benefits because you have separated
your random database I/O from your sequential transaction log I/O.

■ Use multiple data files. By adding multiple secondary data files to the tempdb sys-
tem database, you can take advantage of SQL Server’s multithreaded architecture.
SQL Server uses one thread per tempdb system database file to perform concurrent
I/O operations. As discussed earlier in this chapter, SQL Server uses only as many
threads for I/O opertations as there are schedulers.

■ Use a faster disk. If your database solution heavily utilizes the tempdb system data-
base, you should consider using faster disk drives for the the tempdb system data-
base. For example, you could use 10,000 rpm disk drives to store the user databases,
but use a more expensive 15,000 rpm disk drive to store the tempdb system data-
base. You could also use solid-state drives, although they tend to be expensive.

Chapter 29 Database System Tuning 979
■ Use an appropriate RAID solution. The tempdb system database is typically write-
intensive and can be heavily utilized. Consequently, RAID-5 and RAID-6 are not the
best choices because they generally perform poorly compared to other RAID con-
figurations. RAID-10 or RAID-0 are more appropriate. Remember, though, that
RAID-0 does not provide any redundancy.

■ Use the local disk subsystem. If you are using a SAN solution, you must decide
whether the tempdb system database is stored on the local storage or the SAN solu-
tion. If your tempdb system database is heavily utilized, your SQL Server solution
generates a lot of traffic between the server and the SAN. Therefore, it is recom-
mended to store the tempdb system database locally.

Summary
In this chapter, you learned how to monitor and detect both hardware and SQL Server-
related performance problems through the various tools and commands available in
both the Windows operating system and SQL Server 2005 environments.

You learned the major subsystems that exist and what specific performance metrics you
should watch out for when trying to determine the causes of bottlenecks and to tune the
performance of your SQL Server solution.

There are a number of configuration options that exist in SQL Server 2005 that you can
modify to tune the performance of your SQL Server solution once you become more
familiar with your operational environment.

The tempdb system database plays a more important role in SQL Server 2005 compared
to earlier versions, so special attention should be given to maximize the performance of
this system database.

Chapter 30

Using Profiler, Management
Studio, and Database Engine
Tuning Advisor

Overview of SQL Server Tools. .981

Using SQL Server Management Studio .987

Using SQL Server Profiler .1025

Using the Database Engine Tuning .1034

Summary .1039

In this chapter, we will examine the main tools you use on a daily basis as a SQL Server
2005 database administrator. SQL Server Managment Studio and SQL Server Profiler
are the most common tools that a DBA uses, so we will concentrate on these tools in
this chapter. We will look at how you perform common DBA tasks using SQL Server
Managment Studio and how to interpret the rich information embedded inside this
powerful tool. We will also examine how you can capture a trace of activity against your
SQL Server 2005 instance and use that information to iteratively tune your database
solutions.

Remember that SQL Server 2005 uses a cost-based optimizer, which means that you
should always base your performance tuning decisions on the actual usage patterns and
data contained within your production databases. To help you with this, Microsoft has
incorporated a powerful tuning utility called Database Engine Tuning Advisor, which we
will examine at the end of the chapter.

Overview of SQL Server Tools
Given the complexity of SQL Server 2005 and its various components, it is important
to understand the different tools available, their locations, and their uses. Although
we will concentrate on SQL Server Managment Studio and SQL Server Profiler, they
981

982 Part VII Performance Tuning and Troubleshooting
will not suffice for certain configuration and administrative tasks. Microsoft has
deliberately incorporated certain functionality into a set of separate, external tools
for security reasons.

Performance Tools
The following tools are located in the Performance Tools folder of the Microsoft SQL
Server 2005 folder. They are primarily used to analyze and performance tune your SQL
Server instances and related services. We will cover how to use these tools later in this
chapter.

■ Database Engine Tuning Advisor The Database Engine Tuning Advisor tool is
used to analyze the uses of patterns against your database solution and make per-
formance tuning recommendations.

■ SQL Server Profiler SQL Server Profiler is a powerful utility that allows you to cap-
ture the network traffic between the client applications and your SQL Server
instance.

Configuration Tools
The following tools are located in the Configuration Tools folder of the Microsoft SQL
Server 2005 folder. They are primarily used to configure your SQL Server instances and
related services, so you typically will not be using them on a daily basis.

■ Notification Services command prompt The Notification Services command
prompt is used to configure your Notification Services instances.

■ Reporting Services Configuration The Reporting Services Configuration tool is
used to configure your Reporting Services (SSRS) instance. The Reporting Services
Configuration tool allows you to control global settings such as the IIS configuration,
what database to use, and what e-mail server SSRS is going to use. Figure 30-1 shows
an SMTP gateway that has been configured for reporting services.

■ SQL Server Configuration Manager SQL Server Configuration Manager’s pri-
mary function is to allow you to control the individual services of the components
installed for your SQL Server instance. SQL Server Configuration Manager allows
you to control the security context and start mode of the individual services. It also
controls which protocols can be used to connect to your SQL Server instance and
what client protocols can be used. Another important feature of SQL Server Con-
figuration Manager is the ability to configure aliases to your SQL Server instances.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 983
Figure 30-2 shows a new SQL Server alias being created using SQL Server Config-
uration Manager.

Figure 30-1 Configuring an SMTP Gateway for SSRS using the Reporting Services
Configuration tool.

Figure 30-2 Creating an alias through SQL Server Configuration Manager tool.

984 Part VII Performance Tuning and Troubleshooting
Note SQL Server aliases can be a great way of abstracting your “SQL
Server layer” from your “infrastructure layer.” Removing dependencies on
server names or IP addresses allows you to change your infrastructure layer
with minimal impact on the client applications.

■ SQL Server Error and Usage Reporting SQL Server Error and Usage Reporting
tool is a simple dialog box that allows you to send information about serious errors
and the usage of SQL Server features to Microsoft. You can customize the error and
usage reports on a component level of the installed SQL Server instances by select-
ing the appropriate check boxes, as shown in Figure 30-3.

Figure 30-3 SQL Server Error and Usage Reporting tool.

■ SQL Server Surface Area Configuration SQL Server Surface Area Configuration
tool allows you to control the security surface area of local and remote instances
of SQL Server 2005. Use this tool to control which services, network protocols,
and SQL Server components are enabled. Figure 30-4 shows the CLR integration
being enabled for a SQL Server instance using the SQL Server Surface Area Con-
figuration tool.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 985
Figure 30-4 Enabling the CLR Integration using SQL Server Surface Area Configuration
tool.

External Tools
There are a number of useful tools that do not come with SQL Server 2005 that you might
want to take advantage of, depending on your requirements. Always ensure that you have
the latest version of the tools. These tools are all available at Microsoft download center
(http://www.microsoft.com/downloads).

Microsoft Security Baseline Analyzer
The Microsoft Security Baseline Analyzer (MBSA) tool is designed to ensure that your
SQL Server instance and Windows operating system environment have the latest patches
and have been configured securely. The MBSA can scan multiple computers on your net-
work utilising the Windows Server Update Services.

Note At the time of this book’s publication, Microsoft has not yet updated
this tool to work with SQL Server 2005. Nevertheless, you can still use this pow-
erful tool to check other security-related issues on your SQL Server 2005
instance.

Microsoft SQL Server Best Practices Analyzer
Microsoft SQL Server Best Practices Analyzer (BPA) is a database management tool
that lets you verify the implementation of common best practices. These best practices

986 Part VII Performance Tuning and Troubleshooting
typically relate to the usage and administration aspects of SQL Server databases and
ensure that your SQL Servers are managed and operated well.

Note At the time of this book’s publication, Microsoft has not yet updated this
tool to work with SQL Server 2005.

Microsoft SQL Server Management Pack for MOM 2005
SQL Server Management Pack for MOM 2005 enables you to monitor your SQL Server
2005 and SQL Server 2000 instances across the enterprise environment. It includes
enterprise-level capabilities to monitor resource availability and configuration, collect
performance data, and test default thresholds so that you can identify and manage issues
before they become critical. MOM 2005 is designed to increase the security, availability,
and performance of your SQL Server infrastructure.

Microsoft SQL Server 2005 Upgrade Advisor
SQL Server 2005 Upgrade Advisor tool is designed to help facilitate the upgrade of SQL
Server 7.0 and 2000 databases. It analyses your existing databases and SQL Server solu-
tion and makes the following recommendations:

■ Upgrade issues that will block an upgrade from being successful.

■ Upgrade issues that need to be fixed before the upgrade process.

■ Upgrade issues that need to be addressed after the upgrade process.

Make sure you understand the limitations of SQL Server 2005 Upgrade Advisor: it does
not analyze encrypted stored procedures, code in extended stored procedures, or source
code in languages other than Transact-SQL. Because it analyses only the code in your
database solutions, it does not detect any issues that you might have in client applica-
tions. Consequently, it is important to capture a trace of the traffic between your client
applications and the databases solution using SQL Server Profiler to ensure that you pick
up any additional issues that might arise during the upgrade process. Figure 30-5 shows
the output of SQL Server 2005 Upgrade Advisor.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 987
Figure 30-5 SQL Server 2005 Upgrade Advisor report.

Using SQL Server Management Studio
SQL Server Management Studio is an integrated utility you use to manage the database
engine, analysis services, integration services, reporting services, and SQL Server mobile.
It is the main tool you use as a DBA to manage your SQL Server instances on a daily basis.

It replaces the myriad of tools that were available in early versions of SQL Server. Watch
for future “add-ons” such as the Microsoft Visual Studio 2005 Team Edition for Database
Professionals, which will help develop databases in a managed project environment with
support for deployment, off-line development, refactoring, unit testing and versioning.

SQL Server Management Studio Environment
Since SQL Server Managment Studio environment is based on the Visual Studio IDE, it is
highly customisable and modular. You should become a familiar with the following com-
ponents of SQL Server Managment Studio:

■ Object Explorer Object Explorer is a hierarchical representation of the components
and database objects that make up your SQL Server 2005 instance. It offers a rich
visual environment and context-sensitive menus that allow you to perform your daily
tasks as a DBA. We will look at how to use Object Explorer in more detail shortly. If
it is not visible, you can use the F8 key as a shortcut to invoke Object Explorer.

988 Part VII Performance Tuning and Troubleshooting
■ Summary Reports Summary Reports gives you an overview of how your SQL
Server instance is currently performing. It can be used as a quick way of isolating
any performance problems. We will look at Summary Reports in more detail as
well. Use the F7 key as a short-cut to see Summary Reports.

■ Registered Servers The Registered Servers pane, shown in Figure 30-6, allows you
to register multiple SQL Server instances, reflecting all organizational hierarchy, so
that you can manage multiple SQL Servers from the single SQL Server Managment
Studio interface. Right-click within the Registered Servers pane to add new server
groups and SQL Server registrations. Use the Ctrl-Alt-G key short-cut to see Regis-
tered Servers.

Figure 30-6 Registered Servers window.

■ Template Explorer Template Explorer, shown in Figure 30-7, represents a rich
set of T-SQL templates that have been predefined by Microsoft for both the devel-
oper and a DBA. You can add your own folders and templates to represent com-
monly used T-SQL scripts. To use a template, you simply drag it from Template
Explorer to the query pane. Use the Ctrl-Alt-T key short-cut to see Template
Explorer.

■ Solution Explorer Solution Explorer, shown in Figure 30-8, allows you to build a
hierarchy of your SQL Server connections, T-SQL scripts, and other miscellaneous
files in a SQL Server scripts project. It's a great way of organizing scripts that you
would commonly use on a daily basis. You can incorporate other projects such as
Analysis Services Scripts and SQL Mobile Scripts into the one solution. Use
Ctrl+Alt+L shortcut to see the Solution Explorer.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 989
Figure 30-7 Template Explorer window.

Figure 30-8 Solution Explorer window.

990 Part VII Performance Tuning and Troubleshooting
Using Object Explorer
Object Explorer is a window in SQL Server Management Studio that allows you to
visually explore and manage all of the database objects and SQL Server components
that make up your SQL Server 2005 solution. The Databases folder contains your user
databases and allows you to administer and develop your databases solutions. The
Security folder allows you to configure global security objects such as logins. The
Management folder contains important information such as SQL Server logs and
Activity Monitor. The Server Objects, Replication, and Notification Services folders are
used to configure those specific SQL Server components. The Object Explorer is
shown in Figure 30-9.

Figure 30-9 Object Explorer window.

The Databases folder contains the user databases installed on your SQL Server instance.
System databases and database snapshots have their own respective folders. Object
Explorer is context-sensitive, so once you navigate to the object of interest, right-click it to
see what tasks can be performed and what properties are exposed. Figure 30-10 shows all
of the tasks that can be performed at the database level.

To see what objects exist within your database, simply expand the appropriate database’s
folders. For example, to see what tables make up the AdventureWorks database, expand
the databases folder, then the AdventureWorks database, and finally Tables. To see what
columns make up the [dbo].[GlobalEmailList] table, you further expand the dbo.Glo-
balEmailList folder and finally the Columns folder, as shown in Figure 30-11.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 991
Figure 30-10 Tasks that can be performed on databases.

Figure 30-11 Viewing a table’s columns in Object Explorer.

Having information about your databases objects so easily available inside SQL Server
Management Studio makes it easier to write T-SQL queries and develop various database

992 Part VII Performance Tuning and Troubleshooting
objects. Not only can you view information in Object Explorer, but you can also modify
objects, drag-and-drop objects into the Query pane, and even script the creation and
modification of database objects by right-clicking the folder or object of interest and nav-
igating through the context-sensitive menu. Figure 30-12 shows an example of this con-
text-sensitive menu. In this instance, an insert statement is being generated for the
[dbo].[GlobalEmailList] table.

Figure 30-12 Scripting an INSERT statement through the context-sensitive menu in
Object Explorer.

Using the Summary Report Pane
The Summary Report pane was a late addition to SQL Server 2005 in the beta cycle. How-
ever, it provides potentially critical information in an easily accessible and readable fashion.
As a DBA using SQL Server 2005, you should get used to looking at it first, before any other
utilities or commands, because it might help you easily identify any performance issue.

There are a number of different summary reports available in the Summary Report pane:

■ Server Dashboard The Server Dashboard report provides overview data about
SQL Server instance, such as configuration and activity details. It also provides
summary information of CPU usage and logical I/O performed.

■ Configuration Changes History The Configuration Changes History report pro-
vides a history of all sp_configure and trace flag changes recorded by the default
trace.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 993
■ Schema Changes History The Schema Changes History report provides a history
of all committed DDL statements recorded by the default trace.

■ Scheduler Health The Scheduler Health report provides detailed activity data on
each Scheduler being used by SQL Server 2005.

■ Memory Consumption The Memory Consumption report provides detailed
information on the consumption of memory by the various components of SQL
Server 2005, as well as historical changes of the memory footprint. It also shows
some important metrics, such as page life expectancy and the memory granted
both outstanding and pending.

■ Activity There are several different Activity reports that show information about
the various connections, sessions, cursors, and blocking transactions against the
SQL Server 2005 instance. The All Blocking Transactions Activity report allows you
to quickly identify any contention inside your SQL Server instance

■ Top Transactions There are three different reports that report information about
transactions, based on either their age, blocked transactions count, or locks count.

■ Performance There are several different performance reports that report batch exe-
cution statistics, object execution statistics, and top queries based on CPU time or I/O.

■ Service Broker Statistics The Service Broker Statistics report basic information on
Service Broker activity, based primarily on performance object counters.

■ Transaction Log Shipping Status The Transaction Log Shipping Status report
assures the status of your log shipping configuration, depending on whether your
SQL Server instance is a primary, secondary, or monitor server.

To view these summary reports, follow these steps:

1. Click Start, then click All Programs, and then click Microsoft SQL Server 2005, and
start SQL Server Management Studio. The Connect To Server dialog box should
appear, as shown in Figure 30-13.

Figure 30-13 Connect To Server dialog box.

994 Part VII Performance Tuning and Troubleshooting
2. Type in your server name and authentication details, and then click Connect. Click
the Report button that is available in the Summary pane. This displays a list of all
available summary reports, as shown in Figure 30-14.

Figure 30-14 Summary reports available in Object Explorer.

3. Choose the appropriate report by clicking it in the drop-down list. Figure 30-15
shows the Memory Consumption report.

Figure 30-15 Memory Consumption report.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 995
Don’t forget that these summary reports represent a snapshot at a particular time. To
update the summary report with the latest information, click the Refresh button located
in the toolbar.

Analysing SQL Server Logs
Both the SQL Server 2005 database engine and SQL Server Agent have specific log files
to which they write information about events, and importantly, error messages. When
monitoring or troubleshooting your SQL Server instance, it is important to go to the
correct log. It is common for DBAs to forget to examine SQL Server Agent Error Log
when troubleshooting an administration problem. Figure 30-16 shows the location of
both the SQL Server logs and the SQL Server Agent Error Logs in SQL Server Manage-
ment Studio.

Figure 30-16 SQL Server Logs and SQL Server Agent Errors Logs.

SQL Server 2005 creates a new error log each time the instance is started. By default, the
error log is located at %Program Files%\Microsoft SQL Server\MSSQL.n\MSSQL\ERROR-
LOG, and SQL Server 2005 will archive six error logs before it starts to overwrite them. To
configure the SQL Server Error Logs, right-click the SQL Server Logs folder located in the
Management folder and click Configure. Figure 30-17 shows the various configurations
options available for configuring the SQL Server Log.

996 Part VII Performance Tuning and Troubleshooting
Note Because SQL Server 2005 creates a new error log only when the instance
is started, the log file can grow to a very large size. This can be problematic when
you need to read the error log and it takes a long time to load due to its size. You
can use the sp_cycle_errorlog system stored procedure to cycle the error log files
without having to restart the SQL Server instance. This stored procedure is typi-
cally run through a SQL Server Agent job that is scheduled to run periodically.

Figure 30-17 Configuring the SQL Server Log.

SQL Server Agent writes to its own separate log, again starting a new instance whenever
the service starts. To configure the location, the amount of information written, and the
location of the SQL Server Agent Error Log, right-click the Error Logs folder located in
the SQL Server Agent folder and click Configure. Figure 30-18 shows the various config-
urations options available for configuring the SQL Server Agent Error Log.

By default, execution trace messages are not written to the SQL Server Agent Error Log.
This is by design, as it can quite quickly fill up the SQL Server Agent Error Log. However,
to troubleshoot a particular problem, you might need the additional information that the
execution trace messages will provide, in which case it makes sense to temporarily turn
on this feature. To configure SQL Server Agent to include execution trace messages in its
error log, right-click SQL Server Agent in Object Explorer, and select the Properies
option. Click on Include Execution Trace Messages check box on the General page, as
shown in Figure 30-19.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 997
Figure 30-18 Configuring the SQL Server Agent Error Log.

Figure 30-19 Including execution trace messages dialog box.

When troubleshooting a SQL Server issue, the DBA typically needs to look at a number
of different log files to help him or her determine the cause of the problem. This typically

998 Part VII Performance Tuning and Troubleshooting
involves looking at the SQL Server Logs and potentially the Windows NT Event logs for
correlated information, which can be difficult. SQL Server Management Studio, however,
has an integrated Log File Viewer that allows you to examine the Database Mail, SQL
Server Agent, SQL Server, and Windows NT Event Logs simultaneously. Additionally, the
Log File Viewer provides some basic filtering, searching, and exporting capabilities.

To view the SQL Server and Windows logs, follow these steps:

1. Start SQL Server Management Studio and connect to your SQL Server instance.
Navigate to the SQL Server Logs folder, which is located under the Management
folder. To open the Log File Viewer utility, right-click the SQL Server Logs folder,
then choose View, and then SQL Server and Windows Logs from the context-
sensitive menu. This launches the Log File Viewer utility, as seen in Figure 30-20.

Figure 30-20 Log File Viewer.

2. By default, the Log File Viewer displays the current SQL Server Log and the three
Windows NT Event Logs. You can choose a different combination of logs by check-
ing the appropriate check boxes in the Select Logs pane located on the left-hand
side of the Log File Viewer.

3. The log, as expected, contains a lot of detailed information. You can search for spe-
cific log entries by clicking the Search button and using the Search dialog box, as
shown in Figure 30-21.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 999
Figure 30-21 Log File Viewer Search dialog box.

4. You also have some basic filtering capabilities. You can filter on the user, computer,
start and end date, message, and source. To configure the filter settings, click the
Filter button, located in the top toolbar, and use the Filter Settings dialog box, as
shown in Figure 30-22.

Figure 30-22 Log File Viewer Filter Settings dialog box.

The Log File Viewer also has the capability of exporting this rich information to a
log file. This can prove useful for archiving important events or sending log events
to remote DBAs or support staff for analysis.

Viewing Current Activity
SQL Server Management Studio environment also allows the DBA to readily see what
processes are currently running against the SQL Server instance, which can be useful
when database users are complaining about poor query performance or unresponsive cli-
ent applications.

1000 Part VII Performance Tuning and Troubleshooting
There are a number of different techniques you can use to see what is happening on your
SQL Server instance. The technique that you use depends on the level of information that
you are after, your familiarity with the tool, and the overhead that it will have on a poten-
tially stressed SQL Server instance.

Don't forget that contention may be the cause of perceived poor performance. When
users are complaining about slow response times, it is not due to a lack of server
resources such as memory or CPU resources, but other concurrent active transactions
that are blocking the complainants. It is up to you to identify whether you have a conten-
tion problem or a true performance problem. If it is a contention problem, there are a
number of strategies that your developers can employ to reduce the amount of locking
contention experienced in your SQL Server solution, including optimizing the T-SQL
statements, improving indexing strategies, or investigating the viability of read-commit-
ted snapshot isolation.

Using the Activity Monitor
The Activity Monitor tool allows you to view what processes are currently running
within your SQL Server instance, what database objects they are accessing, and what
kind of locks are being either acquired or released. To view this information, follow
these steps:

1. Start SQL Server Management Studio and connect to your SQL Server instance.
Expand the Management folder and right-click the Activity Monitor icon. This pre-
sents you with different ways of viewing which processes are currently running
against your SQL Server databases.

2. Click View Processes to launch the Activity Monitor, as shown in Figure 30-23. The
Activity Monitor shows the system process IDs (SPID) of all the current user con-
nections and which database they are using; their status (background, dormant,
pending, rollback, runnable, running, sleeping, spinloop, or suspended); the host
name; which application and command each user connection is running; the
amount of time the connection has been waiting for a resource to become available;
metrics about CPU, I/O, and memory usage; any transactions that are open; and,
importantly, whether the user connection is being blocked or blocking someone
else. Don't forget that the activity monitor represents a snapshot, so to get the latest
information you have to click the Refresh button located on the top toolbar.

Note In SQL Server 2005, you can change the refresh rate in Activity
Monitor so that it is automatically refreshed. This can be done by clicking
the Review Refresh Settings option in the Status pane, located on the left-
hand side of the Activity Monitor.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1001
Figure 30-23 Activity Monitor.

3. To see the actual T-SQL batch that is being run by a user connection, double-click
the process within Activity Monitor. The Process Details dialog box, shown in Fig-
ure 30-24, shows you the last T-SQL command batch that was executed by the SPID
and allows you to kill the process. Note that the details of the Process Details dialog
box will be different for you, depending on what T-SQL commands your users have
executed.

Figure 30-24 Process Details dialog box.

1002 Part VII Performance Tuning and Troubleshooting
4. Select the Locks by Process page to see lock information for a particular SPID.
Choose the appropriate SPID from the Selected Process drop-down list, as shown in
Figure 30-25. The Activity Monitor shows locking information specific for this
SPID, including the lock type, the lock mode, and the status of the lock.

Figure 30-25 Activity Monitor—Locks by Process.

The following are the different types of locks available in SQL Server 2005:

❑ _TOTAL Information for all locks

❑ ALLOCATION_ UNIT Allocation unit

❑ APPLICATION Application-specific resource

❑ DATABASE The entire database

❑ EXTENT Eight contiguous pages (64 KB).

❑ FILE Database file

❑ HOBT Heap or B-tree; an allocation unit used to describe a heap or B-tree

❑ KEY Row lock within an index used to protect key ranges in serializable
transactions

❑ METADATA Catalog information about an object

❑ OBJECT Any database object (sys.all_objects)

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1003
❑ PAGE Data or index page (8 KB)

❑ RID Row identifier, that represents a single row within a table

❑ TABLE Entire table, including the indexes

When examining page locks, you will see that the Description column has two inte-
gers separated by a colon that denote the file number and page number. Likewise,
when working with RID locks, you will see three integers separated by colons that
indicate the file number, page number, and slot number.

The following are the different types of request modes available in SQL Server 2005:

❑ BU Bulk-Update lock

❑ I Intent lock

❑ IS Intent-Shared lock

❑ IU Intent-Update lock

❑ IX Intent-Exclusive lock

❑ RangeS_S Shared Range-Shared resource lock

❑ RangeS_U Shared Range-Update resource lock

❑ RangeI_N Insert Range-Null resource lock

❑ RangeI_S Insert Range-Shared resource lock

❑ RangeI_U Insert Range-Update resource lock

❑ RangeI_X Insert Range-Exclusive resource lock

❑ RangeX_S Exclusive Range-Shared resource lock

❑ RangeX_U Exclusive Range-Update resource lock

❑ RangeX_X Exclusive Range-Exclusive resource lock

❑ S Shared lock

❑ Sch-M Schema-Modification lock

❑ Sch-S Schema-Stability lock

❑ SIU Shared Intent-Update lock

❑ SIX Shared Intent-Exclusive lock

❑ U Update lock

❑ UIX Update Intent-Exclusive lock

❑ X Exclusive lock

1004 Part VII Performance Tuning and Troubleshooting
The status of a lock request in SQL Server 2005 can be one of the following:

❑ GRANT. Lock was granted to process.

❑ WAIT. Process is being blocked by another process.

❑ CNVT. Lock is being converted to another type of lock.

SQL Server 2005 has the following different types of entities that can request a lock
from the lock manager:

❑ CURSOR. A cursor

❑ EXCLUSIVE_TRANSACTION_WORKSPACE. Exclusive part of the transaction
workspace

❑ TRANSACTION. A transaction

❑ SESSION. A user session

❑ SHARED_TRANSACTION_WORKSPACE. Shared part of the transaction work-
space

5. Select the Locks by Object page to see lock information for a specifc database
object. Choose the appropriate object from the Selected Object drop-down list, as
shown in Figure 30-26. The Activity Monitor shows the same locking information
that we saw previously but from a different perspective.

Figure 30-26 Activity Monitor—Locks by Object page.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1005
More Info For more information on the different lock types and their
request modes, search for the “Activity Monitor (Locks by Object Page)” and
“Lock Modes” topics in SQL Server 2005 Books Online.

Using System Stored Procedures
You can also view information about processes that are running on your SQL Server
instance by using a number of stored procedures that have always been available with
SQL Server:

■ sp_who The sp_who system stored procedure reports basic information very simi-
lar to what the Activity Monitor shows.

■ sp_who2 The undocumented sp_who2 system stored procedure reports richer
information compared to the sp_who system stored procedure.

■ sp_lock The sp_lock system stored procedure returns basic information about
locks.

Important The sp_lock system stored procdure is being deprecated in a
future release of SQL Server, so you should try to avoid using it and use the
sys.dm_tran_locks Dynamic Management View instead.

The sp_who system stored procedure generally executes very quickly because it returns
such basic information. It represents a quick way of finding out whether a particular
process is being blocked by another process. If users are complaining about slow trans-
actions or unresponsive queries, try executing the following command in a query win-
dow in SQL Server Management Studio to determine whether their processes are being
blocked by other transactions:

EXEC sp_who ACTIVE ;

GO

The ACTIVE parameter excludes sessions that are waiting for the next command from a
user connection. Figure 30-27 shows sample results of this sp_who system stored proce-
dure. Look for a SPID value in the [blk] column, which would indicate that that process
is being blocked by that SPID.

Using the sys.dm_tran_locks DMV
Another technique that you can use to view more detailed information about locks in
SQL Server 2005 is to query the new sys.dm_tran_locks Dynamic Management View by
executing the following T-SQL statement:

SELECT * FROM sys.dm_tran_locks;

1006 Part VII Performance Tuning and Troubleshooting
Figure 30-27 Output of the sp_who system stored procedure.

A sample resultset from running this statement in SQL Server Management Studio is
shown in Figure 30-28. The output is very similar to what we have shown above,
although there will be some more low-level locking information.

Figure 30-28 Output of the sys.dm_tran_locks Dynamic Management View.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1007
We will cover Dynamic Management Views in more detail in Chapter 31, “Dynamic Man-
agement Views.”

Generating SQL Server Agent Alerts
It is the responsibility of a DBA to minimise the downtime of a SQL Server 2005 solution
and provide a certain level of performance. Consequently, you will like to be notified
when certain important events occur so that you can take corrective action or, better still,
get SQL Server 2005 to automatically take the corrective action. SQL Server Agent and
the alerts architecture allow you to create such a proactive SQL Server solution.

SQL Server Agent has the ability to generate alerts based on a number of different criteria
within your database solution. Alerts are basically a response to an event that you iden-
tify, such as when a database’s transaction log is full or, better still, over a certain thresh-
old, such as 90 percent full. The event depends on the type of SQL Server Agent alert.
SQL Server 2005 supports the following types of SQL Server Agent alerts:

■ SQL Server Event Alert SQL Server Event Alerts are based on the SQL Server
error messages that are generated by SQL Server 2005 Database Engine. The error
messages are stored in the sys.sysmessages system catalog. You need to be familiar
with the various error messages that can be generated by SQL Server, their severity,
and message text so you can define alerts for them. Database developers can add
their own user-defined messages in using the sp_addmessage system stored proce-
dure and generate them using the RAISERROR T-SQL statement.

■ SQL Server Performance Condition Alert SQL Server Performance Condition
Alerts are based on SQL Server Performance Monitor Object Counters, a number of
which were recovered in Chapter 29, “Database System Tuning.”

■ WMI Event Alert Windows Management Instrumentation (WMI) event alerts are
based on particular SQL Server-related events occuring that are being monitored by
the WMI provider for server events, which SQL Server Agent monitors.

Note The WMI layer is Microsoft’s Web-Based Enterprise Management
(WBEM)-compliant implementation of the Common Information Model
(CIM) initiative developed by the Distributed ManagementTask Force
(DMTF). For information on the WMI, go to http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dnwmi/html/wmioverview.asp.

The WMI provider for server events manages a WMI namespace for each instance of
SQL Server 2005. The namespace has the \.\root\Microsoft\SqlServer\Server-
Events\instance_name format, with the default SQL Server 2005 instance using the
MSSQLSERVER instance name. There are two categories of events that make up the

1008 Part VII Performance Tuning and Troubleshooting
programming model for the WMI provider for server events: the DDL and SQL trace
events. The following list represents the set of DDL events:

DDL_DATABASE_LEVEL_EVENTS

DDL_ASSEMBLY_EVENTS

■ CREATE_ASSEMBLY, ALTER_ASSEMBLY, DROP_ASSEMBLY

DDL_DATABASE_SECURITY_EVENTS

DDL_APPLICATION_ROLE_EVENTS

■ CREATE_APPLICATION_ROLE, ALTER_APPLICATION_ROLE,
DROP_APPLICATION_ROLE

DDL_AUTHORIZATION_DATABASE_EVENTS

■ ALTER_AUTHORIZATION_DATABASE

DDL_CERTIFICATE_EVENTS

■ CREATE_CERTIFICATE, ALTER_CERTIFICATE, DROP_CERTIFICATE

DDL_GDR_DATABASE_EVENTS

■ GRANT_DATABASE, DENY_DATABASE, REVOKE_DATABASE

DDL_ROLE_EVENTS

■ CREATE_ROLE, ALTER_ROLE, DROP_ROLE

DDL_SCHEMA_EVENTS

■ CREATE_SCHEMA, ALTER_SCHEMA, DROP_SCHEMA

DDL_USER_EVENTS

■ CREATE_USER, DROP_USER, ALTER_USER

DDL_EVENT_NOTIFICATION_EVENTS

■ CREATE_EVENT_NOTIFICATION, DROP_EVENT_NOTIFICATION

DDL_FUNCTION_EVENTS

■ CREATE_FUNCTION, ALTER_FUNCTION, DROP_FUNCTION

DDL_PARTITION_EVENTS

DDL_PARTITION_FUNCTION_EVENTS

■ CREATE_PARTITION_FUNCTION,
ALTER_PARTITION_FUNCTION, DROP_PARTITION_FUNCTION

DDL_PARTITION_SCHEME_EVENTS

■ CREATE_PARTITION_SCHEME, ALTER_PARTITION_SCHEME,
DROP_PARTITION_SCHEME

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1009
DDL_PROCEDURE_EVENTS

■ CREATE_PROCEDURE, DROP_PROCEDURE, ALTER_PROCEDURE

DDL_SSB_EVENTS

DDL_CONTRACT_EVENTS

■ CREATE_CONTRACT, DROP_CONTRACT

 DDL_MESSAGE_TYPE_EVENTS

■ CREATE_MSGTYPE, ALTER_MSGTYPE, DROP_MSGTYPE

DDL_QUEUE_EVENTS

■ CREATE_QUEUE, ALTER_QUEUE, DROP_QUEUE

DDL_REMOTE_SERVICE_BINDING_EVENTS

■ CREATE_REMOTE_SERVICE_BINDING,
ALTER_REMOTE_SERVICE_BINDING,
DROP_REMOTE_SERVICE_BINDING

DDL_ROUTE_EVENTS

■ CREATE_ROUTE, DROP_ROUTE, ALTER_ROUTE

 DDL_SERVICE_EVENTS

■ CREATE_SERVICE, DROP_SERVICE, ALTER_SERVICE

DDL_SYNONYM_EVENTS

■ CREATE_SYNONYM, DROP_SYNONYM

 DDL_TABLE_VIEW_EVENTS

DDL_INDEX_EVENTS

■ CREATE_INDEX, DROP_INDEX, ALTER_INDEX, CREATE_ XML_INDEX

DDL_STATISTICS_EVENTS

■ CREATE_STATISTICS, UPDATE_STATISTICS, DROP_STATISTICS

DDL_TABLE_EVENTS

■ CREATE_TABLE, ALTER_TABLE, DROP_TABLE

DDL_VIEW_EVENTS

■ CREATE_VIEW, ALTER_VIEW, DROP_VIEW

DDL_TRIGGER_EVENTS

■ CREATE_TRIGGER, DROP_TRIGGER, ALTER_TRIGGER

DDL_TYPE_EVENTS

■ CREATE_TYPE, DROP_TYPE

1010 Part VII Performance Tuning and Troubleshooting
DDL_XML_SCHEMA_COLLECTION_EVENTS

■ CREATE_XML_SCHEMA_COLLECTION,
A LT E R _ X M L _ SC H E M A _ CO L L E C T I O N ,
DROP_XML_SCHEMA_COLLECTION

DDL_SERVER_LEVEL_EVENTS

■ CREATE_DATABASE, ALTER_DATABASE, DROP_DATABASE

DDL_ENDPOINT_EVENTS

■ CREATE_ENDPOINT, ALTER_ENDPOINT, DROP_ENDPOINT

DDL_SERVER_SECURITY_EVENTS

■ ADD_ROLE_MEMBER, ADD_SERVER_ROLE_MEMBER,
DROP_ROLE_MEMBER, DROP_SERVER_ROLE_MEMBER

DDL_AUTHORIZATION_SERVER_EVENTS

■ ALTER_AUTHORIZATION_ SERVER

DDL_GDR_SERVER_EVENTS

■ GRANT_SERVER, DENY_SERVER, REVOKE_SERVER

DDL_LOGIN_EVENTS

■ CREATE_LOGIN, ALTER_LOGIN, DROP_LOGIN

The following list represents the set of SQL trace events:

TRC_CLR

■ ASSEMBLY_LOAD

TRC_DATABASE

■ DATA_FILE_AUTO_GROW, DATA_FILE_AUTO_SHRINK,
DATABASE_MIRRORING_STATE_CHANGE, LOG_FILE_AUTO_GROW,
LOG_FILE_AUTO_SHRINK

TRC_DEPRECATION

■ DEPRECATION_ANNOUNCEMENT, DEPRECATION_FINAL_SUPPORT

TRC_ERRORS_AND_WARNINGS

■ BLOCKED_PROCESS_REPORT, ERRORLOG, EVENTLOG, EXCEPTION,
EXCHANGE_SPILL_EVENT, EXECUTION_WARNINGS, HASH_WARNING,
MISSING_COLUMN_STATISTICS, MISSING_JOIN_PREDICATE,
SORT_WARNINGS, USER_ERROR_MESSAGE

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1011
TRC_FULL_TEXT

■ FT_CRAWL_ABORTED, FT_CRAWL_STARTED, FT_CRAWL_STOPPED

TRC_LOCKS

■ DEADLOCK_GRAPH, LOCK_DEADLOCK, LOCK_DEADLOCK_CHAIN,
LOCK_ESCALATION

TRC_OBJECTS

■ OBJECT_ALTERED, OBJECT_CREATED, OBJECT_DELETED

TRC_OLEDB

■ OLEDB_CALL_EVENT, OLEDB_DATAREAD_EVENT, OLEDB_ERRORS,
OLEDB_PROVIDER_INFORMATION, OLEDB_QUERYINTERFACE_EVENT

TRC_PERFORMANCE

■ SHOWPLAN_ALL_FOR_QUERY_COMPILE, SHOWPLAN_XML,
SHOWPLAN_XML_FOR_QUERY_COMPILE,
SHOWPLAN_XML_STATISTICS_PROFILE

TRC_QUERY_NOTIFICATIONS

■ QN_DYNAMICS, QN_PARAMETER_TABLE, QN_SUBSCRIPTION,
QN_TEMPLATE

TRC_SECURITY_AUDIT

■ AUDIT_ADD_DB_USER_EVENT, AUDIT_ADDLOGIN_EVENT,
AUDIT_ADD_LOGIN_TO_SERVER_ROLE_EVENT,
AUDIT_ADD_MEMBER_TO_DB_ROLE_EVENT,
AUDIT_ADD_ROLE_EVENT,
 AUDIT_APP_ROLE_CHANGE_PASSWORD_EVENT,
AUDIT_BACKUP_RESTORE_EVENT, AUDIT_CHANGE_AUDIT_EVENT,
AUDIT_CHANGE_DATABASE_OWNER,
AUDIT_DATABASE_MANAGEMENT_EVENT,
AUDIT_DATABASE_OBJECT_ACCESS_EVENT,
AUDIT_DATABASE_OBJECT_GDR_EVENT,
AUDIT_DATABASE_OBJECT_MANAGEMENT_EVENT,
AUDIT_DATABASE_OBJECT_TAKE_OWNERSHIP_EVENT,
AUDIT_DATABASE_OPERATION_EVENT,
AUDIT_DATABASE_PRINCIPAL_IMPERSONATION_EVENT,
AUDIT_DATABASE_PRINCIPAL_MANAGEMENT_EVENT

1012 Part VII Performance Tuning and Troubleshooting
AUDIT_DATABASE_SCOPE_GDR_EVENT, AUDIT_DBCC_EVENT,
AUDIT_LOGIN, AUDIT_LOGIN_CHANGE_PASSWORD_EVENT,
AUDIT_LOGIN_CHANGE_PROPERTY_EVENT, AUDIT_LOGIN_FAILED,
AUDIT_LOGIN_GDR_EVENT, AUDIT_LOGOUT,
AUDIT_SCHEMA_OBJECT_ACCESS_EVENT,
AUDIT__SCHEMA_OBJECT_GDR_EVENT,
AUDIT_SCHEMA_OBJECT_MANAGEMENT_EVENT,
AUDIT_SCHEMA_OBJECT_TAKE_OWNERSHIP_EVENT,
AUDIT_SERVER_ALTER_TRACE_EVENT,
AUDIT_SERVER_OBJECT_GDR_EVENT,
AUDIT_SERVER_OBJECT_MANAGEMENT_EVENT ,
AUDIT_SERVER_OBJECT_TAKE_OWNERSHIP_EVENT,
AUDIT_SERVER_OPERATION_EVENT,
AUDIT_SERVER_PRINCIPAL_IMPERSONATION_EVENT,
AUDIT_SERVER_PRINCIPAL_MANAGEMENT_EVENT,
AUDIT_SERVER_SCOPE_GDR_EVENT

TRC_SERVER

■ MOUNT_TAPE, SERVER_MEMORY_CHANGE, TRACE_FILE_CLOSE

TRC_STORED_PROCEDURES

■ SP_CACHEINSERT, SP_CACHEMISS, SP_ CACHEREMOVE, SP_RECOMPILE

TRC_TSQL

■ SQL_STMTRECOMPILE, XQUERY_STATIC_TYPE

TRC_USER_CONFIGURABLE

■ USERCONFIGURABLE_0, USERCONFIGURABLE_1, USERCONFIGURABLE_2,
USERCONFIGURABLE_3, USERCONFIGURABLE_4, USERCONFIGURABLE_5,
USERCONFIGURABLE_6, USERCONFIGURABLE_7, USERCONFIGURABLE_8,
USERCONFIGURABLE_9

More Info Notice you have 10 user-settable SQL trace events that you can
customize for your purposes. For more information on the how to implement
there user-settable objects search on the topic “SQL Server, User Settable Object”
topic in SQL Server 2005 Books Online.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1013
To define a SQL Server Agent Alert, follow these steps:

1. Start SQL Server Management Studio and connect to your SQL Server instance.
Expand the SQL Server Agent folder in Object Explorer, right-click the Alerts
folder, and choose the New Alert option. The New Alert window appears, as shown
in Figure 30-29. By default, it shows a SQL Server event alert. Give the new alert a
unique name.

Figure 30-29 New Alert window.

2. As discussed above, SQL Server Agent supports three different types of alerts that
can be configured on the General page. To generate a SQL Server event alert, select
the database from the Database Name drop-down list against which the alert will
fire. Select the criteria for the alert based on the error number, severity level, or par-
ticular string in the message text. Figure 30-30 shows an example of a SQL Server
event alert that fires whenever the AdventureWorks database’s transaction log is full.
(An error number of 9002 is generated.)

Alternatively, to generate a SQL Server performance condition alert, change the
alert type to SQL Server performance condition alert. The General page should now
allow you to type in the performance object, its counter, the particular instance, and
the threshold of value. Figure 30-31 shows an example of a SQL Server perfor-
mance condition alert that will fire whenever the AdventureWorks database’s trans-
action log rises above 90 percent full.

1014 Part VII Performance Tuning and Troubleshooting
Figure 30-30 SQL Server Event Alert based on Transaction Log Full error message.

Figure 30-31 SQL Server Performance Condition Alert based on Transaction Log object
counter rising above 90 percent threshold.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1015
Alternatively, to generate a WMI event alert, change the alert type to WMI event
alert. The General page should allows you to change the namespace to the appro-
priate SQL Server instance and the WQL query that will poll the WMI interface.
Figure 30-32 shows an example of a WMI event alert that fires whenever there is a
deadlock within the AdventureWorks database.

Figure 30-32 WMI Alert based on deadlock event.

Note The WMI Query Language (WQL) is a simple language based on
SQL that is used to query the WMI layer of the Windows operating system.

3. Once you have defined the appropriate SQL Server Agent alert, you must configure
the course of action SQL Server Agent should take. Click on the Response page, as
shown in Figure 30-33. To execute a job whenever the alert fires, select the Execute
Job check box and choose an existing job or define a new job. To notify someone
whenever the alert fires, click the Notify Operators check box and select the appro-
priate operators.

4. To define a new operator, click the New Operator button. The New Operator win-
dow, shown in Figure 30-34, appears. Configure the operator’s notification options
at the details and click the OK button.

1016 Part VII Performance Tuning and Troubleshooting
Figure 30-33 New Alert—Response page.

Figure 30-34 The New Operator window.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1017
5. Once you have defined SQL Server Agent alert’s response, click the Response page.
The Options page appears, as shown in Figure 30-35. Configure whether you want
the alert error message in the operator's notification, any additional message text,
and the delay between responses.

Figure 30-35 New Alert—Options page.

Note Note that you can configure the Delay Between Responses setting
to an appropriate level, depending on either functional requirements or
technical constraints, so that it does not overload SQL Server Agent alert
engine. This can be particularly useful for alerts that will potentially fire rap-
idly in a short period of time. As this setting value can be very subjective,
most DBAs leave the setting with the default value unless SQL Server Agent
fires too many alerts for a given condition in a give space of time.

Executing T-SQL Statements
SQL Server Managment Studio, supplied with SQL Server 2005, has replaced Query Ana-
lyzer as the tool to write T-SQL queries and develop database objects. It provides a rich
environment for debugging, analyzing, and optimizing T-SQL code. To use SQL Server
Managment Studio to execute T-SQL statements, follow these steps:

1. Start SQL Server Management Studio and connect to your SQL Server instance.
Make sure the correct server is highlighted in Object Explorer and click the New

1018 Part VII Performance Tuning and Troubleshooting
Query button on the top toolbar, or select the Query with Current Connection
menu item from the File menu. A blank query pane should appear. In the database
drop-down list at the top of the toolbar, select the database in which you want to
run your T-SQL statements.

2. Type in the T-SQL script you want to execute. Notice that SQL Server Managment
Studio color-codes the T-SQL statements for you. You can check the syntax of your
T-SQL script by clicking the Parse button (the blue tick mark) on the toolbar. To
run your T-SQL script, click the Execute button (red exclamation mark followed by
Execute) or press F5 (Alt-x also works). When executing your T-SQL script, you can
direct the Results to either text, a grid, or a file. This is done by choosing either the
Results to Text (Ctrl-T shortcut), Results to Grid (Ctrl-D shortcut), or Results to File
(Ctrl+Shift+F shortcut) button on the toolbar. Figure 30-36 shows the Results of a
T-SQL query output to text.

3. You can save the resultset by right-clicking anywhere in the Results pane and
choosing the Save Results As option. The type of file depends on the Results pane
type.

Note If you have executed your T-SQL query to a grid, you can also
highlight cells of interest, copy them, and paste them into Microsoft Excel.

Figure 30-36 An executed T-SQL statement.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1019
If you are unfamiliar or new to the T-SQL language, you can take advantage of the graph-
ical Query Designer tool in SQL Server Managment Studio to build your T-SQL query
graphically. To use the Query Designer, follow these steps:

1. Start SQL Server Management Studio and connect to your SQL Server instance.
Navigate to the database and click on it in Object Explorer. Click the New Query
button on the top toolbar, or select the Query with Current Connection menu item
from the File menu. Right click on the Query pane in SQL Server Managment Stu-
dio and select the Design Query In Editor option. The Query Designer window
appears with the Add Table dialog box to get you started. Figure 30-37 shows an
example of the Add Table dialog box for the AdventureWorks database.

Figure 30-37 Add Table dialog box.

2. Add the tables, views, functions, and synonyms that your T-SQL query will be
accessing through the Add button. Click the Close button when you're finished.
The Query Designer should automatically link the tables together if foreign key
constraints have been defined between the tables. You can make the window larger
and resize the panes to fit the tables and get more details and select items graphi-
cally. You can link a tables together by dragging a field from the parent table to the
child table. You can change the type of a join that your query will use by right click-
ing the links between the tables. Figure 30-38 shows an example of a query within
the AdventureWorks database accessing the [HumanResources].[Employee],
[HumanResources].[EmployeeAddress], [Person].[Address], [Person].[Contact] and
[Person].[StateProvince] tables.

3. Select the fields that your query will use by checking the appropriate check boxes.
The query designer automatically starts to construct the query for you in the bot-
tom pane. Figure 30-39 shows an example based on the tables chosen in the previ-
ous step.

1020 Part VII Performance Tuning and Troubleshooting
Figure 30-38 Query Designer windows with tables.

Figure 30-39 Selecting columns in Query Designer window.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1021
4. You can also type in column names or expressions into the Column column. To
order the results, modify the Sort Type and Sort Order columns. To restrict the
records to be returned, type in a value or expression into the Filter and subsequent
Or columns. Sometimes, it is easier to modify the T-SQL statement directly in the
bottom pane. Figure 30-40 shows an example of a completed query against the
AdventureWorks database.

5. Once you have completed your T-SQL statement, click the OK button to return to
SQL Server Managment Studio environment.

Figure 30-40 Completed query in Query Designer window.

Viewing Execution Plans
SQL Server Management Studio environment has the ability to display the execution
plan that SQL Server 2005’s query optimizer chose when executing a particular T-SQL
statement. This feature can help you determine whether your T-SQL statements are exe-
cuting efficiently or whether corrective action is necessary. This typically involves either

1022 Part VII Performance Tuning and Troubleshooting
rewriting the query or redesigning your indexing strategy. In certain cases, however, you
will have to resort to overriding the optimizer through optimizer hints. (Make sure you
always document the reasons for overriding the optimizer for future reference.)

Note The execution plan describes how the query optimizer executed a T-SQL
statement within a batch. The plan shows the different types of operations that
needed to be performed, the order in which they were performed, and the data
access method used to retrieve data from the tables (index scan, index seek, or
table scan). It shows which steps consumed the most resources and/or time
within both the T-SQL statement and batch. Watch out for expensive operations
such as table scans and hash joins.

SQL Server Managment Studio has the ability to display both the estimated execution
plan and the actual execution plan. With the estimated execution plan, your T-SQL script
is only parsed and an execution plan estimated based on the best efforts of SQL Server
Managment Studio. The actual execution plan, on the other hand, can be generated only
when your T-SQL script is actually executed. Be careful of the estimated execution plan
because SQL Server does not guarantee that it will be the same as the actual execution
plan at runtime. Developers typically use the estimated execution plan as an indication of
how their T-SQL query is going to perform without consuming the resources of the SQL
Server instance, which could have a dramatic impact on performance in a production
environment.

To use SQL Server Managment Studio to view the actual execution plan of a T-SQL state-
ment, follow these steps:

1. Start SQL Server Management Studio and connect to your SQL Server instance.
Navigate to the database and click on it in Object Explorer. Click the New Query
button on the top toolbar. Type the T-SQL statement you are interested in analyz-
ing, click the Include Actual Execution Plan button (or press Ctl-M) on the top tool-
bar, and execute your T-SQL script. An execution plan, similar to that shown in
Figure 30-41, should be seen in bottom pane of SQL Server Managment Studio.

Note There is a lot of rich information located in the graphical execution
plan that can be easily overlooked. For example, the width of the arrows
linking the various nodes together indicates the amount of the data that
was passed from one operation to the other. Holding the mouse over one
of these arrows actually shows you the actual number of rows generated
amongst other information.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1023
Figure 30-41 Examining the query execution plan.

2. To get more information about each individual step in the execution plan, hover
your mouse over a particular operation. This causes a tool tip to appear, which will
have more information about the operation as follows:

❑ Physical Operation The physical operation performed by the query, such as
a Bookmark Lookup, Hash Join, Nested Loop, and so on. Physical operators
correspond to an execution algorithm and have costs associated with them.

Note Watch for physical operators in the execution plan that are
displayed in red, as this indicates some sort of a problem that the
optimiser has detected, such as missing statistics.

❑ Logical Operation The relational algebraic operation used that matches the
physical operation; typically logical operation can be implemented by various
physical operators.

❑ Actual Number of Rows The actual number of rows returned by this oper-
ation.

❑ Estimated I/O Cost The estimated cost of all I/O resources for this opera-
tion. (This should be as low as possible.)

1024 Part VII Performance Tuning and Troubleshooting
❑ Estimated CPU Cost The estimated cost of all CPU resources for this
operation.

❑ Estimated Operator Cost The estimated cost of performing this operation
(This cost is also represented as a percentage of the overall cost of the query.
in parentheses.)

❑ Estimated Subtree Cost The estimated cost of performing this operation
and all proceeding operations in its subtree.

❑ Estimated Number of Rows The estimated number of rows returned by this
operation.

Note Watch out for a large discrepancy between the estimated
number of rows value and actual number of rows value.

❑ Estimated Row Size The estimated size of the Rovers, in bytes, retrieved by
the operation.

❑ Actual Rebinds/Actual Rewinds The number of times the physical operator
needed to initialise itself and set up any internal data structures. A rebind
indicates that the input parameters changed and a re-evaluation was done.
The rewind indicates that existing structures were used.

❑ Ordered Whether the rows returned by this operation are ordered.

❑ Node ID A unique identifier for the node.

❑ Object/Remote Object The database object that this operation accessed.

❑ Output List The list of outputs for this particular operation.

More Info For more information on the different types of logical
operators that SQL Server's optimizer has available, search on the
topic “Graphical Execution Plan Icons (SQL Server Management Stu-
dio)” in SQL Server 2005 Books Online.

3. SQL Server Managment Studio also has the capability to provide client statistics,
which can also provide some important metrics when testing your T-SQL state-
ments. It can also automatically average multiple executions of your T-SQL state-
ment to get rid of any environmental anomalies and highlight whether there has
been a decrease or an increase in the metrics returned. To view the client statistics,

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1025
click the Include Client Statistics button (which is located to the right of the Include
Actual Execution Plan button), or press Shift+Alt+S. Figure 30-42 shows an exam-
ple of two executions of the same T-SQL statement and the client statistics metrics
returned.

Note The client statistics are not automatically reset for a given user con-
nection in SQL Server Managment Studio. So if you change your T-SQL
query, you should also reset the cllient statistics. This can be done by click-
ing on the Query menu and selecting the Reset Client Statistics option.

Figure 30-42 Client statistics.

Using SQL Server Profiler
As you have seen, you can use SQL Server Management Studio to analyse and fine tune
T-SQL statements. However, it will not help you to find which queries are potentially
inefficient in your database solution. If you are interested in identifying the different
types of queries and T-SQL statements that are being executed by various client appli-
cations inside your particular environment, you will have to use a tool such as SQL
Server Profiler.

1026 Part VII Performance Tuning and Troubleshooting
SQL Server Profiler is a very powerful utility that basically tries to capture the network
activity between client applications and your SQL Server instance by listening in on the
Tabular Data Stream (TDS). SQL Server Profiler can display this captured trace infor-
mation in a very rich graphical environment, providing sorting and filtering capabilities
that allow you to easily locate T-SQL statements of interest. It is particularly useful
when working with third-party vendor applications over which you have no control,
and you either want to learn more about how they work or perform-tune/troubleshoot
them.

Capturing a SQL Server Profile Trace
To start SQL Server Profiler and capture a trace, follow these steps:

1. Click Start, All Programs, Microsoft SQL Server 2005, and Performance Tools and
start SQL Server Profiler. When SQL Server Profiler first starts, it is blank because
there are no traces running. The first thing you'll have to do is connect to your SQL
Server instance. Click on the File menu and then New Trace (or press Ctrl-N) to
connect to your SQL Server instance. Type your server name and authentication
details, and then click the Connect button.

2. The Trace Properties Windows appears, as shown in Figure 30-43. To start profiling
you need to create a new trace. Although you can create your own trace from
scratch, the easiest way to create a trace is to use one of the predefined templates
created by Microsoft. This saves time because you don't have to set up traces from
scratch all the time. Don't forget that you can further customize what information
these pre-defined traces gather or create templates specific to your particular
requirements as required. SQL Server Profiler comes with the following predefined
trace templates:

❑ SP_Counts Collects all stored procedures that have been issued. The trace
returns the results grouped by the stored procedure name and includes the
number of times the stored procedure was executed. The SP_Counts template
captures information for the SP:Starting event class.

❑ Standard Collects general information about all connections, stored proce-
dures, and T-SQL batches that have been issued. Use the Standard template
as a generic trace to monitor general activity. The Standard template captures
information for the following event classes: Audit Login, AuditLogout,
ExistingConnection, RPC:Completed, SQL:BatchCompleted, SQL:Batch-
Starting. The Standard template is the default trace.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1027
❑ TSQL Collects all T-SQL statements that have been issued and the time
issued. Use the TSQL template to debug client applications. The TSQL tem-
plate captures information for the following event classes: Audit Login, Audit
Logout, ExistingConnection, RPC:Starting, SQL:BatchStarting.

❑ TSQL_Duration Collects all T-SQL statements that have been issued and
their execution time (milliseconds), and groups them by this execution time.
Use the TSQL_Durat ion template to identi fy slow queries . The
TSQL_Duration template captures information for the following event
classes: RPC:Completed, SQL:BatchCompleted.

❑ TSQL_Grouped Collects information identical to the TSQL trace, but groups
that information by either the users or client applications that issued the
T-SQL statements. Use the TSQL_Grouped template to investigate users or
client applications. The TSQL_Grouped template captures information for
the following event classes: Audit Login, Audit Logout, ExistingConnection,
RPC:Starting, SQL:BatchStarting.

❑ TSQL_Replay Collects detailed information about the T-SQL statements
that have been issued so that they can be replayed. Use the TSQL_Replay
template for iterative tuning, benchmark, or unit testing. The TSQL_Replay
template captures information for the following event classes: CursorClose,
CursorExecute, CursorOpen, CursorPrepare, CursorUnprepare, Audit Login,
Audit Logout, Existing Connection, RPC Output Parameter, RPC:Completed,
RPC:Starting, Exec Prepared SQL, Prepare SQL, SQL:BatchCompleted,
SQL:BatchStarting.

❑ TSQL_SPs Collects detailed information about the stored procedures calls
that have been issued. Use the TSQL_SPs template to analyze the individual
statements within the stored procedures. The TSQL_SPs template captures
information for the following event classes: Audit Login, AuditLogout,
ExistingConnection, RPC:Starting, SP:Completed, SP:Starting, SP:StmtStart-
ing, SQL:BatchStarting.

Note Add the SP:Recompile event if you suspect that procedures
are being recompiled.

❑ Tuning Collects information about T-SQL statements and stored procedures
that have been issued for tuning purposes. The Tuning template captures

1028 Part VII Performance Tuning and Troubleshooting
information for the following event classes: RPC:Completed, SP:StmtCom-
pleted, SQL:BatchCompleted.

Note Use the Tuning template to generate a workload file for the Data-
base Engine Tuning Advisor when tuning your databases.

In the General tab, provide an appropriate name and select the appropriate tem-
plate from the Use the Template drop-down list. You can choose whether you want
to save the trace to a file or table, in which case you will have to provide the appro-
priate details. If neither of these is selected, the trace is automatically displayed.
Additionally, you can specify time for the trace to finish, which can be useful in sit-
uations where you want to monitor activity for the remainder of the day and are not
planning to be around to stop the trace.

Figure 30-43 General tab of the Trace Properties window.

3. Click the Events Selection tab, shown in Figure 30-44. This tab allows you to fur-
ther refine the events that you would like the trace to capture. Depending on the
template chosen, there will be a number of events already ticked. You can add or
remove event columns to trace by clicking the appropriate check box. You can click
both the event or an event column to see their descriptions at the bottom of the
Events Selection tab.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1029
Figure 30-44 Events Selection tab of the Trace Properties window.

4. To see the complete list of events and/or columns, click the Show All Events and
Show All Columns check boxes, as displayed in Figure 30-45.

Figure 30-45 Complete list of events in the Events Selection tab.

5. To further filter what information is going to be captured by SQL Server Profiler,
click the Column Filters button. The Edit Filter dialog box appears, as shown in

1030 Part VII Performance Tuning and Troubleshooting
Figure 30-46, and allows you to include or exclude specific events. Notice that SQL
Server Profiler is excluded by default. By refining the trace definition through fil-
tering, you can reduce the impact of SQL Server Profiler and make it easier to
search and to read the trace after it has completed running. Once you have fin-
ished examining or configuring your column filters, click on the OK button.

Figure 30-46 Edit Filter dialog box.

6. If you want to control how the trace will group events, click the Organize Col-
umns button. The Organise Columns dialog box, shown in Figure 30-48, appears.
Use the Up and Down button to change the order of the columns or their group-
ing. Once you have finished examining or organizing your column, click on the
OK button.

Figure 30-47 Organize Columns dialog box.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1031
7. Once you have finished configuring your trace properties, click the Run button to
start the trace. Once the trace has started, events will appear in real time. You can
pause, start, and stop the trace through the appropriate buttons located in the top
toolbar. Figure 30-48 shows SQL Server Profiler running a trace.

Figure 30-48 A SQL Server Profiler trace running.

8. Once you have captured a trace, you can save it to a file for further analysis or audit-
ing purposes. To save your trace, click on the File menu and select the Save option.
Once you have saved a trace file you can additionally save it to other formats, such
as an XML file through the Save As option in the File menu.

Note A saved SQL Server Profiler trace is commonly referred to as a workload
file, as it represents the work done against your SQL Server instance. This work-
load file can be used to tune your database solution through the Database
Engine Tuning Advisor, which we will be covering shortly.

SQL Server Profiler environment also has some rudimentary searching capabilities.
Depending on the type of trace you have captured, you also can replay the trace as well,
which can be particularly useful for advanced troubleshooting or testing purposes, in

1032 Part VII Performance Tuning and Troubleshooting
which case there are some nice features to step through a trace, pause a trace, set break-
points, and run to the cursor location within the trace.

Saving Traces to Database Tables

I particularly like saving a SQL Server Profiler trace to a table in a SQL Server data-
base because it allows me then to use all of T-SQL language’s powerful searching
and aggregating capabilities. It also allows me to quite easily delete unwanted trace
information, which can be very useful because there can be a lot of superfluous
information captured in a trace at times.

Correlating a SQL Profiler Trace with Performance Log Data
A new feature in SQL Server 2005 is the ability of SQL Server Profiler to correlate per-
formance metrics collected with the Performance Logs and Alerts tool, as shown in
Chapter 29, with SQL Server 2005 or Analysis Services 2005 events. This allows the
DBA to easily see the impact of identified T-SQL statements on the operating system and
hardware resources. To correlate a SQL Server Profiler trace with performance metrics,
follow these steps:

1. Define and start a Counter log of the performance objects and/or counters you are
interested in using the Performance Logs and Alerts tool, as shown in Chapter 29.

2. Define and start a trace of your SQL Server instance using SQL Server Profiler, as
discussed above.

3. Stop the Counter log.

4. Stop SQL Server Profiler trace. Click the File menu and then the Save option (or
press Ctrl-S) to save the captured trace to an appropriate location.

5. Open the saved SQL Server Profiler trace by clicking the File menu and then select-
ing the Open, Trace File option (or press Ctrl-O).

6. To correlate the performance metrics from the counter log, click the File menu
option and choose the Import Performance Data option. The Open File dialog box
appears. Select the appropriate counter log and click the Open button.

7. The Performance Counters Limit dialog box appears, as shown in Figure 30-49.
Check the name of your SQL Server instance and the appropriate performance
monitor counters. Click the OK button.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1033
Figure 30-49 Performance Counters Limit dialog box.

8. SQL Server Profiler window should now look like Figure 30-50, showing both the
captured T-SQL activity and the Counter log performance metrics across the timeline.

9. You can show and hide the performance object counters by right clicking them and
choosing the appropriate option in the menu, as shown in Figure 30-52. Notice you
also have the capability of going to a minimum and a maximum value.

Figure 30-50 Performance Counter Log correlated with SQL Server Profiler trace.

1034 Part VII Performance Tuning and Troubleshooting
Figure 30-51 Navigating through the Performance Log metrics.

Using the Database Engine Tuning
The Database Engine Tuning Advisor, available with SQL Server 2005, has replaced the
Index Tuning Wizard that was available in earlier versions of SQL Server. It can analyze
trace activity captured through SQL Server Profiler or a T-SQL work load script against
your database and recommend various performance tuning enhancements. These per-
formance tuning enhancements can include creating and dropping indexes, or imple-
menting indexed views or a partitioning strategy if you have the correct edition of SQL
Server 2005.

The Database Engine Tuning Advisor can now recommend a number of performance
enhancements across a number of databases simultaneously from a single trace or work-
load file. Although you can limit the amount of time you want the Database Engine Tun-
ing Advisor to spend analyzing the workload, it is generally not recommended because
the more time the Database Engine Tuning Advisor spends analyzing the workload, the
quality of its recommendations increases.

The Database Engine Tuning Advisor analysis generates a list of recommendations that
can be converted into it XML script or a series of T-SQL scripts. You can evaluate these
recommendations and apply them as necessary. The various reports that are produced

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1035
summarized different aspects of the workload and the results. Consider saving these
reports as part of your change management routines.

Note You should use the Database Engine Tuning Advisor in preference of the
Index Tuning Wizard for tuning your SQL Server 2000 databases because it will
do a superior job of recommending performance enhancements. The Database
Engine Tuning Advisor is “SQL Server 2000 aware” and will make only recommen-
dations that apply to SQL Server 2000.

To use the Database Engine Tuning Advisor, follow these steps:

1. Click Start, All Programs, Microsoft SQL Server 2005, and Performance Tools, and
start Database Engine Tuning Advisor. Type your server name and authentication
details, and then click the Connect button.

2. Type an appropriate session name. Type the details of the location of the work-
load file. Click the database you want to tune. Filter out any tables as appropriate
using the drop-down list in the Selected Tables column. Figure 30-52 shows a
tuning session being configured for the AdventureWorks database, including all its
tables.

Figure 30-52 Database Engine Tuning Advisor.

1036 Part VII Performance Tuning and Troubleshooting
3. Click the Tuning Options tab. The Tuning Options tab, as shown in Figure 30-53,
allows you to further refine the potential recommendations that the Database
Engine Tuning Advisor makes. As indicated before, try not to limit the tuning time,
as you might not get optimal recommendations. You can reduce the amount of time
the Database Engine Tuning Advisor by reducing tuning options that you do not
want it to consider. Select the appropriate combination of options. If in doubt as to
what options to choose, leave the defaults alone.

Figure 30-53 Database Engine Tuning Advisor Tuning Options.

4. Click the Advanced Options button. The Advanced Tuning Options dialog box,
shown in Figure 30-54, allows you to further refine the tuning options. Review
and change these options as appropriate. Click the OK button when you have
finished.

5. Click the Start Analysis button on the toolbar. Figure 30-55 shows the progress of
the analysis.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1037
6. Once the Database Engine Tuning Advisor has finished its analysis, it will gener-
ate a Recommendations window, as shown in Figure 30-56. You can choose to
ignore a recommendation by deselecting the check box associated with it.

Figure 30-54 Advanced Tuning Options dialog box.

Figure 30-55 Database Engine Tuning Advisor Progress window.

1038 Part VII Performance Tuning and Troubleshooting
Figure 30-56 Database Engine Tuning Advisor Recommendations window.

7. To see the T-SQL script that would be used to implement a recommendation, scroll
to the right until you see the Definition column and click the recommendations
hyperlink. The SQL Script Preview window, shown in Figure 30-57, is generated.
You can copy the T-SQL script to the clipboard, if required. Click the Close button
when you're finished.

Figure 30-57 SQL Script Preview window.

Chapter 30 Using Profiler, Management Studio, and Database Engine Tuning Advisor 1039
8. Click the Reports tab. This tab provides a summary of the Database Engine Tun-
ing Advisor session. A number of different tuning reports are also available in the
bottom half of the window. You can click on the Select report drop-down list to
see a list of the available reports that have been generated and view them individ-
ially. Figure 30-58 shows an example output of the “Index detail report (current)”
report.

9. To save the results, click on the File menu and choose the Export Session Results
option, specifying the location and name of the XML file.

Figure 30-58 Database Engine Tuning Advisor Reports window.

Summary
In this chapter, you learned about the various tools that SQL Server 2005 has to offer the
DBA. You learned the various components of SQL Server Managment Studio and how to
view the new summary reports to get a quick indication of how your SQL Server is per-
forming, analyze the various logs, and view the current activity on your SQL Server
instance.

In addition, you learned how to set up SQL Server alerts based either on error messages,
performance monitor object counters, or WMI events.

1040 Part VII Performance Tuning and Troubleshooting
You then learned how to use SQL Server Managment Studio to generate the execution
plan for T-SQL queries for analysis, so as to be able to see how they are being executed by
SQL Server’s query optimizer.

Finally, you learned how to use SQL Server Profiler tool to capture the network traffic
between the client applications and a SQL Server instance for analysis, and how to use
this trace file with the Database Engine Tuning Advisor and optimise your database
design.

Chapter 31

Dynamic Management Views

Understanding Dynamic Management Views .1041

Using Dynamic Management Views .1043

Creating a Performance Data Warehouse. .1075

Summary .1083

Analyzing and tuning database performance is more an art than a science. There can be
many reasons why performance may be suboptimal—insufficient memory, incorrectly
configured system parameters, disk bottlenecks, and poorly written queries being just a
few of the more common causes. Understanding the operational details and the possible
cause of the problem is often more difficult and time-consuming than actually taking the
corrective actions. Anything that helps you get to the bottom of the problem quickly
helps save time, effort, and cost. SQL Server 2005 introduces more than 80 new Dynamic
Management Views (DMVs) which, as the name suggests, are views built on top of system
tables to surface the dynamically changing information about the database engine. These
views present the internal operational statistics of the various components of the engine
in a meaningful and easily comprehendible way.

In this chapter, we’ll take a look at the new DMV functionality and how it simplifies the
tasks of performance tuning and analysis of the database operation as compared to ear-
lier versions of SQL Server. We will also take a detailed look at each of the new DMVs and
see for what each can be most effectively used. Lastly, we will take a look at creating a sim-
ple performance data warehouse that can be used to archive historical performance data
for analysis at a later time.

Understanding Dynamic Management Views
In earlier versions of SQL Server troubleshooting, a performance problem usually
involved using tools like Windows System Monitor (perfmon.exe) and SQL Server Pro-
filer, configured with the relevant set of counters and events, and waiting to capture a
snapshot of the problem when it occurred. This was tedious and often invasive to the
application performance, sometimes to a point where the overhead of the tools on the
1041

1042 Part VII Performance Tuning and Troubleshooting
system and application would cause the problem to not reproduce. All in all, the entire
process was somewhat trial-and-error based and was not always reliable. Those of you
who have investigated performance problems with earlier versions of SQL Server will be
able to relate to this and appreciate the powers and flexibility that DMVs offer.

DMVs are system views that surface the internal counters of the database engine and
help present an easily comprehendible dashboard of the database engine performance
that can be used to monitor the health of a server instance, diagnose problems, and tune
performance. Unlike tools like Windows System Monitor (perfmon.exe) and SQL Server
Profiler that need to be explicitly invoked and set up to collect the data events of interest,
DMVs are always active and constantly collecting the performance data for the instance
of SQL Server 2005. As the name suggests, DMVs are dynamic in nature, implying that
the data they present represents the instantaneous state of the database engine. Because
the state is constantly changing, successive queries to the same DMV usually produce dif-
ferent results. All dynamic management views and functions exist in the SYS schema and
follow this naming convention: dm_*. When you use a dynamic management view or
function, you must prefix the name of the view or function with the name of the schema.
For example, the SELECT statement below uses a two-part name to reference the
dm_exec_query_stats DMV:

SELECT * FROM sys.dm_exec_query_stats;

DMVs can only be referenced using two-part (for example, [sys].[dm_exec_query_stats]),
three-part (for example, [master].[sys].[dm_exec_query_stats]), or four-part (for example,
[HOTH\SS2K5].[master].[sys].[dm_exec_query_stats]) names. They cannot be referenced
using one-part names (for example, [dm_exec_query_stats]). For the most part, DMVs report
the absolute operational values of the underlying objects. These values can be correlated with
values from other DMVs as well as computed on to derive more meaningful and easily com-
prehendible information. For example, the following statement uses the
sys.dm_exec_query_stats and sys.dm_exec_sql_text DMVs to determine the hundred most
frequently executed queries on the server in descending order:

SELECT TOP 100 execution_count,

 SUBSTRING(est.text, (eqs.statement_start_offset/2) + 1,

 ((CASE statement_end_offset

 WHEN -1

 THEN DATALENGTH(est.text)

 ELSE eqs.statement_end_offset

 END

Chapter 31 Dynamic Management Views 1043
 - eqs.statement_start_offset)/2) + 1) AS statement_text,

 creation_time, last_execution_time

FROM sys.dm_exec_query_stats as eqs

CROSS APPLY sys.dm_exec_sql_text(eqs.sql_handle) AS est

ORDER BY execution_count DESC;

All the DMVs are installed by default along with the database engine. You do not need to
take any special steps to install or enable the functionality. DMVs are read-only views,
implying that the data displayed by them cannot be modified.

All DMV counts are dynamic in nature and initialized to zero (0) when the instance of
SQL Server 2005 is started. In addition, a few DMVs, such as sys.dm_os_latch_stats, have
explicit commands (such as DBCC SQLPERF(‘sys.dm_os_latch_stats’, CLEAR);) that
can be used to manually reset the counts. In addition, other DMVs, such as
sys.dm_exec_query_stats, have their counts dependent on the existence of the query
plan in the database engine’s plan cache. The counts are deleted when the respective plan
is evicted from the plan cache, as explained in more detail later in this chapter.

There are two types of dynamic management views and functions: server-scoped, and
database-scoped. Querying a dynamic management view or function requires SELECT
permission on object plus the VIEW SERVER STATE permission for the server-scoped
DMVs, or the VIEW DATABASE STATE permission for the database-scoped DMVs. This
security mechanism lets you selectively restrict access of a user or login to DMVs and
functions. The permissions can be set using the GRANT command. For example, the fol-
lowing command grants the VIEW SERVER STATE permission to Ben Smith whose login
id is BenSmith:

USE master;

GRANT VIEW SERVER STATE TO [BenSmith];

Using Dynamic Management Views
SQL Server 2005 groups the DMVs into twelve distinct categories based on the engine
component to which they relate. These twelve categories are listed below:

1. Common language runtime

2. Database

3. Database mirroring

1044 Part VII Performance Tuning and Troubleshooting
4. Execution

5. Full-text search

6. Input/output

7. Index

8. Query notifications

9. Replication

10. Service broker

11. SQL Server operating system

12. Transaction

In the sections below, the DMVs contained within each of these categories are explained
in detail, along with example queries where applicable. Additional details about the
DMVs can be found in the SQL Server Books Online.

On the CD The sample DMV T-SQL statements in the sections below that are
longer than four lines are provided on the CD. Look for the
DMV_Example_Scripts.sql file in the \Scripts\Chapter 31 folder.

Common Language Runtime–Related DMVs
There are four DMVs related to the newly introduced common language runtime (CLR)
functionality in SQL Sever 2005. All four of these DMVs are server scoped and require
you to have the VIEW SERVER STATE permission on the server in order to access.

sys.dm_clr_appdomains
The sys.dm_clr_appdomains DMV returns a row for each application domain in the
server. In Microsoft .NET Framework common language runtime (CLR) terminology, an
application domain (appdomain) is a construct for the unit of isolation for an application.

sys.dm_clr_loaded_assemblies
The sys.dm_clr_loaded_assemblies DMV returns a row for each managed user assembly
loaded into the server address space.

sys.dm_clr_properties
The sys.dm_clr_properties DMV returns a row for each property related to SQL Server
2005 common language runtime (CLR) integration, including the version and state of
the hosted CLR. This DMV does not show whether execution of user CLR code has been

Chapter 31 Dynamic Management Views 1045
enabled on the server. Execution of user CLR code can be enabled by using the
sp_configure stored procedure (sp_configure ‘clr enabled’, 1) or via the surface area con-
figuration utility.

sys.dm_clr_tasks
The sys.dm_clr_tasks DMV returns a row for all common language runtime (CLR) tasks
that are currently running on the server and displays details of the underlying SQL batch
and the state of the task.

Database-Related DMVs
There are four DMVs related to databases that present details about the database sizes,
files used, and partition information, if present. All database DMVs except
sys.dm_db_partition_stats are server scoped and require you to have the VIEW SERVER
STATE permission on the server. The sys.dm_db_partition_stats DMV has a database
wide scope and requires the VIEW DATABASE STATE permission on the server.

sys.dm_db_file_space_usage
The sys.dm_db_file_space_usage DMV returns space usage information for each data file
in the tempdb system database (database id = 2). This DMV is not currently applicable to
any other user or system database.

This DMV is particularly useful when using the snapshot isolation level, explained in
Chapter 18, “Transactions and Blocking,” because it helps determine the total number of
pages being used for the version store. For tempdb databases configured with more than
one data file, the version_store_reserved_page_count counts reported for all the files
need to be added to determine the total space being used. The following query can be
used to determine the total number of pages used and the total space in megabytes (MB)
used by the version store in tempdb:

SELECT SUM(version_store_reserved_page_count) AS [version store pages used],

 (SUM(version_store_reserved_page_count)*1.0/128)

 AS [version store space in MB]

FROM sys.dm_db_file_space_usage;

Another useful counter reported by the DMV is user_object_reserved_page_count. This
counter helps determine the total number of pages being used by user objects such as
user-defined tables and indexes, system tables and indexes, global temporary tables and
indexes, local temporary tables and indexes, table variables, and tables returned in the
table-valued functions. The following query can be used to determine the total number of

1046 Part VII Performance Tuning and Troubleshooting
pages used by user objects and the total space in megabytes (MB) used by user objects in
tempdb:

SELECT SUM(user_object_reserved_page_count) AS [user object pages used],

 (SUM(user_object_reserved_page_count)*1.0/128)

 AS [user object space in MB]

FROM sys.dm_db_file_space_usage;

sys.dm_db_session_space_usage
The sys.dm_db_session_space_usage DMV returns the number of pages allocated and
de-allocated by each session in the tempdb system database (database id = 2). This DMV
is not applicable to any other user or system database. All counters are initialized to zero
(0) at the start of a session and are updated when a task ends. The counters do not reflect
counts for tasks that are still running.

The user objects allocation and de-allocation counts report the number of pages reserved
or allocated for user objects such as user-defined tables and indexes, system tables and
indexes, global temporary tables and indexes, local temporary tables and indexes, table
variables, and tables returned in the table-valued functions by the session. For example,
you can use the following query to find the top user sessions that are allocating internal
objects, including currently active tasks:

SELECT t1.session_id,

 (t1.internal_objects_alloc_page_count + task_alloc) AS allocated,

 (t1.internal_objects_dealloc_page_count + task_dealloc) AS deallocated

FROM sys.dm_db_session_space_usage AS t1,

 (SELECT session_id,

 SUM(internal_objects_alloc_page_count) AS task_alloc,

 SUM (internal_objects_dealloc_page_count) AS task_dealloc

 FROM sys.dm_db_task_space_usage

 GROUP BY session_id) AS t2

WHERE t1.session_id = t2.session_id

 AND t1.session_id > 50

ORDER BY allocated DESC;

sys.dm_db_partition_stats
The sys.dm_db_partition_stats DMV returns page and row counts for every partition in
the current database. One row is returned for each partition with information about the

Chapter 31 Dynamic Management Views 1047
object ID and index ID of the table or indexed view of which the partition is a part of. For
example, the query below returns all information for the partitions of the Employee table
in the AdventureWorks database:

USE AdventureWorks;

SELECT * FROM sys.dm_db_partition_stats

WHERE object_id = OBJECT_ID(N‘HumanResources.Employee’);

sys.dm_db_task_space_usage
The sys.dm_db_task_space_usage DMV returns page allocation and de-allocation activ-
ity by task for the tempdb system database (database id = 2). All the page counters are ini-
tialized to zero at the start of a request and aggregated at the session level when the
request is completed. Similar to the sys.dm_db_session_space_usage, this DMV presents
allocation and de-allocation counts for user and internal objects. For example, the query
below reports the total allocation and de-allocation page count for the internal and user
objects for all currently running tasks in tempdb:

SELECT session_id,

 SUM(internal_objects_alloc_page_count)

 AS ‘Internal obj alloc pg count’,

 SUM(internal_objects_dealloc_page_count)

 AS ‘Internal obj dealloc pg count’,

 SUM(user_objects_alloc_page_count)

 AS ‘User obj alloc pg count’,

 SUM(user_objects_dealloc_page_count)

 AS ‘User obj dealloc pg count’

FROM sys.dm_db_task_space_usage

WHERE session_id > 50

GROUP BY session_id

ORDER BY session_id;

Database Mirroring-Related DMV
There is only one DMV, sys.dm_db_mirroring_connections, related to the new database
mirroring feature explained in Chapter 25, “Disaster Recovery Solutions.” This DMV is
server scoped, and accessing it requires you to have the VIEW SERVER STATE permis-
sion on the server.

1048 Part VII Performance Tuning and Troubleshooting
sys.dm_db_mirroring_connections
The sys.dm_db_mirroring_connections DMV returns a row for each connection estab-
lished for database mirroring. The DMV presents details about the connection, current
state, principal, login state, data sent and received, and the encryption algorithm used for
each connection. The following command can be used to view all the details of all the
database mirroring connections that are active on the server:

SELECT * FROM sys.dm_db_mirroring_connections;

Execution-Related DMVs and Functions
SQL Server 2005 introduces 14 new execution-related DMVs. These DMVs provide
insights into the query execution statistics and are very useful for analyzing and tuning per-
formance. All execution-related DMVs are server scoped and require you to have the VIEW
SERVER STATE permission on the server in order to access. In addition to the fourteen exe-
cution related DMVs, there is a 15th one, sys.dm_exec_query_transformation_stats, which
is reserved for Microsoft internal use only and presents no useful data. This DMV is not cov-
ered in this chapter.

sys.dm_exec_background_job_queue
The sys.dm_exec_background_job_queue DMV returns a row for each asynchronous
update statistics job that is scheduled for execution on the server instance as a back-
ground task. Currently, only asynchronous update statistics jobs appear in the
sys.dm_exec_background_job_queue DMV, but this may change in the future. The DMV
presents information about the object on which the statistics are asynchronously being
updated, the time the job was queued, the database id the object belongs to, the status of
the job, and many other details.

sys.dm_exec_background_job_queue_stats
The sys.dm_exec_background_job_queue_stats DMV returns a single row of data that
provides aggregated statistics for asynchronous update statistics jobs submitted for exe-
cution as a background task. This DMV presents information about the length of the
queue; the number of requests that have started, ended, and failed execution; and aver-
age and maximum elapsed times for the requests.

sys.dm_exec_cached_plans
SQL Server 2005 caches query execution plans to avoid having to regenerate them for
successive executions of the same query. This feature is explained in detail in Chapter 33,
“Tuning Queries Using Hints and Plan Guides.” The sys.dm_exec_cached_plans DMV
returns information about all the query execution plans that are currently cached by SQL
Server. A single row is returned for each plan; it presents information about the type of

Chapter 31 Dynamic Management Views 1049
the cached object (compiled plan, executable plan, parse tree, extended stored proce-
dure), the number of bytes used by the object, the number of times this plan has been
used since it was cached, the type of object for which the plan was created, and the plan
handle.

For example, the following query uses the sys.dm_exec_cached_plans DMV and the
sys.dm_exec_query_plan DMV, explained later in this section, to present information
about the usage count, size, object type, and XML showplan for all cached compiled
plans residing in the plan cache in descending order of their usage counts:

SELECT usecounts, size_in_bytes, objtype,

 (SELECT query_plan FROM sys.dm_exec_query_plan(cp.plan_handle))

 AS QueryPlan

FROM sys.dm_exec_cached_plans cp

WHERE cacheobjtype = ‘Compiled Plan’

ORDER BY usecounts DESC;

The sys.dm_exec_cached_plans DMV can also be used to analyze the reusability of the
cached compiled plans using the following query:

SELECT TOP 100

 ecp.usecounts, ecp.cacheobjtype, ecp.size_in_bytes,

 SUBSTRING(eqt.text,eqs.statement_start_offset/2,

 (CASE

 WHEN eqs.statement_end_offset = -1

 THEN len(convert(NVARCHAR(MAX), eqt.text))*2

 ELSE eqs.statement_end_offset

 END - eqs.statement_start_offset)/2) AS statement,

 eqs.plan_handle

FROM sys.dm_exec_query_stats eqs

 CROSS APPLY sys.dm_exec_sql_text(eqs.sql_handle) AS eqt

 INNER JOIN sys.dm_exec_cached_plans AS ecp

 ON eqs.plan_handle = ecp.plan_handle

WHERE ecp.plan_handle = eqs.plan_handle

ORDER BY [usecounts] ASC;

This query lists the 100 least frequently used query plans and is useful for determining
whether the objects held in the plan cache are being reused. A very high number of

1050 Part VII Performance Tuning and Troubleshooting
objects with a low usage count (usecounts) may signify a problem in the application,
such as the existence of non-parameterized queries which result in the query plans not
being reused effectively.

sys.dm_exec_connections
The sys.dm_exec_connections DMV returns details about each connection currently
established to the SQL Server 2005 instance. Some of the key information this DMV pre-
sents includes the session id (SPID), time at which the connection was established, the
protocol used for the connection (Shared Memory, TCP, etc), the network packet size, the
number of bytes read and written over the connection, the time the last read and write
operation occurred, and the most recent SQL query handle. For example, the query
below displays the SPID, the timestamp the connection was established, the number of
bytes read over the connection, the number of bytes written over the connection, the
timestamp of the last read and write, and the most recent SQL handle:

SELECT session_id, connect_time, num_reads, num_writes,

 last_read, last_write, most_recent_sql_handle

FROM sys.dm_exec_connections;

The SQL query handle is particularly useful because it helps identify the SQL query last
executed on the connection. The SQL handle can be used to determine the most recent
SQL statement that was executed on the connection by passing its value to the
sys.dm_exec_sql_text DMV, which is explained later in the section. For example, the fol-
lowing query can be used to retrieve the SQL statement text associated with the SQL han-
dle specified. (Note: the SQL handle specified below is for example purposes only and
should be replaced with the SQL handle obtained from the previous query):

SELECT *

FROM sys.dm_exec_sql_text(0x02000000FEC7CB19E3AB91BD34F4A2654EEC3AE7DADD82C5);

sys.dm_exec_cursors
The sys.dm_exec_cursors DMV returns information about the cursors that are currently
open in the instance of SQL Server. You can either pass in the session id (SPID) to the
DMV to have it display the cursors open for the particular SPID, or you can pass in 0 for
it to display all open cursors for all databases. This is another highly useful DMV that pre-
sents detailed information about client-side cursors, also known as application program-
ming interface (API) cursors, originating in packaged third-party application. Those of
you who have worked with earlier versions of SQL Server probably know about the hard-
ships associated with determining and tuning cursor-based queries and will appreciate
this DMV the most. For example, the following query can be used to return information

Chapter 31 Dynamic Management Views 1051
about all cursors that have been open on the server for more than a specified period of
time (600 seconds in the example):

SELECT session_id, creation_time, cursor_id, name, properties, reads, writes

FROM sys.dm_exec_cursors(0)

WHERE DATEDIFF(s, creation_time, GETDATE()) > 600;

sys.dm_exec_plan_attributes
The sys.dm_exec_plan_attributes DMV takes a plan handle as input and returns infor-
mation about the attributes associated with the plan specified by the plan handle. This
DMV returns one row for each attribute associated with the plan, listing the attribute’s
name, the value, and whether the attribute is used as part of the cache lookup key for the
plan (“1” indicates that it is). For example, the following query returns the list of
attributes for the particular plan handle, as shown in Figure 31-1:

SELECT *

FROM sys.dm_exec_plan_attributes

 (0x06000600BF820A0AB881CC05000000000000000000000000);

Figure 31-1 sys.dm_exec_plan_attributes—list of plan attributes.

sys.dm_exec_query_memory_grants
The sys.dm_exec_query_memory_grants DMV returns information about the queries that
have acquired a memory grant or that still require a memory grant to execute. Queries that do

1052 Part VII Performance Tuning and Troubleshooting
not have to wait on a memory grant will not appear in this view. Some of the key information
this DMV presents includes the session id (session_id), a pointer to the sql statement
(sql_handle), a pointer to the xml plan (plan_handle), the amount of memory requested
(requested_memory_kb), the amount of memory granted (granted_memory_kb), and the
amount of memory still required (required_memory_kb). It also lists the amount of time in
milliseconds that the query has been waiting for the memory to be acquired (wait_time_ms).
This DMV was made available in SQL Server 2005 Service Pack 1 (SP1); therefore, you need
to have SP1 installed in order to be able to execute it.

sys.dm_exec_query_optimizer_info
The sys.dm_exec_query_optimizer_info DMV returns detailed statistics about the inter-
nal operation of the SQL Server query optimizer. This DMV is very useful for determin-
ing what the optimizer is doing and where it is spending its time. For example, the
following query displays the current average time in milliseconds the optimizer has
taken to optimize queries. Taking two snapshots of this query and computing the differ-
ence between the values shows the time that is spent optimizing queries in the given time
period:

SELECT ISNULL(value,0.0)*1000 AS MillisecondsPerOptimization

FROM sys.dm_exec_query_optimizer_info

WHERE counter = ‘elapsed time’;

All the counters are reset to 0 when SQL Server 2005 starts up and are incremented
from there on. There is no way to reset the count while the instance of SQL Server is still
running.

sys.dm_exec_query_plan
The sys.dm_exec_query_plan dynamic management function takes a plan handle as
input and returns the corresponding XML query plan for the SQL statement. For exam-
ple, the following query displays the xml showplan for the specified plan handle:

SELECT *

FROM

sys.dm_exec_query_plan(0x06000100AABF4014B861DD03000000000000000000000000);

Note The XML schema (showplanxml.xsd) for the XML Showplan is available
under the: %Program Files%\Microsoft SQL
Server\90\Tools\Binn\schemas\sqlserver\2004\07\showplan directory.

Chapter 31 Dynamic Management Views 1053
sys.dm_exec_query_resource_semaphores
The sys.dm_exec_query_resource_semaphores DMV returns information about general
query execution memory status, enabling you to determine whether the system can
access enough memory. This view complements memory information obtained from
sys.dm_os_memory_clerks, explained later in this chapter, to provide a complete snap-
shot of server memory status. This DMV returns two rows, one for the regular resource
semaphore (resource_semaphore_id=0) and one for the small-query resource semaphore
(resource_semaphore_id=1). The sys.dm_exec_query_resource_semaphores DMV was
made available in SQL Server 2005 Service Pack 1 (SP1); therefore, you need to have SP1
installed in order to be able to execute it.

sys.dm_exec_query_stats
The sys.dm_exec_query_stats DMV returns aggregate performance statistics for each
query plan that is currently cached by the instance of SQL Server. One row is returned
for each query plan. The lifetime of the row is tied to the plan itself, implying that when
a plan is evicted from the cache, the corresponding row is no longer reported by this
DMV. This is one of the most important DMVs for performance tuning because it helps
you quickly determine the details of the query execution. Some of the key information
that the sys.dm_exec_query_stats DMV returns includes the sql handle (sql_handle),
the plan handle (plan_handle), the t ime at which the plan was compiled
(creation_time) and last executed (last_execution_time), the number of times that the
plan has been executed (execution_count), the worker times, the physical reads, the log-
ical reads, the logical writes, the common language runtime (CLR) times, and the
elapsed times.

sys.dm_exec_requests
The sys.dm_exec_requests DMV returns information about each request that is currently
executing within the instance of SQL Server. One row is returned for every executing
query. Once the request completes execution, it is no longer reported by the DMV. The
sys.dm_exec_requests DMV is very useful to determine the operation of queries that take
a long time to execute as it helps gain insight into the progress of the query while it is still
executing. Those of you who have worked with earlier versions of SQL Server will quickly
realize the value of this DMV because prior to the introduction of this DMV, it was not
possible to get clear insight into the details about queries that were executing. Execution
information was available only after a query completed execution. Some of the key
attributes reported by this DMV include handle to the SQL statement (sql_handle) and
the xml showplan (plan_handle), the time in milliseconds elapsed since the query started
(total_elapsed_time), and the number of reads and writes. For example, the following

1054 Part VII Performance Tuning and Troubleshooting
query displays details about all user queries currently executing on the instance of SQL
Server 2005:

SELECT session_id, command, total_elapsed_time, status,

 reads, writes, start_time, sql_handle

FROM sys.dm_exec_requests

WHERE session_id > 50

ORDER BY total_elapsed_time DESC;

Note If a user executing this DMV does not have the VIEW SERVER STATE per-
mission on the server instance, the user will be able to see only queries executing
in the current session.

sys.dm_exec_sessions
The sys.dm_exec_sessions DMV returns one row for every authenticated session estab-
lished on the instance of SQL Server 2005. This DMV is useful for quickly getting a sum-
mary of the attributes of the client applications connecting to the instance of SQL Server
2005. Some of the key information this DMV returns includes the session id, the time
when the session was established, the client interface name and version, the number of
reads and writes performed by all queries executed over this sessions, the number of
rows by all queries executed over the connection, the transaction isolation level, and the
connection properties. For example, the following query can be used to determine the cli-
ent interface and version being used by all user connections. This is useful if you suspect
that some clients are using client versions that are not recommended or supported by
your organization:

SELECT session_id, client_interface_name, client_version,

 login_name, login_time

FROM sys.dm_exec_sessions

WHERE session_id > 50;

Another use could be to deterime the users who are currently connected to the SQL
Server 2005 instance and how many connections each one of them has open. The follow-
ing query can be used to extract this information:

SELECT login_name, count(session_id) AS session_count

FROM sys.dm_exec_sessions

GROUP BY login_name

ORDER BY login_name;

Chapter 31 Dynamic Management Views 1055
sys.dm_exec_sql_text
The sys.dm_exec_sql_text DMV takes a sql_handle as an input parameter and returns
the text of the corresponding sql statement. This DMV is a replacement for the
fn_get_sql function that was available in earlier versions of SQL Server. The fn_get_sql
function is planned to be deprecated in a future release of SQL Server, so you should
switch to using sys.dm_exec_sql_text. This DMV also returns information about the
database id, the object id, the number of the stored procedure, and whether the sql text
is encrypted.

The sys.dm_exec_sql_text DMV can be executed directly by passing in a sql query han-
dle, as shown in the following query:

SELECT text

FROM sys.dm_exec_sql_text(0x02000000AC1BE33A180F67ECE2C1AA08CCCBA9F5DF60268A);

Or, it can be cross applied with another DMV as shown here:

SELECT execution_count,

 total_worker_time, total_physical_reads, total_logical_writes,

 (SELECT TOP 1 SUBSTRING(s2.text,statement_start_offset / 2 + 1 ,

 ((CASE

 WHEN statement_end_offset = -1

 THEN (LEN(CONVERT(nvarchar(max),s2.text)) * 2)

 ELSE statement_end_offset

 END) - statement_start_offset) / 2 + 1))

 AS sql_statement,

 last_execution_time

FROM sys.dm_exec_query_stats AS s1

CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS s2

WHERE s2.objectid is null

ORDER BY execution_count DESC, total_worker_time DESC;

Full-Text Search–Related DMVs
SQL Server 2005 introduces five new full-text related DMVs that help gain insight into
the full-text service. All full-text related DMVs are server scoped and require you to have
the VIEW SERVER STATE permission on the server in order to access them.

1056 Part VII Performance Tuning and Troubleshooting
sys.dm_fts_active_catalogs
The sys.dm_fts_active_catalogs DMV returns information about the full-text catalogs
that have some population activity in progress on the server. One row is returned for
each full-text catalog that is active. Catalogs that are up-to-date are not reported by this
DMV.

sys.dm_fts_index_population
The sys.dm_fts_index_population DMV returns information about the full-text indexes
that have some population activity in progress on the server. One row is returned for each
full-text index that has population activity in progress. Full-text indexes that are up-to-
date are not reported by this DMV. The query below can be used to determine the full-
text index’s database name, table name, description of the full-text index population, the
status, and the start time for all full-text indexes that have some population activity in
progress:

SELECT DB_NAME(database_id) AS database_name,
 OBJECT_NAME(table_id) AS table_name, population_type_description,
 status_description, start_time
FROM sys.dm_fts_index_population
ORDER BY start_time;

sys.dm_fts_memory_buffers
The sys.dm_fts_memory_buffers DMV returns information about memory buffers
belonging to a specific memory pool that are being used as part of a full-text crawl or a
full-text crawl range.

sys.dm_fts_memory_pools
The sys.dm_fts_memory_pools DMV returns information about the memory pools used
as part of a full-text crawl or a full-text crawl range.

sys.dm_fts_population_ranges
The sys.dm_fts_population_ranges DMV returns information about the specific ranges
related to a full-text index population currently in progress.

Input/Output Related DMVs and Functions
SQL Server 2005 introduces four new Input/Output (I/O)-related DMVs that help gain
insight into I/O operations, I/O devices, and database file statistics. All I/O-related DMVs
are server scoped and require you to have the VIEW SERVER STATE permission on the
server in order to access them.

Chapter 31 Dynamic Management Views 1057
sys.dm_io_backup_tapes
The sys.dm_io_backup_tapes DMV identifies the list of tape devices and the status of
mount requests for backups. One row is returned for each device. This DMV can be used
to determine details of the devices and is especially useful to determine their current status.

sys.dm_io_cluster_shared_drives
The sys.dm_io_cluster_shared_drives DMV returns the name of the drive that represents
an individual disk taking part in the cluster shared disk array if the current server is a
clustered server. One row is returned for every single disk of that shared disk array that
is used by the clustered SQL Server instance. If the current server instance is not clus-
tered, an empty result set is returned.

sys.dm_io_pending_io_requests
The sys.dm_io_pending_io_requests DMV returns information about pending I/O
requests. One row is returned for each pending I/O request in the SQL Server instance.

sys.dm_io_virtual_file_stats
The sys.dm_io_virtual_file_stats DMV takes the database id and file id as input parameters
and returns information about the I/O statistics, such as the total number of I/Os performed
on a file, for data and log files. For example, the statement below returns the file statistics for
the AdventureWorks_Data file (file_id = 1) of the AdventureWorks database (db_id = 6).

SELECT *

FROM sys.dm_io_virtual_file_stats(DB_ID(N‘AdventureWorks’),

 FILE_IDEX(‘AdventureWorks_Data’));

You can also use this DMV with NULL specified for the file_id parameter, in which case
the I/O statistics for all the files in the specified database are returned:

SELECT * FROM sys.dm_io_virtual_file_stats(6, NULL);

This DMV is useful for identifying the amount of time users have to wait to read or write
to a file, as well as which database files, if any, are being used heavily. For example, in the
following query if the I/O stalls (io_stall_total_ms) is very high for any of the files, it may
signify a disk bottleneck where a high number of reads and writes are occurring on that
file. The average I/O waits per read (avg_io_stall_read_ms) and the average I/O waits per
write (avg_io_stall_write_ms) can further help determine whether the bottleneck is
being caused by read or write activity:

SELECT DB_NAME(database_id) AS database_name,

 FILE_NAME(file_id) AS filename, num_of_reads, io_stall_read_ms,

 CAST(io_stall_read_ms/(num_of_reads+1) AS NUMERIC(10,1))

1058 Part VII Performance Tuning and Troubleshooting
 AS ‘avg_io_stall_read_ms’,

 num_of_writes, io_stall_write_ms,

 CAST(io_stall_write_ms/(num_of_writes+1) AS NUMERIC(10,1))

 AS ‘avg_io_stall_write_ms’,

 (num_of_reads+num_of_writes) AS ‘total_num_of_ios’,[[tab]]

 (io_stall_read_ms+io_stall_write_ms) AS ‘io_stall_total_ms’,

 CAST((io_stall_read_ms+io_stall_write_ms)/(num_of_reads+num_of_writes+1)

 AS NUMERIC(10,1)) AS ‘avg_io_stall_total_ms’

FROM sys.dm_io_virtual_file_stats(NULL,NULL)

ORDER BY avg_io_stall_total_ms DESC;

This DMV replaces the fn_virtualfilestats function, which was available in earlier versions
of SQL Server as well.

Index Related DMVs and Functions
SQL Server 2005 introduces three new index related DMVs (sys.dm_db_index_operati
onal_stats, sys.dm_db_index_physical_stats, sys.dm_db_index_usage_stats) that help
gain insight into I/O operations, I/O devices, and database file statistics. In addition, SQL
Server 2005 Service Pack 1 introduces four additional DMVs (sys.dm_db_missing_index
_columns, sys.dm_db_missing_index_details, sys.dm_db_missing_index_group_stats,
sys.dm_db_missing_index_groups) making the total for index-related DMVs seven. All
index-related DMVs are server scoped and require you to have the VIEW SERVER STATE
permission on the server in order to access them.

sys.dm_db_index_operational_stats
The sys.dm_db_index_operational_stats DMV takes the database id, object id, index id,
and partition number as input and returns current locking, latching, access method, and
I/O activity for each partition of a table or index in the database. The DMV can also be
invoked with NULL values for any of the four parameters, in which case all data related
to the NULL parameter values is returned. For example, you can use the following com-
mand to view the operational index statistics of all the indexes for the Person.Address
table in the AdventureWorks database:

SELECT *

FROM sys.dm_db_index_operational_stats(DB_ID(N‘AdventureWorks’),

 OBJECT_ID(N‘AdventureWorks.Person.Address’), NULL, NULL);

Each column in the sys.dm_db_index_operational_stats DMV is initialized to 0 when the
metadata for the heap or index is brought into the metadata cache, which usually occurs

Chapter 31 Dynamic Management Views 1059
when the heap or index is first accessed. Once cached, the database engine accumulates
counts until the cache object is removed from the metadata cache. Because there is a high
likelyhood of frequently accessed indexes and heaps remaining in the cache, there is a
high likelyhood that the counts will be maintained and available. For example, you can use
the following query to list tables and indexes in the current database with most blocking:

SELECT DB_NAME(database_id) AS ‘db_name’,

 OBJECT_NAME(ios.object_id) AS ‘obj_name’,

 i.name AS ‘idx_name’, i.index_id,

 row_lock_count, row_lock_wait_count,

 CAST(row_lock_wait_count/(row_lock_count+1)*100 AS NUMERIC(10,2))

 AS ‘% blocked’,

 row_lock_wait_in_ms,

 CAST (row_lock_wait_in_ms/(row_lock_wait_count+1) AS NUMERIC(10,2))

 AS ‘avg_row_lock_wait_in_ms’

FROM sys.dm_db_index_operational_stats (db_id(), NULL, NULL, NULL) ios,

 sys.indexes i

WHERE OBJECTPROPERTY(ios.object_id, ‘IsUserTable’) = 1

 AND i.object_id = ios.object_id

 AND i.index_id = ios.index_id

ORDER BY row_lock_wait_count DESC;

sys.dm_db_index_physical_stats
The sys.dm_db_index_physical_stats dynamic management function takes a database id,
object id, index id, partition number, and mode as input parameters and returns the frag-
mentation information and sizes for the data and indexes for the specified table or view.
Sys.dm_db_index_physical_stats returns one row for each index in each partition, one
row for each in-row data allocation unit of each partition for a heap and one row for each
large object data allocation unit of each partition. For example, the following query returns
the fragmentation information for all five indexes in the HumanResources.Employee
table, as shown in Figure 31-2:

SELECT *

FROM sys.dm_db_index_physical_stats(DB_ID(N‘AdventureWorks’),

 OBJECT_ID(N‘AdventureWorks.HumanResources.Employee’),

 NULL, NULL, ‘DETAILED’);

1060 Part VII Performance Tuning and Troubleshooting
Figure 31-2 Sys.dm_db_index_physical_stats—query output.

Important When using the DB_ID or OBJECT_ID functions as used in the pre-
vious example, you should make sure that they return the correct ids. If an invalid
name is specified, the DB_ID and OBJECT_ID functions return a NULL, which in
turn is interpreted by the DMV to request information for all databases or objects.
A best practice is to always specify the object names in their corresponding
three-part format, for example: ‘AdventureWorks.HumanResources.Employee’.

This dynamic management function replaces the DBCC SHOWCONTIG command avail-
able in earlier versions of SQL Server which is planned to be deprecated in a future
release of SQL Server.

sys.dm_db_index_usage_stats
The sys.dm_db_index_usage_stats DMV returns the counts of different types of index
operations and the time each operation was last performed. Each column in the DMV is
initialized to 0 whenever the metadata for the index is brought into the metadata cache,
which usually occurs when the index is first accessed. The database engine then incre-
ments the corresponding counter by one for every individual seek, scan, lookup, or
update on the specified index.

In general, indexes are good and most of the time help speed up the execution of queries,
as explained in Chapter 12, “Creating Indexes for Performance.” However, the benefits
come at a price. The database engine has to maintain all active indexes at all times, and

Chapter 31 Dynamic Management Views 1061
the cost of this maintenance can often be significant, especially for heavily updated
tables. Given this, the performance increase realized by the existence of an index should
outweigh the cost overhead to maintain it in order to realize a net benefit. To ensure that
the indexes in your database are all useful indexes, you can use the following query to
determine which indexes in the current database are used least frequently and are possi-
bly not really beneficial:

SELECT OBJECT_NAME(ios.object_id) AS ‘obj_name’,

 ios.object_id, i.name AS ‘idx_name’, i.index_id,

 (user_seeks + user_scans + user_lookups + user_updates)

 AS ‘total_usage_count’,

 user_seeks, user_scans, user_lookups, user_updates

FROM sys.dm_db_index_usage_stats ios, sys.indexes i

WHERE database_id = db_id()

 AND objectproperty(ios.object_id, ‘IsUserTable’) = 1

 AND i.object_id = ios.object_id

 AND i.index_id = ios.index_id

ORDER BY total_usage_count ASC;

Note The rarely used indexes will have a low total usage count
(total_usage_count) and therefore appear towards the top of the listing in the
query output.

You can also use the sys.dm_db_index_usage_stats DMV to determine the indexes in the
current database that are not being referenced at all using the following query:

SELECT OBJECT_NAME(i.object_id) AS ‘obj_name’,

 i.name AS ‘idx_name’, i.index_id

FROM sys.indexes i, sys.objects o

WHERE OBJECTPROPERTY(o.object_id, ‘IsUserTable’) = 1

 AND o.object_id = i.object_id

 AND i.index_id NOT IN (

 SELECT s.index_id

 FROM sys.dm_db_index_usage_stats s

 WHERE s.object_id = i.object_id

1062 Part VII Performance Tuning and Troubleshooting
 AND i.index_id=s.index_id

 AND database_id = db_id())

ORDER BY obj_name, i.index_id ASC;

Important You should drop (or disable) any rarely used or unused indexes
only after careful consideration because there could be queries existing in dor-
mant jobs that have not been run in a while but which require the indexes in
order to operate optimally. An example is a year-end financial application batch
job that closes the annual accounts. This job may run only once a year at mid-
night on December 31, and therefore, if the database server was recycled, say in
January, indexes used and required by this job may end up being reported as
unused for the rest of the year.

sys.dm_db_missing_index_columns
The sys.dm_db_missing_index_columns dynamic management function was intro-
duced in SQL Server 2005 Service Pack 1. This dynamic management function takes an
index handle returned by the sys.dm_db_missing_index_details or sys.dm_db_-
missing_index_groups DMVs, explained later in this chapter, as input and returns infor-
mation about database table columns that are missing an index as shown in the following
example query batch:

DECLARE @idx_handle INT;

SELECT @idx_handle = mid.index_handle

FROM sys.dm_db_missing_index_group_stats migs,

 sys.dm_db_missing_index_groups mig,

 sys.dm_db_missing_index_details mid

WHERE migs.group_handle = mig.index_group_handle

 AND mid.index_handle = mig.index_handle;

SELECT * FROM sys.dm_db_missing_index_columns(@idx_handle)

ORDER BY column_id;

The sys.dm_db_missing_index_columns dynamic management function is updated
whenever a query is optimized.

sys.dm_db_missing_index_details
The sys.dm_db_missing_index_details DMV was introduced in SQL Server 2005 Service
Pack 1 and can be used to return detailed information about missing indexes. This
dynamic management function is updated whenever a query is optimized.

Chapter 31 Dynamic Management Views 1063
sys.dm_db_missing_index_group_stats
The sys.dm_db_missing_index_group_stats DMV was introduced in SQL Server 2005 Ser-
vice Pack 1 and can be used to return summary information about groups of missing
indexes. Unlike the sys.dm_db_missing_index_details DMV, explained previously, which
presents details about a single missing index, the missing index group includes details of
all missing indexes that should produce some performance improvement for a given query.

sys.dm_db_missing_index_groups
The sys.dm_db_missing_index_groups DMV was introduced in SQL Server 2005
Service Pack 1 and can be used to return summary information about what missing
indexes are contained in a specific missing index group. This DMV is updated when-
ever a query is optimized. For example, the following query uses the sys.dm_db_-
missing_index_groups DMV, along with the sys.dm_db_missing_index_group_stats
and sys.dm_db_missing_index_details DMVs, to present details about the missing
indexes and computed benefit of the index (avg_user_impact), which is the esti-
mated percentage improvement with the suggested index created:

SELECT mid.*, migs.avg_total_user_cost, migs.avg_user_impact,

 migs.last_user_seek, migs.unique_compiles

FROM sys.dm_db_missing_index_group_stats migs,

 sys.dm_db_missing_index_groups mig,

 sys.dm_db_missing_index_details mid

WHERE migs.group_handle = mig.index_group_handle

 AND mid.index_handle = mig.index_handle

ORDER BY migs.avg_user_impact DESC;

Best Practices Because the previous four DMVs potentially contain vital per-
formance tuning information that is not persisted across SQL Server restarts, you
should periodically make backup copies of the output of these DMVs. You can do
this manually or automate the process using a methodology similar to that
explained in the Performance Data Warehouse section later in this chapter. This
historical data can be very useful for determining which indexes are missing and
which will have the biggest positive impact when created.

Query Notifications-Related DMVs
SQL Server 2005 introduces just one new query notification-related DMV that helps gain
insight into active query notifications subscriptions in the server. This DMV is server
scoped and requires you to have the VIEW SERVER STATE permission on the server in
order to access it.

1064 Part VII Performance Tuning and Troubleshooting
sys.dm_qn_subscriptions
The sys.dm_qn_subscriptions DMV returns information about each active query notifi-
cation subscriptions in the server, including the current status. One row is returned for
each active query notification subscription. If the user does not have VIEW SERVER
STATE permission, this view returns only information about subscriptions owned by cur-
rent user.

Replication-Related DMVs
SQL Server 2005 introduces four new replication-related DMVs that help gain insight
into the workings of replication in the database. All four DMVs are database scoped and
require you to have the VIEW DATABASE STATE permission on the publication database
in order to access them.

sys.dm_repl_articles
The sys.dm_repl_articles DMV returns information about database objects published as
articles in a replication topology. Only information for those replicated database objects
that are currently loaded in the replication article cache is reported.

sys.dm_repl_schemas
The sys.dm_repl_schemas DMV returns information about table columns published by
replication. Only information for those replicated database objects that are currently
loaded in the replication article cache is reported.

sys.dm_repl_tranhash
The sys.dm_repl_tranhash DMV returns information about transactions being replicated
in a transactional publication. Only information for those replicated database objects that
are currently loaded in the replication article cache is reported.

sys.dm_repl_traninfo
The sys.dm_repl_traninfo DMV returns information on each replicated transaction. Only
information for those replicated database objects that are currently loaded in the replica-
tion article cache is reported.

Service Broker-Related DMVs
SQL Server 2005 introduces four new Service Broker-related DMVs that help gain insight
into the workings of the service broker. These DMVs are server scoped and require you to
have the VIEW SERVER STATE permission on the server in order to access them.

sys.dm_broker_activated_tasks
The sys.dm_broker_activated_tasks DMV returns information about stored procedures
activated by Service Broker. One row is returned for each stored procedure.

Chapter 31 Dynamic Management Views 1065
sys.dm_broker_connections
The sys.dm_broker_connections DMV returns information about Service Broker net-
work connections. One row is returned for each Service Broker network connection.

sys.dm_broker_forwarded_messages
The sys.dm_broker_forwarded_messages DMV returns information about Service Bro-
ker messages that an instance of SQL Server is in the process of forwarding. One row is
returned for every message.

sys.dm_broker_queue_monitors
The sys.dm_broker_queue_monitors DMV is used to view information about the queue
monitor, which manages activation for a queue, in the instance. One row is returned for
each queue monitor. The following query can be used to retrieve the current status of all
the message queues:

SELECT t1.name AS ServiceName, t3.name AS SchemaName, t2.name AS QueueName,

 CASE WHEN t4.state IS NULL THEN ‘Not available’

 ELSE t4.state

 END AS [Queue_State],

 CASE WHEN t4.tasks_waiting IS NULL THEN ‘--’

 ELSE CONVERT(VARCHAR, t4.tasks_waiting)

 END AS tasks_waiting,

 CASE WHEN t4.last_activated_time IS NULL THEN ‘--’

 ELSE CONVERT(varchar, t4.last_activated_time)

 END AS last_activated_time,

 CASE WHEN t4.last_empty_rowset_time IS NULL THEN ‘--’

 ELSE CONVERT(varchar,t4.last_empty_rowset_time)

 END AS last_empty_rowset_time,

 (SELECT COUNT(*) FROM sys.transmission_queue t6

 WHERE (t6.from_service_name = t1.name)) AS TransMessageCount

FROM sys.services t1

 INNER JOIN sys.service_queues t2 ON (t1.service_queue_id = t2.object_id)

 INNER JOIN sys.schemas t3 ON (t2.schema_id = t3.schema_id)

 LEFT OUTER JOIN sys.dm_broker_queue_monitors t4

 ON (t2.object_id = t4.queue_id AND t4.database_id = DB_ID())

 INNER JOIN sys.databases t5 ON (t5.database_id = DB_ID());

1066 Part VII Performance Tuning and Troubleshooting
SQL Server Operating System-Related DMVs
SQL Server 2005 introduces 23 new SQL Server operating system (OS) related DMVs
that help gain insight into the internal operations of the SQL Server OS. It also introduces
five other operating system-related DMVs that are for Microsoft internal use and are not
covered in this chapter. These DMVs are server scoped and require you to have the VIEW
SERVER STATE permission on the server in order to access them.

sys.dm_os_buffer_descriptors
The sys.dm_os_buffer_descriptors DMV returns information about the buffer pool
descriptors that are being used by a database. This DMV returns information only about
pages that have been successfully loaded into the buffer pool. Information about free or
stolen pages and information about pages that had errors when they were read is not
reported.

The following query can be used to return information about the buffer pool descriptors
for the current database:

SELECT * FROM sys.dm_os_buffer_descriptors

WHERE database_id = DB_ID()

ORDER BY page_id ASC;

Figure 31-3 displays the output of the previous query run against the AdventureWorks
database (Note: This is an example output only; the output you observe may be different.)

Figure 31-3 sys.dm_os_buffer_descriptors–query output.

Chapter 31 Dynamic Management Views 1067
Note The rows corresponding to database_id 32767 in the
sys.dm_os_buffer_descriptors output correspond to the pages that are being used
by the SQL Server 2005 resource database, explained in Chapter 10, “Creating
Databases and Database Snapshots.”

sys.dm_os_child_instances
The sys.dm_os_child_instances DMV returns information about the SQL Server Express
user instances that have been created from the parent database. One row is returned for
each user instance. User instance is a feature of SQL Server 2005 Express Edition that
enables users who are not administrators to run a local version of SQL Server Express in
their own account. With user instances, nonadministrators have database owner privi-
leges over the instance running in their own account.

sys.dm_os_cluster_nodes
The sys.dm_os_cluster_nodes DMV returns information about the nodes in the virtual
server configuration. For clustered SQL Server instances, this DMV returns a list of nodes
on which this virtual server has been defined. If the current server instance is not a clus-
tered server, it does not return any rows.

sys.dm_os_hosts
The sys.dm_os_hosts DMV returns information about the hosts currently registered in
an instance of SQL Server 2005. SQL Server uses a host to keep track of and manage
the resources used by these external components (for example, an OLE DB provider)
that run inside its process. This DMV also returns the resources that are used by the
hosts.

sys.dm_os_latch_stats
The sys.dm_os_latch_stats DMV returns information about the latch waits for the differ-
ent classes of latches. One row is returned for each class of latch. In SQL Server, a latch
is a light-weight internal synchronization object used by internal engine components. A
latch wait occurs when a latch request cannot be granted immediately. This DMV can be
used to identify the source of latch contention by examining the relative wait counts and
wait times for the different latch classes.

The counts returned by this DMV are cumulative from the time SQL Server instance was
started, or they were manually reset. A manual reset of the counts can be done using the
following command:

DBCC SQLPERF (‘sys.dm_os_latch_stats’, CLEAR);

1068 Part VII Performance Tuning and Troubleshooting
sys.dm_os_loaded_modules
The sys.dm_os_loaded_modules DMV returns information about the user and system
modules (DLLs) loaded into the server address space. One row is returned for each mod-
ule specifying the details of the module. For example, the following query can be used to
determine all the details of the SQL Server Native Client being used by SQL Server
instance:
SELECT * FROM sys.dm_os_loaded_modules

WHERE name LIKE ‘%sqlncli.dll%’;

sys.dm_os_memory_cache_clock_hands
The sys.dm_os_memory_cache_clock_hands DMV returns the status of each hand for a
specific cache clock. SQL Server 2005 implements two clock hands that are used to
sweep through the cache and purge the least recently used entries from caches. An inter-
nal clock hand is used to control the size of a cache relative to other caches. This clock
hand starts moving when the cache is about to reach its capacity limit. A second, external
clock hand is also used and starts to move when SQL Server as a whole gets into memory
pressure. Movement of the external clock hand can be due to either external or internal
memory pressure. The movement of these clock hands helps determine whether SQL
Server is under memory pressure. For example, if the values for the rounds_count and
removed_all_rounds_count counters are increasing between successive executions of the
following query, then SQL Server is under internal or external memory pressure:
SELECT * FROM sys.dm_os_memory_cache_clock_hands

WHERE rounds_count > 0

 AND removed_all_rounds_count > 0;

sys.dm_os_memory_cache_counters
The sys.dm_os_memory_cache_counters DMV provides run-time information about the
cache entries allocated for each cache store. This DMV can be used to help determine
how the cache is being utilized and by which cache store. This can be particularly useful
for database servers that host multiple databases. For example, the following statement
can be used to determine the number of entries in the cache, the number of entries in the
cache that are currently being used, the amount of single and multi-page memory allo-
cated, and the amount of single and multi-page allocated memory that is currently being
used by the cache store associated with the AdventureWorks database:
SELECT name, entries_count, entries_in_use_count, single_pages_kb,

 multi_pages_kb, single_pages_in_use_kb, multi_pages_in_use_kb

FROM sys.dm_os_memory_cache_counters

WHERE name = ‘AdventureWorks’;

Chapter 31 Dynamic Management Views 1069
sys.dm_os_memory_cache_entries
The sys.dm_os_memory_cache_entries DMV returns information about all entries in all
the caches. One row is returned for each entry. This DMV can be used to obtain statistics
on cache entries and to trace cache entries to their associated objects.

sys.dm_os_memory_cache_hash_tables
The sys.dm_os_memory_cache_hash_tables DMV returns information about each active
cache in the instance of SQL Server 2005. One row is returned for each active cache.

sys.dm_os_memory_clerks
The sys.dm_os_memory_clerks DMV returns information about the set of all memory
clerks that are currently active in the instance of SQL Server. SQL Server components cre-
ate their corresponding clerks at the time SQL Server is started. Every component that
allocates a significant amount of memory must create its own memory clerk and allocate
all its memory by using the clerk interfaces. For example, you can use the
sys.dm_os_memory_clerks in the following query to find out how much memory SQL
Server has allocated through the AWE (Address Windowing Extensions) mechanism:

SELECT SUM(awe_allocated_kb)/1024 AS ‘AWE_allocated_mem_Mb’

FROM sys.dm_os_memory_clerks;

sys.dm_os_memory_objects
The sys.dm_os_memory_objects DMV returns information about memory objects that
are currently allocated by SQL Server. This DMV is useful in analyzing memory use
and identifying possible memory leaks. For example, the following query can be used
to determine the amount of memory in kilo bytes (KB) used by each memory object
type:

SELECT type, SUM(pages_allocated_count * page_size_in_bytes)/1024

 AS ‘KB_Used’

FROM sys.dm_os_memory_objects

GROUP BY type

ORDER BY KB_Used DESC;

sys.dm_os_memory_pools
The sys.dm_os_memory_pools DMV returns information about each object store in the
instance of SQL Server. This DMV can be used to monitor cache memory usage and help
identify suboptimal caching patterns.

1070 Part VII Performance Tuning and Troubleshooting
sys.dm_os_performance_counters
The sys.dm_os_performance_counters DMV returns information about the performance
counters maintained by the instance of SQL Server 2005. One row is returned for each
performance counter maintained by the server. These are the same counts that are
reported by Windows System Monitor (perfmon), the only difference being that this
DMV reports the absolute counts and leaves to the user the task of converting them into
more meaningful data. For example, to determine the buffer cache hit ratio percentage,
you must divide the Buffer cache hit ratio by the Buffer cache hit ratio base, as shown in
the following query batch:

DECLARE @Numerator FLOAT, @Denominator FLOAT;

SET @Numerator = (

 SELECT cntr_value

 FROM sys.dm_os_performance_counters

 WHERE counter_name = ‘Buffer cache hit ratio’);

SET @Denominator = (

 SELECT cntr_value

 FROM sys.dm_os_performance_counters

 WHERE counter_name = ‘Buffer cache hit ratio base’);

SELECT (@Numerator/@Denominator)*100 AS ‘Cache_Hit_Ratio (%)’;

sys.dm_os_schedulers
The sys.dm_os_schedulers DMV returns information about the internal SQL Server OS
schedulers. One row is returned for each scheduler that is mapped to an individual pro-
cessor. This DMV can be used to monitor the condition of a scheduler or to identify situ-
ations where there might be runaway tasks. For example, the following query can be
used to determine the current workload on the scheduler:

SELECT scheduler_id, cpu_id, current_tasks_count,

 runnable_tasks_count, work_queue_count

FROM sys.dm_os_schedulers

WHERE scheduler_id < 255

ORDER BY work_queue_count DESC, scheduler_id ASC;

The current_task_count presents the number of tasks that are currently assigned to the
scheduler, and the runnable_tasks_count presents the number of tasks that are ready
to run. A nonzero value for runnable_tasks_count indicates that tasks have to wait for
their time slice to run. Continuously high values for this counter are a symptom of a

Chapter 31 Dynamic Management Views 1071
processor bottleneck. A high work_queue_count value indicates multiple tasks waiting
on a scheduler.

sys.dm_os_stacks
The sys.dm_os_stacks DMV returns internal stack information for SQL Server. This DMV
can be used to keep track of debug data such as outstanding allocations or validate logic
that is used by SQL Server components in places where the component assumes that a
certain call has been made. The sys.dm_os_stacks DMV requires the matching version of
the debug symbols (sqlservr.pdb) for SQL Server (sqlservr.exe) and the other compo-
nents to be installed in the correct path on the server in order to display the information
correctly. This DMV is of limited use for normal performance analysis and tuning activi-
ties.

sys.dm_os_sys_info
The sys.dm_os_sys_info DMV returns a single row of a set of miscellaneous information
about the computer and resources available to and consumed by the SQL Server
instance. For example, you can use the query below to determine the number of physical
processors and the amount of memory available in mega bytes (MB) to the SQL Server
instance:

SELECT (cpu_count/hyperthread_ratio) AS NumberOfPhysicalProcessors,

 (physical_memory_in_bytes/1024/1024) AS MemoryAvailableInMB

FROM sys.dm_os_sys_info;

sys.dm_os_tasks
The sys.dm_os_tasks DMV returns information about the tasks that are active in the
instance of SQL Server. One row is returned for each task. For queries that are executed
with a parallel query execution plan on a multi-processor system, one row is returned for
every parallel query execution thread. For example, the query below returns information
about all the currently active OS tasks with tasks belonging to the same session
(session_id) grouped together:

SELECT * FROM sys.dm_os_tasks

WHERE session_id IS NOT NULL

ORDER BY session_id, request_id;

sys.dm_os_threads
The sys.dm_os_threads DMV lists all the SQL Server OS threads that are running under
the instance of SQL Server 2005, including ones that have been started by external com-
ponents such as SQL Server extended stored procedures.

1072 Part VII Performance Tuning and Troubleshooting
sys.dm_os_virtual_address_dump
The sys.dm_os_virtual_address_dump DMV returns information about the range of
pages in the virtual address space of the calling process. One row is returned for each
range. This DMV is of limited use for normal performance analysis and tuning activities.

sys.dm_os_wait_stats
The sys.dm_os_wait_stats DMV returns information about the wait statistics encoun-
tered by all threads that are in execution. One row is returned for each of the 195 different
wait types. The counts reported by this DMV are cumulative across the entire instance of
SQL Server. They are initialized to 0 when the SQL Server 2005 instance is started and
then incremented. You can manually initialize the counters at any time by executing the
following command. However, all the counters are always initialized together; there is no
way to selectively initialize only a subset of the counters:

DBCC SQLPERF (‘sys.dm_os_wait_stats’, CLEAR);

This DMV can be used to help tune overall performance. For a well-optimized system, the
waiting_tasks_count and wait_time_ms counts should be low. A high value for any of the
wait types indicates a resource bottleneck. The following query can be used to list all the
wait types that have a wait time associated with them:

SELECT * FROM sys.dm_os_wait_stats

WHERE wait_time_ms > 0;

It is normal for some of the resources, such as LAZYWRITER_SLEEP and SQLTRACE-
_BUFFER_FLUSH, to have high wait times associated with them. To use this DMV effec-
tively, you should establish a baseline of the counters during normal activity and then
look for significant deviations from this baseline to determine the resources that may be
possible bottlenecks.

sys.dm_os_waiting_tasks
The sys.dm_os_waiting_tasks DMV returns information about the wait queue of tasks
that are waiting on some resource. One row is returned for every waiting task. The follow-
ing query can be used to list details of all user tasks that are waiting on some resource:

SELECT * FROM sys.dm_os_waiting_tasks

WHERE session_id >= 51

ORDER BY session_id;

Note Session_ids less than 51 are related to system processes and often display
high wait times. This is normal and usually not indicative of a problem.

Chapter 31 Dynamic Management Views 1073
sys.dm_os_workers
The sys.dm_os_workers DMV returns information about the worker in the instance of
SQL Server 2005. One row is returned for every worker thread, or fiber, in the system.

Transaction-Related DMVs and Functions
SQL Server 2005 introduces ten new transaction-related DMVs that help gain insight into
the operations of active transactions. These DMVs are particularly useful when using the
new snapshot isolation levels. These DMVs are server scoped and require you to have the
VIEW SERVER STATE permission on the server in order to access them.

sys.dm_tran_active_snapshot_database_transactions
The sys.dm_tran_active_snapshot_database_transactions DMV returns information
about all active user transactions that generate, or potentially access, row versions. One
row of data is returned for each of the following:

■ A transaction that is running under snapshot isolation level or read-committed iso-
lation level that is using row versioning

■ A transaction that causes a row version to be created in the current database

■ A transaction under which a trigger is fired

■ A transaction that is creating an index as an online operation

■ A transaction that is accessing row versions when Multiple Active Results Sets (MARS)
session is enabled.

Nested transactions always return only one row of data regardless of the nesting level.
This DMV can be very useful for investigating the operation of the system when the snap-
shot isolation level is being used. For example, the following query can be used to deter-
mine long-running transactions in the instance of SQL Server:

SELECT * FROM sys.dm_tran_active_snapshot_database_transactions

WHERE elapsed_time_seconds > 0

ORDER BY elapsed_time_seconds DESC;

sys.dm_tran_active_transactions
The sys.dm_tran_active_transactions DMV returns information about all active user and
system transactions for the SQL Server instance. One row is returned for each transac-
tion. Nested transactions always return only one row of data regardless of the nesting
level.

1074 Part VII Performance Tuning and Troubleshooting
sys.dm_tran_current_snapshot
The sys.dm_tran_current_snapshot DMV returns information about all transactions that
are active at the time the current snapshot transaction starts. No rows are returned if the
current transaction is not a snapshot transaction.

sys.dm_tran_current_transaction
The sys.dm_tran_current_transaction DMV returns a single row of data presenting the
state information of the transaction in the current session.

sys.dm_tran_database_transactions
The sys.dm_tran_database_transactions DMV returns information about transactions at
the database level. For example, the following command can be used to view information
about all transactions in the current database:

SELECT * FROM sys.dm_tran_database_transactions

WHERE database_id = DB_ID();

Nested transactions always return only one row of data regardless of the nesting level.

sys.dm_tran_locks
The sys.dm_tran_locks DMV returns information about lock manager resources. One
row is returned for each currently active request to the lock manager for a lock that either
has been granted or is waiting to be granted. This DMV provides information about the
resource on which the lock request is being made and the request which describes the
lock request itself. The sys.dm_tran_locks DMV can be very useful for quickly getting a
holistic view of the current locking and blocking situation on the SQL server instance.
For example, the following query can be used to display the blocking information:

SELECT DB_NAME(resource_database_id) AS database_name,

 resource_type, request_mode, request_session_id,

 blocking_session_id, resource_associated_entity_id

FROM sys.dm_tran_locks AS dtl

INNER JOIN sys.dm_os_waiting_tasks AS dowt

 ON dtl.lock_owner_address = dowt.resource_address;

Note The resource_database_id returned by the sys.dm_tran_locks DMV is the
database id corresponding to the database to which the particular resource
belongs and is in no way related to the SQL Server 2005 Resource database
explained in Chapter 10.

Chapter 31 Dynamic Management Views 1075
sys.dm_tran_session_transactions
The sys.dm_tran_session_transactions DMV returns correlation information mapping
currently active associated transactions to their respective sessions. One row is usually
displayed for every active transaction. However, sys.dm_tran_session_transactions dis-
plays multiple rows for bound sessions, distributed transactions, and queries executed in
autocommit mode using multiple active result sets (MARS).

sys.dm_tran_top_version_generators
The sys.dm_tran_top_version_generators DMV returns information about objects that are
producing the most versions in the version store. This DMV lists the top 256 aggregated
record lengths that are grouped by the database_id and rowset_id. The sys.dm_tran_top_-
version_generators can be used to determine the largest consumers of the version store
when the snapshot isolation database options (READ_COMMITTED_SNAPSHOT or
ALLOW_SNAPSHOT_ISOLATION) are enabled. You may want to be selective in using this
DMV because it queries the entire version store, which can be a costly operation that is
intrusive to system performance.

sys.dm_tran_transactions_snapshot
The sys.dm_tran_transactions_snapshot DMV returns the sequence_number of transac-
tions that are active when each snapshot transaction starts. This DMV can be used to find
the number of currently active snapshot transactions and to identify data modifications
that are ignored by a particular snapshot transaction.

Note For a transaction that is active when a snapshot transaction starts, all
data modifications by that transaction, even after that transaction commits, are
ignored by the snapshot transaction.

sys.dm_tran_version_store
The sys.dm_tran_version_store DMV returns a virtual table that displays all version
records in the version store. Each versioned record is stored as binary data together with
some tracking or status information. This DMV can be used to find the previous versions
of the rows in binary representation as they exist in the version store. You may want to be
selective in using this DMV because it queries the entire version store, which can be a
costly operation that is intrusive to system performance.

Creating a Performance Data Warehouse
As we’ve seen in this chapter, DMVs present a very powerful means for gaining insights
into the operations of the server and analyzing performance problems. However, the

1076 Part VII Performance Tuning and Troubleshooting
dynamic nature of DMVs can limit their usefulness in certain situations. Consider a case
where the users of an application complain of occasional poor transaction response times
that occur at random and especially after midnight. You, the database administrator,
know that SQL Server is possibly not performing optimally but cannot effectively inves-
tigate the problem because by the time the users encounter the problem and tell you
about it the next morning, the problem has stopped occurring. Now, given that the prob-
lem has resolved itself by morning and the information presented by DMVs is transient
in nature, the data does not accurately represent the state of the server when the problem
occurred, rendering it of limited use in investigating the problem the following morning.

To address this issue, you can consider creating a performance data warehouse. A perfor-
mance data warehouse is essentially a historical archive of periodic snapshots of the DMV
data of interest. You can archive the data from as many DMVs as you want, at the required
frequency, and in a level of detail you believe will be most useful for analyzing the perfor-
mance of your workload. For example, you can choose to capture the data of all DMVs
every 60 minutes, or you can capture the information for just a few columns of a handful
of DMVs every 60 seconds.

Now, let’s take a look at creating a simple but very useful performance data warehouse.
The purpose of this performance data warehouse is to archive key elements of query exe-
cution details so that the information can be used to analyze query performance in any
interval of time. We can achieve this by capturing the top few (say, 10) longest-running
queries using the sys.dm_exec_query_plans DMV and archiving the data into a database.

Let’s start by creating a performance database called PerfDB that we will use to archive
the performance data:

On the CD The code for the example below is provided on the CD in the file
Performance_Data_Warehouse_Example.sql in the \Scripts\Chapter 31 folder.

CREATE DATABASE PerfDB

ON (NAME = PerfDB_dat,

 FILENAME = ‘C:\PerfDB_dat.mdf’, SIZE = 100, FILEGROWTH = 10)

LOG ON (NAME = PerfDB_log,

 FILENAME = ‘C:\PerfDB_log.ldf’, SIZE = 10, FILEGROWTH = 10);

Note You should change the database file location, size, and growth parame-
ters to best suit your usage model. Additional information about the database
creation command can be found in Chapter 10.

Chapter 31 Dynamic Management Views 1077
Next, let’s create a table (ExecQueryStats) to store the query execution information.
Because we will be extracting and storing information from the sys.dm_exec_query_stats
DMV, we will create a table very similar to the output of that DMV, the only two changes
being the addition of a datetime column (to store information about the time the query
information was archived) and the replacement of the sql_handle and associated offsets
with the actual SQL text. The create DDL statement for this table is listed here:

USE PerfDB;

CREATE TABLE ExecQueryStats(

 current_datetime DATETIME,

 sql_text NVARCHAR(MAX),

 plan_generation_num BIGINT,

 plan_handle VARBINARY(64),

 creation_time DATETIME,

 last_execution_time DATETIME,

 execution_count BIGINT,

 total_worker_time BIGINT,

 last_worker_time BIGINT,

 min_worker_time BIGINT,

 max_worker_time BIGINT,

 total_physical_reads BIGINT,

 last_physical_reads BIGINT,

 min_physical_reads BIGINT,

 max_physical_reads BIGINT,

 total_logical_writes BIGINT,

 last_logical_writes BIGINT,

 min_logical_writes BIGINT,

 max_logical_writes BIGINT,

 total_logical_reads BIGINT,

 last_logical_reads BIGINT,

 min_logical_reads BIGINT,

 max_logical_reads BIGINT,

 total_clr_time BIGINT,

 last_clr_time BIGINT,

1078 Part VII Performance Tuning and Troubleshooting
 min_clr_time BIGINT,

 max_clr_time BIGINT,

 total_elapsed_time BIGINT,

 last_elapsed_time BIGINT,

 min_elapsed_time BIGINT,

 max_elapsed_time BIGINT

);

Now that we have the infrastructure in place, all we need to do is extract the query execu-
tion information using the DMV and insert it into this table at some predetermined inter-
val (say, every 10 minutes). We can achieve this using the following INSERT statement:

USE PerfDB;

INSERT ExecQueryStats

 SELECT TOP 10 GETDATE(),

 (SELECT SUBSTRING(text, statement_start_offset/2,

 (CASE WHEN statement_end_offset = -1

 THEN LEN(CONVERT(nvarchar(max), text)) * 2

 ELSE statement_end_offset

 END - statement_start_offset)/2 + 1)

 FROM sys.dm_exec_sql_text(sql_handle)),

 plan_generation_num,

 plan_handle,

 creation_time,

 last_execution_time,

 execution_count,

 total_worker_time,

 last_worker_time,

 min_worker_time,

 max_worker_time,

 total_physical_reads,

 last_physical_reads,

 min_physical_reads,

 max_physical_reads,

Chapter 31 Dynamic Management Views 1079
 total_logical_writes,

 last_logical_writes,

 min_logical_writes,

 max_logical_writes,

 total_logical_reads,

 last_logical_reads,

 min_logical_reads,

 max_logical_reads,

 total_clr_time,

 last_clr_time,

 min_clr_time,

 max_clr_time,

 total_elapsed_time,

 last_elapsed_time,

 min_elapsed_time,

 max_elapsed_time

 FROM sys.dm_exec_query_stats AS eqs

 ORDER BY eqs.last_worker_time DESC;

This statement extracts the relevant details of the 10 longest-running queries in the par-
ticular interval of time from the sys.dm_exec_query_stats DMVs and inserts that into the
ExecQueryStats table created above. Along with this, it also inserts the timestamp and
the SQL text extracted using the sys.dm_exec_sql_text DMV.

The last task in creating the performance data warehouse is to set up a mechanism
through which the data collection can be automated to occur every 10 minutes. While
you can use any scheduler tool to do this, I’ve found the SQL Agent, which is installed
along with the database engine, the easiest to use. The following steps list the procedure
you can use to create a SQL Agent job to automate the execution of the previous query:

1. Make sure that the SQL Server Agent service is running and that it is set to auto start
when the server is started. You can do this using SQL Server Configuration Manager,
as explained in Chapter 9, “Configuring Microsoft SQL Server 2005 on the Network.”

2. In Object Explorer view, connect to the server instance of your choice, and then
expand the server’s Databases folder.

3. Expand the Server node and then the SQL Server Agent node by clicking on the
+ sign, as shown in Figure 31-4.

1080 Part VII Performance Tuning and Troubleshooting
Figure 31-4 SQL Server Management Studio—SQL Server Agent view.

4. Right-click Jobs and select New Job.

5. Type in a name for the job and a description in the New Job window that appears,
as shown in Figure 31-5.

Figure 31-5 SQL Server Agent—New Job.

Chapter 31 Dynamic Management Views 1081
6. Click the Steps page and then click the New button at the bottom left-side of the
window.

7. In the New Job Step window that appears, type in a name for the step, change the
database to be PerfDB from the drop-down list, and add the SQL text for the step
presented in the INSERT statement above, as shown in Figure 31-6. Click OK to
continue. This will put you back in the New Job window.

Figure 31-6 New Job—New Job Step.

8. In the New Job window, click the Schedules page and then click the New button at
the bottom left-side of the window.

9. In the New Job Schedule window that appears, type in a name for the schedule, and
change the Frequency to Occurs Daily from the drop-down list. In the Daily Fre-
quency section, select the radio button next to Occurs Every, type 10 in the text box
next to it, and then select Minute(s) from the drop-down list adjacent to that, as
shown in Figure 31-7. Click OK to continue.

10. In the New Job window, click OK to create the job.

1082 Part VII Performance Tuning and Troubleshooting
Figure 31-7 New Job—New Job Schedule.

Real World Identifying the Cause and Source of Performance
Problems Using a Performance Data Warehouse

A customer with whom I work closely recently adopted the procedure of creating a
performance data warehouse very similar to the example presented previously and
in just a few days of capturing the data was able to identify and resolve some signif-
icant performance issues with their in-house financials application.

The process used to identify the issues was fairly simple. After having accumulated
a couple of days of performance data snapshots, they selected the top 1,000 queries
for the particular 24-hour period in descending order of the amount of time the
query had taken to execute (using the last_worker_time column). When analyzing
the data, they observed that there were only 4 unique SQL statements, and all of
them had very high processor utilization (total_worker_time) and high reads
(total_physical_reads) associated with them. The customer also observed that
three of the four queries were always executed only near the start of the hour. This
fact helped them easily link the queries back to a batch job they had scheduled to
run every hour at the start of the hour. After further analysis of the queries, they
tuned three of them by creating two additional indexes, while the fourth one had to
be rewritten in order to eliminate an expensive wildcard search operation predicate
(SELECT … FROM …WHERE … AND ColA LIKE ‘BU028%’).

Chapter 31 Dynamic Management Views 1083
After completing this exercise the customer observed order of magnitude improve-
ment in its batch job and also significantly lower utilization on its back-end SAN
disk subsystem.

While this example presents the archiving of the snapshots of a single DMV, the same
mechanism can be extended to archive snapshots of multiple DMVs in the same data
warehouse, or possibly even different data warehouses. Depending on the number of
DMVs you archive and the frequency of the archiving, your performance data warehouse
can grow to be significantly large pretty quickly. For example, the sample performance
data warehouse we created will have 1,440 rows archived in every 24-hour period and,
assuming that each row spans about 4 kilobytes (KB) on average, up to 6 MB of data can
be added to the table in the corresponding period. If you capture multiple DMV outputs
in your performance data warehouse or have a higher frequency, you can quickly end up
with several gigabytes of data. To ensure that you do not run out of disk space, you
should closely monitor the disk drive on which you’ve created your performance data
warehouses and have a policy in place to periodically backup and purge the old data.

Summary
Understanding the operation of an application and tuning performance usually requires
insights into the internal operation of the database engine components. While this was
generally possible in earlier versions of SQL Server, SQL Server 2005 dramatically simpli-
fies the process of surfacing this information with the introduction of dynamic manage-
ment views and functions.

In this chapter, we described the new DMV functionality and took a detailed look at each
of the new DMVs. We also covered several example scenarios where DMVs were used
very effectively to investigate application performance and understand the workings of
the database engine. Lastly, we stepped through the process of creating a sample perfor-
mance data warehouse to archive a log of slow running queries.

Chapter 32

Microsoft SQL Server 2005
Scalability Options

Scalability Options .1086

Scaling Up .1086

Scaling Out .1092

Summary .1112

Your database solution’s response time and, more importantly, the level of its throughput
have a direct impact on the productivity and revenue of your organization. Performance
and throughput are a measure of not only your underlying hardware platform but also
how well your database solution has been designed.

Although hardware performance has significantly improved even as cost has dropped
dramatically during the last decade, organizations and database users demand more
from their database solutions as databases increase in both size and the number of con-
current users. The research and development costs of improving the performance of
hardware for vendors, especially in the microprocessor sector, have likewise increased
significantly. Moore’s law is under strain and various laws of physics are becoming a real
issue in microprocessor, disk drive, and memory design.

Consequently, software companies like Microsoft have introduced features into their
operating systems and database solutions that can better utilize the available hardware
resources. In this chapter, we’ll look at the various technologies offered by SQL Server
2005 to realize better performance and throughput.

Note As a database architect, I think it is great to have such a massive range of
options in SQL Server 2005 for scaling your database solution. But make sure you
don’t confuse scalability and high availability, which is quite common. Although
the two concepts may seem related, they are not. With high availability, you are
trying to guarantee a certain level of a up-time, or availability, whereas scalability
is primarily concerned with getting better performance through utilization of
more resources. The fact that certain SQL Server 2005 technologies can be used
both to scale your database solution and to provide high availability probably
does not help this confusion.
1085

1086 Part VII Performance Tuning and Troubleshooting
When evaluating the various available SQL Server scalability options, don’t forget that
you can also combine certain options to get a best-of-breed solution. Ultimately, as
always, it depends on a thorough understanding of your business requirements and tech-
nical constraints.

Scalability Options
Once your database design and database application have been optimized, there are two
main methods of improving response time and increasing throughput: scaling up or scal-
ing out your SQL Server 2005 solution. Typically, you scale up your SQL Server 2005
solution because it is generally cheaper to “throw more hardware at it,” but eventually you
will reach some limit, in which case you need to start looking at your scale-out options.
Remember to explore all options for scaling up to understand how they can best be used
for your particular SQL Server 2005 solution. A lot of these options have already been dis-
cussed in earlier chapters, such as Chapter 4, “I/O Subsystem Planning and RAID Con-
figuration,” and other chapter references.

Scaling Up
Scaling up means maximizing the performance capabilities of your existing SQL Server
2005 instance’s hardware resources by adding more processors, memory, and storage
capacity, or by replacing your existing hardware resources with faster versions.

Let’s examine these hardware subsystems and the options for scaling up their hard-
ware resources. Be sure to purchase the appropriate hardware, operating system, and
SQL Server 2005 edition to allow for future growth as your database solution’s require-
ments grow.

Processor Subsystem
Although most SQL Server instances are I/O-bound rather than compute-bound, scaling
up your processor susbsystem generally results in better performance and allows for
more capacity. There are a number of considerations available when scaling up your pro-
cessor subsystems:

■ Using a 32-bit x86 processor from AMD or Intel

■ Using a 64-bit x64 processor from AMD or Intel

■ Using a 64-bit IA64 (Itanium-based) processor from Intel

■ Using hyperthreading technology

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1087
■ Using a multiprocessor-based server

■ Using a multicore-based processor

Ideally, your organization purchases server hardware that allows for future growth. Gen-
erally speaking, it is recommended that you use a 64-bit server for any new SQL Server
2005 solutions, primarily due to the amount of addressable memory that is available.
We’ll get into more detail about that shortly.

Another important consideration is whether to use a x64 or IA64 instruction set based
processor. A detailed discussion is beyond the scope of this book, so you will need to
investigate this further through your hardware vendor, but keep a couple of points in
mind. x64 processors offer the fastest performance at the processor level today with gen-
erally faster clock speeds than the IA64 processors. The battle between AMD and Intel in
the x64 marketplace is continually bringing the release of increasingly fast processors at
decreasing prices, relative to performance. The IA64 processors generally offer better
floating point arthimetic, and their architecture scales much better where your workload
requires more than eight processors.

In short, you should keep up-to-date with hardware vendors to ensure that you have the
latest information so that you can make correct recommendations for purchasing hard-
ware within your budgetary constraints. Although it may have a minimal impact on your
decision-making process when designing your database solution, you might still want to
check out the various performance benchmarks for relational database engines at http:/
/www.tpc.org/ to see how well SQL Server 2005 will scale and what kind of hardware is
required.

Note Whether SQL Server 2005 will run faster on a 64-bit platform compared
to a 32-bit platform depends on a number of factors, such as whether memory is
the bottleneck, whether the database solution is CPU-bound, whether there are
pointers in the working set data, whether the processors are instruction set-
bound, and whether your database solution is floating-point intensive.

Microsoft has found that SQL Server 2005 solutions that are not memory-con-
strained on a 32-bit platform may run about 10 percent less efficiently using the
64-bit edition than the 32-bit edition on the same server. Additionally, you may
see the processors busier on a 64-bit platform than on a 32-bit one when you
perform an equivalent workload.

Multiple Processors
The Windows operating system uses a Symmetric multiprocessing (SMP) architecture to
allow multiple processes to run concurrently. This multitasking is done at the thread

1088 Part VII Performance Tuning and Troubleshooting
level, so if an application is multithreaded, as is the case with SQL Server 2005, it can per-
form tasks concurrently.

A recent trend in hardware is scaling out the processors by supporting multiple cores per
processor because it is more cost effective to shrink and use multiple cores on a processor
than to increase the speed of processors. Modern operating systems and business appli-
cations, such as SQL Server 2005, are multithreaded and, consequently, can take advan-
tage of this technology.

The best multitasking performance is achieved through multiprocessor servers versus
equivalent multicore uniprocessor servers. With the advent of multicore processors, dis-
cussions can get a bit confusing, so it is common to refer to the sockets on the mother-
board, as opposed to the processors. The number of sockets that a server supports
depends on the hardware vendor, but eight-way socket servers are now commonplace.
Using more than eight sockets tends to substantially increase the hardware cost due to
the complexity of designing appropriate motherboard technology.

An interesting trend, as shown in Figure 32-1, is how dual-socket servers catch up with
four-socket within 12 to 24 months based on Intel Xeon processor-based servers over the
past decade. So when purchasing your hardware remember to plan for future growth.
This might involve purchasing additional processors or upgrading to faster processors.
So talk to your hardware vendor.

Figure 32-1 How dual socket servers catch up with four-socket servers within
12 to 24 months.

1000

100

10

1

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

(t
p

m
C

)

20062005200420032002200120001999199819971996
Year

Dual-socket servers catch up with four-socket
servers within 12 to 24 months

128-socket

32-socket

16-socket
8-socket
4-socket

1-socket
2-socket64-socket

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1089
More Info For more information on right-sizing your server and cutting sys-
tem costs through dual-socket server, you should read the “Server Rightsizing:

Dual-socket Systems Cut Costs” article located at http://www.intel.com/it/pdf/
server-rightsizing.pdf.

Multicore Processors
Multicore processor solutions available from AMD and Intel represent a great way of scal-
ing your processor susbsystem. Processors with multiple cores can execute multiple jobs
simultaneously (multitask) compared to single-core processors, although an application
has to be multithreaded to take advantage of the architecture. SQL Server 2005 can take
advantage of multiple cores because it allocates a scheduler to each core as if it were a sep-
arate processor. SQL Server 2005 licensing is based on the processor (or socket) and not
how many cores the processor has, so multicore processors represent a lower total cost of
ownership (TCO).

Multicore processors scale very effectively, although AMD and Intel have taken different
approaches with the design of their Opteron/Athlon and Xeon/Pentium processors,
respectively. When deciding on a multicore processor server, don’t forget to look at the
the multicore architecture, the Front Side Bus (FSB) speed, the memory controller,
related I/O chipsets and power usage/efficiency. In other words, it is a holistic look at the
entire server, as opposed to concentrating on any particular hardware component.

At the time of writing this book, Intel just released quad-core processors in the last quar-
ter of 2006, and AMD is planning to release their re-engineered quad-core processors in
mid 2007. I would not be surprised to see eight-core processors being released as early as
2008 as both AMD and Intel shift to 65nm fabrication for their processor lines.

Hyperthreading
Intel’s hyperthreading technology has the potential to yield good performance gains on
a number of applications by effectively allowing the CPU to remain less idle. However,
hyperthreading does not guarantee the same performance as a server with two proces-
sors or a multicore processor.

Microsoft’s conservative testing has shown 10 to 20 percent improvements in certain
SQL Server workloads, but the application patterns have a significant impact on these
metrics. You might find that your SQL Server 2005 solution does not receive an increase
in performance by taking advantage of hyperthreading. If the physical processor is
already saturated with multiple concurrent scheduler tasks, using these logical proces-
sors can actually reduce the workload because you end up thrashing the CPU cache.

1090 Part VII Performance Tuning and Troubleshooting
More Info For more information on SQL Server and hyperthreading, you
should read the Microsoft Knowledge Base article located at http://sup-
port.microsoft.com/kb/322385/.

Memory Subsystem
Most SQL Server 2005 instances are I/O-bound, not CPU-bound. The best way to
improve your I/O performance is by adding more memory to your SQL Server 2005
solution because the database engine will then be able to cache more data in its buffer
pool. The amount of memory SQL Server 2005 can address depends on the underlying
operating system. Standard 32-bit addresses can map a maximum of 4 GB of memory.
Therefore, standard address spaces of 32-bit processes are limited to 4 GB. By default,
32-bit Microsoft Windows operating systems reserve 2 GB for the operating system,
leaving 2 GB for any application. However, you can specify the /3GB parameter in the
BOOT.INI file of Windows 2000 Advanced Server or above, so that the operating system
reserves only 1 GB of the address space for itself, effectively allowing the application to
access up to 3 GB.

If you are running 32-bit SQL Server 2005, you are generally limited to 4 GB of virtual
address space (VAS), depending on the underlying operating system. However, due to
the design of the Windows operating system, 32-bit SQL Server 2005 can only access
2GB of the VAS on 32-bit Windows because of the user-mode address space limit, unless
you have enabled 3 GB tuning, in which case 32-bit SQL Server can access the 3 GB. This
was covered in more detail in Chapter 2, “Microsoft SQL Server 2005 Editions, Capacity
Limits, and Licensing.”

However, 32-bit SQL Server 2005 can take advantage of the full 4 GB of VAS if you are
running it on Windows Server 2003 x64 using the WOW64 (Windows On Windows)
layer. The address space limit for SQL Server 2005 is summarized in Table 32-1. With 64-
bit SQL Server 2005, the VAS depends on the hardware platform and is probably going
to be restricted by the vendor’s hardware limitations.

Table 32-1 Address Space Limit for 32-Bit and 64-Bit SQL Server 2005

Windows Server
2003

SQL Server
2005

Virtual Memory
Limits

Physical Memory
Limits

32-bit 32-bit 2 GB

(3 GB with 3 GB BOOT.INI
switch)

64 GB

64-bit (x64) 32-bit 4 GB 64 GB

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1091
Address Windowing Extensions (AWE) is a set of extensions to Windows memory manager
that is designed to work around the 32-bit 4 GB VAS limit, thereby allowing an application
to utilize more than 4 GB of memory. Although the 32-bit address space is limited to 4 GB,
the nonpaged memory can be much larger. So AWE allows an application to acquire phys-
ical memory and then dynamically map views of the nonpaged memory to the 32-bit
address space. This enables memory-intensive applications, such as large database sys-
tems, to address more memory than can be supported in a 32-bit address space. Applica-
tions need to be written specifically to take advantage of AWE, and there is some overhead
incurred.

SQL Server 2005 can use AWE only for its data cache. Not all SQL Server 2005 compo-
nents are AWE aware, so SQL Server Analysis Services, SQL Server Integration Services,
SQL Server Reporting Services, and CLR components cannot take advantage of AWE.

Note You cannot use the /3GB switch in BOOT.INI if your server has more than
16 GB of memory as the Windows operating system needs the full 2 GB to man-
age the AWE memory.

The advantages of using the flat address space of 64-bit Windows are numerous, and it is
recommended that you follow this path instead of using AWE, although SQL Server 2005
has improved the use of AWE memory over SQL Server 2000.

More Info SQL Server 2005 handles AWE differently on Windows Server 2003
from Windows Server 2000 in a number of ways. The major difference is that SQL
Server 2005 supports dynamic allocation of AWE memory on Windows Server
2003. For more information on these differences search for the “Enabling AWE
Memory for SQL Server” topic in SQL Server 2005 Books Online.

I/O Subsystems
Another technique to improve the throughput of your SQL Server 2005 instance is to
scale up the I/O subsystem. Unfortunately, disk drive technology and networks have not

64-bit (x64) 64-bit (x64) 8 TB 1 TB

(Operating System
Dependant)

64-bit (IA64) 64-bit (IA64) 32 TB

Table 32-1 Address Space Limit for 32-Bit and 64-Bit SQL Server 2005 (continued)

Windows Server
2003

SQL Server
2005

Virtual Memory
Limits

Physical Memory
Limits

1092 Part VII Performance Tuning and Troubleshooting
had the same dramatic improvements in performance as processors have had over the
last decade. Nevertheless, there are a number of techniques that you can employee.

The main technique for improving your disk I/O subsystem is through an appropriate
RAID array or SAN solution. The various levels of RAID and their respective perfor-
mances and levels of protection were covered in Chapter 4. You should read that chapter
before implementing your RAID subsystem to ensure you have chosen the appropriate
level of RAID for your SQL Server 2005 instance.

I/O performance of your SAN performance can be improved through both faster Host
Bus Adapters (HBA) and and a dedicated/ faster network infrastructure. Another tech-
nique of improving your I/O subsystem, one that is often overlooked, is through Network
Interface Card (NIC) teaming. NIC teaming allows you to group multiple physical NICs
into a single logical network device called a bond. The main advantage of NIC teaming is
that it allows you to load balance or scale out your network traffic through a single IP
address to provide high bandwidth. Another advantage is that NIC teaming effectively
provides fault tolerance.

Most hardware vendors offer a NIC teaming solution. Make sure you read your vendor’s
documentation and generally ensure that you are running the latest firmware and NIC
drivers.

Scaling Out
Scaling out generally involves the addition of extra SQL Servers to provide increased scal-
ability. When a SQL Server 2005 instance for a particular database solution is at its max-
imum potential and unable to meet performance demands, you should consider scaling
out. SQL Server 2005 allows you to scale out both the database storage solution and the
hardware solution. Chapter 19, “Data Partitioning,” covered how you can use data parti-
tioning to scale out your database solution. In this chapter, I will examine the following
technologies for potentially scaling out your SQL Server solution:

■ SQL Server instances

■ Clustering

■ Database mirroring

■ Log shipping

■ Replication

■ Shared scalable databases

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1093
These various SQL Server 2005 technologies have not necessarily been designed to scale
out your SQL Server solution, so make sure you understand what the technology was
designed to do and its correct implementation so that you can leverage any scale-out
capabilities.

Multiple SQL Server Instances
Remember to consider taking advantage of SQL Server 2005’s ability to run multiple
instances on the same server. This ability provides an effective technique of taking advan-
tage of modern multiprocessor hardware, especially with latest generation of multicore
processors that are currently available and are planned for release in the next coming years.

This technique involves installing multiple SQL Server 2005 instances on the same
server and deploying database solutions on these separate instances. Each database solu-
tion get its own database engine with its own allocation of processor and memory
resources. Furthermore, through the separate database engine, each database gets its
own lock manager, set of worker threads, and tempdb system database.

Note Licensing for SQL Server 2005 is based on the processor (sockets) and
not the number of cores the processor has. Furthermore, the number of proces-
sors a SQL Server instance can use is likewise based on the processor and not the
number of cores it supports.

You can further compartmentalize each SQL Server 2005 instance, thus guaranteeing a
certain level of performance and resources, by taking advantage of some of the configura-
tion options, such as the affinity mask, that is covered in Chapter 29, “Database System
Tuning.”

Real World SQL Server 2005 Express Edition

I am particularly excited by the potential of SQL Server 2005 Express Edition for a
number of my clients. For these clients, the features supported by Express Edition
of SQL Server 2005 are sufficient for their needs. Given the multicore processors
available and the 64-bit address space of Windows Server 2003 x64, it allows me to
install multiple instances of SQL Server 2005 Express Edition on the same server
and deploy a database solution per instance, guaranteeing both performance and
reliability at the instance level at a phenomenal price.

Note SQL Server 2005 supports 50 instances on a stand-alone server and 25
instances on a failover cluster.

1094 Part VII Performance Tuning and Troubleshooting
Clustering
The failover clustering technology available in SQL Server 2005 does not inherently pro-
vide any scalability advantages. The failover clustering is used to provide a high-availabil-
ity solution by protecting against server failure, including the hardware, operating
system, and SQL Server 2005 instance. Chapter 26, “Failover Clustering Installation and
Configuration,” covered how to install, configure, and test a SQL Server 2005 failover
cluster.

Although SQL Server 2005 does not support load-balancing clustering, you can still take
advantage of SQL Server 2005 clustering technology to scale out your database solution
by taking advantage of the spare hardware available through the passive node. This might
not be possible if you have cross-database dependencies, but you can host stand-alone
database solutions on separate virtual servers. You will also need to purchase additional
SQL Server 2005 licences.

When designing a clustering topology to scale out your database solutions, it is impor-
tant to take into account several considerations, including any existing service level
agreements (SLAs), availability requirements, failover policies, and risk assessments.
It is important to capacity plan your hardware resources correctly in case a failover
occurs.

Multiinstance Cluster
A multiinstance cluster typically has two virtual servers installed in a cluster. The data-
base data and log files for each virtual server are typically installed on a shared storage
resource that is dedicated to that virtual server. The primary node for each virtual server
runs on separate hardware, as shown in Figure 32-2. Because there are multiple instances
of SQL Server 2005 running on each instance, a separate SQL Server 2005 license is
required for each virtual server.

You can use a multinstance cluster to scale out database solutions to separate hardware
resources. It is more cost-effective than a single-instance cluster because it utilizes all of
your existing hardware. The HR and Sales databases shown in Figure 32-2 effectively run
on separate hardware resources and are therefore able to individually fully utilize the
memory and processor resources available.

Note In case of a failover, you need to ensure that each node has the required
memory and processor resources to maintain any existing SLAs, as one node will
now be running two instances of SQL Server 2005. You can take advantage of
SQL Server 2005’s dynamic configuration options to allocate resources appropri-
ately in case a failover occurs.

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1095
Figure 32-2 Multiinstance cluster used to scale out the HR and Sales databases.

N+1 Cluster
An N+1 cluster has two or more virtual servers installed in a cluster along with one pas-
sive node (+1). The database data and log files for each virtual server are installed on a
shared storage resource that is dedicated to that virtual server. A separate SQL Server
2005 license is required for each virtual server.

In the case of a primary node for a virtual server failing or being taken offline, the passive
node takes control of the shared storage resource for that virtual server. The other virtual
servers, those using the previously passive node, are not affected by this failover.

An N+1 cluster can be more cost-effective than configuring multiple single-instance clus-
ters, as fewer servers are required. N+1 clusters allow you to better scale out database
solutions on existing servers while still guaranteeing a level of performance due to the
spare passive node.

Note The most important consideration when designing an N+1 cluster is cal-
culating the resource capacity in the case of more than one node failing at the
same time. Your passive node might need to handle the entire load caused by
multiple node failures.

Quorum

HR

Node A

Node B

Sales
Sales

HR
Virtual
server A

Virtual
server B

Heart
server

1096 Part VII Performance Tuning and Troubleshooting
N+M Cluster
An N+M cluster has two or more virtual servers installed in a cluster together with two or
more passive nodes (M). Again, the database data and log files for each virtual server are
installed on a shared storage resource that is dedicated to that virtual server. Again, a sep-
arate SQL Server 2005 license is required for each virtual server.

The advantage of an N+M cluster is that you have multiple passive nodes that can be uti-
lized in case of multiple failovers, so the load of multiple primary node failures can be
spread across the passive nodes.

N+M clusters are typically used when it is important to gurantee levels of performance.
Alternatively, they are used where your passive nodes do not have the appropriate level of
hardware to handle multiple failovers.

Note It is most common to see an N+M cluster used in an eight-node config-
uration as either a 6+2 or 5+3 cluster.

Database Mirroring
As you learned in Chapter 27, “Log Shipping and Database Mirroring,” database mirror-
ing is a new technology to SQL Server 2005 that delivers a high-availability solution by
providing redundancy at the database level. With database mirroring, transaction log
records are sent directly from the principal database to the mirror. This technique keeps
the mirror database up-to-date with a principal database with no loss of committed data.
If the principal server fails, the secondary server can take over. The failover process can be
automatic only when a witness server has been configured, to solve the “split-brain” prob-
lem as discussed in Chapter 27; otherwise it has to be initiated manually.

As with clustering, database mirroring is primarily designed to provide fault tolerance,
but at the database level. As database mirroring is implemented at the SQL Server engine
level through software, there is no need for the specialized hardware that clustering
requires.

Note Database mirroring relies heavily upon reliable network infrastructure, so
it is not suited to WAN links that are unreliable or have low bandwidth.

Database mirroring allows only one mirror database per principal database, and nor-
mally your users are not able to access the mirror database. Nevertheless, you can still use
SQL Server’s database mirroring technology to scale out your database solution and real-
ize some performance benefits by offloading reporting activity from the principal server,
as shown in Figure 32-3.

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1097
Figure 32-3 Offloading reporting activity through database mirroring.

To use a database mirroring for reporting, you must create a database snapshots on the
mirror database, as shown in Chapter 10, “Creating Databases and Database Snapshots,”
and then redirect client applications to the appropriate snapshot. Client applications are
then able to access this static, read-only, transactionally consistent snapshot of the mirror
database, although the mirror database itself is unaccessible.

Note The mirrored database must be in a SYNCHRONIZED database state for
you to be able to create a database snapshot.

Due to the point-in-time nature of the database snapshot, new or updated data in the mir-
rored database is not available until you create a new database snapshot. Consequently,
you will have to create a new database snapshot as required and have your client applica-
tions reconnect to the latest database snapshot. This might introduce a latency, that you
will need to analyze to see whether it is acceptable or not, depending on your business
requirements. Use any existing SLAs for guidance.

 Another import consideration is to correctly size and plan the capacity of your database
snapshot(s). Although a database snapshot is initially almost empty, it can grow very
quickly depending on the amount of data that changes within your database, so you need
to ensure you have enough capacity to store the database snapshot. The database snapshot
can easily take up as much space as the database itself if enough of the data has changed.

Although you can have multiple database snapshots, they might decrease the perfor-
mance on the principal database, depending on the configuration of the principal and
mirror server. Consequently, Microsoft recommends that you keep only a few relatively
recent database snapshots on your mirror databases. In most cases, you will need to keep
only the most recent database snapshot and will be able to drop all earlier ones.

Note You will not be able to drop any database snapshots until after any cur-
rent queries accessing those database snapshots finish executing.

Principal
server

Mirror
server

Read only
database snapshots

Sep 2006

Oct 2006

Nov 2006

1098 Part VII Performance Tuning and Troubleshooting
Because each principal is restricted to having only one mirror database, the read-only
nature of database snapshots, and the potential latency arising due to the time between
database snapshots, database mirroring is not commonly used as a means of scaling out
your database solution. It probably works best for organisations that have already
decided to use database mirroring and would like to take advantage of offloading report-
ing from the production system.

Log Shipping
Although enhanced in SQL Server 2005, log shipping has been available in one form or
another in all versions of SQL Server. It relies on proven technologies, such as transaction
log backups, file copying, and SQL Server Agent. Chapter 27 provides an overview of log
shipping and shows how to configure and tune a SQL Server 2005 log shipping solution.
Remember that log shipping does not automatically failover from the primary server to
the secondary server when the primary database fails. However, it does guarantee a trans-
actionally consistent version of the primary database on a secondary SQL Server 2005
instance. The main issue with log shipping is the degree of latency you can afford
between the primary and secondary servers. This data latency depends mainly on the
backup, copy, and restore schedule, although environmental considerations such as your
network infrastructure are important.

As the secondary databases of the secondary server are accessible by users only for read-
only purposes, log shipping represents an excellent way of scaling out your reporting
requirements because you have removed query processing from the primary server to
one or more secondary servers, thus freeing up the resources on the primary server. Oth-
erwise, you have achieved better data availability by providing your data closer to the
user.

The main advantage of log shipping over database mirroring is that you can have multiple
secondary servers to which you have log-shipped your primary database’s transaction
logs. Nor is there the dependency on the network infrastructure, as with database mir-
roring, so you can schedule your transaction logs to be shipped periodically throughout
the business day or after hours, as required. Consequently, log shipping works particu-
larly well with geographically dispersed SQL Server instances, as seen in Figure 32-4.

In this example, we’re log shipping our customer database from the head office located
in Sydney to satellite offices in East Timor, Perth, and Wellington. Because both Perth and
Sydney are in Australia and have a fast reliable network connection, log shipping has
been scheduled at an hourly frequency. East Timor has an expensive WAN link and only
has a small operation, so it is sufficient to configure log shipping to occur once a week as
they do not need the latest information from the Sydney office. As Wellington is behind
in time relative to Sydney, it is sufficient to replicate once daily after the close of business

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1099
in the Sydney office. By the time the employees in Wellington come in to work, they
should see the latest version of the customer database. The main point here is that log-
shipping can be highly customized to suit the business requirements and infrastructure
available. It is a completely asynchronous solution.

Figure 32-4 Scaling out reporting requirements geographically with log shipping.

The log shipping was designed primarily as a warm standby solution. Consequently, the
secondary database on the secondary server is configured by default in NORECOVERY
mode, which allows additional transaction logs to be loaded while preventing users from
accessing the secondary database. In this example, you must configure the secondary
database in STANDBY mode, which allows read-only access to the database but also
allows additional transaction logs to be loaded. There are two configuration choices for
the STANDBY mode:

■ The default does not disconnect users from the secondary database when the next
shipped log is ready to be loaded. Shipped transaction logs accumulate until all
users are disconnected. This can obviously be problematic if you have a very busy
database solution in which your users are running reports continually throughout
the day.

■ You can select the Disconnect Users In The Database When Restoring Backups check
box, as shown in Figure 32-5, which disconnects users from the secondary database
whenever the next shipped transaction log is ready to be loaded. The disconnection
occurs based on the schedule that you have configured for the restore job.

Perth Sydney

Daily

Continuous

Hourly

East Timor

Wellington

1100 Part VII Performance Tuning and Troubleshooting
Figure 32-5 The Disconnect Users In The Database
When Restoring Backups check box.

You will have to decide upon an appropriate schedule for shipping the logs, and how to
respond to connected users based on your business requirements, acceptable degree of
latency, and operational behaviour.

Note Don't forget that the restore jobs can have a different frequency than
the transaction log backups and shipping jobs. The transaction logs accumulate
until they are ready to be loaded.

A log shipping solution can be particularly effective at scaling out your reporting require-
ments to different departments. Each department has its own version of a secondary
database on a SQL Server instance against which they can report. One department’s que-
ries do not adversely affect another department’s query performance. You have also pro-
vided a layer of fault tolerance, so if one department’s secondary database crashes other
departments will still be able to report with their secondary databases.

Alternatively, for a true fault tolerance layer at the secondary database level, you can use
Microsoft’s Network Load Balancing (NLB) technology to provide both fault tolerance
and load balancing. NLB allows client applications to connect to a single, virtualized IP
address configured on the NLB cluster. The NLB cluster is responsible for automati-
cally redirecting the client application to one of the physical IP addresses of the second-
ary databases that make up the NLB cluster, as shown in Figure 32-6. An additional
benefit of implementing an NLB cluster is that it allows you to take your secondary

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1101
SQL Server instances offline to perform maintenance tasks without having to a recon-
figure client applications.

Figure 32-6 A log shipping solution using an NLB cluster.

Note A single NLB cluster can have up to 32 servers and can be scaled
beyond this limit by using a round-robin domain name service (DNS) between
multiple NLB clusters.

Replication
SQL Server’s replication technology has proven to be powerful, reliable, and flexible dur-
ing the last decade, representing a great way of scaling out your database solution. Chap-
ter 20, “Replication,” covers the fundamentals of replication and the different replication
types for configuring, managing, and tuning replication.

When considering SQL Server 2005’s replication technology, make sure you understand
how the technology works to determine the appropriate replication topology for your
scale-out solution. The two main considerations are the latency that your database solu-
tion can afford, whether database users will need to modify data, and, if so, whether you
need to deal with update conflicts.

Principal
server

IP1

IP2

IP3

IP4

}
NLB

cluster

Virtual
IP

1102 Part VII Performance Tuning and Troubleshooting
Environmental and operational factors influence the performance of your replication
topology, so it is a good idea to set up a testbed environment to see how it performs
within your organization and set correct expectations for all stakeholders.

Merge Replication
With merge replication, data modifications are kept tracked via triggers on both the pub-
lisher and the subscriber. When the publisher and subscriber try to synchronize, they
send each list of modified rows and attempt to merge the changes to get a consistent view
of the data. In this type of replication, data modification conflicts can occur, so you need
to configure some form of conflict resolution.

Merge replication is typically used between a SQL Server instance and a client computer
that is not constantly connected to the network, such as in the case of traveling sales staff.
When they are back in the office (or connect remotely potentially), they can synchronise
their new orders and customers back with the publisher, while the publisher sends them
the latest products, pricelists, and any other updated data.

However, you can still use merge replication as a means on scaling out your database
solution to multiple SQL Server 2005 instances. Although you could use merge replica-
tion rather than transaction replication when you have a slower network infrastructure
between the publisher and subscribers, the main reason for using merge replication as a
scale-out solution is when you need to modify data at all SQL Server 2005 instances.

When designing a merge replication topology, define the conflict resolution rules, as dis-
cussed in Chapter 20, as separate database users can modify the “same data” that is
located on their instance of the database. However, merge replication works best where
data modifications tend to be mutually exclusive. Figure 32-7 shows an example of merge
replication being used to scale out a sales database to multiple offices within Australia.
The Brisbane, Melbourne, Perth, and Darwin offices all merge replicate their new orders
and customers with the head office in Sydney. Sydney then merge replicates this informa-
tion to all of the offices. Because Sydney is responsible for the ordering, delivery, and con-
signment of requested products from overseas, it maintains the product catalog and the
status of overseas’ orders, which it merge replicates with the various offices. This sort of
a scale-out solution does not need to work in real-time, so merge replication is the perfect
technology.

Transactional Replication
With transactional replication, you stream all the DML operations as required from the
publisher to the subscriber. Transactional replication has a hierarchy, with transactions
being replicated from the publisher to the subscriber.

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1103
Figure 32-7 Scaling out using a merge replication topology.

Because transactional replication assumes a hierarchical structure, with “read-only” sub-
scribers it works well as a scale-out solution where you want to distribute data to multiple
SQL Server 2005 instances for reporting purposes, as shown in Figure 32-8. Database
users can connect to any one of the subscribers to generate reports, although there will be
some latency between data being modified on the publisher and it being replicated to the
subscribers, which depends on your hardware and network infrastructure. Because the
HR, Marketing and Sales department are all located at the Head Office in Sydney on the
same LAN continous replication has been configured. Consequently those departments
should only experience a minor latency of a few seconds. For the branch office located in
Darwin, which is connected via a WAN link, it is sufficient to replicate every hour as a
degree of latency is acceptable.

If one of your subscribers goes offline, the transactional replication technology does not
automatically switch database users to another available subscriber. You perform the
switch at the application level by adding code that automatically redirects a connection if
a particular database isn’t available.

Note Alternatively, you can use the NLB clustering technology, as discussed
previously, to virtualize your subscriber layer.

Perth

Darwin

Sydney

Brisbane

Melbourne

1104 Part VII Performance Tuning and Troubleshooting
Figure 32-8 Scaling out using a transactional replication topology.

Due to transactional replication’s hierarchy, you typically do not modify data at the sub-
scriber because your data modifications can be overwritten or cause data conflict errors.
Consequently, transactional replication has limited use in a scale-out scenario in which
you want your data to be modified at the subscribers. However, you have the ability to
update subscriptions without data conflicts by using one of the following options:

■ Immediate updating With immediate updating subscriptions, the subscriber
and publisher are updated in a single distributed transaction using the Microsoft
Distributed Transaction Coordinator DTC. There is a minimal chance of a conflict
with this option, but it requires reliable network connections.

■ Queued updating With queued updating subscriptions, you queue the DML
operations, which means a potential conflict because you effectively allow for simul-
taneous modification of the same data. Consequently, you have to configure some
conflict resolution; the options are as follows:

❑ Publisher wins (default)

❑ Publisher wins, and subscription is reinitialized

❑ Subscriber wins

Hourly

Continuous

}

Publisher

Subscriber Subscriber Subscriber}
Darwin

Sydney

WAN

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1105
Figure 32-9 shows a transactional replication with immediate updating subscriber topol-
ogy in a trading environment. Because all the SQL Server 2005 instances are located on
the same fast, reliable LAN, we can take advantage of the (DTC) technology. In this sce-
nario, a user making a change to the “back office” subscriber’s database invokes a distrib-
uted transaction with the “front office” publisher. This transaction then remains to be
replicated to the “middle office” subscriber.

Figure 32-9 Transactional replication with immediate updating subscribers.

Peer-to-Peer Transactional Replication
The new peer-to-peer transactional replication technology is available only in SQL Server
2005 Enterprise Edition. Based on transactional replication, peer-to-peer transactional
replication takes advantage of SQL Server 2005’s existing transactional replication tech-
nology, providing a number of wizards that help you manage the setup and configuration
of your peer-to-peer transactional replication solution.

With peer-to-peer transactional replication, you need to ensure that the database sche-
mas on all of the peers are identical. Because peer-to-peer transactional replication uses
the same continuous synchronization technique available in existing transactional repli-
cation technology, there is some inherent latency. If one of your SQL server 2005
instances goes down, it is possible that not all of its transactions will make it to the other
servers. As peer-to-peer transactional replication operates in near real-time, the amount of
latency and potential data loss is relatively low.

Note Peer-to-peer transactional replication has no built-in conflict detection
and resolution technology, as with merge replication. The technology is designed

UPDATE

Transactional
replication

Transactional
replication

MS DTC

"Middle" Office

"Back" Office

"Front" Office

Distributed
Transaction

1106 Part VII Performance Tuning and Troubleshooting
to work so that DML operations for any given data are made only at one data-
base, which is then synchronized with its peers.

Peer-to-peer transactional replication works best where your DML operations are mutu-
ally exclusive to each site and is designed to scale out your geographic workload by auto-
matically replicating data between these remote sites, as shown in Figure 32-10. In this
scenario, you have help desks based in Sydney, Florence, and Seattle that are used to ser-
vice your organization globally. If each help desk site operates in a window of time mutu-
ally exclusive from the other two, there is no DML conflict as help desk operators add
and resolve customer problems. (This scenario would also work, irrespective of the time
window, if each help desk site services only its region’s customers because all DML oper-
ations will also be mutually exclusive.)

Figure 32-10 Using peer-to-peer transactional replication
to scale out a database solution geographically.

Figure 32-11 shows an alternative implementation of peer-to-peer transactional replica-
tion in which an application server is used to load balance DML operations between two
SQL Server 2005 instances. In this scenario, the data can be read from either SQL Server
2005 instance, which improves performance.

Sydney

Florence

Seattle

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1107
Figure 32-11 Reading data through an application server in a peer-to-peer transactional
replication solution used to scale out a database.

However, for DML operations, as seen in Figure 32-12, the application server has to mod-
ify only one of the SQL Server 2005 instances for any given DML operation through
either data partitioning or some other load-balancing or queuing mechanism.

When deploying peer-to-peer transactional replication, it is important to understand the
network traffic that is generated between the peers because this can have a negative
impact on your network infrastructure. Understanding the network traffic and it’s
impact also allows you to set correct performance expectations for all stakeholders.
Remember that each SQL Server 2005 instance needs to replicate its transactions to
every other SQL Server 2005 instance. Figure 32-13 shows the network traffic that will
be generated between five SQL Server 2005 instances in a Peer-to-Peer Transactional
Replication topology.

SELECT
SELECT

SELECT

SELECT

SELECT

Load balancing
application server

Peer-to-peer
transactional
replication

SELECT

Data Read Operations

1108 Part VII Performance Tuning and Troubleshooting
Figure 32-12 Modifying data through an application server in a peer-to-peer transac-
tional replication solution used to to scale out a database.

Figure 32-13 Peer-to-peer transactional replication network traffic between five peers.

Data Modification Operations

INSERT

INSERT

DELETE

DELETE

Load balancing
application server

Peer-to-peer
transactional
replication

UPDATE

UPDATE

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1109
Best Practices It can be very difficult to predict the amount of network traffic
that will be generated in your peer-to-peer transactional replication topology,
and its impact on your network infrastructure. The best way to determine this
impact is to set up a testbed environment that simulates a typical day’s database
activity. This can easily be done through SQL Server Profiler, which was discussed
in Chapter 30, “Using Profiler, Management Studio, and Database Engine Tuning
Advisor.”

Shared Scalable Databases
Shared scalable databases (SSD) are a new feature available with SQL Server 2005 Enter-
prise Edition only that allows you scale out a read-only database built solely for reporting
purposes. The shared scalable database must reside on a read-only volume accessible
over a storage area network. After building the reporting database on a set of volumes,
you mark the volumes as read only and then mount them on multiple reporting servers,
as shown in Figure 32-14.

Note The reporting servers used to access the shared database must be run-
ning Windows Server 2003 Service Pack 1 or later installed with SQL Server 2005
Enterprise Edtion (or later).

Figure 32-14 A shared scalable database.

Shared scalable databases allow you to scale out your reporting workload because you
are using multiple SQL Server instances to access the same database files, but using each

SAN

Reporting
servers

Reporting
volume

(read-only)

1110 Part VII Performance Tuning and Troubleshooting
server’s processor, memory, and tempdb system database resources. Thererfore, you are
isolating queries that are running on different servers from each other. This prevents
inefficient or expensive queries running on one SQL Server instance from degrading per-
formance globally (although the reporting volume can be a potential bottleneck). Shared
scalable databases are a great way to guarantee any SLA for a particular set of users or
department because you can compartmentalise your server resources accordingly.

Note It is recommended that you limit your scalable shared databases to eight
SQL Server instances of the shared scalable database.

To implement shared scalable databases, start off by mounting your SAN volumes on
your production SQL Server, and build your reporting database by using any of the tools
provided by SQL Server 2005, such as the Database Copy wizard, to copy your produc-
tion database on to the mounted volumes. Once your production database has been cop-
ied across, the volumes are dismounted from your production SQL Server, and these
volumes are marked as read-only. This build phase is shown in Figure 32-15.

Figure 32-15 Build phase of a shared scalable database.

Once built, the read-only database has to be attached to the various reporting servers.
First, you must attach the read-only volumes to the SQL Server instances across the SAN.
You then attach the database files to your SQL Server instance using SQL Server Manag-
ment Studio or sp_attach_db system stored procedure, as discussed in Chapter X. This

SAN

Reporting
servers

Production
server

Reporting
volume

(read-only)

Build reporting database

Chapter 32 Microsoft SQL Server 2005 Scalability Options 1111
process is repeated on all of the SQL Server instances that require this read-only data-
base. Figure 32-16 shows this attach phase.

Figure 32-16 Attach phase of a shared scalable database.

If you need to refresh the data in your shared scalable database, you will need to perform
the following steps:

■ Detach shared scalable database Before the shared scalable database can be
refreshed on the SAN, all instances of SQL Server using the database must be
detached from the database files.

■ Refresh shared scalable database Once detached, the shared scalable database
needs to be refreshed from the production SQL Server instance. This process is sim-
ilar, if not identical, to the one used to create the initial database.

■ Attach shared scalable database Once refreshed, the shared scalable database
can be mounted back on to the various SQL Server instances as required.

Shared scalable databases are not appropriate for every environment, but they represent
a great way of scaling out read-only information, such as census or other reference data.
They even work for data that is periodically refreshed, such as civil registries or market
data, which tend to change infrequently but at well-defined intervals over time. This type
of data tends to consume a lot of storage space, so you probably do not want to have it
replicated throughout your enterprise. Shared scalable databases represent a great way of
scaling out this data without paying the storage cost.

Note Shared scalable databases, unlike normal databases in SQL Server 2005,
support NTFS compression. When deciding whether to compress your shared

SAN

Reporting
servers

Production
server

Reporting
volume

(read-only)

Mount reporting volume and
attach reporting database

1112 Part VII Performance Tuning and Troubleshooting
scalable databases, as with all forms of compression, you need to weigh the sav-
ings in storage against the CPU cost to uncompress the data, which heavily
depends on the type and quantity of data stored in your SSD.

Summary
In this chapter, you learned about the two main approaches you can use to improve the
performance and throughput of your database solution: scaling up and scaling out. Scal-
ing up involves the addition of more or faster hardware resources. Scaling out involves
the addition of more SQL Server 2005 instances to distribute the load on your database
solution.

Various techniques of scaling up were discussed. You learned how to scale up the main
hardware subsytems of your SQL Server 2005 solution.

The chapter concluded with an examination of the various scaling out technologies avail-
able with SQL Server 2005. When considering a SQL Server 2005 scale out technology,
you learned to consider the potential latency and any other data issue to see if it would be
appropriate for your database solution.

Chapter 33

Tuning Queries Using Hints
and Plan Guides

Understanding the Need for Hints .1113

Microsoft SQL Server 2005 Hints .1114

Plan Guides .1124

Summary .1136

In this chapter, we build on the performance tuning methodology and concepts pre-
sented in earlier chapters. We will take a look at tuning queries in somewhat extraordi-
nary conditions where the common performance tuning methods, such as tuning system
resources, creating the optimal indexes, and ensuring accurate table statistics, do not
resolve the problem and a more brute force approach of specifying explicative directives
to the query, called hints, is required.

We start by taking a detailed look at the three different types of hints: join hints, query
hints, and table hints, along with examples of how to use them and where they are most
applicable. We will also take a look at the new plan guides feature introduced in Microsoft
SQL Server 2005 and how it can be used to effectively tune queries originating from appli-
cations that cannot be modified, as well as restrictions and recommended best practices.
We conclude the chapter by going through several typical usage scenarios for plan guides
and query hints.

Understanding the Need for Hints
SQL Server 2005 uses the cost-based optimizer (CBO) to dynamically generate query exe-
cution plans. The CBO probes several system-wide resource states and employs many
complex algorithms to optimize and generate the best possible execution plan for a
query. The optimization and query plan generation process is often costly, especially for
complex queries. Once generated, query plans are cached in the SQL Server plan cache
to avoid repeating the optimization task when the identical query is re-executed. You can
view the query plans cached by SQL Server by querying the syscacheobjects table. For
1113

1114 Part VII Performance Tuning and Troubleshooting
example the following query can be used to list all the compiled plans in the instance of
SQL Server:

SELECT * FROM sys.syscacheobjects
WHERE cacheobjtype = 'Compiled Plan';

Since the query plans are optimized for the specific data present in these tables, the SQL
Server engine constantly monitors changes to the underlying tables and triggers a recom-
pile of the query plan when it estimates that the data has changed significantly enough to
justify a re-optimization. Once a query plan is recompiled, the old plan is discarded from
the plan cache and replaced with the new plan.

This targeted optimization and caching mechanism works perfectly well for most queries
most of the time. However, it is occasionally (though rarely) necessary to force a particu-
lar query plan based on experience with the operation of the application, insights into
idiosyncrasies in the application schema, or to force a better query execution plan than
the one generated by the optimizer. This can be done very easily in SQL Server by using
hints.

Hints are directives that influence the behavior of the CBO but do not change the
semantics of the query or the results in any way. During the optimization phase, the
optimizer weighs the benefits among the various possible query plans to select the one
that is best suited for the particular situation. Hints provided in the query bias this
selection process.

While query hints present a powerful method of manually controlling the behavior of the
optimizer and give you control over how query plans are generated, they should be used-
sparingly only as a last resort by experienced database administrators. The reason for this
is simple: Once a query hint is specified, the optimizer is always biased toward choosing
the query plan directed by the hint. This selection may be good for the situation at hand,
but it may prevent the optimizer from choosing a possibly better plan at a later time when
the shape of the underlying data or some other condition changes and the hint is no
longer optimal.

Microsoft SQL Server 2005 Hints
In addition to the hints available in earlier SQL Server versions, SQL Server 2005 intro-
duces many new hints, such as USE PLAN, FORCED PARAMETERIZATION, and so on.
These hints can be used in all editions of SQL Server 2005.

Chapter 33 Tuning Queries Using Hints and Plan Guides 1115
SQL Server 2005 classifies hints broadly into three categories: join hints, query hints, and
table hints. The entire list of hints included in these categories is explained in the sections
below.

Join Hints
Join hints are used to enforce a join strategy between the joined tables. When no join hint
is specified (the default case for a majority of the queries), the optimizer automatically
selects the join type that is best suited for the query. With SQL Server 2005, you can use
join hints to force nested loop joins, hash joins, merge joins, and remote joins for
SELECT, UPDATE, and DELETE statements. These hints are mutually exclusive, imply-
ing that only one of them can be specified for any query:

■ LOOP This hint specifies a nested loop join. In a nested loop join, every row in
the inner table is checked using the join criteria to see whether the values of speci-
fied fields are equal to those in each corresponding row in the outer table. Nested
loop joins are by far the most commonly used and are particularly well-suited for
cases where a small number of rows from a table are joined to a large number of
rows in another table.

■ HASH This hint specifies a hash join. In a hash join, one table is reorganized as a
hash table. The other table is scanned one row at a time, and the hash function is
used to search for equalities.

■ MERGE This hint specifies a merge join. In a merge join, each table is first sorted
and then one row at a time from each table is compared with the corresponding
row in the other table in descending order.

■ REMOTE This hint specifies a remote join. A remote join is when at least one of
the participating tables is remote. When this hint is specified, the join operation is
performed on the site of the right table. This hint is useful when the left table is a
local table (a table on the database where the query is executed) and the right table
is a remote table (table on a remote database server). The REMOTE hint should be
used only for inner joins when the left table has fewer rows than the right table.

Let’s take a look at an example where a join hint is specified to force a merge join for a
query executed against the AdventureWorks sample database:

SELECT EmployeeID, FirstName, LastName, EmailAddress, Phone
FROM HumanResources.Employee e, Person.Contact c
WHERE e.ContactID = c.ContactID
OPTION (MERGE JOIN);

1116 Part VII Performance Tuning and Troubleshooting
Join hints can also be specified when you use the SQL-92 standard syntax for joins. When
using the SQL-92 syntax, the merge join hint can be specified as shown in the following
example:

SELECT EmployeeID, FirstName, LastName, EmailAddress, Phone
FROM HumanResources.Employee AS e
INNER MERGE JOIN Person.Contact AS c
ON e.ContactID = c.ContactID;

Note If a joint hint is also specified for any particular pair of joined tables in the
FROM clause, it takes precedence over a join hint specified in the OPTION clause.

There are no real rules of thumb concerning when to use join hints. If you suspect that a
particular join type will yield better results, the best way to test it is to force it using a join
hint and see whether it results in better performance. However, as mentioned earlier, you
should not use hints unless you are absolutely certain that the hint you specify will be
beneficial to all users in all cases and should monitor performance to make sure that the
join hint stays relevant and provides the intended performance benefits. If you’re not
sure about using a join hint, I recommend you just let the query optimizer select the best
join type.

Query Hints
Query hints are specified using the OPTION clause at the end of the query and help indi-
cate to the optimizer that the directive indicated by the query hint should be used
throughout the query. Multiple (comma delimited) query hints can be specified using a
single OPTION clause, as in this example:

SELECT EmployeeID, FirstName, LastName, EmailAddress, Phone
FROM HumanResources.Employee e, Person.Contact c
WHERE e.ContactID = c.ContactID
OPTION (RECOMPILE, MAXDOP 1, FAST 80);

If any of the hints cause the query optimizer to be unable to generate a valid plan, SQL
Server reports an error with error code 8622.

Query hints can be specified for INSERT, SELECT, UPDATE, and DELETE statements
and are supported in all editions of SQL Server 2005. The list below explains the different
query hints:

■ HASH GROUP or ORDER GROUP This hint specifies that aggregations described
in the GROUP BY, DISTINCT, or COMPUTE clause of the query should be done
using hashing (HASH GROUP) or ordering (ORDER GROUP).

Chapter 33 Tuning Queries Using Hints and Plan Guides 1117
■ CONCAT UNION or HASH UNION or MERGE UNION This hint specifies that
all UNION operations in the query should be performed by concatenating (CON-
CAT UNION), hashing (HASH UNION), or merging (MERGE UNION) the union
sets. If more than one UNION hint is specified, the query optimizer selects the least
expensive strategy from the hints specified.

■ LOOP JOIN or HASH JOIN or MERGE JOIN This hint specifies that all join
operations in the entire query should be performed by a nested loop join (LOOP
JOIN), hash join (HASH JOIN) or merge join (MERGE JOIN). If more than one
JOIN hint is specified, the query optimizer selects the least expensive strategy from
the hint specified.

■ FAST number_rows This hint specifies that the query is optimized for fast
retrieval of the first number_rows rows. When specified, SQL Server returns the
first number_rows as quickly as possible. After the first number_rows are returned,
the query continues execution and produces the full result set. The number spec-
ified has to be a non-negative integer, otherwise the query will report a syntax
error.

This hint is often useful for online transaction processing-type applications that
present the result set to the user via multiple screens and for which retrieving the
set of rows for the first screen is crucial to the perceived response time. For exam-
ple, in a customer relationship management (CRM) application, the customer
search capability, where the results are displayed in multiple screens of 40 results
per screen, may require that the first 40 rows of the result set be served back to the
client system as quickly as possible. This can be achieved by appending the
OPTION (FAST 40) query hint to the SELECT statement:

SELECT FirstName, LastName, Phone, EmailAddress
FROM Person.Contact WHERE Phone LIKE '617%'
OPTION (FAST 40);

■ FORCE ORDER This hint specifies that the join order during query optimiza-
tion should be kept the same as the order in which the tables are specified in the
query. You can use this hint for situations where you want to control the exact
order in which the tables are joined. This can be achieved by specifying the tables
in the particular order in which you want them joined and then appending the
OPTION (FORCE ORDER) hint to the query. You should use this hint for queries
only where you’re sure that the particular order being forced is guaranteed to help
the query execution, and you should always verify using SQL Server Management
Studio or SQL Server Profiler that the query execution plan is what you expected
it to be.

1118 Part VII Performance Tuning and Troubleshooting
■ MAXDOP number_of_processors SQL Server has an instance-wide setting
called max degree of parallelism (set using SQL Server Management Studio or the
sp_configure stored procedure) which is used to control the extent to which a
query execution is parallelized (intra-query parallelism). The MAXDOP query hint
permits you to override this instance-wide setting and use a different degree of par-
allelism value for a particular query. This hint only specifies the maximum number
of processors that can be used; it does not necessarily force a parallel execution
plan across the processors.

■ OPTIMIZE FOR (@variable_name = literal_constant [,…n]) As explained
earlier, SQL Server 2005 probes the query parameter values to generate the most
optimized query plan for a query and then caches that plan for use when the same
query is re-executed. This can sometimes lead to undesirable effects for cases where
the underlying table data is highly skewed and the parameter value for the first exe-
cution of the query does not represent the majority case in the underlying table
data. Since the query is cached, the successive executions of the query with the
more common data value may result in suboptimal performance.

In such situations, the OPTIMIZE FOR query hint can be used to direct the opti-
mizer to optimize the query for the particular parameter value. The parameter value
is used only during query optimization and not during execution. @variable_name
is the name of a local variable used in the query to which a literal_constant value
should be assigned during optimization. The data types for literal_constant should
be the same as the @variable_name parameter, or at least implicitly convertible. You
can specify multiple comma-separated pairs of @variable_name = literal_constant
values in the OPTIMIZE FOR query hint, for example: OPTION (OPTIMIZE FOR
(@P1=28,@P2=’ABC’, @P3=9.99)).

■ PARAMETERIZATION SIMPLE or PARAMETERIZATION FORCED Parameteri-
zation is a process by which a query consisting of literal values (for example, Part-
Number = 1234) is automatically changed to use parameters (for example,
PartNumber = @P1, where @P1 is set to 1234 prior to the query execution) such
that the cached query plan can be reused more effectively. The PARAMETERIZA-
TION option specifies the parameterization rules that the SQL Server query opti-
mizer applies to the query when it is compiled. PARAMETERIZATION SIMPLE
instructs the query optimizer to attempt simple parameterization, while PARAME-
TERIZATION FORCED instructs the optimizer to attempt forced parameterization.
The PARAMETERIZATION query hint can be specified only inside a plan guide,
which is explained later in this chapter. Unlike the other query hints, it cannot be
specified directly within a query. When this option is specified, it overrides the
default database-wide parameterization setting set via SQL Server Management Stu-
dio or the ALTER DATABASE command.

Chapter 33 Tuning Queries Using Hints and Plan Guides 1119
More Info For more information about simple and forced parameteriza-
tion, search for “simple parameterization” and “forced parameterization” in
SQL Server Books Online.

■ RECOMPILE The RECOMPILE hint instructs SQL Server to discard the gener-
ated query plan after the query completes execution, forcing the query optimizer to
recompile a plan the next time the same query is executed. This query hint is useful
for cases where the same query is executed with very different parameter values or
different values will be passed to stored procedures and the performance is subop-
timal when the query plan is reused across the different parameter values. Query
recompilation can be an expensive operation, especially for complex queries, and
therefore should be used selectively only for cases where the overall benefits for
recompiling the query plan each time outweighs the cost of the recompilation.

■ ROBUST PLAN When a query is processed, intermediate tables and operators
may have to store and process rows that are wider than any one of the input rows.
The rows may be so wide that sometimes a particular operator is unable to process
the row. If this occurs, an error is returned during query execution. The ROBUST
PLAN query hint forces the query optimizer to try to generate a plan that works for
the maximum potential row size, possibly at the expense of performance, and not
consider any query plans that may encounter this problem. If such a plan is not
possible, the query optimizer returns an error instead of deferring error detection
to when the query is executed.

■ KEEP PLAN As explained earlier, SQL Server caches the query execution plans
and recompiles them only when the auto update statistics is enabled and the
underlying data has changed sufficiently by the execution of UPDATE, DELETE, or
INSERT statements, warranting a recompile. The KEEP PLAN query hint forces the
query optimizer to relax the estimated recompile threshold for a query and ensures
that a query will not be recompiled as frequently when there are multiple updates
to a table.

■ KEEPFIXED PLAN This query hint forces the query optimizer to not recompile a
query due to changes in statistics of the underlying tables. Specifying KEEPFIXED
PLAN ensures that a query will be recompiled only if the schema of the underlying
tables is changed or if the sp_recompile stored procedure is executed against the
tables used by the query.

■ EXPAND VIEWS A view is considered to be expanded when the view name is
replaced by the view definition in the query text. The EXPAND VIEWS hint speci-
fies that indexed views are not used by the query optimizer for any part of the
query. This query hint virtually disallows direct use of indexed views and indexes

1120 Part VII Performance Tuning and Troubleshooting
on indexed views in the query plan. The one exception to this is when the WITH
(NOEXPAND) table hint is also specified for the query. Only the views in the
SELECT part of statements, including those contained in INSERT, UPDATE, and
DELETE statements are affected by this hint.

■ MAXRECURSION number This MAXRECURSION query hint is used to specify
the maximum number of recursions allowed for a query. Number is a non-negative
integer between 0 and 32,767 (0 implies infinite recursion). If this option is not
specified, the default limit is 100. When the specified or default number of recur-
sions is reached, the query is terminated with an error and all effects of the state-
ment are rolled back. When this error is encountered, it may yield in a incomplete
result set, and it’s therefore best to discard the results.

■ USE PLAN N'xml_plan' In SQL Server 2005, a query execution plan can be rep-
resented in XML format, as explained in Chapter 31, “Using Dynamic Management
Views.” The USE PLAN query hint, which is new in SQL Server 2005, can be used
to force the query optimizer to select a query plan that is specified by 'xml_plan'.
The xml_plan specified has to be one that the optimizer would normally consider
during its selection process. This implies that you cannot create any arbitrary XML
showplan and expect the optimizer to use it. It is not advisable to hand code or
modify the XML showplan that is specified in the USE PLAN query hint. The XML
showplan is a lengthy and complex listing, and any change that would make this
not identically match one of the query optimizer-generated plans, results in the
USE PLAN hint being ignored.

More Info For an example of how to capture the xml_plan and specify it
in a query, search for “Plan Forcing Scenario: Create a Plan Guide That Uses
a USE PLAN Query Hint” in SQL Server 2005 Books Online.

This query hint provides you with a brute-force method to force a query plan and,
in a way, eliminates the trial-and-error approach associated when using the query
hints. The xml_plan should always be specified as a Unicode literal by adding the N
prefix, for example, N'xml_plan'. Doing this makes sure that any characters in the
plan specific to the Unicode standard are not lost when the SQL Server interprets
the string. Only query plans for SELECT and SELECT INTO statements can be
forced. Query plans for UPDATE, DELETE, or INSERT statements cannot be
forced.

The USE PLAN hint is designed primarily for ad-hoc performance tuning and test pur-
poses and for use with the plan guides feature. You should avoid embedding this query

Chapter 33 Tuning Queries Using Hints and Plan Guides 1121
hint directly into your application code because this makes the maintenance of the appli-
cation across query plan and SQL Server version changes almost impossible to manage.

Table Hints
Similar to join and query hints, table hints help influence the behavior of the SQL Server
optimizer. One or more table hints can be specified using the WITH clause for a query
and help control whether the query optimizer use a table scan, one or more indexes, a
particular locking method, and so on when executing the query. The table hints are
ignored if the table is not accessed by the query plan. For example, the optimizer may
choose not to access a table because an indexed view is accessed instead. While earlier
versions of SQL Server permitted a table hint to be specified without a WITH clause
(Example: SELECT Col1 FROM Table1 NOLOCK WHERE Col1=1), SQL Server 2005
requires the WITH clause to be specified for most of the table hints. In my experience,
this is one of the most common causes that applications employing table hints break
when migrated to SQL Server 2005. While SQL Server 2005 Books Online has a detailed
list of the hints that can be used without the WITH clause, I'd strongly recommend that
you not waste your time figuring this out. Instead, always specify the WITH clause when
using table hints. It is also recommended that you separate the table hints with commas
instead of spaces. Separating the hints using spaces is supported only for backward com-
patibility purposes. Here is an example of a query specifying multiple table hints that can
be executed against the AdventureWorks sample database:

SELECT ContactID, FirstName, LastName, EmailAddress
FROM Person.Contact WITH (NOLOCK, INDEX(PK_Contact_ContactID), FASTFIRSTROW)
WHERE ContactID < 15;

The various table hints are described here:

■ NOEXPAND The NOEXPAND hint specifies that any indexed views are not
expanded to access underlying tables when the query optimizer processes the
query. This hint applies only to indexed views.

■ INDEX (index_val [,...n]) This hint is used to specify the index name or index
identifier number to be used by the query optimizer when it processes the state-
ment. Multiple, comma-separated index names or identifiers can be specified in
the INDEX hint directing the optimizer to use the indexes specified for retrieving
the rows of the table. When multiple indexes are specified in the hint, the order of
the indexes is significant. The maximum number of indexes in the table hint is
250 nonclustered indexes, but you should never even come close to specifying this
many indexes in the hint. An error is returned if the index specified in the hint
does not exist.

1122 Part VII Performance Tuning and Troubleshooting
The INDEX hint is one of the more commonly used ones for optimizing query per-
formance. For example, the index hint in the following query forces the optimizer
to select index PK_Vendor_VendorID when processing the query:

SELECT Name FROM Purchasing.Vendor
WITH (INDEX(PK_Vendor_VendorID))
WHERE VendorID = 10 ;

■ FASTFIRSTROW This hint is equivalent to OPTION (FAST 1) query hint explained
in the previous section.

■ NOWAIT This hint instructs SQL Server 2005 to return an error message 1222
(Lock request time-out period exceeded) as soon as a lock is encountered on the
table. The NOWAIT hint is equivalent to specifying SET LOCK_TIMEOUT 0 for a
specific table.

■ ROWLOCK This hint specifies that row locks be taken on the table instead of
page or table locks.

■ PAGLOCK This hint specifies that page locks be taken on the table instead of row
or a table locks.

■ TABLOCK This hint specifies that a shared table lock be taken on the table and
held until the end of the statement.

Note The ROWLOCK, PAGLOCK, and TABLOCK are mutually exclusive,
and only one of them can be specified against a table. Specifying more
than one conflicting hint results in an error.

■ TABLOCK This hint specifies that an exclusive lock be taken on the table and
held until the end of statement.

■ NOLOCK This hint is equivalent to the READUNCOMMITTED hint explained in
an up coming paragraph.

■ HOLDLOCK This hint is equivalent to the SERIALIZABLE hint explained below
and applies only to the table or view for which it is specified. Starting with the
query statement in which it appears, the HOLDLOCK hint remains effective for the
remainder of the transaction in which the query appears. This hint cannot be used
in a SELECT statement that includes the FOR BROWSE option.

■ UPDLOCK This hint specifies that update locks should be acquired on the table
and held until the end of the transaction. When used in combination with the
ROWLOCK, PAGLOCK, or TABLOCK hints, the exclusive locks are acquired at the
specified level of granularity.

■ XLOCK This hint specifies that exclusive locks should be acquired on the table
and held until the end of the transaction. When used in combination with the

Chapter 33 Tuning Queries Using Hints and Plan Guides 1123
ROWLOCK, PAGLOCK, or TABLOCK hints, the exclusive locks are acquired at the
specified level of granularity.

■ READPAST When the READPAST hint is specified, SQL Server 2005 skips read-
ing rows or pages that are locked by other transactions, effectively “reading past”
and not blocking on them. When READPAST is specified, both row-level and page-
level locks are skipped. This hint can be specified only for transactions operating at
the READ COMMITTED or REPEATABLE READ isolation levels.

■ READUNCOMMITTED This hint specifies that no shared locks be issued to pre-
vent other transactions from modifying data read by the current transaction, and
exclusive locks set by other transactions do not block the current transaction from
reading the locked data. This hint should be used only in cases where uncommitted
(‘(“dirty’dirty”) reads are acceptable because allowing dirty reads can possibly lead
you to a situation where you read data that does not exist because you read a tran-
sient state that was or is being rolled back. I would recommend you use this hint
only after understanding all the implications. This hint cannot be specified for
tables modified by insert, update, or delete operations.

■ READCOMMITTED This hint specifies that read operations comply with the rules
for the READ COMMITTED isolation level by using either locking or row versioning.
If the READ_COMITTED_SNAPSHOT database option is disabled, SQL Server
2005 acquires shared locks as data is read and releases those locks when the read
operation is completed. If the READ_COMMITTED_SNAPSHOT database option is
enabled, SQL Server does not acquire locks but uses row versioning instead.

■ READCOMMITTEDLOCK This hint is new in SQL Server 2005 and specifies that
read operations comply with the rules for the READ COMMITTED isolation level
by using locking. SQL Server acquires shared locks as data is read and releases
those locks when the read operation is completed, regardless of the setting of the
READ_COMMITTED_SNAPSHOT database option.

■ REPEATABLEREAD This hint specifies that read operations comply with the
rules for the REPEATABLE READ isolation level in which a statement cannot read
data that has been modified but not yet committed by other transactions, and no
other transactions can modify data that has been read by the current transaction
until the current transaction completes.

■ SERIALIZABLE This hint makes shared locks more restrictive by holding them
until a transaction is completed instead of releasing the shared lock as soon as the
required table or data page is no longer needed, whether or not the transaction has
been completed. This hint is equivalent to the HOLDLOCK hint.

1124 Part VII Performance Tuning and Troubleshooting
■ KEEPIDENTITY This hint is used to specify that identity values in the imported
data file should be used for the identity column. If KEEPIDENTITY is not specified,
the identity values for this column are verified but not imported. This hint is appli-
cable only in an INSERT statement when the BULK option is used with OPEN-
ROWSET.

■ KEEPDEFAULTS This hint is used to specify to insert a table column's default
value (if any) instead of inserting NULL values when the data record does not con-
tain a value for the column. This hint is applicable only in an INSERT statement
when the BULK option is used with OPENROWSET.

■ IGNORE_CONSTRAINTS This hint is used to specify that any constraints on the
table are ignored by the bulk-import operation. However, you cannot use this hint
to disable UNIQUE, PRIMARY KEY, FOREIGN KEY, or NOT NULL constraints.
This hint is applicable only in an INSERT statement when the BULK option is used
with OPENROWSET.

■ IGNORE_TRIGGERS This hint is used to specify that any triggers defined on the
table are ignored by the bulk-import operation. This hint is applicable only in an
INSERT statement when the BULK option is used with OPENROWSET.

Important Table hints should be used only as a last resort by experi-
enced users who fully understand the effects of specifying the hints.

Plan Guides
As we’ve seen so far, hints provide a powerful option for influencing the behavior of the
SQL Sever database engine and, in a way, give you almost full control over how a query
is executed. While a powerful option, the hints are of little use for queries originating in
applications which you do not have the code and therefore cannot modify the query to
add the hints. For example, you could have the following query that originates in a third-
party CRM application and exhibits poor performance due to an incorrect selection of
the join type by the optimizer:

SELECT pc.ContactID, FirstName, LastName, EmailAddress, CreditCardID
FROM Person.Contact pc, Sales.ContactCreditCard ccc
WHERE pc.ContactID = ccc.ContactID
AND pc.ContactID < 15;

For this query, say you know that it operates much better when a MERGE JOIN hint is
specified as follows:

Chapter 33 Tuning Queries Using Hints and Plan Guides 1125
SELECT pc.ContactID, FirstName, LastName, EmailAddress, CreditCardID
FROM Person.Contact pc, Sales.ContactCreditCard ccc
WHERE pc.ContactID = ccc.ContactID
AND pc.ContactID < 15
OPTION (MERGE JOIN);

However, since this query may be dynamically formulated in the application and you do
not have access to the application code, there is no way for you to specify the query hint.
This is where the new plan guides feature introduced in SQL Server 2005 can be of great
use.

The plan guides feature offers users a mechanism to inject hints into the original query
without having to modify it. Any of the query hints explained above can be applied to a
SELECT, UPDATE, DELETE, or INSERT…SELECT statement using a plan guide.

The plan guide mechanism utilizes an internal look-up system table (based on informa-
tion stored in the sys.plan_guides catalog view) to map the original query to a substitute
query or to a template, as explained later in this chapter). In this mechanism, every query
statement or batch is first compared against the optimizer’s cached plan store to check for
a match. If a query plan already exists in the cache, it is used to execute the query. If not,
the query or batch is checked against the set of existing plan guides in the current data-
base for a match. If an active plan guide exists for the statement and its context, the orig-
inal matching statement is substituted with the one from the plan guide; otherwise, the
original statement is used. The query plan is then compiled and cached, and the state-
ment or batch executed.

Real World Plan Guides Save the Day

I recently consulted on a customer case where the customer was migrating an enter-
prise resource planning (ERP) application from SQL Server 2000 to SQL Server
2005 and simultaneously performing other application changes as well.

After migrating the database to SQL Server 2005 and doing their usual tuning, the
customer observed that there was one frequently executed query that consistently
performed poorly and was responsible for significantly slowing down one of their
jobs. Moreover, the usual tuning procedures such as ensuring optimal indexes had
no effect on the performance. This is when the database administrator was forced
to look into alternatives. There was a dire need to resolve the problem as quickly as
possible to stay on schedule for their go-live date.

The problematic query was very complex and not particularly well written. After
much experimenting, the DBA discovered that specifying an OPTION (LOOP
JOIN) query hint on the query sped it up significantly. Since this was a packaged

1126 Part VII Performance Tuning and Troubleshooting
application and the query itself could not be changed, the DBA created a plan guide
to temporarily work around the problem and contacted the application vendor the
next week to request a fix for the particular query. This saved the day for the cus-
tomer and helped them go-live on schedule.

Creating and Administering Plan Guides
SQL Server 2005 introduces two new stored procedures to create, drop, enable, and dis-
able plan guides. The sections below explain the procedure of creating and administering
plan guides.

sp_create_plan_guide
The sp_create_plan_guide stored procedure is used to create a plan guide. This stored pro-
cedure can be used only on SQL Server 2005 Standard Edition, Enterprise Edition, and
Developer Edition and is not available for use in any of the other editions. The format for
this command and the description of the command arguments is as follows:

sp_create_plan_guide [@name =] N'plan_guide_name'
 , [@stmt =] N'statement_text'
 , [@type =] N' { OBJECT | SQL | TEMPLATE }'
 , [@module_or_batch =]
 { N'[schema_name.]object_name'
 | N'batch_text' | NULL }
 , [@params =] { N'@parameter_name data_type [,…n]' | NULL }
 , [@hints =] { N'OPTION (query_hint [,…n])' | NULL }

■ @name (type: navrchar(128)) Specifies the name of the plan guide. Because
plan guides have a database-wide scope, @name is required to be unique within a
database and cannot begin with a hash (#) character.

■ @stmt (type: navrchar(max)) Specifies the SQL statement, or batch.

■ @type (type: nvarchar(60)) Specifies the type of entity against which this plan
guide will be matched. @type can be “N‘OBJECT’,” “N‘SQL’,” or “N‘TEMPLATE’.”

■ N’OBJECT’ Indicates that the statement_text appears in the context of a stored
procedure, scalar function, a multi-statement table-valued function, or a DML trig-
ger.

■ N‘SQL’ Indicates that the given statement_text appears in the context of a stand-
alone statement or batch.

Chapter 33 Tuning Queries Using Hints and Plan Guides 1127
■ N’TEMPLATE’ Indicates that the plan guide applies to any query that parameter-
izes to the form indicated in statement_text.

■ @module_or_batch (type: nvarchar(max)) Specifies the module name or batch
text. If @module_or_batch is NULL (default value) and @type = “N’SQL’,” then
@module_or_batch is set to @stmt. If @type = ’TEMPLATE’, then @module_or_batch
must be NULL. The batch text cannot include a USE ‘database’ statement.

■ @params (type: nvarchar(max)) Specifies a string containing the definitions
of all parameters for a statement or batch to be matched by the plan guide. You can
specify multiple parameter value pairs by separating them with commas. Each
parameter definition consists of a parameter name and a data type. @params is
applicable only when @type = N’SQL’ or N’TEMPLATE’ and cannot be set to NULL
when @type = N’TEMPLATE’. If the statement or batch does not contain parame-
ters, @params must be set to NULL (default value).

■ @hints (type: nvarchar(max)) Specifies the OPTION clause text to attach to
query that matches @stmt which can be used to specify any valid sequence of query
hints.

All arguments for the sp_create_plan_guide stored procedure must be either constants of
the designated type or variables that can be implicitly converted to the designated type,
as in this example:

sp_create_plan_guide

N'MyPlanGuide',

@stmt = N'

 UPDATE [HumanResources].[Employee]

 SET [NationalIDNumber] = @NationalIDNumber

 ,[BirthDate] = @BirthDate

 ,[MaritalStatus] = @MaritalStatus

 ,[Gender] = @Gender

 WHERE [EmployeeID] = @EmployeeID;',

@type = N'OBJECT',

@module_or_batch = N'HumanResources.uspUpdateEmployeePersonalInfo',

@params = NULL,

@hint = N'OPTION (KEEPFIXED PLAN)';

Best Practices For readability and consistency purposes, it is best to specify
the parameter names (for example, @stmt) and parameter values (for example,
N'MyPlanGuide') for all the parameters of the sp_create_plan_guide procedure.
Alternatively, you can specify the parameter values only for all the parameters.

1128 Part VII Performance Tuning and Troubleshooting
However, once you specify a parameter with a parameter name in the form
“@name = value,” all subsequent parameters must be passed in the same form,
and specifying a parameter without the parameter name results in an error. For
example, in the query above, specifying the hint without “@hints =” results in an
error because “@name =” has not been specified for the first parameter.

When creating a plan guide, you should be sure to specify the @stmt and @params
parameters exactly as they are formatted in the application, including any spaces, tab
characters, line-feeds, or carriage returns; otherwise, the plan guide will not match the
original statement. The best way to achieve this is to capture the batch or statement text
using SQL Profiler.

More Info For additional information on how to create and test a plan guide,
search for “Using SQL Server Profiler to Create and Test Plan Guides” in SQL
Server Books Online.

Plan guides cannot be created against stored procedures, functions, or DML triggers that
have been encrypted using the WITH ENCRYPTION clause. Also, once a plan guide has
been created, the function, stored procedure, or DML trigger that is referenced by the
plan guide cannot be modified or deleted. Trying to do so results in an error. In addition,
the plan guide name and the combination of @stmt and @module_or_batch should be
unique within the database. Trying to create a plan guide with similar values for either of
these attributes results in an error.

Note Plan guides cannot be specified for DDL triggers; only DML triggers are
supported.

sp_control_plan_guide
The sp_control_plan_guide is used to enable, disable, or drop a plan guide. The format for
this command and the description of the command arguments is as follows:

sp_control_plan_guide
 [@operation =] N'<control_option>'
 [, [@name =] N'plan_guide_name']

■ @operation (type: nvarchar(max)) N‘DISABLE’ Used to disable the plan
guide specified by plan_guide_name. Once a plan guide is disabled, successive exe-
cutions of the query are not influenced by the actions originally specified in the
plan guide.

Chapter 33 Tuning Queries Using Hints and Plan Guides 1129
■ N‘DISABLE ALL’ Used to disable all plan guides in the current database. No
plan_guide_name can be specified when this option is used. Once the plan guides
are disabled, successive executions of the queries are not influenced by the actions
originally specified in the plan guides.

■ N‘DROP’ Used to drop the plan guide specified by plan_guide_name. Once a
plan guide is dropped, successive executions of the query are not influenced by the
actions originally specified in the plan guide.

■ N‘DROP ALL’ Used to drop all plan guides in the current database. No
plan_guide_name can be specified when this option is used. Once all the plan guides
are dropped, successive executions of the queries are not influenced by the actions
originally specified in the plan guides.

■ N‘ENABLE’ Used to enable the plan guide specified by plan_guide_name. Plan
guides are enabled by default. This command is used to enable a previously dis-
abled plan guide.

■ N‘ENABLE ALL’ Used to enable all plan guides in the current database. No
plan_guide_name can be specified when this option is used. Plan guides are
enabled by default. This command enables all disabled plan guides in the database.

■ @name (type: nvarchar(max)) Specifies the name of the plan guide.

For example, the following command can be used to drop the plan guide created in the
previous section:

sp_control_plan_guide N'DROP', N'MyPlanGuide';

A plan guide can be created, enabled, or disabled only in SQL Server 2005 Standard Edi-
tion, Enterprise Edition and Developer Edition; however, it can be dropped in all editions.

Important The parameters passed in to the sp_control_plan_guide stored pro-
cedure have to be specified as Unicode strings using the N prefix (for example,
N‘MyPlanGuide’). Executing the statement with parameters specified as non-
Unicode results in an error.

Creating Template-Based Plan Guides
As explained in Chapter 10, “Creating Databases and Database Snapshots,” SQL Server
2005 introduces two new options to parameterize queries: FORCED PARAMETERIZA-
TION and SIMPLE PARAMETERIZATION. The FORCED PARAMETERIZATION option
is particularly powerful because it forces a nonparameterized query to be autoparame-
terized at the database without actually having to change the original query. This, in

1130 Part VII Performance Tuning and Troubleshooting
turn, enables the query plan to be reused for successive invocations of the same query
with differing parameter values. For example, in the following nonparameterized query
the Sales.Store.Name is being passed in as a literal of N'Brakes and Gears':

SELECT DISTINCT Sales.Customer.CustomerID, Sales.Store.Name
FROM Sales.Customer JOIN Sales.Store ON
 (Sales.Customer.CustomerID = Sales.Store.CustomerID)
WHERE Sales.Store.Name = N'Brakes and Gears';

The same query in its parameterized form would have the parameter value set before the
query executes (for example, @P1 = N'Brakes and Gears') and then have the query mod-
ified to the following:

SELECT DISTINCT Sales.Customer.CustomerID, Sales.Store.Name
FROM Sales.Customer JOIN Sales.Store ON
 (Sales.Customer.CustomerID = Sales.Store.CustomerID)WHERE Sales.Store.Name = @P1;

This can be achieved by changing the query itself; however, this is not always possible. An
alternate solution is to specify the PARAMETERIZATION FORCED query hint for the
particular query using a plan guide.

Specifying the correct form of the parameterize query and the parameter types can often
be challenging. The example query presented in this section is intentionally kept simple
to clearly present the concept. Real-world application queries can be many tens, and in
some cases even hundreds, of lines long with many parameters. To simplify the process
of determining the parameterized form of a query, SQL Server 2005 introduces a new
stored procedure sp_get_query_template that helps determine the parameterized form of
a query. The sp_get_query_template stored procedure uses the nonparameterized form of
a query as an input parameter and returns the parameterized form of the query and the
parameters as output, as shown in the following code fragment:

DECLARE @templatetext nvarchar(max);
DECLARE @parameters nvarchar(max);

EXEC sp_get_query_template N'
 SELECT Name, ProductNumber, OrderQty, ReceivedQty, ReorderPoint
 FROM Purchasing.PurchaseOrderDetail pod, Production.Product p
 WHERE pod.ProductID = p.ProductID

 AND ReceivedQty <= 550.00
 AND Name = ''Spokes'';',

@templatetext OUTPUT,
@parameters OUTPUT;

SELECT @templatetext;
SELECT @parameters;

Chapter 33 Tuning Queries Using Hints and Plan Guides 1131
This code fragment returns the parameterized form of the query and the parameter value
as the following:

select Name , ProductNumber , OrderQty , ReceivedQty , ReorderPoint
from Purchasing . PurchaseOrderDetail pod , Production . Product p
where pod . ProductID = p . ProductID and ReceivedQty < = @0 and Name = @1

@0 numeric(38,2),@1 varchar(8000)

The sp_get_query_template stored procedure can be used directly as input to
sp_create_plan_guide to create a template-based plan guide for the query. For example, a
plan guide can be created for the above query to specify the forced parameterization
query hint as follows:

DECLARE @templatetext nvarchar(max)
DECLARE @parameters nvarchar(max)
EXEC sp_get_query_template N'
 SELECT Name, ProductNumber, OrderQty, ReceivedQty, ReorderPoint
 FROM Purchasing.PurchaseOrderDetail pod, Production.Product p
 WHERE pod.ProductID = p.ProductID

 AND ReceivedQty <= 550.00
 AND Name = ''Spokes'';',

@templatetext OUTPUT,
@parameters OUTPUT
EXEC sp_create_plan_guide N'TemplatePG',
@stmt = @templatetext,
@type = N'TEMPLATE',
@module_or_batch = NULL,
@params = @parameters,
@hints = N'OPTION(PARAMETERIZATION FORCED)';

Note In the example above, the literal value has been delimited by double
single-quotation marks (‘’Spokes’’).

Once created, this plan guide template matches all executions of queries with this format
irrespective of the literal values compared with ReceivedQty and Name, thereby enabling
query plan reuse and a reduced number of query compilations. The plan guide created
above matches only ReceivedQty decimal values that have a scale of two (for example,
550.00). Values received in a different scale will not match even though the numeric
value is actually the same (for example, 550.0 and 550.000). This should be a rare occur-
rence; however, if you need to address multiple scale values for the same query, an easy
way to achieve this is to create plan guides to match each different scale value.

1132 Part VII Performance Tuning and Troubleshooting
Best Practices
One of the most important best practices is to use hints and plan guides sparingly and
only for cases where the conventional query tuning options have been tried exhaustively
yet failed to produce the desired results. It is also recommended that you attempt to use
hints only for a small fraction of the workload. If you find yourself forcing more than a few
dozen queries, you may want to check whether there are other issues with the configura-
tion such as inadequate resources (memory, processor, disks, and so on), incorrect config-
uration settings, missing indexes, or poorly written queries that are limiting performance.

Only experienced DBAs who understand the full implications and long-term ramifica-
tions of forcing query plans using hints should use these options because once a query
plan has been forced, the query optimizer can no longer dynamically adapt to changing
data shapes, new indexes, or improved query execution algorithms in future SQL Server
releases, SQL Server service packs (SPs), or SQL Server engineering fixes, also known as
hot-fixes or QFEs.

Once created, plan guides are stored in the sys.plan_guides table within a user database.
This system table can be queried to access details about the plan guide such as the name,
query text, date it was created, date modified, enabled/disabled status, parameters, hints,
and so on. The sys.plan_guides table should never be modified directly; instead, you
should use the sp_create_plan_guide and sp_control_plan_guide stored procedures to man-
age it. Figure 33-1 shows a database with five plan guides, two of which have been dis-
abled, as can be determined via the is_disabled flag.

Figure 33-1 List of plan guides in a database.

Chapter 33 Tuning Queries Using Hints and Plan Guides 1133
It is recommended that the plan guides created in a database be well-documented, as
they constitute an integral part of performance tuning. In addition, it is advisable to save
the content of the sys.plan_guides in your database regularly, by using: SELECT * FROM
(sys.plan_guides).

Doing so helps you capture and archive the details of the plan guides you’ve created for
the particular application, including their status (enabled/disabled).

Verifying Plan Guides Usage
Once created, a plan guide should always be thoroughly tested to make sure that it is
being applied to the intended queries and that the actions being taken are in line with
your expectation. This can be done easily by verifying that the showplan XML listing, pro-
duced by the “Showplan XML” event in the “Performance” group in SQL Server Profiler
as explained in Chapter 30, “Using Profiler, Management Studio, and Database Engine
Tuning Advisor,” or the SET SHOWPLAN_XML ON output, contains the PlanGuideDB
and PlanGuideName attributes for the plan guide that you expected the query to match.
For example, in the XML showplan fragment below, the PlanGuideDB="Adventure-
Works" and PlanGuideName="ExamplePG1" indicate that the ExamplePG1 plan guide
within the AdventureWorks database was used for the query:

<ShowPlanXML
xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"
 Version="1.0" Build="9.00.1399.06">
 <BatchSequence>
 <Batch>
 <Statements>
 <StmtSimple PlanGuideDB="AdventureWorks"
 PlanGuideName="ExamplePG1">
 …
 </StmtSimple>
 </Statements>
 </Batch>
 </BatchSequence>
</ShowPlanXML>

Example Usage Scenarios for Plan Guides
This section presents three example scenarios where plan guides are used to influence
the query optimizer behavior by injecting hints without actually changing the original
query itself. The scenarios are provided for example purposes only and may not actually
exhibit any performance issues or gains.

1134 Part VII Performance Tuning and Troubleshooting
1. Optimizing for a particular parameter value As explained earlier, there are
times when the SQL Server 2005 compile and cache mechanism may result in a
query plan that may not necessarily be optimal for the majority case parameter val-
ues being cached, thereby resulting in suboptimal overall performance. For exam-
ple, consider the case where the sales order table has a majority of the rows (say,
100 million rows) where country equals “US” and very few rows (say, 10 rows)
where country equals “GB”. In this case, if the first invocation of the query was with
parameter value “GB,” it may result in suboptimal performance for queries that are
executed with the “US” parameter value. To avoid the case where the cached query
plan is not dependent on the value of the country parameter with which the state-
ment is first executed, you can use the OPTIMIZE FOR hint. Assuming that the
query originates in an application where the query cannot be modified, you can cre-
ate a plan guide using the following command to achieve the desired behavior:

sp_create_plan_guide N'ExamplePG1',
N'
 SELECT SalesOrderID, Status, Name, CountryRegionCode
 FROM Sales.SalesOrderHeader h, Sales.Customer c, Sales.SalesTerritory t
 WHERE h.CustomerID = c.CustomerID AND c.TerritoryID = t.TerritoryID
 AND CountryRegionCode = @P1',
N'SQL',
NULL,
N'@P1 CHAR(2)',
N'OPTION (OPTIMIZE FOR(@P1 = N''US''))';

2. Forcing a query plan using the USE PLAN hint Another common hint for use
with plan guides is the USE PLAN query hint. This query hint is useful when you
already know of a query plan that performs better. The USE PLAN hint forces SQL
Server 2005 to use the particular query plan specified explicitly in the hint syntax
when executing the query, as long as it is one of the query plans the optimizer
would normally have considered in its selection process. For example, a specific
query plan for the query above can be forced as follows. (The full XML showplan
listing is several pages long and therefore been replaced with the ellipses.):

sp_create_plan_guide
@name = N'ExamplePG2',
@stmt = N'
 SELECT EmployeeID, FirstName, LastName, EmailAddress, Phone
 FROM HumanResources.Employee e, Person.Contact c
 WHERE e.ContactID = c.ContactID;',
@type = N'SQL',
@module_or_batch = NULL,
@params= NULL,
@hint = N'OPTION (USE PLAN N''

Chapter 33 Tuning Queries Using Hints and Plan Guides 1135
<ShowPlanXML

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"
 Version="1.0" Build="9.00.1399.06">
 <BatchSequence>
 <Batch>
 <Statements>
 …
 </Statements>
 </Batch>
 </BatchSequence>
</ShowPlanXML>'')';

3. Locking down a particular query plan There may be situations where you
would like to lock down the execution plan for a particular query and prevent it
from recompiling due to changes in statistics of the underlying tables. As explained
earlier, the KEEPFIXED PLAN hint can help achieve this. For example, consider the
following query for which you’d like to lock down the query plan:

SELECT DISTINCT Sales.Customer.CustomerID, Sales.Store.Name
FROM Sales.Customer JOIN Sales.Store ON
 (Sales.Customer.CustomerID = Sales.Store.CustomerID)
WHERE Sales.Customer.TerritoryID = 1;

Assuming that this query originates in an application that cannot be modified, the
only way to enforce the query hint is to create a plan guide, as shown below, and
specify the hint within that:

sp_create_plan_guide
@name = N'ExamplePG3',
@stmt = N'
SELECT DISTINCT Sales.Customer.CustomerID, Sales.Store.Name
FROM Sales.Customer JOIN Sales.Store ON
 (Sales.Customer.CustomerID = Sales.Store.CustomerID)
WHERE Sales.Customer.TerritoryID = 1;',
@type = N'SQL',
@module_or_batch = NULL,
@params= NULL,
@hint = N'OPTION (KEEPFIXED PLAN)';

Important The query specified in the sp_create_plan_guide command’s
@stmt parameter must match the original query character for character.
This includes any space characters that appear at the start or the end of a
line, line feeds, or carriage returns. If the statement specified does not
match the original statement, the plan guide will not match.

1136 Part VII Performance Tuning and Troubleshooting
Summary
While SQL Server 2005 does a great job of automatically optimizing queries and creating
the best possible query execution plans, there may be times when you need to manually
control the way a query plan is created. SQL Server 2005 presents more than thirty-five
query hints to enable you to fine tune and control different attributes of a query plan gen-
eration.

In this chapter, we took a detailed look at the three different categories of hints —join,
query, and table—along with examples of where they are most useful. We also learned
about the new plan guides feature that has been introduced in SQL Server 2005, along
with a detailed look at the commands used to create and administer plan guides, best
practices, and some common usage examples.

Glossary

ACID An acronym for atomicity, consis-
tency, isolation, and durability, the four
properties required for a valid transaction.

Action, Notification Services A T-SQL
query used by Notification Services when
firing a subscription rule.

activation stored procedure A stored pro-
cedure used to read a Service Broker
queue and process messages on arrival.

active/active cluster Two active/passive
clusters that share the same hardware,
each acting as the standby server for the
other.

active/passive cluster See failover cluster.

ad hoc report A report developed by a
business user using a single data source
and applying limited formatting.

Address Windowing Extension (AWE) The
software component that allows SQL
Server to access more than 4 GB of
memory.

aggregation Precalculated summarized
values derived from detailed source data
and stored on the server.

alternate keys After a PRIMARY KEY is
selected from the candidate keys, the
remaining candidate keys are then known
as alternate keys.

annotation Text added to a package to doc-
ument workflow and data flow paths.

API See application programming interface.

application definition file (ADF) An XML
file used by Notification Services describ-
ing the structure of database objects
related to events, subscribers, notifica-
tions, and other components used to run
the application.

application programming interface (API)
A set of routines, protocols, and tools for

building software applications.

article A table or subset of a table that is
being replicated.

attribute An object defined in a report
model corresponding to a relational table
column or an expression to be used in an
ad hoc report.

AWE See Address Windowing Extension.

benchmark A performance test used to
compare the performance of different
hardware or software.

bit The fundamental unit of computing
that has two states: on (1) and off (0).

blocking A situation in which one SQL
Server process is held in a wait state while
waiting to acquire a lock on a resource
that is not compatible with a lock cur-
rently being held by another process on
that same resource. Once the lock is avail-
able, the process continues execution.

bookmark lookup A cluster key index
lookup resulting from the values retrieved
from a nonclustered index lookup.

bottleneck A component of a system that
limits the performance or throughput of
the entire system. The term is a metaphor
drawn from the narrow neck of a bottle
that restricts the flow of liquid as it is
poured out.

bound sessions Sessions in which two or
more sessions share the same transaction
and locks and can work on the same data
without lock conflicts. They ease the coor-
dination of actions across multiple ses-
sions on the same server. Bound sessions
can be created from multiple sessions
within the same application or from mul-
tiple applications with separate sessions.
1137

1138 Glossary
branch node Intermediate pages in an
index.

breakpoint An instruction to the control
flow engine or data flow engine to pause
execution for debugging.

byte Equal to 8 bits.

cache Small but fast memory used to store
data that is immediately going to be used.

CAL See client access license.

candidate keys A column or set of col-
umns that each could serve as the PRI-
MARY KEY. (Only one will be used as the
PRIMARY KEY.)

capacity planning The act of determining
the additional resources required for your
existing system to meet future load
requirements.

Central Processing Unit (CPU) The brains
of the computer, used to control all
aspects of the system. A computer system
must have one or more CPUs.

CHECK constraints Used to enforce domain
integrity by restricting the values allowed
in a column to specific values. They con-
tain a logical (Boolean) expression, simi-
lar to the WHERE clause of a query.

checkpoint A SQL Server operation (and
the name of the SQL Server background
process that performs checkpoint opera-
tions) that synchronizes the physical data
and log files with the current state of the
buffer cache by writing out all modified
data pages in the buffer cache to disk.

client access license (CAL) A legal docu-
ment granting a device or user access to
the SQL Server software. A single-user
CAL can grant access to multiple servers
for one user. Similarly, a single-device CAL
can grant access to multiple servers for
one device.

cluster See failover cluster.
cluster manager software A set of software

tools used to maintain, configure, and
operate the cluster.

clustered index An index where the table
data is stored in the leaf node.

collation Determines the rules by which
character data is sorted and compared.

composite index An index that has more
that one key column.

container A control flow component used
to group tasks and other containers for
the purpose of controlling the order in
which each component executes.

control flow The run-time support manag-
ing connections, committing transactions,
supporting debugging, logging, event
handling, managing variables, and con-
trolling the sequence of executables dur-
ing package execution.

conversation A persistent Service Broker
session that is maintained indefinitely by
initiator and target applications.

cost-based optimizer An internal compo-
nent of the SQL Server database engine
that analyzes object statistics to deter-
mine the most optimal execution plan for
a query. The cost-based optimizer isn’t
directly accessible by a user.

covering index An index that includes
enough information so that it is not neces-
sary to perform the bookmark lookup.

CPU See central processing unit.

cube A multidimensional structure in
which each intersection of unique dimen-
sion members contains a data value.

DAS See direct attached storage.

data flow The path used to extract data
from a source, transform data in-mem-
ory, and load results into a destination,
as well as the engine that manages these
activities.

data mining In general, the automated dis-
covery of hidden patterns in large vol-
umes of data.

Glossary 1139
data modeling The logical layout of the
database including table relationships
and referential integrity constraints.

data partitioning The process of dividing a
table into smaller, more manageable
pieces.

data pipeline Another phrase for data flow.

data region A report layout structure that
contains data, such as a table, matrix,
chart, or list.

data source A file that contains the connec-
tion string and credentials used by Inte-
gration Services to connect to a data store.

data source view A file that contains a
description of database objects, their rela-
tionships, and custom expressions used
by a data source adapter to filter or manip-
ulate data to extract from a source.

Data Transformation Services (DTS) A
product used for movement of data in
SQL Server 2000 that has been replaced
by SQL Server Integration Services in SQL
Server 2005.

data viewer An object placed between two
data flow components to capture and dis-
play information about the data currently
in the pipeline.

database An organized repository of data.
Databases in SQL Server are stored as
operating system files.

database administrator (DBA) The title
given to the person responsible for the
upkeep and stability of the SQL Server
database.

database snapshot A read-only, static view
of a database (the source database) that is
explicitly created using DDL.

dataset A collection of items including a
pointer to a data source, a query defining
data to be retrieved for a report, and a set
of fields describing each column returned
by the query.

DBA See database administrator.

deadlock A situation in which two SQL
Server processes become blocked waiting
on lock resources that the other holds,
and neither can continue execution. SQL
Server chooses one process as a deadlock
victim, and that process is rolled back and
must be run again.

DEFAULT definitions Provides automatic
entry of a default value for a column when
an INSERT statement does not specify the
value for that column.

delivery channel A Notification Services
endpoint for the delivery of notifications
using a specified protocol.

designer A collection of design tools,
including a workspace, toolbox, dialog
boxes, and various windows, used to
build a Visual Studio project.

DHCP Dynamic Host Configuration
Protocol.

dialog A bi-directional conversation
between two Service Broker services.

dimension Labels that add context to
numerical data.

dimension table A relational database table
containing columns with descriptive.
information about each member of a
dimension, including a unique name and
other specific characteristics for that
member.

direct attached storage (DAS) Disk drive
storage that is contained within the com-
puter or is directly attached to the com-
puter for direct data access, without
involving any type of network device as
with NAS or SAN.

dirty page A data page residing in the SQL
Server buffer cache (in memory) that has
been modified but has not yet been writ-
ten out to disk.

1140 Glossary
disaster recovery The ability of the system
or company to remain working in the
event of a catastrophic failure of the data
center or database server or servers.

disk volume An entity that appears to the
OS as a disk drive, but is actually made up
of a piece of one or more disk drives in a
RAID set.

distributed partitioned view A view that
joins horizontally partitioned data from a
set of tables that reside in distinct
instances of SQL Server on two or more
servers.

distributor The replication system respon-
sible for managing replication; contains
the distribution database.

DMV See Dynamic Management View.

domain integrity Also known as column
integrity; enforces that values inserted or
updated into a table comply with a speci-
fied set of data values that are valid for a
column. Enforced through the use of
CHECK, DEFAULT, NULL, and NOT
NULL constraint types.

drilling Navigating from summarized data
to detailed data.

DTS See Data Transformation Services.

Dynamic Management View (DMV) A view
that returns server state information that
can be used to monitor the health of a
server instance, to diagnose problems,
and to tune performance.

EM64T EM64T refers to Intel Extended
Memory 64 Technology (Intel EM64T).
This technology allows platforms to
access larger amounts of memory using
64-bit addressing while maintaining com-
patibility with today’s 32-bit applications
and operating systems.

EM64T processor The Intel processor that
runs both 64-bit and 32-bit programs
natively.

endpoint The method that the SQL Server
Database Engine uses to communicate
with applications.

enterprise report A report that presents
formatted data from one or more data
sources in one or more data regions and is
stored in a centralized location for access
by many users in an organization or dis-
tributed via e-mail or other methods.

Enterprise Resource Planning (ERP) Man-
agement information systems that inte-
grate and automate many of the business
practices associated with the operations
or production aspects of a company.

entity An object in a report model corre-
sponding to a table in a data source
view.

entity integrity Also known as table or row
integrity; requires that all the rows in a
table have a unique identifier; enforced
through the use of PRIMARY KEY or
UNIQUE constraints.

equijoin A join operation with a join condi-
tion containing an equality operator; com-
bines rows that have equivalent values for
the specified columns.

ETL (Extract, Transform, and Load) The
process of taking data from one system,
converting it, and loading it into another
system.

event A message raised by an executable
that indicates the current conditions,
such as the start of the executable or fail-
ure of the executable.

event chronicle A history of events col-
lected by Notification Services.

event class A set of properties used by Noti-
fication Services to create tables, views,
basic indexes, and stored procedures for
the storage and management of events in
an application database.

Glossary 1141
Event, Notification Services An occur-
rence of interest to subscribers, such as a
change in a key performance indicator or
the availability of new data in a transac-
tional database.

event provider A Notification Services
component that collects events on a peri-
odic basis by sending a query to a speci-
fied data source.

exabyte (EB) 260 bytes, or
1,152,921,504,606,846,976 bytes.

executables A container or task in the
package control flow.

external activation Use of an external
application notified by an event to process
messages in a Service Broker queue.

fact table A relational database table con-
taining columns for one or more mea-
sures at the lowest level of detail for one
or more dimensions.

failback The act of resources moving back
to the original node in a cluster upon its
resumption of service or at a scheduled
time.

failover The act of resources moving to the
remaining node of a cluster in the event of
a failure.

failover cluster Two or more computer sys-
tems that run the same database, one
active and the other in standby mode,
ready to take over in the event of a failure
of the primary system.

failover clustering Failover clustering is a
process through which the operating sys-
tem and application software work
together to provide continuous availabil-
ity in the event of an application, hard-
ware, or operating system failure.

FASMI See Fast Analysis of Shared Multidi-
mensional Information.

Fast Analysis of Shared Multidimensional
Information (FASMI) A term introduced by

The OLAP Report to describe OLAP.

FAT A file system used with DOS and some
versions of Windows; stands for File Allo-
cation Table, the main feature of this file
system.

FC (Fibre Channel) A high-speed data trans-
port technology used to build storage area
networks (SANs); primarily used to trans-
fer SCSI commands between servers and
disk arrays.

FCP (Fibre Channel Protocol) A protocol
that serializes SCSI commands into FC
frames for transfer over Fibre Channel.

fiber A lightweight thread that is managed
by SQL Server and can switch context
when in user mode, thereby requiring
fewer resources than a Windows thread. A
single Windows thread can be mapped to
many fibers.

filegroup A named grouping of data files
used primarily for manageability and allo-
cation purposes.

forced parameterization An option to force
the query optimizer to automatically
parameterize all queries that pass in pred-
icate values as literals.

FOREIGN KEY A column or set of columns
whose value matches the value of a PRI-
MARY KEY or UNIQUE KEY in another
table.

fully redundant The ability of multiple I/O
system components to take over functions
so that the system can continue transfer-
ring data if a component fails, allowing
the system to continue transferring data.

gigabyte (GB) 230 bytes, or 1,073,741,824
bytes.

group A set of detail rows related to a com-
mon field returned in a query result set or
to an expression.

HBA See Host Bus Adapter.

1142 Glossary
heartbeat A message sent between nodes
in a cluster to verify that the node is still
up and running properly.

hierarchy A navigation path that allows the
user to move from summarized values for
one attribute to summarized values for
another attribute.

high availability The availability of the sys-
tem’s resources in the wake of a compo-
nent failure.

hint An optional clause you can make to a
SQL Server statement to direct the query
optimizer to construct the query execu-
tion plan a particular way. Hints can be
specified for SELECT, INSERT, UPDATE,
or DELETE statements.

HOLAP An OLAP storage mode in which
detail data is stored in a relational data-
base and aggregated values are stored in a
multidimensional structure.

horizontal filter A filter used to create a
subset of rows.

horizontal partitioning The splitting of a
table with a large number of rows into
multiple partitions, each with the same
number of columns but fewer rows.

Host Bus Adapter (HBA) Also called a con-
troller or host adapter, it is an expansion
card that plugs into the computer bus to
connect one or more peripheral units to
the computer. As related to SAN, a HBA
provides I/O transfer capability between
the host computer and the disk array.

hyperthreading Hyperthreading is a pro-
cessor technology that provides thread-
level parallelism on each processor, result-
ing in more efficient use of processor
resources, higher processing throughput,
and improved performance primarily for
multithreaded software.

I/O Input/Output. I/O typically refers to
the reading from and writing to disk
drives.

index key The column in the table that is to
be indexed.

Index width The size of the index key; a
wide index has many large columns in the
index key; a narrow index has one or few
small columns in the index key.

indexed view A view that has a unique
clustered index created on it. The results
of the clustered index are stored perma-
nently on disk at the time the index is
created. Indexed views are used in cer-
tain cases to increase performance. Non-
clustered indexes can also be created on
the same view once the clustered index is
created.

initiator application An application which
sends a Service Broker message to a target
application.

instance configuration file (ICF) An XML
file used by Notification Services describ-
ing an instance used to run applications,
the SQL Server hosting the instance, the
path to files used by the application, and
parameters used by the application.

Instance, Notification Services A host
service for one or more notification
applications.

interconnect To attach one device to
another; the physical method used to con-
nect two devices.

intermediate report A version of a report
created after query execution but before
rendering that may be stored perma-
nently as a snapshot or temporarily as a
cached instance.

internal activation Use of a stored proce-
dure to process messages on arrival in a
Service Broker queue.

IOPS (I/O Operations Per Second) The
number of reads and/or writes to the
device per second.

Glossary 1143
iSCSI (Internet SCSI) A protocol that serial-
izes SCSI commands and converts them
to TCP/IP for transfer over an IP network,
also sometimes referred to as IP SAN.

Itanium Itanium refers to the Intel Itanium
2 Processor, Intel’s highest-performing
and most reliable server platform.

key performance indicator (KPI) A mea-
surement of business operations used to
compare a value at a point in time to a pre-
defined goal.

kilobyte (KB) 210 bytes or 1,024 bytes.

latency In general, a period of time spent
waiting for an event to complete or the
time between the end of one event and
the beginning of another, most commonly
used to refer to latencies involved in trans-
ferring data.

lazy writer A SQL Server operation (and
the name of the SQL Server background
process that performs lazy writer opera-
tions) that periodically checks to ensure
that the free buffer list does not fall below
a specific size. If the free list has fallen
below that size, the lazy writer scans the
cache, reclaims unused pages, and frees
dirty pages so those pages can be reused
for other data.

leaf level The most detailed level of data.

leaf node The bottom pages in an index.

level A group of related dimension mem-
bers typically associated with a hierarchy;
members on the same level usually come
from the same column in a dimension
table.

linked report A virtual copy of a report def-
inition which has its own execution,
parameter, security, and subscription
properties.

load test The practice of modeling the
characteristics of a program or system by

simulating a number of users accessing
that system or program.

logical disk An entity that appears to the
OS as a disk drive, but is actually made up
of a piece of one or more disk drives in a
RAID set.

login Used to allow a user to connect into
the database. A login can use either SQL
Server or Windows authentication.

measure A numeric value that can be sum-
marized.

measure group A collection of measures
derived from the same fact table.

megabyte (MB) 220 bytes or 1,048,576
bytes.

member A single item in a dimension that
usually corresponds to a single row in a
dimension table.

merge replication Type of replication that
uses triggers for two-way replication.

message queue Temporary storage for
messages exchanged using Service Broker.

metadata Data that is used to describe
other data, for example, table, column,
index, view, and statistic definition.

Microsoft Data Access Components
(MDAC) A group of Microsoft technologies

that interact together as a framework
allowing programmers a uniform and
comprehensive way of developing appli-
cations for accessing data; made up of var-
ious components: ActiveX Data Objects
(ADO), OLE DB, and Open Database
Connectivity (ODBC).

mirror The receiving database in the mirror
pair.

mirrored pair A principal and mirror oper-
ating together.

MOLAP A proprietary OLAP storage mode
that is highly efficient and enables fast
retrieval.

1144 Glossary
multicore A processor technology in which
a single physical processor consists of two
or more complete execution units, known
as cores. All of the cores run at the same
frequency and are plugged into a single
processor socket. Multicore processors
can perform multiple tasks in parallel in
each clock tick.

multipath I/O Refers to having more than
one physical path for data transfer
between a computer and a disk storage
device, and software to manage the paths
so that if one path fails, the I/O will be
handled by the remaining path.

multiple active result sets (MARS) A new
feature in SQL Server 2005 that allows
applications to have more than one pend-
ing request per connection, and in partic-
ular, to have more than one active default
result set per connection.

multiprocessor A computer with multiple
processors. The term is based on the
number of sockets supported by the
motherboard and not the number of
cores on the die.

named pipes A protocol developed for
local area networks with which a portion
of memory is used by one process to pass
information to another process, so that
the output of one is the input of the other.

named query A SQL query used in place of
a table to construct a specific logical view
of the underlying data source for use in a
data source view.

narrow index An index that is created on
one or a few columns.

NAS See network attached storage.

natural key A column or set of columns
already existing in the table that meet the
conditions for a PRIMARY KEY.

network attached storage (NAS) A special-
ized file server/storage device that con-
nects to an IP network to process only I/O
requests supporting file sharing protocols
such as NFS (Unix) and SMB/CIFS (Win-
dows). It appears as another node on the
network. Computers transfer data to and
from the device by connecting to the net-
work using the traditional Ethernet access
method and the TCP/IP protocol.

network bandwidth The amount of data
that a network can transmit in a specified
amount of time.

network interface card (NIC) An expan-
sion board you insert into a computer so
the computer can be connected to a net-
work; most are designed for a particular
type of network, protocol, and media,
although some are designed to serve mul-
tiple networks.

New Technology File System (NTFS) The
disk file structure used by Windows NT
and Windows 2000, Windows XP, and
Windows 2003 operating systems; uses a
Master File Table instead of a file alloca-
tion table.

NIC See network interface card.

nonclustered index An index where the
table data is not stored in the leaf node.

normalization The standard RDBMS prac-
tice of taking redundancy out of rows in a
table by storing redundant data once and
then referencing that data in a lookup
table.

notification A message, typically in the form
of an e-mail message or a file, delivered to a
subscriber by Notification Services.

notification application An application
that delivers a notification to a subscriber.

notification class A set of properties used
by Notification Services to create tables,
views, and stored procedures for the stor-
age and management of notifications in
an application database.

Glossary 1145
NTFS See New Technology File System.

NULL / NOT NULL constraints Used on a
column in a table definition to allow or
prevent NULL values from being inserted
into that column.

nullability Refers to the ability of a column
to accept NULL as a value or not.

OLAP See Online Analytical Processing.

OLTP See Online Transaction Processing.

Online Analytical Processing (OLTP) A type
of database designed specifically to sup-
port analysis for decision-making.

Online Transaction Processing (OLTP) A
type of computer workload computer in
which the computer responds immedi-
ately to user requests. Each request is con-
sidered to be a transaction.

Opteron processor The AMD processor
that runs both 64-bit and 32-bit programs
natively.

optimization The process of modifying a
computer system in order to maximize its
efficiency.

package An executable unit of work that
encapsulates the objects connecting to
data sources, performing tasks, trans-
forming data, and managing workflows.

PAE See Page Address Extension.

Page Address Extension (PAE) Hardware
and software modifications that allow 32-
bit processors to address more than 4 GB
of memory.

parameterization The process of modifying
a statement so that the predicate values
are passed in as parameters (example:
@P1) and not specified directly as literals
(for example, "123").

partition A cube structure used to optimize
physical storage, aggregations, query per-
formance, and processing.

partition column The column that defines
the partition values.

partition key The column that partitioning
is defined on (similar to an index key
column).

partitioned view A view that joins horizon-
tally partitioned data from a set of tables
that reside in one instance of SQL Server
on one server. This is also known also as a
local partitioned view to distinguish from
a distributed partitioned view. For SQL
Server 2005, partitioned views are sup-
ported for backward compatibility as the
new partitioned tables feature is replacing
them.

partitioning, horizontal See horizontal
partitioning.

partitioning, vertical See vertical
partitioning.

partitions The piece of a table that has been
divided out via SQL Server partitioning.

PC Personal computer.

performance tuning The process of modi-
fying a computer system or software in
order to make the entire system or some
aspect of that system run faster.

permission Approvals to perform specific
tasks or access specific objects.

persistent storage Storage that survives
even when power is removed.

petabyte (PB) 250 bytes or
1,125,899,906,842,624 bytes.

physical memory Hardware used to store
data in a computer.

pivot Switch labels on rows and columns.

PK See PRIMARY KEY.

plan guides A feature introduced in SQL
Server 2005 that helps you specify hints
on statements without having to modify
the text of the statement directly. Plan
guides are very useful for tuning queries
that originate in applications that cannot
be modified.

1146 Glossary
precedence constraint A package object
defining the sequence of operations of
two tasks in the control flow and the con-
ditions which determine whether the sec-
ond task will execute.

PRIMARY KEY A column or set of columns
that uniquely identifies a row in a table.
There can only be one PRIMARY KEY per
table.

principal database The originating data-
base in the mirror pair. There can only be
one principal database, and it has to be on
a SQL Server instance separate from the
mirror database.

principals Entities that can request access
to SQL Server resources and consist of
their own hierarchy.

proactive caching Processing updates to
database objects only when source data
changes.

process Load data from a relational source
into dimension or measure group parti-
tion structures.

protocol A format and procedure that gov-
erns the transmission and receipt of data.

publication A collection of articles that is
defined to be replicated.

publisher The replicated system from
which data is replicated and the origina-
tor of the replication.

QA Quality assurance.

quantum An interval of time used by Notifi-
cation Services to check for new
notifications.

query execution plan A representation of
the exact sequence of operations the SQL
Server database engine performs in order
to execute a SQL statement.

queue time The time that the action that
you are measuring waits on all of the jobs
ahead of it to complete.

queuing theory The mathematics that gov-
erns the effects of multiple entities each
using the same resources.

quorum The relationship between the wit-
ness, the principal, and the mirror.

RAID Redundant Array of Inexpensive
Disks. RAID disk controllers create a large
logical disk drive by striping multiple disk
drives together.

random I/O Requests to read and write
data from and to random places on the
disk drive.

random seek The time it takes on average
for data to move from one track to
another randomly.

recovery The process of rolling data back
(roll back is also known as undo) and
bringing the data online.

recovery path Any complete sequence of
data and log backups that can be restored
to bring a database to a point in time.

referential integrity Ensures that the rela-
tionships between tables with associated
data are maintained; enforced through
the use of FOREIGN KEY constraints that
reference a UNIQUE or PRIMARY KEY
constraint.

replication A feature of SQL Server that
allows you to enable the automatic cre-
ation of copies of SQL Server objects or
subset of objects on a system and the
propagation of the objects to other sys-
tems. Replication comes in three forms:
snapshot, transactional, and merge.

report definition A description of a report’s
data, layout, and properties.

report item An item used to display text or
graphical elements in a report, such as a
textbox, table, chart, or image.

Glossary 1147
report model A logical view of a relational
database describing the database’s tables
and columns and the relationships
between them; used to build ad hoc
reports.

reporting life cycle A three-stage process
that includes tasks for report authoring,
report management, and report delivery.

response time The sum of the service time
and the queue time.

restore The process of copying data and
rolling data forward (roll forward is also
known as redo) as needed.

restore sequence A set of restore state-
ments used to perform the restore steps:
data copy, roll forward, roll back, and
bring data online.

ROLAP An OLAP storage mode in which
data is stored in a relational database.

role A pseudo-entity; a holder of permis-
sions that can be assigned to logins and/
or users. In a report model, an object
defining a relationship between entities.
In a security system, a group of function-
ally related activities to which a Windows
group or user is assigned.

role assignment Assignment of a specific
user or a group to a role for a specific item
on the report server.

role definition An association of roles and
tasks in the Reporting Services security
system.

root node The first page in an index.

rotational latency The time it takes for a
disk drive to spin to the desired sector.

row splitting The practice of dividing rows
into two or into different storage areas
with a one-to-one row equivalency.

RPM Revolutions per minute.

sac Surface area configuration command-
line utility used to import and export sur-
face area configuration settings.

SAN See storage area network.

scale out A system that is distributed in
order to provide a higher degree of
performance.

scale up To add more and bigger hardware
to a system in order to achieve a higher
degree of performance.

schema An entity that owns a securable. A
schema is like a user but doesn’t necessar-
ily have logins associated with it.

SCSI Small Computer System Interface. A
hardware interface that allows for the con-
nection of up to 15 peripheral devices to a
single PCI board called a “SCSI host
adapter” that plugs into the motherboard.
Connects computers to disk drives as well
as other peripheral devices such as print-
ers and tape drives. Pronounced “skuzzy.”

securables Resources that the SQL Server
database engine regulates access to, or
secures.

seek time The time it takes for a disk head
to move from one track to another.

semiadditive measure A measure that can
be summed along some, but not all,
dimensions, such as an inventory count.

sequential I/O Requests to read and write
data from and to adjacent locations on the
disk drive.

server interconnect The connection
between the nodes in the cluster.

service level agreement (SLA) A contract,
either formal or informal, between the IT
organization and the customer that
defines the level of service that will be pro-
vided to them.

service time The time that the action that
you are measuring takes to complete.

SGAM See Shared Global Allocation Map.

1148 Glossary
Shared Global Allocation Map (SGAM)
Pages used to record which extents are
being used as mixed extents and have free
pages for allocation.

simple index An index that has been
defined with only one key column.

simple parameterization An option to per-
mit the query optimizer to choose to
parameterize the queries as appropriate.

single point of failure A component whose
failure will cause the failure of the entire
system.

sizing The act of determining the resources
required for a new system.

SLA See service level agreement.

slice and dice To cross-tabulate data.

SMP See Symmetric Multi Processor.

SNAC SQL Native Access Client. A data
access technology new in Microsoft SQL
Server 2005; a stand-alone data access
application programming interface that
combines the SQL OLE DB provider and
the ODBC driver into one native dynamic-
link library (SQLNCLI.DLL).

snapshot replication Type of replication
that creates an entire copy of the
publication.

split the problem The technique of devis-
ing a test to determine whether a problem
is of one type or another.

SQL Server Active Directory Helper Ser-
vice used to publish and manage SQL
Server services in Windows active
directory.

SQL Server Agent Service used for auto-
mating administrative tasks, executing
jobs, alerts, and so on.

SQL Server Analysis Services Online ana-
lytical processing (OLAP) and data min-
ing functionality for Business Intelligence
(BI) applications.

SQL Server Browser Name resolution ser-
vice that provides SQL Server connection
information for client computers.

SQL Server Full Text Search Service that
enables fast linguistic searches on con-
tent and properties of structured and
semistructured data by using full-text
indexes.

SQL Server Integration Services Provides
management support for Integration Ser-
vices package storage and execution.

SQL Server Notification Services Platform
for developing and deploying applica-
tions that generate and send
notifications.

SQL Server Reporting Services SQL Server
2005 component used to manage, exe-
cute, render, schedule, and deliver
reports.

SQL Server Surface Area Configuration
Tool used to enable, disable, start, or stop
the features, services, and remote connec-
tivity of SQL Server 2005 installations.

SQL Server Upgrade Advisor Tool you can
use to prepare for upgrades to SQL Server
2005.

SQL Server VSS Writer Service used to
allow backup and restore applications to
operate in the Volume Shadow-copy Ser-
vice (VSS) framework.

statistics A histogram and associated den-
sity groups created over a column or set of
columns of a table or indexed view.

storage area network (SAN) A network of
disks that allows multiple computers to
connect to a pool of disks. The SAN con-
tains its own I/O controller(s) such that
the computer hosts transfer data via an
HBA, rather than via an Ethernet card as
with a NAS device.

Glossary 1149
subcube A subset of a cube created by a
CREATE SUBCUBE MDX statement to
focus subsequent analysis on a smaller set
of data for improved query performance.

subscriber The replicated system to which
data is replicated and the recipient of the
replication.

subscription A rule that defines the
conditions for sending a notification to a
subscriber.

subscription chronicle A history of notifica-
tions maintained by Notification Services.

subscription class A set of properties used
by Notification Services to create tables,
views, basic indexes, and stored proce-
dures for the storage and management of
subscriptions in an application database.

surrogate key An artificial identifier that is
unique. This is most often a system-gener-
ated sequential number.

Symmetric Multi Processor (SMP) A type
of server where two or more similar
processors are connected via a high-band-
width link and managed by one operating
system. Each processor has equal access
to memory and the I/O devices.

system role assignment An association of a
Windows user or group with a system
role to define who can perform adminis-
trative tasks on the Report Server.

system tables A set of built-in tables used
to store system metadata; store informa-
tion and definitions of all objects in a
database

table A collection of cells organized into a
fixed number of columns with a variable
number of detail and group rows.

target application An application which
receives a Service Broker message from an
initiator application.

task A control flow component performing
a specific function, such as executing a
SQL statement.

TCP/IP Transmission Control Protocol/
Internet Protocol; a suite of communica-
tions protocols used to connect hosts on
the Internet; uses several protocols, the
two main ones being TCP and IP.

terabyte 240 bytes, or 1,099,511,627,776
bytes.

trace flag A database switch used to tempo-
rarily set specific server characteristics or
to switch off a particular behavior.

track-to-track seek The time the heads
take to move between adjacent tracks.

transaction 1. A logical unit of work. 2. In
relation to the SQL Server transaction log
specifically, a transaction is a modification
to data in the database. For example, a
transaction can be an insertion, update, or
deletion of data, or a schema change.
Transactions are recorded in the transac-
tion log.

transaction log A database file in which all
database modifications are recorded.

transactional replication Type of replica-
tion that uses the transaction log to keep
the subscriber in sync with the publisher.

transfer time The time it takes to move the
data from the disk drive electronics to the
I/O controller.

transformation A data flow component
manipulating data in a data flow, such as
sorting rows.

troubleshooting The systematic search for
the source of a problem.

T-SQL Transact-Structured Query Lan-
guage, the language used to define the
database objects, manipulate data, and
administer the SQL Server instance.

Unified Dimension Model (UDM) The
measure groups and dimensions as well
as related analysis objects that collectively
provide access to business intelligence
data.

1150 Glossary
Uniprocessor A computer with a single pro-
cessor. The term is based on the number
of sockets supported by the motherboard
and not the number of cores on the die.

UNIQUE KEY A column or set of columns
that uniquely identifies a row in a table
and is defined within a UNIQUE con-
straint. The difference from a PRIMARY
KEY constraint is that a UNIQUE con-
straint will accept NULL as a value, and
there can be multiple UNIQUE con-
straints per table.

user Allows permissions to be assigned to a
login in a specific database. Typically a
login has a corresponding user ID in each
database.

user hierarchy A collection of attributes
placed into a hierarchy structure to enable
navigation from one attribute to another.

user instance A SQL Server Express feature
that enables nonadministrators to run a
local version of SQL Server in their own
accounts. With user instances, nonadmin-
istrators have database owner privileges
over the instance running in their own
accounts.

user-defined integrity Lets the user
defined business rules that do not fall
under one of the other integrity catego-
ries, including column-level and table-
level constraints.

UserID See user.

vacuuming A process to periodically
remove stale data from a Notification Ser-
vices application database.

vertical filter A filter used to create a subset
of columns.

vertical partitioning The splitting of a table
with a large number of columns or very
large columns into multiple partitions,
each with the same number of rows but
fewer columns.

VIA Virtual Interface Adapter. A high per-
formance communication protocol.

view A virtual table whose contents are
defined by a SELECT statement; the
resulting rows and columns of the view
are not stored on disk, but are dynami-
cally produced when the view is refer-
enced.

virtual memory A technique by which a
process in a computer system can address
memory whose size and addressing is not
coupled to the physical memory of the
system

virtual server A server on which the actual
physical identity of the system has been
abstracted away.

wide index An index with many key col-
umns.

witness Monitors the mirrored pair and
ensures that both database servers are in
proper operating order.

XML showplan The XML-based representa-
tion of the query execution plan.

yottabyte (YB) 280 bytes, or 1,024 zetta-
bytes.

zettabyte (ZB) 270 bytes, or 1,024 exabytes.

About the Authors

Edward Whalen is the founder of Performance Tuning Corporation (www.perftun-
ing.com), a consulting company specializing in database performance, administration,
and backup/recovery solutions. He has extensive experience in database system design
and tuning for optimal performance. His career has consisted of hardware, operating sys-
tem, and database development projects for many different companies. He has written
four other books on the Microsoft SQL Server RDBMS and has also written four books on
Oracle. In addition to writing, he has worked on numerous benchmarks and perfor-
mance tuning projects with both Microsoft SQL Server and Oracle. He is recognized as a
leader in database performance tuning and optimization on both SQL Server and Oracle.
He can be reached at ewhalen@perftuning.com.

Marcilina (Marci) Garcia is director of consulting operations and senior database con-
sultant for Performance Tuning Corporation (www.perftuning.com). She has worked as a
consultant for more than nine years, specializing in troubleshooting and tuning
Microsoft SQL Server database systems, system and storage architecture, database bench-
marks, load test development, and sizing and capacity planning. She has previously co-
authored four technical books for Microsoft Press on SQL Server administration and per-
formance tuning.

Burzin Patel is currently a program manager in the SQL Server team at Microsoft Cor-
poration. He is responsible for managing the relationship with strategic Independent
Software Vendors (ISVs) as well as large-scale customers. Prior to Microsoft, he con-
sulted at IBM Corporation as lead performance engineer for four years, where he spe-
cialized in end-to-end system performance and configuration. He has authored several
papers and lectured on a variety of topics around the world. He currently holds two U.S.
patents, plus others that are pending approval, for inventions pertaining to performance
and optimizations. You can contact him via e-mail at burzinp@microsoft.com or tele-
phone (650) 867-7314.

Stacia Misner is the founder of Data Inspirations, where she delivers business intelli-
gence consulting and education services. She is a consultant, educator, mentor, and
author specializing in business intelligence and performance management solutions
using Microsoft technologies. Stacia has more than 22 years of experience in IT and has
focused exclusively on business intelligence since 1999. She wrote both Microsoft SQL
Server 2005 Reporting Services Step by Step andMicrosoft SQL Server 2005 Reporting Services
Step by Step, and wrote Microsoft SQL Server 2005 Analysis Services Step by Step and Business
i

ii About the Authors
Intelligence: Making Better Decisions Faster. She currently lives in Las Vegas, Nevada, with
her husband, Gerry, and their flock of parrots. She can be contacted at smisner@datain-
spirations.com.

Victor Isakov is a database architect and Microsoft Certified Trainer based in Sydney,
Australia. He holds the following certifications/credentials: LLB/BSc (Computer Sci-
ence), CTT, MCT, MCSE, MCDBA, MCTS: SQL Server 2005, MCTS: SQL Server 2005
Business Intelligence, MCITP: Database Developer, MCITP: Database Administrator,
MCITP: Business Intelligence Developer. Although he has a strong operating system and
networking background, he specializes in SQL Server, providing consulting and train-
ing services to various organizations in the public, private, and NGO sectors globally.
He runs the SQL Server User Group in Sydney and has a Web site dedicated to SQL
Server (http://www.SQLServerSessions.com) and SQL Server training (http://www.
SQLServerLounge.com). He regularly presents at various international events and confer-
ences, such as Microsoft TechEd and SQL PASS. He has written a number of books about
SQL Server and worked closely with Microsoft to develop the new generation of SQL
Server 2005 certification and Microsoft official curriculum for both instructor-led train-
ing and e-learning courses. He also writes articles regularly for http://www.devx.com and
http://searchsqlserver.com. You can reach him at SQL.Server.Solutions@gmail.com.

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Contributing Authors

	Introduction
	How to Use this Book
	What’s in This Book
	About the CD
	Computer System Requirements
	Support
	Talk to Us

	Part I: Introduction to Microsoft SQL Server 2005
	Chapter 1: What’s New in Microsoft SQL Server
	New Hardware Support
	Native 64-Bit Support
	NUMA Support

	Data Availability
	Online Restore
	Online Index Operations
	Database Snapshot
	Fast Recovery
	Mirrored Backups
	Database Mirroring
	Read Committed Snapshot and Snapshot Isolation

	Performance
	Data Partitioning
	Plan Guides
	Forced Parameterization
	Dynamic Management Views

	Enhancements to Existing Features
	SNAC
	Failover Clustering
	Replication
	Indexes
	Full-Text Search

	Tools and Utilities
	SQL Server Management Studio
	Query Editor
	SQL Configuration Manager
	Surface Area Configuration
	SQL Server Profiler
	Database Engine Tuning Advisor
	SQL Server Upgrade Advisor
	sqlcmd Utility
	tablediff Utility

	Business Intelligence Features
	Business Intelligence Development Studio
	Integration Services
	Analysis Services
	Reporting Services
	Notification and Broker Services

	Summary

	Chapter 2: Microsoft SQL Server 2005 Editions, Capacity Limits, and Licensing
	SQL Server 2005 Editions
	Mobile Edition
	Express Edition
	Workgroup Edition
	Standard Edition
	Enterprise Edition
	Developer Edition

	Understanding Windows Platform Support
	Understanding Processors and Memory Limits
	Factoring in Head-Room
	Comparing SQL Server 2005 Editions
	Database Engine Features
	Analysis Services
	Reporting Services
	Notification Services
	Integration Services
	Replication

	SQL Server 2005 Capacity Limits
	Understanding SQL Server 2005 Licensing
	User Client Access Licensing
	Device Client Access Licensing
	Processor Licensing

	Licensing Considerations for High-Availability Environments
	SQL Server 2005 Pricing
	Summary

	Chapter 3: Roles and Responsibilities of the Microsoft SQL Server DBA
	Different Kinds of DBA
	Production DBA
	Development DBA
	Architect DBA
	ETL DBA
	OLAP DBA

	Basic Duties of a DBA
	Installation and Configuration
	Security
	Operations
	Service Levels
	System Monitoring
	Performance Tuning
	Routine Maintenance
	Reliability
	Disaster Recovery
	Planning and Scheduling Downtime
	Capacity Planning
	Documentation
	Development and Design
	Scalability
	Replication
	Named Instances

	DBA Tips, Guidelines, and Advice
	Know Your Operating System
	Help Desk
	Purchasing Input
	Know Your Versions
	Don’t Panic

	Summary

	Part II: System Design and Architecture
	Chapter 4: I/O Subsystem Planning and RAID Configuration
	I/O Fundamentals
	Disk Drive Basics
	Disk Drive Performance Characteristics
	Disk Drive Specifications
	Disk Drive Performance
	Solutions to the Disk Performance Limitation Problem

	Redundant Array of Independent Disks (RAID)
	RAID Basics
	RAID Levels
	RAID Performance
	Disk Calculations
	RAID Comparison
	Which RAID Level Is Right for You?

	SQL Server I/O Overview
	SQL Server Reads
	SQL Server Writes
	Transaction Log
	Backup and Recovery

	Planning the SQL Server Disk Layout
	Determine I/O Requirements
	Plan the Disk Layout
	Implement the Configuration

	Summary

	Chapter 5: 32-Bit Versus 64-Bit Platforms and Microsoft SQL Server 2005
	CPU Basics
	64-Bit Versus 32-Bit Addressing
	Hardware Platforms

	Windows Versions
	Windows 2000
	Windows Server 2003
	Windows Server 2003 64-Bit editions
	Windows Comparison

	SQL Server 2005 Options
	SQL Server 32-Bit Edition
	SQL Server 64-Bit

	Taking Advantage of 64-Bit SQL Server
	Utilizing Large Memory with the 32-Bit Version of SQL Server 2005
	Utilizing Large Memory with the 64-Bit Version of SQL Server 2005

	Summary

	Chapter 6: Capacity Planning
	Principles of Capacity Planning
	Capacity Planning Versus Sizing
	Service Level Agreements
	Mathematics of Capacity Planning

	CPU Capacity Planning
	Sizing CPUs
	Monitoring CPU Usage

	Memory Capacity Planning
	Sizing Memory
	Monitoring Memory

	I/O Capacity Planning
	Sizing the I/O Subsystem
	Monitoring the I/O Subsystem

	Network Capacity Planning
	Sizing the Network
	Monitoring the Network

	Growth Considerations
	Calculating Growth
	Planning for Future Growth

	Benchmarking and Load Testing
	Load Testing the Application

	Benchmarking the I/O Subsystem
	Benchmarking the Network

	Using MOM for Capacity Planning
	Summary

	Chapter 7: Choosing a Storage System for Microsoft SQL Server 2005
	Interconnect and Protocol Technologies
	Understanding Data Transfer: Block Form Versus File Format
	SCSI Protocol over Parallel SCSI Interconnect
	Ethernet Interconnect
	iSCSI
	Fibre Channel (FC) Interconnect
	Interconnect Bandwidth Comparison

	Storage Systems
	DAS
	SAN
	NAS

	Storage Considerations for SQL Server 2005
	Summary

	Chapter 8: Installing and Upgrading Microsoft SQL Server 2005
	Preinstallation Planning
	Minimum Hardware Requirements
	Selecting the Processor Architecture
	Installing Internet Information Services
	Components to Be Installed
	Service Accounts
	Multiple Instances and Side-by-Side Installation
	Licensing Mode
	Collation
	Authentication Modes
	Security Considerations

	Installing SQL Server 2005
	Installing SQL Server 2005 Using the Installation Wizard
	Installing SNAC Using the Installation Wizard
	Installing SQL Server 2005 Using the Command Prompt

	Upgrading to SQL Server 2005
	SQL Server Upgrade Advisor
	Upgrade Procedure
	Post-Upgrade Steps

	Reading the SQL Server 2005 Setup Log Files
	Uninstalling SQL Server 2005
	Uninstalling SQL Server 2005 Using the Uninstall Wizard
	Uninstalling SQL Server 2005 Using the Command Prompt

	Using SQL Server Surface Area Configuration
	sac Utility

	Summary

	Chapter 9: Configuring Microsoft SQL Server 2005 on the Network
	Understanding the SQL Server Network Services
	SQL Server APIs
	SQL Server Network Libraries
	Selecting a Network Library

	SQL Native Client (SNAC)
	Using SQL Native Client
	Tracing and Debugging

	Configuring Network Protocols
	Configuring Server and Client Protocols

	Using ODBC Data Source Names (DSN)
	Creating an ODBC DSN
	Using Aliases

	SQL Server Browser Service
	SQL Browser Working
	Hiding a SQL Server 2005 Instance

	Network Components and Performance
	The Software Layer
	The Hardware Layer

	Network Monitoring
	Monitoring Network Performance
	Finding Solutions to Network Problems

	Summary

	Part III: Microsoft SQL Server 2005 Administration
	Chapter 10: Creating Databases and Database Snapshots
	Understanding the Database Structure
	Database Files
	Database Filegroups

	Understanding System Databases
	master
	model
	msdb
	resource
	tempdb
	AdventureWorks and AdventureWorksDW

	Creating User Databases
	Creating a Database
	Setting Database Options

	Viewing Database Details
	Viewing Database Details with SQL Server Management Studio
	Viewing Database Details with the sp_helpdb Command

	Deleting a Database
	Deleting a Database Using SQL Server Management Studio
	Deleting a Database Using the DROP DATABASE Command

	Real-World Database Layouts
	Simple Application Workload
	Moderately Complex Application Workload
	Complex Application Workload

	Using Database Snapshots
	How Database Snapshots Work
	Managing Database Snapshots
	Common Uses
	Database Snapshots Limitations

	Summary

	Chapter 11: Creating Tables and Views
	Table Fundamentals
	Data Types
	Nulls
	IDENTITY Column

	Creating, Modifying, and Dropping Tables
	Creating Tables
	Modifying Tables
	Dropping Tables

	Views
	Advantages of Views
	Data Security with Views
	Creating, Modifying, and Dropping Views
	View Source
	Modifying Views
	Dropping Views

	System Views
	Summary

	Chapter 12: Creating Indexes for Performance
	Index Fundamentals
	How to Optimally Take Advantage of Indexes
	Index Types
	Clustered Index
	Nonclustered Index
	Included Columns Index
	Indexed Views
	Full-Text Index
	XML Index

	Designing Indexes
	Index Best Practices
	Index Restrictions
	Using the Index Fill Factor
	Partitioned Indexes

	Creating Indexes
	Index Creation Examples
	Normal Index Creation Logging
	Minimally Logged Operations

	Index Maintenance and Tuning
	Monitoring Indexes
	Rebuilding Indexes
	Disabling Indexes
	Tuning Indexes
	Online Index Operations

	Summary

	Chapter 13: Enforcing Data Integrity
	What Is Data Integrity?
	Enforcing Integrity with Constraints
	PRIMARY KEY Constraints
	UNIQUE Constraints
	FOREIGN KEY Constraints
	CHECK Constraints
	NULL and NOT NULL Constraints
	DEFAULT Definitions

	Summary

	Chapter 14: Backup Fundamentals
	Why Perform Backups with a Highly Available System?
	System Failures That Require Backups
	Hardware Failures
	Software Failures

	Purpose of the Transaction Log
	Microsoft SQL Server Automatic Recovery
	Recovery Models and Logging
	Simple Recovery Model
	Full Recovery Model
	Bulk-Logged Recovery Model
	Viewing and Changing the Recovery Model

	Types of Backups
	Data Backups
	Differential Backups
	Log Backups
	Copy-Only Backups
	Full-Text Catalog Backups

	Backup and Media Fundamentals
	Understanding Backup Devices and Media Sets
	Mirrored Media Sets
	Overview of Backup History Tables
	Viewing Backup Sets in Management Studio

	Backup Strategy
	Backing Up System Databases
	Summary

	Chapter 15: Restoring Data
	Practicing and Documenting Restore Procedures
	Restore and Recovery Concepts
	Restoring Data from Backups
	Complete Database, Differential Database, and Log Restores
	Point-in-Time Restore
	File and Filegroup Restore
	Page Restore
	Partial and Piecemeal Restore
	Revert to Database Snapshot
	Online Restore
	Fast Recovery

	Summary

	Chapter 16: User and Security Management
	Principals
	Logins
	Users
	Roles

	Securables
	Schemas

	Permissions
	Server Permissions
	Database Object Permissions
	Statement Permissions

	Summary

	Part IV: Microsoft SQL Server 2005 Architecture and Features
	Chapter 17: Transactions and Locking
	What Is a Transaction?
	ACID Properties
	Atomicity
	Consistency
	Isolation
	Durability

	Committing Transactions
	Transaction Commit Modes
	Transaction Performance

	Transaction Rollbacks
	Automatic Rollbacks
	Programmed Rollbacks
	Using Savepoints

	Transaction Locking
	Locking Management Features
	Lockable Resources
	Lock Modes

	Viewing Locks
	Locking Hints
	Blocking and Deadlocks
	Isolation Levels
	Concurrent Transaction Behavior
	Row Versioning

	Summary

	Chapter 18: Microsoft SQL Server 2005 Memory Configuration
	Buffer Cache
	Lazy Writer Process
	Checkpoint Process

	SQL Server Memory Allocation
	Dynamic Memory Allocation
	Static Memory Allocation
	Setting Max and Min Server Memory

	Summary

	Chapter 19: Data Partitioning
	Partitioning Fundamentals
	Data Partitioning Basics
	Partitioning Benefits
	Performance Benefits of Partitioning

	Designing Partitions
	Partitioning Design Fundamentals

	Creating Partitions
	Create the Partition Function
	Create the Partition Scheme
	Create the Partitioned Table
	Create the Partitioned Index

	Viewing Partition Information
	Viewing Partition Information with SQL Statements
	Viewing Partition Information with SQL Server Management Studio

	Maintaining Partitions
	Adding Partitions
	Archiving Partitions
	Deleting Partitions
	Repartitioning Tables
	Partitioning a Nonpartitioned Table
	Unpartitioning a Table
	Dropping Partition Functions and Schemes

	Using Partitions
	Inserting Data into Partitioned Tables
	Selecting Data from Partitioned Tables
	Selecting Data from a Specific Partition

	Partitioning Scenarios
	Scenario 1: Partitioning Historical Data
	Scenario 2: Storage Partitioning
	Scenario 3: Partitioning for Maintenance Optimization
	Scenario 4: Spatial Partitioning
	Scenario 5: Account Partitioning
	Scenario 6: Join Partitioning
	Scenario Summary

	Summary

	Part V: Microsoft SQL Server 2005 Business Intelligence
	Chapter 20: Replication
	Replication Fundamentals
	Uses of Replication
	Scaling Out Applications
	Data Warehousing
	Distributing and Consolidating Data
	Offloading Report Processing

	Replication Concepts
	Replication Components

	Types of Replication
	Snapshot Replication
	Transactional Replication
	Merge Replication

	Components of Replication
	Replication Data
	Push and Pull Subscriptions
	Replication Agents

	Configuring Replication
	Configure the Distributor
	Configure Publications

	Creating a Publication with SQL Statements
	Configure Subscribers

	Creating a Subscription with SQL Statements
	Configuring an Oracle Publication
	Managing Replication
	Publisher Properties
	Distributor Properties
	Disable Publishing and Distribution
	Launch Replication Monitor
	Generate Scripts
	Update Replication Passwords
	New
	Refresh

	Monitoring and Tuning Replication
	Monitoring Replication with perfmon
	Monitoring Replication with the Replication Monitor
	Tuning for Snapshot Replication
	Tuning the Distributor
	Tuning for Transactional Replication
	Monitoring and Tuning the Merge Replication System
	Monitoring the Merge Replication System
	Tuning the Merge Replication System

	Summary

	Chapter 21: Integration Services
	What Is Integration Services?
	Integration Services Versus Data Transformation Services
	Integration Services Fundamentals
	Integration Services Components Overview

	Designing Packages
	The Development Environment
	Control Flow Components
	Connection Managers
	Data Flow Components
	Debugging Tools
	Logging
	Advanced Integration Services Features

	Deploying Packages
	Package Configuration
	Package Deployment
	Package Security
	Package Execution
	Package Management
	Monitoring Packages

	Summary

	Chapter 22: Analysis Services
	What Is Analysis Services?
	Analysis Services 2005 Versus Analysis Services 2000
	Analysis Services Fundamentals
	Integration with SQL Server 2005 Components
	Analysis Services Components Overview

	Designing Analysis Services Projects
	Data Preparation
	Starting an Analysis Services Project
	Dimension Design
	Cube Design

	Managing Analysis Services
	Analysis Server Configuration
	Deployment Options
	Partitions
	Processing Data
	Security Management
	Performance Management
	SQL Server Profiler
	Performance Counters

	Summary

	Chapter 23: Reporting Services
	What Is Reporting Services?
	Reporting Services 2005 Versus Reporting Services 2000
	Reporting Services Fundamentals
	Reporting Services Components Overview

	Authoring Reports
	Enterprise Reports
	Ad Hoc Reports

	Managing Reporting Services
	Report Server Configuration
	Content Management
	Security Management
	Performance Management

	Summary

	Chapter 24: Notification Services and Service Broker
	What Is Notification Services?
	Notification Services 2005 Versus Notification Services 2.0
	Notification Services Fundamentals
	Notification Services Components Overview

	Developing Notification Services Applications
	Creating an Instance Configuration File
	Creating an Application Definition File
	Creating an XSLT File

	Using Notification Services Applications
	Deploying a Notification Services Application
	Testing a Notification Services Application
	Adding Subscriptions
	Submitting Events
	Viewing Notifications

	What Is Service Broker?
	Service Broker Fundamentals
	Service Broker Components Overview

	Implementing Service Broker Applications
	Creating Service Broker Objects
	Managing Conversations

	Managing Service Broker Applications
	Stopping a Service Broker Application
	Starting a Service Broker Application
	Backing Up and Restoring a Service Broker Application
	Querying a Queue

	Summary

	Part VI: High Availability
	Chapter 25: Disaster Recovery Solutions
	What Are High Availability and Disaster Recovery?
	Fundamentals of Disaster Recovery and Disaster Survival
	Microsoft SQL Server Disaster Recovery Solutions
	Using Database Backups for Disaster Recovery
	Log Shipping
	Database Mirroring
	Replication
	SQL Server Clusters
	Overview of High Availability and Disaster Recovery Technologies

	Summary

	Chapter 26: Failover Clustering Installation and Configuration
	What Is a Cluster?
	Clustering Concepts
	Overview of MSCS
	Basic Concepts
	Cluster Components
	Cluster Application Types
	MSCS Modes

	Examples of Clustered Systems
	Example 1-High-Availability System with Static Load Balancing
	Example 2-Hot Spare System with Maximum Availability
	Example 3-Partial Server Cluster
	Example 4-Virtual Server Only, with No Failover

	Planning Your Configuration
	Installing and Configuring Windows 2003 and SQL Server 2005 Clustering
	Creating the Windows Cluster
	Creating the SQL Server Cluster
	Additional Steps
	Using a Three-Tier Application

	Summary

	Chapter 27: Log Shipping and Database Mirroring
	Types of Data Loss
	Log Shipping
	Configuring Security for Log Shipping and Database Mirroring
	Configuring Log Shipping
	Monitoring Log Shipping
	Log Shipping Failover
	Removing Log Shipping
	Tuning Log Shipping: Operations and Considerations
	Practical Log Shipping Advice

	Database Mirroring
	Configuring Database Mirroring
	Planning and Considerations for Database Mirroring
	Tuning Database Mirroring
	Configuring Database Mirroring
	Monitoring Database Mirroring
	Using Mirroring and Snapshots for Reporting Servers

	Summary

	Part VII Performance Tuning and Troubleshooting
	Chapter 28: Troubleshooting, Problem Solving, and Tuning Methodologies
	Troubleshooting and Problem Solving
	The Problem Solving Attitude
	Troubleshooting Techniques
	The Search for Knowledge

	Performance Tuning and Optimization
	Tuning and Optimization Basics

	Troubleshooting and Tuning Methodology
	Developing a Methodology

	The Need for Documentation
	Summary

	Chapter 29: Database System Tuning
	Monitoring and Tuning Hardware
	Tools for Monitoring and Tuning Hardware
	Determining Hardware Bottlenecks

	Monitoring and Tuning SQL Server
	Tools for Monitoring and Tuning SQL Server
	Determining SQL Server Performance Bottlenecks
	Tuning Microsoft SQL Server Configuration Options

	Tuning the Database Layout
	Database Layout
	Database Options

	Tuning the tempdb System Database
	Summary

	Chapter 30: Using Profiler, Management Studio, and Database Engine Tuning Advisor
	Overview of SQL Server Tools
	Performance Tools
	Configuration Tools
	External Tools

	Using SQL Server Management Studio
	SQL Server Management Studio Environment
	Using Object Explorer
	Using the Summary Report Pane
	Analysing SQL Server Logs
	Viewing Current Activity
	Generating SQL Server Agent Alerts
	Executing T-SQL Statements
	Viewing Execution Plans

	Using SQL Server Profiler
	Capturing a SQL Server Profile Trace

	Using the Database Engine Tuning
	Summary

	Chapter 31: Dynamic Management Views
	Understanding Dynamic Management Views
	Using Dynamic Management Views
	Common Language Runtime-Related DMVs
	Database-Related DMVs
	Database Mirroring-Related DMV
	Execution-Related DMVs and Functions
	Full-Text Search-Related DMVs
	Input/Output Related DMVs and Functions
	Index Related DMVs and Functions
	Query Notifications-Related DMVs
	Replication-Related DMVs
	Service Broker-Related DMVs
	SQL Server Operating System-Related DMVs
	Transaction-Related DMVs and Functions

	Creating a Performance Data Warehouse
	Summary

	Chapter 32: Microsoft SQL Server 2005 Scalability Options
	Scalability Options
	Scaling Up
	Processor Subsystem
	Memory Subsystem
	I/O Subsystems

	Scaling Out
	Multiple SQL Server Instances
	Clustering
	Database Mirroring
	Log Shipping
	Replication
	Shared Scalable Databases

	Summary

	Chapter 33: Tuning Queries Using Hints and Plan Guides
	Understanding the Need for Hints
	Microsoft SQL Server 2005 Hints
	Join Hints
	Query Hints
	Table Hints

	Plan Guides
	Creating and Administering Plan Guides
	Creating Template-Based Plan Guides
	Best Practices
	Verifying Plan Guides Usage
	Example Usage Scenarios for Plan Guides

	Summary

	Glossary
	About the Authors

