

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by George Shepherd

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Control Number: 2007942085

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, BizTalk, Internet Explorer, MSN, Silverlight, SQL Server, Visual
Basic, Visual Studio, Win32, Windows, Windows NT, Windows Server, and Windows Vista are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Kathleen Atkins
Editorial Production: P.M. Gordon Associates
Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member
of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X14-40155

Dedicated to

Darcy Gay Harrison and Pierre Nallet

Contents at a Glance

Part I Fundamentals
 1 Web Application Basics . 3
 2 ASP.NET Application Fundamentals . 25
 3 The Page Rendering Model. 59
 4 Custom Rendered Controls . 79
 5 Composite Controls . 103
 6 Control Potpourri . 121

Part II Advanced Features
 7 Web Parts. 145
 8 A Consistent Look and Feel . 169
 9 Confi guration . 189
 10 Logging In . 207
 11 Data Binding . 233
 12 Web Site Navigation. 263
 13 Personalization . 285

Part III Caching and State Management
 14 Session State . 297
 15 Application Data Caching . 329
 16 Caching Output. 351

Part IV Diagnostics and Plumbing
 17 Diagnostics and Debugging . 371
 18 The HttpApplication Class and HTTP Modules 395
 19 Custom Handlers. 417
 v

vi Contents at a Glance
Part V Services, AJAX, Deployment, and Silverlight
 20 ASP.NET Web Services . 435
 21 Windows Communication Foundation . 457
 22 AJAX . 477
 23 ASP.NET and WPF Content . 519
 24 How Web Application Types Affect Deployment 531

Table of Contents
Introduction .xix

Acknowledgments .xxix

Part I Fundamentals
 1 Web Application Basics . 3

HTTP Requests .4

HTTP Requests from a Browser .4

Making HTTP Requests without a Browser .6

HyperText Markup Language .8

Dynamic Content .9

HTML Forms .10

Common Gateway Interface (Very Retro). .12

The Microsoft Platform as a Web Server .12

Internet Information Services .12

Internet Services Application Programming Interface DLLs13

Internet Information Services. .14

Classic ASP (Putting ASP.NET into Perspective) .19

Web Development Concepts .22

ASP.NET .23

Summary .24

Chapter 1 Quick Reference .24

 2 ASP.NET Application Fundamentals . 25
The Canonical Hello World Application .25

Building the HelloWorld Web Application. .26

Mixing HTML with Executable Code. .31

Server-Side Executable Blocks .34

The ASP.NET Compilation Model. .41
 vii

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

viii Table of Contents
Coding Options. .43

ASP.NET 1.x Style .43

Modern ASP.NET Style. .44

The ASP.NET HTTP Pipeline .46

 The IIS 5.x and IIS 6.x Pipeline. .46

The IIS 7.0 Integrated Pipeline .47

Tapping the Pipeline .47

Visual Studio and ASP.NET .50

Local IIS Web Sites .50

File System–Based Web Sites .50

FTP Web Sites .51

Remote Web Sites .51

Hello World and Visual Studio .52

Summary .57

Chapter 2 Quick Reference .58

 3 The Page Rendering Model. 59
Rendering Controls as Tags .59

Packaging UI as Components. .62

The Page Using ASP.NET. .63

The Page’s Rendering Model .65

The Page’s Control Tree. .66

Adding Controls Using Visual Studio .68

Building a Page with Visual Studio .68

Layout Considerations .76

Summary .77

Chapter 3 Quick Reference .78

 4 Custom Rendered Controls . 79
The Control Class .79

Visual Studio and Custom Controls .81

A Palindrome Checker .88

Controls and Events .92

HtmlTextWriter and Controls .95

Controls and ViewState .98

Summary .101

Chapter 4 Quick Reference .101

 Table of Contents ix
 5 Composite Controls . 103
Composite Controls versus Rendered Controls. .103

Custom Composite Controls. 104

User Controls. .112

When to Use Each Type of Control .118

Summary .119

Chapter 5 Quick Reference .119

 6 Control Potpourri . 121
Validation. .121

How Page Validation Works .127

Other Validators .129

Validator Properties .130

Image-Based Controls .130

TreeView. .134

MultiView. .138

Summary .140

Chapter 6 Quick Reference .141

Part II Advanced Features
 7 Web Parts. 145

A Brief History of Web Parts .146

What Good Are Web Parts? .146

Developing Web Parts Controls. .147

Web Parts Page Development .147

Web Parts Application Development .147

The Web Parts Architecture .147

 WebPartManager and WebZones .148

Built-in Zones .148

Built-in Web Parts .149

Developing a Web Part .158

Summary .168

Chapter 7 Quick Reference .168

 8 A Consistent Look and Feel . 169
A Consistent Look and Feel .169

ASP.NET Master Pages .170

Themes. .181

x Table of Contents
Skins .185

Summary .186

Chapter 8 Quick Reference .187

 9 Confi guration . 189
Windows Confi guration. 190

.NET Confi guration. 190

Machine.Confi g. .191

Confi guration Section Handlers. .191

Web.Confi g .193

Managing Confi guration in ASP.NET 1.x . 194

Managing Confi guration in Later Versions of ASP.NET 195

Confi guring ASP.NET from IIS. 200

Summary . 204

Chapter 9 Quick Reference .205

 10 Logging In . 207
Web-Based Security. .207

Securing IIS . 208

Basic Forms Authentication . 209

ASP.NET Authentication Services .214

The FormsAuthentication Class .214

An Optional Login Page .215

Managing Users .219

ASP.NET Login Controls. .225

Authorizing Users .229

Summary .232

Chapter 10 Quick Reference .232

 11 Data Binding . 233
Representing Collections without Data Binding .233

Representing Collections with Data Binding . 234

ListControl-Based Controls . 234

TreeView. .235

Menu .235

FormView. .235

GridView .235

DetailsView .235

 Table of Contents xi
DataList .236

Repeater .236

Simple Data Binding. .236

Accessing Databases .240

The .NET Database Story. .241

Connections .241

Commands .243

Managing Results . 244

ASP.NET Data Sources .246

Other Data-bound Controls .251

LINQ .259

Summary .261

Chapter 11 Quick Reference .262

 12 Web Site Navigation. 263
ASP.NET’s Navigation Support .263

The Navigation Controls .263

XML Site Maps .265

The SiteMapProvider .265

The SiteMap Class. .265

The SiteMapNode. .266

The Navigation Controls .267

The Menu and TreeView Controls .267

The SiteMapPath Control .268

Site Map Confi guration .269

Building a Navigable Web Site .270

Trapping the SiteMapResolve Event. .274

Custom Attributes for Each Node .275

Security Trimming .278

URL Mapping .278

Summary .282

Chapter 12 Quick Reference. .283

 13 Personalization . 285
Personalizing Web Visits .285

Personalization in ASP.NET .286

User Profi les .286

Personalization Providers .286

xii Table of Contents
Using Personalization .287

Defi ning Profi les in Web.Confi g. .287

Using Profi le Information .287

Saving Profi le Changes .288

Profi les and Users. .289

Summary . 294

Chapter 13 Quick Reference. 294

Part III Caching and State Management
 14 Session State . 297

Why Session State?. .297

ASP.NET and Session State . 298

Introduction to Session State . 299

Session State and More Complex Data. 304

Confi guring Session State .311

Turning Off Session State .312

Storing Session State inProc .313

Storing Session State in a State Server .313

Storing Session State in a Database .314

Tracking Session State .314

Tracking Session State with Cookies .314

Tracking Session State with the URL .316

Using AutoDetect. .316

Applying Device Profi les .316

Session State Timeouts .317

Other Session Confi guration Settings .317

The Wizard Control: Alternative to Session State .317

Summary .326

Chapter 14 Quick Reference .327

 15 Application Data Caching . 329
Using the Data Cache .331

Impact of Caching .333

Managing the Cache .335

DataSets in Memory .336

Cache Expirations .338

Cache Dependencies .341

xiii
The SQL Server Dependency . 344

Clearing the Cache. .345

Summary . 348

Chapter 15 Quick Reference . 349

 16 Caching Output. 351
Caching Page Content .351

Managing Cached Content. .354

Modifying the OutputCache Directive .354

The HTTPCachePolicy .360

Caching Locations .361

Output Cache Dependencies .362

Caching Profi les .362

Caching User Controls .363

When Output Caching Makes Sense. .366

Summary .367

Chapter 16 Quick Reference . 368

Part IV Diagnostics and Plumbing

 17 Diagnostics and Debugging . 371
Page Tracing .371

Turning on Tracing .372

Trace Statements .375

Application Tracing .379

Enabling Tracing Programmatically. .381

The TraceFinished Event .382

Piping Other Trace Messages. .382

Debugging with Visual Studio .383

Error Pages. 386

Unhandled Exceptions . 390

Summary .391

Chapter 17 Quick Reference .392

 18 The HttpApplication Class and HTTP Modules 395
The Application: A Rendezvous Point .395

Overriding HttpApplication. .397

Application State Caveats .399

 Table of Contents

xiv Table of Contents
Handling Events .399

HttpApplication Events . 400

HttpModules . 404

Existing Modules . 404

Implementing a Module . 406

See Active Modules . 408

Storing State in Modules. .410

Global.asax versus HttpModules .414

Summary .414

Chapter 18 Quick Reference .415

 19 Custom Handlers. 417
Handlers .417

Built-in Handlers .419

IHttpHandler .422

Handlers and Session State. .427

Generic Handlers (ASHX Files) .428

Summary .430

Chapter 19 Quick Reference .431

Part V Services, AJAX, Deployment, and Silverlight

 20 ASP.NET Web Services . 435
Remoting .435

Remoting over the Web .437

SOAP. .437

Transporting the Type System .437

Web Service Description Language .438

If You Couldn’t Use ASP.NET... .438

A Web Service in ASP.NET. .439

Consuming Web Services . 446

Asynchronous Execution .451

Evolution of Web Services. .454

Other Features .455

Summary .455

Chapter 20 Quick Reference. .456

xv
 Table of Contents

 21 Windows Communication Foundation . 457
Distributed Computing Redux .457

A Fragmented Communications API .458

WCF for Connected Systems. .458

WCF Constituent Elements .459

WCF Endpoints .459

Channels . 460

Behaviors . 460

Messages .461

How WCF Plays with ASP.NET. 462

Side-by-Side Mode . 462

ASP.NET Compatibility Mode . 462

Writing a WCF Service . 463

Building a WCF Client .469

Summary .475

Chapter 21 Quick Reference .476

 22 AJAX . 477
What Is AJAX? .478

AJAX Overview .479

Reasons to Use AJAX . 480

Real-World AJAX .481

AJAX in Perspective .481

ASP.NET Server-Side Support for AJAX . 482

ScriptManager Control . 482

ScriptManagerProxy Control . 482

UpdatePanel Control . 483

UpdateProgress Control . 483

Timer Control . 483

AJAX Client Support. 483

ASP.NET AJAX Control Toolkit . 484

Other ASP.NET AJAX Community-Supported Stuff 485

AJAX Control Toolkit Potpourri . 486

Getting Familiar with AJAX . 487

The Timer .493

Updating Progress .501

xvi Table of Contents
Extender Controls. .505

The AutoComplete Extender. .505

A Modal Pop-up Dialog-Style Component .512

Summary .516

Chapter 22 Quick Reference. .517

 23 ASP.NET and WPF Content . 519
What Is WPF?. .519

How Does It Relate to the Web? .521

Loose XAML fi les .522

XBAP Applications .523

WPF Content and Web Applications .523

What about Silverlight? .529

Summary .529

Chapter 23 Quick Reference .530

 24 How Web Application Types Affect Deployment 531
Visual Studio Projects .531

HTTP Project .532

FTP Project .532

File System Project .532

Precompiling .533

Precompiling for Performance. .533

Precompiling for Deployment .534

Publishing a Web Site .542

Summary .543

Chapter 24 Quick Reference . 544

Glossary . 545

Index . 547

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

Introduction
This book will show you how to write Web applications using Microsoft’s most current ver-

sion of its HTTP request processing framework—ASP.NET 3.5. Web development has come

a long way since the earliest sites began popping up in the early 1990s. The world of Web

development offers several different choices as far as development tools go. During the past

few years, ASP.NET has evolved to become one of the most consistent, stable, and feature-

rich frameworks available for managing HTTP requests.

ASP.NET, together with Visual Studio, includes a number of features to make your life as a

Web developer easier. For example, Visual Studio starts you off with several useful project

templates from which to develop your site. Visual Studio also supports a number of devel-

opment modes, including using Internet Information Services (IIS) directly to test your site

during development, using a built-in Web server, or developing your site over an FTP con-

nection. The debugger in Visual Studio lets you run the site and step through the critical

areas of your code to fi nd problems. The Visual Studio designer enables effective user inter-

face development, allowing you to drop control elements onto a canvas to see how they

appear visually. These are but a few of the features built into the ASP.NET framework when

paired with Visual Studio.

While ASP.NET and Visual Studio offer excellent tools for writing Web applications, Web devel-

opment on the Microsoft platform hasn’t always been this way. The road to ASP.NET 3.5 has

been nearly a decade in the making.

The Road to ASP.NET 3.5
ASP.NET has been available for nearly a decade. ASP.NET represents a quantum leap over

previous methods of Web development. ASP.NET provides an object-oriented development

environment centered around a well-defi ned pipeline.

ASP.NET 1.0 and 1.1
Microsoft’s .NET framework introduces a whole new way of programming the Microsoft

platform. Microsoft developers are primarily concerned with threads and memory (that’s

basically the API programming model). This model carried over to all areas of development,

including Web development, placing a heavy burden on programmers.

ASP.NET introduces runtime services and a well-engineered class library for greatly en-

hancing Web development. In a way, classic ASP was sort of “taped onto” the IIS/ISAPI

architecture without any real organic thought as to how early design decisions would
 xvii

xviii Introduction
affect developers later on. Well, now it’s later on and classic ASP.NET’s warts have become

fairly obvious.

ASP.NET 1.0 and 1.1 provided a signifi cant number of features, including

Q An object-oriented framework for defi ning applications

Q Separation of user interface declarations (HTML) and application logic

Q Compiled code for executing application logic

Q Confi gurable session state management

Q Built-in data caching

Q Built-in content caching

Q A well-defi ned user interface componentization architecture

Q High-level components for managing data formatting (grids, lists, text boxes)

Q Built-in program tracing and diagnostics

Q Built-in user input validation

Q An easy-to-use custom authentication mechanism

Q Solid integration with ADO.NET (the .NET database story)

Q Excellent support for Web Services

Q Zero reliance on the Component Object Model

Q An extensible pipeline with many places in which a request can be intercepted

ASP.NET 1.0 set the stage for many developers both moving into Web development and

moving to the Microsoft platform.

ASP.NET 2.0
Which brings us to ASP.NET 2.0. ASP.NET 2.0 builds on ASP.NET 1.0 and 1.1 by providing

a number of new features in addition to what already existed with ASP.NET 1.0. These fea-

tures include

Q Master Pages and Skins

Q Declarative data binding

Q Site navigation and site map support

Q Provider pattern model

 Introduction xix
Q New cache features

Q Membership controls

Q Personalization controls

Q Support for Web Parts

Q Programmable confi guration

Q Administration tools

Q New compilation model

All the features of ASP.NET 1.0/1.1 are still there. However, these new features make ASP.NET

an even more compelling platform for creating Web sites.

ASP.NET 3.5
The primary features introduced by ASP.NET 3.5 include support for Asynchronous Java

and XML (AJAX)-style programming and support for Windows Communication Foundation

(WCF). In addition, the support for ASP.NET within Visual Studio has increased dramatically.

The designer has improved signifi cantly, and Visual Studio includes new templates for gener-

ating AJAX and WCF applications.

Using This Book
The purpose of this book is to weave the story of ASP.NET development for you. Each sec-

tion presents a specifi c ASP.NET feature in a digestible format with examples. The stepwise

instructions should yield working results for you immediately. You’ll fi nd most of the main

features within ASP.NET illustrated here with succinct, easily duplicated examples. I made the

examples rich to illustrate the feature without being overbearing. In addition to showing off

ASP.NET features by example, you’ll fi nd practical applications of each feature so you can take

these techniques into the real world.

Who Is This Book For?
This book is targeted at several developers:

Q Those starting out completely new with ASP.NET The text includes enough back

story to explain the Web development saga even if you’ve developed only desktop

applications.

xx Introduction
Q Those migrating from either ASP.NET 1.x or 2.0, or even classic ASP The text

explains how ASP.NET 3.5 is different from ASP.NET 1.x and 2.0. It also includes refer-

ences explaining differences between ASP.NET and classic ASP.

Q Those who want to consume ASP.NET how-to knowledge in digestible
pieces You don’t have to read the chapters in any particular order to fi nd the book

valuable. Each chapter stands more or less on its own (with the exception of the fi rst

chapter, which details the fundamentals of Web applications—you may want to read it

fi rst if you’ve never ventured beyond desktop application development). You may fi nd

it useful to study the chapters about server-side controls (Chapters 3 to 5) together, but

it’s not completely necessary to do so.

Organization of This Book
This book is organized so that each chapter may be read independently, for the most part.

With the exception of Chapter 1, about Web application essentials, and the three server-side

control chapters (Chapters 3 to 5), which make sense to tackle together, each chapter serves

as a self-contained block of information about a particular ASP.NET feature.

Getting Started
If you’ve gotten this far, you’re probably ready to begin writing some code. Before beginning,

make sure that Visual Studio 2008 is installed on your machine. As long as you’ve installed

the development environment, you can be sure the .NET runtime support is installed as well.

The fi rst few examples will require nothing but a text editor and a working installation of IIS.

To start, we’ll begin with some basic examples to illustrate ASP.NET’s object-oriented nature

and compilation model. In addition to letting you see exactly how ASP.NET works when han-

dling a request, this is a good time to lay out ASP.NET’s architecture from a high level. We’ll

progress to Web form programming and soon begin using Visual Studio to write code (which

makes things much easier!).

After learning the fundamentals of Web form development, we’ll break apart the rest of

ASP.NET using examples to understand ASP.NET’s features such as server-side controls, con-

tent caching, writing custom handlers, caching output and data, and debugging and diag-

nostics, all the way to ASP.NET’s support for Web Services.

 Introduction xxi
Finding Your Best Starting Point in This Book
This book is designed to help you build skills in a number of essential areas. You can use this

book whether you are new to Web programming or you are switching from another Web

development platform. Use the following table to fi nd your best starting point in this book.

If you are Follow these steps

New

To Web

development

1. Install the code samples.

2. Work through the examples in Chapters 1 and 2 sequentially. They will ground

 you in the ways of Web development. They will also familiarize you with

 ASP.NET and Visual Studio.

3. Complete the rest of the book as your requirements dictate.

New

To ASP.NET and

Visual Studio

1. Install the code samples.

2. Work through the examples in Chapter 2. They provide a foundation for

 working with ASP.NET and Visual Studio.

3. Complete the rest of the book as your requirements dictate.

Migrating

From earlier

versions of

ASP.NET

1. Install the code samples.

2. Skim the fi rst two chapters to get an overview of Web development on the

 Microsoft platform and Visual Studio 2008.

3. Concentrate on Chapters 3 through 20 as necessary. You may already be

 familiar with some topics and may only need to see how a particular feature

 differs between earlier versions of ASP.NET and ASP.NET 3.5. In other cases, you

 may need to explore a feature that’s completely new for ASP.NET 3.5.

Referencing

The book

after working

through the

exercises

1. Use the Index or the Table of Contents to fi nd information about particular

 subjects.

2. Read the Quick Reference sections at the end of each chapter to fi nd a brief

 review of the syntax and techniques presented in the chapter.

Conventions and Features in This Book
This book presents information using conventions designed to make the information read-

able and easy to follow. Before you start the book, read the following list, which explains

conventions you’ll see throughout the book and points out helpful features in the book that

you might want to use:

xxii Introduction
Conventions
Q Each chapter includes a summary of objectives near the beginning.

Q Each exercise is a series of tasks. Each task is presented as a series of steps to be fol-

lowed sequentially.

Q Notes labeled “Tip” provide additional information or alternative methods for complet-

ing a step successfully.

Q Text that you type appears in bold, like so:

class foo

{

 System.Console.WriteLine(“HelloWorld”);

}

Q The directions often include alternate ways of accomplishing a single result. For ex-

ample, adding a new item to a Visual Studio project may be done from either the main

menu or by clicking the right mouse button in the Solution Explorer.

Q The examples in this book are written using C#.

Other Features
Q Some text includes sidebars and notes to provide more in-depth information about the

particular topic. The sidebars might contain background information, design tips, or

features related to the information being discussed. They may also inform you about

how a particular feature may differ in this version of ASP.NET.

Q Each chapter ends with a summary and a Quick Reference section. The Quick Reference

section contains concise reminders of how to perform the tasks you learned in the

chapter.

System Requirements
You’ll need the following hardware and software to complete the practice exercises in

this book:

Note The Visual Studio 2008 software is not included with this book! The CD-ROM packaged

in the back of this book contains the code samples needed to complete the exercises. The Visual

Studio 2008 software must be purchased separately.

Q Microsoft Windows Vista, Microsoft Windows XP Professional with Service Pack 2, or

Microsoft Windows Server 2003 with Service Pack 1

Q Microsoft Internet Information Services (included with Windows)

Q Microsoft Visual Studio 2008 Standard Edition or Microsoft Visual Studio 2008

Professional Edition

Q Microsoft SQL Server 2005 Express Edition (included with Visual Studio 2005) or

Microsoft SQL Server 2005

Q 1.2 GHz Pentium or compatible processor

Q 384 MB RAM (758 MB or more for Vista)

Q Video (1024 × 768 or higher resolution) monitor with at least 256 colors

Q 5400 RPM hard drive (with 2.2 GB of available hard-disk space)

Q CD-ROM or DVD-ROM drive

Q Microsoft mouse or compatible pointing device

Q 2.79 MB of available hard disk space to install the code samples

You will also need to have Administrator access to your computer to confi gure SQL Server

2005 Express Edition.

Using Microsoft Access
Chapter 11, ”Data Binding,”, and Chapter 15, “Application Data Caching,” both use Microsoft

Access. If you want to look at the databases and modify them, you need to have installed

Microsoft Access on your machine. If you have Microsoft Offi ce, you probably already have it.

There is nothing special you need to do to set it up, and there is nothing special you need to

do to use the databases within the ASP.NET applications.

Code Samples
The companion CD inside this book contains the code samples, written in C#, that you’ll use

as you perform the exercises in the book. By using the code samples, you won’t waste time

creating fi les that aren’t relevant to the exercise. The fi les and the step-by-step instructions

in the lessons also let you learn by doing, which is an easy and effective way to acquire and

remember new skills.

Installing the C# Code Samples
Follow these steps to install the C# code samples on your computer so that you can use them

with the exercises in this book:

 Introduction xxiii

Note The code sample installer modifi es IIS, so you must have Administrator permissions on

your computer to install the code samples.

 1. Remove the companion CD from the package inside this book and insert it into your

CD-ROM drive.

Note An end user license agreement should open automatically. If this agreement does

not appear, open My Computer on the desktop or the Start menu, double-click the icon

for your CD-ROM drive, and then double-click StartCD.exe.

 2. Review the end user license agreement. If you accept the terms, select the accept

option and then click Next. A menu will appear with options related to the book.

 3. Click Install Code Samples.

 4. Follow the instructions that appear.

Note If IIS is not installed and running, a message will appear indicating that the installer

cannot connect to IIS. You can choose to ignore the message and install the code sample

fi les; however, the code samples that require IIS will not run properly.

The code samples will be installed to the following location on your computer:

\My Documents\Microsoft Press\ASP.NET 3.5 Step by Step\

The installer will create a virtual directory named aspnet35sbs under the Default Web Site.

Below the aspnet35sbs virtual directory, various Web applications are created. To view these

settings, open the Internet Information Services console.

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that chapter.

When it’s time to use a code sample, the book will list the instructions for how to open the

fi les. Many chapters begin projects completely from scratch so you can understand the entire

development process. Some examples borrow bits of code from previous examples.

Here’s a comprehensive list of the code sample projects:

Project Description

Chapter 1

HelloWorld.asp, Selectnoform.asp,

Selectfeature.htm, Selectfeature2.htm,

Selectfeature.asp

Several Web resources illustrating different examples of

raw HTTP requests.

xxiv Introduction

 Introduction xxv
Project Description
WebRequestor A simple application that issues a raw HTTP request.

Chapter 2

HelloWorld, HelloWorld2, HelloWorld3,

HelloWorld4, HelloWorld5, partial1.cs,

partial2.cs

Web resources illustrating ASP.NET’s compilation mod-

els and partial classes.

Chapter 3

BunchOfControls.htm,

BunchOfControls.asp,

BunchOfControls.aspx

Web resources illustrating rendering control tags.

ControlORama Visual Studio–based project illustrating Visual Studio

and server-side controls.

Chapter 4

ControlORama Illustrates creating and using rendered server-side

controls.

Chapter 5

ControlORama Illustrates creating and using composite server-side

controls and User controls.

Chapter 6

ControlPotpourri Illustrates control validation, the TreeView, and the

MultiView/View controls.

Chapter 7

UseWebParts Illustrates using Web Parts within a Web application.

Chapter 8

MasterPageSite Illustrates developing a common look and feel through-

out multiple pages within a single Web application

using Master Pages, Themes, and Skins.

Chapter 9

Confi gORama Illustrates confi guration within ASP.NET. Shows how to

manage the web.confi g fi le, how to add new confi gura-

tion elements, and how to retrieve those confi guration

elements.

Chapter 10

SecureSite Illustrates Forms Authentication and authorization

within a Web site.

Login.aspx,

OptionalLogin.aspx, Web.Confi g,

Web.Confi gForceAuthentication,

Web.Confi gForOptionalLogin

Web resources for illustrating Forms Authentication at

the very barest level.

Chapter 11

xxvi Introduction
Project Description
DataBindORama Illustrates databinding to several different controls,

includ ing the GridView. Also illustrates loading and

saving data sets as XML and XML schema.

Chapter 12

NavigateMeSite Illustrates ASP.NET’s navigation features.

Chapter 13

MakeItPersonal Illustrates ASP.NET’s personalization features.

Chapter 14

SessionState Illustrates using session state within a Web application.

Chapter 15

UseDataCaching Illustrates caching data to increase performance.

Chapter 16

OutputCaching Illustrates caching output to increase performance.

Chapter 17

DebugORama Illustrates debugging and tracing Web applications.

Chapter 18

UseApplication Illustrates using the global application object and HTTP

modules as a rendezvous point for the application.

Illustrates storing globally scoped data and handling

applicationwide events.

Chapter 19

CustomHandlers Illustrates custom HTTP handlers, both as separate

assem blies and as ASHX fi les.

Chapter 20

QuoteService Illustrates a Web service that serves up random quotes.

Chapter 21

WCFQuotesService Illustrates a WCF-based service that serves up random

quotes.

Chapter 22

AJAXORama Illustrates using AJAX to improve the end user’s

experience.

Chapter 23

XAMLORama Illustrates including XAML content within an ASP.NET

site.

Chapter 24

DeployThis Illustrates how to make an installation package to

deploy a Web site.

 Introduction xxvii
All these projects are available as complete solutions for the practice exercises (in case you

need any inspiration).

Uninstalling the Code Samples
Follow these steps to remove the code samples from your computer:

 1. In the Control Panel, open Add Or Remove Programs.

 2. From the list of Currently Installed Programs, select Microsoft ASP.NET 3.5 Step by
Step.

 3. Click Remove.

 4. Follow the instructions that appear to remove the code samples.

Software Release
This book was reviewed and tested against Visual Studio 2008. This book is expected to be

fully compatible with the fi nal release of Visual Studio 2008.

Support for This Book
Every effort has been made to ensure the accuracy of this book and the contents of the

companion CD. As corrections or changes are collected, they will be added to a Microsoft

Knowledge Base article. Microsoft Press provides support for books and companion CDs at

the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion CD, or

questions that are not answered by visiting the sites previously mentioned, please send them

to Microsoft Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Step by Step Series Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the preceding

addresses.

Acknowledgments
A couple years ago I got a great Father’s Day card from my son. When I opened it up, I saw

that he had written the greeting in HTML!

<html>

 <head> <title> Father’s Day Card </title> </head>

 <body> Happy Father’s Day!!! </body>

</html>

After wiping away the tears, seeing Ted’s card reinforced for me the increasing importance

of Web-based applications. The Web permeates our social infrastructure. Whether you’re a

businessperson wanting to increase the visibility of your business, an avid reader trying to

fi nd an out-of-print book, a student fetching homework assignments from a school Web site,

or any other producer or consumer of information, you touch the Internet.

Publishing a book is a huge effort. My name’s on the lower right corner of the cover as the

author, but I did only some of the work. I have so many people to thank for helping get this

book out.

Thank you, Claudette Moore, for hooking me up with Microsoft Press again. Claudette has

acted as my agent for all my work with Microsoft Press, handling the business issues associ-

ated with this work so I can be free to write. Thank you, Kathleen Atkins, for managing the

project. It’s always great working with you. Thank you, Charlotte Twiss and Angie Karp, for

getting the code samples onto the CD. Thank you, Linnea Hermanson and the staff at P. M.

Gordon Associates, for editing my work and making it appear that I can actually write coher-

ent sentences. You all did a wonderful job on the editing, production, and layout. Thank you,

Kenn Scribner, for providing the best technical objective eye I’ve ever worked with. Thank

you, Ben Ryan, for accepting the book proposal and hiring me to create it.

Thank you, Jeff Duntemann, for buying and publishing my fi rst piece ever for PC Tech
Journal. Thank you, JD Hildebrand, for buying my second writing piece ever and for the

opportunity to work with you all at Oakley Publishing. Thank you, Sandy Daston, for your

support and guidance early in my writing career. Thank you to the folks at DevelopMentor

for being an excellent group of technical colleagues and a great place for learning new

technology.

Thank you, Christine Shooter, for all your love and support. You’re the best. No one else

even comes close. Thanks to my evil Java twin, Pat Shepherd, and his family, Michelle, Belfi e,

and Bronson, for the best trip to Michigan ever this summer. It was a welcome break in the

middle of this project. Thank you, Ted Shepherd, you’re the best son ever. Thank you, George

Robbins Shepherd and Betsy Shepherd. As my parents you guided me and encouraged me

to always do my best. I miss you both dearly.
 xxix

xxx Acknowledgments
Finally, thank you, Reader, for going through this book and spending time learning ASP.NET.

May you continue to explore ASP.NET and always fi nd new and interesting ways to handle

HTTP requests.

George Shepherd
Chapel Hill, NC
January 2008

 Part I

 Fundamentals
 1

Chapter 1

 Web Application Basics
 After completing this chapter, you will be able to

Q Interpret HTTP requests

Q Use the .NET Framework to make HTTP requests without a browser

Q Interpret HTML

Q Work with IIS

Q Produce dynamic Web content without using ASP.NET yet

 This chapter covers the fundamentals of building a Web-based application. Unlike the de-

velopment of most desktop applications, in which many of the parts are available locally

(as components on the user’s hard disk drive), developing a Web application requires get-

ting software parts to work over a widely distributed network using a disconnected pro-

tocol. The technologies underlying ASP.NET have been around for a long time. Of course,

ASP.NET makes use of this technology underneath, while making it very approachable at

the same time.

 Although ASP.NET makes developing Web applications far easier than ever before, you must

have a solid understanding of how the plumbing is actually working during the development

of an ASP.NET application. A good example of such a time might be when you’re tracking

down a stray HyperText Transfer Protocol (HTTP) request or trying to fi gure out why a sec-

tion of your page is appearing in the wrong font within a client’s browser. Another such time

might occur while you’re writing a custom control for a Web page. Custom controls often

require that the rendering code be written manually. That is, you must carefully ensure that

the HyperText Markup Language (HTML) tags emitted by your control occur in exactly the

right order. For that, you need to understand HTML.

 This chapter covers three things necessary to allow you to work with ASP.NET:

Q How HTTP requests work

Q How HTML works

Q How HTTP requests are handled on the Microsoft production Web server platform,

Internet Information Services (IIS)

 Understanding these three technologies underlying ASP.NET frames the rest of the system.

As you study ASP.NET, these pieces will undoubtedly fall into place.
 3

4 Part I Fundamentals
 HTTP Requests
 The communication mechanism by which Web browsers talk to Web sites is named the Hyper-
Text Transfer Protocol (HTTP). The World Wide Web as we know it today began as a research

project at CERN in Switzerland. In those days, the notion of hypertext—documents linked to-

gether arbitrarily—was becoming increasingly popular. Applications such as Hypercard from

Apple Computer Inc. introduced hypertext applications to a wider audience. Now, if docu-

ments could be linked over a network, that would revolutionize publishing. That’s the reason

for the HyperText Transfer Protocol, which lies on top of TCP/IP as an application layer.

 In its original form, HTTP was meant to transfer hypertext documents. That is, it was origi-

nally intended simply to link documents together without consideration for anything like

the Web-based user interfaces that are the staple of modern Web sites. The earliest ver-

sions of HTTP supported a single GET request to fetch the named resource. It then became

the server’s job to send the fi le as a stream of text. After the response arrived at the client’s

browser, the connection terminated. The earliest versions of HTTP supported only transfer of

text streams and did not support any other sort of data transfer.

 The fi rst formal specifi cation for HTTP found itself in version 1.0 and was published in the

mid-1990s. HTTP 1.0 added support for more complex messaging beyond a simple text

transfer protocol. HTTP grew to support different media (specifi ed by the Multipurpose

Internet Mail Extensions). The current version of HTTP is version 1.1.

 As a connection protocol, HTTP is built around several basic commands. The most important

ones we’ll see in developing ASP.NET applications are GET, HEAD, and POST.

 GET retrieves the information identifi ed by the Uniform Resource Identifi er (URI) specifi ed

by the request. The HEAD command retrieves only the header information identifi ed by the

URI specifi ed by the request (that is, it does not return a message body). You use the POST

method to make a request to the server that may cause side effects, such as sending infor-

mation to the server for it to process. You make most initial contacts to a page using a GET

command, and you commonly handle subsequent interactions with POST commands.

 HTTP Requests from a Browser
 As an example, look at the request that is sent from a browser to fetch the helloworld.htm

resource from the virtual directory aspnet2sbs running on localhost. (I’ll cover the concept

of a “virtual directory” later, but for now just imagine it as the location of a Web application

everyone can access.) Here is a sample (fi ctitious) HTTP server request:

 GET /aspnet2sbs/helloworld.htm HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ... , */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;NET CLR 3.0.04506.30)

Host: localhost:80

Connection: Keep-Alive

 Chapter 1 Web Application Basics 5

 If you would like to see the actual data going back and forth, there are several TCP monitors

available. A good one is TcpTrace, found at http://www.pocketsoap.com/tcptrace/. You’ll fi nd

instructions for its use there as well. For simple TCP tracing, you may also use TELNET to send

GET Requests to the server, which we’ll look at now.

 To send an HTTP request to a server using TELNET, follow these steps:

1. Open the Visual Studio command prompt. To do this, from the Start button select All

Programs, Microsoft Visual Studio 2008, Visual Studio Tools, and then fi nally Microsoft

Visual Studio 2008 Command Prompt. The command prompt tool should appear.

2. At the prompt, type the following:

 TELNET localhost 80

3. After the TELNET client connects, type the following GET command (assuming you have a

virtual directory named aspnet2sbs on your machine, containing a fi le named HelloWorld
.HTM, or you may also use a fi le already installed with IIS, such as postinfo.html):

 GET //aspnet2sbs/helloworld.htm

4. You should see the fi le’s contents returned to the command line.

 When a browser wants to make an HTTP request, it needs to process the HTTP request in-

cluding the URI along with other information (such as header information and the requested

fi le name). The header information in the request includes details about the operating en-

vironment of the browser and some other information that is often useful to the server.

When the server receives this request, it returns the requested resource as a text stream. The

browser then parses it and formats the contents. The following shows the response provided

by the server when asked for the HelloWorld.htm fi le. Normally, you don’t see all the header

information when viewing the resource through a browser. A good TCP tracing utility will

show it to you. When we look at ASP.NET’s tracing facilities later on, this header information

will be visible.

 HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

X-Powered-By: ASP.NET

Date: Thu, 01 Nov 2007 23:44:04 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Mon, 22 Oct 2007 21:54:20 GMT

ETag: "04e9ace185fc51:bb6"

Content-Length: 130

<html>

 <body>

 <h1> Hello World </h1>

 Nothing really showing here yet, except some HTML...

 </body>

</html>

6 Part I Fundamentals

 The fi rst line indicates the protocol (HTTP, version 1.1) and the return code (200, meaning

“OK”). The rest of the response (until the fi rst <html> tag) is information about the time of

the request, the last time the fi le was modifi ed, and what kind of content is provided. This

information will be useful later when we examine such issues as page caching and detecting

browser capabilities. The content following the response header information is literally the

HTML fi le sent back by the server.

 Making HTTP Requests without a Browser
 In addition to being a framework for building Web applications, the .NET development en-

vironment includes classes for making HTTP requests in the raw. The WebRequest class in-

cludes a member named GetResponse that will send a request to the address specifi ed by the

Uniform Resource Locator (URL). To get a feeling as to how to make direct requests to a Web

server without a browser, try compiling and then running this short program that fetches the

home page for Microsoft.com.

 Build a simple HTTP requestor

1. Start Visual Studio.NET. Select New, Project from the main menu. In the New Project
dialog box, select a Console application and name it WebRequestorApp, as shown in the

following graphic.

 Visual Studio will generate a blank Console program for you.

 Chapter 1 Web Application Basics 7
 2. Add the code necessary to make a Web request to the program. Visual Studio places

the entry point of the Console application into a fi le named Program.cs. (This fi le is the

code that shows up in the code window by default.) The code you add for making a

Web request is shown in bold in the following lines of code:

 using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Net;

using System.IO;

namespace WebRequestorApp

{

 class Program

 {

 static void Main(string[] args)

 {

 WebRequest req =

 WebRequest.Create

 ("http://www.microsoft.com");

 WebResponse resp = req.GetResponse();

 StreamReader reader =

 new StreamReader(resp.GetResponseStream(),

 Encoding.ASCII);

 Console.WriteLine(reader.ReadToEnd());

 }

 }

}

 3. Run the application. You may do this by choosing Debug, Start Without Debugging

from the main menu. Visual Studio will start up a Console for you and run the program.

After a couple of moments, you’ll see some HTML spewed to your screen.

 Of course, the HTML isn’t meant for human consumption. That’s what a browser is for.

However, this example does show the fundamentals of making a Web request—and you can

see exactly what comes back in the response.

 In this case, the request sent to the server is much smaller. WebRequest.GetResponse doesn’t

include as much information in the request—just the requisite GET followed by the URI, host

information, and connection type:

 GET /aspnet2sbs/helloworld.htm HTTP/1.1

Host: localhost:80

Connection: Keep-Alive

 The fundamental jobs of most browsers are (1) to package a request and send it to the server

represented in the URI and (2) to receive the response from the server and render it in a use-

ful way. The response usually comes back as a text stream marked up using HTML tags. Let’s

take a look at HTML.

8 Part I Fundamentals
 HyperText Markup Language
 In the course of looking at ASP.NET, we’ll see quite a bit of HTML. Most of it will be gener-

ated by the ASP.NET server-side controls. However, it’s important to understand HTML be-

cause you may want to write your own server-side control from scratch, and at other times

you may need to tweak or debug the output of your ASP.NET application.

 Most HTTP requests result in a stream of text coming back to the program issuing the re-

quest. The world has pretty much agreed that HTML is the language for formatting docu-

ments, and all browsers understand HTML.

 The fi rst release of HTML worth using was version 2.0. Version 3.2 introduced new features,

such as tables, text fl ow, applets, and superscripts and subscripts, while providing backward

compatibility with the existing HTML 2.0 Standard.

 The bottom line is that given a competent browser and well-structured HTML, you had the

beginnings of a user interface development technology. And because HTML was under-

stood by browsers running on a variety of platforms, the door was open for implementing a

worldwide interactive computing platform. The other key that made this happen (besides a

mature version of HTML) was the ability of servers to adapt their output to accommodate the

requests of specifi c users at runtime.

 For example, the following HTML stream will render an HTML page containing a button and

a combo box fi lled with options. (This fi le is named SelectNoForm.htm in the collection of ex-

amples for this chapter.)

 <html>

 <body>

 <h2>Hello there. What's your favorite .NET feature?</h2>

 <select name='Feature'>

 <option> Type-Safety</option>

 <option> Garbage collection</option>

 <option> Multiple syntaxes</option>

 <option> Code Access Security</option>

 <option> Simpler threading</option>

 <option> Versioning purgatory</option>

 </select>

 <input type=submit name='Lookup' value='Lookup'></input>

 </body>

</html>

 See Figure 1-1 for an example of how the page looks when rendered by the browser.

 Chapter 1 Web Application Basics 9

 FIGURE 1-1 A simple HTML page showing a selection tag (rendered here as a Windows combo box) and a
submission button

Note We’ll actually surf to an HTML fi le that you write in subsequent chapters. Getting to that

point is a bit involved, so for now, you can trust that the HTML will render in this fashion.

 This is a static page. Even though it has a combo box and a button, they don’t do anything

worthwhile. You can pull down the combo box and work with it inside the browser. You can

click the button, but all the action happens locally. That’s because the server on the other

end needs to support dynamic content.

 Dynamic Content
 The earliest Web sites were built primarily using static HTML pages. That is, you could surf to

some page somewhere and read the HTML document living there. While at that time being

able to do this was pretty amazing, HTML eventually evolved to be capable of much more

than simply formatting text.

10 Part I Fundamentals
 For example, HTML includes tags such as <select></select> that browsers interpret as a

combo box, called a drop-down list in ASP.NET. The fi rst tag, <select>, is called the opening tag

while the second, </select>, is called the closing tag. Tags can contain other tags, which you

saw with the <option></option> tags that provide content for the drop-down list. Tags also

can have attributes, which are used to modify or tailor the behavior of the tag. Various at-

tributes applied to the <input></input> tag cause browsers to draw text boxes and buttons.

HTML provides a special tag, the form, that groups other tags designed to return information

to the server for processing.

 HTML Forms
 HTML includes the <form></form> opening and closing tags for notifying the browser that

a section of HTML includes tags representing controls the user will interact with to eventually

return information to the server. This is how you specify a Web document will be handling

input from the end user (not just output). The contents of the form, which is to say the data

contained in the input controls, will be “posted back” to the server for processing. It’s com-

mon to combine the words and call this action a postback. This is why the typical HTTP use

case for an HTML document is GET, to initially retrieve the document, and then POST (or a

modifi ed form of GET), to return data to the server, if any.

 The <form> tag usually sandwiches a set of tags specifying user input controls. The following

shows the same feature selection page, but with the form tag added (the code is from the fi le

named SelectFeature2.htm in the book’s accompanying examples):

 <html>

 <body>

 <form action="http://localhost/HttpHandlers/selectfeature.htm"

 method="get">

 <h2>Hello there. What's your favorite .NET feature?</h2>

 <select name='Feature'>

 <option> Type-Safety</option>

 <option> Garbage collection</option>

 <option> Multiple syntaxes</option>

 <option> Code Access Security</option>

 <option> Simpler threading</option>

 <option> Versioning purgatory</option>

 </select>

 <input type=submit name='Lookup' value='Lookup'></input>

 </form>

 </body>

</html>

 If you’d like to see this work right away, type this into a fi le named SelectFeature2.htm and

save it into the directory c:\inetpub\wwwroot and surf to the fi le by typing http://localhost/
selectfeature2.htm into your browser’s navigation fi eld.

 Chapter 1 Web Application Basics 11
 The form tag includes several attributes that you may set to control how the page be-

haves. In the preceding example, notice the <form> tag sets the action attribute, which

indicates the server that will receive the form’s contents. In its absence, the current docu-

ment URL will be used.

 The other attribute used in the HTML is the method attribute. The method attribute speci-

fi es the HTTP method used when submitting the form and therefore dictates how the form

data are returned to the server. The method employed in the example is GET because it’s the

fi rst request to the server. Assuming you select the last option (“Versioning purgatory”) and

then click Lookup, the form’s GET method causes the form’s input control contents to be ap-

pended to the URL, like so:

 http://localhost/SelectFeature2.htm?Feature=Versioning+purgatory&Lookup=Lookup

 This modifi ed URL, often called a query string, is then sent to the server.

 The form’s POST method causes the form contents to be sent to the server in the body of a

returned HTTP packet, as you see here:

 POST /SelectFeature2.htm HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ... , */*

Accept-Language: en-us

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;NET CLR 3.0.04506.30)

Host: localhost:80

Content-Length: 42

Connection: Keep-Alive

Cache-Control: no-cache

Feature=Versioning+purgatory&Lookup=Lookup

 Adding the form tag to the body of the document gets us part of the way to having an

HTTP application that actually interacts with a user. Now we need a little more support on

the server end. When you click the Lookup button, the browser will actually force another

round-trip back to the server (although in this case, it will only perform an HTTP GET com-

mand to refetch the document since we specifi ed this in the form’s method attribute).

 At this point, a normal HTTP GET command will only return the document. For a truly inter-

active environment, the server on the other end needs to modify the content as requests go

back and forth between the browser and the server.

 For example, imagine that the user does an initial GET for the resource, selects a feature from

the combo box, and then clicks the Lookup button. For an interactive application to work,

the browser will need to make a second round-trip to the server with a new request that in-

cludes the user’s inputs for processing. The server will need to examine the request coming

from the browser and fi gure out what to do about it. This is where the server begins to play a

12 Part I Fundamentals
much more active role. Depending on the platform involved, there are several different ways

in which a server can handle the postback—through such programs as the Common Gateway

Interface or Internet Information Services.

 Common Gateway Interface (Very Retro)
 The earliest Web servers supporting “dynamic Web content” did so through the Common

Gateway Interface (CGI). CGI was the earliest standard for building Web servers. CGI pro-

grams execute in real time and change their output based on the state of the application and

the requests coming in. Each request coming into a Web server running CGI runs a separate

instance of a program to respond. The application can run any sort of operation, including

looking up data in a database, accepting credit card numbers, and sending out formatted

information.

 The Microsoft Platform as a Web Server
 On the Microsoft platform, it’s too expensive to start up a new process for each request (à

la CGI). Microsoft’s solution is to have a single daemon process (which in Windows we call

a service) monitor port 80 for incoming network packets and load DLLs to handle separate

requests when the content needs to change. Microsoft’s standard Web platform is based on

the Internet Information Services (IIS).

 Note When you create and edit Web applications using Visual Studio 2008, you can load them

“from the fi le system” and “from IIS” (as well as by a few other means). If you load your Web ap-

plication using IIS, then IIS acts as the Web server as you’d expect. But what about loading a Web

application from the fi le system? What application is serving HTML (or ASP.NET) documents in

that case? As it happens, starting with Visual Studio 2005, a special development Web server can

be used to simplify debugging and administration. Based on a Web server named Cassini, it can

serve HTML and ASP.NET pages just as effectively as IIS for development purposes. However,

keep in mind that for robustness and security IIS is Microsoft’s professional grade Web server

and is the intended target for your ASP.NET Web application.

 Internet Information Services
 All Web application environments work fundamentally the same way. No matter what hard-

ware/software platform you use, some piece of software is required on the server to monitor

port 80 (typically) for incoming HTTP requests. When a request arrives, it’s the server’s job

to somehow respond to the request in a meaningful way. On the Microsoft platform, IIS is

the watchdog intercepting HTTP requests from port 80—the normal inbound port for HTTP

requests. Internet servers use other ports as well. For example, HTTPS (Secure HTTP) hap-

pens over port 443. However, right now we’re mostly interested in normal Internet traffi c

over port 80.

 Chapter 1 Web Application Basics 13
 When a browser makes a call to a server running on the Microsoft platform, IIS intercepts

that request and searches for the resource identifi ed by the URL. IIS divides its directory

space into manageable chunks called virtual directories. For example, imagine someone tries

to get to a resource on your server using this URL:

 http://www.aspnetstepbystep.com/examples/showfeatures.htm

 The domain “aspnetstepbystep” is fi ctitious and used here for illustration. However, if there

were a server registered using this name, the URL would identify the entire resource. Within

this URL, http://www.aspnetstepbystep.com identifi es the server and will direct the request

through a maze of routers. Once the request reaches the server, the server will look for the

showfeatures.htm resource in some directory-type entity named examples. If the server is

running IIS, examples refers to a virtual directory.

 IIS divides its working space into multiple virtual directories. Each virtual directory typically

refers to a single application and is used to map a physical directory on your server’s hard

drive to an Internet URL. Using virtual directories, one per application, IIS can serve multiple

applications. Each virtual directory includes various confi guration properties, including such

things as security options, error handling redirections, and application isolation options. The

confi guration parameters also include mappings between fi le extensions and optionally con-

fi gured IIS extension DLLs, called ISAPI DLLs (ISAPI stands for Internet Services Application
Programming Interface). (ASP.NET itself is handled by one of these ISAPI DLLs!)

 While it’s not critical for initially writing ASP.NET applications, knowing a bit about how IIS

works is tremendously important when you need to fully debug, test, and deploy your Web

application. The built-in Visual Studio Web server (Cassini) is fi ne for most things, but it lacks

much that IIS offers. True ASP.NET developers understand this and often become quite adept

at administering IIS. If you want to get going writing applications straightaway, you may skip

the section on IIS, but we’ll be looking at various aspects of IIS operations and administration

throughout the book. To begin, here‘s a brief look at ISAPI and how it extends IIS.

 Internet Services Application Programming Interface DLLs
 On the Microsoft platform, creating a process space is an expensive proposition (in terms of

system resources and clock cycles). Imagine trying to write a server that responds to each re-

quest by starting a separate program. The poor server would be bogged down very quickly,

and your e-commerce site would stop making money.

 Microsoft’s architecture prefers using DLLs to respond to requests. DLLs are relatively in-

expensive to load, and running code within a DLL executes very quickly. The DLLs handling

Web requests are named ISAPI DLLs.

 While we won’t dive all the way into the inner workings of ISAPI DLLs, we’ll take enough of a

look at their architecture so you can see how they relate to ASP.NET.

14 Part I Fundamentals

 ISAPI DLLs handling normal HTTP requests defi ne an entry point named HttpExtensionProc.
Although ISAPI extension DLLs defi ne more entry points than HttpExtensionProc, it is by far

the most important method in an ISAPI DLL. The point to realize about ISAPI extension DLLs

is that they all implement this singular function when responding to HTTP requests. However,

they may all respond differently.

 The HttpExtensionProc method takes a single parameter—an EXTENSION_CONTROL_BLOCK

structure. EXTENSION_CONTROL_BLOCK includes the entire context of a request. We don’t

need to see the whole structure here. However, we will see the managed equivalent in

ASP.NET when we look at the HttpContext class.

 Upon receiving a request, IIS packages the information into the EXTENSION_CONTROL_

BLOCK. IIS then passes the structure into the ISAPI DLL through the HttpExtensionProc entry

point. The ISAPI extension DLL is responsible for parsing the incoming request and doing

something interesting with it. The ISAPI extension DLL is completely at liberty to do whatever

it wants with the request. For example, the client might make a request that includes param-

eters in the query string (perhaps the client is performing a customer lookup or something

similar). The ISAPI extension DLL uses those query string parameters to create a database

query specifi c to the site. If the site is a commerce site, the database query might be for

the current inventory. After processing the request, the ISAPI DLL streams any results

back to the client.

 You may have had some experience working with classic ASP, in which case much of this

structure will appear familiar to you. For example, calling Write through ASP’s intrinsic

Response object eventually ends up executing the method indicated by the EXTENSION_

CONTROL_BLOCK’s WriteClient property value.

 We’ve taken a quick glance at the inner structure of an ISAPI DLL. Let’s see how these DLLs fi t

into IIS. This is interesting because ASP.NET requests do pass through an ISAPI DLL.

 Internet Information Services
 The user interface to IIS is available through the Control Panel. To get a feel for how to admin-

ister IIS, let’s take a short tour. It’s important to have some facility with IIS because ASP.NET

relies on it to service Web requests in a real Web application. IIS 5.x, 6.0, and 7.0 work similarly

as far as dividing the server’s application space into virtual directories. IIS 6.0 and 7.0 include

many other features such as application isolation and recycling to help control runaway re-

quests and limit memory consumption if something untoward happens during a request.

 Running IIS

1. Run IIS. To get to IIS, fi rst go to Administrative Tools. On Windows Vista, you can do

this through the Control Panel. Run Internet Information Services. You should see the

IIS user interface on your screen. The following graphics show the Features View and

the Content View—both running under Vista.

 Chapter 1 Web Application Basics 15

16 Part I Fundamentals

 On the left-side of the screen is an expandable tree showing the Web sites and virtual

directories available through IIS on your machine. IIS 5.x and 6.0 show the virtual di-

rectories on the left pane, with the directory contents on the right-side. The IIS 7 man-

agement console includes two views: the Features View and the Content View. The

Features View includes various icons for managing specifi c aspects of IIS for the item

selected from the list on the left side. The Content View shows the fi les contained

within the selected item. Let’s explore the Features View and the Content View.

2. View confi guration for a specifi c virtual directory. The Features View lets you see how a

specifi c virtual directory is confi gured. To fi nd out more about the directory’s confi gu-

ration, try clicking on the various icons in the Features View. For example, to see how IIS

fi gures out the correct default fi le to show (in the absence of a specifi c fi le extension),

click on the Default Document icon. You’ll see the list of default fi le names that IIS will

try to load:

 You can confi gure a number of features within IIS, and they’re all represented by the

icons presented in the Features View. The feature set is fairly extensive, covering all as-

pects of how the directory is accessed from the outside world. We won’t spend a lot of

time here because ASP.NET takes care of most of these issues (rather than leaving them

up to IIS). Before discussing how IIS 7.0 handles ASP.NET requests, let’s take a look at

how IIS 7.0 handles other types of requests for the sake of completeness.

 Chapter 1 Web Application Basics 17
 3. View module mappings for a virtual directory. Static fi le types such as HTM are trans-

mitted directly back to the client. However, dynamic pages whose contents can change

between posts require further processing, so they are assigned to specifi c handlers. As

you’ll see in a moment, IIS 7.0 prefers to handle most requests via managed code. For

those developers who wish to write native code, IIS 7.0 includes a new C++/native core

server API. This new API works with IIS 7.0 through the IsapiModule to expose classic

ISAPI extension DLLs. Another module, the IsapiFilterModule, replaces the traditional

ISAPI fi lter API from earlier releases of IIS. To view the IIS 7.0 module mappings, click on

the Module Mappings icon within the Features View. You should see a listing of the

IIS 7.0 modules that intercept requests:

18 Part I Fundamentals

4. View fi le mappings for a virtual directory. For those applications that handle requests

using managed code, IIS pipes them through the handlers listed on the Handler

Mappings page. To view the fi le mappings for a specifi c virtual directory, click the

Handler Mappings icon within the Features View. IIS responds by listing the fi le map-

pings for the directory:

 These mappings tell IIS how to handle specifi c requests. As you can see, most requests

are handled through managed code via ASP.NET. Notice that at the top of the list,

there’s a handler for classic ASP fi les, named ASPClassic. This handler takes care of

requests bearing the .ASP fi le extension (earlier versions of IIS piped these requests di-

rectly to the ASP.DLL handler).

 Chapter 1 Web Application Basics 19
Note If for some reason you fi nd yourself with a need to run classic ASP, note that IIS 7.0 does

not install ASPClassic by default—you must add this feature deliberately. In the Control Panel,

select Programs and Features from the list. Then select Turn Windows Features On and Off.
Select Internet Information Services from the dialog box that appears. Expand the World
Wide Web Services node, and then the Application Development Features node. Check the

ASP box to install classic ASP handling, as shown here:

 Classic ASP (Putting ASP.NET into Perspective)
 While this book is really about ASP.NET, understanding classic ASP is usually helpful. By con-

trasting classic ASP and ASP.NET, you get a good idea as to why things are the way they are

in ASP.NET. You can also gain an appreciation for all that ASP.NET does for you.

 Microsoft originally developed Active Server Pages (ASP) to encourage a larger number of

developers than just those using C++ to undertake Web development. When IIS came out,

it was certainly a feasible environment for developing Web sites on the Microsoft platform

compared to other platforms. In fact, you can still see some sites today deployed as pure

ISAPI DLL sites; just look in the query strings going between the browser and the server for

clues (eBay for one). For example, you might see a fi le name such as ACMEISAPI.DLL embed-

ded within the query string.

 However, writing an entire site using ISAPI DLLs can be daunting. Writing ISAPI DLLs in C or

C++ gives you complete control over how your site will perform and makes the site work.

However, along with that control comes an equal amount of responsibility because develop-

ing software using C or C++ presents numerous challenges.

20 Part I Fundamentals
 So in delivering ASP, Microsoft provided a single ISAPI DLL named ASP.DLL. ASP Web de-

velopers write their code into fi les tagged with the extension .asp (for example, somefi le

.asp). ASP fi les often contain a mixture of static HTML and executable sections (usually writ-

ten in a scripting language) that emit output at runtime. For example, the code in Listing 1-1

shows an ASP program that spits out the HelloWorld page, which contains both static HTML

and text generated at runtime. (The fi le name is HelloWorld.asp in the book’s accompanying

examples.)

 LISTING 1-1 A Classic ASP File

 <%@ Language="javascript" %>

<html>

 <body>

 <form>

 <h3>Hello world!!! This is an ASP page.</h3>

 <% Response.Write("This content was generated");%>

 <% Response.Write("as part of an execution block");%>

 </form>

 </body>

</html>

 The code shown in Listing 1-1 renders the following page. IIS monitored port 80 for requests.

When a request for the fi le Helloworld.asp came through, IIS saw the .asp fi le extension and

asked ASP.DLL to handle the request (that’s how the fi le mapping was set up). ASP.DLL simply

rendered the static HTML as the string “Hello world!!! This is an ASP page.” Then when

ASP.DLL encountered the funny-looking execution tags (<% and %>), it executed those blocks

by running them through a JavaScript parser (note the language tag in the fi rst line of code).

Figure 1-2 shows how the page renders in Internet Explorer.

 This book is about developing ASP.NET software, so we’ll focus most of the attention there.

However, before leaving the topic of classic ASP, Listing 1-2 shows the SelectFeature.htm

page rewritten as a classic ASP page. Looking at this simple ASP application presents some

of the core issues in Web development and illustrates why Microsoft rewrote its Web server

technology as ASP.NET. (The accompanying fi le name is SelectFeature.asp.)

 LISTING 1-2 The SelectFeature.htm Page Rewritten as a Classic ASP Page

 <%@ Language="javascript" %>

<html>

 <body>

 <form>

 <h2>HelloWorld<h2>

 <h3>What's your favorite .NET feature?</h3>

 <select name='Feature'>

 <option> Type-Safety</option>

 <option> Garbage collection</option>

 <option> Multiple syntaxes</option>

 <option> Code Access Security</option>

 Chapter 1 Web Application Basics 21
 <option> Simpler threading</option>

 <option> Versioning purgatory</option>

 </select>

 </br>

 <input type=submit name="Submit" value="Submit"></input>

 <p>

 Hi, you selected <%=Request("Feature") %>

 </p>

 </form>

 </body>

</html>

 Much of the text in SelectFeature.asp looks very similar to SelectFeature.htm, doesn’t it? The

differences lie mainly in the fi rst line (that now specifi es a syntax for executable blocks) and

the executable block marked by <% and %>. The rest of the static HTML renders a selection

control within a form.

 Take note of the executable blocks and how the blocks use the Response object (managed by

the ASP infrastructure) to push text out to the browser. The executable block examines the

Feature control (specifi ed by the <select> tag) and prints out the value selected by the user.

 Figure 1-3 shows how SelectFeature.asp renders in Internet Explorer.

 FIGURE 1-2 The results of a request made to the ASP program from Listing 1-1

22 Part I Fundamentals

 FIGURE 1-3 The code from Listing 1-2 as viewed using Internet Explorer

 The screen in Figure 1-3 may look a bit odd because the drop-down list box shows “Type-

Safety” while the rendered text shows “Simpler threading.” Without doing anything extra, the

drop-down list box will always re-render with the fi rst element as the selected element. We’ll

see how ASP.NET fi xes this later when we look at server-side controls. That’s enough back-

ground information to help you understand the core concepts associated with developing

Web applications.

 Web Development Concepts
 In the end, developing Web applications forces you to deal with two signifi cant issues—

managing user interfaces (UI) using HTML over a disconnected protocol and managing the

state of your application. These fundamental activities separate Web development from

other types of application development.

 In many ways, the programming model has gone back to the model that dominated the mid-

1970s, when large mainframes served output to terminals connected directly to them. Users

would submit jobs to the mainframe and get output to their terminals. So, what’s changed

here? First, the terminal is a lot fancier—it’s a powerful PC running a browser that interprets

HTML. The endpoint to which the browser connects is a Web server (or perhaps a server

 Chapter 1 Web Application Basics 23
farm). Finally, the connection protocol used by the client and the server is indirect (and a re-

quest can quite literally cross the globe before the user sees a result).

 In Web application development, the program’s primary job is to receive requests from “out

there” and to provide meaningful responses to the requestors. That often means generat-

ing complex HTML that renders in a form humans can read on the client’s browser. That can

be fairly involved, for example, in a modern commercial Web site supporting commerce.

Customers will undoubtedly ask about current pricing, request inventory levels, and perhaps

even order items or services from the Web site. The process of “generating meaningful HTML

for the client” suddenly means doing things such as making database accesses, authenticat-

ing the identity of the client, and keeping track of the client’s order. Imagine doing all this

from scratch!

 While frameworks such as classic ASP go a long way toward making Web development more

approachable, many features are still left for developers to create on their own (mostly re-

lated to the two issues mentioned at the beginning of this section). For example, building a

secure but manageable Web site in classic ASP usually meant writing your own security sub-

system (or buying one). Managing the state of the UI emitted by your Web site was often a

tedious chore as well.

 ASP.NET
 All of this brings us to ASP.NET. A common theme you’ll see throughout this book is that

ASP.NET takes features usually implemented (over and over again) by developers and rolls

them into the ASP.NET framework.

 ASP.NET has been evolving steadily since it was fi rst released. ASP.NET 1.0 introduced a well-

defi ned pipeline, a viable extensibility model, a server-side control rendering model, and nu-

merous other features to make developing Web sites very doable. ASP.NET 2.0 took ASP.NET

1.x to the next level and pushed even more commonly implemented features into the frame-

work. An example of how ASP.NET 2.0 improved upon ASP.NET 1.x is the authentication and

authorization services provided by ASP.NET 1.x. ASP.NET 1.x included a reasonable and easy-

to-manage authentication model. However, developers were often left with the task of roll-

ing their own authentication systems into their Web sites. ASP.NET 2.0 adds an authorization

subsystem. We’ll cover ASP.NET Forms Authentication and other security features in-depth in

Chapter 10.

 ASP.NET 2.0 has been in use for more than two years. Even with all the improvements pro-

vided by the release of version 2.0, there’s still room for more. ASP.NET 3.5 delivers a couple

of signifi cant new features. The fi rst one is support for Asynchronous Java and XML-style

programming (commonly known as AJAX). The second main feature is support for Windows

Communication Foundation application hosting via IIS/ASP.NET.

24 Part I Fundamentals
In the following chapters, we’ll cover the most important ASP.NET features. By the end of the

last chapter, you’ll be well equipped to develop a Web site based on ASP.NET.

Summary
This chapter covers the basics of Web applications. Programming for the Web is different

from programming desktop applications because, in effect, you’re trying to create user

interfaces for a distributed client base over a stateless, connectionless protocol. Clients mak-

ing requests to a server using a browser issue HTTP requests to the server and wait for a

response. The earliest Web applications were simply collections of HTML fi les or other re-

sources. As HTML evolved to include tags representing standard user interface controls, so

came the ability to create interactive applications allowing users to carry on a conversation

with the server.

The modern Microsoft Web platform is based on ASP.NET, which has evolved over the years

and has improved after several other technologies ran their course (raw ISAPI DLL program-

ming and classic ASP). The job of any Web server is to receive requests from the users and

do something meaningful with them. The rest of this book examines how to do that using

ASP.NET.

Chapter 1 Quick Reference
To Do This
Start Internet Information Services console Go to the Control Panel

Select Administrative Tools
Select Internet Information Services

 Create a new virtual directory Open the IIS Console

Open the Web Sites node

Open the Default Web Site node

Click the right mouse button on the Default Web Site node

Select New Virtual Directory
Follow the wizard

 Surf to a resource from IIS Click the right mouse button on the resource

Select Browse

 See what fi le types are supported in an IIS

virtual directory

Select the virtual directory

Select the Features View
Browse the Handler Mappings and the Module Mappings pages

To Do This

 Chapter 2

 ASP.NET Application Fundamentals
 After completing this chapter, you will be able to

Q Create IIS Virtual Directories

Q Develop an HTML page into an ASP.NET application

Q Mix HTML with executable code and work with server-side script blocks

Q Locate and view the assembly compiled by ASP.NET from an ASPX fi le

Q Work with code-behind and code-beside execution models

Q Use Visual Studio 2008 to create Web projects

 This chapter covers the fundamentals involved in building an ASP.NET application. From a

syntactical point of view, writing .NET code is similar to writing the classic ASP code that you

may have seen during the late dot-com era. Many of the key symbols remain the same, and

even some of the syntax survives directly. However, the entire underlying execution model

changed dramatically between classic ASP and ASP.NET. Whereas executing classic ASP pages

was primarily an exercise in rendering HTML, interpreting script code, and calling Component

Object Model (COM) code, ASP.NET introduces an entirely new object-oriented execution

model. ASP.NET execution centers around Common Language Runtime (CLR) classes that

implement an interface named IHttpHandler. ASP.NET includes a number of classes that al-

ready implement IHttpHandler, and you may actually write your own implementation from

scratch. Typically, though, you’ll write ASP.NET pages that, under the covers, are generated

by an ASP.NET-provided IHttpHandler.

 In this chapter, we’ll examine the ASP.NET execution model to see how ASP.NET enables

its features. We’ll take a bottom-up approach, showing how the simplest ASP.NET page

executes. Along the way, we’ll introduce various ASP.NET programming techniques, includ-

ing code behind. We’ll see how ASP.NET’s compilation model works. Finally, we’ll observe

how ASP.NET’s Web Form architecture operates and how it’s all nicely wrapped up by Visual

Studio 2008.

 Let’s start by studying a simple page to discover how we can evolve it using ASP.NET’s pro-

gramming techniques.

 The Canonical Hello World Application
 Nearly all programming texts start by using the technology at hand to present the classic

string “Hello World” to the end user. This time, our job is to send the statement “Hello World”

to the awaiting browser.
 25

26 Part I Fundamentals

 To see how ASP.NET works, we’ll take the simplest Web page and develop it into an ASP.NET

Web application. We won’t use Visual Studio (or at least its full capabilities) quite yet. Visual

Studio is such a rich development environment that building and running Web applications

with it seems almost like magic. This will be a bare-bones example built from scratch so you

can see exactly what’s going on before we bring Visual Studio’s full capabilities into the pic-

ture. We’ll examine each iteration along the way to see what ASP.NET is doing.

 Building the HelloWorld Web Application
1. Create a directory to hold the Web application fi les. Using either a command shell or

Windows Explorer, create a new folder to hold the Web application fi les. Although the

name of the directory is unimportant to Internet Information Services (IIS), call it some-

thing meaningful. I used c:\aspnetstepbystepexamples.

2. Map a virtual directory to hold the fi les. To start, we need a virtual directory in which

to hold the source code. As we saw earlier when examining the Web Application archi-

tecture imposed by the Windows platform, IIS divides the applications on your server

using virtual directories. There’s nothing really magic about this scheme—it’s mostly

just a mapping between requests coming in over port 80 and some real directory on

your machine. Virtual directories show IIS where to fi nd the code you want to execute

in your application.

 Run the Control Panel, and then go to Administrative Tools and start Internet
Information Services. Expand the nodes in the tree on the left side to expose the

Default Web Site node under the Web Sites node, as shown in the following illustration:

 Chapter 2 ASP.NET Application Fundamentals 27
 Then click the right mouse button on the Default Web Site node and select Add Virtual
Directory from the context menu. (The illustration shows how to perform this opera-

tion in IIS 7.0. If you’re using IIS 5.x or IIS 6.x, the screen will look slightly different—

though you can add new virtual directories in the same way.) IIS will ask you to provide

a name for the virtual directory:

 Call the Web site ASPNETStepByStep. This is the name by which your Web application

will be known to the world. For example, when someone surfs to your Web site, they’ll

use the following URL:

 http://www.mysite.com/ASPNETStepByStep

 The name mysite.com is a fi ctitious site, only here for illustration. When you surf to this

site on this computer, the server name will be localhost.

 The wizard will ask you to provide a physical path for the virtual directory. Either browse

to the physical directory you just created or type the name of the directory. Leave the IIS

administration tool open. We’ll be using other features in the following steps.

Click OK to create the virtual directory.

28 Part I Fundamentals

3. Start with a simple HTML page. The easiest way to implement HelloWorld as a Web ap-

plication is to store some text in an HTML fi le and browse to it.

 At this point we need a text editor. Notepad will work fi ne, or you can use Visual Studio

to create the HTML fi le. If you use Visual Studio, then start Visual Studio and select File,

New, and then File. Select Text File as the fi le type and then click Open. A new, blank

fi le will be opened in Visual Studio’s editor.

 Type the following HTML text between the body’s opening and closing tags. Save the

fi le as HelloWorld.htm within your new physical directory (the one that’s been mapped

to a virtual directory from the previous step).

 <!DOCTYPE html PUBLIC "...">

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Untitled Page</title>

 </head>

 <body>

 <h1> Hello World </h1>

 Nothing really showing here yet, except some HTML...

 </body>

</html>

4. Browse to the page. There are two ways to do this. First, you may browse to the page

by selecting the fi le from within IIS. Navigate to the directory in IIS (the IIS control

panel should still be open if you haven’t closed it). Select the Content View tab near

the bottom of the main pane. You’ll see the fi les in the directory. Click the right mouse

button on the HelloWorld.htm fi le and select Browse. Alternatively, you may type the

entire URL into the browser navigation bar:

 http://localhost/ASPNETStepByStep/helloworld.htm

 The browser will send an HTTP request to the server. On the Microsoft platform, IIS will

see the HTM fi le extension and simply return the contents of the fi le to the browser.

Because the text is marked using standard HTML tags, the browser understands it and

displays it correctly.

 Chapter 2 ASP.NET Application Fundamentals 29

 Here’s how the fi le appears to the end browser:

5. Convert the HTML fi le to an ASP.NET application. Take the HelloWorld.htm fi le that

you were working on and convert it into an ASP.NET application. Turning this fi le into

an ASP.NET application involves two small steps: adding a single line to the top of the

fi le (the Page directive) and renaming the fi le to HelloWorld.aspx. This text represents

an implementation of HelloWorld that works within the ASP.NET framework (be sure

to save the fi le as HelloWorld.aspx by choosing Save HelloWorld.htm As from the

File menu):

 <%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "...">

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Untitled Page</title>

 </head>

 <body>

 <h1> Hello World </h1>

 Nothing really showing here yet, except some HTML...

 </body>

</html>

30 Part I Fundamentals

 When you fi re up your browser and surf to this fi le within the virtual directory on your

computer, you’ll see the following in your browser.

 Admittedly, it may seem a small feat to simply show some text in a browser. However, it

shows how a simple ASP.NET application works when using IIS.

6. View the HTML source that the browser is interpreting. While the content from the pre-

vious step is showing in your browser, use the View, Source menu to show the HTML

source text being processed by the browser. It should look like this:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Untitled Page</title>

</head>

<body>

 <h1> Hello World </h1>

 Nothing really showing here yet, except some HTML...

</body>

</html>

 Notice this text is almost identical to the text in Hello.aspx (without the Page directive:

<%@ Page Language=”C#” %>). In this case, you can see that the page-processing logic

is fairly simple. That is, the ASP.NET runtime is simply spitting out the text within the fi le.

 Chapter 2 ASP.NET Application Fundamentals 31
 A Note about Application Pools
 IIS 6.x and 7.0 support a feature called application pooling. One of the primary purposes

behind application pooling is to support application isolation. For example, imagine

you wanted to isolate the Web applications running in the same computer from other

software managed by IIS. By creating a separate application pool for each Web applica-

tion, you tell IIS to run the application in its own worker process. If anything bad hap-

pens in one application pool, the other applications will continue to run unaffected.

 Application pooling also lets you govern the security aspects of a Web application.

Some applications may need a higher degree of security, whereas others may not.

 IIS 5.x runs the ASP.NET worker process as LocalSystem. LocalSystem has system ad-

ministrator privileges. This has interesting implications because the account can access

virtually any resource on the server. IIS 6.x and 7.x allow you to set the identity of the

worker process to be the same as that of the application pool level. Application pools

operate under the NetworkService account by default—which does not have as many

access rights as LocalSystem.

 The Page directive appearing at the top of the code is used by the ASP.NET runtime as it

compiles the code. The Page directive shown above is fairly simple—it tells the runtime to

compile this code and base it on the Page class and to treat any code syntax it encounters as

C# code. ASP.NET supports integrating ASPX fi les with assemblies, which we’ll see shortly. In

subsequent examples, we’ll see how ASP.NET compiles code on the fl y and stores the assem-

blies in a temporary directory. There’s no C# code in HelloWorld.aspx, so let’s add some.

 Mixing HTML with Executable Code
 Classic ASP had an interesting way of marking code segments within a page. ASP always

supported the classic script tag (<script> </script>) where anything found between the

script tags was treated as executable code. However, in classic ASP, the script blocks were

sent to the browser, and it became the browser’s job to run the script. In addition to client-

side script blocks, a classic ASP Web page could defi ne script blocks to be interpreted on the

server. These methods often performed tasks such as database lookups. Causing code to

execute on the server involved marking executable segments with angle braces and percent

signs like this:

 <% ExecuteMe() %>

 ASP.NET also supports server-side code execution. To write code that executes inline, sim-

ply mark it with the <% %> tags as well. When ASP.NET parses the fi le to manufacture the

runtime class representing the page (more on that shortly), it will insert whatever code it

32 Part I Fundamentals

fi nds between the execution tags as executable code. The only requirement is that the code

between the execution tags is valid C# (because that’s the language specifi ed in the Page

directive).

 Adding executable code inline

1. Add executable code to the Web application. Create a new blank text fi le from within

Visual Studio. Type the following code into the text fi le and save it as HelloWorld2.aspx.

 <%@ Page Language="C#" Debug="true" %>

<html>

 <body>

 <h1>Hello World!!!</h1>

 <%

 // This block will execute in the Render_Control method

 Response.Write("Check out the family tree:

");

 Response.Write(this.GetType().ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());

 %>

 </body>

</html>

 This code is almost exactly identical to code you’d see in a classic ASP application—

including references to the Response object. In classic ASP, the Response object was one

of those intrinsic objects, perennially available to the page’s execution block. For the

sake of a complete explanation, the Response object in classic ASP was a COM object

that hung off the thread managed by the lower level components (the Internet Services

Application Programming Interface DLL, or the ISAPI DLL). Notice that ASP.NET also has

a Response object. However, this Response object is part of the HttpContext managed by

the ASP.NET pipeline and is in no way related to the classic ASP object except in name.

2. Browse to the ASP.NET page. Surf to the Web page using Internet Explorer. The page

should look like this in the browser:

 Chapter 2 ASP.NET Application Fundamentals 33

 The output produced by HelloWorld2.aspx shows a very important aspect of ASP.NET’s

execution model. Before moving on, take a look at the inline code listed in the previ-

ous exercise and compare it to the output appearing in the browser. Notice the code

includes statements like

 Response.Write(this.GetType().BaseType.ToString());

 Of course, the C# this keyword specifi es an instance of a class. The code that’s execut-

ing is clearly part of a member function of a class instance. The output shown by the

browser indicates the class rendering the HTML to the browser is named ASP.aspnet-
stepbystep_HelloWorld2_aspx, and it derives from a class named System.Web.UI.Page.

We’ll learn more about this later in the chapter.

34 Part I Fundamentals

 Server-Side Executable Blocks
 ASP.NET also supports server-side code blocks (not just inline execution tags). ASP.NET adds

a new runat attribute to the script tag that tells ASP.NET to execute the code block at the

server end.

 Adding Executable Code via a Script Block
1. Add an executable script block to the page. Create a new text fi le in Visual Studio. Type

the following code into Visual Studio’s editor. Note that the code separates rendered

HTML from the script block that runs at the server. Save the fi le as HelloWorld3.aspx in

your virtual directory.

 <%@ Page Language="C#" Debug="true" %>

<script runat="server">

 void ShowLineage()

 {

 Response.Write("Check out the family tree:

");

 Response.Write(this.GetType().ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());

 }

</script>

<html>

 <body>

 <h1>Hello World!!!</h1>

 <%

 ShowLineage();

 %>

 </body>

</html>

 As with the inline execution blocks, the most important criterion for the contents of

the script block is for its syntax to match that of the language specifi ed in the Page

directive. The example above specifi es a single method named ShowLineage(), which is

called from within the page.

 Chapter 2 ASP.NET Application Fundamentals 35

2. Surf to the page. Notice that the output of HelloWorld2.aspx and HelloWorld3.aspx

is identical.

 Marking the <script> tag containing the ShowLineage method with the runat=server attri-

bute causes ASP.NET to execute the code on the server. But while classic ASP interprets the

script block using the designated script language, ASP.NET has an entirely different execu-

tion model—the whole page is actually compiled into a class that runs under the Common

Language Runtime (CLR). Here’s how the ASP.NET compilation model works.

 A Trip through the ASP.NET Architecture
 When it arrives on the Web server, the HTTP request/response is routed through many

server-side objects for processing. Once a request ends up at the server, it winds its way

through the IIS/ASP.NET pipeline. The best way to understand the path of an HTTP request

through ASP.NET is to follow a request as it originates in the browser and is intercepted by

Internet Information Services and your Web application.

36 Part I Fundamentals
 After an end user hits the Return key after typing in a URL, the browser sends an HTTP GET

request to the target site. The request travels through a series of routers until it fi nally hits

your Web server and is picked up on port 80. If your system has software listening to port

80, then the software can handle the request. On the Microsoft platform, the software most

often listening to port 80 is IIS. For the time being, ASP.NET works with three versions of IIS:

version 5.x (if you are using Windows XP Pro), version 6.x (if you are using Windows Server

2003), and version 7.0 (if you are using Windows Vista or Windows Server 2008).

 The general fl ow of the requests is the same, regardless of which version of IIS you choose.

IIS maintains a mapping between fi le extensions and binary components capable of inter-

preting the request (we’ll see more about the binary components later). When a request

comes in, IIS reads the fi le name named in the request and routes the request to the appro-

priate component.

 Earlier versions of IIS (prior to version 7.0) implemented such features as client authentication

and output caching independently of ASP.NET. That is, IIS and ASP.NET each implemented

their own versions of these features. IIS 7.0 now integrates the ASP.NET versions of these fea-

tures (some of which we’ll see in future chapters). As far as IIS 7.0’s ramifi cations to ASP.NET

developers, running in Integrated mode makes .NET functionality part of the core pipeline.

Features such as forms authentication can now be applied to a wide range of content—not

just ASP.NET forms. For example, this helps when trying to secure an entire Web site using a

uniform authentication method.

 For the purposes of illustration, the following pictures show how IIS 7.0 routes requests of

various types. The following shows IIS 7.0’s module mappings when running Integrated mode.

 Chapter 2 ASP.NET Application Fundamentals 37
 Also for illustration purposes, the following shows IIS 7.0 handler mappings when running

Integrated mode:

 In addition to running in Integrated mode, IIS 7.0 also runs in Classic mode to support back-

ward compatibility. When running in Classic mode, IIS 7.0 uses the module and handler archi-

tecture to pass processing to specifi c traditional binary components (that is, ISAPI DLLs).

 To illustrate how mappings work in Classic mode, the following graphic shows IIS 7.0 module

mappings running in Classic mode:

38 Part I Fundamentals

 The following graphic shows IIS 7.0 running in Classic mode and its module mappings:

 Once IIS intercepts the request and maps it to the worker process, the request follows a very

specifi c path through the pipeline. We’ll look at each part of the pipeline in more detail in

coming sections. The outline of the request’s path through IIS 5.x and 6.x is this:

1. The request lands in IIS.

2. IIS routes the request to aspnet_isapi.dll.

2.1. If IIS 5.x is running, IIS asp_isapi.dll routes the request through a pipe to

aspnet_wp.exe.

2.2. If IIS 6.x is running, the request is already in the worker process.

3. ASP.NET packages the request context into an instance of HttpContext.

4. ASP.NET pipes the request through an instance of an HttpApplication object (or an

HttpApplication-derived object).

5. If the application object is interested in receiving any of the request preprocessing

events, HttpApplication fi res the events to the application object. Any HttpModules that

have subscribed to these events will receive the notifi cations as well.

6. Runtime instantiates a handler and handles the request.

 Chapter 2 ASP.NET Application Fundamentals 39

 Figure 2-1 shows how IIS version 5.x and ASP.NET work together to handle HTTP requests.

Figure 2-2 shows how IIS version 6.x works with ASP.NET to handle requests.

GET/vdir/page.aspx HTTP/1.1 200 OK ...

aspnet_isapi.dll

(ISAPI Extension)

another_isapi.dll

(ISAPI Extension)

asp.dll

(ISAPI Extension)

IHttpHandler

named pipe

ASP.NET Worker Process

(aspnet_wp.exe)

INETINFO.EXE (IIS 5.0) IIS5.x

GET/vdir/page.asp HTTP/1.1 200 OK ...

 FIGURE 2-1 IIS 5.x working in concert with ASP.NET.

IIS 6.0

asp.dll

(ISAPI Extension)

IHttpHandler

Worker Process

(w3wp.exe)

Page

Worker Process

(w3wp.exe)

Page.asp

Kernel

GET/vdir/page.asp HTTP/1.1 200 OK ... HTTP/1.1 200 OK ...GET/vdir2/page.aspx

aspnet_isapi.dll

(ISAPI Extension)

http.sys

 FIGURE 2-2 IIS 6.x working in concert with ASP.NET.

 By contrast, the request path through IIS 7.0 is slightly different. Here’s a request’s path

through IIS 7.0:

1. The browser makes a request for a resource on the Web server.

2. HTTP.SYS picks up the request on the server.

3. HTTP.SYS uses the WAS to fi nd confi guration information to pass on to the WWW Service.

40 Part I Fundamentals

4. WAS passes the confi guration information to the WWW Service, which confi gures

HTTP.SYS.

5. WAS starts a worker process in the application pool for which the request was destined.

6. The worker process processes the request and returns the response to HTTP.SYS.

7. HTTP.SYS sends the response to the client.

 Figure 2-3 shows the relationship between IIS 7.0 and ASP.NET.

Application PoolApplication Pool

ISAPI Module

Worker Process

(w3wp.exe)

Page.asp

asp.dll

IHttpHandler

Worker Process

(w3wp.exe)

Page

ISAPI Module

Page Handler
Factory

Authentication Module Execute HandlerModule Module Send Response

IIS Modules

HTTP/1.1 200 OK ... HTTP/1.1 200 OK ...

IIS 7.0

Kernel
http.sys

GET/vdir/page.asp GET/vdir2/page.aspx

 FIGURE 2-3 ASP.NET and IIS 7.0

 Throughout the forthcoming chapters, we’ll follow a request through the ASP.NET pipeline.

You can plug into the ASP.NET pipeline at a number of distinct points to deal with various

aspects of handling the requests. For example, if you’d like to do any preprocessing, you can

either override event handlers in the HttpApplication class or you may write HTTP modules

and plug them into the pipeline. While the System.Web.UI.Page class provides as much func-

tionality as you’ll ever need for building Web-based user interfaces, the pipeline is fl exible

enough that you can easily write your own custom handlers.

 Chapter 2 ASP.NET Application Fundamentals 41
 The ASP.NET Compilation Model
 One of the most important improvements Microsoft has made to the ASP development envi-

ronment is to build the Web request handling framework out of classes. Pushing request pro-

cessing into a class-based architecture allows for a Web-handling framework that’s compiled.

When ASP.NET pages are fi rst accessed, they are compiled into assemblies.

 This is advantageous because subsequent access loads the page directly from the assembly.

Whereas classic ASP interpreted the same script code over and over, ASP.NET applications are

compiled into .NET assemblies and ultimately perform better and are safer. Because the code

is compiled, it runs more quickly since it doesn’t have to be interpreted. In addition, the man-

aged runtime is a type-safe environment; you won’t see the same sorts of errors and anoma-

lies that you’d encounter in a scripting environment (as was the case for classic ASP).

 In addition, compiling the Web request framework allows for more robust and consistent de-

bugging. Whenever you run an ASP.NET application from Visual Studio, you can debug it as

though it were a normal desktop application.

 ASP.NET compiles .aspx fi les automatically. To get an .aspx page to compile, you simply need

to surf to the .aspx fi le containing the code. When you do so, ASP.NET compiles the page into

a class. However, you won’t see that assembly containing the class anywhere near your virtual

directory. ASP.NET copies the resulting assemblies to a temporary directory.

 The .NET versions of Microsoft Visual Studio have always included a tool named Intermediate

Language Disassembler (ILDASM) that uses refl ection to reverse compile an assembly so you

may view its contents. The result is an easily negotiated tree view you may use to drill down

to the contents of the assembly. Right now, that’s the important thing. (If you want to peer

any more deeply into the assembly and see the actual Intermediate Language, ILDASM will

show you that as well.)

 Viewing the ASP.NET assemblies

 Here’s how to view the assemblies generated by ASP.NET.

 1. To run ILDASM, open the Visual Studio .NET 2008 command prompt and type ILDASM.

 2. Select File, Open.

 3. Find the assembly compiled by the ASP.NET runtime. Go to C:\WINDOWS\Microsoft

.NET\Framework\v2.0.50727\Temporary ASP.NET Files\aspnetstepbystep\. The subdi-

rectory is named v2.0.50727 at the time of this writing. The fi nal subdirectory may be

slightly different. You’ll see some oddly named directories underneath. For example,

on my machine, the subdirectory names generated by ASP.NET are 110a3860 and

9bf9cc39. The directory name(s) will most likely be different on your machine. There’s

no easy way to fi gure out which directories have the code that just executed (though

looking at the dates and times of the fi le creation may help), so you’ll need to drill

42 Part I Fundamentals
down into the directories until you unearth some DLL fi les. Depending on how many

times you’ve run the application, you may see several fi les. Open the fi les one at a time

until ILDASM displays something similar to what’s shown in Figure 2-4.

 FIGURE 2-4 ILDASM showing the contents of the assembly generated by ASP.NET after surfi ng to
HelloWorld.aspx

 ASP.NET has used this temporary directory strategy since version 1.0. The reason ASP.NET

copies these fi les to a temporary directory is to solve a long-standing problem that plagued

classic ASP. Classic ASP Web sites often depended on COM objects to do complex operations

such as database lookups and transactions. When you deploy a classic ASP site and clients

begin accessing it, those fi les become locked. Of course, that’s not really a problem—until

you decide to upgrade or modify part of the Web site.

 Classic ASP locked fi les during execution, meaning you couldn’t copy new fi les into the virtual

directory without shutting down the Web site. For many Web deployment scenarios, this is a

bad option. Because ASP.NET copies the fi les and the components to the temporary directory

and runs them from there, they’re not locked. When it is time to update a component, simply

copy the new assembly into the virtual directory. You can do that because it’s not locked.

 Chapter 2 ASP.NET Application Fundamentals 43
 Coding Options
 In addition to supporting inline code (that is, including executable code directly inside a server-

side script block), modern ASP.NET offers two other distinct options for managing code:

ASP.NET 1.x code behind, and modern ASP.NET code beside. ASP.NET supports code behind

for backward compatibility. Code beside is the style employed by Visual Studio 2008. Let’s

look at these.

 ASP.NET 1.x Style
 ASP.NET continues to support ASP.NET 1.x style code behind. This may be important to un-

derstand if you ever run into any legacy code from that era. Using the code-behind directives

in the ASPX fi le, you provide the code to run behind the page in a separate class and use the

Page directive to tell ASP.NET which class to apply to the page. Then you tell ASP.NET the

name of the fi le containing the source code for the class. For example, imagine this code is

placed in a fi le named HelloWorld4Code.cs:

 using System.Web;

public class HelloWorld4Code : System.Web.UI.Page

{

 public void ShowLineage()

 {

 Response.Write("Check out the family tree:

");

 Response.Write(this.GetType().ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());

 }

}

 An ASP.NET page that uses the HelloWorld4Code class to drive the page might then look like

this:

 <%@ Page Language="C#" Inherits="HelloWorld4Code"

 Src="HelloWorld4Code.cs" Debug="true" %>

<html>

 <body>

 <h1>Hello World!!!</h1>

 <%

 this.ShowLineage();

 %>

 </body>

</html>

44 Part I Fundamentals
 With the ASP.NET 1.x style of code behind, ASP.NET sees the Src attribute in the directives and

compiles that fi le. ASP.NET reads the Inherits attribute to fi gure out how to base the class that

runs the page. In the example above, ASP.NET uses the HelloWorld4Code class to drive the page.

 By using the Src attribute, you tell the ASP.NET runtime to compile the fi le named by the Src

attribute value. The ASP.NET runtime will compile it into the temporary directory. Alternatively,

you may also precompile the fi le into an assembly containing the HelloWorld4Code class. For

this to work, the precompiled assembly must appear in the bin directory of your virtual direc-

tory. If you precompile the page class and put the assembly in the bin directory, you don’t

even need to mention the source code fi le. In the absence of an Src attribute, the ASP.NET

runtime will search the assemblies in the bin directory looking for the class specifi ed in the

Inherits attribute.

 Modern ASP.NET Style
 The other coding option for ASP.NET is new starting with version 2.0. This model is some-

times referred to as code beside. Consider the following ASP.NET page:

 <%@ Page Language="C#" CodeFile="HelloWorld5Code.cs"

 Inherits="HelloWorld5Code" %>

<html>

 <body>

 <h1>Hello World!!!</h1>

 <%

 // This block will execute in the Render_Control method

 ShowLineage();

 %>

 </body>

</html>

 It references the code found in the HelloWorld5Code.cs fi le:

 using System.Web;

public partial class HelloWorld5Code : System.Web.UI.Page

{

 public void ShowLineage()

 {

 Response.Write("Check out the family tree:

");

 Response.Write(this.GetType().ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());

 }

}

 Chapter 2 ASP.NET Application Fundamentals 45
 In this case, ASP.NET looks to the CodeFile directive to fi gure out what code to compile. ASP

.NET expects to fi nd a partial class to implement the page’s logic. Partial classes let you split

the defi nition of a type (class, struct, or interface) between multiple source fi les, with a por-

tion of the class defi nition living in each fi le. Compiling the source code fi les generates the

entire class. This is especially useful when working with generated code, such as that gener-

ated by Visual Studio. You can augment a class without going back and changing the original

code. Visual Studio .NET 2008 prefers the code-beside/partial class code representation.

 The following short listings, Listing 2-1 and Listing 2-2, show two fi les that implement a sin-

gular class named SplitMe.

 LISTING 2-1 Partial1.cs

 // Partial1.cs

using System;

public partial class SplitMe

{

 public void Method1()

 {

 Console.WriteLine("SplitMe Method1");

 }

}

 LISTING 2-2 Partial2.cs

 // Partial2.CS

using System;

public partial class SplitMe

{

 public static void Main()

 {

 SplitMe splitMe = new SplitMe();

 splitMe.Method1();

 splitMe.Method2();

 }

 public void Method2()

 {

 Console.WriteLine("SplitMe Method2");

 }

}

 To compile the previous example, you may build the project with Visual Studio, or you may

use the following command line in the Visual Studio Command Prompt (if these are just loose

fi les):

 csc /t:exe Partial1.cs Partial2.cs

 This will generate an executable fi le named Partial2.exe.

46 Part I Fundamentals
 After working with ASP.NET source code in the raw, it’s time to look at how Visual Studio and

ASP.NET work together. Visual Studio .NET 2008 brings many new features for creating and

developing Web applications, as we’ll see when working through subsequent examples.

 The ASP.NET HTTP Pipeline
 As soon as ASP.NET 1.0 was released, it offered a huge improvement over classic ASP by

introducing well-defi ned code processing modules that together form the ASP.NET HTTP
pipeline. Classic ASP was patched together from several disparate components (IIS, the Web

Application Manager, and the ASP ISAPI DLL). The Request and Response objects were COM

objects hanging off the threads owned by IIS. If you wanted to do any processing outside the

context of ASP, you needed to write an ISAPI fi lter. If you wanted to write code to execute

during processing, it had to occur within a COM object implementing IDispatch (severely lim-

iting the available types of data you could use and negatively affecting performance). If you

wanted to write any request-handling code (outside the context of ASP), you had to write a

separate ISAPI DLL. The ASP.NET HTTP pipeline includes the facilities to do these things, but

in a much more manageable way.

 In ASP.NET, your application has the opportunity to perform preprocessing and postprocess-

ing within HttpModules. If you use IIS 5.x or 6.x as your Web server, the ASP.NET pipeline

stands by itself, and requests are processed completely by ASP.NET as soon as aspnet_isapi.dll

hands control off to the ASP.NET worker process. If you’re using IIS 7.0 as your Web server,

the ASP.NET pipeline is integrated into the server, allowing you to apply most ASP.NET services

to non-ASP.NET content. In any case, your application also has the opportunity to process

application-wide events using the HttpApplication object. Because of ASP.NET’s object model,

the need for separate COM-based scripting objects on the server disappears. The endpoint

of all requests is an implementation of IHttpHandler. ASP.NET already includes some use-

ful implementations of IHttpHandler (that is, System.Web.UI.Page and System.Web.Services
.WebService). However, you may easily write your own (as we’ll see later).

 The IIS 5.x and IIS 6.x Pipeline
 Once a request comes into the AppDomain managed by the ASP.NET runtime, ASP.NET uses

the HttpWorkerRequest class to store the request information. Following that, the runtime

wraps the request’s information in a class named HttpContext. The HttpContext class includes

all the information you’d ever want to know about a request, including references to the

current request’s HttpRequest and HttpResponse objects. The runtime produces an instance

of HttpApplication (if one is not already available) and then fi res a number of application-

wide events (such as BeginRequest and AuthenticateRequest). These events are also pumped

through any HttpModules attached to the pipeline. Finally, ASP.NET fi gures out what kind of

handler is required to handle the request, creates one, and asks the handler to process the

request. After the handler deals with the request, ASP.NET fi res a number of postprocessing

events (like EndRequest) through the HttpApplication object and the HttpModules.

 Chapter 2 ASP.NET Application Fundamentals 47
 Figure 2-5 illustrates the structure of the ASP.NET pipeline inside the ASP.NET worker process

using IIS 6.x (the only difference from IIS 5.x is the name of the worker process).

HttpRuntime HttpApplicationFactory

HttpWorkerRequest

HttpContext

HttpRequest

HttpResponse

HttpSessionState

HttpApplicationState
HttpApplication

HttpModule

HttpModule

HttpModule

HandlerFactoryHandler

AppDomain

W3WP.EXE

 FIGURE 2-5 Main components of the HTTP pipeline within ASP.NET

 The IIS 7.0 Integrated Pipeline
 The Integrated IIS 7.0 pipeline is very similar to the ASP.NET HTTP pipeline that’s been around

since ASP.NET was fi rst released (which you see in Figure 2-5). As you can see from earlier

investigations using the IIS 7.0 management console, the IIS 7.0 Integrated pipeline employs

modules and handlers just like earlier versions of the ASP.NET’s HTTP pipeline. However,

whereas ASP.NET’s HTTP pipeline runs entirely within the ASP.NET worker process, IIS 7.0

runs the pipeline as directed by IIS. The Integrated pipeline in IIS 7.0 works in very much

the same way as the ASP.NET pipeline, so the application-wide events exposed through the

HttpApplication events work just as before (we’ll discuss application-wide events in detail

later). When running your application through IIS 7.0 in Integrated mode, your request no

longer passes through aspnet_isapi.dll. IIS 7.0 pushes the request through the modules and

handlers directly.

 Tapping the Pipeline
 While some of the parts within the pipeline are unavailable to you as a developer, several

parts are available directly and provide a useful means of managing your request as it goes

through the pipeline. The most important parts of the pipeline that you can touch include

the HttpApplication, the HttpContext, the HttpModule, and the HttpHandler.

48 Part I Fundamentals
 The following sections supply some details about these critical sections within the HTTP

request path.

 The HttpApplication
 At this point, you understand the nature of a Web application as being very different from

that of a normal desktop application. The code that you’re writing is responsible for spitting

some HTML response back to a client. In many ways, the model hearkens back to the terminal-

mainframe model prevalent during the mid-1970s. In ASP.NET, the endpoint of a request is

an implementation of IHttpHandler (even if that handler ultimately forms a Web page based

on your ASP.NET Web Forms code).

 HTTP handlers live for a very short period of time. They stick around long enough to handle a

request, and then they disappear. For very simple applications, this model might be just fi ne.

However, imagine the requirements of even a modest commercial-grade application. If all you

had to work with was these ephemeral handlers, you’d have no way to achieve application-

wide functionality. For example, imagine you wanted to cache data to avoid round-trips to the

database. You’d need to store that data in a place where all the HTTP handlers could get to it.

 The HttpApplication class exists for that purpose—to act as a rendezvous point for your re-

quest processing. During the lifetime of a Web application, the HttpApplication objects serve

as places to hold application-wide data and handle application-side events.

 The HttpContext
 The HttpContext class acts as a central location in which you can access parts of the current

request as it travels through the pipeline. In fact, every aspect of the current request is avail-

able through HttpContext. Even though the HttpContext components are really just refer-

ences to other parts of the pipeline, having them available in a single place makes it much

easier to manage the request.

 Here is an abbreviated listing of HttpContext, showing the parts you’ll be using most fre-

quently in developing Web applications. The members are exposed as properties.

 class HttpContext

{

 public static HttpContext Current {...};

 public HttpRequest Request {...};

 public HttpResponse Response {...};

 public HttpSessionState Session {...};

 public HttpServerUtility Server {...};

 public HttpApplicationState Application {...};

 public HttpApplication ApplicationInstance {...};

 public IDictionary Items {...};

 public IPrincipal User {...};

 public IHttpHandler CurrentHandler {...};

 public Cache Cache {...};

 ...

}

 Chapter 2 ASP.NET Application Fundamentals 49
 The static Current property gives you a means of getting to the current request at any time.

Many times, the HttpContext is passed as a method parameter (as in the method IHttpHandler
.RequestProcess(HttpContext ctx)); however, there may be times when you need the context

even though it hasn’t been passed as a parameter. The Current property lets you grab the cur-

rent process out of thin air. For example, this is how you might use HttpContext.Current:

 Public void DealWithRequest()

{

 HttpContext thisRequest = HttpContext.Current;

 thisRequest.Response.Write("<h3> Hello World</h3>");

}

 As you can see from the previous snippet of the HttpContext object, the properties within

HttpContext include such nuggets as

Q a reference to the context’s Response object (so you can send output to the client)

Q a reference to the Request object (so you can fi nd information about the request itself)

Q a reference to the central application itself (so you can get to the application state)

Q a reference to a per-request dictionary (for storing items for the duration of a request)

Q a reference to the application-wide cache (to store data and avoid round-trips to the

database)

 We’ll be seeing a lot more of the context—especially when we look at writing a custom

HttpHandler.

 HttpModules
 While the Application object is suitable for handling application-wide events and data on a

small scale, sometimes application-wide tasks need a little heavier machinery. HttpModules
serve that purpose.

 ASP.NET includes a number of predefi ned HttpModules. For example, session state, authen-

tication, and authorization are handled via HttpModules. Writing HttpModules is pretty

straightforward and is a great way to handle complex application-wide operations. For ex-

ample, if you wanted to write some custom processing that occurs before each request, using

HttpModules is a good way to do it. We’ll see HttpModules up close later.

 HttpHandlers
 The last stop a request makes in the pipeline is an HttpHandler. Any class implementing the

interface IHttpHandler qualifi es as a handler. When a request fi nally reaches the end of

the pipeline, ASP.NET consults the confi guration fi le to see if the particular fi le extension

is mapped to an HttpHandler. If it is, the ASP.NET loads the handler and calls the handler’s

IHttpHandler.ProcessRequest method to execute the request.

50 Part I Fundamentals
 Visual Studio and ASP.NET
 Visual Studio .NET 2008 expands your options for locating your Web sites during develop-

ment. The Visual Studio .NET 2008 wizards defi ne four separate Web site projects: local IIS

Web sites, fi le system–based Web sites, FTP Web sites, and remote Web sites.

 Here’s a rundown of the different types of Web sites available using the project wizard. Each

is useful for a particular scenario, and having these options makes it much easier to develop

and deploy an ASP.NET application with Visual Studio 2008 than with earlier versions.

 Local IIS Web Sites
 Creating a local IIS Web site is much like creating a Web site using the older versions of Visual

Studio .NET specifying a local virtual directory. This option creates sites that run using IIS

installed on your local computer. Local IIS Web sites store the pages and folders in the IIS de-

fault directory structure (that is, \Inetpub\wwwroot). By default, Visual Studio creates a virtual

directory under IIS. However, you may create a virtual directory ahead of time and store the

code for your Web site in any folder. The virtual directory just needs to point to that location.

 One reason to create a local Web site is to test your application against a local version of IIS,

for example, if you need to test such features as application pooling, ISAPI fi lters, or HTTP-

based authentication. Even though a site is accessible from other computers, it’s often much

easier to test these aspects of your application when you can see it interact with IIS on your

computer. To create a local Web site, you need to have administrative rights. For most devel-

opers, this is not an issue.

 File System–Based Web Sites
 File system–based Web sites live in any folder you specify. The folder may be on your local

computer or on another computer sharing that folder. File-system Web sites do not require

IIS running on your computer. Instead, you run pages by using the Visual Studio Web server.

 Visual Studio Web Server
 Until Visual Studio 2005, the development environment used IIS directly to serve up

pages. That meant that developers needed to have IIS fully enabled on their machines

to be able to develop effectively. This created a possible security compromise. Visual

Studio 2008 includes its own built-in Web server. This lets you develop Web applica-

tions effectively even if you don’t have IIS installed on your development machine.

 Chapter 2 ASP.NET Application Fundamentals 51
 File-system Web sites are useful for testing your site locally but independently of IIS. The

most common approach is to create, develop, and test a fi le-system Web site. Then when it is

time to deploy your site, simply create an IIS virtual directory on the deployment server and

move the pages to that directory.

 Because fi le-system Web sites employ the Visual Studio Web server rather than IIS, you may

develop your Web site on your computer even when logged on as a user without administra-

tive rights.

 This scenario is useful for developing and testing those features of your site that you develop.

Because IIS is out of the picture, you won’t be able to work with (or have to deal with) such

IIS features as ISAPI fi lters, application pooling, or authentication (though in many cases you

won’t need to worry about that sort of thing during development).

 FTP Web Sites
 In addition to creating HTTP-based sites, you may use Visual Studio to manage Web sites

available through an FTP server. For example, if you use a remote hosting company to host

your Web site, an FTP server offers a convenient way to move fi les back and forth between

your development location and the hosting location.

 Visual Studio connects to any FTP server for which you have read and write privileges. Once

connected, you then use Visual Studio to manage the content on the remote FTP server.

 You would use this option to deploy your Web site to a server that lacks FrontPage 2002

Server Extensions.

 Remote Web Sites
 The fi nal option for developing and managing Web sites through Visual Studio is to use the

remote Web sites option. Remote Web sites use IIS on another computer that is accessible

over a network. In addition to running IIS, the remote computer must have IIS installed and

needs to have FrontPage 2002 Server Extensions installed. Pages and folders on a remote site

become stored under the default IIS folder on the remote computer.

 This option is useful if you decide you want to move he Web site to its actual deployment

server. In addition, the entire development team can work on the site simultaneously. The

downside of this approach is that debugging and confi guring a Web site remotely can some-

times be tricky because it’s slow and hard to control the site as a whole.

52 Part I Fundamentals

 Hello World and Visual Studio
 To get started, let’s use Visual Studio to generate the HelloWorld Web application.

1. Create a new Web site. To create a new Web site, select the following menu combina-

tion: File, New, and then Web Site. Visual Studio will display a dialog box like this one:

 Give the Web site a useful name like ASPNETStepByStepExamples. Even though this is the

same directory name used for the previous IIS examples, you can use it because Visual

Studio will create the subdirectory under IIS’s default subdirectory \inetpub\wwwroot.

 Notice that several different kinds of sites are showing in the dialog box. Choose

Empty Web Site for this example.

 Choosing Empty Web Site causes Visual Studio to generate an ASP.NET solution fi le

within a directory named Visual Studio 2008\Projects in your normal My Documents

directory. Visual Studio will also create a new directory within your inetpub\wwwroot

directory and map it as an IIS virtual directory. However, the virtual directory will be

devoid of any fi les.

 Selecting ASP.NET Web Site causes Visual Studio to generate a directory structure

similar to the one generated by Empty Web Site. However, Visual Studio will throw in

a default Web form and source code to go with (default.aspx and default.aspx.cs). You’ll

also get an App_Data directory that may contain data pertinent to your site (for exam-

ple, a database fi le containing ASP.NET security information could be contained here).

2. Choose the language syntax. At this point, you have the option of choosing a syntax to use

within your code. Choose among Visual Basic, C#, and J#. For this example, choose C#.

 Chapter 2 ASP.NET Application Fundamentals 53

3. Create a local Web site. For this example, select HTTP from the location combo box to

run this Web site locally on your machine. Visual Studio’s default option is to create a

Web site on your local machine fi le system. By using the HTTP project type, clients try-

ing to access your Web site will have their requests directed through IIS. This is the best

option to choose when learning how ASP.NET works with IIS because it gives you the

chance to work with your Web site as an entire system, and you can use tracing and de-

bugging on your local machine. Later examples that focus on specifi c ASP.NET features

will use the more convenient fi le system–style project.

4. Add a HelloWorld page. To add the HelloWorld page to the new site, select Website,

Add New Item… to reach the Add New Item dialog box:

 This dialog box lists all the various pieces you may add to your Web site. Topping the

list is an item named Web Form. Select this option, and then type HelloWorld.aspx

into the Name text box. Leave the other defaults the same.

 Visual Studio will confront you with the pure ASP.NET code from the HelloWorld.aspx fi le.

 Notice that the code generated by Visual Studio includes directives near the top con-

necting HelloWorld.aspx to the accompanying source fi le HelloWorld.aspx.cs (using the

CodeFile and Inherits attributes in the Page directive). Following the directive is some

initial HTML produced by Visual Studio.

54 Part I Fundamentals

 At this point, take a moment to explore the layout of Visual Studio. Along the top of the

window, you’ll see a number of toolbar buttons and menu options. We’ll visit most of

them throughout the course of this text. Directly beneath the code window, you’ll see

three tabs labeled Design, Split, and Source (the Source tab is selected by default).

If you select the Design tab, you’ll see what the page will look like in a browser. Right

now, the page has no visible HTML tags or ASP.NET Web Forms controls, so the design

view is blank.

 To the right of the Source window, you’ll see the Solution Explorer, which lists the com-

ponents of your application that Visual Studio will compile into an executable code

base. Along the top of the Solution Explorer, you’ll fi nd a number of buttons. By hov-

ering your cursor over the buttons, you can see what they do. The following graphic

shows how each button functions when an ASPX fi le is selected.

Properties

Refresh

Nest Related Files View Code View Designer
Copy Web Site

ASP.NET Configuration

 Chapter 2 ASP.NET Application Fundamentals 55

5. Write some code into the page. Select the HelloWorld.aspx fi le in Solution Explorer and

then click the View Code button. This will show the C# code in the Source code win-

dow, like so:

 Add the following code to show the page’s lineage (it’s the same code from HelloWorld5

shown previously). The code you add should follow the Page_Load method:

 public void ShowLineage()

{

 Response.Write("Check out the family tree:

");

 Response.Write(this.GetType().ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(this.GetType().BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.ToString());

 Response.Write(" which derives from:
 ");

 Response.Write(

 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());

}

56 Part I Fundamentals

 The HelloWorld.aspx.cs fi le should look like the following:

6. Call the ShowLineage method from the ASPX fi le. Select the HelloWorld.aspx tab atop

the editor window to return to the visual designer and then select the Source tab near

the bottom of the screen. With the HTML content showing, insert the following markup

in the page. It should be placed between the opening and closing <div> tags:

 <h2> Hello World!!!</h2>

<%

ShowLineage();

%>

 The HelloWorld.aspx markup then would appear like the following:

 Chapter 2 ASP.NET Application Fundamentals 57
 7. Now build the project and run the Web site from Visual Studio. To build the applica-

tion, select Build, Solution from the main menu. If the source code has any errors,

they’ll appear in the Errors window in the bottom window.

 To run the application, select Debug, Start Without Debugging (or press Ctrl-F5).

Visual Studio will start up a copy of an Internet browser (Microsoft Internet Explorer

by default) and browse the page. You should see a page like this (make sure the

HelloWorld.aspx page is highlighted in the Solution Explorer):

 When you run this application, Visual Studio compiles the HelloWorld.aspx and its

code-beside fi le, HelloWorld.aspx.cs, and moves them to the temporary ASP.NET di-

rectory. IIS is then called upon to activate the ASP.NET HTTP pipeline, which loads the

compiled fi les (DLLs) and renders the page you just created.

 Summary
 We’ve just seen how ASP.NET works from a high level. When a client surfs to an ASPX fi le on

your server, the request is pushed through IIS running on your server. IIS maps individual fi le

extensions to specifi c ISAPI DLLs. When IIS sees the .aspx extension in the request, that ISAPI

DLL is aspnet_isapi.dll. The request ends up within the ASP.NET worker process, which instan-

tiates an HTTP handler to fulfi ll the request.

58 Part I Fundamentals
In the case of an ASPX fi le, ASP.NET instantiates a class derived from System.Web.UI.Page

(which implements IHttpHandler). ASPX fi les are usually paired with source code fi les con-

taining the source code for the page. The ASPX fi le behaves mainly as the presentation layer

while the accompanying Page class contributes the logic behind the presentation layer.

Next up—all about System.Web.UI.Page and how Web forms work.

Chapter 2 Quick Reference
To Do This
Create an FTP Web site in Visual

Studio 2008

Select File, New, Web Site from the main menu. Select FTP from the

Locations combo box.

This option is useful for creating sites that will eventually be deployed by

sending the bits to the site’s host over FTP.

Create an HTTP Web site in Visual

Studio 2008

Select File, New, Web Site from the main menu. Select HTTP from the

Locations combo box.

This option is useful for creating sites that use IIS as the Web server

throughout the entire development cycle.

 Create a fi le-system Web site in

Visual Studio 2008

Select File, New, Web Site from the main menu. Select File System

from the Locations combo box.

This option creates sites that use Visual Studio’s built-in Web server. That

way, you may develop your own site even if you don’t have IIS available

on your machine.

To Do This

 Chapter 3

 The Page Rendering Model
 After completing this chapter, you will be able to

Q Work directly with server-side control tags

Q Work with Web forms and server-side controls using Visual Studio

Q Work with postback events using Visual Studio

Q Understand the ASP.NET Page rendering model

 This chapter covers the heart of ASP.NET’s Web Forms rendering model: controls. As we’ll see

here, System.Web.UI.Page works by partitioning the rendering process into small components

known as server-side controls.

 The entire tour of the ASP.NET control model will look at the fundamental control architec-

ture. We’ll start by looking at the HTML required to render controls in the browser. We’ll take

a very quick look at the classic ASP approach to displaying controls. Although you will prob-

ably never use classic ASP in your career, seeing it in this context will help you appreciate

some of the problems ASP.NET has solved. This will lay the groundwork for following chap-

ters in which we’ll look at how controls can provide custom rendering, User controls, some of

the standard user interface (UI) controls, and some of the modern, more complex controls.

We’ll start with the ASP.NET rendering model.

 Rendering Controls as Tags
 As we saw when looking at basic HTML Web forms, developing a Web-based UI is all about

getting the right tags out to the browser. For example, imagine you wanted to have your

application’s UI appear in the client’s browser as shown in Figure 3-1.

 Getting this to appear on a client’s browser means populating an HTML stream with

the correct tags so the browser renders the screen using client-side controls. Listing 3-1

shows some HTML that does the job. If you would like to run this page, the fi le is named

BunchOfControls.htm. You’ll fi nd it in the sample code for this chapter. To run the page,

take the fi le and save it in a virtual directory and browse to it.
 59

60 Part I Fundamentals
LISTING 3-1 Initial HTML Markup from BunchOfControls.htm

<html>

<body>

<h2> Page in HTML </h2>

<form method="post" action="BunchOfControls.htm" id="Form1">

 <label>Type in me</label>

 <input name="textinfo" type="text" id="textinfo" />

 <select name="selectitems" id="ddl">

 <option value="Item 1">Item 1</option>

 <option value="Item 2">Item 2</option>

 <option value="Item 3">Item 3</option>

 <option value="Item 4">Item 4</option>

 </select>

 <input type="submit" name="clickme" value="Click Me!" id="clickme" />

</form>

</body>

</html>

<html>

<body>

<h2> Page in HTML </h2>

<form method="post" action="BunchOfControls.htm" id="Form1">

 <label>Type in me</label>

 <input name="textinfo" type="text" id="textinfo" />

 <select name="selectitems" id="ddl">

 <option value="Item 1">Item 1</option>

 <option value="Item 2">Item 2</option>

 <option value="Item 3">Item 3</option>

 <option value="Item 4">Item 4</option>

 </select>

 <input type="submit" name="clickme" value="Click Me!" id="clickme" />

</form>

</body>

</html>

 Chapter 3 The Page Rendering Model 61
Of course, using controls on a page usually implies dynamic content, so getting this HTML

to the browser should happen dynamically, in a programmatic way. Classic ASP has facilities

for rendering dynamic content. However, classic ASP generally relies on raw HTML for ren-

dering its content. That means writing a page like the BunchOfControls.htm page shown in

Listing 3-1 might look something like Listing 3-2 in classic ASP. Figure 3-2 shows how the ASP

page renders in Internet Explorer.

LISTING 3-2 Source for BunchOfControls Page Using Classic ASP

<%@ Language="javascript" %>

<h2> Page in Classic ASP </h2>

<form>

 <label>Type in me</label>

 <input name="textinfo" type="text" id="textinfo" />

 <select name="selectitems" id="ddl">

 <option value="Item 1">Item 1</option>

 <option value="Item 2">Item 2</option>

 <option value="Item 3">Item 3</option>

 <option value="Item 4">Item 4</option>

</select>

 <input type="submit" name="clickme" value="Click Me!" id="clickme" />

<p>

 <% if (Request("textinfo") != "") { %>

 This was in the text box: <%=Request("textinfo") %>

 And this was in the selection control: <%=Request("selectitems") %>

 <% } %>

</p>

</form>

When you select an item from the selection control, notice that the page responds by telling

you what you selected. This demonstrates ASP’s support for dynamic content.

Notice that even though classic ASP offers a way to decide your page’s content at runtime,

you still have to create much of it using raw HTML. Also, the state of the controls is always

reset between posts (we’ll look at that when we examine ASP.NET’s ViewState later).

ASP.NET adds a layer of indirection between the raw HTML and the rendered page—that

layer of indirection is provided by ASP.NET’s collection of server-side controls. Server-side

controls eliminate much of the tedium necessary to develop a Web-based UI in classic ASP.

<%@ Language="javascript" %>

<h2> Page in Classic ASP </h2>

<form>

 <label>Type in me</label>

 <input name="textinfo" type="text" id="textinfo" />

 <select name="selectitems" id="ddl">

 <option value="Item 1">Item 1</option>

 <option value="Item 2">Item 2</option>

 <option value="Item 3">Item 3</option>

 <option value="Item 4">Item 4</option>

</select>

 <input type="submit" name="clickme" value="Click Me!" id="clickme" />

<p>

 <% if (Request("textinfo") != "") { %>

 This was in the text box: <%=Request("textinfo") %>

 And this was in the selection control: <%=Request("selectitems") %>

 <% } %>

</p>

</form>

62 Part I Fundamentals
 Packaging UI as Components
 Being able to assemble the UI from component parts is one of the most-cited benefi ts of

producing components. The earliest technologies for building components in Windows was

to write custom Windows Procedures, to use the owner draw capabilities of controls like list

boxes or buttons, or to subclass an existing window. In the early 1990s, Windows employed

VBXs (Visual Basic Controls) as a viable UI technology. Of course, that was more than a dec-

ade ago. Throughout the mid- and late 1990s and early 2000s, ActiveX controls represented

the graphical user interface (GUI) componentization technology of the day. Windows Forms

controls are the current standard for modular GUIs if you’re writing a rich client application.

 In the late 1990s, ActiveX controls also emerged as a way to render a Web-based GUI

as components. The idea was that by using an ActiveX control in your page, the control

would be downloaded as users surfed to the page. During the mid-1990s, Java applets also

gained some popularity as a way to package GUI components for distribution over the Web.

However, both of these techniques depend on some fairly extensive infrastructure on the

client machine (the Component Object Model infrastructure to support ActiveX and a Java

Virtual Machine to support Java applets). When you’re developing a Web site, you may not

 Chapter 3 The Page Rendering Model 63

be able to count on a specifi c infrastructure’s being available on the client machine to sup-

port your GUI. To support the greatest number of clients, represent your GUI using only

HTML. That means GUI componentization needs to happen on the server side.

Now that modern client platforms are becoming more homogeneous, Web UIs are begin-

ning to lean increasingly toward the Asynchronous Java And XML programming model

(AJAX). We’ll see how AJAX works a bit later. AJAX tends to push more intelligence back up

to the browser. However, AJAX applications still have plenty of rendering to do. The

ASP.NET UI componentization model makes developing AJAX applications very approach-

able. The AJAX programming model includes a lot of underlying plumbing code that fi ts

perfectly within the server-side control architecture of ASP.NET.

As we saw earlier, ASP.NET introduces an entirely new model for managing Web pages. The

infrastructure within ASP.NET includes a well-defi ned pipeline through which a request fl ows.

When a request ends up at the server, ASP.NET instantiates a handler (an implementation of

IHttpHandler) to deal with the request. As we’ll see in a later chapter, the handling architec-

ture is extraordinarily fl exible. You may write any code you wish to handle the request. The

System.Web.UI.Page class implements IHttpHandler by introducing an object-oriented ap-

proach to rendering. That is, every element you see on a Web page emitted by an ASP.NET

page is somehow generated by a server-side control. Let’s see how this works.

 The Page Using ASP.NET
 Try turning the previous Web page into an ASP.NET application. Doing so will introduce some

canonical features of ASP.NET, including server-side controls and server-side script blocks.

1. Create a fi le named BunchOfControls.aspx. Follow the steps for creating a basic text fi le

from the previous chapter. Since all of the code will be in a single fi le, do not create a

full-fl edged ASP.NET fi le for this step using the wizard.

2. Add the source code in Listing 3-3 to the fi le.

 LISTING 3-3 Source Code for BunchOfControls Page Using ASP.NET

 <%@ Page Language="C#" %>

<script runat="server">

 protected void Page_Load(object sender, EventArgs ea)

 {

 ddl.Items.Add("Item 1");

 ddl.Items.Add("Item 2");

 ddl.Items.Add("Item 3");

 ddl.Items.Add("Item 4");

 }

</script >

<h2> Page in ASP.NET </h2>

<%@ Page Language="C#" %>

<script runat="server">

 protected void Page_Load(object sender, EventArgs ea)

 {

 ddl.Items.Add("Item 1");

 ddl.Items.Add("Item 2");

 ddl.Items.Add("Item 3");

 ddl.Items.Add("Item 4");

 }

</script >

<h2> Page in ASP.NET </h2>

64 Part I Fundamentals

<form id="Form1" runat="server" >

 <asp:Label Text="Type in me" runat="server" />

 <asp:TextBox id="textinfo" runat="server" />

 <asp:DropDownList id="ddl" runat="server" />

 <asp:Button id="clickme" Text="Click Me!" runat="server" />

</form>

3. Save the fi le in a virtual directory (either create one or use the one from the pre vious chapter).

Many of the same elements seen in the classic ASP page also appear here. There’s a top-level

Page directive. The Language attribute is new for ASP.NET, stipulating that any code encoun-

tered by the ASP.NET runtime should be interpreted as C# code. There’s a server-side script

block that handles the Page_Load event. Following the script block is an HTML <form> tag.

Notice the <form> tag has an attribute named runat, and the attribute is set to server. The

runat=server attribute tells the ASP.NET runtime to generate a server-side control to handle

that UI element at the server. We’ll see this in detail thoughout the chapter.

By including the runat=server attribute in page control tags, the ASP.NET runtime implicitly

creates an instance of the control in memory. The resulting assembly includes a member vari-

able of the same type and name (tied to the control’s ID value) as the control listed on the

page. Notice the ASP.NET code specifi es the DropDownList named ddl to run at the server.

To access the control programmatically, the code block (expressed inline in this case) simply

needs to refer to the DropDownList as ddl. The example above accesses the member variable

to add items to the drop-down list.

If you needed to access the control using code beside you’d explicitly declare the

DropDownList variable as ddl in the associated code fi le. This is required because ASP.NET

derives the code-beside class from System.Web.UI.Page. Visual Studio will do this for you

automatically, as we’ll see shortly.

Further down the ASP.NET code, you’ll see that the other elements (the label, the text box,

the selection control, and the button) are also represented as server-side controls. The job

of each of these controls is to add a little bit of HTML to the response. Each time you add a

server-side control to the page, ASP.NET adds an instance of the control to a control tree the

page maintains in memory. The control tree acts as a container that collects every single ele-

ment encapsulated by one of these server-side controls—including the title text that seems

to be fl oating near the top of the page even though there is no explicit runat=server attri-

bute associated with the <h2> tag.

<form id="Form1" runat="server" >

 <asp:Label Text="Type in me" runat="server" />

 <asp:TextBox id="textinfo" runat="server" />

 <asp:DropDownList id="ddl" runat="server" />

 <asp:Button id="clickme" Text="Click Me!" runat="server" />

</form>

 Chapter 3 The Page Rendering Model 65
 The Page’s Rendering Model
 To get a good idea as to how ASP.NET’s Page model works, we’ll run the page again, but this

time we’ll turn on the tracing mechanism. We’ll examine tracing in more detail when we look

at ASP.NET’s diagnostic features. For now, you simply need to know that ASP.NET will dump

the entire context of a request and a response if you set the page’s Trace attribute to true.

Here’s the Page directive with tracing turned on:

 <%@ Page Language="C#" Trace="true" %>

 Figure 3-3 shows what the page looks like with tracing turned on.

 FIGURE 3-3 The ASPX fi le from Listing 3-3 rendered in Internet Explorer

 If you look at the raw text of the response (by selecting View, Source from the Internet

Explorer menu), you see that ASP.NET responds with pretty straightforward run-of-the-mill

HTML. There’s a bit extra near the top—the hidden __VIEWSTATE fi eld—which we’ll cover

later. After that, the rest is familiar HTML describing a form. Listing 3-4 shows the raw HTML

emitted by the ASP.NET code from Listing 3-3. Be sure to turn tracing off fi rst!

66 Part I Fundamentals
 LISTING 3-4 Raw HTML Produced by the BunchOfControls.ASPX File

 <h2> Page in ASP.NET </h2>

<form method="post" action="BunchOfControls.aspx" id="Form1">

<div>

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

value="/wEPDwUJODQ1ODEz ... " />

</div>

 Type in me

 <input name="textinfo" type="text" id="textinfo" />

 <select name="ddl" id="ddl">

 <option value="Item 1">Item 1</option>

 <option value="Item 2">Item 2</option>

 <option value="Item 3">Item 3</option>

 <option value="Item 4">Item 4</option>

</select>

 <input type="submit" name="clickme" value="Click Me!" id="clickme" />

</form>

 You don’t see any of the runat=server attributes anywhere in the rendered page. That’s be-

cause the runat=server attributes are there to instruct ASP.NET how to construct the page’s

control tree.

 The Page’s Control Tree
 After turning the page’s Trace property to true, ASP.NET will spew a ton of information your

way in the form of a page trace. If you scroll down just a bit, you can see that part of ASP

.NET’s page trace includes the page’s control tree. Figure 3-4 shows what the previous page’s

trace looks like with the focus on the control tree.

 The fi rst line in the page’s control tree trace is an item named __Page. This is in fact the System
.Web.UI.Page object running in memory. Beneath that are a whole host of other items. You’ll

recognize some of their names as they were named in the ASP.NET source code. Notice the

Form1, textinfo, and clickme items. Those names came from the tags in the original ASPX fi le.

 What’s happening here is that ASP.NET is breaking down the page rendering architecture

into small, easily managed pieces. Every item in the control tree shown in Figure 3-4 derives

from the System.Web.UI.Control class. Every time the System.Web.UI.Page needs to render the

page, it simply walks the control tree, asking each control to render itself. For example, when

the ASP.NET runtime asks the TextBox server-side control to render itself, the TextBox control

adds the following HTML to the output stream heading for the browser:

 <input name="textinfo" type="text" id="textinfo" />

 Chapter 3 The Page Rendering Model 67
 This works similarly for the other controls. For example, the DropDownList is responsible for

emitting the select and option tags (the option tags represent the collection of items held by

the DropDownList control).

 <select name="ddl" id="ddl">

 <option value="Item 1">Item 1</option>

 <option value="Item 2">Item 2</option>

 <option value="Item 3">Item 3</option>

 <option value="Item 4">Item 4</option>

 </select>

 Now that you see how these tags work, let’s see how to manage them in Visual Studio.

68 Part I Fundamentals
 Adding Controls Using Visual Studio
 Visual Studio (in concert with ASP.NET) is very good at fooling you as to the real nature

of Web-based development. As you saw from earlier chapters, Web-based development

hearkens back to the old terminal–mainframe days of the mid-1970s. However, this time the

terminal is a sophisticated browser, the computing platform is a Web server (or perhaps a

Web farm), and the audience is worldwide. When a client browser makes a round-trip to the

server, it’s really getting only a snapshot of the state of the server. That’s because Web user

interfaces are built using a markup language over a disconnected protocol.

 When you build Web applications in Visual Studio, it’s almost as if you’re developing a desk-

top application. With Visual Studio, you don’t have to spend all your time typing ASP-style

code. The designer is a great environment for designing a Web-based UI visually.

 Building a Page with Visual Studio
 To see how this works, let’s develop a simple page that uses server-side controls. The page

will look roughly like the ones we’ve seen so far.

 1. Create a Web site to experiment with controls. Use Visual Studio to create a new fi le

system–based ASP.NET Web site. Call the Web site ControlORama, as shown here:

 2. Use the Designer. Visual Studio starts you off editing the markup in the Default.aspx

fi le. If you don’t see the page layout designer mode, switch to the Design view as

shown here by clicking on the Design tab near the bottom of the edit window.

 Chapter 3 The Page Rendering Model 69

 The ASP.NET code generated by Visual Studio includes an HTML <div> tag in the body

of the page. To see the code generated by Visual Studio as you modify elements in the

designer, select the Source tab near the bottom of the design window. Visual Studio

now includes a handy Split tab that allows you to see both the design and source views

at the same time.

 If you simply start typing some text into the Design view, you’ll see some text at the top

of the page. The following graphic illustrates the Design view with some text in serted.

To insert the text, click inside the box with the dashed blue border and type Page in
Visual Studio:

70 Part I Fundamentals

3. Format the text on the page. To edit the format of the text on the page, you need to

view the page’s properties. Highlight the text, click the right mouse button the text,

and select Properties from the local menu. Then highlight the Style property in the

Property dialog box. You’ll see a small button appear in the Property fi eld with an ellipsis

(. . .). Click the button to reveal the Modify Style dialog box. The Modify Style dialog box

sets the attributes for the <div> tag where you can set the font face and style. The fol-

lowing graphic shows the Modify Style dialog box. Make the selections for font-family,

font-size, and font-weight you see in the graphic and click OK:

4. Open the Control toolbox. Next add a label to the page. Move the cursor to the

Toolbox tab on the far left side of Visual Studio. This will highlight the toolbox on the

left as shown in the following graphic:

 Chapter 3 The Page Rendering Model 71

5. Add a label to the page. Drag a label from the Toolbar and drop it onto the page, then

select it as shown in the following graphic (notice how Visual Studio 2008’s designer

adorns the label with a small tag right above it, helping you identify the label in the de-

signer when you select it):

6. Edit the content of the label. To edit the content of the label, you need to view the con-

trol’s properties. If the properties aren’t showing, click the right mouse button on the

label and select Properties from the shortcut menu. The following graphic illustrates

the property window:

72 Part I Fundamentals

 You can now manipulate the appearance of the label to your liking. The example label

here uses a small Times New Roman font and the text in the label is Type in me:.

7. Add a text box. Next, pick up a TextBox from the toolbox and drop it next to the Label
(you can pick up a TextBox from the toolbox—just as you did with the Label). Follow the

TextBox with a line break tag (
).

8. Add a drop-down list. Next, add a DropDownList box by picking it up off the Toolbox

and dropping it onto the page. The following graphic illustrates the drop-down list as

it appears in the designer. Notice the local menu for editing the data source and for

adding/editing items.

 As soon as you drop the control onto the page, Visual Studio prompts you with the

opportunity to add items to the DropDownList. Select Edit Items from the Common

DropDownList Tasks window. You’ll see the ListView Collection Editor dialog box as

shown in the following graphic:

 Chapter 3 The Page Rendering Model 73

 Each time you click the Add button, the ListView Collection Editor adds a new item to

the DropDownList item collection. You can edit the display name (the Text property).

You may add a corresponding value to associate with the text as well. For example, in

an inventory-tracking application, you might include a product name as the Text prop-

erty and an enterprise-specifi c product code in the Value fi eld. You can retrieve either

or both aspects of the item at runtime.

 Add several of these items to the DropDownList as shown in the following graphic.

When you’ve added several, click OK:

9. Add a button to the page. First, add a line break following the DropDownList. Then pick

up a Button from the Toolbox and drop it on the page. The following graphic shows the

controls in place:

74 Part I Fundamentals

 Add some meaningful text to the button by modifying its Text property.

 Before moving on, take a minute to look at the source code generated by Visual Studio.

In adding a Label control, a TextBox control, a DropDownList control, and a Button con-

trol, Visual Studio has added four new member variables to your code (implied through

the runat=server attributes placed within the control tags). The contents of the ASPX

fi le (starting with the form tag) look something like Listing 3-5 at this point.

 LISTING 3-5 Final Default.aspx Markup

 <form id="form1" runat="server">

<div style="font-weight: bold; font-size: 14pt; font-family: 'Times New Roman'">

 Page in Visual Studio

 <asp:Label ID="Label1" runat="server"

 Text="Type in me:" >

 </asp:Label>

 <asp:TextBox

 ID="TextBox1" runat="server">

 </asp:TextBox>

 <asp:DropDownList ID="DropDownList1" runat="server">

 <asp:ListItem>Item 1</asp:ListItem>

 <asp:ListItem>Item 2</asp:ListItem>

 <asp:ListItem>Item 3</asp:ListItem>

 <asp:ListItem>Item 4</asp:ListItem>

 </asp:DropDownList>

 <asp:Button ID="Button1"

 runat="server" OnClick="Button1_Click"

 Text="Click Me!" />

 </div>

</form>

 Notice each ASP.NET tag that runs at the server is given an ID attribute. This is the iden-

tifi er by which the control will be known at runtime. We’ll make use of that shortly.

10. Add an event handler for the button. Finally, to make the button do something, you

need to add an event handler to the page so it will respond when the button is clicked.

The easiest way to do that is to double-click on the button in Design mode. Visual

Studio will generate a handler function for the button click and then show that code in

the Source code view. At this point, you can add some code to respond to the button

click.

 Add the source code in Listing 3-6 to the fi le.

 LISTING 3-6 Button Handling Code

 protected void Button1_Click(object sender, EventArgs e)

 {

 Response.Write("Hello. Here's what you typed into the text box:
");

 Response.Write(this.TextBox1.Text);

 Response.Write("
");

 Response.Write("And the selected item is:
");

 Response.Write(this.DropDownList1.SelectedItem.Text);

 }

 Chapter 3 The Page Rendering Model 75
 The code shown above responds to the button click by sending some text to the out-

put stream via the Response object. The text coming through Response.Write will be the

fi rst text the client browser will see, and so will appear at the top of the page.

 Notice that the response code uses the TextBox1 member variable in the page’s class,

showing that the controls are available programmatically at runtime. Here’s how the

page appears to the client browser. Notice how the text emitted by Response.Write is

inserted before any of the controls are:

 To test the controls on the page, browse to the page by selecting Debug, Start Without
Debugging from the main menu. To see the HTML generated by all the server-side controls,

you may view the source sent to the browser (if your browser is Microsoft Internet Explorer,

choose View, Source from the menu). When you view the source, you should see something

like that shown in Listing 3-7. Notice how the text emitted by Response.Write appears at the

very top of the listing.

 LISTING 3-7 HTML Resulting from Running Default.aspx

 Hello. Here's what you typed into the text box:

Hello World

And the selected item is:
Item 1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head><title>

 Untitled Page

</title></head>

76 Part I Fundamentals
<body>

 <form name="form1"

 method="post"

 action="Default.aspx" id="form1">

<div>

<input type="hidden"

name="__VIEWSTATE"

id="__VIEWSTATE" value="/wEPDwULLTEyNDk3ODQyMjNkZDJq3IDR4Y6f3FK0G+2mn5C/b7d7" />

</div>

 <div

 style="font-weight: bold; font-size: 14pt;

 font-family: 'Times New Roman'">

 Page in Visual Studio

 </div>

 Type in me:

 <input name="TextBox1" type="text"

 id="TextBox1" />

 <select name="DropDownList1"

 id="DropDownList1">

 <option value="Item 1">Item 1</option>

 <option value="Item 2">Item 2</option>

 <option value="Item 3">Item 3</option>

 <option value="Item 4">Item 4</option>

</select>

 <input type="submit"

 name="Button1" value="Click Me"

 id="Button1" />

<div>

 <input type="hidden"

 name="__EVENTVALIDATION"

 id="__EVENTVALIDATION"

 value="/wEWB4rGBnHVt17sGtxxk2ij1iXXWx0LHCUU" />

</div></form>

</body>

</html>

 Notice that this is just pure HTML that the browser is viewing. ASP.NET generated it using its

page rendering model, but the browser is none the wiser.

 Layout Considerations
 You may have noticed when building the last page that the layout of the page fl owed. That

is, every time you dropped a control onto the page, the designer forced it up against the

placement of the previous control. If you’ve worked with earlier versions of Visual Studio,

you’ll notice this is different default behavior. Visual Studio 2003 started off with absolute

positioning for elements on a page (which is what you’re used to if you’ve done rich client or

standard Windows development).

 Chapter 3 The Page Rendering Model 77
 Although Visual Studio 2008 does not let you set positioning styles directly in the designer,

you may apply positioning options via a style that applies to the whole page or to singular

elements in the page. To add a new style to the page, make sure the designer is showing in

the window and select Formatting, New Style. You’ll see the following dialog box:

 To change the layout options using the style, select Position from the Category list appear-

ing on the left of the dialog. Notice the combo selection for setting positions. Once you’ve

set up a style, you can apply it to various elements on the page by referring to the class name

through the element’s CssClass property.

 Changing the positioning options allows you to apply various kinds of layout assignments to

the page. Play around with them a bit. That’s the only way to get a feel for how they work.

We’ll explore styles in greater depth when we discuss Master Pages.

 Summary
 The System.Web.UI.Page class includes a collection of server-side controls. Everything that

ever makes its way out to the client browser was somehow generated by a server-side con-

trol. Even literal text on the page was rendered using a LiteralControl. When the ASP.NET

runtime compiles a page, it scans the ASPX fi le for any tag that says runat=server and adds a

member variable representing that control to the page’s control tree. Nothing escapes being

packaged as a control—when ASP.NET fi nds literal text on the page, ASP.NET packages that

as a literal control. When it comes time for the page to render, ASP.NET walks the control list

and asks each control in the list to render itself.

78 Part I Fundamentals
Visual Studio 2008 includes a useful designer that lets you drag and drop controls onto a

page. This development environment makes you feel as though you’re developing normal

applications for a single machine, even though the UI is represented as HTML over HTTP.

We’ll take a look at writing a custom control in the next chapter.

Chapter 3 Quick Reference
To Do This
Switch between ASPX Source code mode

and Designer mode

The Design and Source tabs usually appear near the bottom

left side of the editor window. You may also use the Split tab to

see both the code and the designer views at once.

 Add a server-side control to a page Show the Toolbox if it’s not already showing by selecting View,

Toolbox from the main menu (using the key combination Ctrl-

W, X will also work).

Click on the control from the Toolbox.

Drag the control and drop it onto the page.

 Change the properties of controls on

a page

Make sure the page editor is in Design mode.

Highlight the control whose property you want to change.

Select the property to edit in the property window.

 Turn tracing on In Source code editing mode, edit the Page directive to include

the attribute Trace=”true”

OR

Select the Document element from the combo box near the top

of the Properties window.

Assign the Trace property to be true.

 Change the size of a server-side

control

Click on the control once to highlight it.

Click on one of the handles appearing on the border of the

control. Hold the mouse button down and drag the mouse until

the control is the correct size.

 Add a handler for a control’s default event Double-click on the control for which you want to handle the

event.

 Change the layout characteristics of a page Add a new style to the page by selecting Format, New Style

from the main menu. Select Layout from the main menu and

develop a style (defi ning a style also includes other elements

in addition to the layout options, such as font face, size, and

margins).

Apply the style to the page or to singular elements.

To Do This

 Chapter 4

 Custom Rendered Controls
 After completing this chapter, you will be able to

Q Add a new project to the existing project within a Visual Studio solution fi le

Q Create a server-side control that renders custom HTML

Q Add a server-side control to the Visual Studio toolbox

Q Place a server-side control on a Web form

Q Manage events within the control

Q Use ASP.NET to detect differences in client browsers and apply that information

 In Chapter 3, “The Page Rendering Model,” we saw the fundamental architecture behind the

ASP.NET rendering model. System.Web.UI.Page manages a list of server-side controls, and

it’s the job of each server-side control to render a particular portion of the page. ASP.NET

broadly classifi es server-side controls into two categories:

Q Rendering controls (controls that completely manage the rendering process)

Q Composite controls (multiple server-side controls bundled into a single unit)

 This chapter focuses on the fi rst type: custom rendered controls. We’ll see how the control

works once it’s part of a Web page. Along the way we’ll cover topics such as how controls

manage events and how they detect the differences in client browsers.

 Let’s start by looking at the heart of the ASP.NET server-side control architecture—the

System.Web.UI.Control class.

 The Control Class
 ASP.NET server-side controls derive from a class named System.Web.UI.Control. In fact, the

Control class is the core of almost every User Interface element within ASP.NET. Even System
.Web.UI.Page is derived from the Control class. Table 4-1 shows a small sampling of the

System.Web.UI.Page class.

 The entries in Table 4-1 show a small cross section of the functionality available within

System.Web.UI.Control. We’ll visit all these members while investigating ASP.NET Web forms.

Remember from the last chapter that ASP.NET Web forms manage a collection of controls

as part of their internal structure. As you add controls to a Web page, they’re placed within

the collection. When it comes time for a page to render its content back to the client,

System.Web.UI.Page iterates the collection of controls and asks each one of them to render
 79

80 Part I Fundamentals
themselves. If a control contains subcontrols (just as a page includes controls), ASP.NET will

walk down those collections as well. You can see the RenderContents method in Table 4-1.

RenderContents takes a single argument of type HtmlTextWriter. We’ll examine that class

later in this chapter. Right now, think of it as the conduit through which you send the page’s

re s ponse back to the client.

Other elements of the Control class include items such as

Q Properties for managing the control’s view state

Q Properties for managing skins (to accommodate a consistent look and feel across mul-

tiple pages within a site)

Q Properties for getting the parent control (in the case of composite controls) and the

parent page

Q Event handlers for the Init, Load, PreRender, and Unload events

Q Methods for raising the Init, Load, PreRender, and Unload events

Q Methods for managing child controls

We’ll visit the most important topics in examining both rendered controls and composite

controls. Although the Page class is sizable, there is a straightforward logic to it and it unfolds

nicely in practice. The easiest way to start is to jump into building a custom control.

Table 4-1 Sampling of the Page’s Properties, Methods, and Events

Member Description
Application Reference to the HttpApplicationState object associated with the current request

 Cache Reference to the application’s cache—an in-memory dictionary of application-

wide state (usually for optimization)

 Controls The Page’s control collection

 CreateChildControls Virtual method during which the page constructs its control tree

 Init Event indicating the page has initialized

 IsPostBack Distinguishes the request as either a new request or a POST

 Load Event indicating the page has been loaded

 RenderControl Virtual method during which the page renders its contents

 Request Reference to a stateful object representing the incoming request

 Response Reference to a stateful object representing the outgoing response

 Session Reference to a stateful object representing information specifi c to the cur-

rent request

 Unload Event indicating the page has unloaded

Member Description

 Chapter 4 Custom Rendered Controls 81
 Visual Studio and Custom Controls
 In this section, we’ll build a simple control (the default control Visual Studio generates for

you) and see how it fi ts on a Web form. Visual Studio will create a simple control that con-

tains a single Text property, and it will render that Text property to the end browser. It’s a

good way to discover how server-side controls work.

 Create a custom control

 1. Begin by opening the ControlORama project from Chapter 3. Note: If you want to

preserve the current state of ControlORama, make a copy of the whole project direc-

tory and work on the copy. This example will be built up over this chapter and the next

chapter to demonstrate the different approaches to developing controls.

82 Part I Fundamentals

2. Add a new project to ControlORama. Highlight the solution node in the solution ex-

plorer, click the right mouse button, and select Add, New Project from the context

menu. Name the new project CustomControlLib. Choose the project type to be a Web

project, and select ASP.NET Server Control as the template, like so:

 Visual Studio gives you a simple Web control to start with. Listing 4-1 shows the default

code generated by Visual Studio for a Web Control Library.

 LISTING 4-1 Default Custom Control Implementation

 using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Linq;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace CustomControlLib

{

 [DefaultProperty("Text")]

 [ToolboxData("<{0}:WebCustomControl1

 runat=server></{0}:WebCustomControl1>")]

 public class WebCustomControl1 : WebControl

 {

 [Bindable(true)]

 [Category("Appearance")]

 [DefaultValue("")]

 [Localizable(true)]

 public string Text

 {

 get

 Chapter 4 Custom Rendered Controls 83

 {

 String s = (String)ViewState["Text"];

 return ((s == null) ? String.Empty : s);

 }

 set

 {

 ViewState["Text"] = value;

 }

 }

 protected override void RenderContents(HtmlTextWriter output)

 {

 output.Write(Text);

 }

 }

}

 The code generated by Visual Studio includes a simple class derived from System.Web
.UI.WebControl. WebControl (which derives from the standard Control class) adds some

standard properties along the way. Notice that the code has a single property named

Text and overrides Control’s RenderContents method. This is a real, functioning control

(although all it really does is act very much like a Label).

3. Build the project by selecting Build, Build Solution from the main menu.

4. Now fi nd the control that Visual Studio just built. Click the Browse button in the

Choose Toolbox Items dialog box. Navigate to the ControlORama project directory and

then go to the CustomControlLib directory. Then open the Bin\Debug directory. (Visual

Studio builds debug versions by default.) Select the CustomControlLib.DLL assembly

and click the Open button.

 WebCustomControl1 will appear in the Choose Toolbox Items dialog box. The check box

will show it as selected.

84 Part I Fundamentals

 As soon as you click the OK button in the Choose Toolbox Items dialog box, the new

WebCustomControl1 will appear in the toolbox. To make it easier to fi nd the control,

click the right mouse button on the toolbox and select Sort Items Alphabetically.

5. Place the control on a page. To see how the control works, you need to give it a home.

Add a new page to the Web site. Select the ControlORama project from the Solution

Explorer. Select Web Site, Add New Item, and add a Web Form. Name the Web Form

UseCustomControl.aspx.

 To place the control on the page, switch to Design mode. Drag the WebCustomControl1

from the Toolbox and drop it onto the UseCustomControl design view.

 Chapter 4 Custom Rendered Controls 85

 Although there will be no text showing within the control at this point, you’ll see a very

lightly colored dashed line showing where the control is placed on the page. You can

select the new control using the drop-down list within the Property dialog in the lower

right corner for Visual Studio. Change the Text property in the control and watch it

show up in the designer.

86 Part I Fundamentals

 Take a look at the source code for the control again—specifi cally looking at the

RenderContents method. Notice that the method simply uses the parameter (an

HtmlTextWriter) to send the Text property to the browser. That’s why the Text property

is showing after you change it in the designer.

 The following line of code is what Visual Studio added to the ASPX fi le to accommodate

the control. You can see it by selecting the Source tab from the bottom of the code

window in Visual Studio. The Register directive tells the ASP.NET runtime where to fi nd

the custom control (which assembly) and maps it to a tag prefi x.

 <%@ Register Assembly="CustomcontrolLib" Namespace="CustomcontrolLib" TagPrefix="cc1" %>

 Listing 4-2 shows how the control is declared on the page when you set the control’s

Text property to the string value When you set the control’s property, it shows up
in the designer.

 LISTING 4-2 UseCustomControl.aspx Markup with the Custom Web Control

 <form id="form1" runat="server">

<div>

 <cc1:WebCustomControl1 ID="WebCustomControl11"

 runat="server"

 Text="When you set the control's property,

 it shows up in the designer." />

</div>

</form>

 Now take a moment to change a few of the control’s properties and see what happens

in the designer (for example, changing the font is always very noticeable). The proper-

ties you see in the Properties page are all standard, and they show up because the con-

trol is derived from System.Web.UI.WebControl.

6. Now add a text box and a button to the Web page. After you drop them on the page,

Visual Studio adds the code shown in Listing 4-3.

 LISTING 4-3 Revised UseCustomControl.aspx Markup

 <form id="form1" runat="server">

 <div>

 <cc1:webcustomcontrol1 id="WebCustomControl11"

 runat="server"

 text="The control's Text property...">

 </cc1:webcustomcontrol1>

 <asp:Label ID="Label1"

 runat="server"

 Text="Type something here;">

 </asp:Label>

 <asp:TextBox ID="TextBox1" runat="server">

 </asp:TextBox>

 Chapter 4 Custom Rendered Controls 87

 <asp:Button ID="Button1"

 runat="server" OnClick="Button1_Click"

 Text="Set Control Text" />

 </div>

 </form>

 Notice that the standard ASP.NET controls (the button, the text box, and the label)

all begin with the asp: prefi x while the new custom control uses the prefi x cc1:. Visual

Studio made up the tag cc1:, although you could change this for this page by modify-

ing the TagPrefi x attribute in the Register directive.

7. Add an event handler for the button by double-clicking the button in the designer.

Once Visual Studio adds the event handler for you, have the button pull the text from

the TextBox and use it to set your custom control’s Text property. To do this, type in the

code you see in boldfaced font:

 protected void Button1_Click(object sender, EventArgs e)

{

 this.WebCustomControl11.Text = this.TextBox1.Text;

}

 Now surf to the new page with the control. When you type something into the text box and

click the button, the browser sends your request to the server. The server responds by taking

the text from the TextBox and using it to set the Text property of the WebCustomControl1.

88 Part I Fundamentals
 Notice how the new control appears in the control tree with tracing turned on. (You can turn

on page tracing by setting the page’s Trace property to true, as we did in the last chapter.)

 You have now built a simple control. The control framework is pretty fl exible, and you can

send out anything you want using the RenderContents method. Next, we’ll develop a more

sophisticated control that demonstrates more advanced control rendering.

 A Palindrome Checker
 The preceding exercise shows the fundamentals of writing a simple server-side control that

renders client-side markup. However, ASP.NET already delivers a perfectly good Label con-

trol. Why do you need another one? To further illustrate rendered server-side controls, here’s

a simple control that checks to see if the string typed by the client is a palindrome. We’ll ob-

serve some more advanced rendering techniques as well as how control events work.

 The Palindrome Checker control

 1. Create the Palindrome Checker control. In the Solution Explorer, highlight the

CustomControlLib node. Click the right mouse button on the node and select Add,

New Item from the shortcut menu. Be sure the Web category is selected and then

 Chapter 4 Custom Rendered Controls 89

highlight the ASP.NET Server Control node. Enter PalindromeCheckerRenderedControl
in the Name text box and click OK to generate the code.

2. Add a method to test for a palindrome. A palindrome is a word, sentence, or phrase

that reads the same forward as it does backward (for example, “radar”). Add a method

to the control that checks to see whether the internal text is a palindrome. This is a

simple test for a palindrome that converts the text to uppercase, reverses it, and then

compares the result to the original text. You should also strip out nonalphanumeric

characters. Listing 4-4 shows some code that does the trick.

 LISTING 4-4 Stripping Alphanumerics

 protected string StripNonAlphanumerics(string str)

{

 string strStripped = (String)str.Clone();

 if (str != null)

 {

 char[] rgc = strStripped.ToCharArray();

 int i = 0;

 foreach (char c in rgc)

 {

 if (char.IsLetterOrDigit(c))

 {

 i++;

 }

 else

 {

 strStripped = strStripped.Remove(i, 1);

 }

 }

 }

 return strStripped;

}

protected bool CheckForPalindrome()

90 Part I Fundamentals

{

 if (this.Text != null)

 {

 String strControlText = this.Text;

 String strTextToUpper = null;

 strTextToUpper = Text.ToUpper();

 strControlText =

 this.StripNonAlphanumerics(strTextToUpper);

 char[] rgcReverse = strControlText.ToCharArray();

 Array.Reverse(rgcReverse);

 String strReverse = new string(rgcReverse);

 if (strControlText == strReverse)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 else

 {

 return false;

 }

}

3. Change the rendering method to print palindromes in blue and nonpalindromes in red.

The RenderContent method takes a single parameter of type HtmlTextWriter. In addi-

tion to allowing you to stream text to the browser, HtmlTextWriter is full of other very

useful features we’ll see shortly. For now, you can treat it very much like Response.Write.

Whatever you send through the Write method will end up at the client’s browser.

 protected override void RenderContent(HtmlTextWriter output)

 {

 if (this.CheckForPalindrome())

 {

 output.Write("This is a palindrome:
");

 output.Write(@"<span style= 'font-style: bold;

 font-size: x-large; color:Blue;'>");

 output.Write(Text);

 output.Write("");

 output.Write("");

 } else {

 output.Write("This is NOT a palindrome
");

 output.Write("");

 output.Write("");

 output.Write(Text);

 output.Write("");

 output.Write("");

 }

 }

 Chapter 4 Custom Rendered Controls 91

4. Build the project by selecting Build, Build Solution from the main menu.

5. Add the PalindromeCheckerRenderedControl to the toolbox if it’s not already there.

Visual Studio should add the PalindromeCheckerRenderedControl to the Toolbox. If

not, you can add it manually. Click the right mouse button on the toolbox and select

Choose Item. Use the Browse button to fi nd the CustomControlLib.DLL assembly and

select it. Visual Studio will load the new control in the toolbox.

6. Add a page to use the palindrome checker control. Add a new Web Form to the

ControlORama project and name it UsePalindromeCheckerControls.aspx. Drag the

PalindromeCheckerRenderedControl and drop it on the page. Add a TextBox and a but-

ton so you can add a palindrome to the control and check it.

7. Add a handler for the button. Double-click on the button. Visual Studio will add a han-

dler to the page. In the handler, set the PalindromeCheckerRenderedControl’s text prop-

erty to the TextBox.Text property.

 public partial class UsePalindromeCheckerControls : System.Web.UI.Page

{

 protected void Button1_Click(object sender, EventArgs e)

 {

 this.PalindromeCheckerRenderedControl1.Text = this.TextBox1.Text;

 }

}

8. Run the page and test for a palindrome. Palindromes should appear in blue and non-

palindromes in red.

92 Part I Fundamentals

 Controls and Events
 The PalindromeCheckerRenderedControl shows how to render control content differently de-

pending on the state of the Text property. While that’s a very useful thing in itself, it’s often

helpful to also alert the host page to the fact that a palindrome was found. You can do this

by exposing an event from the control.

 Most of ASP.NET’s standard server-side controls already support events. You’ve already

seen how the Button control sends an event to the host page when it is clicked. You can

actually do this type of thing with any control. Let’s add a PalindromeFound event to the

PalindromeCheckerRenderedControl.

 Adding a PalindromeFound event

 1. Open the PalindromeCheckerRenderedControl.cs fi le. To add a PalindromeFound event,

type in the following line:

 public class PalindromeCheckerRenderedControl : WebControl

{

 public event EventHandler PalindromeFound;

 // Other palindrome control code goes here

}

 Chapter 4 Custom Rendered Controls 93

2. Once hosts have subscribed to the event, they’ll want to know when the event fi res. To

do this, fi re an event on detecting a palindrome. The best place to do this is within the

Text property’s setter. Add the boldfaced lines of code to the palindrome’s Text prop-

erty and rebuild the project:

 [Bindable(true)]

[Category("Appearance")]

[DefaultValue("")]

[Localizable(true)]

public string Text

{

 get

 {

 string s = (string)ViewState["Text"];

 return ((s == null) ? String.Empty : s);

 }

 set

 {

 ViewState["Text"] = value;

 if (this.CheckForPalindrome())

 {

 if (PalindromeFound != null)

 {

 PalindromeFound(this, EventArgs.Empty);

 }

 }

 }

}

 Notice that the code generated by Visual Studio 2008 stores the property in the con-

trol’s ViewState. That way, the property retains its value between posts. We’ll examine

ViewState more closely later in this chapter.

3. Now wire the event in the host page. Remove the current instance of the

PalindromeCheckerRenderedControl from the page and drop a new instance on the

page. This will refresh the CustomControlLib.DLL assembly so the changes (the new

event) will appear in Visual Studio. Select the PalindromeCheckerRenderedControl on

the page and click the Events button (the little lightning bolt) in the property page in

Visual Studio. Double-click on the text box next to the PalindromeFound event. Visual

Studio will create an event handler for you.

94 Part I Fundamentals

4. Respond to the PalindromeFound event. The example here simply prints some text out

to the browser using Response.Write.

 public partial class UsePalindromeCheckerControls : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void Button1_Click(object sender, EventArgs e)

 {

 this.PalindromeCheckerRenderedControl1.Text =

 this.TextBox1.Text;

 }

 protected void PalindromeCheckerControl1_PalindromeFound(

 object sender, EventArgs e)

 {

 Response.Write("The page detected a PalindromeFound event");

 }

}

 Chapter 4 Custom Rendered Controls 95

 Run the page. You should see something like the following when you type a palindrome:

 Now that the control renders palindromes correctly and has an event, let’s take a closer look

at the parameter passed in during the call to Render: HtmlTextWriter.

 HtmlTextWriter and Controls
 Go back and review the control’s RenderContents method for a minute. Notice that the

RenderContents method places literal font tags to change the color of the palindrome text.

While this is certainly effective, this technique has a couple of downsides. For example, HTML

is defi ned by multiple standards. That is, browsers running both HTML version 3.2 and ver-

sion 4.0 occur in nature. Certain HTML elements have changed between version 3.2 and

version 4.0. If you render all your HTML directly expecting requests from a certain kind of

browser, your users may be taken by surprise if they browse to your page with a new browser

that interprets HTML differently.

96 Part I Fundamentals

 Note The .NET framework includes multiple versions of the HtmlTextWriter class:

Html32TextWriter, HtmlTextWriter, XhtmlTextWriter, and ChtmlTextWriter. When a request comes

from a browser, it always includes some header information indicating what kind of browser

made the request. Most browsers these days are capable of interpreting the current version of

HTML. In this case, ASP.NET passes in a normal HtmlTextWriter into the RenderControl method.

However, if you happen to get a request from a lesser browser that understands only HTML 3.2,

ASP.NET passes in an Html32TextWriter. The classes are similar as far as their use and may be in-

terchanged. Html32TextWriter emits certain tags (such as table tags) in HTML 3.2 format, while

HtmlTextWriter emits the same tags in HTML4.0 format. Information within machine.confi g and

the browser capabilities confi guration help ASP.NET fi gure out what kind of HtmlTextWriter to

use. The browser capability information deduced by the ASP.NET runtime may be used for more

than simply selecting the correct HtmlTextWriter. The Request property (available as part of the

HttpContext and the Page) includes a reference to the Browser object. This object includes a

number of fl ags indicating various pieces of information, such as the type of browser making the

request, whether the browser supports scripting, and the name of the platform the browser is

running on. This information comes down as part of the headers included with each request. The

ASP.NET runtime runs the headers against some well-known regular expressions within the con-

fi guration fi les to fi gure out the capabilities. For example, here’s a short listing illustrating how to

fi gure out if the browser making the request supports Frames:

 public class TestForFramesControl : Control

{

 protected override void RenderContents(HtmlTextWriter output)

 {

 if (Page.Request.Browser.Frames)

 {

 output.Write(

 "This browser supports Frames");

 }

 else

 {

 output.Write("No Frames here");

 }

 }

}

 To get a feel for using the more advanced capabilities of HtmlTextWriter, replace the hard-

coded font tags in the RenderContents method of the PalindromeCheckerRenderedControl
with code that uses the HtmlTextWriter facilities.

 Use the HtmlTextWriter

1. Open the PalindromeCheckerRenderedControl.cs fi le.

2. Update the RenderContents method to use the HtmlTextWriter methods. Use

HtmlTextWriter.RenderBeginTag to start a font tag and a bold tag. Use HtmlTextWriter
.AddStyleAttribute to change the color of the font to blue.

 protected override void RenderContents(HtmlTextWriter output)

{

 if (this.CheckForPalindrome())

 Chapter 4 Custom Rendered Controls 97
 {

 output.Write("This is a palindrome:
");

 output.RenderBeginTag(HtmlTextWriterTag.Font);

 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "blue");

 output.RenderBeginTag(HtmlTextWriterTag.B);

 output.Write(Text);

 output.RenderEndTag(); // bold

 output.RenderEndTag(); // font

 } else {

 output.Write("This is a palindrome:
");

 output.RenderBeginTag(HtmlTextWriterTag.Font);

 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "blue");

 output.RenderBeginTag(HtmlTextWriterTag.B);

 output.Write(Text);

 output.RenderEndTag(); // boldl

 output.RenderEndTag(); // font

 }

}

 The HtmlTextWriter class and the enumerations include support to hide all the oddities of

switching between HTML 3.2 and 4.0. Listing 4-5 shows how a table would be rendered using

an HTML 4.0–compliant response. Listing 4-6 shows how a table would be rendered using an

HTML 3.2–compliant response.

 LISTING 4-5 HTML 4.0 Rendered Control

This is a palindrome:

Do geese see god?

<table width="50%" border="1" style="color:blue;">

 <tr>

 <td align="left" style="font-size:medium;color:blue;">

A man, a plan, a canal, panama.</td>

 </tr>

<tr>

 <td align="left" style="font-size:medium;color:blue;">

Do geese see god?</td>

 </tr>

 LISTING 4-6 HTML 3.2 Rendered Control

This is a palindrome:

Do geese see god?

<table width="50%" border="1">

<tr>

<td align="left">

A man, a plan, a canal, panama.

</td>

</tr>

<tr>

<td align="left">Do geese see god?

</td>

</tr>

98 Part I Fundamentals
 Controls and ViewState
 Before leaving rendered controls, let’s take a look at the issue of control state. If you go back

to some of the classic ASP examples from earlier chapters, you may notice something dis-

concerting about the way some of the controls rendered after posting back. After you select

something in the combo box and make a round-trip to the server, by the time the response

gets back, the controls (especially selection controls) have lost their state. Recall that the basic

Web programming model is all about making snapshots of the server’s state and displaying

them using a browser. We’re essentially trying to perform stateful user interface (UI) develop-

ment over a disconnected protocol.

 ASP.NET server-side controls include a facility for holding onto a page’s visual state—it’s

a property in the Page named ViewState, and you can easily access it any time you need.

ViewState is a dictionary (a name-value collection) that stores any serializable object.

 Most ASP.NET server-side controls manage their visual state by storing and retrieving items

in the ViewState. For example, a selection control might maintain the index of the selected

item between posts so that the control knows which item has its selected attribute assigned.

 The entire state of a page is encoded in a hidden fi eld between posts. For example, if you

browse to an ASPX page and view the source code coming from the server, you’ll see the

ViewState come through as a BASE 64–encoded byte stream.

 To get a feel for how ViewState works, add some code to keep track of the palindromes that

have been viewed through the control.

 Using ViewState

 1. Open the PalindromeCheckerRenderedControl.cs fi le.

 2. Add System.Collections to the list of using directives.

 using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Text;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Collections

 3. Add an ArrayList to the control to hold the viewed palindromes. Update the Text prop-

erty’s setter to store text in the view state if the text is a palindrome.

 public class PalindromeCheckerRenderedControl : WebControl

{

 public event EventHandler PalindromeFound; // public event

 ArrayList alPalindromes = new ArrayList();

 [Bindable(true)]

 Chapter 4 Custom Rendered Controls 99

 [Category("Appearance")]

 [DefaultValue("")]

 [Localizable(true)]

 public string Text

 {

 get

 {

 String s = (String)ViewState["Text"];

 return ((s == null) ? String.Empty : s);

 }

 set

 {

 ViewState["Text"] = value;

 string text = value;

 this.alPalindromes =

 (ArrayList)this.ViewState["palindromes"];

 if (this.alPalindromes == null)

 {

 this.alPalindromes = new ArrayList();

 }

 if (this.CheckForPalindrome())

 {

 if (PalindromeFound != null)

 {

 PalindromeFound(this, EventArgs.Empty);

 }

 alPalindromes.Add(text);

 }

 ViewState.Add("palindromes", alPalindromes);

 }

 }

}

4. Add a method to render the palindrome collection as a table and update the

RenderContents method to render the viewed palindromes.

 protected void RenderPalindromesInTable(HtmlTextWriter output)

{

 output.AddAttribute(HtmlTextWriterAttribute.Width, "50%");

 output.AddAttribute(HtmlTextWriterAttribute.Border, "1");

 output.RenderBeginTag(HtmlTextWriterTag.Table); //<table>

 foreach (string s in this.alPalindromes)

 {

 output.RenderBeginTag(HtmlTextWriterTag.Tr); // <tr>

 output.AddAttribute(HtmlTextWriterAttribute.Align, "left");

 output.AddStyleAttribute(HtmlTextWriterStyle.FontSize, "medium");

 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "blue");

 output.RenderBeginTag(HtmlTextWriterTag.Td); // <td>

 output.Write(s);

 output.RenderEndTag(); // </td>

 output.RenderEndTag(); // </tr>

 }

 output.RenderEndTag(); // </table>

}

100 Part I Fundamentals

protected override void RenderContents (HtmlTextWriter output)

{

 if (this.CheckForPalindrome())

 {

 output.Write("This is a palindrome:
");

 output.RenderBeginTag(HtmlTextWriterTag.Font);

 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "blue");

 output.RenderBeginTag(HtmlTextWriterTag.B);

 output.Write(Text);

 output.RenderEndTag(); // bold

 output.RenderEndTag(); // font

 } else {

 output.Write("This is NOT a palindrome:
");

 output.RenderBeginTag(HtmlTextWriterTag.Font);

 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "red");

 output.RenderBeginTag(HtmlTextWriterTag.B);

 output.Write(Text);

 output.RenderEndTag(); // bold

 output.RenderEndTag(); // font

 }

 output.Write("
");

 RenderPalindromesInTable(output);

}

5. Build and run the application. When you surf to the page holding the palindrome

checker, you should see the previously found palindromes appearing in the table:

 Chapter 4 Custom Rendered Controls 101
Now that the control is storing more information in the ViewState, the HTML response due to

postbacks will increase in size as the _VIEWSTATE fi eld within the response grows. Add a few

more palindromes to the page, viewing the source that’s sent to the browser each time. You’ll

see the VIEWSTATE hidden fi eld grow in size with each postback. The caveat here is that in-

troducing controls that use view state will increase the size of the HTTP payload coming back

to the browser. Use the view state judiciously as overuse can bog down a site’s performance.

Summary
ASP.NET’s Page infrastructure is set up so that each page is broken down into smaller compo-

nents (server-side controls) that are responsible for rendering a small amount of HTML into

the page’s output stream. After reading this chapter, you probably have a good idea as to

how some of the standard ASP.NET controls are rendered. Button controls render as an input

tag with a type of “submit.” TextBox controls render as an input tag with a type of “text.” You

can actually see how each of the controls in a page renders by viewing the HTML that comes

back to the browser.

Of course, because ASP.NET’s Page infrastructure is set up this way, it leaves the door open

for custom User controls. In this chapter, we looked at rendered custom controls. Custom

controls that render have the ability to squirt anything they want into the output bound for

the browser. Custom rendered controls usually manage a set of properties, fi re events to

their hosts, and render snapshots of themselves to their hosts. In this chapter, we built a pal-

indrome checker as an example. Next, we’ll see examples of the other kind of control you can

create for your own needs—composite-style “User” controls.

Chapter 4 Quick Reference
To Do This
Create a custom control that takes

over the rendering process

Derive a class from System.Web.UI.Control.
Override the RenderContents method.

Visual Studio includes a project type, ASP.NET ServerControl, that fi ts

the bill.

 Add a custom control to the toolbox Show the toolbox if it’s not already showing by selecting View,

Toolbox from the main menu.

Click the right mouse button anywhere in the toolbox.

Select Choose Items from the local menu.

Choose a control from the list

OR

Browse to the assembly containing the control.

To Do This

102 Part I Fundamentals
To Do This
Change the properties of controls

on a page

Make sure the page editor is in Design mode.

Highlight the control whose property you want to change.

Select the property to edit in the Properties window.

 Manage events fi red by controls on

a page

Make sure the page editor is in Design mode.

Highlight the control containing the event you want your page to

handle.

Select the event in the event window (you may highlight it by pressing

the lightning bolt button in the Properties window).

Double-click in the combo box next to the event to have Visual Studio

insert the given handler for you

OR

Insert your own event handler name in the fi eld next to the event

name.

 Store view state information that

lives beyond the scope of the page

Use the ViewState property of the control (a name-value dictionary)

that contains serializable types.

Just be sure to use the same index to retrieve the information as you

do to store the information.

 Write browser version–independent

rendering code

Use the HtmlTextWriter tag-rendering methods for specifi c tags in-

stead of hard-coding them. The RenderContents method will have the

correct HtmlTextWriter based on header information coming down

from the browser.

To Do This

 Chapter 5

 Composite Controls
 After completing this chapter, you will be able to

Q Create a binary composite custom control

Q Create a composite User control

Q Use both kinds of controls in an application

Q Recognize when each kind of control is appropriate

 The last chapter covered the details of controls that do custom rendering, and this chapter

covers the other kind of control—composite controls. ASP.NET defi nes two broad categories

of composite controls—binary custom controls and user custom controls. Each type of com-

posite control has advantages and disadvantages, which we’ll discuss. First, let’s explore the

primary differences between rendered controls and composite-style controls.

 Composite Controls versus Rendered Controls
 Recall that custom rendered controls completely form and tailor the HTML going back to the

client via the System.Web.UI.Control.RenderControl method. Custom rendered controls take

over the entire rendering process. With custom rendered controls, you have extraordinary

fl exibility and power over the HTML emitted by your Web site—all the way down to the indi-

vidual control level.

 However, with that power and fl exibility also comes the need to keep track of an enormous

amount of detail. For example, if you were to add an input button to a custom rendered

control, you’d need to insert the correct HTML to describe the button within the response

stream heading back to the client. Things get even more diffi cult when you decide to add

more complex controls such as selection controls that may need to track collections of items.

Even though input buttons and selection controls are easy to describe in HTML, we’ve seen

that ASP.NET already includes server-side control classes that render the correct tags. The

standard ASP.NET controls greatly simplify user interface (UI) programming for Web forms.

 Composite controls take advantage of these server-side controls that have already been writ-

ten. Composite controls are composed from other controls. To illustrate the utility of compos-

ite controls, imagine you’re working on a number of projects whose login screens require a

similar look and feel. On the one hand, you’ve already seen that it’s fairly easy to build Web

forms in Visual Studio. However, if you run into a situation that requires the same group of

controls to appear together in several instances, it’s pretty tedious to recreate those pages

repeatedly. ASP.NET solves this problem with composite controls.
 103

104 Part I Fundamentals
 If you need common login functionality to span several Web sites, you might group user

name/password labels and text boxes together in a single control. Then when you want to

use the login page on a site, you simply drop the controls en masse on the new form. The

controls (and the execution logic) instantly combine so you don’t need to keep writing the

same HTML over and over.

 Note Beginning with version 2.0, ASP.NET includes a set of login composite controls so you

don’t need to write new ones from scratch. However, they are mentioned here because they rep-

resent an excellent illustration for the power of composite controls.

 Let’s begin by looking at custom composite controls.

 Custom Composite Controls
 In Chapter 4, we saw how binary custom controls render custom HTML to the browser.

The factor distinguishing this kind of control most is that these controls override the

RenderContents method. Remember, the System.Web.UI.Page class manages a list of server-

side controls. When ASP.NET asks the whole page to render, it goes to each control on the

page and asks it to render. In the case of a rendering control, the control simply pushes some

text into the stream bound for the browser. Likewise, when the page rendering mechanism

hits a composite-style control, the composite control walks its list of child controls, asking

each one to render—just as the Page walks its own list of controls.

 Composite controls may contain an arbitrary collection of controls (as many children as

memory will accommodate), and the controls may be nested as deeply as necessary. Of

course, there’s a practical limit to the number and depth of the child controls. Adding too

many controls or nesting them too deeply will add complexity to a page, and it may become

unsightly. In addition, adding too many nested controls will greatly inhibit the performance

of the application. It does take time to walk the control collection and have each one render.

 In Chapter 4, we created a control that checked for palindromes. When the control’s Text
property was set to a palindrome, the control rendered the palindrome in blue text, added it

to an ArrayList, and then rendered the contents of the palindrome collection as a table. Let’s

build a similar control—however, this time it will be a composite control.

 The palindrome checker as a composite custom control

 1. Open the ControlORama project. Highlight the CustomControlLib project in the Solution

Explorer. Click the right mouse button on the project node and select Add, New Item.

Create a new class and name the source fi le PalindromeCheckerCompositeControl.cs. Use

the ASP.NET Server Control template (as you did with the PalindromeCheckerRenderedC

ontrol from Chapter 4).

 Chapter 5 Composite Controls 105

2. After Visual Studio creates the code, do the following:

T Edit the code to change the derivation from WebControl to CompositeControl.
Deriving from the CompositeControl also adds the INamingContainer interface to

the derivation list. (INamingContainer is useful to help ASP.NET manage unique

IDs for the control’s children.)

T Add the PalindromeFound event that the host page may use to listen for palin-

drome detections.

T Remove the RenderContents method.

T Add four member variables—a TextBox, a Button, a Label, and a LiteralControl.

 The code should look something like this when you’re fi nished:

 public class PalindromeCheckerCompositeControl :

 CompositeControl

{

 protected TextBox textboxPalindrome;

 protected Button buttonCheckForPalindrome;

 protected Label labelForTextBox;

 protected LiteralControl literalcontrolPalindromeStatus;

 public event EventHandler PalindromeFound;

...

// RenderContents method removed.

}

 Leave the Text property intact. We’ll still need it in this control.

 The control is very much like the one in Chapter 4. However, this version will include

the palindrome TextBox, the Button to invoke palindrome checking, and will contain a

literal control to display whether or not the current property is a palindrome.

3. Borrow the StripNonAlphanumerics and CheckForPalindrome methods from the

PalindromeCheckerRenderedControl:

 protected string StripNonAlphanumerics(string str)

{

 string strStripped = (String)str.Clone();

 if (str != null)

 {

 char[] rgc = strStripped.ToCharArray();

 int i = 0;

 foreach (char c in rgc)

 {

 if (char.IsLetterOrDigit(c))

 {

 i++;

 }

106 Part I Fundamentals

 else

 {

 strStripped = strStripped.Remove(i, 1);

 }

 }

 }

 return strStripped;

}

protected bool CheckForPalindrome()

{

 if (this.Text != null)

 {

 String strControlText = this.Text;

 String strTextToUpper = null;

 strTextToUpper = Text.ToUpper();

 strControlText = this.StripNonAlphanumerics(strTextToUpper);

 char[] rgcReverse = strControlText.ToCharArray();

 Array.Reverse(rgcReverse);

 String strReverse = new string(rgcReverse);

 if (strControlText == strReverse)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 else

 {

 return false;

 }

}

4. Add an event handler to be applied to the Button (which we’ll install on the page soon).

Because this is a binary control without designer support, you’ll need to add the event

handler using the text wizard (that is, you’ll need to type it by hand).

 public void OnCheckPalindrome(Object o, System.EventArgs ea)

{

 this.Text = this.textboxPalindrome.Text;

 this.CheckForPalindrome();

}

5. Add an override for the CreateChildControls method. Overriding the CreateChildControls
method is what really distinguishes composite controls from rendered controls. In the

method, you’ll need to create each UI element by hand, set the properties you want

appearing in the control, and add the individual control to the composite control’s list

of controls.

 Chapter 5 Composite Controls 107

 protected override void CreateChildControls()

{

 labelForTextBox = new Label();

 labelForTextBox.Text = "Enter a palindrome: ";

 this.Controls.Add(labelForTextBox);

 textboxPalindrome = new TextBox();

 this.Controls.Add(textboxPalindrome);

 Controls.Add(new LiteralControl("
"));

 buttonCheckForPalindrome = new Button();

 buttonCheckForPalindrome.Text = "Check for Palindrome";

 buttonCheckForPalindrome.Click += new EventHandler(OnCheckPalindrome);

 this.Controls.Add(buttonCheckForPalindrome);

 Controls.Add(new LiteralControl("
"));

 literalcontrolPalindromeStatus = new LiteralControl();

 Controls.Add(literalcontrolPalindromeStatus);

 Controls.Add(new LiteralControl("
"));

 this.tablePalindromes = new Table();

 this.Controls.Add(tablePalindromes);

 this.ChildControlsCreated = true;

}

 Although the code listed above is pretty straightforward, a couple of lines deserve

special note. First is the use of the LiteralControl to render the line breaks. Remember—

every element on the page (or in this case the control) will be rendered using a server-

side control. If you want any literal text rendered as part of your control, or if you need

HTML markup that isn’t included as a provided ASP.NET control (such as the
 ele-

ment), you need to package it in a server-side control. The job of a LiteralControl is to

take the contents (the Text property) and simply render it to the outgoing stream.

 The second thing to notice is how the event handler is hooked to the Button using a

delegate. When you use Visual Studio’s designer support, you can usually wire event

handlers up by clicking on a UI element in the designer—at which point Visual Studio

adds the code automatically. However, because there’s no designer support here, the

event hookup needs to be handled manually.

6. Show the palindrome status whenever the Text property is set. Modify the Text prop-

erty to match the following bit of code. The Text property’s setter will check for a pal-

indrome and render the result in the LiteralControl we added in Step 2. It should also

raise the PalindromeFound event.

 private String text;

public string Text

{

108 Part I Fundamentals

 get

 {

 return text;

 }

 set

 {

 text = value;

 if (this.CheckForPalindrome())

 {

 if (PalindromeFound != null)

 {

 PalindromeFound(this, EventArgs.Empty);

 }

 literalcontrolPalindromeStatus.Text =

 String.Format(

 "This is a palindrome
{0}",

 text);

 }

 else

 {

 literalcontrolPalindromeStatus.Text =

 String.Format(

 "This is NOT a palindrome
{0}",

 text);

 }

 }

}

7. Show the palindromes in a table, just as the rendered version of this control did. First,

add an ArrayList and a Table control to the PalindromeCheckerCompositeControl class.

 public class PalindromeCheckerCompositeControl :

Control, INamingContainer

{

 protected Table tablePalindromes;

 protected ArrayList alPalindromes;

}

8. Add a method to build the palindrome table based on the contents of the ArrayList.
Check to see if the array list is stored in the ViewState. If it’s not, then create a new one.

Iterate through the palindrome collection and add a TableRow and a TableCell to the

table for each palindrome found.

 protected void BuildPalindromesTable()

{

 this.alPalindromes = (ArrayList)this.ViewState["palindromes"];

 if (this.alPalindromes != null)

 Chapter 5 Composite Controls 109

 {

 foreach (string s in this.alPalindromes)

 {

 TableCell tableCell = new TableCell();

 tableCell.BorderStyle = BorderStyle.Double;

 tableCell.BorderWidth = 3;

 tableCell.Text = s;

 TableRow tableRow = new TableRow();

 tableRow.Cells.Add(tableCell);

 this.tablePalindromes.Rows.Add(tableRow);

 }

 }

}

9. Update the Text property’s setter to manage the table. Add palindromes to the ArrayList
as they’re found, and build the palindrome table each time the text is changed.

 public string Text

{

 get

 {

 return text;

 }

 set

 {

 text = value;

 this.alPalindromes = (ArrayList)this.ViewState["palindromes"];

 if (this.alPalindromes == null)

 {

 this.alPalindromes = new ArrayList();

 }

 if (this.CheckForPalindrome())

 {

 if (PalindromeFound != null)

 {

 PalindromeFound(this, EventArgs.Empty);

 }

 alPalindromes.Add(text);

 literalcontrolPalindromeStatus.Text =

 String.Format(

 "This is a palindrome
{0}",

 text);

 }

 else

 {

 literalcontrolPalindromeStatus.Text =

 String.Format(

 "This is NOT a palindrome
{0}",

 text);

 }

110 Part I Fundamentals

 this.ViewState.Add("palindromes", alPalindromes);

 this.BuildPalindromesTable();

 }

}

10. Build the project and add the PalindromeCheckerCompositeControl control to the

ControlORama UsePalindromeCheckerControls.aspx page. If you are extending the

example from the last chapter, add a line break (
) following the rendered control

from the last chapter. Add a label to indicate that the next control is the composite

control and one more line break. Then pick up the PalindromeCheckerCompositeControl
control directly from the toolbox and drop it onto the page. When you run the page, it

will check for palindromes and keep a record of the palindromes that have been found,

like so (tracing is turned on in this example so we can see the control tree later). Note

that this example extends the previous chapter and the page includes the controls

added from the previous chapter:

 With tracing turned on, you can look further down and see the control tree. Notice how the

PalindromeCheckerCompositeControl acts as a main node on the tree and that the compos-

ite control’s child controls are shown under the PalindromeCheckerCompositeControl
node.

 Chapter 5 Composite Controls 111

 When you type palindromes and click the button, the control will detect them. The control

displays the current Text property in red if it’s not a palindrome and in blue if it is a palin-

drome. You can also see the table rendering, showing the currently found palindromes.

112 Part I Fundamentals
 The palindrome checker is a good example of a binary composite control. The composite

control lives entirely within the CustomControlLib assembly and does not have any designer

support at present (we could add code to support high-quality design time support, but

that’s beyond the scope of this chapter). Here’s an alternative to coding a composite control

entirely by hand—the second way to create composite controls is via a User control.

 User Controls
 User controls are composite controls that contain child controls very much like binary com-

posite controls do. However, instead of deriving from System.Web.UI.CompositeControl, they

derive from System.Web.UI.UserControl. Perhaps a better description is that they’re very much

like miniature Web forms. The have a UI component (an .ascx fi le) that works with the Visual

Studio designer, and they employ a matching class to manage the execution. However, unlike

a Web form, they may be dragged onto the toolbox and then dropped into a Web form.

 To get a good idea as to how Web User controls work, here’s how to build the palindrome

checker as a User control.

 The palindrome checker as a User control

 1. Open the ControlORama project (if it’s not already open). Highlight the ControlORama Web

site within the Solution Explorer. Click the right mouse button on the site and select Add
New Item. Select the Web User Control template and name the control PalindromeChecker
UserControl.ascx.

 2. Add new controls. Notice that Visual Studio may drop you into the designer (if instead

you’re facing the code view, switch to the design view using the Design tab). User con-

trols are designer friendly. Drag a Label, a TextBox, a Button, and another Label from the

Chapter 5 Composite Controls 113

toolbox. Drop them into the User control. Delete the Text property from the second

label so that it will show its identifi er. Format them as shown:

 Name the second label labelPalindromeStatus to make it easier to use from within the

code beside.

3. Borrow the StripNonAlphanumerics and CheckForPalindrome methods from the

PalindromeCheckerCompositeControl class. Open the source code fi le

PalindromeCheckerCompositeControl.cs. Copy these methods into the

PalindromeCheckerUserControl class in the PalindromeCheckerUserControl.ascx.cs fi le.

 protected string StripNonAlphanumerics(string str)

{

 string strStripped = (String)str.Clone();

 if (str != null)

 {

 char[] rgc = strStripped.ToCharArray();

 int i = 0;

 foreach (char c in rgc)

 {

 if (char.IsLetterOrDigit(c))

 {

 i++;

 }

 else

114 Part I Fundamentals

 {

 strStripped = strStripped.Remove(i, 1);

 }

 }

 }

 return strStripped;

}

protected bool CheckForPalindrome()

{

 if (this.Text != null)

 {

 String strControlText = this.Text;

 String strTextToUpper = null;

 strTextToUpper = Text.ToUpper();

 strControlText = this.StripNonAlphanumerics(strTextToUpper);

 char[] rgcReverse = strControlText.ToCharArray();

 Array.Reverse(rgcReverse);

 String strReverse = new string(rgcReverse);

 if (strControlText == strReverse)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 else

 {

 return false;

 }

}

4. Add the PalindromeFound event to the control class.

 public event EventHandler PalindromeFound; // public event

5. Open the code fi le and add a text member variable and a Text property, very much like

the other composite control implemented. Unlike binary composite controls, User con-

trols aren’t generated with any default properties. (There are some minor changes, such

as the use of a Label control instead of the Literal control for accepting the palindrome

status, so be sure to make the necessary adjustments if cutting and pasting code from

the previous control.)

 private String text;

public string Text

{

 get

 {

 Chapter 5 Composite Controls 115
 return text;

 }

 set

 {

 text = value;

 if (this.CheckForPalindrome())

 {

 if (PalindromeFound != null)

 {

 PalindromeFound(this, EventArgs.Empty);

 }

 this.labelPalindromeStatus.Text =

 String.Format(

 "This is a palindrome
{0}",

 text);

 }

 else

 {

 this.labelPalindromeStatus.Text =

 String.Format(

 "This is NOT a palindrome
{0}",

 text);

 }

 }

}

 6. Now add support for keeping track of palindromes. Add an ArrayList to the control class.

 ArrayList alPalindromes;

 7. Add a Table to the control. Switch to the PalindromeCheckerUserControl Design view

and drag a Table onto the form.

 8. Add a method to build the table of palindromes. It’s very much like the one in the

PalindromeCheckerCompositeControl, except the name of the table has changed. Table1

is the name given the table by Visual Studio.

 protected void BuildPalindromesTable()

{

 this.alPalindromes = (ArrayList)this.ViewState["palindromes"];

 if (this.alPalindromes != null)

 {

 foreach (string s in this.alPalindromes)

 {

 TableCell tableCell = new TableCell();

 tableCell.BorderStyle = BorderStyle.Double;

 tableCell.BorderWidth = 3;

 tableCell.Text = s;

 TableRow tableRow = new TableRow();

 tableRow.Cells.Add(tableCell);

 this.Table1.Rows.Add(tableRow);

 }

 }

}

116 Part I Fundamentals

9. Add support for keeping track of the palindromes in the Text property’s setter as well

as calling BuildPalindromesTable.

 public string Text

{

 get

 {

 return text;

 }

 set

 {

 text = value;

 this.alPalindromes =

 (ArrayList)this.ViewState["palindromes"];

 if (this.alPalindromes == null)

 {

 this.alPalindromes = new ArrayList();

 }

 if (this.CheckForPalindrome())

 {

 if (PalindromeFound != null)

 {

 PalindromeFound(this, EventArgs.Empty);

 }

 alPalindromes.Add(text);

 this.labelPalindromeStatus.Text =

 String.Format(

 "This is a palindrome
{0}",

 text);

 }

 else

 {

 this.labelPalindromeStatus.Text =

 String.Format(

 "This is NOT a palindrome
{0}",

 text);

 }

 this.ViewState.Add("palindromes", alPalindromes);

 this.BuildPalindromesTable();

 }

}

 Chapter 5 Composite Controls 117

10. Add a Click handler to the button by double-clicking on it in the designer. This will gen-

erate a handler in the associated code fi le. Within the handler, grab the control’s Text
property from the TextBox.Text property and call the method CheckForPalindrome. This

will set the control’s Text property and build the table of palindromes.

 protected void Button1_Click(object sender, EventArgs e)

{

 this.Text = this.TextBox1.Text;

 CheckForPalindrome();

}

11. Now add the control to the page. Pick up the .ascx fi le from the Solution Explorer. Click

and drag it onto the UsePalindromeCheckerControls.aspx page. You can add a line

break between the last control on the page and this one to help the layout look okay.

12. Build and run the project. When you type palindromes into the

PalindromeCheckerUserControl, it should look something like this:

 Before leaving, take a look at the page with tracing turned on. Here you can see how the

page/control hierarchy is laid out in memory.

118 Part I Fundamentals

 Notice how similar the User control is to the binary composite control. Both composite-style

controls nest multiple single controls. They’re very convenient ways of grouping rich Web-

based user interface functionality into single units.

 When to Use Each Type of Control
 With binary composite controls and User controls having so many similarities, there seems

to be some redundancy in the framework. Since User controls have such an affi nity with the

designer, perhaps it seems you don’t need custom composite controls at all. However, each

style of composite control has distinct advantages and disadvantages.

 The major advantage of binary composite controls is that they are deployed as individual as-

semblies. Because binary composite controls are packaged in distinct assemblies, you may

sign them and deploy them across the enterprise. You also may install them in the Global

Assembly Cache. Signing and deploying global assemblies is an advanced topic—but I men-

tion it here because this is one of the main reasons to choose a binary control over a User

control. The primary downside to using binary composite controls is that they require more

attention to detail in the coding process (there’s no designer support as you write them since

they’re created entirely from code).

 The primary advantage to User controls is that they do include designer support. That makes

them very easy to design visually. However, User controls have a downside in their deploy-

ment—they go with the project in which they were created, and they are deployed that way.

You can include them as part of other projects, but that requires copying the ASCX and the

CS fi les to the new project. They are not deployed as signed, secure assemblies.

 Chapter 5 Composite Controls 119
Summary
This look at composite-style controls wraps up ASP.NET’s custom control story. Composite

controls are a great way to package UI functionality into manageable chunks. Binary com-

posite controls and User controls both maintain internal lists of controls and render them on

demand. However, binary composite controls live entirely within an assembly, whereas User

controls are split between ASCX fi les and a backing source code fi le and/or assembly.

In the next chapter, we’ll take a look at some of the other controls available within ASP.NET.

Chapter 5 Quick Reference
To Do This
Create a binary control composed of other

server-side controls that lives in its own

assembly

Derive a class from System.Web.UI.Control.
Override the CreateChildControls method.

Visual Studio includes a project type, ASP.NET Server Control,
that fi ts the bill.

 Add controls to a binary composite control Instantiate the child control.

Add the child control to the composite control’s Control

collection.

 Add a custom control to the Toolbox Show the Toolbox if it’s not already showing by selecting View,

Toolbox from the main menu.

Click the right mouse button anywhere in the Toolbox.

Select Choose Items from the local menu.

Choose a control from the list

OR

Browse to the assembly containing the control.

 Tell ASP.NET to assign unique IDs for the child

controls within either type of composite

control

Derive the binary composite control from ASP.NET’s

CompositeControl class. If you’re creating a User control, this

functionality is built in.

 Raise events within either type of

composite control

Expose the (public) events using the event keyword.

 Create composite (User) controls using the

Visual Studio Designer

Within a Visual Studio Web Site project, select Web Site, Add
New Item from the main menu.

Select the Web User Control template.

To Do This

 Chapter 6

 Control Potpourri
 After completing this chapter, you will be able to

Q Use ASP.NET validation controls

Q Use the Image, ImageButton, and ImageMap controls

Q Use the TreeView control

Q Use the MultiView control

 ASP.NET has always evolved with the goal of reducing the effort developers must expend to

get their Web sites up and running. One of the things you’ll fi nd as you tour ASP.NET is that

Microsoft has done a great job of anticipating what the developer needs and putting it in

the framework. In the three previous chapters, we saw the architecture behind ASP.NET Web

Forms and controls. With this architecture in place, you can easily extend the framework to

do almost anything you want it to do.

 ASP.NET versions 1.0 and 1.1 took over much of the functionality developers were building

into their sites with classic ASP. For example, server-side controls handled much of the ardu-

ous coding that went into developing Web sites displaying consistent user interfaces (such as

combo boxes that always showed the last selection that was chosen).

 Later versions of ASP.NET continued that theme by introducing new server-side controls that

insert commonly desired functionality into the framework. In this chapter, we look at support

provided by ASP.NET for validating the data represented by controls. We’ll also look at a few

other controls that are very useful: various fl avors of the Image control, the MultiView con-

trol, and the TreeView control.

 Let’s start with the validation controls.

 Validation
 One of ASP.NET’s primary goals has been to provide functionality to cover the most often used

scenarios. For example, we’ll see later that authorization and authentication requirements are

common among Web sites. Most sites won’t let you get to the real goodies until you authenti-

cate as a valid user. ASP.NET now includes some login controls and an entire security infrastruc-

ture those controls work with to make authorization and authentication easier.

 Another scenario you often fi nd when surfi ng Web sites is that most sites include a page onto

which you are to enter various types of information. For example, when applying for credentials
 121

122 Part I Fundamentals
to enter a Web site, you often need to enter things such as user names and passwords. If you

want to have something e-mailed to you, you may be asked to enter your e-mail address.

 When the company sponsoring a Web site wants some information from you, it wants to

make sure it has accurate information. Although it can’t guarantee that whatever you enter

is 100 percent accurate, it can at least have a fi ghting chance of getting accurate information

by validating the fi elds you’ve entered. For example, some fi elds may be absolutely required,

and the Web site will ensure that data are entered into them. If you’re asked to enter a phone

number, the site may ask for it in a certain format and then apply a regular expression to vali-

date that whatever you enter is at least formatted correctly. If you’re asked to change your

password, the site may ask you to enter it twice to be sure you really meant what you typed.

 ASP.NET includes a host of validation controls that accompany standard controls (like a

TextBox) on a Web Form. They work in concert with the standard controls and emit error mes-

sages (and alerts if confi gured to do so) if the user has typed in something that looks amiss.

 ASP includes six validator controls:

Q RequiredFieldValidator Ensures that a fi eld is fi lled in

Q RangeValidator Ensures the value represented by a control lies within a certain range

Q RegularExpressionValidator Validates that data within a control match a specifi c

regular expression

Q CompareValidator Ensures that the data represented by a control compare to a

specifi c value or another control

Q CustomValidator Provides an opportunity to specify your own server-side and

client-side validation functions

Q ValidationSummary Shows a summary of all the validation errors on a page

 The validation controls all work the same way. First defi ne a regular control on the page.

Then place the accompanying validators wherever you want the error messages to appear on

the page. The validator controls have a property named ControlToValidate. Point the validator

control to the control that needs validation and the rest works automatically. Of course, the

validator controls have a number of properties you may use to customize the appearance of

the error messages coming from the controls.

 The ASP.NET validator controls work with the following server-side controls:

Q TextBox

Q ListBox

Q DropDownList

Q RadioButtonList

 Chapter 6 Control Potpourri 123

Q HtmlInputText

Q HtmlInputFile

Q HtmlSelect

Q HtmlTextArea

Q FileUpload

 To see how they work, follow the next example, which applies validation controls to a Web Form.

 Creating a page that employs validation controls

1. Begin by creating a new Web site named ControlPotpourri.

2. Add a new Web Form named ValidateMe.aspx. This form will hold the regular server-

side controls and their accompanying validation controls. The form will resemble a

sign-in form that you often see on Web sites. It’s the canonical example for employing

user input validation.

3. Add a TextBox to hold the user’s fi rst name. Name the control TextBoxFirstName. It’s

important to give the controls meaningful names because they are attached to the

validators by their names. If you use the defaults produced by Visual Studio (that is,

TextBox1, TextBox2, TextBox3, etc.), you’ll have a diffi cult time remembering what the

text boxes represent. For each of the following steps, “adding a text box” also means

adding an associated label and a
 element to make the form look nice. In this case

the label that precedes the TextBoxFirstName should say First Name:. The other labels

should be self-evident. Note that you should also set the label’s ControlToAssociate

property to the text box the label precedes. This ties the label and text box together

(actually the label renders using the <label> element rather than as simple text).

4. Add a last name TextBox. Name the control TextBoxLastName.

5. Add an address TextBox. Name the control TextBoxAddress.

6. Add a postal code TextBox. Name the control TextBoxPostalCode.

7. Add a phone number TextBox. Name the control TextBoxPhone.

8. Add TextBoxes to hold a password and a password confi rmation. Name them

TextBoxPassword and TextBoxPasswordAgain, respectively. Set the TextMode property

for both of them to Password so that they don’t display the text being typed by the end

user. Using a secondary (or confi rmative) TextBox ensures that the user types a pass-

word he or she really means to enter. (Setting the TextMode property to Password on

the TextBox prevents the user from seeing the characters as they are keyed.)

9. Add a TextBox to hold the user’s age. Name the control TextBoxAge.

10. Add a Button to submit the form. Give it the text Submit Information.

124 Part I Fundamentals

 The form should look something like this when you’re done:

11. Now start adding validators. Add a RequiredFieldValidator control for the fi rst name. Drag

an instance of RequiredFieldValidator and drop it on the page just to the right of the

TextBoxFirstName. In the properties for the fi rst name validator control, pull down the

combo box in the ControlToValidate property. Select the TextBoxFirstName control. Set the

ErrorMessage property to a useful error message such as Please give your fi rst name.

12. As with the fi rst name text box, add a RequiredFieldValidator control for the last name.

In the properties for the last name validator control, pull down the combo box in the

ControlToValidate property. Select the TextBoxLastName control. Set the ErrorMessage

property to a useful error message such as Please give your last name.

13. Add RequiredFieldValidator controls for the postal code, the phone number, the pass-

word, and the age text boxes.

14. In the properties for the postal code validator control, pull down the combo box in the

ControlToValidate property. Select the TextBoxPostalCode control. Set the ErrorMessage

property to a useful error message such as Please give your postal code.

15. In the properties for the phone validator control, pull down the combo box in the

ControlToValidate property. Select the TextBoxPhone control. Set the ErrorMessage

property to a useful error message such as Please give your phone number so we
may call you at dinner.

 Chapter 6 Control Potpourri 125

16. In the properties for the fi rst password validator control, pull down the combo

box in the ControlToValidate property. Select the TextBoxPassword control. Set the

ErrorMessage property to a useful error message such as Please make up a password.

17. In the properties for the second password validator control, pull down the combo

box in the ControlToValidate property. Select the TextBoxPasswordAgain control. Set

the ErrorMessage property to a useful error message such as Please confi rm your
password.

18. In the properties for the age required fi eld validator control, pull down the combo box

in the ControlToValidate property. Select the TextBoxAge control. Set the ErrorMessage

property to a useful error message such as Please give your age.

19. Add a ValidationSummary to the form. This will show any errors occurring at once. If you

want an alert to pop up in the browser, set the ValidationSummary.ShowMessageBox

property to true. After all the validators have been added, the page should look some-

thing like this in the designer:

126 Part I Fundamentals

20. Compile the site and view the page. At fi rst, all you’ll see is a collection of input boxes.

Before entering any fi elds, click the Submit Information button. Watch the error mes-

sages appear, as shown in the following graphic:

21. Type a fi rst name and then press the Enter key. This will invoke the client-side

JavaScript validation script. Watch what happens. The ASP.NET validator controls have

inserted some JavaScript into the HTML sent to the browser (if the browser understands

JavaScript, which the majority today do). With the client-side script in place, required

fi eld validators can manage their error messages without a round-trip to the server, as

shown in the following graphic:

 Chapter 6 Control Potpourri 127
 Before adding more validation controls, let’s take a look at how ASP.NET user input valida-

tion works.

 How Page Validation Works
 ASP.NET’s page validation is set up very cleverly—and it’s all based on the page server-side

control architecture. As with many other features in ASP.NET, the validation mechanism

solves the most common use cases you encounter during Web site development. Most sites

include both client-side and server-side validation. By supporting client-side validation, users

are spared a round-trip when validating data input to the page. In addition to client-side

validation, most sites also support server-side validation for two reasons: to make sure no

data were garbled or modifi ed during transmission and to support clients unable to support

client-side scripting (perhaps the client browser doesn’t support JavaScript). Let’s start with a

look at client-side validation.

 Client-Side Validation
 If you looked at the ASPX source code generated by Visual Studio as you placed controls on

the page, you probably noticed the page became littered with even more tags, such as server-

side control tags to support text boxes and selection controls. In addition, each validator con-

trol placed on the page corresponds to a separate tag. Validators are server-side controls, too.

They render standard browser-interpretable code—similar to the regular server-side controls.

 ASP.NET validator controls support client-side validation by linking a JavaScript fi le named

WebUIValidation.js into the HTML sent to the browser. The fi le contains the client-side valida-

tion functions necessary to support client-side validation.

 When the validation controls render to the browser, they add span elements with custom at-

tributes to the rendered HTML. The validation handlers are hooked up when the HTML docu-

ment is loaded in the browser.

 Because client-side validation requires JavaScript support in the client, clients without JavaScript

support will need to rely on server-side validation. If you want, you may disable the client-side

script for each control by setting the EnableClientScript property on the validator to false.

 Server-Side Validation
 Once the client has passed the client-side validation tests, the request is posted back to the

server and the server-side validation kicks in. Server-side validation is managed by infra-

structure within the Page class. As you add validator controls to the page, they’re added to a

collection of validators managed by the page. Each validation control implements an inter-

face named IValidator. The IValidator interface specifi es a Validate method, an ErrorMessage

property, and an IsValid property. Of course, each validator has its own custom logic to

determine the validity of the data held within the control it’s validating. For example, the

128 Part I Fundamentals

RequiredFieldValidator checks to see that there are data within the control it’s associated with.

The RegularExpressionValidator compares the data within a control to a specifi c regular expression.

 During the postback sequence for a page, validation occurs just after the Page_Load event

fi res. The page checks each validator against its associated control. If validation fails, the

server-side validation controls that failed render themselves as visible span elements.

 The page itself has a property named IsValid that you can check to ensure your confi dence

in the data passed in from the client before you actually start using the data in the controls.

In addition, the Page class implements a method named Validate(). Validate walks the list of

validation controls, running each control’s Validate method.

 Add fi ner-grained validation

 Once you’ve ensured that users fi ll the required fi elds, it’s important to make sure that the

data coming from users are likely to be correct. For example, you may not be able to ensure

the veracity of the user’s phone number, but at least you can make sure it is in the right for-

mat and doesn’t contain garbage characters that could not possibly form a phone number.

Let’s add a validator that uses regular expressions to validate patterns. We’ll add a couple of

new validators to the page next.

1. Dismiss the browser and go back to the designer window. Now that you have controls

that show error messages when the user forgets to type something, let’s take a look at

some fi ner-grained validation. When you look at the fi elds being entered, you can see a

couple more opportunities for the user to enter bad data.

2. There’s not much you can do for the fi rst name, last name, and address fi elds except

hope that the users type what they really mean to type. However, you might want

to ensure the user types only numbers into the Postal Code fi eld. The way to ensure

that is to use a RegularExpressionValidator for the TextBoxPostalCode control. Drop

a RegularExpressionValidator onto the page. Set the ControlToValidate property so it

points to the postal code control. As for an error message, set the ErrorMessage prop-

erty to The postal code you provided is invalid. Click the button associated with its

ValidationExpression property, and from the resulting dialog box, select U.S. ZIP Code
as the validation expression:

 Chapter 6 Control Potpourri 129

3. Add a regular expression validator for the TextBoxPhone control. Set the

ControlToValidate property to TextBoxPhone. Assign its ErrorMessage property to be

The phone number you typed is invalid. Bring up the Regular Expression Editor and

choose U.S. Phone Number as the regular expression to validate, as shown in the fol-

lowing graphic:

4. Add a CompareValidator for the TextBoxPasswordAgain control. In the properties for

the password again validator control, pull down the combo box in the ControlToValidate

property. Select the TextBoxPasswordAgain control. Set the ControlToCompare prop-

erty to TextBoxPassword. Set the ErrorMessage property to a useful error message such

as The passwords provided do not match.

5. Add another CompareValidator for the TextBoxAge control. Enter 30 for

ValueToCompare and Integer as the data type to compare (the Type property). A pos-

sible error message here could be You must be younger than 30 to submit data. The

operator property should be LessThanEqual.

6. Build and run the program. Enter some erroneous data. See what happens. You should

see the error messages emitted by the validator controls. For example, if you type 33

as the age, the CompareValidator for the control should emit an error message. The

CompareValidator should display an error in this case because the validator is looking

for values less than or equal to 30.

 Other Validators
 In addition to the validators mentioned previously, ASP.NET includes two other validators: the

RangeValidator and the CustomValidator. Let’s take a quick look at each of those.

 The RangeValidator is similar to the CompareValidator in that you may use it to check the

data in a control against a value. However, the RangeValidator’s purpose is to report an error

if the data held in a control is out of a range. The validator specifi es a minimum and a maxi-

mum value and reports the error if the value in the control falls beyond these thresholds.

 You can try to fi t any other kind of validation you might encounter into the CustomValidator.
The CustomValidator fi ts on the page in the same way as the other validators. However,

130 Part I Fundamentals
rather than predefi ning validation methods (on the server and within the client script), these

pieces are left open. When you put a CustomValidator onto a page, you assign it an associ-

ated control. Then you refer to a validation function (that you write into the page). You may

also specify a validation script block to be shipped to the client and run (along with the other

client-side validation script).

 Validator Properties
 In looking through the validator controls, you can see that they contain the standard proper-

ties available to the other standard ASP.NET controls. For example, there’s a Text property, a

Font property, and various coloring properties. In addition, you’ll fi nd a couple of other prop-

erties useful for managing the error output sent to the browser.

 The fi rst property is the Display property. Its value may be either static or dynamic. This

property manages the client-side rendering of the error message. Static (the default value)

causes the span element emitted by the control to take up layout space in the HTML bound

for the client, even when hidden. When the Display property is Dynamic, the span element

emitted by the control changes the layout and dynamically expands when displayed.

 ASP.NET has the ability to group validation controls. That is, each validation control may be-

long to a named group. The ValidationGroup property controls the name of the group. When

a control belongs to a group, controls in that group only validate when one of the other vali-

dators in that group fi res. This gives you a “multiple forms” effect within a single page.

 Let’s take a look at a few other interesting controls: the Image control and image-based

controls, the TreeView control, and the MultiView control.

 Image-Based Controls
 Graphic images are often used within Web pages. HTML includes an image tag that tells the

browser to fetch an image fi le (for example, a .GIF, .JPG, or .PNG fi le) and display it. When you

need to get an image onto a page, HTML’s tag fi ts the bill. Naturally, ASP.NET wraps

the tag using a server-side control—the Image control.

 Using the Image control is fairly straightforward. You pick it up out of the Toolbox like any

other control and drop it onto the page. ASP.NET’s Image control generates an tag

complete with the correct src attribute.

 In addition to the normal Image control, ASP.NET includes an ImageButton control and an

ImageMap control. The ImageButton control wraps the <input type=image /> tag, giving you

the ability to use an image as the background to a button. The ImageMap control shows a

bitmap with hot spots on it that you can click.

 Chapter 6 Control Potpourri 131

 The following exercise illustrates how the various ASP.NET image-based controls work.

 Using image controls in a page

1. Add a new Web Form to the project to hold some image controls. Call the page

UseImageControls.aspx.

2. Pick up an Image control from the Toolbox and drop it on the page.

3. Go to the Properties explorer and add a valid path to an image to the ImageUrl prop-

erty. The image fi le may be on your own machine, or you can point the ImageUrl
property to a valid image URL on the Web. To use an image on the Web, click the right

mouse button on an image in the browser and select Properties from the local menu.

Then copy the URL from the property dialog box and paste it into the ImageUrl in the

property explorer. Try each option to see how it works. If the fi le is on your machine,

you’ll need to add it to your Web project. You can easily do so by dragging an image

fi le from your local drive and dropping it onto the ControlPotpourri solution in Solution

Explorer. If you’d like to organize your images in separate folders, simply create a new

folder and drop them there. If you want to use an image from out on the Web you’ll

need to edit the ImageUrl property by hand in the Source view. Needless to say, no

matter what image URL you use, if the image cannot be found (with a resulting error in

the tag), you’ll get the standard “image not found” image for your browser. In

Internet Explorer that would be the image of the box with the red “X” in the center.

4. Run the site and see what the ASP.NET Image control produces (note your image URL

will undoubtedly differ):

5. Now add an ImageButton to the page. The ImageButton gives you a way to deco-

rate a normal input button so it shows a graphic. Your application can react to an

ImageButton in one of three ways. First, the ImageButton behaves like a normal button

to which you can attach a normal Click event handler on the server. Second, you may

defi ne a client-side script block and point the ImageButton’s OnClientClick property to

the script. When you push the button, the button press runs the script on the browser.

Finally, you may tell the ImageButton to redirect the next request to a specifi c page

(even one on another site) using the ImageButton’s PostBackUrl property.

6. Run the page and examine the HTML produced by the ImageButton. It should look

something like this (keeping in mind your image URL will be different):

 <input type="image" name="ImageButton1" id="ImageButton1"

src="Images/goldengatebridge.jpg" style="border-width:0px;" />

7. Finally, add an ImageMap to the page. The ImageMap is useful for defi ning click-able

areas on a bitmap. Pick an image available to you (download one from somewhere, or

use one you have fl oating around on your hard drive). Set the ImageMap’s ImageUrl
property to the image fi le.

132 Part I Fundamentals

8. Open the image that you have decided to use for the ImageMap using a picture editor

such as Microsoft Paintbrush or Visual Studio’s bitmap editor. The ImageMap in this ex-

ample will defi ne a hot spot that can be used to zoom into a portion of the image used

in the map. Mark out a rectangular portion of the picture and make a new graphic fi le

using the portion of the graphic. Make a note of the coordinates defi ning the section of

the graphic you cut out. Enlarge the new image and save it to a new fi le.

9. Defi ne some hot spots on the ImageMap. Among the ImageMap’s properties, you’ll see

one named HotSpots. Click on the button appearing in the property fi eld to bring up

the HotSpot Collection Editor, as shown in the following graphic:

10. Add a hot spot to the collection. To do this, click the Add button. Notice that you can

defi ne circular, rectangular, or polygonal hot spots by clicking on the little arrow on the

right side of the Add button. Create a rectangular hot spot using the coordinates of the

portion of the image you just defi ned. Add some text to the AlternateText property—this

will be the text that shows in the tool tip. Set the HotSpotMode property to Navigate, and

use the NavigateUrl editor to set the NavigateUrl property to point to the new image fi le

you just created (you may have to add the new image fi le to the project explicitly using

the Add Existing Item menu after clicking the right mouse button on the project node

in the Solution Explorer). The following graphic shows editing of the hot spot:

 Chapter 6 Control Potpourri 133

11. After adding the hot spot, run the new page. You should see something similar to the

following graphic—the example here shows the Grand Canyon, and the hot spot is out-

lined in the image with a rectangle (that had to be added to the image by hand—the

hot spot doesn’t draw the rectangle for you). Notice how the tool tip pops up.

12. Click on the hot spot and notice how the application redirects to the “enlarged” image,

as shown in the next graphic:

134 Part I Fundamentals
 This section only scratches the surface of working with the image controls. However, you can

see that you have much fl exibility in defi ning how images look and behave.

 TreeView
 One of the most common user interface idioms in modern software is a hierarchy repre-

sented by expandable nodes. For example, whenever you browse for a fi le using Windows

Explorer, you need to expand and contract various folders (subdirectories) to see what’s in-

side. This type of control is generically known as a tree control.

 Tree controls let users navigate hierarchies by representing expandable and collapsible

nodes. For example, when you explore your C drive using Windows Explorer, the directo-

ries appear as closed folders with small plus signs to the left. When you click on a plus sign,

Windows Explorer displays an open folder and then shows the subdirectories directly under-

neath. If there are further subdirectories, you may open them the same way.

 ASP.NET provides this functionality via the TreeView. It’s useful any time you want to repre-

sent a nested data structure and have a way of drilling down into it. To see how the TreeView

works, let’s look at an example.

 Using the TreeView control

 This exercise illustrates the TreeView control by showing a hierarchical, expandable list of

1970s bands that are still around today. The example will illustrate the hierarchical nature of

the bands mentioned by showing the name of the band followed by a list of roles performed

by each particular member.

 1. Begin by adding a new Web form to the ControlPotpourri Web site. Name it

UseTreeView.

 2. Pick up a TreeView from the toolbox and add it to the default page. You’ll fi nd it under

the Navigation controls.

 3. Format your tree view. Visual Studio presents a number of options you can apply to the

TreeView. Select the Auto Format option. Visual Studio presents a dialog box showing

a number of styles for the TreeView. Browse through a few of them, highlighting them

to see what the styles look like. The following graphic shows the local menu that you

may use to bring up the AutoFormat dialog box:

 Chapter 6 Control Potpourri 135

4. After selecting a style for the TreeView, select the Edit Nodes task. You may edit the

nodes by clicking the right mouse button on the TreeView control and selecting Edit
Nodes from the local menu. From this dialog box you may edit each of the nodes.

The leftmost button adds new root nodes. In this example, the bands are represented

as root nodes. The next button over is for adding child nodes. You may nest these

nodes as deeply as necessary. In this example, the second layer of nodes represents the

members of the bands, and the third layer represents their roles. The following graphic

shows the TreeView node editor:

136 Part I Fundamentals

5. Add a border around the TreeView using the BorderStyle and BorderColor properties.

Set the style to solid and the color to black. Of course, this is for visual aesthetics.

6. Build the project and browse to the page. You should be able to expand and contract

the nodes. After running the page, take a quick look at the ASPX source code to see

how the TreeView manages its nodes. The following graphic shows how the TreeView

appears in the browser:

7. To make it a bit more interesting, add some functionality to handle some of the

tree node events. First add a label to show the selected node. Name the label

LabelSelectedNode so that you have programmatic access to it. Add a TextBox to show

information about the selected node. Name it TextBoxInfo. Make the TextBox multiline.

Then add an event handler for the TreeView’s SelectedNodeChanged event. Add the fol-

lowing code to interrogate the selected node to list information about the child nodes.

Don’t forget to add a using statement for System.Text (to identify StringBuilder):

 protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e)

{

 this.LabelSelectedNode.Text = String.Format("Selected Node changed to: {0}",

 this.TreeView1.SelectedNode.Text);

 TreeNodeCollection childNodes = this.TreeView1.SelectedNode.ChildNodes;

 if (childNodes != null)

 Chapter 6 Control Potpourri 137
 {

 this.TextBoxInfo.Text = String.Empty;

 StringBuilder sb = new StringBuilder();

 foreach(TreeNode childNode in childNodes)

 {

 sb.AppendFormat("{0}\n", childNode.Value);

 }

 this.TextBoxInfo.Text = sb.ToString();

 }

}

 The following graphic shows how the selected details appear in the ListBox:

 This is just a small illustration of what the TreeView is capable of doing. In addition to building

nodes using the designer, you may build them programmatically. You may expand and con-

tract nodes as well. Finally, the TreeView supports data binding, allowing you to throw a

hierarchical data structure at the control so it will render properly for you.

 Finally, let’s take a look at ASP.NET’s MultiView and View controls.

138 Part I Fundamentals
 MultiView
 From time to time, it’s useful to gather controls together in several panes and give the user

the opportunity to page through the panes. During the lifetime of ASP.NET 1.0, Microsoft

released several rich dynamic (though offi cially unsupported) controls that emitted DHTML

instead of regular HTML. A trio of these controls—the TabStrip, the MultiView (an older ver-

sion), and the PageView—worked together to form essentially a set of tabbed panes.

 These exact controls aren’t available in later versions of ASP.NET; however, two controls—the

MultiView and the View—go a long way toward providing similar functionality. The MultiView

acts as a container for Panel-like controls (View controls). The MultiView includes support for

paging through the various Views held within it. The MultiView shows a single View at a time.

 The following exercise provides an example that shows how the MultiView and the View con-

trols work together.

 Using the MultiView and View controls

 1. Add a new Web Form to the ControlPotpourri site. Name it UseMultiview.aspx. You’ll

add a MultiView to this form and then add some Views to it.

 2. Add a MultiView control to this Web Form.

 3. Add some views. The main purpose of the MultiView is to manage a set of Views. To

add a View to a MultiView, pick up a View instance from the Toolbox and drop it inside

the MultiView. Add three Views to the Web Form like so:

 Chapter 6 Control Potpourri 139

4. Add some content to each of the Views. You can think of the Views very much like

panes. In this example, the views include labels that distinguish them. The following

graphic illustrates how the Views look in the designer.

5. Activate the fi rst pane. To cause the MultiView and the fi rst View to show up, set the

MultiView’s ActiveViewIndex property to 0 to show the fi rst pane.

6. Add some controls to navigate between the Views in the MultiView. Add two buttons

to the bottom of the form. Call them ButtonPrev and ButtonNext—they’ll be used to

page through the Views.

7. Add event handlers for the buttons by double-clicking on each of them.

8. Add code to the page through the Views. This code responds to the button clicks by

changing the index of the current View.

 protected void ButtonPrev_Click(object sender, EventArgs e)

{

 if (MultiView1.ActiveViewIndex == 0)

 {

 MultiView1.ActiveViewIndex = 2;

 }

 else

 {

 MultiView1.ActiveViewIndex -= 1;

 }

}

protected void ButtonNext_Click(object sender, EventArgs e)

{

 if (MultiView1.ActiveViewIndex == 2)

140 Part I Fundamentals
 {

 MultiView1.ActiveViewIndex = 0;

 }

 else

 {

 MultiView1.ActiveViewIndex += 1;

 }

}

 9. Compile the project and browse to the Web page. Pressing the navigator buttons will

cause postbacks to the server, which will render the individual views. The following

graphic shows how the MultiView and View number 3 appear in a browser:

 As you can see, the MultiView and the View classes act as panes that you can swap in and

out. They represent a great way to manage the surface area involved in collecting large

amounts of data. We’ll see another version of this kind of control when we look at the Wizard

control in conjunction with the session state.

 Summary
 In this chapter, we looked at both the ASP.NET validations and several of the controls avail-

able in ASP.NET. ASP.NET has always strived to lessen the drudgery of Web development by

solving the most common use cases encountered during the development of Web sites.

 Chapter 6 Control Potpourri 141
Whenever you sign onto a commercial Web site, you almost invariably hit a form that asks

you for information. When creating such forms, you will want to ensure that the data com-

ing from the user are as accurate as possible. It’s a good idea to check certain things, such as

making sure that all the required fi elds are completed, that the fi elds have data in the correct

format if formatting is important, and that certain data match specifi c values or fall within a

stated range. ASP.NET validators perform this function.

The ASP.NET TreeView helps users browse hierarchical data structures (such as directories or

Web site maps). The TreeView renders expandable and collapsible nodes that let users drill

down into the data structures. The MultiView and the View work very much like panels that

can be swapped in and out.

Next up: Web Parts (server-side controls on steroids).

Chapter 6 Quick Reference
To Do This
Validate form input ASP.NET includes a number of validator controls that check

data entered via server-side controls. These controls include

CompareValidator
RangeValidator
RequiredFieldValidator
RegularExpressionValidator
ValidationSummary
CustomValidator
To validate the input of a server-side control, drag the

appropriate validator control onto the page and set the

ControlToValidate property to the target control.

Set the other validator properties appropriately.

Display hierarchical data sets in an intuitive

way

Use the TreeView control.

Either add items by hand or bind the TreeView control to a

hierarchical data source. We’ll see TreeViews again when we look

at navigation controls in Chapter 12.

Swap between several pages of information

on the same Web page

Use the MultiView and View controls.

You can think of the View control as a miniature page manag-

ing controls.

The MultiView manages a collection of Views.
The MultiView supports swapping between Views.

Add an image to a Web page Drop an Image control onto the Web page.

Set the Image control’s ImageUrl property to the URL of the

image you’d like to show.

Add an image with clickable regions to the

Web page

Drop an ImageMap onto the Web page.

Use the hot spot editor to defi ne clickable regions.

To Do This

Part II

Advanced Features
 143

 Chapter 7

 Web Parts
 After completing this chapter, you will be able to

Q Understand ASP.NET Web Parts

Q Use standard Web Parts in a Web page

Q Create a custom Web Part

Q Use the custom Web Part in a Web page

 In Chapters 4 and 5, we took a look at both rendered and composite controls. Chapter 6

covered a few of the controls already available within ASP.NET. Because rendering an

ASP.NET Web Form is broken down into small, manageable chunks, arbitrarily extending

the framework by adding new controls is a straightforward affair. Server-side controls offer

very fi ne-grained control over the HTML rendered by your application.

 In this chapter, we get a taste of Web Parts. The topic of Web Parts could take up an entire

book—they represent a whole new level of interaction with Web sites. Web Parts are in many

ways like custom controls. They give you a way to customize the HTML coming out of your

Web site without having to hard-code the output of your page.

 While custom controls derive either from System.Web.UI.Control or from System.Web.UI
.WebControl, Web Parts derive from Microsoft.SharePoint.WebPartPages.WebPart. Although

WebPart does inherit from System.Web.UI.Control, it goes beyond the regular control func-

tionality by handling interactions with WebPartPage and WebPartZone classes to support

adding, deleting, customizing, connecting, and personalizing Web Parts on a page.

 Probably the largest difference between ASP.NET server-side controls and Web Parts is that

Web Parts provide a way for end users to confi gure your site to their liking. By contrast,

ASP.NET server-side controls are targeted to ASP.NET developers. ASP.NET allows lower-

level developers to build interactive Web pages easily, whereas Web Parts allow users of a

Web site a certain degree of fl exibility in managing their view of your site.

 Another way to get a good idea of the effectiveness of Web Parts is to consider the wave of

social networking sites, such as Microsoft Live Spaces, that have emerged during the past

few years. Although the main thrust of the site is governed back at the server, end users may

create their own accounts and completely customize the presentation appearing on their

screen. End users may add friends and associates, and they may build in links to other sites.

 In addition to enabling Web sites that are customizable by end users, Web Parts can be very

useful to lower-level site developers. Web Parts combine the fl exibility of rendered custom
 145

146 Part II Advanced Features
controls with the drag-and-drop manageability of User controls. As a developer, you can

drag completed Web Parts from Web Parts galleries and drop them onto Web Parts zones.

You can modify the shared properties of a group of Web Parts and make them persistent.

In addition to being a useful way to package user interface (UI) components, Web Parts can

connect with each other via standard interfaces.

 Web Part technology is very useful in building portals and collaboration sites. Microsoft

SharePoint is an excellent example of this type of site. Rather than building document col-

laboration and sharing facilities into an application from the ground up, SharePoint already

has high-level components that handle those sorts of features. Setting up a portal is about

assembling high-level parts into an application.

 A Brief History of Web Parts
 In the early 2000s, SharePoint emerged as a highly leveraged way for organizations to build

portals and collaboration environments. For example, coordinating large teams toward a

common goal is an excellent reason for a portal. Team endeavors such as software develop-

ment require systems such as version control and bug tracking. If the team is distributed

geographically or in some other way not part of the offi ce network, the next logical thing is

to be able to share information over the Web.

 Without a framework such as SharePoint, developers would likely duplicate much effort

between them. SharePoint introduced some prefabricated components to ease building col-

laboration sites (rather than building them from scratch). SharePoint Web pages are based

on a type of component named Web Parts. Web Parts are a way to package information and

functionality for users.

 Whereas SharePoint is a stand-alone framework dedicated to building collaboration portals,

modern ASP.NET represents a broad-spectrum Web development framework that happens

to have a built-in portal framework. That is, SharePoint represents a dedicated means to

build portals, and ASP.NET includes some classes useful for building portal-like applications.

However, even though they’re different development environments, they do share a principal

concept between them—Web Parts. Although ASP.NET Web Parts and SharePoint Web Parts

aren’t exactly the same animal, they operate similarly.

 What Good Are Web Parts?
 WebPart controls are useful for developing portal-type Web sites. Work fl ow and collabora-

tion management is quickly becoming one of the most important application areas for Web

site development. Because portals often have much of the same functionality from one to

the other, it makes more sense to build portals from a framework than to build them com-

pletely from scratch. Much of this functionality includes such items as fi le transfers, imple-

menting user profi les, and user administration.

 Chapter 7 Web Parts 147

 ASP.NET offers three distinct Web Parts development scenarios: (1) building regular pages to

consume Web Parts controls, (2) developing Web Parts controls, and (3) implementing Web

Parts pages and Web Parts within a portal-type application.

 Developing Web Parts Controls
 Web Parts controls represent a superset of the existing ASP.NET server-side controls (includ-

ing custom rendered controls, User controls, and composite controls), regardless of who

wrote them. For maximum programmatic control of your environment, you can also create

custom Web Parts controls that derive from the System.Web.UI.WebControls.WebParts
.WebPart class.

 Web Parts Page Development
 Regular Web pages may use Web Parts. Visual Studio includes support for creating pages to

host WebPart controls. Developing a WebPart page involves introducing a WebPartManager
to the page, specifying a number of zones on the page, and then populating them with

WebPart controls.

 Web Parts Application Development
 Finally, you may develop entire applications out of WebPart controls. For example, you may

decide to build a portal. WebPart controls enable you to write personalized pages that are

customizable. Web Parts are also ideal for building a commonly used application (such as

sharing records or documentation) and shipping it as a unit so it can be deployed on another

company’s Web site wholesale.

 The Web Parts Architecture
 The Web Parts architecture serves multiple purposes. Given that the job of Web Parts is to

behave as a bigger UI lever, the functional components have been broken into overall page

management and zone management. WebPart controls need to be coordinated together.

In addition, the different functional areas of a page often need to be handled as a group of

controls (for managing layout, for example).

 In terms of framework classes, Web Parts are nested within zones, which are managed by a

singular WebPartManager that talks to the application data store. Figure 7-1 illustrates how

the parts are related.

148 Part II Advanced Features

DeclarativeCatalogPart

ImportCatalogPart

PageCatalogPart

AppearanceEditorPart

BehaviorEditorPart

LayoutEditorPart

PropertyGridEditorPart

WebPart

WebPartZoneEditorZoneCatalogZoneConnectionZone

WebPartManager

Data Store

 FIGURE 7-1 How Web Parts are managed within zones, which in turn are managed by an instance of
WebPartManager

 WebPartManager and WebZones
 As Figure 7-1 illustrates, WebPartManager manages each WebZone, which in turn man-

ages each individual WebPart. Any page using at least one WebPart needs an instance of

WebPartManager. The WebPartManager is responsible for managing and coordinating the

zone(s) and the controls lying within them. The WebZone also manages any extra UI elements

that go with the group of controls.

 Within the zone, the ZoneTemplate contains all Web Parts. If a regular ASP.NET control is in a

ZoneTemplate, ASP.NET will wrap it as a Web Part.

 Built-in Zones
 Web Parts zones manage the layout for a group of controls. Out of the box, ASP.NET includes

four built-in zones. These are

Q WebPartZone This class represents basic functionality for managing server-side con-

trols within zones on a page. WebPartZone controls are responsible for hosting both

normal server-side controls and WebPart controls. Normal controls become wrapped

by the GenericWebPart control at run time to add WebPart qualities to them.

Q CatalogZone This zone hosts CatalogPart controls. Catalogs generally manage the

visibility of parts on a page. The CatalogZone control shows and hides its contents

based on the catalog display mode. Web Part Catalogs are named such because they

act as catalogs of controls from which the end user may select.

 Chapter 7 Web Parts 149
Q EditorZone The EditorZone control represents the means through which end users

may modify and personalize Web pages according to their preferences. Personalizing

a Web site includes such things as setting up personal information (such as birthdays,

gender-specifi c addressing, number of visits to the site, etc.). Other kinds of personal-

ization involve setting up color schemes and layouts. The EditorZone helps manage this

functionality as well as saves and loads those settings so they’re available the next time

the user logs on.

Q ConnectionZone Web Parts are often more useful when they’re connected and com-

municate dynamically. The ConnectionZone manages this functionality.

 Built-in Web Parts
 In addition to including several zones straight out of the box, ASP.NET provides some ready-

to-use WebPart controls as well. The WebPart controls fi t into various functional categories.

Some are for managing catalogs, whereas others are for managing editing. Each specifi c

kind of WebPart fi ts within a particular zone. Here’s a rundown of the currently available

WebPart Toolbox:

Q DeclarativeCatalogPart When building a WebPart page, you may add parts dynami-

cally or declaratively. Adding parts to a page dynamically means executing code that

adds parts to the page at run time. For example, imagine you had a Web Part repre-

sented as a class named MyWebPart (ultimately derived from System.Web.UI.Controls
.WebParts). You may add the part to the page by creating an instance of the part and

adding it to the WebPartManager using WebPartManager.AddWebPart. Adding parts

to a page declaratively means including tag declarations within the ASPX fi le represent-

ing the WebPart page. The DeclarativeCatalogPart control manages server-side con-

trols added declaratively to a catalog on a Web page.

Q PageCatalogPart One way end users will probably want to customize a site is by

opening and closing controls. The PageCatalogPart represents a page catalog for hold-

ing controls that were previously added to a page that is now closed. By managing the

controls in a PageCatalogPart, the end user may add the controls back to the page.

Q ImportCatalogPart The ImportCatalogPart enables users to import a Web Part de-

scription from XML data.

Q AppearanceEditorPart The AppearanceEditorPart is used to edit the appearance
properties of an associated WebPart or GenericWebPart.

Q BehaviorEditorPart To support editing the behavior of a WebPart or

GenericWebPart, ASP.NET provides the BehaviorEditorPart.

Q LayoutEditorPart The LayoutEditorPart is for editing the layout properties and asso-

ciated WebPart (or GenericWebPart control).

150 Part II Advanced Features

Q PropertyGridEditorPart To support users in editing custom properties of WebPart
controls, ASP.NET provides the PropertyGridEditorPart (the other EditorPart controls

only support editing existing properties from the WebPart class, however).

 To get a feel as to how to use WebPart controls, let’s run an example. The following exercise

shows how to build a Web page from WebPart controls.

 Using Web Parts

1. Create a new site. Name it UseWebParts.

2. In the default page, add a WebPartManager by dragging an instance from the Toolbox

onto the page.

3. Drag a WebPartZone onto the page. Set the ID to WebPartZoneLinks. Set the

HeaderText to Links. Set the HeaderStyle font ForeColor to a Blue (so you can see it bet-

ter later during editing mode). Using the AutoFormat editor of the control itself, set the

style to Professional. (To access AutoFormat, click the caret to the right of the control in

the designer.)

4. Add some HyperLinks to the WebPartZone, as shown here. Feel free to add any hyper-

link you like (these are just examples).

 Chapter 7 Web Parts 151

5. Run the page. You should see the links appear on the left side of the page.

6. Add a DropDownList to the page. Name it DropDownListDisplayModes and set its

AutoPostBack property to true. This will be used to switch the display mode back

and forth.

152 Part II Advanced Features

 ASP.NET Web Parts support fi ve separate display modes. We’ll add code to support

(some of) these display modes in the next step

� BrowseDisplayMode This is normal mode. No personalization or editing is

available here.

� DesignDisplayMode This mode turns on drag-and-drop layout

personalization.

� EditDisplayMode This option turns on personalization or customization of

WebPart properties and permits a user to delete Web Parts that have been added

to the page dynamically.

� ConnectDisplayMode This mode allows a user to connect Web Parts at run time.

� CatalogDisplayMode This mode allows a user to add Web Parts into a

WebPartZone at run time.

7. Update the _Default class to support switching modes. Add a WebPartManager
member named _wpManager to the class to hold an instance of the current

WebPartManager. Update the Page_Init method to attach an event handler to the

page’s InitializationComplete event. In the InitializationComplete handler, get the cur-

rent WebPartManager and stash the reference in the _wpManager member, as shown

in this listing:

 public partial class _Default : System.Web.UI.Page

{

 WebPartManager _wpManager;

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 void Page_Init(object sender, EventArgs e)

 {

 Page.InitComplete += new EventHandler(InitializationComplete);

 }

 public void InitializationComplete(object sender, System.EventArgs e)

 {

 _wpManager = WebPartManager.GetCurrentWebPartManager(Page);

 String browseModeName = WebPartManager.BrowseDisplayMode.Name;

 foreach (WebPartDisplayMode mode in

 _wpManager.SupportedDisplayModes)

 {

 String modeName = mode.Name;

 // Make sure a mode is enabled before adding it.

 if (mode.IsEnabled(_wpManager))

 {

 ListItem item = new ListItem(modeName, modeName);

 DropDownListDisplayModes.Items.Add(item);

 }

 }

 }

}

 Chapter 7 Web Parts 153

 The code listed in the InitializationComplete handler interrogates the current

WebPartManager for the supported display modes and puts them in the DropDownList.

8. Add a handler for the DropDownListDisplayModes drop-down list box when the

SelectedIndexChanged event occurs. Have the handler switch the WebPart page into

the selected mode. The following code shows how:

 protected void

 DropDownListDisplayModes_SelectedIndexChanged(

 object sender, EventArgs e)

{

 string selectedMode = DropDownListDisplayModes.SelectedValue;

 WebPartDisplayMode mode =

 _wpManager.SupportedDisplayModes[selectedMode];

 if (mode != null)

 {

 _wpManager.DisplayMode = mode;

 }

}

9. Finally, override the Page_PreRender method to display the selected display mode in

the drop-down list box.

 void Page_PreRender(object sender, EventArgs e)

{

 ListItemCollection items = this.DropDownListDisplayModes.Items;

 int selectedIndex =

 items.IndexOf(items.FindByText(_wpManager.DisplayMode.Name));

 DropDownListDisplayModes.SelectedIndex = selectedIndex;

}

10. Run the site. Immediately (without doing anything else), you may enter Design mode, as

shown in the following graphic:

154 Part II Advanced Features

 You’ll see more modes later as you add more zones. Notice how the title now shows

up. You may pick up items on the page and move them around now. For example, you

may pick up one of the links and move it around within the Links WebPartZone.

11. Now add some more functionality. Add an EditorZone to the page. Then in the

EditorZone, add an AppearanceEditorPart, as shown in the following graphic (the

designer’s default layout is to lay out components one after the other—this example

shows the EditorZone part with an absolute layout style set so it may placed anywhere

on the form):

 Chapter 7 Web Parts 155

12. Now run the site. You’ll see a new option in the display mode drop-down list box: the

Edit mode.

13. Now go back and add a CatalogZone. Drop a DeclarativeCatalogPart into the new

WebPartZone and select Edit Templates.

156 Part II Advanced Features

14. While in Template Editing mode, pick up a TextBox control from the Toolbox and drop

it into the DeclarativeCatalogPart. Then update the actual markup to add a Title attri-

bute, as shown:

 <ZoneTemplate>

 <asp:DeclarativeCatalogPart

 ID="DeclarativeCatalogPart1" runat="server">

 <WebPartsTemplate>

 <asp:TextBox ID="TextBox1"

 Title="A TextBox"

 runat="server">

 </asp:TextBox>

 </WebPartsTemplate>

 </asp:DeclarativeCatalogPart>

</ZoneTemplate>

15. Now run the page again. Switch to Catalog Mode. Check the A TextBox check box

and click Add to add a TextBox to the Links zone. (This may not seem too interesting

yet. However, in the next exercise, you’ll write a hyperlink Web Part that you may add

to the links page from the catalog—and then update it with your own links and dis-

play names).

 Chapter 7 Web Parts 157

 Here is the page with a new TextBox added from the catalog:

158 Part II Advanced Features
 16. Run the page and shift to Edit mode. Select a local menu from one of the hyperlink Web

Parts in the Links zone. (You can get to the local “verb” menu by clicking on the arrow

symbol in the upper right-hand corner of each Web Part). Select Edit. You should see a

collection of controls for editing the Web Part appearing in the Editor Zone, like so:

 So there’s an example of adding Web Part zones to a page and then using normal ASP.NET

server-side controls as if they were Web Parts (the HyperLink controls). Let’s take a look at

how to develop a real Web Part.

 Developing a Web Part
 The previous example showed how to use Web Parts within a page and how to switch the

page among various modes at run time. The catalog built into the page includes a TextBox

control that you may add to a WebPartZone on the page. The example delivers a glimpse

into the fl exibility and power of Web Parts. However, simply dropping a TextBox onto a

WebPartZone isn’t very interesting. In this example, we’ll build a hyperlink Web Part that you

may use to augment the Links WebPartZone.

 Developing a Web Part is actually fairly straightforward and quite similar to developing a

custom control (like the ones from Chapters 4 and 5). Instead of deriving a class from

 Chapter 7 Web Parts 159

System.Web.UI.Controls.WebControl or System.Web.UI.Controls.CompositeControl, you derive

a class from System.Web.UI.WebControls.WebParts.WebPart. From that point, you have the

choice of either rendering HTML or composing a Web Part from other ASP.NET controls. The

WebPart includes considerable functionality for integrating with the Web Part architecture.

For example, in the next example, the navigation URL and display name properties of the

hyperlink Web Part will be exposed as properties that the end user may modify through the

PropertyGridEditorPart.

 The following example illustrates how to create a hyperlink Web Part that you may add to the

links WebPartZone in the UseWebParts project. Although you could add a regular HyperLink

control to the catalog, normal controls don’t have the same support for the user to modify

the links. For example, when you edited the HyperLink controls in the previous example, all

you could do was move them around in the Links Web Part. To provide your Web application

users with additional properties they can confi gure, the links need to be represented as Web

Parts in their own right.

 Developing the HyperLinkWebPart

1. Add a new project to the UseWebParts solution. Make it a class library and name the

library WebPartLib. Visual Studio asks you to name the fi le, and that also becomes the

name of the fi rst class being placed in the library. Name the fi le HyperLinkWebPart.cs.
(Visual Studio will name the class HyperLinkWebPart.)

2. Make a reference to the System.Web assembly within the new child project. Click the

right mouse button on the WebPartLib node in Solution Explorer and use the Add
Reference option from the local menu to add the System.Web assembly.

3. Derive the new class from System.Web.UI.WebControls.WebParts.WebPart by adding it

to the inheritance list, as shown here:

 using System;

using System.Collections.Generic;

using System.Text;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

namespace WebPartLib

{

 public class HyperLinkWebPart : WebPart

 {

 }

}

160 Part II Advanced Features

4. Add two string member variables to the HyperLinkWebPart class—one to represent the

display name of the Web Part and the other to represent the actual URL. Initialize them

with reasonable values:

 using System;

using System.Collections.Generic;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

namespace WebPartLib

{

 public class HyperLinkWebPart :

 System.Web.UI.WebControls.WebParts.WebPart

 {

 string _strURL = "http://www.microsoft.com";

 string _strDisplayName = "This is a link";

 }

}

5. Add a member variable of type HyperLink to the class. The Web Part will leverage the

already existing functionality of the HyperLink control. Override CreateChildControls to

create an instance of HyperLink and add it to the HyperLinkWebPart controls collection.

Initialize the HyperLink.Text property to the member variable representing the display

name. Initialize the HyperLink.NavigateUrl property to the member variable represent-

ing the URL:

 using System;

using System.Collections.Generic;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

namespace WebPartLib

{

 public class HyperLinkWebPart :

 System.Web.UI.WebControls.WebParts.WebPart

 {

 HyperLink _hyperLink;

 string _strURL = "http://www.microsoft.com";

 string _strDisplayName = "This is a link";

 protected override void CreateChildControls()

 {

 _hyperLink = new HyperLink();

 _hyperLink.NavigateUrl = this._strURL;

 Chapter 7 Web Parts 161

 _hyperLink.Text = this._strDisplayName;

 this.Controls.Add(_hyperLink);

 base.CreateChildControls();

 }

 }

}

6. Finally, expose the URL and the display name as properties so that the Web Parts archi-

tecture can understand and work with them. To allow the exposed properties to work

with the Web Parts architecture through the PropertyGridEditorPart we’ll add later, be

sure to adorn the properties with the attributes Personalizable, WebBrowsable, and

WebDisplayName, as shown here:

 using System;

using System.Collections.Generic;

using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

namespace WebPartLib

{

 public class HyperLinkWebPart :

 System.Web.UI.WebControls.WebParts.WebPart

 {

 HyperLink _hyperLink;

 string _strURL = "http://www.microsoft.com";

 string _strDisplayName = "This is a link";

 [Personalizable(), WebBrowsable, WebDisplayName("Display Name")]

 public string DisplayName

 {

 get

 {

 return this._strDisplayName;

 }

 set

 {

 this._strDisplayName = value;

 if (_hyperLink != null)

 {

 _hyperLink.Text = this.DisplayName;

 }

 }

 }

 [Personalizable(), WebBrowsable, WebDisplayName("URL")]

 public string URL

 {

 get

 {

 return this._strURL;

 }

162 Part II Advanced Features

 set

 {

 this._strURL = value;

 if (_hyperLink != null)

 {

 _hyperLink.NavigateUrl = this.URL;

 }

 }

 }

 protected override void CreateChildControls()

 {

 _hyperLink = new HyperLink();

 _hyperLink.NavigateUrl = this._strURL;

 _hyperLink.Text = this._strDisplayName;

 this.Controls.Add(_hyperLink);

 base.CreateChildControls();

 }

 }

}

7. Compile the WebPartLib project. Note that this will add the new HyperLinkWebPart
Web Part to the Toolbox. You’ll need that in the next step.

8. Now add the HyperLinkWebPart to the catalog. First, click the right mouse button in

the Toolbox and select Choose Item (just as you did when adding custom controls to

a page). Find the WebPartLib.dll assembly and load it into Visual Studio. You should see

the HyperLinkWebPart appear in the Toolbox, as shown here:

 Chapter 7 Web Parts 163

9. Put the CatalogZone into Edit Templates mode by clicking on the small arrow in the

Web Template. Then drag the HyperLinkWebPart into the CatalogZone, just as you did

earlier with the TextBox, as shown here:

10. Add a title to the new catalog item. Switch to the source code window in Visual Studio.

Within the source code, add a title to the new control:

 <ZoneTemplate>

 <asp:DeclarativeCatalogPart

 ID="DeclarativeCatalogPart1" runat="server">

 <WebPartsTemplate>

 <cc1:HyperLinkWebPart

 Title="A HyperLink"

 ID="HyperLinkWebPart1"

 runat="server" />

 <asp:TextBox ID="TextBox1"

 Title="A TextBox"

 runat="server">

 </asp:TextBox>

 </WebPartsTemplate>

 </asp:DeclarativeCatalogPart>

</ZoneTemplate>

164 Part II Advanced Features

 The HyperLinkWebPart should now appear in the catalog with a title, as shown here:

11. Add a PropertyGridEditorPart to the EditorZone on the page. Just pick one out of the

Toolbox and drop it onto the EditorZone, as shown in the following graphic:

 Chapter 7 Web Parts 165

12. Surf to the Web site. Put the page in Catalog mode by selecting Catalog from the

drop-down list box.

13. Select A Hyper Link from the catalog (by checking the check box) and add it to the

Links Web Part Zone.

14. Put the Web Parts Page into Edit mode by selecting Edit from the drop-down list box.

Click on the local menu area on the upper-right corner of the newly added link.

166 Part II Advanced Features

15. Select Edit to edit this link. You should see the Editor Zone appear, along with the new

property grid showing text boxes for editing the DisplayName and the URL (the default

DisplayName and URL will appear in the text boxes—just type new values in):

16. Type in a new DisplayName and a new URL. (The example points to www.codeplex.com.)

Select OK.

The browser should now show the new properties for the HyperLinkWebPart.

 Chapter 7 Web Parts 167

 You should be able to surf to the site represented by the link.

168 Part II Advanced Features
Summary
In this chapter, we took a brief look at Web Parts from an ASP.NET point of view. Web Parts

are like server-side controls on steroids. They provide layout and control management above

and beyond normal server-side controls. The Web Part architecture is built around four fun-

damental concepts: WebPart zones, Web Parts themselves, the server-side controls that may

populate them, and the WebPartManager that orchestrates the whole thing. Web Parts are

especially useful for portal-type applications because of their ability to leverage the person-

alization and customization facilities of ASP.NET.

Chapter 7 Quick Reference
To Do This
Enable a Web page to use WebPart controls Add a WebPartManager to the page on which you wish to use

WebPart controls.

 Add various editing capabilities to a Web

Parts page

Add an EditorZone to the page.

 Add a place in which to position server-side

controls to be managed by the Web Part

architecture

Add a WebZone to the page.

 Allow users to dynamically add controls

from a collection of controls

Add CatalogZone to the page.

Add controls to the catalog while in Edit Templates mode.

 Create a Web Part Derive a class from

System.Web.UI.WebControls.WebParts.WebPart
and:

Render some HTML in the Web Part’s Render method

OR

Create ASP.NET child controls and add them to the Web Part’s

Controls collection for automatic rendering.

To Do This

 Chapter 8

 A Consistent Look and Feel
 After completing this chapter, you will be able to

Q Use Master Pages to develop a consistent look and feel for your entire site

Q Use Themes to apply a style to a page en masse

Q Use Skins to stylize custom controls

 This chapter covers one of ASP.NET’s most useful features as far as developing a consistent look

and feel for your site: Master Pages. A distinguishing characteristic of most well-designed

modern Web sites is the consistent look and feel of each page within the site.

 For example, many sites incorporate a specifi c color scheme and fonts. In addition, the way

a well-designed site frames information and provides navigation tools is consistent from one

page to another. Can you imagine visiting a site where each page appeared radically differ-

ent from the previous page? At the very least, you’d probably be confused. At the very worst,

you might even be repulsed.

 ASP.NET includes Master Pages to help you make your site appear consistent as visitors

move around it. In addition, ASP.NET features a way to stylize controls. Let’s take a look at

how they work.

 A Consistent Look and Feel
 Getting to the point where Web development tools support creating a common look and

feel for all the pages in a site has been a long process. Classic ASP provided a very crude

way of spreading a common look and feel throughout a site by incorporating a fi le inclu-

sion mechanism that pulled one .asp fi le into another wholesale. It was brute force to say the

least. Although it worked to a certain degree, you had very little control over the nuances of

your site while clumping fi les together.

 ASP.NET 1.0 went quite a bit further by composing the whole page-rendering mechanism

out of smaller server-side controls and User controls. We saw this in Chapters 2 and 3.

However, even though you could package portions of a Web application’s user interface (UI)

into separate modules, you still had some heavy lifting to do to implement a common look

and feel among the pages in your application. User controls also support developing a com-

mon look and feel. For example, you can create a User control with specifi c navigation con-

trols and links and use it in the same place on every page in your site. That in itself creates a

common look and feel.
 169

170 Part II Advanced Features
 While using the custom control/User control approach to break apart a site’s user interface

is useful for developing a consistent UI, it falls short of being an ideal solution in a couple of

ways. First, all the pages in an application need to include the surrounding code. That means

that you have to apply the controls in the same way to each page. If you decide to change the

placement of the controls (or some other aspect not governed by the controls), you have to

change each page. Second, every page using a custom control needs a Register directive—

and more code that needs to be copied. As a reuse model it went much further than earlier

approaches (that is, classic ASP). What you really want is a single place in the site where you

can lay out the look and feel of the page once and have it propagate across the site.

 One way to accomplish this goal and avoid building pages one at a time is to build a primary

class from which all the pages in your application will derive. Because ASP.NET is built on an

object model based on the Page class, why not simply add a new layer to your application?

Figure 8-1 shows a diagram illustrating how you might build a set of pages from a single base

page.

System.Web.UI.Page

Primary Page

Page 1 Page 2 Page 3

 FIGURE 8-1 A base class to implement functionality common among several pages

 All the ASPX pages inherit from the same code-behind class deriving from the primary

class (which in turn derives from System.Web.UI.Page). The primary class takes responsibility

for loading the controls necessary for the site’s look and feel. Then each separate page is

re s ponsible for managing the rest.

 This approach works, as long as you don’t mind doing a lot of coding. In addition, there was

no design support in ASP.NET 1.x for this sort of thing, and messing with the Page class hier-

archy in Visual Studio sometimes would break the project.

 ASP.NET 2.0 introduced Master Pages to support developing a common look and feel across

your entire site.

 ASP.NET Master Pages
 Master Pages represent a sort of metapage. They have much the same structure as normal

pages. However, they live in fi les named with the “master” extension. A Master Page serves

as a template that renders a common appearance to all pages based on it. Master Pages

use XHTML document tags (such as <html>, <head>, and <body>) that apply only to the

 Chapter 8 A Consistent Look and Feel 171
Master Page. When you surf to a page that has a Master Page applied to it, the request and

response are fi ltered through the Master Page. The Master Page may not be served by itself.

Instead, it ensures that each page has a common look and feel by (logically) acting as the

“primary page” you see in Figure 8-1. ASP.NET merges the Master Page and the ASPX page

(the content page) into a single class. At that point, the class processes requests and renders

output like any other System.Web.UI.Page-derived class.

 Because Master Pages are similar to normal ASPX pages, they may contain the same sort of

content and functionality as normal pages. That is, they may contain server-side controls,

User controls, and markup. In addition to markup and controls, a Master Page may contain

instances of the System.Web.UI.WebControls.ContentPlaceHolder control. As its name implies,

the content placeholder stands in place of the real content that will eventually appear in pages

based on the Master Page. A Master Page renders all the elements it contains—that is, those

elements not contained within a System.Web.UI.WebControls.ContentPlaceHolder control.

 Because Master Pages play a part in how the fi nal page handler is synthesized, they work a bit

differently than the straight inheritance technique described previously (that is, writing a base

class to implement common functionality via inheritance). As the page executes, the Master

Page injects its own content into the ASPX page. Specifi cally, the Master Content ends up be-

ing represented by a control that is added to the ASPX page’s Controls collection, where it’s

rendered in the same way as all other controls are rendered.

 Like normal page attributes and functionality, Master Pages may contain the following attri-

butes in their MasterPage directive:

Q AutoEventWireup

Q ClassName

Q CompilerOptions

Q Debug Description

Q EnableViewState Explicit

Q Inherits

Q Language

Q Strict

Q Src

Q WarningLevel

Q Master

 The following exercise illustrates developing a site around a Master Page.

172 Part II Advanced Features

 Using a Master Page

1. Create a new site named MasterPageSite.

2. Add a new item to the page. Select MasterPage from the available templates. Accept

the default and name it MasterPage.master. The following graphic shows adding a

Master Page template:

 Visual Studio will pump out code like this in a fi le named MasterPage.master. Notice the

ContentPlaceholder controls generated by Visual Studio:

 <%@ Master Language="C#" AutoEventWireup="true"

CodeFile="MasterPage.master.cs"

Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "..." ><html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Untitled Page</title>

 <asp:ContentPlaceHolder id="head" runat="server">

 </asp:ContentPlaceHolder>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">

 </asp:ContentPlaceHolder>

 </div>

 </form>

</body>

</html>

 Chapter 8 A Consistent Look and Feel 173

 This is what the Master Page looks like in Design mode:

 Notice how the Master Page looks very similar to a normal .aspx page. In fact, you

may work with a Master Page in very much the same way you may work with a normal

.aspx page.

3. Update the background color of the Master Page. In the Properties dialog box, select

the Document element from the combo box and update the document’s background

color. The example here uses light gray. This will let you see that the Master Page is

really being used in subsequent ASPX fi les.

4. Create a new form and name it UseMaster.aspx. Make sure the Select Master Page

check box is checked, like so:

174 Part II Advanced Features
 Visual Studio will ask you to select a Master Page, as shown in the following graphic:

 When you view UseMaster.aspx in the designer, it looks like the MasterPage.master fi le.

Notice the grayish hue applied to the page. This lets you know the Master Page is really

being applied here.

 Chapter 8 A Consistent Look and Feel 175

 This is the code generated by Visual Studio to support using the Master Page:

 <%@ Page Language="C#"

MasterPageFile="~/MasterPage.master"

AutoEventWireup="true"

CodeFile="UseMasterx.aspx.cs"

Inherits="UseMasterx"

Title="Untitled Page" %>

<asp:Content ID="Content1"

 ContentPlaceHolderID="head" Runat="Server">

</asp:Content>

<asp:Content ID="Content2"

 ContentPlaceHolderID="ContentPlaceHolder1"

 Runat="Server">

</asp:Content>

5. Now add some content to UseMaster.aspx. Add a label to the content placeholder.

Have it say something so you can distinguish this as a separate page.

6. Add two more pages to the site. The example here includes a page describing the

chapter content of this book and a second page describing the projects. You may use

this or add your own content. Add some content to the two pages in the content place-

holders. That way you can distinguish the pages (we’ll add navigation support later).

176 Part II Advanced Features
 The important thing is to add two more pages and apply the Master Page to them (that

is, create the Web Forms with the Select Master Page box checked).

 The following two graphics show the example site’s pages containing a ListBox to select

the topic and a TextBox to hold information about the topic. Setting the positioning

of the items to absolute can make it easier to arrange items on the page. The examples

here use absolute positioning. In addition, the example here populates the ListBox with

project names (on the product page) and chapter names (on the chapter page). Each

has a ListBox selection change handler that fi lls the TextBox with information about the

projects and chapters. This is so that you can actually see the pages having functional-

ity in addition to the consistent look and feel from the master page.

 Here’s how to add elements to the ListBox by hand (we’ll see another technique—data

binding—in Chapter 11). First, select the ListBox in the designer. Click on the small ar-

row on the right side of the ListBox. You’ll see a dialog allowing you to add item/value

pairs. The example here uses two ListBoxes—one holding project information for this

book and the other holding chapter information for this book.

 Chapter 8 A Consistent Look and Feel 177

7. Go back to the MasterPage.master page and update it so it has a bit more content. Use

the Table, Insert Table menu option to insert a table immediately above the content

pane on the Master Page. Give the table one row and two columns. Size it so that the

left cell is narrow and the right cell is wide. It should look something like this:

178 Part II Advanced Features

8. Add a menu to the leftmost cell in the table. In customizing the menu, add an

AutoFormat style to it. The example here uses the Classic style. Add three items to

the menu for navigating to the three pages in this site—the Home page, the Chapters

page, and the Projects page. To add the menu items, select the menu in the designer

and look for the small arrow prompt on the right side of the menu. Click the arrow and

select Edit Menu Items… from the local menu. You’ll see the following dialog box.

Add the menu items here.

 Set up the appropriate navigation for each menu option. That is, have the Home menu

item navigate to the UseMaster.aspx page. Have the Chapters menu item navigate to the

Chapters.aspx fi le. Finally, have the Projects menu item navigate to the Projects.aspx fi le.

The navigation URLs are set up individually here—we’ll look at using ASP.NET’s site map

support shortly. You may do this by clicking the navigation button in the NavigateUrl
fi eld of the Property page:

 Chapter 8 A Consistent Look and Feel 179

 You should end up with something like this:

9. Finally, add a banner. In my opinion, no Master Page is complete without a banner. Use

the bitmap editor (or Paintbrush—mspaint.exe) to draw a banner. The one in this exam-

ple is approximately 1000 pixels wide by 90 pixels high. Drop the banner into the table

cell on the right. Your Master Page should look something like this now:

180 Part II Advanced Features
 Because the UseMaster.aspx, Chapters.aspx, and Projects.aspx fi les were created using

the Master Page, they have the menu and banner built in automatically. Surf to the

UseMaster.aspx fi le and browse through the menu items. You should see that each page

has a common look and feel, but with the correct content.

 Chapter 8 A Consistent Look and Feel 181
 Master Pages offer signifi cant improvements over earlier versions of classic ASP and ASP.NET

for developing a common look and feel among all the pages in your application. Of course,

you may use multiple Master Pages in a project, and you may also nest them.

 A second way to help manage the look and feel of your application is ASP.NET Themes.

 Themes
 Master Pages control the general layout of a series of pages within an application. However,

there are other elements (those that are subject to change between pages) that you might

like to have remain constant. Themes provide a means of applying common styles to the ele-

ments on each page in your site.

 If you’re familiar with Cascading Style Sheets (CSS), you will feel very at home with Themes.

The two techniques are similar because through both techniques you may defi ne the visual

styles for your Web pages. Themes go a step beyond CSS. You may use Themes to specify

styles, graphics, and even CSS fi les within the pages of your applications. When available, you

may apply ASP.NET Themes at the application, page, or server control level.

 Themes are represented as text-based style defi nitions in ASP.NET. ASP.NET already includes a

number of Themes straight out of the box. You’ll fi nd these Themes located at C:\WINDOWS\

Microsoft.NET\Framework\vxxxxx\ASP.NETClientFiles\Themes. ASP.NET includes some pre-

defi ned Themes (note the “vxxxxx” indicates the current version of the .NET Framework you’re

using, most likely “v3.5” at the time this was written). In addition, you may defi ne and use your

own Themes.

 The following exercise shows how to create and use a Theme.

 Creating and using a Theme

 1. Add a new form to the MasterPagesSite project. Name the page UseThemes.aspx. Turn

off the Select Master Page check box if it happens to be turned on before you commit

to creating the page.

 2. Add a Theme folder to your project. Highlight the Web site node in the Solution

Explorer. Click the right mouse button and select Add ASP.NET Folder. Select Theme.

This will create an App_Themes directory for you.

 3. Create a Default Themes folder under the App_Themes folder. Click the right mouse

button on the App_Themes folder. Select Add Folder, and then select Theme Folder
from the menu. Rename the folder from Theme1 to Default.

 4. Add a new style sheet to the Theme1 folder. Click the right mouse button on the

Theme1 folder and select Add New Item. Select the Style Sheet template. Name the

Style sheet Default.css.

182 Part II Advanced Features

5. Build the style sheet. The default style sheet includes only a body tag. When the style

sheet is open in Visual Studio, select Add Style Rule from the Styles menu. You may

click the right mouse button on the Elements node to modify the style for the node.

For example, if you want to change the style of the <h1> tag, you would click the right

mouse button on the Elements node and select Add Style Rule. To add a style for the

<h1> tag, select it from the list of elements and move it into the Style Rule Hierarchy

by clicking the > button, as shown here. Then click OK.

 To modify the style, click on the H1 node in the CSS outline page and select Style in

the Properties window. Click the “...” button to activate the Modify Style dialog box:

 Chapter 8 A Consistent Look and Feel 183

 The sample application included with the CD sets the font to Arial Black with an

underscore.

6. Now test the Theme by declaring it in the page and by typing a heading with <h1>

tags, like so:

 <%@ Page Language="C#" AutoEventWireup="true"

CodeFile="UseThemes.aspx.cs"

"Theme=Default"

trace="false" Inherits="UseThemes" %>

<%@ Register Src="Banner.ascx" TagName="Banner" TagPrefix="uc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <h1> How does this look? </h1>

 </div>

 </form>

</body>

</html>

 Here’s how the themed page appears in the browser with the new theme (the <h1> tag

set to the new font and set to use the underline in this example):

184 Part II Advanced Features

7. Add another Theme to the project. Name the Theme SeeingRed. That is, create a new

Theme folder and add a new style sheet of the same name. Make the <h1> tag use a

red color font this time. Then change the Theme used by the page to SeeingRed (you

can also set the theme in the Properties window in Visual Studio):

 <%@ Page Language="C#" AutoEventWireup="true"

CodeFile="UseThemes.aspx.cs"

Theme="SeeingRed"

trace="false" Inherits="UseThemes" %>

 Surf to the page to see the <h1> tag printed in red.

 This is just a taste of the kinds of things you can do by providing Themes for a page. Once a

Theme is defi ned, you may apply it by declaring it as part of the Page declaration or by inter-

cepting the PreInit event and changing the Theme property in the page to a valid Theme.

 Going hand in hand with Themes are Skins. Let’s look at those.

 Chapter 8 A Consistent Look and Feel 185
 Skins
 Skins complement Master Pages and Themes as a way to manage the style of your Web site.

Using Skins is almost like combining WebControl-based controls with CSS. Another way to

think of Skins is as a way to set certain properties of a control as a group. For example, you

may want to defi ne different coloring schemes for a control such as the TextBox control. The

Calendar control is also a good example because it’s so rich. By providing Skins for controls,

you can have a number of different appearance options for various controls at your disposal

without having to go into detail and manage the control properties one by one.

 You have actually used Skins already. Many server-side controls already support style tem-

plates. For example, when working with the TreeView earlier, you saw that you could apply

one of several styles to it. Earlier in this chapter, we looked at applying a set of color attri-

butes to the Menu control when we chose the “classic” style from the AutoFormat control

option menu. In this section, we’ll see how Skins work and how to apply them.

 Skin fi les defi ne specifi c controls and the attributes that apply to them. That is, a .skin fi le

contains server-side control declarations. The Skin fi le’s job is to preset the style properties

for the control. Skin fi les reside in named Theme folders for an application, accompanied by

any necessary CSS fi les.

 The following exercise illustrates how to create Skins for some controls on your Web site.

 Create a Skin

 1. Create a Skin fi le by clicking the right mouse button on the SeeingRed folder in the

App_Theme node on the Solution Explorer and selecting Add New Item. Choose Skin
File from the templates. Name the fi le SeeingRed.skin.

 2. In the SeeingRed.skin fi le, pre-declare some controls for which you’d like to have default

property values set. For example, the following SeeingRed.skin fi le declares default prop-

erties for some controls. These controls have their various colors defaulting to assorted

shades of red.

 <asp:Label runat="server" ForeColor="red"

Font-Size="14pt" Font-Names="Verdana" />

<asp:button runat="server" borderstyle="Solid"

borderwidth="2px" bordercolor="#ff0000" backcolor="#cc0000"/>

<asp:CheckBoxList runat=server ForeColor="#ff0000" />

<asp:RadioButtonList runat=server ForeColor="#ff9999" />

186 Part II Advanced Features
 3. Now add those controls for which you’ve pre-declared attributes in the Skin fi le onto

the UseThemes.aspx page to see how the SeeingRed.skin fi le applies. The effect in the

following graphic shows the red colored controls as a lighter gray. You will no doubt

see the effect when running the sample application.

 The SeeingRed.skin fi le will automatically be applied by declaring the SeeingRed Theme

within the page. You may also prescribe different Skins at runtime within the page’s

PreInit handler, and you can apply separate Skins to each control.

 Summary
 One of the most often requested features for ASP.NET has been to support a common look

and feel for a site. The Master Pages feature within ASP.NET pushes this capability to the

forefront and makes developing a set of pages with similar aspects a very doable proposition.

In addition to Master Pages, ASP.NET Themes represent a way to apply global style attributes

to all the pages in your application.

 ASP.NET also supports specifying default values for specifi c server-side controls through a

Skin fi le. Skins offer a fi ner-grained approach to applying styles in a control-centric manner.

 Chapter 8 A Consistent Look and Feel 187
Chapter 8 Quick Reference
 To Do This
 Defi ne a page that will represent the consistent

look and feel of a series of pages in a Web site

Add a Master Page to the site.

 Create a page based on the Master Page Check the Select Master Page check box when creating

forms for a site.

 Add elements to the Master Page that will

show up in pages based on the Master Page

Place elements outside the area represented by the content

pane.

 Add individual elements to content pages Add elements within the content page shown on the page.

 Create a Theme for a page Add a new Theme folder to the App_Themes folder within

your application. Use a Cascading Style Sheet (CSS) to de-

fi ne styles and classes for the Theme.

 Apply a Theme to a page Set the Theme property within the Page Directive

OR

Set the Theme property within the page during the page’s

PreInit event.

 Create a Skin Create a text fi le within a Theme folder. Simply make the

fi le have a .skin extension. Add control declarations with

their properties set to default values.

To Do This

 Chapter 9

 Confi guration
 After completing this chapter, you will be able to

Q Understand the way .NET handles confi guration

Q Apply confi guration settings to ASP.NET applications

Q Manage ASP.NET confi guration using the ASP.NET Administration tool

Q Manage ASP.NET confi guration using the MMC Snap-in

 This chapter introduces how ASP.NET manages its confi guration information. It gives a taste

of how ASP.NET confi guration works. We’ll revisit ASP.NET confi guration in later chapters.

ASP.NET is a feature-rich system for developing and deploying Web sites. The features we’ll

see in more detail as we examine ASP.NET further include some of the following:

Q Session state

Q Caching content to help optimize your Web site’s responses

Q Tracing requests

Q Mapping specifi c fi le extensions to custom handlers

Q Authenticating users

 Each of these features is controlled by a number of separate confi gurable parameters. For ex-

ample, when you enable session state for your application, you may choose where to locate

your application’s session state (in process, on a separate machine using a Windows Service,

or using SQL Server). You may also confi gure the lifetime of your session state and how your

application tracks the session state (via a cookie or some other method).

 A second feature controlled through the confi guration fi le is caching output. When you

cache the content of your site, you may vary the lifetime of your cached content and where

it’s cached (on the server, on the client, or on the proxy).

 For both these features (and others), the confi guration options are governed by confi gura-

tion fi les. Here, we fi rst examine the nature of Windows confi guration and then look specifi -

cally at how ASP.NET handles confi guration. In ASP.NET 1.x, modifying the confi guration of

your application meant editing the XML-based confi guration fi le by hand. Fortunately, more

recent ASP.NET versions offer two tools that make confi guration a much easier proposition.

One tool is the ASP.NET confi guration tab available through the normal Internet Information

Services (IIS) confi guration panel. The second tool is the Web Site Administration Tool, avail-

able through the Web Site, ASP.NET Confi guration menu in Visual Studio. We’ll cover

these tools as well.
 189

190 Part II Advanced Features
 Windows Confi guration
 Every computing platform needs a confi guration mechanism to control the behavior of the

platform. On any platform, a number of various parameters can govern how the operat-

ing system and programs operate. The parameters often need to be modifi ed, perhaps to

tune performance or tailor security or even just to control normal operation. For example,

Windows provides an environment variable named PATH that controls the search path for

executable programs. Other environment variables include one named TEMP (controls the

location of temporary fi les) and USERPROFILE (identifi es the location of the current user’s

profi le information).

 In addition to operating system variables, individual applications may require different set-

tings specifi c to that program. For example, many applications require a specifi c version of

Windows or that specifi c dynamic link libraries (DLLs) be available. These actions may vary

from one installation to the next, and it’s not a good idea to hard-code the settings into your

application. Instead, you store values in a secondary fi le that accompanies the application.

 During the early days of Windows, “initialization fi les” (.INI fi les) served to not only confi gure

individual applications but also Windows itself; there is even a set of Windows Application

Programming Interface (API) functions for managing confi guration parameters. The fi les

contain a name/value pair that dictates a property and its associated setting. For example,

the name/value pair in Win.INI that turns on Object Linking and Embedding (OLE) messaging

looks like

 OLEMessaging=1

 Now that we are a few years into the new millennium, XML is the way to go. .NET depends on

XML fi les (machine.confi g and web.confi g) for its confi guration.

 Note The second way in which applications have confi gured themselves in the past is through

the Registry. The Registry is a centralized database that applications may use to store name/value

pairs. The reason ASP.NET doesn’t use the Registry to confi gure information is because global

nature Registry is in direct confl ict with ASP.NET’s need for fl exibility during deployment. Settings

stored in the Registry would need to be copied through the Registry API, whereas Confi guration

fi les may simply be copied. In addition, the account that runs most ASP.NET sites is specifi cally

confi gured to be opted out of the Registry to secure the site from hacks and attacks.

 .NET Confi guration
 .NET confi guration fi les are well-formed XML fi les whose vocabulary is understood by the

.NET runtime. You can see a listing of all the confi guration fi les by looking in the confi gura-

tion directory. We’ll see that directory in just a minute.

 Chapter 9 Confi guration 191
 The .NET runtime reads these confi guration fi les into memory as necessary to set the various

.NET runtime parameters. For example, web.confi g is loaded when ASP.NET applications are

started. The fi rst confi guration fi le we’ll take a look at is machine.confi g.

 Machine.Confi g
 The default .NET confi guration for your machine is declared within a fi le named

machine.confi g. You can fi nd machine.confi g within the directory C:\Windows\Microsoft

.NET\Framework\vxxxxx\confi g. Machine.confi g sets the default .NET application behaviors for

the entire machine.

 Recent .NET versions made a number of improvements to the machine.confi g arrangement.

.NET 1.x lumped all of machine.confi g into a single fi le—even comments and confi guration

information for systems not in use on the specifi c machine (browser information, for ex-

ample, even though the machine may not have been hosting ASP.NET). The current version

of machine.confi g is trimmed down substantially from version 1.x. The comments have been

moved to a separate fi le named machine.confi g.comments, and separate browser defi ni-

tion capability fi les have been moved to separate confi guration fi les. This is important to

know because the machine.confi g comments are sometimes more useful as documentation

for confi guring .NET than the regular online documentation. As you confi gure your various

ASP.NET applications, the machine.confi g comments should be the fi rst place you look for

information.

 Confi guration Section Handlers
 At the top of machine.confi g you’ll see a number of Confi guration Section Handlers. Each of

these handlers understands a specifi c vocabulary for confi guring .NET (and ultimately ASP

.NET). While machine.confi g controls the settings for the entire machine, ASP.NET applica-

tions rely on fi les named web.confi g to manage confi guration. We’ll see much more about

web.config shortly. However, for now here is a small snippet that you might find in a

web.confi g fi le for a specifi c application:

 <?xml version="1.0" encoding="utf-8"?>

<configuration>

 <system.web>

 <authentication mode="Forms" />

 <sessionState mode="SQLServer" cookieless="UseUri" timeout="25" />

 </system.web>

</configuration>

 This small segment tells the ASP.NET runtime to use Forms Authentication (one of ASP.NET’s

authentication options) to authenticate users of this site. The confi guration information also

tells ASP.NET to use SQL Server to manage session state, to allow session state information

192 Part II Advanced Features
to expire after 25 minutes, and to track session information using a session ID embedded

within the request Universal Resource Indicator (URI). We’ll look at session state in detail in

Chapter 14—for now it’s a good example to illustrate some of the parameters ASP.NET con-

fi guration manages.

 You can see from this example that confi guring ASP.NET relies on the ability of the runtime to

understand some keywords. In this case, the keywords authentication, mode, and Forms tell

ASP.NET how to manage authentication. ASP.NET must correctly interpret sessionState, mode,
SQLServer, cookieless, UseURI, and timeout to know how to manage an application’s session

state.

 The .NET components that understand these vocabularies are listed near the top of

machine.confi g.

 <configuration>

 <configSections>

 <section name="appSettings"

 type="{entire strong assembly name here...}"

 restartOnExternalChanges="false" />

 <section name="connectionStrings"

 type="{entire strong assembly name here...}" />

 ...

 <sectionGroup name="system.web"

 type="{entire strong assembly name here...}">

 <section name="authentication"

 type="{entire strong assembly name here...}"

 allowDefinition="MachineToApplication" />

 <section name="sessionState"

 type="{entire strong assembly name here...}"

 allowDefinition="MachineToApplication" />

 ...

 </sectionGroup>

 </configSections>

</configuration>

 The listing above is necessarily abbreviated. Go ahead and take a look at machine.confi g and

you’ll see the section handlers in their full glory. (On most systems, machine.confi g is located

at C:\Windows\Microsoft.NET\Framework\vxxxxx\confi g.) In looking at the confi guration

handlers, you can see that the sessionState confi guration settings are interpreted by an as-

sembly with the strong name System.Web.Confi guration.SessionStateSection, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a. A strong name fully

specifi es the name of an assembly including a version (to ensure version compatibility) and a

public token (to ensure the assembly has not been tampered with). Even though we’re look-

ing at ASP.NET 3.5 in this book, and even to a degree version 3.5 of the .NET Framework

itself, many .NET assemblies remain unchanged since version 2.0. It isn’t surprising to look

through machine.confi g and fi nd references to older versions of Framework components for

this reason. The strong name you’ve just seen is but one example.

 Chapter 9 Confi guration 193
 Web.Confi g
 While machine.confi g lays out the default setting for your machine (and ultimately for your

applications), the default settings are generally targeted toward the most common use cases

(rather than some special confi guration you may need to apply to your application). For ex-

ample, sessionState is confi gured to be handled in process by default. That’s fi ne when you’re

developing, but almost certainly is not appropriate for a commercial-grade application that is

servicing many diverse clients.

 Because all your .NET applications depend on machine.confi g to confi gure them, making

changes to machine.confi g could potentially affect your other applications. It’s a bad idea to

update machine.confi g directly.

 Stand-alone .NET applications depend on confi guration fi les modeled after the application

name to confi gure themselves. For example, an application named MyApp.EXE would have a

confi guration fi le named MyApp.EXE.confi g. Of course, ASP.NET applications aren’t named in

that way. Instead, the ASP.NET runtime expects confi guration information to be declared in a

fi le named web.confi g.

 To override the default settings, you simply need to include a fi le named web.confi g in your

application’s virtual directory. For example, the following code sets up the Web application to

which it applies. The confi guration fi le turns on Forms Authentication and tracing, for example.

 <?xml version="1.0" encoding="utf-8"?>

<configuration>

 <system.web>

 <authentication mode="Forms" />

 <trace enable=true/>

 </system.web>

</configuration>

 The confi guration settings your application actually sees have been inherited from a (poten-

tially) long line of other web.confi g fi les. The machine.confi g fi le sets up the default .NET con-

fi guration settings. The top-level web.confi g fi le (in the .NET confi guration directory) sets up

the initial ASP.NET confi guration. Then, subsequent child web.confi g fi les within the request

path have the opportunity to tweak the settings for a single application.

 This way of managing confi guration information works well. Many of the normal defaults ap-

ply in most situations, and you sometimes need to tweak only a few items. When you do, just

drop a web.confi g in your virtual directory and/or subdirectory.

 However, managing settings by littering your hard disk with web.confi g fi les can get a bit un-

wieldy if lots of different parts of your application need separate confi gurations. The ASP.NET

confi guration schema includes a location element for specifying different settings for differ-

ent directories—but they can all go in a master confi guration fi le for your application.

194 Part II Advanced Features
 For example, the following confi guration section will remove the ability for the AppSubDir

directory to process standard ASP.NET Web Services. The remove instruction causes ASP.NET

to have amnesia about all fi les with the extension .asmx.

 <configuration>

 <location path="appSubDir">

 <system.web>

 <httpHandlers>

 <remove verb="*" path="*.asmx" />

 </httpHandlers>

 </system.web>

 </location>

</configuration>

 You could also apply other specifi c settings to the subdirectory, such as for security. While

we’ll look at security in depth in the next chapter, you may not fi nd it surprising to fi nd

that ASP.NET confi guration fi les include terms to manage authorization and authentica-

tion. This is a perfect use for the location element. The following confi guration snippet al-

lows all users into the main (virtual) directory while requiring users wanting access to the

PagesRequiringAuth subdirectory to be authenticated.

 <configuration>

 <system.web>

 <authorization>

 <allow users="*" />

 </authorization>

 </system.web>

 <location path="pagesRequiringAuth">

 <system.web>

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

 </location>

</configuration>

 Managing Confi guration in ASP.NET 1.x
 Confi guration within ASP.NET 1.x was done entirely by manually typing changes into a target

web.confi g fi le. For example, if you wanted your application to use SQLServer as a session state

database, you’d need to insert the correct verbiage into the application’s web.confi g fi le key-

stroke by keystroke. Unfortunately, there was no confi guration compiler to help ensure that the

syntax was correct. If you typed something wrong, you usually wouldn’t know about it until you

ran the application, at which point ASP.NET would cough up a cryptic error message.

 Chapter 9 Confi guration 195

 Managing Confi guration in Later Versions of ASP.NET
 ASP.NET 2.0 introduced some major improvements to the process of managing ASP.NET

applications, and these improvements carry through to the current version of ASP.NET.

Although you can still type confi guration information into the web.confi g fi le manually,

ASP.NET 2.0 and later versions provide some new confi guration utilities. These tools include

the Web Site Administration Tool (WSAT) available in Visual Studio and the ASP.NET confi gu-

ration facilities available through IIS.

 Confi guring your application

 In this exercise, you’ll change some application settings within an application’s confi guration

and see how they’re refl ected within web.confi g.

1. Begin by creating a new Web site named Confi gORama. Make it a regular ASP.NET site

(not an empty one). It can be a fi le system–based Web site.

2. Run the ASP.NET Administration tool. After Visual Studio generates the application, se-

lect the Web Site, ASP.NET Confi guration menu item. This will bring up the ASP.NET

Administration tool.

196 Part II Advanced Features

 Note Notice that the Administration tool includes three tabs in addition to Home:

Security, Application, and Provider. The Security tab manages authentication and authori-

zation settings. That is, you may use the Security tab to add users and assign roles to them.

We’ll explore that process in detail in the next chapter.

 The Application tab is for maintaining various settings related to your application. Some

basic confi guration settings are controlled here, including maintaining key-value pairs

specifi c to your application, SMTP settings for defi ning how the site manages e-mail, and

turning debugging and tracing on and off. You can also use the Application tab to take

your application offl ine in case you need to perform maintenance.

 Finally, the Provider tab is used to manage various data providers. Starting with ASP.NET

2.0, Microsoft introduced the concept of a “provider” designed to make data access for a

given ASP.NET subsystem easier and more standardized. For example, your users might

have personalized settings, and the Membership provider would retrieve those for your

code to display to the user or otherwise manage. Roles your user might be granted when

using your Web application are provided by the Roles provider. The various providers can

be individually confi gured using the Provider tab. It’s most likely you’ll use the built-in pro-

viders that ASP.NET offers, which will access a database for data archival and retrieval, but

you could use custom providers that you create, third party providers that someone else

creates, or mix and match. The way the various providers are confi gured is administered in

this Provider tab, including which provider to use (if you have more than one available) and

database connection string settings if a database is to be used.

 The Web Site Administration Tool lets you manage parts of web.confi g without having

to type things by hand. It’s accessible from Visual Studio. Visual Studio 2008 will cre-

ate a web.confi g fi le by default. But if for some reason one isn’t created, the Web Site

Administration Tool will create a web.confi g fi le for you. The tool will also create a da-

tabase suitable for consumption by SQL Server Express in the App_Data folder of your

Web site for storing application data (we’ll see more about that when we look at

ASP.NET features such as personalization and authorization).

3. Continue working with confi guration. Go to the Application tab and add a couple of

application settings. Add a setting named SomeString and one named AnotherString. In

this exercise, it doesn’t matter what you type as the corresponding value.

 Chapter 9 Confi guration 197

198 Part II Advanced Features

4. Open the application’s web.confi g fi le. You should see entries for both SomeString and

AnotherString.

 Web.confi g should look like this now (some entries inserted by Visual Studio have

been omitted):

 <?xml version="1.0" ?>

<configuration >

 <appSettings>

 <add key="SomeString" value="Here is a string" />

 <add key="AnotherString" value="AnotherValue" />

 </appSettings>

 <connectionStrings/>

</configuration>

5. Now write some code to access the application settings you just added. They’re available

via a class named Confi gurationManager. Add a drop-down list to the Default.aspx form

to hold the application settings keys (with an ID of DropDownListApplicationSettings)
and a label to display the values (with the ID LabelSetting). Add a button that will

be used to look up the value associated with the application settings key. Give it the ID

ButtonLookupSetting. In the Page_Load handler, interrogate the Confi gurationManager
for all the application settings:

 public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Chapter 9 Confi guration 199

 if (!this.IsPostBack)

 {

 foreach (String strKey

 in ConfigurationManager.AppSettings.AllKeys)

 {

 this.

 DropDownListApplicationSettings.

 Items.Add(strKey);

 }

 }

 }

 protected void ButtonLookupSetting_Click(object sender, EventArgs e)

 {

 string strSetting;

 strSetting =

 ConfigurationManager.AppSettings[this.

 DropDownListApplicationSettings.

 SelectedItem.Text];

 this.LabelSetting.Text = strSetting;

 }

}

6. Compile the program and run the site. When you start the page, it will load the drop-

down list with all the keys from the Confi gurationManager.AppSettings collection. When

you select the application settings using the key from the drop-down list, the code

looks up the value of the application setting and displays it in the label:

200 Part II Advanced Features
 ASP.NET also supports another way to manage Application Settings. It’s the ASP.NET confi gu-

ration tab for your site when it’s hosted in IIS.

 Confi guring ASP.NET from IIS
 If your site is running from within a virtual directory (through IIS), you may use the features

view within IIS to edit confi guration information. To use this, you need to have your site

managed by IIS.

 Although confi guring ASP.NET this way may be done only from the computer hosting the

site, it is much more extensive in its ability to manage your ASP.NET application.

 Here’s an exercise to familiarize yourself with the ASP.NET confi guration tab in IIS.

 Use IIS to confi gure ASP.NET

 1. Begin by creating a new Web site. Call it Confi gORamaIIS. Make it an HTTP site man-

aged by IIS (that is, select HTTP in the Location combo box on the page). Run it from

your own computer (localhost). Visual Studio will create a virtual directory for you and

point itself to the virtual directory:

 Chapter 9 Confi guration 201

2. Open up the IIS Management Console. Look for the Confi gORamaIIS site. When you

navigate to that virtual directory, you’ll see the ASP.NET-related settings appear in the

Features view:

3. Double-click on some of the features to view their confi guration screens. For example,

clicking on the Connection Strings icon yields the connection strings screen:

202 Part II Advanced Features

4. Click the right mouse button in the middle of the connection strings user interface (UI)

to add a connection string. The Confi guration utility shows a user-friendly dialog box

asking for connection string information:

 In addition to managing connection strings from the Features view, you can also man-

age application settings. Return to the Features pane. From there, select Application
Settings. When the application settings screen is displayed, click the right mouse but-

ton in the middle of the screen to bring up the context menu. Here’s where you may

add application settings—just as you did with the ASP.NET Web Site Administration

Tool. Clicking the Add menu option brings up the Add Application Settings editor. Add

a key-value pair:

 Chapter 9 Confi guration 203

5. Open web.confi g within your application. It should now include an entry for

AnotherString.

 <?xml version="1.0" encoding="UTF-8"?>

<configuration >

 <appSettings>

 <add key="AnotherString" value="AnotherValue" />

 </appSettings>

</configuration>

6. Using the IIS ASP.NET confi guration editor, add a setting named BackgroundColor. Give

it a value of #00FF00. This will expose a setting that administrators can use to change

the background color of Default.aspx (after support for changing the background color

is built into the code).

7. Now add a property to the Default page (Default.aspx.cs) to retrieve the background

color. It should be available from the Confi gurationManager.AppSettings collection.

 public partial class _Default : System.Web.UI.Page

{

 protected string BackgroundColor {

 get { return

 ConfigurationManager.AppSettings["BackgroundColor"]; }

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 }

}

8. Open the Default.aspx page to the Source view and update the body tag to retrieve

the background color from the application settings. Use the <% and %> braces to mark

executable code. Also add a line to the ASPX fi le to display background color value.

 <%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC

..." >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body style="background-color: <%=BackgroundColor%>" >

204 Part II Advanced Features
 Body background color: <%=BackgroundColor%>

 <form id="form1" runat="server">

 <div>

 </div>

 </form>

</body>

</html>

 9. Compile the program and run the page. The value #00FF00 translates to a bright green,

so the background for your page should now appear bright green.

 10. Browse through some of the other icons in the ASP.NET Confi guration Settings fea-

tured in IIS. We’ll encounter many of these settings as we go through ASP.NET in the

coming chapters.

R The Authentication page is for setting up users and assigning them roles within

your application.

R The .NET Globalization page manages localization issues.

R The Session State management feature is for managing session state. You can tell

ASP.NET to store session state in any of a number of places, including in process

on the host machine, out of process using a dedicated state server, or on a dedi-

cated SQLServer database.

R The Pages and Controls page allows you to manage UI aspects of your applica-

tion such as Themes and Master Pages.

 The confi guration story doesn’t end here. ASP.NET relies on web.confi g for almost all of

its settings. Although we touched on only a couple of settings in this chapter, we’ll see

most of them as well as many others throughout the next chapters. We’ll revisit con-

fi guration when covering features such as security, session state, error messages, and

HttpHandlers/HttpModules.

 Summary
 In this chapter, we saw how to manage confi guration for a specifi c ASP.NET application. The

confi guration defaults are found within machine.confi g and web.confi g (as stored in the main

.NET Framework directory). When it comes time for the ASP.NET runtime to apply confi gura-

tion settings to a specifi c application, ASP.NET looks for overridden confi guration settings

within the XML-based web.confi g.

 The web.confi g fi le that confi gures a specifi c application lives in that application’s directory

(as well as in the application’s subdirectories—if any). If you’re happy with the way Microsoft

established the Web application settings within the primary web.confi g fi le, you don’t need

to change anything in your application’s local web.confi g fi le. However, the default settings

(using defaults such as InProc for your application’s session state management, or using

 Chapter 9 Confi guration 205
Windows authentication to log users in) aren’t generally useful for a Web site in a production

environment.

To change these settings, you may edit the web.confi g fi le directly (as you had to do in the

days of ASP.NET 1.x). However, ASP.NET 2.0 and later versions include new confi guration tools

that make confi guring your site a very straightforward proposition.

We’ll encounter ASP.NET confi guration many more times in forthcoming chapters. In fact,

we’ll visit confi guration heavily in the next chapter on ASP.NET security.

Chapter 9 Quick Reference
To Do This
View global confi guration fi les Look in the Windows directory under Microsoft.NET\Framework\vxxxxx\

confi g, where “vxxxxx” is the version of .NET your ASP.NET site is using.

Change confi guration settings

in a specifi c ASP.NET application

Place a web.confi g fi le in the application’s directory and modify the settings.

Change confi guration settings

for a specifi c subdirectory un-

derneath a virtual directory

Place a separate web.confi g fi le in the subdirectory

OR

Use the location element in the virtual directory’s web.confi g fi le.

 Modify a Web application’s

settings using the Web Site

Administration Tool (WSAT)

Select Web Site, ASP.NET Confi guration from the main menu in Visual

Studio.

 Modify a Web application’s

settings using the IIS ASP.NET

Confi guration tool

Open the IIS control panel.

Highlight the virtual directory for your Web application.

From the Features page for the virtual directory, double-click on the icon

that represents the settings you want to view/modify.

 Retrieve settings from the con-

fi guration fi le

Use the ASP.NET Confi gurationManager class.

To Do This

 Chapter 10

 Logging In
 After completing this chapter, you will be able to

Q Manage Web-based security

Q Implement Forms Authentication

Q Work with Forms Authentication in the raw

Q Work with ASP.NET login controls to make writing login pages painless

Q Work with ASP.NET role-based authorization

 This chapter covers managing access to your ASP.NET application. Web site security is a

major concern for most enterprises. Without any means of securing a site, the Web site can

expose areas of your enterprise that you may not want exposed to the general public. We’ll

take a quick look at what security means when it comes to Web applications. Then we’ll look

at various services available within ASP.NET for authenticating and authorizing users.

 Note ”Authenticating users” means determining a user really is who he or she says they are (verify-

ing the identity of a user). This is often done using a shared secret such as a password. “Authorizing

users” means granting or restricting access to a specifi c user who has identifi ed himself or herself

based on specifi c permissions or “roles” granted to them. For example, clients in an administrative

role are often granted more access than clients in a role as simple users.

 Finally, we’ll look at the new login controls, which greatly reduce the amount of development

effort you might otherwise put into securing your site.

 Web-Based Security
 Software security is a prevalent topic these days, especially with ever increasing public

awareness of security issues such as privacy. When a Web application runs on the Microsoft

platform, several security issues arise immediately. They include (1) the security context of

Internet Information Services (IIS), (2) being sure your clients are who they say they are, and

(3) specifying what those clients may and may not do with your application.

 Managing Web-based security is similar to managing normal network security in that you

still need to manage the authentication and authorization of users. However, Web-based se-

curity involves managing clients running different platforms in an open system. That is, pro-

gramming for a Web-based platform involves servicing requests from a client browser over

which you have much less control in a closed network (like a Windows-based offi ce network).
 207

208 Part II Advanced Features
 Although not quite a trivial problem, Windows security is at least a solved problem. Anyone

who’s confi gured a Windows network knows there are myriad issues involved in getting all

the users of a network set up appropriately. But a Windows network is a closed system, and

everyone on the network is connected and has a baseline level of trust between them (that

is, they’re all on the network). When you log on to a Windows network, you prove who you

are (you authenticate) by providing your user name and password. If the security subsystem

believes you are who you say you are, it issues a security token to your Windows session, and

every application you start runs with that security token.

 The resources (fi les, folders, drives, applications, etc.) on your computer and on your network

are associated with Discretionary Access Control Lists (DACLs). If the security context under

which your application runs belongs to a resource’s DACL, then you may use it. Otherwise,

the system will prevent you from using the resource. This is known as authorization.

 In a closed system such as a Windows network, an administrator can effectively survey the

whole system and assign users access to various resources. Because it’s a closed system, the

system can determine very easily whether or not a user belongs in the system and what that

user may do.

 Contrast this with a Web application. When considering a Web application, you realize fi rst

that the range of users of your application is quite wide. They are not necessarily part of your

local network. That means you need another way (outside of the Windows infrastructure) to

authenticate and authorize the users of your Web application. Or, put another way, Windows

authentication doesn’t scale well to the general Internet.

 Securing IIS
 The fi rst security issue you encounter in programming Web applications on the Windows

platform is understanding the security context for IIS. Virtually all access to your Web site will

be directed through IIS. As with all Windows applications, IIS runs under a specifi c context.

When you install IIS on your machine, the install process creates a separate security identity

specifi cally for IIS.

 You can see the identity under which your version of IIS runs by starting IIS from the control

panel, selecting a virtual directory, viewing the features pane, clicking on the Authentication

icon to open the Authentication page, and then clicking the right mouse button on the

Anonymous Authentication and selecting Edit. On my computer, the name of the user is IUSR

as you can see in Figure 10-1.

 By default, IIS runs the virtual directories using Anonymous Authentication. When this mode

is specifi ed, IIS uses the principle identifi ed in the Specifi c User fi eld as its security principle.

That is, IIS runs with access to the resources as being available for IUSR.

 Chapter 10 Logging In 209
 IIS supports other forms of authentication, including applying Windows authentication to

your Web application. In this case, you’d need to give all the potential clients a Windows

user name and password. This only works when the clients are running on Windows-based

platforms. Users logging on to your site are challenged (meaning they’ll be asked to authen-

ticate themselves). They’ll see a Windows login dialog box when they log on to your Web site

(perhaps you’ve run into this type of site before). This method of authentication does work

well if you’re writing an enterprise-wide site and you can count on your audience running

Windows-based browsers. However, for a Web site with a wider audience using operating

systems other than Windows, you’ll want to use other means of authentication. This is be-

cause the underlying security mechanism available to Windows users is not present in other

operating systems, so those users could not authenticate.

 Fortunately, ASP.NET includes Forms Authentication, a straightforward means of authenticat-

ing clients. The Forms Authentication subsystem in ASP.NET 1.0 and 1.1 was a huge improve-

ment from having to write your own authentication subsystem. Later versions of ASP.NET

include and improve on the Forms Authentication model by adding an Authorization subsys-

tem as well.

 Let’s start by taking a look at Forms Authentication in the raw.

 Basic Forms Authentication
 ASP.NET 1.0 and 1.1 introduced a straightforward means of authenticating users. Forms

Authentication is driven by an application’s web.confi g fi le. In addition to controlling such

aspects as session state, tracing and debugging, and application key-value pairs, web.confi g

includes authentication and authorization nodes.

 To require users of your site to authenticate, you simply need to place some instructions into

your web.confi g fi le. (You may edit the fi le directly, or you may use a tool such as the Web

Site Administration Tool available through Visual Studio, which we examined in some detail in

the previous chapter.)

 FIGURE 10-1 Managing IIS’s authentication settings

210 Part II Advanced Features
 Web.confi g has a section for specifying how your site should deal with authentication

and authorization. In the absence of the authentication and authorization elements, ASP.NET

allows unrestricted access to your site. However, once you add these elements to your

web.confi g fi le, ASP.NET will force a redirect to a URI dedicated to authentication. Most of

the time, the fi le will be some sort of login page in your Web application where users must

do something such as type in a user name and password.

 Before looking at the code, take a look at Figure 10-2, which illustrates how control fl ows on

your Web site when you turn on Forms Authentication using web.confi g.

POST /MyWebsite/login.aspx

Username='john'

Password='rt45!kw'

Web.Config

<configuration>

 <system.web>

 <authentication mode="Forms">

 </authentication>

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

</configuration>

Is request authenticated

(using either a cookie or

a mangled URL)?

YES: allow access to default.aspx

NO: redirect to login.aspx

GET /MyWebsite/content.aspx

Authenticate john

Grant a cookie

Redirect to default.aspx

Is there an authentication cookie?

YES: allow access to content.aspx

GET /MyWebsite/default.aspx

Client Website

 FIGURE 10-2 The control fl ow for a site with Forms Authentication turned on

 Chapter 10 Logging In 211
The CD that comes with this book includes this login page. To see an example of the most

basic authentication you can use in your application, take a look at the fi les Login.aspx

and Web.Confi gFormsAuthentication. The web.confi g fi le includes the Authentication and

Authorization elements to support Forms Authentication for the site. Listing 10-1 shows the

web.confi g settings necessary to force authentication.

LISTING 10-1 A Basic Web.Confi g File Requiring Authentication

<configuration>

 <system.web>

 <authentication mode="Forms">

 <forms loginUrl="login.aspx" />

 </authentication>

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

</configuration>

The login page that goes with it is shown in Listing 10-2.

LISTING 10-2 A Basic ASP.NET Login Page

<%@ Page language=C# %>

<html>

 <script runat=server>

 protected bool AuthenticateUser(String strUserName,

 String strPassword) {

 if (strUserName == "Gary") {

 if(strPassword== "K4T-YYY") {

 return true;

 }

 }

 else if(strUserName == "Jay") {

 if(strPassword== "RTY!333") {

 return true;

 }

 }

 else if(strUserName == "Susan") {

 if(strPassword== "erw3#54d") {

 return true;

 }

 }

 return false;

 }

 public void OnLogin(Object src, EventArgs e) {

 if (AuthenticateUser(m_textboxUserName.Text,

 m_textboxPassword.Text)) {

<configuration>

 <system.web>

 <authentication mode="Forms">

 <forms loginUrl="login.aspx" />

 </authentication>

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

</configuration>

<%@ Page language=C# %>

<html>

 <script runat=server>

 protected bool AuthenticateUser(String strUserName,

 String strPassword) {

 if (strUserName == "Gary") {

 if(strPassword== "K4T-YYY") {

 return true;

 }

 }

 else if(strUserName == "Jay") {

 if(strPassword== "RTY!333") {

 return true;

 }

 }

 else if(strUserName == "Susan") {

 if(strPassword== "erw3#54d") {

 return true;

 }

 }

 return false;

 }

 public void OnLogin(Object src, EventArgs e) {

 if (AuthenticateUser(m_textboxUserName.Text,

 m_textboxPassword.Text)) {

212 Part II Advanced Features
 FormsAuthentication.RedirectFromLoginPage(

 m_textboxUserName.Text, m_bPersistCookie.Checked);

 } else {

 Response.Write("Invalid login: You don’t belong here...");

 }

 }

 </script>

 <body>

 <form runat=server>

 <h2>A most basic login page</h2>

 User name:

 <asp:TextBox id="m_textboxUserName" runat=server/>

 Password:

 <asp:TextBox id="m_textboxPassword"

 TextMode="password" runat=server/>

 Remember password and weaken security?:

 <asp:CheckBox id=m_bPersistCookie runat="server"/>

 <asp:Button text="Login" OnClick="OnLogin"

 runat=server/>

 </form>

 </body>

</html>

This is a simple login page that keeps track of three users—Gary, Jay, and Susan.

In this scenario, even if users try to surf to any page in the virtual directory, ASP.NET will stop

them dead in their tracks and force them to pass the login page shown in Figure 10-3.

FIGURE 10-3 A simple login page for getting a user name and password from a client

 FormsAuthentication.RedirectFromLoginPage(

 m_textboxUserName.Text, m_bPersistCookie.Checked);

 } else {

 Response.Write("Invalid login: You don’t belong here...");

 }

 }

 </script>

 <body>

 <form runat=server>

 <h2>A most basic login page</h2>

 User name:

 <asp:TextBox id="m_textboxUserName" runat=server/>

 Password:

 <asp:TextBox id="m_textboxPassword"

 TextMode="password" runat=server/>

 Remember password and weaken security?:

 <asp:CheckBox id=m_bPersistCookie runat="server"/>

 <asp:Button text="Login" OnClick="OnLogin"

 runat=server/>

 </form>

 </body>

</html>

 Chapter 10 Logging In 213

 This simple login page authenticates the user (out of a group of three possible users). In a

real Web site, the authentication algorithm would probably use a database lookup to see if

the user identifying himself or herself is in the database and whether the password matches.

Later in this chapter, we’ll see the ASP.NET authentication services. The login page then issues

an authentication cookie using the FormsAuthentication utility class.

 Figure 10-4 shows what the Web page looks like in the browser with tracing turned on. Here

you can see the value of the authentication cookie in the (request) cookies collection.

 FIGURE 10-4 Tracing turned on reveals the authentication cookie for a page using Forms Authentication.

 Run the Forms Authentication example

 This example shows how to employ Forms Authentication on your site.

1. To run the Forms Authentication example, create a virtual directory to hold the

site. Add an HTML fi le to the directory that simply displays a banner text “Hello

World.” Name the fi le Default.htm. You need to have a target fi le to surf to for Forms

Authentication to work. Alternatively, you can use an already existing site and employ

Forms Authentication there.

2. Copy the Login.aspx page from the Chapter 10 examples on the CD with this book into

the virtual directory for which you want to apply Forms Authentication.

214 Part II Advanced Features
 3. Copy the Web.Confi gForceAuthentication fi le from the Chapter 10 examples on the

CD with this book into the virtual directory for which you want to apply Forms

Authentication. Make sure to rename the confi guration fi le web.confi g after you copy it.

 4. Try to surf to a page in that virtual directory. ASP.NET should force you to complete the

Login.aspx page before moving on.

 5. Type in a valid user name and password. Subsequent access to that virtual directory

should work just fi ne because now there’s an Authentication ticket associated with the

request and response.

 Although you may build your own authentication algorithms, ASP.NET includes a number

of new features that make authenticating users a straightforward and standard proposition.

We’ll look at those in a moment.

 Briefl y, ASP.NET allows two other types of authentication: Passport authentication and

Windows authentication. There’s not much talk about Passport anymore. Passport authenti-

cation has evolved into the Windows Live ID and requires a centralized authentication service

provided by Microsoft. If you’ve ever used Hotmail.com, you’ve used Windows Live ID. The

advantage of Windows Live ID authentication is that it centralizes login and personalization

information at one source. While this is not a free service, your users can use a single user ID

to log into many Web sites, providing convenience and easing your own development needs

as you don’t need to manage user authentication yourself.

 The other type of authentication supported by ASP.NET is Windows authentication. If you

specify Windows authentication, ASP.NET relies on IIS and Windows authentication to man-

age users. Any user making his or her way through IIS authentication (using basic, digest, or

Integrated Windows Authentication as confi gured in IIS) will be authenticated for the Web

site. These other forms of authentication are available when confi guring IIS. However, for

most ASP.NET Web sites, you’ll be bypassing IIS authentication in favor of ASP.NET authenti-

cation even if only for scalability reasons. ASP.NET will use the authenticated identity to man-

age authorization.

 ASP.NET Authentication Services
 ASP.NET includes a great deal of support for authenticating users (outside of IIS’s support).

Most of it comes from the FormsAuthentication class.

 The FormsAuthentication Class
 Many of ASP.NET’s authentication services center around the FormsAuthentication class. The

examples shown in Listings 10-1 and 10-2 show how the rudimentary authentication works

 Chapter 10 Logging In 215
by installing an authentication cookie in the response and redirecting the processing back

to the originally requested page. This is the primary purpose of FormsAuthentication
.RedirectFromLoginPage. There are some other interesting methods in the FormsAuthentication
class that allow for fi ner-grained control over the authentication process. For example, you

can authenticate users manually (without forcing a redirect). That’s useful for creating optional

login pages that vary their content based on the authentication level of the client.

FormsAuthentication includes a number of other services as well. Table 10-1 shows some of

the useful members of the FormsAuthentication class.

TABLE 10-1 Useful FormsAuthentication Class Members

FormsAuthentication Method Description
CookiesSupported Property indicating whether cookies are supported for

authentication

FormsCookieName Property representing the forms authentication cookie

name

FormsCookiePath Property representing the forms authentication cookie path

LoginUrl Redirects URL for logging in

RequireSSL Property representing whether secure sockets layer is

required

SlidingExpiration Property indicating whether sliding expiration is set

Authenticate Authenticates the user

Encrypt Generates an encrypted string representing a forms-

authentication ticket suitable for use in an HTTP cookie

Decrypt Creates a FormsAuthenticationTicket from an encrypted

forms-authentication ticket

 GetAuthCookie Creates an authentication cookie for a specifi c user

 GetRedirectUrl Gets the original URL to which the client was surfi ng

 HashPasswordForStoringInConfi gFile Creates a hashed password suitable for storing in a

credential store

 RedirectFromLoginPage Authenticates the user and redirects to the originally

requested page

 SignOut Invalidates the authentication ticket

 An Optional Login Page
 The code accompanying this book also includes an example showing how to authenticate

separately. The page in Listing 10-3 uses the same authentication algorithm (three users—

Gary, Jay, and Susan—with hard-coded passwords). However, the page authenticates users

and then redirects them back to the same page (OptionalLogin.aspx).

FormsAuthentication Method Description

216 Part II Advanced Features
LISTING 10-3 OptionalLogin.aspx

<%@ Page language=C# trace="false"%>

<html>

 <script runat=server>

 protected bool AuthenticateUser(String strUserName,

 String strPassword)

 {

 if (strUserName == "Gary")

 {

 if(strPassword== "K4T-YYY")

 {

 return true;

 }

 }

 else if(strUserName == "Jay")

 {

 if(strPassword== "RTY!333")

 {

 return true;

 }

 }

 else if(strUserName == "Susan")

 {

 if(strPassword== "erw3#54d")

 {

 return true;

 }

 }

 return false;

 }

 public void OnLogin(Object src, EventArgs e) {

 if (AuthenticateUser(m_textboxUserName.Text,

 m_textboxPassword.Text))

 {

 FormsAuthentication.SetAuthCookie(

 m_textboxUserName.Text,

 m_bPersistCookie.Checked);

 Response.Redirect("optionallogin.aspx");

 } else {

 Response.Write("Invalid login: You don’t belong here...");

 }

 }

 protected void ShowContent()

 {

 if(Request.IsAuthenticated)

 {

 Response.Write("Hi, you are authenticated.
");

 Response.Write("You get special content...
");

 } else

<%@ Page language=C# trace="false"%>

<html>

 <script runat=server>

 protected bool AuthenticateUser(String strUserName,

 String strPassword)

 {

 if (strUserName == "Gary")

 {

 if(strPassword== "K4T-YYY")

 {

 return true;

 }

 }

 else if(strUserName == "Jay")

 {

 if(strPassword== "RTY!333")

 {

 return true;

 }

 }

 else if(strUserName == "Susan")

 {

 if(strPassword== "erw3#54d")

 {

 return true;

 }

 }

 return false;

 }

 public void OnLogin(Object src, EventArgs e) {

 if (AuthenticateUser(m_textboxUserName.Text,

 m_textboxPassword.Text))

 {

 FormsAuthentication.SetAuthCookie(

 m_textboxUserName.Text,

 m_bPersistCookie.Checked);

 Response.Redirect("optionallogin.aspx");

 } else {

 Response.Write("Invalid login: You don’t belong here...");

 }

 }

 protected void ShowContent()

 {

 if(Request.IsAuthenticated)

 {

 Response.Write("Hi, you are authenticated.
");

 Response.Write("You get special content...
");

 } else

 Chapter 10 Logging In 217
 {

 Response.Write("You're anonymous. Nothing special for you... ");

 }

 }

 </script>

 <body><form runat=server>

 <h2>Optional Login Page</h2>

 User name:

 <asp:TextBox id="m_textboxUserName" runat=server/>

 Password:

 <asp:TextBox id="m_textboxPassword"

 TextMode="password" runat=server/>

 Remember password and weaken security?:

 <asp:CheckBox id=m_bPersistCookie runat="server"/>

 <asp:Button text="Login" OnClick="OnLogin"

 runat=server/>

 <%ShowContent(); %>

 </form></body>

</html>

Notice that the page sets the authentication cookie manually by calling FormsAuthentication
.SetAuthCookie and then redirects the processing back to the page. Each time the page

shows, it calls the ShowContent method, which checks the authentication property in the

page to decide whether or not to display content specialized for an authenticated user.

Because the page redirects manually after authenticating, the web.confi g fi le needs to look a

bit different. To make it work, the authentication node should remain, but the authorization

node that denies anonymous users needs to be removed. That way, any user can log in to the

OptionLogin.aspx page (they won’t be denied) but they may proceed after they’re authen-

ticated. Here’s the new web.confi g fi le, shown in Listing 10-4. The fi le on the CD is named

Web.Confi gForOptionalLogin. To make it apply to the application, copy the fi le and name it

as web.confi g.

LISTING 10-4 A Web.Confi g File Supporting Optional Login

<configuration>

 <system.web>

 <authentication mode="Forms">

 </authentication>

 </system.web>

</configuration>

 {

 Response.Write("You're anonymous. Nothing special for you... ");

 }

 }

 </script>

 <body><form runat=server>

 <h2>Optional Login Page</h2>

 User name:

 <asp:TextBox id="m_textboxUserName" runat=server/>

 Password:

 <asp:TextBox id="m_textboxPassword"

 TextMode="password" runat=server/>

 Remember password and weaken security?:

 <asp:CheckBox id=m_bPersistCookie runat="server"/>

 <asp:Button text="Login" OnClick="OnLogin"

 runat=server/>

 <%ShowContent(); %>

 </form></body>

</html>

218

Part II Advanced Features

 Figure 10-5 shows how the optional login page appears before the user has been

authenticated.

 FIGURE 10-5 The optional login page before an authenticated user logs in.

 Run the optional login page

 This example shows how to run the optional login page.

1. To run the optional login page, create a virtual directory to hold the site. Alternatively,

you can use an already existing site and try the optional login page from there.

2. Copy the OptionalLogin.aspx page from the Chapter 10 examples on the CD with this

book into the virtual directory.

3. Copy the Web.Confi gOptionalLogin from the Chapter 10 examples on the CD with this

book into the virtual directory. Be sure to rename the confi guration fi le web.confi g so

ASP.NET loads the appropriate confi guration settings.

4. Try to surf to a page in that virtual directory. ASP.NET should allow you to see the page,

but as an unauthenticated user.

 Chapter 10 Logging In 219

 5. Type in a valid user name and password. You should see the content tailored for au-

thenticated users. Subsequent requests/responses to and from the site will include an

authentication token, so you would always see the special authenticated content.

 After the user has been authenticated, the optional login page shows the content tailored to

the specifi c authenticated user. Figure 10-6 shows the page after an authenticated user logs in.

FIGURE 10-6 An authenticated user has logged in

 Managing Users
 So far, you can see that the fundamentals behind employing Forms Authentication are easy

to manage. In the previous examples, the pages are inaccessible until you prove your identity.

The example above shows raw authentication with the users and passwords hard-coded into

the ASPX fi le. This is useful for illustration. However, in a production application you’ll un-

doubtedly want to assign identities to the authorized users visiting your site.

 ASP.NET and Visual Studio include facilities for both managing user identities and managing

roles. The following exercise shows how to set up a secure site in which users are allowed

access only after they identify themselves correctly.

220 Part II Advanced Features

 Managing user access

1. Create a new Web site named SecureSite.

2. Add a label to the Default.aspx page with the text “Congratulations. You made it in.”

That way, when you get to the default page after logging in, you’ll know which page it

is in the browser.

3. Open the ASP.NET Web Site Administration Tool by selecting Web Site, ASP.NET
Confi guration from the main menu. Go to the Provider tab. Select the Select A
Single Provider For All Site Management Data link. You can click the Test link to

test the provider to make sure the connection is working.

 Tip As you recall from Chapter 9, IIS includes ASP.NET confi guration facilities as well. If

your site has a virtual directory, you can get to the facilities by opening IIS, selecting the

virtual directory of interest, and navigating among the Features icons.

4. Run the program aspnet_regsql.exe to create a a data store to hold membership informa-

tion. You’ll fi nd aspnet_regsql.exe in C:\Windows\Microsoft.NET\Framework\v2.0.50727>.

5. Go to the Security tab. You’ll see the page shown in the following graphic. Click the

Select Authentication Type link.

 Chapter 10 Logging In 221

6. Select From The Internet as the access method. Then click the Done button. This will

cause the site to use Forms Authentication.

222 Part II Advanced Features

7. Select Enable Roles and then select Create Or Manage Roles. Add some roles to the

site. The example here includes three roles: Administrator, JoeUser, and PowerUser. Add

these roles now. We’ll assign real users to them shortly.

 Chapter 10 Logging In 223

8. Now add some users and assign some roles. From the main security page, select the

Create User link. Add some users. You may assign them to roles now if you wish.

 After you’ve added some users and assigned roles to them, web.confi g should look

something like this:

 <?xml version="1.0"?>

<configuration >

 <system.web>

 <authorization>

 <deny users="?" />

 </authorization>

 <authentication mode="Forms" />

 <roleManager enabled="true"/>

 <compilation debug="true"/></system.web>

</configuration>

224 Part II Advanced Features

9. At this point, you may authenticate users to your site. However, you would probably

like to control what parts of your site they may access. To do that, create some access

rules. Select the Create Access Rules (on the Security tab) link to manage authoriza-

tion. Deny anonymous users, as shown in the following graphic:

 Denying access to anonymous users causes the following changes in web.confi g. Notice

the authorization and the roleManager elements.

 <?xml version="1.0" encoding="utf-8"?>

<configuration

>

 <system.web>

 <authorization>

 <deny users="?" />

 </authorization>

 <roleManager enabled="true"

 defaultProvider="AspNetSqlRoleProvider" />

 <authentication mode="Forms" />

 </system.web>

</configuration>

 Chapter 10 Logging In 225

 10. Now try running the site. ASP.NET should deny you access to the site, as shown here:

 ASP.NET is looking for a way to authenticate the user. However, the site doesn’t have one yet.

The Forms Authentication setting is set to true and anonymous users are denied access, but

there’s no instruction to ASP.NET about what to do. There’s no login redirect and no login

page yet, so ASP.NET simply stops you in your tracks. Let’s provide a login page using the

ASP.NET login controls.

 ASP.NET Login Controls
 Earlier in this chapter, we handcrafted a couple of different login pages. During the heyday

of ASP.NET 1.1, that’s what you had to do to get Forms Authentication working. Modern

ASP.NET improves things by adding a number of login controls that perform the most com-

mon login scenarios you might need for your site.

226 Part II Advanced Features
 These controls include the Login, LoginView, PasswordRecovery, LoginStatus, LoginName,
ChangePassword, and CreateUserWizard controls. Here’s a summary of what each control does:

Q Login The Login control is the simplest login control and supports the most common

login scenario—signing in using a user name and password. The control includes user

name and password text boxes and a check box for users who want to compromise

password security by saving their passwords on the machine. The control exposes prop-

erties through which you can change the text and appearance of the control. You may

also add links to manage registration or password recovery. The Login control interacts

with the ASP.NET membership component for authentication by default. If you want to

manage authentication yourself, you may do so by handling the control’s Authenticate

event.

Q LoginView The LoginView control is very similar to the optional login page men-

tioned earlier. It’s useful for managing the content you display for authenticated versus

nonauthenticated users. The LoginView displays the login status via the display tem-

plates AnonymousTemplate and LoggedInTemplate. The control renders a different tem-

plate depending on the status of the user. The LoginView also lets you manage text and

links within each template.

Q PasswordRecovery The PasswordRecovery control supports Web sites that send user

passwords to clients when they forget their passwords. The control collects the user’s

account name and then follows up with a security question (provided that functionality

is set up correctly). The control either e-mails the current password to the user or cre-

ates a new one.

Q LoginStatus The LoginStatus control displays whether or not the current user is

logged on. Nonlogged-in users are prompted to log in, whereas logged-in users are

prompted to log out.

Q LoginName The LoginName control displays the user’s login name.

Q ChangePassword The ChangePassword control gives users a chance to change

their passwords. An authenticated user may change his or her password by supply-

ing the original password and a new password (along with a confi rmation of the new

password).

Q CreateUserWizard The CreateUserWizard control collects information from users so

it can set up an ASP.NET membership account for each user. Out of the box, the control

gathers a user name, a password, an e-mail address, a security question, and a security

answer. The CreateUserWizard will collect different information from users, depending

on the membership provider used by your application.

 Chapter 10 Logging In 227

 The following exercise illustrates how to write a login page using the login controls.

 Write a login page

1. Create a Login page. ASP.NET wants to see a login page for the SecureSite application

called Login.aspx. Add a regular Web form to your application. Name the form

Login.aspx. Grab a Login control from the toolbox and drag it onto the form, like so:

2. By selecting Internet access through the ASP.NET Web Site Administration Tool,

ASP.NET understands to use Forms Authentication. The default login URL is Login.aspx.

228 Part II Advanced Features
 Now try to surf to the default page. ASP.NET will confront you with the login page, like so:

 You’ll see the default page (provided you logged in successfully):

 Authentication is an important step in managing the security of your site. The second half

is managing access to your site once users have authenticated themselves. This is known as

authorization.

 Chapter 10 Logging In 229
 Authorizing Users
 Once you have authenticated a user, you have established his or her identity. Although that

information is sometimes useful by itself, a system becomes more secure when authentica-

tion is combined with authorization. Authentication establishes identity, whereas authoriza-

tion establishes what users can do when they’re signed onto your site.

 In the previous example, we added a couple of roles to the site. The following example illus-

trates how to limit access to certain areas of your site based on the user’s identity.

 Managing authorization

 1. Add a folder for Administrators to access. Name the folder Administrators. Add a Web

form to the folder with a label that says “Administrators Only.” Make a JoeUsers folder

(and a Web form for JoeUsers). Also make a PowerUsers folder. Add a single default fi le

to each of these directories so that you will have something to surf to in each directory.

Put labels on each of the pages with text to distinguish each page.

 2. Now set up associations between the roles you’ve defi ned and these new resources.

Go to the Web Site Administration Tool again. Add some more users, each with vari-

ous roles assigned. For example, this site includes a user named George assigned to the

Administrator role, a user named Joe assigned to the JoeUser role, and a user named

Frodo assigned to the PowerUser role.

 3. After adding the new users, set up some new access roles. You may do this by selecting

the Manage Access Rules link and then selecting the Add New Access Rule link. You

may selectively allow or deny various users or classes of users, as shown here:

230 Part II Advanced Features

4. Add some hyperlinks to the default page so that clients can try to navigate to the vari-

ous restricted pages. Drag three Hyperlink controls onto the default page—one for the

Administrator page, one for the JoeUser page, and one for the PowerUsers page that

you created in Step 1. Set the Text property of each Hyperlink to be meaningful (for

example, the Text property for the Administrator.aspx fi le could be “Go to Administrator

Page.” Use the Property dialog box to set the NavigationUrl for each Hyperlink to the

appropriate page.

5. Run the page. After logging in, you should see the default page, which says

“Congratulations. You made it in.” and has three Hyperlinks. Depending on your iden-

tity, ASP.NET will allow or disallow you to view the pages in the subdirectories.

 Chapter 10 Logging In 231
If you logged in successfully as a user in the JoeUser role, ASP.NET will let you view the

pages in that subdirectory, like so:

Table 10-2 shows the users’ names and their passwords for the example included with this

chapter.

TABLE 10-2 User Names and Passwords for the Example Code Available for this Book

User Name Password
George abc!123

Joe abc!123

Frodo abc!123

This touches on the utility provided by the login controls. For even more robust login sce-

narios (including password recovery and optional logins), try some of the other login controls.

User Name Password

232 Part II Advanced Features
Summary
In this chapter, we saw the ASP.NET security model. Although IIS does have its own secu-

rity model, leveraging it for Web site security often amounts to giving users of your site a

Windows user identity. Perhaps that’s okay for a small, confi ned Web site. However, for a site

that will be available to potentially the entire globe, that’s not such a good thing.

If you decide to let ASP.NET handle authentication, then you have more control over how the

authentication happens while at the same time leaving your set of Windows user identities

unadulterated. To let a request get past IIS, allow anonymous access to your virtual directory.

Once a request gets past IIS, it’s up to ASP.NET to fi gure out who the user is and how to dole

out access. ASP.NET includes an authentication model named Forms Authentication. You turn

on Forms Authentication through the web.confi g fi le. Either use the typing Wizard (that is,

type the <authentication> element by hand) or use the Web Site Administration Tool (or the

IIS ASP.NET tab) to turn on Forms Authentication.

The Web Site Administration Tool is useful for adding users, adding roles, and assigning users

to roles. It’s the most convenient way to manage users and roles. (If you want to, you may set

up your own authentication scheme and database, bypassing the ASP.NET support, but this is

very advanced and well beyond the scope of this book.)

By using ASP.NET authentication and authorization support, the login controls work au-

tomatically. The login controls supply login functionality for the majority of use cases. (As

always, you may bypass the support for an authentication and authorization scheme of your

own choosing.)

Chapter 10 Quick Reference
To Do This
Use Forms Authentication in your application 1. Use the ASP.NET Web Site Administration tool (select

 Web Site, ASP.NET Confi guration).

2. Use the ASP.NET tab in IIS.

 Confi gure the security aspects of your Web site 1. Use the ASP.NET Web Site Administration Tool (select

 Web Site, ASP.NET Confi guration).

2. Use the ASP.NET tab in IIS.

 Authenticate a request by hand Use the FormsAuthentication class’s Set Auth cookie.

 Invalidate an authentication cookie Call the FormsAuthentication class’s SignOut method.

 Verify presence of the authentication cookie Turn on tracing.

To Do This

 Chapter 11

 Data Binding
 After completing this chapter, you will be able to

Q Represent collections using data-bound controls

Q Talk to database providers in ASP.NET

Q Customize data-bound controls

 This chapter covers one of ASP.NET’s most useful features: data binding. A number of controls

within ASP.NET have the capability to understand the form and content of a collection and to

render the correct tags to represent such user elements as list boxes, radio button lists, and

combo boxes. Here we’ll examine how these controls work and how to use them on a Web page.

 Representing Collections without Data Binding
 One of the most common problems encountered in building any software (and Web sites in

particular) is representing collections as user interface (UI) elements. Think about some of

the sites you have recently visited. If you ordered something from a commercial site, you no

doubt hit a page that asked you to enter your address. What happened when you reached

the State fi eld? Most Web sites display a drop-down list box from which you may choose a

state abbreviation.

 How was that drop-down list fi lled? In HTML, the <select> tag nests several <option> tags

that represent the elements to be listed. The state abbreviations probably came from a da-

tabase or some other well-established source. Somewhere (most likely at the server), some

piece of code had to go through the collection of states and render <select> and <option>

tags for this hypothetical state selection control.

 ASP.NET server-side controls, such as the ListBox and the DropDownList, include Items collec-

tions. For example, one way to render a collection as a drop-down list is to declare a drop-

down list on your ASP.NET page and add the items individually via the Items.Add method like

so (of course this assumes this object’s ToString method returns something meaningful—not

the type but the contents of the object):

 protected void BuildDropDownList(IList techList)

{

 for(int i = 0; i < techList.Count; i++)

 {

 this.DropDownList2.Items.Add(techList[i]);

 }

}
 233

234 Part II Advanced Features
 Because representing collections as UI elements is such a prevalent programming task, it

makes a lot of sense to push that down into the framework if possible. ASP.NET includes a

number of data-bound controls that are capable of taking collections and rendering the cor-

rect tags for you. Let’s see how this works.

 Representing Collections with Data Binding
 Each of the data-bound controls within ASP.NET includes properties to attach it to a data

source. For simple data binding, these controls include a DataSource property to which you

may attach any collection that implements the IEnumerable interface (as well as the DataSet
and DataTable classes that we’ll see shortly). After attaching the collection to the control,

you call DataBind on the page (or the control) to instruct the control to iterate through the

collection.

 For more complex data binding, some controls include a property named DataSourceID.

This new style of data binding is named declarative data binding. Instead of simply iterating

through a collection, the declarative data binding classes use a separate DataSource control

to manage data for the data-bound control. You can think of the DataSource controls as

preconfi gured database commands. Instead of littering your code with database commands

and queries, the DataSource controls perform the commands on your behalf. These data

managers support the data-bound controls in implementing standard functionality such as

sorting, paging, and editing. Declarative binding greatly simplifi es the process of render-

ing collections. They work by referencing the ID of a DataSource control on the page. .NET

includes several of these DataSource controls—including one for Access databases, one for

SQL Server, one for wrapping ad hoc collections (the ObjectDataSource), one for supporting

Language Integrated Query (LinqDataSource), and one for supporting XML data access (the

XmlDataSource). We’ll look at the SiteMapDataSource in Chapter 12. With declarative data

binding, calling DataBind is optional. The control will call DataBind during the PreRendering

event.

 ASP.NET includes a number of controls that support at least simple data binding, whereas

others support declarative data binding as well. These controls include those based on the

ListControl, the CheckBoxList, the RadioButtonList, the DropDownList, and the ListBox. In addi-

tion, the more advanced controls include the TreeView, the Menu, the GridView, the DataGrid,

the Repeater, the FormView, and the DetailsView.

 Here’s a rundown of how each control works.

 ListControl-Based Controls
 The most common data-bound controls are those based on the ListControl base class. These

controls include the ListBox, the BulletedList, the RadioButtonList, the CheckBoxList, and the

DropDownList. We’ll see these controls in detail in a moment. The names are self-explanatory

 Chapter 11 Data Binding 235
for the most part. They all have direct analogs in Windows desktop programming as well as

standard HTML control tags. The ListBox displays a list of strings. The DropDownList is similar

to a ComboBox. The RadioButtonList displays a group of mutually exclusive radio buttons. The

CheckBoxList displays a column of check box controls.

 TreeView
 We saw an example of the TreeView in Chapter 6. The TreeView control represents hierarchi-

cal data. It’s perfect for matching up with XML data sources. The TreeView features collapsible

nodes that allow users to drill down from abstract data elements into more detailed ones.

The TreeView supports declarative data binding.

 Menu
 The Menu control also handles hierarchical data binding. The Menu control gives users the

ability to navigate the site in much the same way that menus for desktop applications do. The

Menu supports declarative data binding.

 FormView
 The FormView control supports free-form layout for individual controls (such as a TextBox or

a ListBox) that render data from a data source. The FormView also supports editing of data in

the data source through the controls. The FormView supports declarative data binding.

 GridView
 Whereas ASP.NET 1.x supported only the DataGrid control, later versions of ASP.NET support

a DataGrid on steroids—the GridView. The GridView control is what it says it is—it renders

collections via a grid with individual columns and rows. Each row in the grid represents an

individual record in a collection. Each column within that row represents an individual fi eld

within the record. Moreover, the original DataGrid required you as a developer to manage

paging and sorting of data. The GridView control, on the other hand, supports automatic

paging and sorting. The GridView also supports editing (something that requires hand cod-

ing in the DataGrid). The GridView supports declarative data binding.

 DetailsView
 If the GridView gives you the whole gestalt of a data source, then the DetailsView control is

for drilling down to display one record at a time. The DetailsView is often paired with controls

such as the ListBox, the DropDownList, or the GridView. Users select the row using one of

these controls and the DetailsView shows the associated data. The DetailsView supports de-

clarative data binding.

236 Part II Advanced Features
 DataList
 The DataGrid and the GridView display the data in a data source using regular rows and

columns, and that is that. However, if you want a little more control over the fi nal rendered

format, the DataList control displays the records in a data source in a format you determine

using template controls.

 Repeater
 The Repeater control also displays data from a data source in a format you determine (rather than

forcing it into rows and columns). The Repeater control uses both raw HTML and server-side con-

trols to display the rows. The Repeater control repeats the format you defi ne for each row.

 Simple Data Binding
 The simplest data binding entails attaching a simple collection to one of the ListControl-
based control’s DataSource property. If you have a collection, you can simply set

the DataSource property of one of these controls and it will render the correct tags

automatically.

 The following example shows how to use some of the data-bound controls by hooking up a

List to several of the ListControl-based controls.

 Data binding with a collection

 1. Start a new Web site named DataBindORama.

 2. From the WebSite menu, select Add New Item… and add a class named

TechnologyDescriptor. If Visual Studio asks if you want the fi le supporting this class to

be placed in the App_Code folder, say yes (that is, click OK). Add two implicit string

properties named TechnologyName and Description. This class will represent a technol-

ogy name and an accompanying description.

 Tip Prior to .NET 3.5 you would have had to create private or protected fi elds to store the

string-based information and then created public properties to expose the string values

for public consumption. .NET 3.5 simplifi es this by allowing you to use implicit properties.
Implicit properties are really nothing more than a shortcut, saving time and unnecessary

lines of code when your property is doing nothing more than providing access to private

(or protected) fi elds.

 Chapter 11 Data Binding 237
 Important Exposing the member variables as properties is important so the controls will

work correctly with data binding. When a control binds to a collection composed of class-

es, it will look for the fi elds to expose via their property names. Using the data-binding

controls, you may specify a “display name” (that is, the value that will appear in the con-

trol), and you may specify a second “hidden” value to be associated with the item that was

selected. In the case of rendering collections of managed objects, the binding architecture

depends on these fi elds being exposed as properties.

 Listing 11-1 shows the TechnologyDescriptor that exposes a technology name and de-

scription as properties. The class also has a static method that creates a collection of

TechnologyDescriptors.

 LISTING 11-1 Code for the TechnologyDescriptor

 public class TechnologyDescriptor

{

 public string TechnologyName { get; set; }

 public string Description { get; set; }

 public TechnologyDescriptor(string strTechnologyName,

 string strDescription)

 {

 this. TechnologyName = strTechnologyName;

 this. Description = strDescription;

 }

 public static List<TechnologyDescriptor> CreateTechnologyList()

 {

 List<TechnologyDescriptor> lTechnologies =

 new List<TechnologyDescriptor>();

 TechnologyDescriptor technologyDescriptor;

 technologyDescriptor =

 new TechnologyDescriptor("ASP.NET",

 "Handle HTTP Requests");

 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =

 new TechnologyDescriptor("Windows Forms",

 "Local Client UI technology");

 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =

 new TechnologyDescriptor("ADO.NET",

 "Talk to the database");

 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =

 new TechnologyDescriptor(".NET CLR",

 "Modern runtime environment for manage code");

 lTechnologies.Add(technologyDescriptor);

238 Part II Advanced Features

 technologyDescriptor =

 new TechnologyDescriptor(".NET IL",

 "Intermediary representation for .NET applications");

 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =

 new TechnologyDescriptor(".NET Compact Framework",

 "Modern runtime environment for small devices");

 lTechnologies.Add(technologyDescriptor);

 return lTechnologies;

 }

}

3. After developing the TechnologyDescriptor class, add four data-bound controls to the

default page: a ListBox, a DropDownList, a RadioButtonList, and a CheckBoxList.

4. Underneath each of these controls, place a Label. The label will be used to show the

value associated with each selected item.

5. Set the AutoPostBack property for the ListBox, the DropDownList, the RadioButtonList,
and the CheckBoxList to true. That way, selecting an item in each of the controls will

cause a postback during which the selected item may be interrogated.

6. Now update the page to build a list of TechnologyDescriptors and to attach the

collection of TechnologyDescriptors to each control. For each control, set the

 Chapter 11 Data Binding 239

DataTextField property to TechnologyName (to map it to the TechnologyDescriptor’s
TechnologyName property). This will ensure that the technology name will appear in

the control. Then set the DataValueField for each control to Description to map the

Description property to be the associated value. Listing 11-2 shows creating a collection

of TechnologyDescriptors and attaching the collection to each of the controls.

7. Add selection handlers for each of the controls (by double-clicking them). On receiving

the selection events, interrogate the control for the selected item’s value. Listing 11-2

also shows the handlers.

 LISTING 11-2 Modifi cations to Default.aspx.cs to Support Data Binding and Control Events

 using System.Collections.Generic;

protected void Page_Load(object sender, EventArgs e)

{

 if (!this.IsPostBack)

 {

 List<TechnologyDescriptor> techList =

 TechnologyDescriptor.CreateTechnologyList();

 this.ListBox1.DataSource = techList;

 this.ListBox1.DataTextField = "TechnologyName";

 this.DropDownList1.DataSource = techList;

 this.DropDownList1.DataTextField = "TechnologyName";

 this.RadioButtonList1.DataSource = techList;

 this.RadioButtonList1.DataTextField = "TechnologyName";

 this.CheckBoxList1.DataSource = techList;

 this.CheckBoxList1.DataTextField = "TechnologyName";

 this.DataBind();

 }

}

protected void ListBox1_SelectedIndexChanged(object sender, EventArgs e)

{

 this.LabelListBoxSelectedValue.Text = this.ListBox1.SelectedValue;

 }

protected void DropDownList1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 this.LabelDropDownListSelectedValue.Text =

 this.DropDownList1.SelectedValue;

}

protected void RadioButtonList1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 this.LabelRadioButtonListSelectedValue.Text =

 this.RadioButtonList1.SelectedValue;

}

protected void CheckBoxList1_SelectedIndexChanged(object sender,

 EventArgs e)

240 Part II Advanced Features
{

 this.LabelCheckboxListSelectedValue.Text =

 this.CheckBoxList1.SelectedValue;

}

 8. Compile the site and browse to the page.

 In the previous example, selecting one of the items within the data-bound controls will reveal

the related value in the label beneath the control.

 In certain programming situations, you may fi nd yourself doing this kind of data binding.

For example, simple collections such as states within the United States or short lists (perhaps

of employee or contact names) work great with these ListControl-based controls. However,

very often you’ll fi nd yourself dealing with data in a more complex format—beyond a simple

standard collection. A number of controls can deal with more complex DataSets. However,

we fi rst need to look at ADO.NET because it provides the easiest way to reach these more

complex data compositions.

 Accessing Databases
 The previous example shows how to attach in-memory collections (such as ArrayLists and
Lists) to a server-side control and have it render the correct tags on the client. Although this

is useful, the server-side controls are capable of working with other collections—including

 Chapter 11 Data Binding 241
ones that come from databases. Before seeing how to render database queries using UI ele-

ments, let’s take a quick look at the .NET database story.

 The .NET Database Story
 Just as .NET includes a library of classes for managing rich client UI (Windows Forms) and for

handling HTTP requests (ASP.NET), .NET includes a library for connecting to a wide range of

databases. That library is named ADO.NET.

 ADO.NET is similar to Microsoft’s previous database technology (named simply ADO). ADO

stands for Active Data Objects. Although Microsoft has dropped “Active” from its marketing

lexicon, it kept the name ADO and appended “.NET” to name the managed database tech-

nology (surely for brand name recognition). ADO represents a set of managed providers that

is very similar in function and form to classic ADO. ADO.NET centers around three main units

of functionality: connecting to a database, commanding the database, and using the results.

 Connections
 When you want to talk to a specifi c database, you usually need to connect to it. At the very

least, most of the time this involves specifying the location of the database. For many sce-

narios, connecting also requires managing security (via user names and passwords). More

advanced scenarios may also require dealing with such issues as connection pooling and

transactions. These are all handled as part of the process of connecting to the database. The

connection information is usually passed in via a string, the contents of which are used to set

various connection parameters when the ADO.NET internals interpret the string.

 ADO.NET has classes for making connections to a database. ADO.NET 1.x included only two:

a connection for Microsoft SQL Server and another for connecting to OLEDB databases. Later

versions of ADO.NET add classes specialized for more database types and include a new set

of database services using the provider pattern.

 Working with ADO.NET 1.x involved writing most of the data access code using the ADO

interfaces (rather than directly instantiating the database classes). This allowed you to isolate

the vendor-specifi c details in a single place in the code—in the spot where the connection is

managed. After that, getting the other parts required for making queries (for example, get-

ting the correct command object) was a matter of asking the connection for it. While you

may still write code to connect to the database using ADO.NET 1.x–style code, there’s now a

better way—using the ADO.NET database provider factories.

 The ADO.NET provider pattern offers an improvement in connecting to and using databases.

By using the provider pattern, you limit exposing the kind of database you’re using to a sin-

gle call to a provider factory. You choose the kind of database in one place and the provider

takes care of making sure the correct connection and command objects are used. This was

242 Part II Advanced Features
less important in ADO 1.x, when ADO divided the database world into two kinds of databas-

es: SQL Server and OLEDB databases. However, with its support of new database types, the

provider pattern is a welcome addition.

 If you look in machine.confi g, you’ll see providers for the following database types:

Q Odbc Data Provider

Q OleDb Data Provider

Q OracleClient Data Provider

Q SqlClient Data Provider

Q SQL Server CE Data Provider

 Listing 11-3 shows a snippet from machine.confi g illustrating how the provider keys are

mapped to provider factories.

 LISTING 11-3 Default Provider Factories Defi ned in Machine.Confi g

 <system.d<configuration>

 <system.data>

 <DbProviderFactories>

 <add name="Odbc Data Provider"

 invariant="System.Data.Odbc"

 type="System.Data.Odbc.OdbcFactory " />

 <add name="OleDb Data Provider"

 invariant="System.Data.OleDb"

 type="System.Data.OleDb.OleDbFactory "/>

 <add name="OracleClient Data Provider"

 invariant="System.Data.OracleClient"

 type="System.Data.OracleClient.OracleClientFactory "/>

 <add name="SqlClient Data Provider"

 invariant="System.Data.SqlClient"

 "System.Data.SqlClient.SqlClientFactory" />

 <add name="Microsoft SQL Server Compact Data Provider"

 invariant="System.Data.SqlServerCe.3.5"

 type="Microsoft.SqlServerCe.Client.SqlCeClientFactory " />

 </DbProviderFactories>

 </system.data>

</configuration>>

 To get a connection to a database, you ask the runtime for a reference to the right factory

and then get a connection from the factory, as shown in Listing 11-4. You use the name of

the database type (System.Data.SqlClient or System.Data.SqlServerCe.3.5, for example). After

getting the right kind of factory, you ask it to create a connection for you.

 LISTING 11-4 Obtaining a Database Provider Factory

 DbConnection GetConnectionUsingFactory()

{

 DbProviderFactory dbProviderFactory =

 DbProviderFactories.GetFactory("System.Data.SqlClient")

 return dbProviderFactory.CreateConnection();

}

 Chapter 11 Data Binding 243
 Once you have a connection, you may use it to connect to the database. Given an SQL Server

database named AspDotNetStepByStep available on your machine, you’d insert a connection

string as shown in Listing 11-5 in your web.confi g. Listing 11-5 shows how this might appear

in a web.confi g fi le.

 LISTING 11-5 Example Web.Confi g Connection String Settings

 <configuration>

 <connectionStrings>

 <add name="AspDotNetStepByStep"

 connectionString=

 "server=(local);integrated security=sspi;database=AspDotNetStepByStepDB "/>

 </connectionStrings>

</configuration>

 Once you have a reference to the database connection, you may open the connection and

start commanding the database.

 Commands
 Once connected, the database is waiting for you to send database commands. These com-

mands usually include querying the database, updating existing data, inserting new data, and

deleting data. Most databases support Structured Query Language (SQL) to manage these

commands. (Some databases may support specialized variations of SQL, so the actual com-

mand text may differ from one implementation to the other.) Commanding the database

usually entails writing SQL statements such as

 SELECT * FROM DotNetReferences WHERE AuthorLastName = 'Petzold'

 For example, to connect to an SQL database named AspDotNetStepByStepDB and query the

DotNetReferences table for all the references by someone with the last name “Petzold,” you’d

use code as shown in Listing 11-6.

 LISTING 11-6 Example Database Query Using a DataReader

 class UseDBApp {

 static void Main()

 {

 DbProviderFactory dbProviderFactory =

 DbProviderFactories.GetFactory("System.Data.SqlClient");

 using(DbConnection conn = dbProviderFactory.CreateConnection())

 {

 string s =

 ConfigurationManager.ConnectionStrings["AspDotNetStepByStep"].ConnectionString;

 conn.ConnectionString = s;

 conn.Open();

 DbCommand cmd = conn.CreateCommand();

 cmd.CommandText =

 "SELECT * FROM DotNetReferences WHERE AuthorLastName='Petzold'";

244 Part II Advanced Features
 DbDataReader reader = cmd.ExecuteReader();

 // do something with the reader

 }

 }

}

 Executing the command using ExecuteReader sends a query to the database. The results

come back via an instance of the IDataReader interface. The code listed above stops short of

using the results. Let’s take a look at how that works.

 Managing Results
 Once you’ve connected to the database and issued a query, you probably need to sift

through the data to use it. ADO.NET supports two broad approaches to managing result sets:

the IDataReader interface and the DataSet class.

 DataReader
 The example above retrieves an IDataReader from the query operation. The IDataReader in-

terface is useful for iterating through the results of the query. Listing 11-7 shows part of the

IDataReader interface.

LISTING 11-7 Part of the IDataReader Interface

 public interface IDataReader

{

 bool IsClosed {get;}

 int RecordsAffected {get;}

 void Close();

 bool NextResult();

 bool Read();

 //...

}

 When iterating through the results of a query, Read fetches the next row. NextResult will

fetch the next result set.

 Accessing data through IDataReader is often termed “fi re hose mode” because you have to eat

your way through the data one row at a time going forward only. There’s no way to revert back

to a previous row except by resetting the reader and starting again. The data rows the reader

returns to you are also read-only. You can retrieve the data for whatever purpose you need

them for, but you can’t update the database (insert, update, or delete) using IDataReader. An

alternative to accessing data through the IDataReader interface is to use a DataSet.

 DataSet
 In addition to the IDataReader, ADO.NET supports the notion of a disconnected record

set—the DataSet class in ADO.NET. The ADO.NET is primarily designed to help you write

 Chapter 11 Data Binding 245
large, highly scalable applications. One of the biggest hindrances to scalability is the limits of

database connectivity. Databases usually have a limit on the number of active connections

available at one time, and if all the connections are in use at any particular time, any piece of

code wanting a database connection will need to wait. If the number of users of a system is

about the same as the number of connections available, then perhaps that’s not a problem.

However, if the number of users of a system is greater than the number of database connec-

tions, the system performance will likely be impacted greatly.

 To encourage scalability, ADO.NET includes a class named DataSet that’s designed to give

you an easily navigable snapshot of your application’s database. The idea behind a database

is to get in and get out quickly with a copy of the data. The really good news is that you can

insert rows, update columns, and even delete rows using the DataSet and later have those

changes propagated to the database.

 The DataSet class is usually fi lled with data using a DataAdapter. A DataSet includes a

DataTable array—one for each selection statement in the query. Once the DataAdapter
comes back from fetching the data for the DataSet, you have the latest snapshot of the que-

ried data in memory. The DataSet contains a DataTable collection and contains a DataTable

element for each SELECT statement in the query. You may access the Tables collection us-

ing either ordinal or String-type indices. Once you get to a table, iterating through the rows

and columns is a matter of indexing into the table using ordinal indices for the rows and

ordinal or String-type indices for the columns. Listing 11-8 shows an example of using the

SqlDataAdapter to get a DataSet.

 LISTING 11-8 Example Database Query Using a DataSet and DataAdapter

 class UseDBApp2

{

 static void Main()

 {

 DataSet ds = new DataSet();

 DbProviderFactory dbProviderFactory =

 DbProviderFactories.GetFactory("System.Data.SqlClient");

 using (DbConnection conn = dbProviderFactory.CreateConnection())

 {

 string s =

 ConfigurationManager.ConnectionStrings["AspDotNetStepByStep"].ConnectionString;

 conn.ConnectionString = s;

 conn.Open();

 DbCommand cmd = conn.CreateCommand();

 cmd.CommandText =

 "SELECT * FROM customer; SELECT * FROM country";

 DbDataAdapter adapter = dbProviderFactory.CreateDataAdapter();

 adapter.SelectCommand = cmd;

 adapter.Fill(ds);

 }

246 Part II Advanced Features
 foreach (DataTable t in ds.Tables)

 {

 Console.WriteLine("Table " + t.TableName + " is in dataset");

 Console.WriteLine("Row 0, column 1: " + t.Rows[0][1]);

 Console.WriteLine("Row 1, column 1: " + t.Rows[1][1]);

 Console.WriteLine("Row 2, column 1: " + t.Rows[2][1]);

 }

 ds.WriteXml("dataset.xml");

 ds.WriteXmlSchema("dataset.xsd");

 // Also- may bind to the tables here:

 ;

 }}

 The code in Listing 11-8 illustrates using a DataAdapter and a DataSet. The code prints out

the fi rst two columns of the fi rst three rows of each table in the DataSet. The example in

Listing 11-8 indicates that a DataTable is valid as a DataSource for data-bound controls. The

example also shows that the DataSet objects also serialize as XML. Both the table schema and

the contents may be serialized this way—making it especially useful for transferring data be-

tween systems.

 Here’s one fi nal note about items in the DataSet class: They’re disconnected and are not

restricted to the “fi re hose mode” of data access. You have complete random access to any

table, any column, and/or any row in the DataSet. In fact, objects in the DataSet class are also

smart enough to keep track of any data you change inside of them. You may fl ush the data

back to the physical database by using the CommandBuilder to prepare the DataSet for an

Update through the DataAdapter. A CommandBuilder will construct SQL statements on your

behalf. This is useful for simple commands and provides a quick and convenient approach for

updating a database through a DataAdapter.

 Given either an IDataReader or a DataSet, the data-bound controls will automatically render

themselves appropriately to show the control on the browser. While you may always connect

to the database and fetch the data manually through the standard connection/command ar-

chitecture, ASP.NET and Visual Studio support an even easier-to-use way to render data—via

declarative data binding.

 ASP.NET Data Sources
 After seeing how to access data in the raw using ADO.NET, let’s look at an easier way. ASP.

NET includes some new classes that hide the complexity of managing connections and of

gathering data. They’re the DataSource controls.

 Chapter 11 Data Binding 247

 These DataSource controls abstract the entire connection and command mechanism so that

all you need to do is decide on a data source, point the control to that data source, and

provide an appropriate query. Visual Studio provides a wizard that guides you through this.

Once you have a DataSource, you may attach it to a data-bound control that uses it.

 Let’s take a look at making a query and populating some controls with the results of the query.

 Use a DataSource to populate controls using a DataReader

1. Add a new form to DataBindORama named DataBindingWithDB.

2. The example for this chapter (named DataBindORama), available on the CD that

comes with this book, includes an Access database named ASPNETStepByStep.mdb.

Set up an accessor for the database. Go to the Data controls in the toolbox. Drag an

AccessDataSource onto the form. Select Confi gure Data Source… from the local

menu displayed by Visual Studio. Click Browse in the Confi gure Data Source dialog

box. You’ll see a directory named App_Data in the list box on the left side. Highlight

it. Then select ASPStepByStep.mdb from the list box on the right side. This will insert

an Access database accessor into your project. Confi gure the data accessor to use the

AspDotNetStepByStep database that comes with this book.

3. Select all the columns and all the rows from the DotNetReferences table when confi gur-

ing the query (that is, choose “*” to query for all the columns). Click Next.

248 Part II Advanced Features

4. Test the query if you want to by clicking the Test Query button:

5. Set the DataSourceMode property to DataReader.

6. Now drag a ListBox onto the page. Set the AutoPostBack property to true by clicking

the checkbox in the tasks window. You could, if you wanted, click Choose Data Source

in the ListBox Tasks window. In practice, this is what you’d often do. However, let’s add

the code by hand to perform the data binding so that you see how it’s done in code. In

the code view, locate the Page_Load method and attach the ListBox DataSource prop-

erty to AccessDataSource1 like so:

 protected void Page_Load(object sender, EventArgs e)

{

 Chapter 11 Data Binding 249

 if (!this.IsPostBack)

 {

 this.ListBox1.DataSource = this.AccessDataSource1;

 this.ListBox1.DataTextField = "AuthorLastName";

 this.ListBox1.DataValueField = "Title";

 this.ListBox1.DataBind();

 }

}

7. Put a label near the bottom of the page. This label will hold the selected value from the

ListBox.

8. Double-click on ListBox1 to insert an item changed event handler into your code. In the

event handler, set the Label1 text property to the value fi eld of the selected item.

 protected void ListBox1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 this.Label1.Text = this. ListBox1.SelectedItem.Value;

}

9. Now drag a RadioButtonList onto the form. When you fi nish dropping it on the form,

Visual Studio will ask you if you want to confi gure the control. First, check the Enable
AutoPostBack checkbox. Then, click Choose Data Source….

250 Part II Advanced Features

10. Confi gure the control to use AccessDataSource1 that you just added.

11. Confi gure the control to use the AuthorLastName column for the text fi eld and the Title

column for the value fi eld. Click OK.

12. Double-click on the RadioButtonList1 object on the form to create a handler for the ra-

dio button selection. Handle the selection by updating the Label1 object with the value

associated with the current radio button selection.

 protected void RadioButtonList1_SelectedIndexChanged(object sender,

 EventArgs e)

{

 this.Label1.Text = this.RadioButtonList1.SelectedItem.Value;

}

 Chapter 11 Data Binding 251
 13. Now run the program. The ListBox and the RadioButton list should show the

AuthorLastName fi eld. Selecting one name out of either list will cause a postback and

show the title (the associated value) in the label near the bottom of the page.

 Now we’ve had a taste of how binding to the simple controls works. Although using these

controls is common in many scenarios, the data-bound controls don’t end there. ASP.NET

includes other, more complex, controls that render data such as complex UI elements as grids

and control combinations.

 Other Data-bound Controls
 In addition to the simple bound controls, ASP.NET includes several more complex controls.

They work very much like the simple bound controls in that you attach a data source to them

and they render automatically. However, these controls differ by displaying the data in more

elaborate ways. These controls include the GridView, the FormView, the DetailsView, and the

DataList.

 The best way to understand the nature of these controls is to work through a couple of ex-

amples. Let’s start with the GridView.

252 Part II Advanced Features

 The GridView

1. Add a new Web form to the DataBindORama site. Name it UseGridView.

2. Pick up a GridView from the Toolbox (it’s under the Data controls). Drop it on the form.

Visual Studio will ask you to confi gure the GridView. Under the Choose Data Source…

option, select New Data Source…. Point Visual Studio to the ASPNetStepByStep.mdb

under the App_Data directory. When specifying the query, select “*” to query for all the

columns. Finally, enable Paging, Sorting, and Selection from the GridView Confi guration

menu. After confi guring the GridView, Visual Studio will show you a representation of

the format the query will use when it is rendered to the browser.

3. Run the program. Try the various options such as paging through the data and sorting

to get a feel as to how the GridView works.

 Chapter 11 Data Binding 253

4. Go back to Visual Studio and try formatting the GridView to change its appearance. As

with all the other ASP.NET controls, the GridView includes a number of confi gurable

properties such as the foreground and background colors. Some of the other special-

ized properties within the GridView include the AlternateRowStyle, the PagerSettings,
and the PagerStyle. The following graphic illustrates the UseGridView.aspx page with

the Classic formatting style applied:

254 Part II Advanced Features

 The GridView is useful for displaying tables in a format in which you can see all the rows and

columns at once. While the classic DataGrid is still available, the GridView handles tasks such

as selecting rows and sorting by column.

 Here’s a look at another complex control: the FormView.

 The FormView

1. Add a new Web form to the DataBindORama site named UseFormView.

2. Pick up a FormView from the Toolbox (it’s under the Data controls). Drop it on the form.

Visual Studio will ask you to confi gure the FormView. Under the Choose Data Source…

option, select New Data Source…. Point Visual Studio to the ASPNetStepByStep.mdb

under the App_Data directory. When specifying the query, select “*” to query for all the

columns.

3. Select the AutoFormat option from the Confi guration menu. Here you have the oppor-

tunity to apply a couple of canned styles to the FormView. The example accompanying

this text uses the Classic formatting style.

4. Finally, enable paging from the FormView Confi guration menu by selecting the Enable
Paging check box. Set the HeaderText property (from the Visual Studio Properties win-

dow) to give the FormView a title (perhaps something like “.NET Reference Authors and

Titles”).

5. After confi guring the FormView, Visual Studio will show you a representation of the for-

mat the query will use when it is rendered to the browser.

 Chapter 11 Data Binding 255

6. Run the program. Try the various options such as paging through the data to get a feel

for how the FormView works.

 The FormView is useful for gathering the information for singular rows in one place. The user

navigates between each row, but the focus is always on the current row.

 The DetailsView

1. Add a new Web form to the DataBindORama site named UseDetailsView.

2. Pick up a DetailView from the Toolbox (it’s under the Data controls). Drop it on the

form. Visual Studio will ask you to confi gure the DetailsView. Under the Choose
Data Source… option, select New Data Source…. Point Visual Studio to the

ASPNetStepByStep.mdb under the App_Data directory. When specifying the query, se-

lect “*” to select all the columns.

3. Select the AutoFormat option from the Confi guration menu. Here you have the oppor-

tunity to apply a couple of canned styles to the DetailsView. The example accompany-

ing this text uses the Classic formatting style.

4. Select the Edit Fields… option from the DetailsView Tasks window. Check the Auto-
Generate Fields check box on the dialog box if it isn’t already checked.

5. Finally, enable paging from the DetailsView Tasks window. Set the HeadingText prop-

erty (in the Visual Studio Properties window) to give the DetailsView a title (perhaps

something like “.NET Reference Authors and Titles”).

256 Part II Advanced Features

6. After confi guring the DetailsView, Visual Studio will show you a representation of the

format the query will use when it is rendered to the browser.

7. Run the program. Try the various options such as paging through the data to get a feel

as to how the DetailsView works.

 Chapter 11 Data Binding 257

 Now for the DataList. The DataList control was available in ASP.NET 1.x. It’s been updated

with later versions of ASP.NET to support declarative data binding. Here’s a look at the

DataList.

 The DataList

1. Add a new Web form to the DataBindORama site named UseDataList.

2. Pick up a DataList from the toolbox (it’s under the Data controls). Drop it on the form.

Visual Studio will ask you to confi gure the DataList. Under the Choose Data Source…

option, select New Data Source…. Point Visual Studio to the ASPNetStepByStep.mdb

under the App_Data directory. When specifying the query, select “*” to query for all the

columns.

3. Select the AutoFormat option from the DataList Tasks window. Here you have the op-

portunity to apply a couple of canned styles to the DataList. The example accompany-

ing this text uses the Slate formatting style.

4. Select the DataList Properties dialog box from the DataList Tasks window by selecting

Property Builder. If not already checked, make sure the Show Header and the Show
Footer check boxes are selected.

5. Set the Caption property to give the DataList a title (perhaps something like .NET
Reference Authors and Titles).

6. After confi guring the DataList, Visual Studio will show you a representation of the for-

mat the query will use when it is rendered to the browser.

258 Part II Advanced Features

7. Run the program to see how the DataList renders itself.

 While the classic data access technologies are here to stay, .NET versions 3.0 and later bring a

new way to access and manage data—Language Integrated Query. Let’s take a look.

 Chapter 11 Data Binding 259
 LINQ
 New with .NET 3.0 is a database technology named Language Integrated Query (LINQ). LINQ

is a set of extensions to the .NET Framework for performing data queries inline. LINQ extends

the C# and Visual Basic syntaxes to enable inline queries in the native language syntax (versus

SQL or XPath). LINQ doesn’t replace existing data access technologies. Instead, LINQ augments

existing data query technologies making it approachable to perform streamlined queries.

 This new technology for making queries is called “language integrated” because you can

build queries and use C# (or Visual Basic) language constructs to make selection statements.

The following example shows how to develop some queries using LINQ.

 Using LINQ

 1. Add a new page to the DataBindORama site. Name the page UseLinq.

 2. Drop a GridView onto the page. This will hold the information returned from the LINQ

queries.

 3. Update the Page_Load method to make a LINQ query. Use the TechnologyDescriptor
collection mentioned earlier in the chapter as the data source for making the query.

(Don’t forget to add a using statement to include System.Collections.Generic!)

Set the DataGrid’s DataSource property to the results of a LINQ query against the

TechnologyDescriptor collection. The format of the LINQ statement should be from

<variable of type held in collection> in <the collection> where <criteria> orderby <cri-

teria> select <property from selected item>. Select TechnologyDescriptors that include

“.NET” in the name and order them by length of the TechnologyName property. Here is

the code that does just that:

 public partial class UseLinq : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 List<TechnologyDescriptor> techList =

 TechnologyDescriptor.CreateTechnologyList();

 GridView1.DataSource = from technologyDescriptor in techList

 where

 technologyDescriptor.TechnologyName.Contains(".NET") == true

 orderby technologyDescriptor.TechnologyName.Length

 select technologyDescriptor.TechnologyName.ToUpper();

 GridView1.DataBind();

 }

}

260 Part II Advanced Features

4. Run the UseLinq.aspx page to see how the query looks within the GridView.

5. Notice how the GridView shows only the single property grabbed from each

TechnologyDescriptor. Now update the query statement to include the whole

TechnologyDescriptor structure. It should look like this:

 public partial class UseLinq : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 List<TechnologyDescriptor> techList =

 TechnologyDescriptor.CreateTechnologyList();

 GridView1.DataSource = from technologyDescriptor in techList

 where

 technologyDescriptor.TechnologyName.Contains(".NET") == true

 orderby technologyDescriptor.TechnologyName.Length

 select technologyDescriptor;

 GridView1.DataBind();

 }

}

 Chapter 11 Data Binding 261
 6. Run the page and see how the GridView now shows the entire TechnologyDescriptor.

 This example only scratches the surface of the power of LINQ. LINQ introduces a very stream-

lined way to make queries on demand from within your project using the language of your

project (Visual Basic, C#, and so forth). The data coming back from the queries may be used

in any context. In this case, the example shows using the results of a LINQ query within a

GridView.

 Summary
 In this chapter, we looked at ASP.NET’s support for data-bound controls. Although it’s not

rocket science to iterate through a collection and add the data to ASP.NET’s server-side

controls, it’s a fairly common operation. That Microsoft pushed it down into the Framework

classes is a good thing.

 One of the advantages of these controls is that they don’t care at all where their data comes

from. The data might be as simple as an ArrayList composed of .NET types (with each ele-

ment in the array representing a row and each property representing a column). On the

other hand, the data bound to a control might be as complex as IDataReader or a DataSet
acquired from a physical database.

262 Part II Advanced Features
Looking at data-bound controls invariably involves mentioning the ASP.NET database story:

ADO.NET. The ADO.NET managed classes are for connecting to the database, commanding

the database, and harvesting the results afterward. Although connecting to the database

manually (via .NET 1.x-style code) is still supported, today .NET and Visual Studio offer an

easier way to associate controls with data via the DataSource controls.

 ASP.NET includes a number of data-bound controls that may be matched up with a collection

or (in the case of certain DataSource controls) a data source. The controls then assume the

burden of iterating through the data and rendering the correct tags to the client.

 Chapter 11 Quick Reference
 To Do This
 Bind a collection to a control Set the control’s DataSource property to the

collection.

 Choose a column to display in the control Set the control’s TextTextField property to the

column name.

 Choose a column to use programmatically (that’s NOT

displayed in the control)

Set the control’s TextValueField property to the

column name.

 Display a DataTable as a grid Use the DataGrid or the GridView controls.

 Display a DataTable as a formatted, repeating list Use the DataList

 Make a class’s member variables available as

DataTextFields and DataValueFields within a control

Expose the members as properties.

Represent data using Master/Detail style presentations Use the FormView control

To Do This

 Chapter 12

 Web Site Navigation
 After completing this chapter, you will be able to

Q Understand ASP.NET’s support for navigation and site maps

Q Implement a site map using an XML data source

Q Use the site map to power ASP.NET’s navigation controls

Q Capture and respond to site map navigation events

 One of the major issues facing Web site users is fi guring out how to get around the site ef-

fectively. Web sites are often hierarchical in nature, and pages are sometimes nested several

layers deep. Users may often fi nd themselves asking questions like “Where am I now?” and

“Where can I go from here?” This chapter covers ASP.NET’s support for addressing the issue

of Web site navigation.

 The art of Web site design has progressed far enough that some common navigation idioms

are beginning to appear ubiquitously. If you browse a few Web sites hosted on various plat-

forms, you’ll notice that the sites support a number of different ways to navigate their con-

tent. For example, many Web sites include a menu bar across the top of the page with links

to separate areas on the site. Certain sites include some sort of tree structure to navigate

the site. Still others include a “breadcrumb” trail showing you where you are and how to get

back. ASP.NET supports all these idioms.

 ASP.NET’s Navigation Support
 ASP.NET’s navigation support comes in three parts: the navigation controls, the site map

data source, and the site map provider architecture. The navigation controls (the Menu, the

TreeView, and the SiteMapPath) all have the capability to resolve human-readable display

names to real URLs to which HTTP requests may be sent. The site map data source stores

information about a site’s hierarchical organization. The site map provider interprets physical

data (often in the form of an XML fi le) and implements a kind of database cursor represent-

ing the current position within a site’s hierarchy.

 The Navigation Controls
 ASP.NET includes three server-side controls devoted specifi cally to site navigation—the

SiteMapPath, the Menu, and the TreeView control. The Menu and the TreeView both maintain

collections of display name/URL mappings. These collections may be edited by hand. In addition,
 263

264 Part II Advanced Features
these controls can build hierarchical collections of display name/URL mappings based on

information in a site map data source. The SiteMapPath builds its collection of display name/

URL mappings solely through a site map data source. Table 12-1 summarizes the ASP.NET

navigation controls.

 TABLE 12-1 The ASP.NET Navigation Controls

 Navigation Control Description
 Menu Interprets the site navigational information contained in the sitemap XML

fi le and presents it in a menu format. Top level XML nodes become top

level menu items, with child XML nodes becoming child menu items.

 TreeView Interprets the site navigational information contained in the sitemap XML

fi le and presents it in a tree format. The top level sitemap XML nodes in

this case become higher-level branches in the tree, with child nodes rep-

resented as child tree nodes.

 SiteMapPath Interprets the site navigational information contained in the sitemap XML

fi le and presents it in a “breadcrumb” format. In this case, only the current

XML node’s path is displayed (from the root node to the current child node).

 All three controls are useful for navigation, but the Menu and the TreeView are useful outside

the context of site navigation. SiteMapPath is designed strictly for navigating the Web site’s

sitemap XML fi le. The Menu control displays items hierarchically and fi res events back to the

server as the items are selected. The items in the Menu control may also be assigned naviga-

tion URLs. The TreeView is useful for displaying any hierarchical data source that implements

either the IHierarchicalDataSource or the IHierarchicalEnumerable interface, and it also has

the capability to cause redirects to other URLs (that is, it’s useful for site navigation). And, as I

mentioned, the SiteMapPath is meant specifi cally to be used for Web site navigation.

For shallow Web sites that will probably change very little over time, building a navigation

infrastructure from scratch is not very diffi cult. However, as the complexity of a site increases,

so does the diffi culty in managing a navigation structure.

When you organize your site and determine the layout of your pages, it’s easy to formal-

ize the layout with a master page that includes a menu linking to other pages (just as in the

master page chapter). The work involves creating the menu and adding the links (through the

NavigateUrl property of the menu item). Implementing the navigation infrastructure by hand

is easy enough the fi rst time around. However, as your site grows and becomes more com-

plex, having to update the navigation support repeatedly becomes a problem.

Enter ASP.NET’s navigation and site map support. The main advantage of using ASP.NET’s

navigation support is that you can establish the layout of the site and then represent it using

a hierarchical data structure (like an XML fi le or even a database table). The Menu, TreeView,

and SiteMapPath controls may all point to a site map data source and use the data source to

populate themselves. When you plug the site map data source into the navigation controls,

the navigation controls use the data source to create the individual links.

Navigation Control Description

 Chapter 12 Web Site Navigation 265
 After the site map has been established, updating the navigation links simply requires

updating the site map. All controls using the site map data source will refl ect the change

automatically.

 XML Site Maps
 ASP.NET includes built-in support for navigation via XML fi les that describe the layout of the site.

These are called XML site maps. ASP.NET’s default site map support consists of an XML fi le de-

scribing the site layout and the SiteMapProvider that reads the XML fi le and generates SiteMap

nodes to whatever components are listening (for example, a Menu or a TreeView control).

 The SiteMapProvider
 The SiteMapProvider establishes the base class used by the navigation controls. ASP.NET’s de-

fault implementation is the XmlSiteMapProvider, which reads the XML fi le named (by default)

web.sitemap.

 While the default XML site map generally works very well, the ASP.NET navigation controls

are perfectly happy using data sources generated from other places (rather than the XML

data source). For example, you might decide to implement your own site map provider based

on data in a database. The XML site map provides basic raw functionality for navigating a

site. However, if you want to do something like manage the site map using a schema differ-

ent from the default XML schema, that calls for designing a custom provider.

 In this chapter, we’ll look at the default XML site map provider—which is plenty powerful for

most circumstances.

 The SiteMap Class
 The main rendezvous point for the ASP.NET navigation infrastructure is the SiteMap class.

To support the navigation infrastructure, the SiteMap class has a set of static methods for

managing site navigation. The SiteMap class serves as an in-memory representation of the

navigation structure for a site, and its functionality is implemented by one or more site map

providers. It’s an abstract class so it must be inherited.

 The SiteMap class performs several functions. First, it serves as the root node of the site navi-

gation hierarchy. Second, it establishes the principal site map provider. Finally, it keeps track

of all the provider objects that comprise the site map.

 The SiteMap contains a hierarchical collection of SiteMapNode objects. Regardless of how

the site map data are maintained, the SiteMap is the interface for accessing a site’s navigation

information.

266 Part II Advanced Features
The ASP.NET default confi guration specifi es a default site map. However, as with all things

confi gurable in ASP.NET, you may easily override the default confi guration to establish a dif-

ferent provider.

The SiteMap class offers only static members. By being static, they enhance performance. In

addition, the site map functionality may be accessed at any time in a Web application from a

page or even from within a server-side control.

Table 12-2 describes the properties and sole event the SiteMap class exhibits.

TABLE 12-2 SiteMap Events and Properties

 Name Type Description
 SiteMapResolve Event The SiteMapResolve event fi res when the CurrentNode property is

accessed. This enables you to implement custom logic when creat-

ing a SiteMapNode representation of the currently executing page

without requiring a custom provider implementation.

 CurrentNode Property A SiteMapNode instance that represents the currently requested

page in the navigational hierarchy. If there is no node in the XML

site map fi le, the returned value will be null.

 Enabled Property Returns a Boolean value indicating if a site map provider is both

specifi ed and enabled in the web.confi g fi le.

 Provider Property Returns the default SiteMapProvider for the current site map.

Providers Property Returns a read-only collection of named SiteMapProvider objects

that are available to the SiteMap class as specifi ed in the web.confi g

fi le (since you can specify more than one if you wish). Note that only

the default provider is used during initialization, however.

 RootNode Property Returns the SiteMapNode that represents the top-level page of

the navigation hierarchy for the site.

 The SiteMapNode
 The SiteMapNodes themselves represent the hierarchical elements of the site map, which is

to say, each instance of a SiteMapNode represents a page in your Web site. Each node repre-

sents an individual page that is located somewhere in the overall Web site navigation hierar-

chy. When a Web application starts, the SiteMap loads the collection of SiteMapNodes based

on the providers that have been confi gured in your web.confi g fi le for that site.

 The SiteMapNode includes several useful properties: ChildNodes, Description, HasChildNodes,
Key, NextSibling, ParentNode, PreviousSibling, Provider, ReadOnly, ResourceKey, Roles, RootNode,

Title, and Url. It also includes several useful methods: GetAllNodes, GetDataSourceView,

GetHierarchicalDataSourceView, IsAccessibleToUsers, and IsDescendentOf. We’ll see some of

these properties being used in later examples. For instance, we’ll use many of these proper-

ties in the example for this chapter when we handle the SiteMapResolve event and modify

the navigation functionality on the fl y.

Name Type Description

 Chapter 12 Web Site Navigation 267
 The Navigation Controls
 When you run Visual Studio 2008 and look in the designer’s Toolbox, you’ll see that ASP.NET

includes three controls categorized under the navigation category: the Menu, the TreeView,

and the SiteMapPath control. Let’s look at each in a bit more detail before diving into an

example.

 The Menu and TreeView Controls
 The Menu and TreeView controls can bind to hierarchical data source implementing

IHierarchicalDataSource or IHierarchicalEnumerable. Although they’re tailor-made to support

site maps, they work with other data sources. Figure 12-1 shows the Menu control in action,

and Figure 12-2 shows the TreeView in action. Both are reading the data from the site map

data source to populate themselves.

 FIGURE 12-1 The Menu in action

268 Part II Advanced Features

 FIGURE 12-2 The TreeView in action

 The SiteMapPath Control
 You may have seen user interface (UI) elements similar to the SiteMapPath control on other

sites—especially online forms that can go several layers deep. The SiteMapPath control shows

a trail indicating where the user is within the Web page hierarchy and shows a path back to

the top node (kind of like a trail of bread crumbs). The SiteMapPath is most useful within

sites that maintain a very deep hierarchy for which a Menu or a TreeView control would be

overwhelmed.

 Although the SiteMapPath control is like the Menu and the TreeView (the SiteMapPath

control refl ects the state of the SiteMap object), it does deserve special attention. The

SiteMapPath control and the site map data within the provider are tightly coupled. For ex-

ample, if you leave a page out of your site map and the user somehow ends up on the page

(perhaps through some other navigation method), the user will not see the SiteMapPath

control on the page. Figure 12-3 shows the SiteMapPath control in action.The Menu shown in

the fi gure is there so that the user can drill down into the page (the user would not be able to

descend the hierarchy without a Menu or a TreeView).

 Chapter 12 Web Site Navigation 269

 FIGURE 12-3 The SiteMapPath in action

 Site Map Confi guration
 Setting up the XML site map happens through the confi guration fi le. Adding a site map fi le

to the Web application automatically updates the web.confi g fi le to include the XML site map

provider. Listing 12-1 shows the confi guration information that is added to web.confi g.

 LISTING 12-1 Confi guring the Site Map Data

 <configuration><!-- default config -->

 <system.web>

 <siteMap defaultProvider="XmlSiteMapProvider">

 <providers>

 <add name="XmlSiteMapProvider"

 type="System.Web.XmlSiteMapProvider,

 System.Web, Version=2.0.3600.0,

 Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a"

 siteMapFile="web.sitemap"/>

 </providers>

 </siteMap>

 </system.web>

 </configuration>

270 Part II Advanced Features
 In addition to adding the confi guration information to web.confi g, Visual Studio 2008 adds a

blank top-level node in the site map, as shown in Listing 12-2.

 LISTING 12-2 The Default Site Map That Is Added by Visual Studio 2008

 <?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode url="" title="" description="">

 <siteMapNode url="" title="" description="" />

 <siteMapNode url="" title="" description="" />

 </siteMapNode>

</siteMap>

 Once the site map is added, it’s easy to update—for example, to add a few new nodes to the

site map, simply edit the fi le as (XML) text. Listing 12-3 shows an XML site map fi le with a few

extra nodes added.

 LISTING 12-3 Site Map Data in XML

 <?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode url=""

 title="Navigation Menu" description="">

 <siteMapNode url="Default.aspx"

 title="Home" description="" />

 <siteMapNode url="Products.aspx"

 title="Products" description="" />

 <siteMapNode url="Support.aspx"

 title="Support" description="" />

 <siteMapNode url="Contact.aspx"

 title="Contacts" description="" />

 </siteMapNode>

</siteMap>

 Building a Navigable Web Site
 Adding navigation support to a Web site is pretty straightforward. Once you establish the

hierarchical layout of the site, use the site map XML fi le to describe the structure. Once that’s

done, just point any navigation controls you put on the page to the new XML site map fi le.

The navigation controls will populate themselves and render a navigable Web site. The fol-

lowing example shows how to add navigation support to a Web site and use the ASP.NET

navigation controls within the application.

 Creating a site map

 1. Start Visual Studio and create a new ASP.NET Web site project. Make it a fi le system–

based Web site. The example here is called NavigateMeSite.

 2. Remove the “Default” page from the application. In the next step you’ll add a master

page, and removing the “Default” page makes it easier to apply the master page to the

 Chapter 12 Web Site Navigation 271

“Default” page. To remove the page, select it in Solution Explorer and press the Delete

key. Visual Studio will ask if you really want to delete the page (as it will be deleted per-

manently). Click Yes.

3. Create a master page for the Web site. Click the right mouse button on the project

node in the solution and select Add New Item. Choose Master Page from the tem-

plates.The default name will be fi ne. Click Add.

4. Add several pages based on the master page. The example here uses four—a Default

page, a products page, a support page, and a contact page. For each page you add,

click the right mouse button on the project and select Add New Item. Choose Web
Page from the templates. Make sure the Select Master Page check box is checked as

you select the template (so the master page will be applied automatically). Populate the

pages with some content so you know what you’re looking at when you run the site

(simple text placed directly on the page will be fi ne).

5. Add a new site map to the project. Click the right mouse button on the project within

the solution explorer. Select Site Map from the templates. Keep the name Web.sitemap.

The following graphic shows the Visual Studio templates with the site navigation tem-

plate highlighted:

6. Add the following data to the site map (you can change the URLs if the names of the

page fi les are different). Simply edit (or overwrite) the two blank nodes Visual Studio

inserted for you:

 <?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode url="" title="Navigation Menu" description="">

 <siteMapNode url="Default.aspx" title="Home"

 description="This is the home page" />

272 Part II Advanced Features

 <siteMapNode url="Products.aspx" title="Products"

 description="This is the products page" />

 <siteMapNode url="Support.aspx" title="Support"

 description="This is the support page" />

 <siteMapNode url="Contact.aspx" title=”Contacts"

 description="This is the contacts page" />

 </siteMapNode>

</siteMap>

7. To see how the site map data work with the site, add some navigation controls to the

master page. Start by adding a Menu. Go to the toolbox and pick up a Menu control

and drop it onto the master page. When adding the Menu, one of the tasks you can

perform is to set the data source. Select New Data Source. . . from the Menu Tasks
window. Set the Menu’s data source to the default site map fi le and click OK. The fol-

lowing graphic shows how to select a site map data source for the Menu control:

8. Run the site so that you can see the Menu in action. Select some pages from the Menu

and notice that the selections navigate you to the correct places.

9. Next add a TreeView to the master page. Pick one up from the Toolbox and place it on

the master page. Point the TreeView to the default site map data source. Run the appli-

cation and see what happens.

10. Now add a SiteMapPath control to the master page. Apply the XML site map data

source to the DataSource property of the SiteMapPath control.

11. Now add two more pages to the project in order to display two ways to contact

the business running this site—perhaps one for displaying the physical address of

 Chapter 12 Web Site Navigation 273

a business and the other for displaying other contact information such as e-mail ad-

dresses and phone numbers. First, create two new folders—one for each page. Name

the folders ContactAddress and ContactEmailPhone. Add the new pages—one per

folder. Name the pages ContactAddress.aspx and ContactEmailPhone.aspx. Be sure to

have these pages use the master page. Add labels or text as before describing the page

to each of these pages so you may identify them as the Web application runs.

12. Now add two more elements to the site map XML fi le (web.sitemap) to refl ect these

new pages. Nest them so their parent node is the Contact node.

 <?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode url="" title="Navigation Menu" description="">

 <siteMapNode url="Default.aspx" title="Home"

 description="This is the home page" />

 <siteMapNode url="Products.aspx" title="Products"

 description="This is the products page" />

 <siteMapNode url="Support.aspx" title="Support"

 description="This is the support page"

 ImageURL="supportimage.jpg"/>

 <siteMapNode url="Contact.aspx" title="Contacts"

 description="This is the contacts page" >

 <siteMapNode url="~/ContactAddress/ContactAddress.aspx"

 title="Contact using physical address"

 description="This is the first contact page" />

 <siteMapNode url="!/ContactPhone/ContactEmailPhone.aspx"

 title="Contact by email or phone"

 description="This is the second contact page" />

 </siteMapNode>

 </siteMapNode>

</siteMap>

13. Now run the Web site and see what effect the changes have had. You should see new

navigation options appear in the Menu and the TreeView, and the new pages should

also be refl ected in the SiteMapPath control.

14. Experiment with the SiteMapDataSource properties to see how the Menu and TreeView

are affected. For example, SiteMapDataSource.ShowStartingNode turns off the root

node (often the “home” page node). SiteMapDataSource.StartFromCurrentNode deter-

mines the hierarchical position at which the data source begins producing data.

15. Experiment with the Menu properties to see how the Menu is affected. For example,

the Menu.StaticDisplayLevels and MaximumDynamicDisplayLevels determine how much

of the data from SiteMapDataSource the Menu displays.

16. Notice how easy it is to add navigation capability to your Web site. By using the site

map fi le (and underlying provider-based architecture), you limit the number of places

you need to modify to update site navigation.

274 Part II Advanced Features
 Trapping the SiteMapResolve Event
 ASP.NET is full of extensibility points. They’re all over the place—and the navigation archi-

tecture is no exception. ASP.NET’s site map support includes an application-wide event that

informs listeners (usually the application object) whenever the end user is navigating through

the Web site using a control connected to the site map data. Here’s an example that shows

how to handle that event.

 Handling SiteMapResolve event

 1. You may add the SiteMapResolve handler anywhere you’d like to the project. In this

example, it’ll go in the global application object. Add a global application class to your

project using Add New Item.

 2. Add a SiteMapResolve event handler to the Global.asax fi le you just added. The handler

can do whatever you want it to do. The example here clones the SiteMapNode object

that’s passed in via the event arguments (by cloning the node, the handler avoids modi-

fying the underlying data structure). Then the handler modifi es the node’s Title fi eld to

add the phrase “(you are here).” (Note you’ll see this only if the Title fi eld is displayed

by your navigation control. The SiteMapPath control displays it by default.) After fi nish-

ing the handler, update Application_Start to connect the handler to the SiteMapResolve

event within the Application_Start handler of Global.asax.

 <%@ Application Language="C#" %>

<script runat="server">

 void Application_Start(object sender, EventArgs e)

 {

 SiteMap.SiteMapResolve +=

 new SiteMapResolveEventHandler(ResolveNode);

 }

 SiteMapNode ResolveNode(object sender,

 SiteMapResolveEventArgs e)

 {

 SiteMapNode n = e.Provider.CurrentNode.Clone();

 n.Title = n.Title + " (you are here)";

 return n;

 }

 ...

</script>

 3. Now run the site and navigate through the pages. You should see the title of each

SiteMapNode change as you page through the site (refl ected by the display name in the

 Chapter 12 Web Site Navigation 275
SiteMapPath control). The following graphic shows the site map path control with the

modifi ed title:

 Custom Attributes for Each Node
 Another way to extend your Web application’s navigation includes the ability to defi ne cus-

tom attributes for the site nodes in web.sitemap and retrieve them at run time. Imagine that

you wanted to associate a specifi c image for each page in your site. How would you do this?

To accomplish this, just create a new attribute and specify it in the siteMapNode element in

the site map data. The following example shows how to add custom attributes to the site

map nodes.

 Adding custom attributes to the site map

 ASP.NET’s site map navigation support makes it very easy to add arbitrary attributes to each

node. In this example, you’ll add some JPEG URLs to the site map nodes. As each page is

loaded, the master page will show the JPEG in an Image control.

276 Part II Advanced Features

1. Add six new JPEGs to the project—one to represent each kind of page (for example,

produce separate JPEGs for the home page, the products page, the three contact

pages, and the support page). Update the web.sitemap fi le to include an ImageURL

property in each siteMapNode element, like so:

 <?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode url="" title="Navigation Menu" description="">

 <siteMapNode url="Default.aspx" title="Home"

 description="This is the home page"

 ImageURL="homeimage.jpg"/>

 <siteMapNode url="Products.aspx" title="Products"

 description="This is the products page"

 ImageURL="productsimage.jpg" />

 <siteMapNode url="Support.aspx" title="Support"

 description="This is the support page"

 ImageURL="supportimage.jpg"/>

 <siteMapNode url="Contact.aspx" title="Contacts"

 description="This is the contacts page"

 ImageURL="contactimage.jpg">

 <siteMapNode url="ContactAddress.aspx"

 title="Contact using physical address"

 description="This is the first contact page"

 ImageURL="contactPhysicalAddressimage.jpg"/>

 <siteMapNode url="ContactEmailPhone.aspx"

 title="Contact by email or phone"

 description="This is the second contact page"

 ImageURL="contactPhoneimage.jpg" />

 </siteMapNode>

 </siteMapNode>

</siteMap>

2. Programmatically, the ImageURL custom attribute will show up as a property of the

node when the nodes are accessed. There are many ways to use the new property.

Probably the easiest way is to add an Image control to the master page and update the

Image control’s ImageUrl property with the value from the node in the master page’s

Page_Load method.

 public partial class MasterPage : System.Web.UI.MasterPage

{

 protected void Page_Load(object sender, EventArgs e)

 {

 SiteMapNode current = SiteMap.CurrentNode;

 string strImageURL = current["ImageURL"];

 if (strImageURL != null)

 {

 this.Image1.ImageUrl = strImageURL;

 }

 }

}

3. While setting an image during the master page’s Page_Load method is pretty straight-

forward, it’s not the only way to change the UI based on specifi c SiteMapNode informa-

tion. For example, you might handle the OnMenuItemDataBound event and set any

 Chapter 12 Web Site Navigation 277
custom properties there. The following two graphics illustrate how the master page

plugs in a new image URL each time a postback is issued:

278 Part II Advanced Features
 Security Trimming
 ASP.NET’s navigation support works with the authentication and authorization mechanisms

to support security trimming. Security trimming means showing only part of the menu based

on the role of the current user. Of course, this means that the Web site must somehow au-

thenticate the user (see Chapter 10).

 To make security trimming work, turn the securityTrimmingEnabled attribute on within

web.confi g. The list of roles for which the navigation option is available is a property for each

SiteMapNode.

 URL Mapping
 Finally, ASP.NET’s navigation architecture supports URL mapping. URL mapping means map-

ping a virtual (or nonexistent) URL to existing ASPX fi le. This is done within the web.confi g

fi le using the urlMappings element. Setting up URL mappings causes ASP.NET to read the re-

quested URL and uses the handler for the mapped URL. This is done in HttpApplication using

HttpContext.RewritePath.

 For example, imagine your Web site contained a single products page containing both CDs

and DVDs. However, your UI model requires you to build a menu structure that separates the

CD products and the DVD products into two options appearing separately on the menu. URL

mapping provides a way of handling this situation.

 Here’s an exercise showing how to use URL mapping to represent a single page as two sepa-

rate menu items. In this case, the page’s content is distinguished by a URL parameter.

 Implementing URL mapping

 1. Update the Products page so that it shows different content when the ID parameter is

“1” or “2.” This example divides the products into CDs and DVDs. The page will display

different content based on the value of the ID parameter (whether it’s “1” or “2” or

something else). Place a Label control on the Products page and assign its ID property

the value LabelProductType. Then, drop a ListBox on the page and assign its ID the

value ListBoxProducts. The code-beside fi le then implements the URL mapping func-

tionality within the Page_Load handler, as shown here.

 public partial class Products : System.Web.UI.Page

{

 protected void AddCDsToListBox()

 {

 this.ListBoxProducts.Items.Add("CD- Snakes and Arrows");

 this.ListBoxProducts.Items.Add("CD- A Farewell To Kings");

 this.ListBoxProducts.Items.Add("CD- Moving Pictures");

 this.ListBoxProducts.Items.Add("CD- Hemispheres");

 Chapter 12 Web Site Navigation 279

 this.ListBoxProducts.Items.Add("CD- Permanent Waves");

 this.ListBoxProducts.Items.Add("CD- Counterparts");

 this.ListBoxProducts.Items.Add("CD- Roll the Bones");

 this.ListBoxProducts.Items.Add("CD- Fly By Night");

 this.ListBoxProducts.Items.Add("CD- 2112");

 }

 protected void AddDVDsToListBox()

 {

 this.ListBoxProducts.Items.Add("DVD- A Show Of Hands");

 this.ListBoxProducts.Items.Add("DVD- Exit Stage Left");

 this.ListBoxProducts.Items.Add("DVD- Rush In Rio");

 this.ListBoxProducts.Items.Add("DVD- R30");

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 if (this.Request.Params["ID"] == "1")

 {

 this.LabelProductType.Text = "CDs";

 AddCDsToListBox();

 }

 else if (this.Request.Params["ID"] == "2")

 {

 this.LabelProductType.Text = "DVDs";

 AddDVDsToListBox();

 }

 else

 {

 this.LabelProductType.Text = "All CDs and DVDs";

 AddCDsToListBox();

 AddDVDsToListBox();

 }

 }

}

2. Update the web.sitemap fi le to include the new menu items mapped to virtual fi les (for

example, CDs.aspx and DVDs.aspx). Add this to the Web.site fi le:

 <?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns=

 "http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode url="" title="Navigation Menu" description="">

 <siteMapNode url="Default.aspx" title="Home"

 description="This is the home page"

 ImageURL="homeimage.jpg"/>

 <siteMapNode url="Products.aspx" title="Products"

 description="This is the products page"

 ImageURL="productsimage.jpg">

 <siteMapNode url="CDs.aspx" title="CDs"

 description="This is the CDs page"

 ImageURL="productsimage.jpg"/>

 <siteMapNode url="DVDs.aspx" title="DVDs"

 description="This is the DVDs page"

 ImageURL="productsimage.jpg"/>

 </siteMapNode>

280 Part II Advanced Features

 <siteMapNode url="Support.aspx" title="Support"

 description="This is the support page"

 ImageURL="supportimage.jpg"/>

 <siteMapNode url="Contact.aspx" title="Contact"

 description="This is the contacts page"

 ImageURL="contactimage.jpg">

 <siteMapNode url="ContactAddress.aspx"

 title="Contact using physical address"

 description="This is the first contact page"

 ImageURL="contactPhysicalAddressimage.jpg"/>

 <siteMapNode url="ContactEmailPhone.aspx"

 title="Contact by email or phone"

 description="This is the second contact page"

 ImageURL="contactPhoneimage.jpg"/>

 </siteMapNode>

 </siteMapNode>

</siteMap>

3. Add this to the web.confi g fi le:

 <configuration>

 <system.web>

 <urlMappings>

 <add url="~/CDs.aspx" mappedUrl="~/Products.aspx?ID=1"/>

 <add url="~/DVDs.aspx" mappedUrl="~/Products.aspx?ID=2"/>

 </urlMappings>

 </system.web>

</configuration>

4. Run the page. Notice the menu has changed and now includes two new items under

the Products menu. The site map points these two items to the CDs.aspx fi le and the

DVDs.aspx fi le. Although the application does NOT include fi les with these names, the

user still sees a page that works when they redirect using one of these menu items.

The web.confi g fi le remaps the request back to the Products.aspx page, passing a URL

parameter with a specifi c value. When the Products.aspx page is loaded and the ID

parameter is “1” or “2,” the page loads the list box with CD titles or DVD titles.

 Chapter 12 Web Site Navigation 281
 The following graphic shows the CDs “product page” being selected from the site map data:

 The following graphic shows the DVDs “product page” being selected from the site map data:

282 Part II Advanced Features
 The following graphic shows the normal “product page” being selected from the site map data:

 URL mapping is useful in all kinds of situations in which you need to represent pages within a

navigation control, even though there may not be a physical page to support it.

 Summary
 Web applications have always been organized hierarchically; even the earliest sites containing

simple HTML fi les and perhaps some image fi les (or other types of fi les) are typically hierar-

chical by nature. The fundamental architecture of any Web site is always considered hierar-

chical—whether the application is one or several layers deep.

 Modern Web UIs have become sophisticated enough to need to represent a site’s hierarchy.

Very often you’ll see a Web site’s structure represented as a menu or some sort of tree. In

addition, many sites now include a UI element representing the “path” along which the user

is browsing (this is a common UI idiom with online forums).

 ASP.NET includes an entire architecture designed to support Web site navigation. The stan-

dard involves using an XML fi le describing the site’s hierarchy. The SiteMap object populates

itself by reading the XML fi le and building an internal data structure representing the hierar-

chy. That data structure is made up of SiteMapNodes. You can always fi nd the current node

 Chapter 12 Web Site Navigation 283

(representing the current page) within the Web site using the static Current property from

the SiteMap object.

ASP.NET supports three controls for navigating a Web site: the Menu, the TreeView, and the

SiteMapPath control. Each of these controls may be hooked up to the SiteMap data, and

their contents will refl ect the contents of the site map data. In addition to wiring the naviga-

tion controls up to the site map data source, ASP.NET supports hooking up an event handler

for the SiteMapResolve event, which occurs every time the user navigates through a naviga-

tion control hooked up to the site map data. These controls are most useful when placed on

a master page where they may be shared across all the pages on the site, giving the site a

singular look to its layout. In addition, using the site map architecture makes updating the

navigation scheme very straightforward. Simply update the site map information and it will

be refl ected by all the controls using it the next time the page renders.

Chapter 12 Quick Reference
 To Do This
 Add an XML site map to the

application

Click the right mouse button on the project name in Solution Explorer.

Select Add New Item from the menu. Choose Site Map from the templates.

This is useful for adding an XML-based site map to your site.

 Add a navigation control to a

page in your site

Open the Navigation controls node on the Toolbox. Select the Menu, the

TreeView, or the SiteMapPath control and place it on the page.

When you place the navigation control on the page, you’ll see a small

task window asking you to choose the data source. If you already have

the appropriate data source on your page, select it. If you’ve created an

XML-based site map for your page, choose New Data Source. . . and select

“SiteMap” or “XML File”—depending on how your navigation data are pack-

aged.

 Intercept navigation requests as

they occur

Write a handler for the SiteMapResolve event in the Global.asax fi le.

 Map virtual nonexistent URLs to

real URLs

Add a urlMapping section to web.confi g to map the virtual URLs. Add the

virtual URLs to your site map data so that the user can more easily navigate

to the given page.

To Do This

 Chapter 13

 Personalization
 After completing this chapter, you will be able to

Q Use ASP.NET personalization

Q Apply personalization to a Web site

 This chapter covers ASP.NET’s built-in personalization features. A major theme throughout

ASP.NET is to provide frameworks and support for implementing features most Web sites

need. For example, we saw the support ASP.NET provides for making a common look and

feel throughout a site via Master Pages and Themes in Chapter 8. We saw the new login con-

trols in Chapter 10. The new login controls are there so you don’t have to hash out yet one

more login control. Then there are authentication and authorization, site maps, and on and

on. ASP.NET today is just packed with features to make your site development task easier

and faster.

 Personalizing Web sites is another feature that often makes for a great Web site. Until

ASP.NET 2.0, it was up to you to provide any personalization support for your site. Now these

features are rolled into ASP.NET.

 Let’s take a look at Web personalization.

 Personalizing Web Visits
 When the Internet and the Web fi rst began coming into prominence, most of the sites you

could surf to contained only static content. That is, they offered only text, graphics, and per-

haps links to other pages. The early Web-surfi ng community consisted of only the few folks

who knew about the Internet browsers peering into the contents of those early Web servers.

 Until the Web began exploding with interactive sites, there was really no need for the Web

site to care who was looking at it. However, any businessperson worth his or her salt will tell

you that tailoring and targeting content toward specifi c individuals is good for business.

 The next time you go online to shop or visit a subscription-type site, take note of how much

the site knows about you. Very often (if you’ve provided login information) the site will greet

you with your name. It may point you to information or products that might interest you.

This demonstrates the notion of personalizing a Web site.

 In the past, any personalization of your site resulted from code you wrote, such as code to

manage user preferences in cookies or code to store personal information in databases. In

addition to simply storing and managing the personal information, you had to integrate the
 285

286 Part II Advanced Features
personal information management with whatever authentication and authorization scheme

you decided to use. That is, once you authenticated the user, you then could tailor your pag-

es according to his or her personal information.

 ASP.NET now includes services for personalizing a Web site to suit a particular client’s taste.

There’s no reason you couldn’t write your own database and services to provide this func-

tionality. However, as with all these services provided by ASP.NET, they bring with them some

consistency and prevent you from having to write all the code yourself.

 Personalization in ASP.NET
 While it may not be surprising to fi nd that ASP.NET’s personalization services follow the same

provider pattern as authentication and site mapping, defi ning a Web site’s personalization

facilities begins by defi ning user profi les. We’ll start there.

 User Profi les
 The heart of the new ASP.NET personalization service is the user profi le. A user profi le defi nes

what kind of personal information your Web site needs. For example, you may want to know

personal data about users of your Web site, such as name, gender, number of visits to the

site, and so forth. User profi les are also handy for storing user preferences for your site. For

example, you might include a Theme as part of a personal profi le so that users can tailor the

pages to their particular tastes.

 Once the personalization properties are defi ned in web.confi g, a component within ASP.NET

has to be able to read it and use it. That job is handled by ASP.NET personalization providers.

 Personalization Providers
 In Chapter 10, we saw that .NET includes a provider pattern. Providers hide the infrastructural

code necessary to support the service, yet they allow you to choose different underlying

storage media with little impact to your site. Maybe you start your site using XML fi les for

storing data but later move to SQL Server or you have legacy authentication databases you

want to connect to your ASP.NET site. ASP.NET personalization is no different. In fact, ASP

.NET includes two personalization providers out of the box: a profi le provider for custom

user data and a personalization provider for Web Parts (as you recall, we looked at Web Parts

themselves in Chapter 7).

 ASP.NET defi nes the fundamental provider capabilities in an abstract class named

PersonalizationProvider. Those capabilities include loading and saving personalization

properties and managing their relationship to any Web Parts used within a site. ASP.NET

provides a default implementation of these capabilities in a concrete class named

SqlPersonalizationProvider, which is derived from PersonalizationProvider.

 Chapter 13 Personalization 287
 Using Personalization
 Using personalization is pretty straightforward. You basically defi ne personalization proper-

ties in web.confi g. ASP.NET will synthesize a class you may use to manage personalization

settings. At that point, profi le information is available in much the same way as session state

is available.

 Defi ning Profi les in Web.Confi g
 Your site’s profi le schema is defi ned within web.confi g as name/type pairs. Imagine that in

the course of designing your site, you decided you’d like to track the following information

about a particular user:

Q User name (a string)

Q Gender (a Boolean value)

Q Visit count (an integer)

Q Birthday (a date)

 Defi ning these properties is a matter of specifying them in web.confi g. A defi nition for the

properties I just mentioned might look like the following when identifi ed in web.confi g:

 <system.web>

 <profile automaticSaveEnabled="true" >

 <properties>

 <add name="NumVisits" type="System.Int32"/>

 <add name="UserName" type="System.String"/>

 <add name="Gender" type="System.Boolean">

 <add name="Birthday" type="System.DateTime">

 </properties>

 </profile>

</system.web

 Once defi ned in the web.confi g fi le, the profi le may be used in the site through the Profi le

property found in the current HttpContext (and also via the Page base class).

 Using Profi le Information
 To use the profi le in your Web site, you access it in much the same way you might access ses-

sion state. We’ll see how session state works in Chapter 14—right now it’s enough to say that

you may access data tied to a specifi c session by accessing the page’s Session member. The

Session member is a name-value dictionary holding arbitrary information tied to a particular

session. However, instead of being represented by name/value pairs accessed by enumerat-

ing a collection of stored state information, the ASP.NET compiler will synthesize a profi le

object based on the schema defi ned in the web.confi g fi le.

288 Part II Advanced Features
 For example, given the schema I just mentioned, ASP.NET will synthesize a class named

Profi leCommon, based on the Profi leBase class. The synthesized class will refl ect the values

written into the web.confi g by inserting actual class properties, shown here in bold:

 public class ProfileCommon : ProfileBase

{

 public virtual HttpProfile GetProfile(string username);

 public object GetPropertyValue(string propertyName);

 public void SetPropertyValue(string propertyName,

 object propertyValue);

 public HttpProfileGroupBase GetProfileGroup(String groupName);

 public void Initialize(String username,Boolean isAuthenticated);

 public virtual void Save();

 public void Initialize(SettingsContext context,

 SettingsPropertyCollection properties,

 SettingsProviderCollection providers);

 public string UserName{get; set;};

 public int NumVisits{get; set;};

 public bool Gender(get; set;);

 public DateTime Birthdate{get; set; };

}

 To access the profi le properties, simply use the Profi le property within the page. The Profi le

property is an instance of the Profi leCommon class synthesized by ASP.NET. Just access the

members of the Profi le, like so:

 protected void Page_Load(object sender, EventArgs e)

{

 if (Profile.Name != null)

 {

 Response.Write("Hello " + Profile.Name);

 Response.Write("Your birthday is " +

 Profile.Birthdate);

 }

}

 Saving Profi le Changes
 The preceding code snippet assumes there’s already personalization information associ-

ated with the user. To insert profi le data for a particular user, simply set the properties of the

Profi le object. For example, imagine a page that includes a handler for saving the profi le. It

might look something like this:

 protected void ProfileSaveClicked(object sender, EventArgs e)

{

 Profile.Name = this.TextBox1.Text;

 Profile.Birthdate = this.Calendar1.SelectedDate;

}

 Chapter 13 Personalization 289

 The easiest way to ensure that the personalization properties persist is to set the

automaticSaveEnabled to true. Personal profi le data will be saved automatically by the provider.

Alternatively, you may call Profi le.Save as necessary to save the personalization properties

manually. In addition to saving and loading profi les, you may also delete the profi le for a

specifi c user by calling Profi le.DeleteProfi le.

 Profi les and Users
 Profi le information is associated with the current user based on the identity of the user. By

default, ASP.NET uses the User.Identity.Name within the current HttpContext as the key to

store data. Because of this, profi les are generally available only for authenticated users.

 However, ASP.NET supports anonymous profi les as well. As you might expect, this is also con-

fi gured within web.confi g. The default tracking mechanism for anonymous profi les is to use

cookies. However, you may tell ASP.NET to use a mangled URL. A mangled URL is one in

which a key identifying the particular client is embedded in the URL used to post requests

back to the server.

 The following exercise illustrates using personalization profi les based on the user’s login ID.

 Using profi les

1. Before starting this project, add the profi le tables to your installation of SQL Server. Run

aspnet_regsql.exe to add the profi le tables. Go to the directory \windows\microsoft.net\

framework\v2.0.50727 (that’s the current version as of this writing). Microsoft provides a

default SqlProfi leProvider instance named AspNetSqlProfi leProvider. This provider con-

nects to your local SQL server. ASP.NET profi le feature uses this instance of the provider

by default.

2. Create a new project. Name the project MakeItPersonal.

3. Add a web.confi g fi le to the project if one isn’t created for you (earlier versions of

Visual Studio did not include the web.confi g fi le). Update web.confi g to include some

profi le properties. The example here includes a user name, a Theme, and a birthdate.

The following example shows that you may group and nest profi le structures using the

group element. The <group> element allows you to nest data structures within a profi le

declaration.

 <system.web>

 <profile>

 <properties >

 <add name="Theme" type="System.String"/>

 <add name="Name" type="System.String"/>

 <add name="Birthdate" type=”System.DateTime"/>

 <group name="Address">

290 Part II Advanced Features
 <add name="StreetAddress" type="System.String"/>

 <add name="City" type="System.String"/>

 <add name="State" type="System.String"/>

 <add name="ZipCode" type="System.String"/>

 </group>

 </properties>

 </profile>

</system.web>

Note Supporting Anonymous Personalization: This example uses the authenticated user name as

the key for locating personalization information. However, ASP.NET supports “anonymous” per-

sonalization. That is, ASP.NET supports personalization information for anonymous users—but

tracks the users via a cookie. You may add support for anonymous personalization tracking by

turning the anonymousIdentifi cation element to “true” and specifying cookie parameters like this:

 <anonymousIdentification enabled="true"

 cookieName=".ASPXANONYMOUSUSER"

 cookieTimeout="120000"

 cookiePath="/"

 cookieRequireSSL="false"

 cookieSlidingExpiration="true"

 cookieProtection="Encryption"

 cookieless="UseDeviceProfile" />

 In addition to setting anonymous access up in web.confi g, you need to set the [allowAnonymous]
attribute for the properties.

 By confi guring the site this way and adding the allowAnonymous attribute to properties in the

profi le information, ASP.NET will store the personalization settings based on a cookie it generates

when a user fi rst hits the site.

 4. Borrow the Default and SeeingRed Themes from the MasterPageSite project (Chapter

8). This will let the user pick the Theme. First add Default and SeeingRed folders to the

application’s Themes directory. Then click the right mouse button on each of the theme

folders and select Add Existing Item… from the local menu. Use the fi le navigation

dialog box to navigate to the Chapter 8 directory and select the theme fi les. You can do

the same for the master page fi le.

 5. Borrow the UseThemes.aspx and .cs fi les from the MasterPageSite project.̀

 6. Now update the Default.aspx page. This will be where users type profi le information.

 Add text boxes for the name, address, city, state, and zip code.

 Add a drop-down list box populated with Default and SeeingRed items. This will be

used for selecting the Theme.

 Also add a calendar control to pick the birthdate.

 Chapter 13 Personalization 291

7. Add a button that the user may click to submit profi le information. Add a handler to

input these values into the profi le. Double-click on the button to add the handler.

 The input screen should look something like this:

 Note Adding Users to Authenticate: This example uses the authenticated user name as

the key for storing personalization values. Use the ASP.NET Confi guration Utility to apply

Forms Authentication to this application (as described in Chapter 10). Also add at least one

user so that you have one to personalize. Add a Login.aspx screen to the site and modify

the site’s access rules to enforce authentication. Then you will be able to see the personal-

ization information being stored and retrieved. Add some users for this site using the Web

confi guration manager.

8. Update Page_Load to display profi le information (if it’s there). Grab the profi le object

and set each of the text boxes and the calendar control.

 public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!this.IsPostBack)

 {

292 Part II Advanced Features

 ProfileCommon pc = this.Profile.GetProfile(Profile.UserName);

 if (pc != null)

 {

 this.TextBoxName.Text = pc.Name;

 this.TextBoxAddress.Text = pc.Address.StreetAddress;

 this.TextBoxCity.Text = pc.Address.City;

 this.TextBoxState.Text = pc.Address.State;

 this.TextBoxZipCode.Text = pc.Address.ZipCode;

 this.DropDownList1.SelectedValue = pc.Theme;

 this.Calendar1.SelectedDate = pc.Birthdate;

 }

 }

 }

 // ...

}

9. Update the profi le submission handler to store the profi le information.

 protected void ButtonSubmitProfile_Click(object sender, EventArgs e)

{

 ProfileCommon pc = this.Profile.GetProfile(Profile.UserName);

 if (pc != null)

 {

 pc.Name = this.TextBoxName.Text;

 pc.Address.StreetAddress = this.TextBoxAddress.Text;

 pc.Address.City = this.TextBoxCity.Text;

 pc.Address.State = this.TextBoxState.Text;

 pc.Address.ZipCode = this.TextBoxZipCode.Text;

 pc.Theme = this.DropDownList1.SelectedValue;

 pc.Birthdate = this.Calendar1.SelectedDate;

 pc.Save();

 }

}

10. Finally, update the UseThemes.aspx page to use the Theme. Override the page’s

OnPreInit method. Have the code apply the Theme as specifi ed by the profi le.

 protected override void OnPreInit(EventArgs e)

{

 ProfileCommon pc = this.Profile.GetProfile(Profile.UserName);

 if (pc != null)

 {

 String strTheme = pc.Theme.ToString();

 if (strTheme != null &&

 strTheme.Length > 0)

 {

 this.Theme = strTheme;

 }

 }

 base.OnPreInit(e);

}

11. Add a Hyperlink control to the Default.aspx page. Set the Text property to View Themes
and set the NavigateURL property to point to the UseThemes.aspx page. When you

 Chapter 13 Personalization 293

surf to the page, you should be able to enter the profi le information and submit it.

Following your initial visit, the profi le will be available whenever you hit the site.

12. When you go to the UseThemes.aspx page, the page should use the theme that’s been

selected via the profi le. The following graphic shows the UseThemes.aspx page using

the SeeingRed theme pulled from the profi le:

294 Part II Advanced Features

Summary
Profi les represent an effective way to add personalization to your site. The profi le schema

you create in your web.confi g fi le defi nes the profi les available to the application. ASP.NET

will synthesize a Profi leCommon class that includes support for the properties defi ned in

web.confi g. To access the properties, grab the Profi le object from the Page or from the cur-

rent HttpContext. ASP.NET will take care of the details of serializing the property data and

tracking them either anonymously or by using the identity of the logged-in user.

Chapter 13 Quick Reference
To Do This
Defi ne personalization profi le settings Use the <profi le> element in web.confi g. Defi ne name/type pairs to

create the profi le schema.

Access the profi le properties Profi le properties are available through the Page base class and

through the current HttpContext.

 Track anonymous profi les with cookies Enable anonymousIdentifi cation in web.confi g and add the

allowAnonymous attribute to the profi le properties.

To Do This

 Part III

 Caching and State Management
 295

 Chapter 14

 Session State
 After completing this chapter, you will be able to

Q Understand the importance of managing session state in a Web application

Q Use the session state manager (the Session object)

Q Confi gure session state

Q Be aware of the different possibilities for storing session state with ASP.NET

 This chapter covers managing session state within your ASP.NET application. Programming

Web applications requires you to be very mindful of how the state of your application is dis-

tributed at any moment. One of the most important types of state in a Web application is

session state—the state associated with a single particular session. Because Web applications

are distributed by nature, and because the nature of the HTTP protocol is stateless, keeping

track of any single client has to be done deliberately.

 ASP.NET session state support is extensive, reliable, and fl exible—offering many advantages

over the session state support available in other Web platforms such as classic ASP. For

starters, ASP.NET session state is handled by the Session object—an object dictionary that’s

automatically created with each new session (if you have session state enabled). The Session

object is easily accessible through the HttpContext object, which you can reference at any

point during the request. The process of associating user state with a particular user’s session

is handled automatically by ASP.NET. Whenever you want to access session state, you just

grab it from the context (it’s also mapped into a member variable living on the page). You

may choose how ASP.NET tracks session state, and you may even tell ASP.NET where to store

session state.

 Let’s begin with a look at how various pieces of state are managed by ASP.NET, and the gap

fi lled by the session state manager.

 Why Session State?
 After working with ASP.NET during the previous chapters, one theme should be emerging.

Web-based programming distinguishes itself as a programming idiom in which you’re trying

to manage an application serving multiple users distributed over a wide area. What’s more,

you’re doing it over a disconnected (and stateless) protocol.

 For example, imagine you’re writing some sort of shopping portal. Certain types of the ap-

plication data can be kept in a central database—things like inventory and supplier lists.
 297

298 Part III Caching and State Management
We’ve seen that System.Web.UI.Page and server-side controls themselves manage view state.

However, when you think about the nature of data in a user’s shopping cart, you see the data

clearly belong elsewhere.

 You don’t really want to store those data in the page’s ViewState. Although it’s possible for

simple applications, storing large chunks of data in view state will bog down your users’ ex-

perience of the site (it’ll be much slower) and it poses a security risk by having items travel

back and forth with each request. In addition, only serializable types may be stored in view

state. Finally, you will lose the view state if you redirect to another page.

 Unfortunately, a single user’s session data don’t really belong in the application database ei-

ther. Perhaps if you expected only one user over the lifetime of your application, that might

work. However, remember the nature of a Web application is to make your application avail-

able to as many clients as possible. Suddenly, it becomes clear that you want to be able to

carve out a small data-holding area that persists for the lifetime of a single user’s session. This

type of data is known as session state.

 ASP.NET and Session State
 Since its inception, ASP.NET has supported session state. When session state is turned on,

ASP.NET creates a new Session object for each new request. The Session object becomes part

of the context (and is available through the page). ASP.NET stamps the Session object with an

identifi er (more on that later), and the Session object is reconstituted when a request comes

through containing a valid session identifi er. The Session object follows the page around and

becomes a convenient repository for storing information that has to survive throughout the

session (and not simply for the duration of the page).

 The Session object is a dictionary of name-value pairs. You can associate any Common Language

Runtime (CLR)-based object with a key of your choosing and place it in the Session object so it

will be there when the next request belonging to that session comes through. Then you may

access that piece of data using the key under which it was stored. For example, if you wanted to

store some information provided by the user in the Session object, you’d write code like this:

 void StoreInfoInSession()

{

 String strFromUser = TextBox1.Text;

 Session["strFromUser"] = strFromUser;

}

 To retrieve the string during the next request, you’d use code like this:

 void GetInfoFromSession()

{

 String strFromUser = Session["strFromUser"] ; // NOTE: may be null

 TextBox1.Text = strFromUser;

}

 Chapter 14 Session State 299
 The square braces on the Session object indicate an indexer. The indexer is a convenient syn-

tax for expressing keys—both when inserting data into and retrieving data from the Session

object. Do note, however, that if the key you provide doesn’t map to a piece of data in the

session dictionary, the Session object will return null. In production code it’s always wise to

check for a null value and react accordingly.

 Managing session state in ASP.NET is extraordinarily convenient. In ASP.NET, session state

may live in a number of places, including (1) “in proc”—in the ASP.NET worker process, (2) on

a separate state server running a Windows Service process, and (3) in a SQL Server database.

Because session management follows the provider pattern you’ve seen in earlier chapters,

you can relatively easily replace ASP.NET’s built-in session state management with an imple-

mentation of your own.

 Let’s start by getting a taste of using session state right now.

 Introduction to Session State
 To understand how session state works, here’s an exercise that involves creating a Web site

whose page stores a value as a member variable in the page and as an element of session

state. It will illustrate the difference between page state during a request and session data

that persist beyond a request.

 Trying session state

 1. Create a new Web site. Name it SessionState. Make it a File System site.

 2. In the default page (Default.aspx), drag a text box (and a label to identify the TextBox if

you want) onto the form. Then drag two buttons and another label onto the form like so:

300 Part III Caching and State Management

3. Set the Text property of the fi rst button to Submit String. Then give the button the

same value as an ID. That is, set the ID to SubmitString. Doing so will help you distin-

guish the buttons later on. It doesn’t matter what you name the second button. The

fi rst button will submit the string to the form, and the other button will just perform a

postback. That way, you’ll be able to see the ephemeral nature of page member vari-

ables. Drop a Label on the page. Name the label LabelShowString. We’ll use it to display

the value of the string.

4. Add a String variable member to the page named _str. In the Page_Load handler, set the

text box on the page to the value of the string. Then add a handler for the SubmitString

button. Have the handler take the Text property from the TextBox1 and store it in the

page member variable. Then set the LabelShowString label text to the value of the

string like so:

 public partial class _Default : System.Web.UI.Page

{

 string _str = String.Empty;

 protected void Page_Load(object sender, EventArgs e)

 {

 this.LabelShowString.Text = this._str;

 }

 protected void SubmitString_Click(object sender, EventArgs e)

 {

 this._str = this.TextBox1.Text;

 this.LabelShowString.Text = this._str;

 }

}

5. Now run the program. Type a string into the text box and click Submit String. When

the post goes to the page, the page will show the string in the label.

 Chapter 14 Session State 301

6. Now click Just Submit. What happens? Remember, Page_Load simply looks at the

value of the _str member variable and stuffs it into the label. Pages (and HTTP handlers in

general) are very short-lived objects. They live for the duration of the request and then

are destroyed—along with all the data they hold. The _str member variable evaporated

as soon as the last request fi nished. A new _str member variable (which was empty) was

instantiated as soon as the page was re-created.

 To sum up, we saw in Chapter 4 that controls manage their own state. But in this case,

we’re taking the data from the text box and storing them in a member variable in the

Page class. The lifetime of the page is very short. The page lives long enough to gener-

ate a response, and then it disappears. Any state you’ve stored as data members in the

page disappears too. That’s why, when you click the Just Submit button, you don’t see

the string displayed. You do see the string when Submit String is clicked because the

member variable survives long enough to support the button’s Click event handler.

302 Part III Caching and State Management

7. Using session state is a way to solve this issue. To show this, add a new label to the

page. This one will show the data as retrieved from the Session object:

8. Write code to store the string in session state. Have the SubmitString take the text from

the TextBox1 and store it into the Session object. Then update the Page_Load method

to display the value as it came from session state as shown below:

 public partial class _Default : System.Web.UI.Page

{

 string _str = String.Empty;

 protected void Page_Load(object sender, EventArgs e)

 {

 this.LabelShowString.Text = this._str;

 this.LabelShowStringAsSessionState.Text =

 (String)this.Session["str"];

 }

 Chapter 14 Session State 303

 protected void SubmitString_Click(object sender, EventArgs e)

 {

 this._str = this.TextBox1.Text;

 this.Session["str"] = this.TextBox1.Text;

 this.LabelShowString.Text = this._str;

 this.LabelShowStringAsSessionState.Text =

 (String)this.Session["str"];

 }

}

9. Run the program. Type in a string and click the Submit String button. Both labels

should contain data. The LabelShowString label will hold data because the SubmitString

handler made the member variable assignment. The LabelShowStringAsSessionState

label also shows data because the handler stored that text in session state.

304 Part III Caching and State Management
 10. Now click the Just Submit button and see what happens:

 In this case, the page was simply submitted, causing only the Page_Load to be execut-

ed. Page_Load displays both the _str member variable (which is empty because it lives

and dies with the page) and the data from the Session object (which lives independently

of the page).

 As you can see, session state is pretty convenient. However, we wouldn’t get very far if all we

could do was store simple strings and scalars. Fortunately, the session dictionary stores all

manner of CLR objects.

 Session State and More Complex Data
 ASP.NET’s Session object will store any (serializable) object running within the CLR. That goes

for larger data—not just small strings or other scalar types. One of the most common uses

for the Session object is for implementing features like shopping carts (or any other data that

has to go with a particular client). For example, if you’re developing a commerce-oriented

site for customers to purchase products, you’d probably implement a central database repre-

senting your inventory. Then, as users sign on, they will have the opportunity to select items

 Chapter 14 Session State 305

from your inventory and place them in a temporary holding area associated with the session

they’re running. In ASP.NET, that holding area is typically the Session object.

 A number of different collections are useful for managing shopping cart-like scenarios.

Probably the easiest to use is the good ol’ ArrayList—an automatically sizing array that sup-

ports both random access and the IList interface. However, for other scenarios you might use

a DataTable, a DataSet, or some other more complex type.

 We took a quick look at ADO and data access in Chapter 11. The next example revisits data-

bound controls (the DataList and the GridView). We’ll also work with the DataTable in depth.

 Session state, ADO.NET objects, and data-bound controls

 This example illustrates using ADO.NET objects, data-bound controls, and session state to

transfer items from an inventory (represented as a DataList) to a collection of selected items

(represented using a GridView).

1. Create a new page on the SessionState site named UseDataList.aspx.

 Add DataList to the page by copying the following code between the <div> tags on

the generated page. The DataList will display the elements in the .NET References table

from the Access database we saw in Chapter 11.

 <asp:DataList ID="DataList1"

 runat="server" BackColor="White" BorderColor="#E7E7FF"

 BorderStyle="None" BorderWidth="1px" CellPadding="3"

 GridLines="Horizontal"

 Style="z-index: 100; left: 8px; position: absolute; top: 16px"

 OnItemCommand="DataList1_ItemCommand" Caption="Items in Inventory" >

<FooterStyle BackColor="#B5C7DE" ForeColor="#4A3C8C" />

<SelectedItemStyle BackColor="#738A9C"

 Font-Bold="True" ForeColor="#F7F7F7" />

<AlternatingItemStyle BackColor="#F7F7F7" />

<ItemStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" />

 <ItemTemplate>

 ID:

 <asp:Label ID="IDLabel"

 runat="server" Text='<%# Eval("ID") %>'></asp:Label>

 Title:

 <asp:Label ID="TitleLabel"

 runat="server" Text='<%# Eval("Title") %>'></asp:Label>

 AuthorLastName:

 <asp:Label ID="AuthorLastNameLabel"

 runat="server" Text='<%# Eval("AuthorLastName")

 %>'></asp:Label>

 AuthorFirstName:

 <asp:Label ID="AuthorFirstNameLabel"

 runat="server" Text='<%# Eval("AuthorFirstName")

 %>'></asp:Label>

 Topic:

 <asp:Label ID="TopicLabel" runat="server"

306 Part III Caching and State Management

 Text='<%# Eval("Topic") %>'></asp:Label>

 Publisher:

 <asp:Label ID="PublisherLabel"

 runat="server"

 Text='<%# Eval("Publisher") %>'></asp:Label>

 <asp:Button ID="SelectItem"

 runat="server" Text="Select Item" />

 </ItemTemplate>

 <HeaderStyle BackColor="#4A3C8C" Font-Bold="True"

 ForeColor="#F7F7F7" />

</asp:DataList>

 The Visual Studio designer should appear like this when done.

2. Stub out a shell for the SelectItem button on Click handler. Select DataList1 on the

page. In the Properties dialog box within Visual Studio, click the lightning bolt button

to get the events. In the edit box next to the ItemCommand event, type SelectItem.

The button handler should be named DataList1_ItemCommand to match the identifi er

 Chapter 14 Session State 307

in the DataList1. We’ll use it shortly to move items from the inventory to the selected

items table.

 public partial class UseDataList : System.Web.UI.Page

{

 protected void DataList1_ItemCommand(object source,

 DataListCommandEventArgs e)

 {

 }

}

3. Go back to the code for the page and add some code to open a database and populate

the DataList. Name the function GetInventory. The examples that come with this book

include a database named ASPDotNetStepByStep.mdb that will work. Add the database

from Chapter 11’s example to the App_Data folder of this project. You can use the con-

nection string listed below to connect to the database. Make sure the database path

points to the fi le correctly using your directory structure.

 public partial class UseDataList : System.Web.UI.Page

{

 protected DataTable GetInventory()

 {

 string strConnection =

 @"Provider=Microsoft.Jet.OLEDB.4.0; Data

 Source=|DataDirectory|ASPDotNetStepByStep.mdb";

 DbProviderFactory f =

 DbProviderFactories.GetFactory("System.Data.OleDb");

 DataTable dt = new DataTable();

 using (DbConnection connection = f.CreateConnection())

 { connection.ConnectionString = strConnection;

 connection.Open();

 DbCommand command = f.CreateCommand();

 command.CommandText = "Select * from DotNetReferences";

 command.Connection = connection;

 IDataReader reader = command.ExecuteReader();

 dt.Load(reader);

 reader.Close();

 connection.Close();

 }

 return dt;

 }

 protected DataTable BindToinventory()

 {

308 Part III Caching and State Management

 DataTable dt;

 dt = this.GetInventory();

 this.DataList1.DataSource = dt;

 this.DataBind();

 return dt;

 }

 // More goes here...

}

4. Now add a method named CreateSelectedItemsData. This will be a table into which se-

lected items will be placed. The method will take a DataTable object that will describe

the schema of the data in the live database (we’ll see how to get that soon). You can

create an empty DataTable by constructing it and then adding Columns to the column

collection. The schema coming from the database will have the column name and the

data type.

 public partial class UseDataList : System.Web.UI.Page

{

 protected DataTable CreateSelectedItemsTable(DataTable tableSchema)

 {

 DataTable tableSelectedItemsData = new DataTable();

 foreach(DataColumn dc in tableSchema.Columns)

 {

 tableSelectedItemsData.Columns.Add(dc.ColumnName,

 dc.DataType);

 }

 return tableSelectedItemsData;

 }

}

5. Add code to the Page_Load handler. When the initial request to a page is made (that

is, if the request is not a postback), Page_Load should call BindToInventory (which re-

turns the DataTable snapshot of the DotNetReferences table). Use the DataTable as

the schema on which to base the selected items table. That is, declare an instance of

a DataTable and assign it the result of CreateSelectedItemsTable. Then store the (now

empty) table in the Session object using the key tableSelectedItems.

 public partial class UseDataList : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 DataTable dt = BindToinventory();

 DataTable tableSelectedItems =

 this.CreateSelectedItemsTable(dt);

 Session["tableSelectedItems"] = tableSelectedItems;

 }

 Chapter 14 Session State 309

 }

}

 Browse to the Web site to make sure that the database connects. It should look some-

thing like this:

6. Now add a GridView to the page. Don’t bother to give it a data source. It represents

the table of selected items held in session state. We’ll add that shortly. Make sure the

AutoGenerateColumns property is set to true.

310 Part III Caching and State Management

7. Finally, add a handler for the SelectItem button. This method should move items from

the inventory to the selected items table. You can get the selected item index from

the DataListCommandEventArgs coming into the handler. Calling BindToInventory will

set up the DataList data source so you can fetch the selected item. You may access the

columns within the selected row using ordinal indices. From the values in each column,

construct a new DataRow and add it to the selected items table. Store the modifi ed

table back in session state. Finally, apply the new selected items table to the DataSource

in the GridView1 and bind the GridView1.

 public partial class UseDataList : System.Web.UI.Page

{

 protected void DataList1_ItemCommand(object source,

 DataListCommandEventArgs e)

 {

 int nItemIndex = e.Item.ItemIndex;

 this.DataList1.SelectedIndex = nItemIndex;

 BindToinventory();

 // Order of the columns is:

 // ID, Title, FirstName, LastName, Topic, Publisher

 DataTable dt = (DataTable)DataList1.DataSource;

 String strID = (dt.Rows[nItemIndex][0]).ToString();

 String strTitle = (dt.Rows[nItemIndex][1]).ToString();

 String strAuthorLastName = (dt.Rows[nItemIndex][2]).ToString();

 String strAuthorFirstName = (dt.Rows[nItemIndex][3]).ToString();

 String strTopic = (dt.Rows[nItemIndex][4]).ToString();

 String strPublisher = (dt.Rows[nItemIndex][5]).ToString();

 DataTable tableSelectedItems;

 tableSelectedItems = (DataTable)Session["tableSelectedItems"];

 DataRow dr = tableSelectedItems.NewRow();

 dr[0] = strID;

 dr[1] = strTitle;

 dr[2] = strAuthorLastName;

 dr[3] = strAuthorFirstName;

 dr[4] = strTopic;

 dr[3] = strPublisher;

 tableSelectedItems.Rows.Add(dr);

 Session["tableSelectedItems"] = tableSelectedItems;

 this.GridView1.DataSource = tableSelectedItems;

 this.GridView1.DataBind();

 }

}

8. Run the site. When the page fi rst comes up, you should see only the inventory list

on the left side of the page. Click the Select Item button on some of the items. You

should see your browser post back to the server and render the DataList and the

GridView with the newly added selected item.

 Chapter 14 Session State 311

 Now that you have a working application that uses session state, let’s take a look at the dif-

ferent ways in which you may confi gure ASP.NET session state.

 Confi guring Session State
 ASP.NET gives you several choices for managing session state. You can turn it off completely,

you may run session state in the ASP.NET worker process, you may run it on a separate

state server, or you may run it from a SQL Server database. Here’s a rundown of the options

available:

Q Don’t use it at all. By disabling session state, your application performance will in-

crease because the page doesn’t need to load the session when starting, nor does it

need to store session state when it’s going away. On the other hand, you won’t be able

to associate any data with a particular user between page invocations.

Q Store session state “in proc.” This is how session state is handled by default. In this

case, the session dictionaries (the Session objects) are managed in the same process as

the page and handler code. The advantage of using session state in process is that it’s

very fast and convenient. However, it’s not durable. For example, if you restart IIS or

somehow knock the server down, all session state is lost. In some cases, this may not be

a big deal. However, if your shopping cart represents a shopping cart containing sizable

orders, losing that might be a big deal. In addition, the in-process Session manager is

confi ned to a single machine, meaning you can’t use it in a Web farm. (A Web farm is a

group of servers tied together to serve Web pages as a single application.)

312 Part III Caching and State Management
Q Store session state in a state server. This option tells the ASP.NET runtime to direct

all session management activities to a separate Windows Service process running on

a particular machine. This option gives you the advantage of running your server in a

Web farm. The ASP.NET Session State facilities support Web farms explicitly. To run in

a Web farm, you would direct all your applications to go to the same place to retrieve

session information. The downside to this approach is that it does impede performance

somewhat—applications need to make a network round-trip to the state server when

loading or saving session information.

Q Store session state in a database. Confi guring your application to use a SQL Server

database for state management causes ASP.NET to store session information within a SQL

Server database somewhere on your network. Use this option when you want to run your

server from within a Web farm when you want session state to be durable and safe.

 When confi guring ASP.NET session state during development, you may edit the confi guration

fi le directly. Once your site is deployed, you may prefer to confi gure session state through

the session state confi guration page in IIS.

 Turning Off Session State
 The ASP.NET session state confi guration tool available through IIS will touch your Web site’s

web.confi g fi le and insert the right confi guration strings to enforce the settings you choose.

To turn off session state completely, select Off from the session state mode control.

 Chapter 14 Session State 313
 Storing Session State InProc
 To store session state in the ASP.NET worker process, select InProc from the session state

mode control. Your application will retrieve and store session information very quickly, but it

will be available only to your application on the particular server the session information was

originally stored within (that is, the session information will not be available to other servers

that might be working together on a Web farm).

 Storing Session State in a State Server
 To have ASP.NET store session state on another server on your network, select StateServer
from the SessionState mode control. When you select this item, the dialog box will enable the

Connection String text box and the network Timeout text box. Insert the protocol, Internet

Protocol (IP) address, and port for the state server in the Connection String text box. For ex-

ample, the string

 tcpip=loopback:42424

 will store the session state on the local machine over port 42424. If you want to store the ses-

sion state on a machine other than your local server, change the IP address. Before session

state is stored on a machine, you need to make sure the ASP.NET state service is running on

that machine. You may get to it via the Services panel under the control panel and the ad-

ministration tools.

314 Part III Caching and State Management
 Storing Session State in a Database
 The fi nal option for storing session state is to use a SQL Server database. Select SQLServer
from the ASP.NET session state mode combo box. You’ll be asked to enter the connection

string to the SQL Server state database. Here’s the string provided by default:

 data source=localhost;Integrated Security=SSPI

 You may confi gure ASP.NET so it references a database on another machine. Of course, you

need to have SQL Server installed on the target machine to make this work. In addition,

you’ll fi nd some SQL scripts to create the state databases in your .NET system directory (C:\

WINDOWS\Microsoft.NET\Framework\v2.0.50727 on this machine at the time of this writing).

The aspnet_regsql.exe tool will set up the databases for you.

 Tracking Session State
 Because Web-based applications rely on HTTP to connect browsers to servers and HTML

to represent the state of the application, ASP.NET is essentially a disconnected architecture.

When an application needs to use session state, the runtime needs a way of tracking the ori-

gin of the requests it receives so that it may associate data with a particular client. ASP.NET

offers three options for tracking the session ID—via cookies, the URL, or device profi les.

 Tracking Session State with Cookies
 This is the default option for an ASP.NET Web site. In this scenario, ASP.NET generates a hard-

to-guess identifi er and uses it to store a new Session object. You can see the session identifi er

come through the cookie collection if you have tracing turned on. Notice how ASP.NET stores

the session ID in a request cookie. The tracing information also reveals the names and the

values of the session variables.

 Chapter 14 Session State 315

316 Part III Caching and State Management
 Tracking Session State with the URL
 The other main option is to track session state by embedding the session ID as part of the

request string. This is useful if you think your clients will turn off cookies (thereby disabling

cookie-based session state tracking). Notice that the navigation URL has the session ID em-

bedded within it.

 Using AutoDetect
 By selecting AutoDetect, the ASP.NET runtime will determine if the client browser has cookies

turned on. If cookies are turned on, then the session identifi er is passed around as a cookie. If

not, the session identifi er will be stored in the URL.

 Applying Device Profi les
 The UseDeviceProfi le option tells ASP.NET to determine if the browser supports cookies based

on the SupportsRedirectWithCookie property of the HttpBrowserCapabilities object set up for

the request. Requests that fl ip this bit to true cause session identifi er values to be passed as

cookies. Requests that fl ip this bit to false cause session identifi ers to be passed in the URL.

 Chapter 14 Session State 317
 Session State Timeouts
 The timeout confi guration setting manages the lifetime of the session. The lifetime of the ses-

sion is the length of time in minutes a session may remain idle before ASP.NET abandons it

and makes the session ID invalid. The maximum value is 525,601 minutes (one year), and the

default is 20.

 Other Session Confi guration Settings
 ASP.NET supports some other confi guration settings not available through the IIS confi gura-

tion utility. These are values you need to type into the web.confi g fi le directly.

 If you don’t like the rather obvious name of the session ID cookie made up by ASP.NET (the

default is SessionID), you may change it. The cookieName setting lets you change that name.

You might want to rename the cookie as a security measure to hamper hackers in their at-

tempts to hijack a session ID key.

 If you want to replace an expired session ID with a new one, setting the

regenerateExpiredSessionId setting to true will perform that task. This is only for cookieless

sessions.

 If you don’t like the SQL Server database already provided by ASP.NET to support session state,

you may use your own database. The allowCustomSqlDatabase setting turns this feature on.

 When using SQL Server to store session data, ASP.NET has to act as a client of SQL Server.

Normally, the ASP.NET process identity is impersonated. You may instruct ASP.NET to use the

user credentials supplied to the identity confi guration element within web.confi g by setting

the mode attribute to Custom. By setting the mode attribute to SQLServer, you tell ASP.NET to

use a trusted connection.

 The stateNetworkTimeout is for setting the number of seconds for the idle time limits of the

TCP/IP network connection between the Web server and the state server, or between the

SQL Server and the Web server. The default is 10.

 Finally, you may instruct ASP.NET to use a custom provider by setting the name of the pro-

vider in the custom element. For this to work, the provider must be specifi ed elsewhere in

web.confi g (specifi cally in the providers element).

 The Wizard Control: Alternative to Session State
 One of the most common uses for session state is to keep track of information coming from

a user even though the information is posted back via several pages. For example, scenarios

such as collecting mailing addresses, applying for security credentials, or purchasing some-

thing on a Web site introduce this issue.

318 Part III Caching and State Management

 Sometimes gathering information is minimal and may be done through only one page.

However, when collecting data from users requires several pages of forms, you need to keep

track of that information between posts. For example, most commercial Web sites employ

a multistage checkout process. After placing a bunch of items into your shopping cart, you

click Check Out and the site redirects you to a checkout page. From there, you are usually

required to perform several distinct steps—setting up a payment method, confi rming your

order, and getting an order confi rmation.

 While you could code something like this in ASP.NET 1.x, ASP.NET includes a Wizard control

to deal with this sort of multistage data collection.

 If you were to develop a multistage input sequence, you’d need to build in the navigation

logic and keep track of the state of the transaction. The Wizard control provides a template

that performs the basic tasks of navigating though multiple input pages while you provide

the specifi cs. The Wizard control logic is built around specifi c steps and includes facilities for

managing these steps. The Wizard control supports both linear and nonlinear navigation.

 Using the Wizard control

 This example shows how to use the Wizard control to gather several different pieces of infor-

mation from the client: a name and address, what kinds of software he or she uses, and the

kind of hardware he or she uses. For example, this might be used to qualify users for entry

into a certain part of the Web site or perhaps to qualify them for a subscription.

1. Create a new page in the SessionState project named UseWizard.aspx.

2. Drop a WizardControl from the Toolbox onto the page.

3. When the Wizard Tasks window appears in the designer, click on the small arrow near

the top right corner of the Wizard. Select Auto Format to style the Wizard. The ex-

ample here uses the Professional style.

 The example here also uses a StartNavigationTemplate and a SidebarTemplate allow-

ing you greater control over the look of these aspects of the Wizard. While they’re

not used explicitly in the example, they’re shown here to illustrate how they fi t into

the Wizard control. Using these templates, you can defi ne how these parts of the

Wizard look by introducing controls to them. To convert these areas to templates, click

on the small arrow on the upper right corner of the Wizard and choose Convert To
StartNavigationTemplate. Then access the Wizard’s local menu again and choose

Convert To SideBarTemplate.

 Chapter 14 Session State 319

 Then click on the arrow again and select Add/Remove Wizard Steps… to show this

dialog box (remove the two steps that Visual Studio inserts as default):

4. Add an Intro step, a Name and Address step, a Software step, a Hardware step, and a

Submit information step. That is, click the Add button to bring up the dialog box for

entering steps. “Name,” “Address,” “Software,” “Hardware,” and “Submit Information” are

the Titles for these pages. Make sure Intro uses StepType of Start.

5. Make sure the Submit information step has its StepType set to Finish. With all of the

steps in place, click OK.

6. Add controls to the steps. First, select the Wizard in the designer and then choose Set
Position from the Format menu. Choose Absolute. Now you can resize the Wizard.

Set the Height to 240px and the Width to 650px. Now navigate to the step by selecting

320 Part III Caching and State Management

the small arrow that appears on the upper right corner of the Wizard control. Select the

Intro step. The Intro step gets a label that describes what the user is entering:

7. The Name and Address step should include labels and text boxes to get personal infor-

mation. As you add these controls, select Absolute positioning for each one by selecting

Set Position from the Format menu. This will let you move the elements around. Drop

the name Label onto the pane on the right side of the Wizard. Below that, add the

name TextBox. Below that, drop the address Label on the pane followed below by the

address TextBox. Underneath that, add the city Label followed by the city TextBox. Drop

the state and postal code Labels next, followed by the state and postal code TextBoxes

on that line. Be sure to give usable IDs to the text boxes. The name TextBox should have

the ID TextBoxName. The address TextBox should have the ID TextBoxAddress. The

city TextBox should have the ID TextBoxCity. The state TextBox should have the ID

 Chapter 14 Session State 321

TextBoxState, and the postal code TextBox should have the ID TextBoxPostalCode.

You’ll need them during the submission step:

8. Select the Software step and modify it. The Software step should include a list

of check boxes listing common software types. Add a CheckBoxList with the ID

CheckBoxListSoftware and fi ll it with the values you see here:

322 Part III Caching and State Management

9. The Hardware step should include a list of check boxes listing common hardware types.

Add a CheckBoxList with the ID CheckBoxListHardware and fi ll it with the values you

see here:

10. The Submit Information step (which you may use to show information before submit-

ting) should include a multiline TextBox that will summarize the information collected.

Give the TextBox the ID TextBoxSummary so you can use it to display the summary.

 Chapter 14 Session State 323

11. Finally, edit the Page_Load method to collect the information from each of the controls

in the Wizard. The controls are actually available as member variables on the page. This

information will be loaded every time the page is loaded. However, it will be hidden

from view until the user selects the step. Double-clicking on the Wizard control will add

a handler for the Finish button that you may use to harvest the information gathered

via the wizard.

 protected void Page_Load(object sender, EventArgs e)

{

 StringBuilder sb = new StringBuilder();

 sb.Append("You are about to submit. \n");

 sb.Append(" Personal: \n");

 sb.AppendFormat(" {0}\n", this.TextBoxName.Text);

 sb.AppendFormat(" {0}\n", this.TextBoxAddress.Text);

 sb.AppendFormat(" {0}\n", this.TextBoxCity.Text);

 sb.AppendFormat(" {0}\n", this.TextBoxState.Text);

 sb.AppendFormat(" {0}\n", this.TextBoxPostalCode.Text);

 sb.Append("\n Software: \n");

 foreach (ListItem listItem in CheckBoxListSoftware.Items)

 {

 if (listItem.Selected)

 {

 sb.AppendFormat(" {0}\n", listItem.Text);

 }

 }

 sb.Append("\n Hardware: \n");

 foreach (ListItem listItem in CheckBoxListHardware.Items)

 {

 if (listItem.Selected)

 {

 sb.AppendFormat(" {0}\n", listItem.Text);

 }

 }

 this.TextBoxSummary.Text = sb.ToString();}

}

protected void Wizard1_FinishButtonClick(object sender,

 WizardNavigationEventArgs e)

{

 // Do something with the data here

}

12. Now run the page and go through the steps. You’ll see each step along the way and

then fi nally a summary of the information collected. If the wizard on your page doesn’t

start with the fi rst step (Intro), it’s probably because you’re running the page in the

debugger and a wizard step other than Intro is selected in the designer. Simply select

Intro in the designer and re-run the page.

324 Part III Caching and State Management

 Chapter 14 Session State 325

326 Part III Caching and State Management

 Summary
 If anything distinguishes Web-based programming from other types of programming, it’s

probably the issue of tracking the state of any particular user. Because Web development in-

herently involves distributing and managing that state, it needs to be done deliberately.

 Session state is one of the most important pieces of state in any application because it is as-

sociated with the particular client making the request. This is most important for applications

in which you want to have the state associated with a single user available (as in the case of a

shopping cart, for example).

 Session state is always available through the Page (and through the HttpContext) via the

Session object. It’s a name value dictionary that holds any kind of (serializable) CLR object.

Adding and retrieving information is accomplished most easily via indexers. In addition, ses-

sion state may be confi gured in its storage location, in how it’s tracked, and in how long it

lasts. ASP.NET supports a number of other more advanced settings, too.

 In this chapter, we also looked at the Wizard control as a way to retain information between

several postbacks without resorting to session state. This is most useful when several kinds of

related data need to be collected at once.

 Chapter 14 Session State 327
Chapter 14 Quick Reference
 To Do This
 Access the current client’s session state Use the Page.Session property.

Use the current context’s HttpContext.Session property.

 Access a specifi c value in the current

client’s session state

Session state is a set of key-value pairs. Access the data with the

string-based key originally used to insert the data in the cache.

 Store session state in proc Edit the sessionState attributes in web.confi g. Set mode to InProc.

 Store session state in a state server Edit the sessionState attributes in web.confi g. Set mode to

StateServer. Be sure to include a stateConnectionString.

 Store session state in SQL Server Set the sessionState attributes in web.confi g. Set mode to SQLServer.
Be sure to include a sqlConnectionString.

 Disable session state Set the sessionState attributes in web.confi g. Set mode to Off.

 Use cookies to track session state Set the sessionState attributes in web.confi g. Set cookieless to false.

 Use URL to track session state Set the sessionState attributes in web.confi g. Set cookieless to true.

 Set session state timeout Set the sessionState attributes in web.confi g. Set timeout to a value

(representing minutes).

To Do This

 Chapter 15

 Application Data Caching
 After completing this chapter, you will be able to

Q Improve the performance of your application by using the application data cache

Q Avoid unnecessary round-trips to the database

Q Manage items in the application data cache

 This chapter covers ASP.NET’s built-in data-caching features. Caching is a long-standing

means of improving the performance of any software system. The idea is to place frequently

used data in quickly accessed media. Even though access times for mass storage continue to

improve, accessing data from a standard hard disk is much slower than accessing it in mem-

ory. By taking often-used data and making it available quickly, you can improve the perfor-

mance of your application dramatically.

 The ASP.NET runtime includes a dictionary (key-value map) of Common Language Runtime

(CLR) objects. The Cache lives with the application and is available via the HttpContext and

System.Web.UI.Page. Using the cache is very much like using the Session object. You may ac-

cess items in the cache using an indexer. In addition, you may control the lifetime of objects

in the cache and even set up links between the cached objects and their physical data sourc-

es. Let’s start by examining a case in which using the cache is justifi ed.

 Making an application that benefi ts from caching

 1. Create a new site. Call it UseDataCaching. (If you prefer, you may use the project from

Chapter 14 because this project uses the same database.)

 2. Borrow the UseDataList code from the example in Chapter 14. To bring it into your

new project, click the right mouse button on the project in Solution Explorer. Choose

Add Existing Item. Navigate to the location of the code from Chapter 14. Grab the

UseDataList.aspx and UseDataList.aspx.cs fi les from Chapter 14. Click Add to copy them

into this new project.

 The code you imported refers to the database in the SessionState example. That’s okay.

If you want to, you can change it to the database in this application’s App_Data direc-

tory, but it’s not strictly necessary as long as the path points to an available database

somewhere on your system.

 3. Examine in particular the GetInventory, the BindToInventory, and the Page_Load methods.

Listing 15-1 shows the code.
 329

330 Part III Caching and State Management
 LISTING 15-1 Inventory Binding Code

 protected DataTable CreateSelectedItemsTable(DataTable tableSchema)

{

 DataTable tableSelectedItemsData = new DataTable();

 foreach (DataColumn dc in tableSchema.Columns)

 {

 tableSelectedItemsData.Columns.Add(dc.ColumnName,

 dc.DataType);

 }

 return tableSelectedItemsData;

}

protected DataTable GetInventory()

{

 String strConnection =

 @"Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=|DataDirectory|ASPDotNetStepByStep.mdb";

 DbProviderFactory f =

 DbProviderFactories.GetFactory("System.Data.OleDb");

 DataTable dt = new DataTable();

 using (DbConnection connection = f.CreateConnection())

 {

 connection.ConnectionString = strConnection;

 connection.Open();

 DbCommand command = f.CreateCommand();

 command.CommandText = "Select * from DotNetReferences";

 command.Connection = connection;

 IDataReader reader = command.ExecuteReader();

 dt.Load(reader);

 reader.Close();

 connection.Close();

 }

 return dt;

}

protected DataTable BindToInventory()

{

 DataTable dt;

 dt = this.GetInventory();

 this.DataList1.DataSource = dt;

 this.DataBind();

 return dt;

}

protected void Page_Load(object sender, EventArgs e)

{ if (!IsPostBack)

 Chapter 15 Application Data Caching 331
 {

 DataTable dt = BindToInventory();

 DataTable tableSelectedItems =

 this.CreateSelectedItemsTable(dt);

 Session["tableSelectedItems"] = tableSelectedItems;

 }

}

 4. Run the application to make sure it works. That is, it should connect to the

DotNetReferences table and bind the DataList to the table from the database.

 The GetInventory and BindToInventory methods are called by the Page_Load method. How

often is Page_Load called? Every time a new page is created—which happens for every single

HTTP request destined for the UseDataList page. In the case of running this application on a

single computer with one client (in a testing situation), perhaps connecting to the database

for every request isn’t a big deal. However, for applications that are expected to serve thou-

sands of users making frequent requests, repeated database access actually becomes a very

big deal. Accessing a database is actually a very expensive operation. As we’ll see shortly, it

may take up to a half second to simply connect to this access database and read the mere

25 rows contained in the DotNetReferences table. Data access can only get more expensive as

the size of the tables in the database grows. A half second in the computer processing time

scale is eons to the program.

 Now think about the nature of the inventory table. Does it change often? Of course, not in

the case of this simple application. However, think about how this might work in a real ap-

plication. The items carried within an inventory may not change as often as other data sets

might (and such changes might occur at regular, predictable intervals). If that’s the case,

why does the application need to hit the database each time a page is loaded? Doing so is

certainly overkill. If you could take those data elements and store them in a medium that

offers quicker access than the database (for example, the computer’s internal memory), your

site could potentially serve many more requests than if it had to make a round-trip to the

database every time it loads a page. This is a perfect opportunity to cache the data. (The

caveat here is that if the inventory data set begins fl uctuating quickly, it will become a poor

candidate for caching.)

 Using the Data Cache
 Using the data cache in the simplest and most naive way supported by ASP.NET is very much

like accessing the Session object. Remember, accessing the Session object involves using an

indexer (the square bracket syntax) and a consistent index to store and retrieve data. The data

cache works in exactly the same way (although it has some other features for managing items

in the cache).

332 Part III Caching and State Management

 The strategy for caching a piece of data usually involves these steps:

1. Look in the cache for the data element.

2. If it’s there, use it (bypassing the expensive database round-trip).

3. If the data element is unavailable in the cache, make a round-trip to the database to fetch it.

4. If you had to fetch the data, cache the data element so it’s available next time around.

 The next example modifi es the UseDataList page so that it stores the data item in the cache

after acquiring it for the fi rst time. Although the fi rst time Page_Load is called, it may take a

while (on a computer’s time scale), subsequent calls are much faster.

 Using the cache

1. Open the UseDataList.aspx.cs fi le and go to the GetInventory method.

2. Modifying the method to use the cache is fairly straightforward. The following listing

highlights the changes. First, check to see if the item is in the cache. If searching the

cache for the DataSet turns up a valid object reference, then you may bypass the da-

tabase lookup code and return the referenced DataSet. If searching the cache turns up

a null object reference, go ahead and make the round-trip to the database. When the

database lookup fi nishes, you’ll have a good DataSet (provided the query succeeds).

Cache it before returning the reference to the caller. If you include the Trace state-

ments, you’ll be able to see exactly how big an impact caching can make. The changes

you need to make are shown in bold:

 protected DataTable GetInventory()

{

 DataTable dt = null;

 Trace.Warn("Page_Load", "looking in cache");

 dt = (DataTable)Cache["InventoryDataTable"];

 Trace.Warn("Page_Load", "done looking in cache");

 if (dt == null)

 {

 Trace.Warn("Page_Load", "Performing DB lookup");

 dt = new DataTable();

 String strConnection =

 @"Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=|DataDirectory|ASPDotNetStepByStep.mdb";

 DbProviderFactory f =

 DbProviderFactories.GetFactory("System.Data.OleDb");

 using (DbConnection connection = f.CreateConnection())

 Chapter 15 Application Data Caching 333
 {

 connection.ConnectionString = strConnection;

 connection.Open();

 DbCommand command = f.CreateCommand();

 command.CommandText = "Select * from DotNetReferences";

 command.Connection = connection;

 IDataReader reader = command.ExecuteReader();

 dt.Load(reader);

 reader.Close();

 connection.Close();

 }

 Cache["InventoryDataTable"] = dt;

 Trace.Warn("Page_Load", "Done performing DB lookup");

 }

 return dt;

}

 This code reduces the cost of loading the page signifi cantly (after the data are loaded in

the cache, of course). Next time the page is loaded, it’ll use the cached version—available

through Cache at a tremendously reduced cost. How much is the cost savings? It’s huge—as

you can see looking at the trace pages for the application. Let’s take a peek.

 Impact of Caching
 If you included the Trace statements in the GetInventory method, then you can surf to the

trace page to see the effect of caching. The UseDataCaching application included here has

the Trace attribute turned off in the page but has application tracing turned on. That is, the

web.confi g includes the following section:

 <configuration>

 <system.web>

 <trace enabled="true" />

 <system.web>

</configuration>

 You can see the trace information by surfi ng to the virtual directory with a fi le name of

Trace.axd. Instead of surfi ng to the UseDataList.aspx fi le, surf to the Trace.axd fi le in the same

directory.

 Figure 15-1 shows the trace statements produced by accessing the page for the fi rst time.

The column farthest to the right indicates the time elapsed since the previous trace state-

ment. The trace statement shows that more than half a second has elapsed during the page

loading time.

334 Part III Caching and State Management

 FIGURE 15-1 Hitting the database takes more than half a second in this scenario.

 Make a few more posts to the page (for example, add some items from the inventory to the

selected items grid). Then go back and look at the tracing information for the subsequent

postbacks. Figure 15-2 shows some examples of trace statements. Fetching from the Cache

is dramatically faster than hitting the database—by several orders of magnitude! Again, you

may not notice the difference with just one client surfi ng the page every once in a while.

However, when multiple clients are surfi ng to the same page simultaneously, they’ll get their

responses much more quickly than if the page had to make a round-trip to the database.

 FIGURE 15-2 Fetching data from the cache takes 0.000040 seconds.

 Chapter 15 Application Data Caching 335
Managing the Cache
The last example cached items in the most naive way possible. They were simply placed in

the cache and given an index. However, at times you may need a bit more control over the

items in the cache. For example, what if the physical source backing one of the items you

cache changes? If getting accurate information out to your users is important, you may want

to know about the change so you can handle it (perhaps by reloading the new information

into the cache). As another example, what if you knew that the data in your cache would be-

come invalid after a certain period of time or on a certain date? You’d want to make sure that

the data in the cache are invalidated and the cache is appropriately refreshed with new data.

In addition to placing items in the cache using the indexer, the Cache object implements

a parameterized method named Insert that allows you control over many aspects of the

cached item. The ways in which you may control cache entries include the following:

Q Setting up an absolute expiration time

Q Setting up a sliding expiration time

Q Setting up dependencies between cached items and their backing sources (for ex-

ample, database, fi le, or directory dependencies, or even dependencies on other cache

entries)

Q Managing a relative invalidation priority of cached items

Q Setting up callback functions to be called when items are removed

The Cache’s insert method includes four overloads. Table 15-1 enumerates them.

TABLE 15-1 Overloads for the Cache.Insert Method

 Insert Overload Description
 Insert (String, Object) Directly corresponds to the indexer version. Blindly

places the object in the Cache using the string key in

the fi rst parameter.

 Insert (String, Object, CacheDependency) Inserts an object into the Cache and associates it with

a dependency.

 Insert (String, Object, CacheDependency,

DateTime, TimeSpan)

Inserts an object into the Cache, associating it with a

dependency and an expiration policy.

 Insert (String, Object, CacheDependency,

DateTime, TimeSpan, CacheItemPriority,

CacheItemRemovedCallback)

Inserts an object into the Cache. Associates a depen-

dency and expiration and priority policies. Also associ-

ates the Cache entry with a delegate for a callback to

notify the application when the item is removed from

the cache.

The following example illustrates some of these settings and how they work. In addition, the

forthcoming examples illustrate another way to get DataTables and DataSets. You may actu-

ally create them programmatically. The next few examples use a DataTable that is created

Insert Overload Description

336 Part III Caching and State Management
in memory rather than being fetched from a database. Although the impact of caching isn’t

quite as dramatic when using the in-memory DataTable, it is still appreciable—and you can

see this other approach to managing data. We’ll also see how the DataTable serializes as XML

as well (which will be useful for examining cached items with fi le dependencies).

 DataSets in Memory
 In Chapter 11, we looked at making a round-trip to the database to gather data suitable to

bind to a control. In the previous chapter we looked at maintaining data between requests

by using the Session object. The Session object holds any serializable .NET CLR object—even

a DataReader. However, it’s not a good idea to hold on to a DataReader for long periods of

time because that means holding a connection open. Having too many open connections will

ultimately slow your site to a crawl. A better approach is to make single round-trips to the

database and hold on to a DataTable or a DataSet.

 In addition to fetching them from databases, a DataTable may be synthesized program-

matically (as we saw in Chapter 12). Doing so involves constructing a DataTable and adding

DataRows to describe the schema. After constructing a DataTable, you may use it to create

columns with the correct “shape,” populate them, and then add them to the table’s columns

collection. Listing 15-2 shows an example of creating a DataTable in memory (note you also

saw basic table creation in Listing 15-1 and in the previous chapter, but I didn’t call your at-

tention to it at the time so I could save the discussion for this section). The table is a collec-

tion of famous quotes and their originators that will be useful in the next examples.

 LISTING 15-2 The QuotesCollection Object

 public class QuotesCollection : DataTable

{

 public QuotesCollection()

 {

 //

 // TODO: Add constructor logic here

 //

 }

 public void Synthesize()

 {

 // Be sure to give a name so that it will serialize as XML

 this.TableName = "Quotations";

 DataRow dr;

 Columns.Add(new DataColumn("Quote", typeof(string)));

 Columns.Add(new DataColumn("OriginatorLastName",

 typeof(string)));

 Columns.Add(new DataColumn("OriginatorFirstName",

 typeof(string)));

 Chapter 15 Application Data Caching 337

 dr = this.NewRow();

 dr[0] = "Imagination is more important than knowledge.";

 dr[1] = "Einstein";

 dr[2] = "Albert";

 Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = "Assume a virtue, if you have it not";

 dr[1] = "Shakespeare";

 dr[2] = "William";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = @"A banker is a fellow who lends you his umbrella

 when the sun is shining, but wants it back the

 minute it begins to rain.";

 dr[1] = "Twain";

 dr[2] = "Mark";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = @"A man cannot be comfortable without his own

 approval.";

 dr[1] = "Twain";

 dr[2] = "Mark";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = "Beware the young doctor and the old barber";

 dr[1] = "Franklin";

 dr[2] = "Benjamin";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = @"Reality is merely an illusion, albeit a

 very persistent one.";

 dr[1] = "Einstein";

 dr[2] = "Albert";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = "Beer has food value, but food has no beer value";

 dr[1] = "Sticker";

 dr[2] = "Bumper";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = @"Research is what I'm doing when I don't know

 what I’m doing";

 dr[1] = "Von Braun";

 dr[2] = "Wernher";

 this.Rows.Add(dr);

338 Part III Caching and State Management

 dr = this.NewRow();

 dr[0] = "Whatever is begun in anger ends in shame";

 dr[1] = "Franklin";

 dr[2] = "Benjamin";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = "We think in generalities, but we live in details";

 dr[1] = "Whitehead";

 dr[2] = "Alfred North";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = "Every really new idea looks crazy at first.";

 dr[1] = "Whitehead";

 dr[2] = "Alfred North";

 this.Rows.Add(dr);

 dr = this.NewRow();

 dr[0] = @"The illiterate of the 21st century will not be

 those who cannot read and write, but

 those who cannot learn,

 unlearn, and relearn.";

 dr[1] = "Whitehead";

 dr[2] = "Alfred North";

 this.Rows.Add(dr);

 }

}

 Building a DataTable in memory is straightforward—it’s mostly a matter of defi ning the col-

umn schema and adding rows to the table. This class is available on the CD accompanying

this book, so you don’t need to type the whole thing. You may just import it into the next

examples.

 Now let’s take a look at managing items within the cache.

 Cache Expirations
 The fi rst way to manage cached items is to give them expiration thresholds. In some cases,

you may be aware of certain aspects of your cached data that allow you to place expiration

times on it. The Cache supports both absolute expirations and sliding expirations.

 Absolute expiration

1. To try out absolute expirations, add a new page to the UseDataCaching site named

CacheExpirations.aspx.

2. Use the Website, Add Existing Item to bring the QuoteCollection.cs fi le from the CD

accompanying this book and make it part of this project.

 Chapter 15 Application Data Caching 339

3. Drag a GridView onto the CacheExpirations page. Don’t bind it to a data source yet.

We’ll handle that in the Page_Load method.

4. In the Page_Load method of the CacheExpirations page, check the cache to see if

there’s already an instance of the QuoteCollections object (just as in the previous

example). If the data set is not available from the cache, create an instance of the

QuoteCollections class and call the Synthesize method to populate the table. Finally, add

it to the cache using the overloaded Insert method. You can use the DataTime class to

generate an absolute expiration. Bind the QuotesCollection object to the GridView. The

caching policy should be Cache.NoSlidingExpiration. Set up some trace statements so

you may see how the expiration times affect the lifetime of the cached object.

 protected void Page_Load(object sender, EventArgs e)

{

 QuotesCollection quotesCollection;

 DateTime dtCurrent = DateTime.Now;

 Trace.Warn("Page_Load",

 "Testing cache at: " +

 dtCurrent.ToString());

 quotesCollection = (QuotesCollection)Cache["QuotesCollection"];

 if (quotesCollection == null)

 {

340 Part III Caching and State Management

 quotesCollection = new QuotesCollection();

 quotesCollection.Synthesize();

 DateTime dtExpires = new DateTime(2008, 5, 31, 23, 59, 59);

 dtCurrent = DateTime.Now;

 Trace.Warn("Page_Load",

 "Caching at: " +

 dtCurrent.ToString());

 Trace.Warn("Page_Load",

 "This entry will expire at: " +

 dtExpires);

 Cache.Insert("QuotesCollection",

 quotesCollection,

 null,

 dtExpires,

 System.Web.Caching.Cache.NoSlidingExpiration,

 System.Web.Caching.CacheItemPriority.Default,

 null);

 }

 this.GridView1.DataSource = quotesCollection;

 this.DataBind();

}

5. Experiment with changing the dates and times to see how setting the expiration time

forces a reload of the cache.

 An absolute expiration time applied to the cached item tells ASP.NET to fl ush the item from

the cache at a certain time. Now let’s try using a different kind of expiration technique—the

sliding expiration. Using a sliding expiration tells ASP.NET to keep the data in the cache as

long as it has been accessed within a certain period of time. Items that have not been ac-

cessed within that time frame are subject to expiration.

 Sliding expirations

1. Now try setting a sliding expiration for the cached data. Modify the Page_Load method

in the CacheExpirations page. Getting a sliding expiration to work is simply a matter of

changing the parameters of the Insert method. Make up a time span after which you

want the cached items to expire. Pass DateTime.MaxValue as the absolute expiration

date and the timespan as the fi nal parameter like so:

 protected void Page_Load(object sender, EventArgs e)

{

 QuotesCollection quotesCollection;

 DateTime dtCurrent = DateTime.Now;

 Trace.Warn("Page_Load",

 "Testing cache: " + dtCurrent.ToString());

 Chapter 15 Application Data Caching 341

 quotesCollection =

 (QuotesCollection)Cache["QuotesCollection"];

 if (quotesCollection == null)

 {

 quotesCollection = new QuotesCollection();

 quotesCollection.Synthesize();

 TimeSpan tsExpires = new TimeSpan(0, 0, 15);

 dtCurrent = DateTime.Now;

 Trace.Warn("Page_Load",

 "Caching at: " + dtCurrent.ToString());

 Trace.Warn("Page_Load",

 "This entry will expire in: " +

 tsExpires.ToString());

 Cache.Insert("QuotesCollection",

 quotesCollection,

 null,

 DateTime.MaxValue,

 tsExpires);

 }

 this.GridView1.DataSource = quotesCollection;

 this.DataBind();

}

2. Surf to the page. You should see the cache reloading if you haven’t accessed the

cached item within the designated time frame.

 Cache dependencies represent another way to manage cached items. Let’s take a look at

how they work.

 Cache Dependencies
 In addition to allowing objects in the cache to expire by duration, you may set up dependen-

cies for the cached items. For example, imagine our program loads some data from a fi le and

places them into the cache. The backing fi le (that is, the source of the cached information) may

change, making the data in the cache invalid. ASP.NET supports setting up a dependency be-

tween the cached item and the fi le so that changing the fi le invalidates the cached item. The

conditions under which the cached items may be fl ushed include when a fi le changes, a di-

rectory changes, another cache entry is removed, or data in a table in a SQL Server change

(this is an often requested feature available since ASP.NET 2.0).

342 Part III Caching and State Management

 Here’s an example that illustrates setting up cache dependencies.

 Setting up cache dependencies

1. Add a new page to the UseDataCache site. Name it CacheDependencies.aspx.

2. Place a button on the page that you may use to post a request to the page to generate

an XML fi le from the QuotationsCollection. Also, drag a GridView onto the page like so:

3. Double-click the button to generate a handler for the button that will save the XML

Schema and the XML from the DataTable to .XML and .XSD fi les in the App_Data

directory.

4. Within the handler, instantiate a QuotesCollection object and call Synthesize to generate

the data. Within the page, you have a reference to the Server object. Call the MapPath

method in the Server object to get the physical path for saving the fi le. Then use that

path to create an XML fi le and a schema fi le. The DataTable will do this for you auto-

matically by calling the WriteXmlSchema and WriteXml methods, respectively.

 protected void ButtonSaveAsXML_Click(object sender, EventArgs e)

{

 QuotesCollection quotesCollection = new QuotesCollection();

 quotesCollection.Synthesize();

 String strFilePathXml =

 Chapter 15 Application Data Caching 343

 Server.MapPath(Request.ApplicationPath +

 "\\App_Data\\QuotesCollection.xml");

 String strFilePathSchema =

 Server.MapPath(Request.ApplicationPath +

 "\\App_Data\\QuotesCollection.xsd");

 quotesCollection.WriteXmlSchema(strFilePathSchema);

 quotesCollection.WriteXml(strFilePathXml);

}

5. Now write a method to load the XML into the QuotationsCollection object and cache the

data. You can use the fi le path to the XML fi le to create a dependency on the fi le. When

it changes, ASP.NET will empty the cache. Turn off the absolute expiration and the slid-

ing expiration by passing in Cache.NoAbsoluteExpiration and Cache.NoSlidingExpiration.

If you put trace statements in, you can see the effect of updating the fi le after it’s been

loaded in the cache. Finally, make sure to bind the GridView to the QuotationCollection.

 protected void CacheWithFileDependency()

{

 QuotesCollection quotesCollection;

 Trace.Warn("Page_Load", "Testing cache ");

 quotesCollection = (QuotesCollection)Cache["QuotesCollection"];

 if (quotesCollection == null)

 {

 Trace.Warn("Page_Load", "Not found in cache");

 quotesCollection = new QuotesCollection();

 String strFilePathXml =

 Server.MapPath(Request.ApplicationPath +

 "\\App_Data\\QuotesCollection.xml");

 String strFilePathSchema =

 Server.MapPath(Request.ApplicationPath +

 "\\App_Data\\QuotesCollection.xsd");

 quotesCollection.ReadXmlSchema(strFilePathSchema);

 quotesCollection.ReadXml(strFilePathXml);

 System.Web.Caching.CacheDependency cacheDependency =

 new System.Web.Caching.CacheDependency(strFilePathXml);

 Cache.Insert("QuotesCollection",

 quotesCollection,

 System.Web.Caching.cacheDependency,

 System.Web.Caching.Cache.NoAbsoluteExpiration,

 System.Web.Caching.Cache.NoSlidingExpiration,

 CacheItemPriority.Default,

 null);

 }

 this.GridView1.DataSource = quotesCollection;

 this.DataBind();

}

344 Part III Caching and State Management

6. Call the CacheWithFileDependency() within the Page_Load method.

 protected void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

 {

 ButtonSaveAsXML_Click(null, null);

 }

 CacheWithFileDependency();

}

7. Now run the page. It should load the XML and schema into the QuotesCollection, save

the QuotesCollection in the cache, and then show the data in the grid. Clicking the

Save Table as XML button will refresh the XML fi le (on which a cache dependency was

made). Because the fi le on the disk changes, ASP.NET will fl ush the cache. Next time

you load the page, the cache will need to be reloaded.

 Now let’s look at the fi nal cache dependency: the SQL Server dependency.

 The SQL Server Dependency
 ASP.NET 1.0 had a huge gap in its cache dependency functionality. The most useful type of

dependency was completely missing—that is, a dependency between a cached item coming

from SQL Server and the physical database. Because so many sites use data provided by SQL

Server to back their DataGrids and other controls, establishing this dependency is defi nitely a

most useful way to manage cached data.

 For the SQL Server dependency to work, you fi rst confi gure SQL Server using the program

aspnet_regsql.exe. The dependency is described in the confi guration fi le, whose name is

passed into the SqlCacheDependency constructor. The SqlCacheDependency class monitors

the table. When something causes the table to change, ASP.NET will remove the item from

the Cache.

 Listing 15-3 shows a confi guration fi le with a dependency on SQL Server. Listing 15-4 shows

an ASP.NET page that loads the data from the SQL Server database and establishes a depen-

dency between the database and the cached item.

 LISTING 15-3 Confi guration Settings for SQL Server Cache Dependency

 <caching>

 <sqlCacheDependency enabled="true" >

 <databases >

 <add name="DBName" pollTime="500"

 connectionStringName="connectionString"/>

 </databases>

 </sqlCacheDependency>

</caching>

 Chapter 15 Application Data Caching 345
 LISTING 15-4 Page Using SqlCacheDependency

 <%@ Page Language="C#" %>

<script runat="server">

 protected void Page_Load(Object sender, EventArgs e)

 {

 DataSet ds = null;

 ds = (DataSet)Cache[“SomeData”];

 if (ds == null)

 {

 string cconnectionString =

 ConfigurationSettings.ConnectionStrings["connectionString"].

 ConnectionString;

 SqlDataAdapter da =

 new SqlDataAdapter("select * from DBName.tableName",

 connectionString);

 ds = new DataSet();

 da.Fill(ds);

 SqlCacheDependency sqlCacheDependency =

 new SqlCacheDependency("DBName", "tableName");

 Cache.Insert("SomeData",

 ds,

 sqlCacheDependency);

 }

 GridView1.DataSource = ds;

 DataBind();

 }

</script>

<html><body>

 <form id="form1" runat="server">

 <asp:GridView ID="GridView1" Runat="server">

 </asp:GridView>

 </form>

</body></html>

 Once items are in the cache and their lifetimes are established through expirations and

cached item dependencies, one other cache administrative task remains—reacting when

items are removed.

 Clearing the Cache
 As you can see from the previous examples, ASP.NET clears the cache on several occasions,

including:

Q removing items explicitly by calling Cache.Remove

Q removing low-priority items due to memory consumption

Q removing items that have expired

 One of the parameters to one of the Insert overloaded methods is a callback delegate so that

ASP.NET can tell you that something’s been removed from the cache. To receive callbacks,

you simply need to implement a method that matches the signature, wrap it in a delegate,

346 Part III Caching and State Management

and then pass it when calling the Insert method. When the object is removed, ASP.NET will

call the method you supply.

 The next example illustrates setting up a removal callback function.

 Removal callback

1. One of the main tricks to getting the removal callback to work is fi nding an appropri-

ate place to put the callback. What happens if you make the callback a normal instance

member of your Page class? It won’t work. The callback will become disconnected after

the fi rst page has come and gone. The callback has to live in a place that sticks around.

(You could make the callback a static method, however.) The perfect class for establish-

ing the callback is in the global application class. We’ll see the application class and its

services in more detail in Chapter 18. For now, add a global application class to your

application. Select Website, Add New Item. Select the Global Application Class tem-

plate and click Add to insert it into the project. Visual Studio will add a new fi le named

Global.asax to your application.

2. Global.asax will include a server-side script block. Write a method to handle the call-

back within the Global.asax fi le. In this case, the response will be to set a fl ag indicating

the cache is dirty. Then the code will simply place the data back into the cache during

the Application_BeginRequest handler. The code for doing so will look very much like

the code in the CacheWithFileDependency method shown earlier. You can get a refer-

ence to the cache through the current HttpContext.

 <%@ Application Language="C#" %>

<script runat="server">

 bool _bReloadQuotations = false;

 public void OnRemoveQuotesCollection(string key, object val,

 CacheItemRemovedReason r)

 {

 // Do something about the dependency Change

 if (r == CacheItemRemovedReason.DependencyChanged)

 {

 _bReloadQuotations = true;

 }

 }

 protected void Application_BeginRequest(object sender, EventArgs e)

 {

 if (_bReloadQuotations == true)

 {

 ReloadQuotations();

 _bReloadQuotations = false;

 }

 }

 Chapter 15 Application Data Caching 347

 protected void ReloadQuotations()

 {

 QuotesCollection quotesCollection = new QuotesCollection();

 String strFilePathXml =

 Server.MapPath(HttpContext.Current.Request.ApplicationPath +

 "\\App_Data\\QuotesCollection.xml");

 String strFilePathSchema =

 Server.MapPath(HttpContext.Current.Request.ApplicationPath +

 "\\App_Data\\QuotesCollection.xsd");

 quotesCollection.ReadXmlSchema(strFilePathSchema);

 quotesCollection.ReadXml(strFilePathXml);

 System.Web.Caching.CacheDependency

 cacheDependency =

 new System.Web.Caching.CacheDependency(strFilePathXml);

 HttpContext.Current.Cache.Insert("QuotesCollection",

 quotesCollection,

 cacheDependency,

 System.Web.Caching.Cache.NoAbsoluteExpiration,

 System.Web.Caching.Cache.NoSlidingExpiration,

 System.Web.Caching.CacheItemPriority.Default,

 this.OnRemoveQuotesCollection);

 }

</script>

3. Update the CacheWithFileDependency method to use the callback method when estab-

lishing the QuotesServer in the cache. You may access the callback method through the

page’s Application member.

 protected void CacheWithFileDependency()

{

 QuotesCollection quotesCollection;

 Trace.Warn("Page_Load", "Testing cache ");

 quotesCollection = (QuotesCollection)Cache["QuotesCollection"];

 if (quotesCollection == null)

 {

 Trace.Warn("Page_Load", "Not found in cache");

 quotesCollection = new QuotesCollection();

 String strFilePathXml =

 Server.MapPath(Request.ApplicationPath +

 "\\App_Data\\QuotesCollection.xml");

 String strFilePathSchema =

 Server.MapPath(Request.ApplicationPath +

 "\\App_Data\\QuotesCollection.xsd");

 quotesCollection.ReadXmlSchema(strFilePathSchema);

 quotesCollection.ReadXml(strFilePathXml);

348 Part III Caching and State Management
 System.Web.Caching.CacheDependency cacheDependency =

 new System.Web.Caching.CacheDependency(strFilePathXml);

 Cache.Insert("QuotesCollection",

 quotesCollection,

 cacheDependency,

 System.Web.Caching.Cache.NoAbsoluteExpiration,

 System.Web.Caching.Cache.NoSlidingExpiration,

 System.Web.Caching.CacheItemPriority.Default,

 this.ApplicationInstance.OnRemoveQuotesCollection);

 }

 this.GridView1.DataSource = quotesCollection;

 this.DataBind();

}

 When you surf to the page, you should never see the Page_Load method refreshing the

cache. That’s because when the XML fi le is overwritten, ASP.NET immediately calls the

ReloadQuotations method—which loads the cache again.

 Summary
 Caching is one of the easiest and most well-understood ways of wringing better performance

out of an application. ASP.NET implements an easy-to-use application data cache. The ap-

plication data cache stores any serializable CLR object and is available at any time while

processing a request. You can dig it out of the current context (the HttpContext), and it’s also

available as a member variable of System.Web.UI.Page.

 Probably the most common way to use the cache is to store database query results to avoid

round-trips to a database. Accessing memory is often orders of magnitude faster than hitting

the database. In addition, you sidestep issues such as limited connection resources and data-

base contention.

 Although you can effectively improve the performance of your application by simply putting

items in the cache, ASP.NET’s caching mechanism provides facilities for putting limits on the

amount of time items remain cached. You may also set up dependencies between cached

items and their physical data sources so that you may be alerted when items need to be re-

loaded into the cache.

 Chapter 15 Application Data Caching 349
Chapter 15 Quick Reference
To Do This
Access the data cache The data cache is available as:

Q the Cache property in the page

Q the Cache property in the current HttpContext.

 Insert an item in the cache Use the indexer notation to add an object and a value to the

cache.

 Insert an item in the cache with a dependency Create a CacheDependency object and add the object to the

cache using the overloaded Cache.Insert method.

 Insert an item in the cache with an expiration

time

Create a DateTime object and add the object to the cache

using the overloaded Cache.Insert method.

 Delete an item from the cache Call the cache’s Cache.Remove method.

 Be notifi ed that an item is being removed from

the cache

Include a callback delegate when inserting an item in the

cache.

To Do This

 Chapter 16

 Caching Output
 After completing this chapter, you will be able to

Q Cache page content

Q Improve the performance of Web applications by using output caching

Q Manage the cached content through the OutputCache directive

Q Manage the cached content through the HttpCachePolicy class

 This chapter covers ASP.NET’s support for caching output. In Chapter 15, we saw what an

impact data caching could make on your application. By avoiding round-trips to the data-

base, you can make parts of your Web site run much faster than they otherwise would. In

addition to data caching, however, ASP.NET supports output caching.

 After spending a bit of time watching the entire page-rendering process, you now know it

can be pretty involved. A lot happens between the time a page loads and the time when the

fi nal closing tag is sent to the browser. For example, the page may require database access. It

may have a number of controls declared on it. Furthermore, perhaps some of those controls

are the more complex controls like the DataList or the GridView whose rendering process is

expensive. All of these things usually take time to process.

 Just as you can bypass recurring round-trips to a database by caching data in memory, you

may confi gure ASP.NET to bypass the entire page-rendering process and send back content

that’s already been rendered once. This is called output caching.

 Caching Page Content
 As you surf the Web, you see all manner of pages. Some sites churn their content very quickly,

whereas others change much more slowly. Some pages have portions that change while oth-

er portions of the page remain static. If you have a page whose content changes infrequently,

you may cache the output instead of regenerating it every time a request comes in.

 At the outset, turning on output caching is easy. To set up caching, place the OutputCache

directive on the page. It’s a separate directive, like the Page directive. The OutputCache di-

rective enables caching and provides certain control over its behavior. The following exercise

introduces caching output.
 351

352 Part III Caching and State Management

 Create a cacheable page

1. Create a new Web site named OutputCaching.

2. Open the Default.aspx fi le and insert the OutputCache directive near the top, immedi-

ately after the Page directive. For now, set the Trace attribute to false (we’ll turn it on

later when we look at caching User controls). At the very least, the OutputCache direc-

tive needs two things: (1) the Duration attribute to be set and (2) the VaryByParam

attribute set to none. We’ll see more about these attributes shortly. The Duration at-

tribute specifi es how long the content should be cached. The VaryByParam attribute is

for managing the caching multiple versions of the page. The following code shows the

syntax of the OutputCache directive. This example caches the page’s content for 15 sec-

onds. The code following the output directive was generated by Visual Studio.

 <%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default" trace="false"%>

<%@ OutputCache Duration="15" VaryByParam="none" %>

<!DOCTYPE html PUBLIC

"...">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 </div>

 </form>

</body>

</html>

3. Update the Page_Load method to print the date and time that this page was gener-

ated, like so:

 public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Write("This page was generated and cached at: " +

 DateTime.Now.ToString());

 }

}

 Chapter 16 Caching Output 353
 The fi rst time the content is produced, the Page_Load method runs and produces the

following output:

 No matter now many times you refresh the browser (you may do this by pressing F5 while

running Internet Explorer within 15 seconds of fi rst accessing the page), ASP.NET will grab

the cached content and display that. As soon as 15 seconds has expired, ASP.NET runs the

page in the normal way, calling Page_Load, regenerating the content, and caching it again.

The following graphic illustrates the new page accessed just moments (no later than 15

seconds) following the fi rst hit. The date and time are the same as the previous page, even

though it’s a completely new request (I promise these are two separate requests):

354 Part III Caching and State Management
 4. To get an idea as to how caching content might improve performance, add a small

amount of code to the Page_Load method to put the executing thread to sleep for

perhaps 10 seconds (this is to simulate an expensive content-generating routine). You’ll

need to use the System.Threading namespace to access the threading functions.

 using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Threading;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Thread.Sleep(10000);

 Response.Write("This page was generated and cached at: " +

 DateTime.Now.ToString());

 }

}

 5. Now surf to the page. Notice how long the page took to load (about 10 seconds).

Immediately refresh the page. Notice the browser displays the content right away—

without the long wait time. Most pages don’t take quite as long to load, but you get

the idea of how caching content might improve the performance of your Web ap-

plication. For pages that are expensive to generate and that don’t change very often,

caching the content represents an enormous performance boost for your Web site—

especially as the number of clients increases.

 Managing Cached Content
 In some cases, it’s enough to blindly cache the content of certain pages by simply putting

the OutputCache directive in the page. However, sometimes you need a bit more control

over what’s happening in the output cache. ASP.NET supports a number of parameters

you may use to manage the way the cache functions. You may control the output caching

behavior by either changing the parameters in the OutputCache directive or tweaking the

HttpCachePolicy property available through the Response object.

 Modifying the OutputCache Directive
 It’s often very useful to be able to govern output caching. For example, some pages present

exactly the same content to all the users who access the page. In that case, caching a single

version of the content is just fi ne. However, there are other circumstances in which sending

 Chapter 16 Caching Output 355
the same content to everyone is inappropriate. The easiest way to control the behavior of

output caching is to modify the OutputCache directive.

One obvious case in which controlling the cache is important is while caching different ver-

sions of content for different browsers making requests. Different browsers often have dif-

ferent capabilities. If you send content that requires a feature not supported by all browsers,

some browsers making requests will get a response that they’re unable to adequately handle.

The VaryByCustom parameter within the OutputCache directive allows you to cache different

content based on different browsers.

 Controlling the output caching is also important when your page renders content based

on the parameters that are sent within the query string. For example, imagine you have a

page through which a user has identifi ed him- or herself by typing a name in a text box.

The browser will insert that name inside a parameter inside the query list. You may instruct

the output cache to cache different versions based on parameters in the query string. For

example, users who identify themselves as “John Doe” can get a different version of cached

content than users who identify themselves as “Jane Smith.” The VaryByParam attribute con-

trols this behavior.

 Table 16-1 shows a summary of these parameters.

 TABLE 16-1 Summary of OutputCache Parameters

 Attribute Option Description
 CacheProfi le A string Name of a profi le (found in web.confi g)

to control output cache settings. Default

is empty string.

 Duration number Number of seconds the page or control is

cached (required)

 NoStore true
false

Specifi es that the “no store” cache control

header is sent (or not). Not available to

User controls. Default value is false.

 Location Any
Client
Downstream
Server
None

Manages which header and metatags are

sent to clients to support caching; here

are their meanings:

Any—page may be cached anywhere

(default)

Client—cached content remains at

browser

Downstream—cached content stored

both downstream and on the client

Server—content cached on the server

only

None—disables caching

Attribute Option Description

Continued

356 Part III Caching and State Management

 Attribute Option Description
 Shared true

false
Determines whether User control output

can be shared with multiple pages.

 SqlDependency A string representing a

database/table name pair

Identifi es a set of database and table

name pairs on which a page or control’s

output cache depends

 VaryByContentEncoding encodings Specifi es a list of encoding strings sepa-

rated by commas used to vary the output

cache

 VaryByCustom browser

custom string

Tells ASP.NET to vary the output cache

by browser name and version, or by a

custom string; must be handled by an

override of GetVaryByCustomString in

Global.asax.

 VaryByHeader *

header names

A semicolon-delimited list of strings

specifying headers that might be sub-

mitted by a client. Not available to User

controls. Default value is empty string (no

headers).

 VaryByParam None
*

param name

A semicolon-delimited list of strings

specifi es query string values in a GET

request or variables in a POST request

(required).

The following exercise illustrates creating separate versions of cached content based on how

the user identifi es himself or herself.

Varying cached content by query string parameters

1. Returning to the OutputCache Web application, add a TextBox and a Button to the

default.aspx page. Give the TextBox an ID of TextBoxName and the Button an ID of

ButtonSubmitName. This will hold the client’s name and will serve as the parameter

controlling the number of cached versions of the page.

2. Double-click on the button to add a Click event handler. In the handler, respond to the

user’s request by displaying a greeting using the contents of the text box. Also, modify

the processing time of the page loading by reducing the amount of time the current

thread sleeps (or by removing that line completely):

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Thread.Sleep(0);

 Response.Write("This page was generated and cached at: " +

 DateTime.Now.ToString());

Attribute Option Description

 TABLE 16-1 Continued

 Chapter 16 Caching Output 357

 }

 protected void ButtonSubmitName_Click(object sender, EventArgs e)

 {

 Response.Write("

");

 Response.Write("<h2> Hello there, " +

 this.TextBoxName.Text + "</h2>");

 }

}

3. Increase the time that the content will be cached (this example uses 1 minute). That

will give you time to change the contents of the TextBox to view the effects of caching.

Also, include TextBoxName as the parameter by which to vary the content within the

OutputCache directive.

 <%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default"

trace="false"%>

<%@ OutputCache Duration="60" VaryByParam="TextBoxName" %>

4. Add a Substitution control to the page following the TextBox and the Button. You can

just drag one from the Toolbox and drop it onto the page. You’ll use the Substitution

control to display the time of the request to compare it with the time displayed by

the cached page. Substitution controls call back to a method on the code-beside

that displays arbitrary strings. Write a method in the code-beside class to handle the

substitution.

 public partial class _Default : System.Web.UI.Page

{

 // Existing code...

 protected static string SubstituteDateAndTime(HttpContext c)

 {

 return "Request occurred at :" + DateTime.Now;

 }

}

5. Set the MethodName attribute of the Substitution control to the SubstituteDateAndTime

method within the aspx fi le, like this:

 <asp:Substitution MethodName="SubstituteDateAndTime"

 runat="server" />

6. Surf to the page and type in a name. Click the button to submit the form and note the

time stamp of the page. Type a second name into the TextBox and click the button to

submit the form. Note the time stamp. Then type the same name you typed the fi rst

time. Click the button to submit the form. If you do all this within the 60-second win-

dow, you should see the cached versions of the page, which you can discern using the

time stamp displayed as part of each page. The following three graphics illustrate the

caching varying by the value of the TextBoxName parameter. The fi rst graphic shows

the original request using a particular name in the TextBox. Notice that the request time

shown by the Substitution and the time shown by the Page_Load method are the same.

358 Part III Caching and State Management

 The second graphic shows a request with a new value for the TextBoxName parameter.

Notice that the request time shown by the Substitution and the time shown by the

Page_Load method are the same this time, as well.

 Chapter 16 Caching Output 359
 The third graphic shows making a request to the page using the same name as the

original request. Notice that the request time shown by the Substitution and the time

shown by the Page_Load method are different. The request time is earlier than the time

shown during the Page_Load method, meaning the page content was cached.

 There are other ways to modify the VaryByParam attribute. One way is to use the word

“none,” which means ASP.NET will cache only one version of the page for each type of re-

quest (for example, GET, POST, and HEAD). Using an asterisk for VaryByParam (“*”) tells

ASP.NET to cache as many different versions of the page as there are query string or POST

body requests. The previous example caches as many different versions of the page as there

are unique names typed by users into the name text box.

 Using VaryByHeader in the OutputCache directive tells ASP.NET to generate a separate

cache entry for each new header string that comes down (for example, UserAgent and

UserLanguage represent HTTP headers that may be sent by the client).

 We’ll cache a User control shortly. The VaryByControl attribute lets you cache separate con-

tent versions for each page that has a User control with unique properties.

 Finally, VaryByCustom tells ASP.NET to manage separate cache entries dependent on a

couple of factors. The fi rst factor is the browser types and versions. Alternatively, you may

provide a custom GetVaryByCustomString method in Global.asax that tells ASP.NET to create

separate cached versions of a page based on a custom defi ned string.

360 Part III Caching and State Management
The HttpCachePolicy
The second way to manage the output cache is through the HttpCachePolicy, which is avail-

able from the Response class. Table 16-2 shows a portion of the HttpCachePolicy class.

TABLE 16-2 The HttpCachePolicy Class

Member Description
AppendCacheExtension Appends specifi ed text to the Cache-Control HTTP header

SetCacheability Sets the Cache-Control HTTP header which controls how documents are

to be cached on the network

SetETag Sets the ETag HTTP header to the specifi ed string

SetExpires Sets the Expires HTTP header to an absolute date and time

SetLastModifi ed Sets the Last-Modifi ed HTTP header to a specifi c date and time

SetMaxAge Sets the Cache-Control: max-age HTTP header to a specifi c duration

SetRevalidation Sets the Cache-Control HTTP header to either the must-revalidate or the

proxy-revalidate directives

SetValidUntilExpires Determines whether the ASP.NET cache should ignore HTTP Cache-

Control headers sent by the client for invalidating the cache.

SetVaryByCustom Specifi es a custom text string for managing varying cached output re-

sponses

VaryByHeaders Parameter list of all HTTP headers that will be used to vary cache output.

VaryByParam Parameter list received by a GET (query string) or POST (in the body of

the HTTP request) that affect caching

When you set up an OutputCache directive, you tell ASP.NET to populate this class during the

Page class’s InitOutputCache method. The Response object makes the HttpCachePolicy avail-

able through its Cache property. The name Cache is unfortunate because you might easily

confuse it with the application data cache. Perhaps CachePolicy would have been a better

name for the property to avoid such confusion. In any case, you can use the HttpCachePolicy

class to control the behavior of the server-side output caching as well as the headers used for

content caching. The OutputCache directive may also be used to control some of the same

aspects as the HttpCachePolicy class. However, some features, such as sliding the expira-

tion date or changing the “last modifi ed” stamp for a page, are available only through the

HttpCachePolicy class.

For example, Listing 16-1 shows a page fragment ensuring that all origin-server caching for

the current response is stopped. It also sets the last modifi ed date to the current date and

time.

LISTING 16-1 Manipulating the Output Cache Policy

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

Member Description

 Chapter 16 Caching Output 361
 {

 Thread.Sleep(0);

 Response.Write("This page was generated and cached at: " +

 DateTime.Now.ToString());

 Response.Cache.SetNoServerCaching();

 Response.Cache.SetLastModified(DateTime.Now);

 }

}

 Caching Locations
 In addition to varying the number of cached versions of a page, you may tell ASP.NET

where to cache the content. This is controlled through either the Location attribute in the

OutputCache directive or by using the HttpCachePolicy class’s SetCacheability method.

 ASP.NET supports several output caching locations for which you can specify using the

OutputCache directive:

Q Any Page can be cached by the browser, a downstream server, or on the server

Q Client Page should be cached on the client browser only

Q Downstream Page should be cached on a downstream server and the client

Q Server Page will be cached on the server only

Q None Disable caching

 The HttpCachePolicy also allows you to determine the location of the cached content pro-

grammatically. This is done through the HttpCachePolicy.SetCacheability method (or the

HttpResponse.CacheControl property), which takes a parameter of the HttpCacheability enu-

meration. The enumeration is a bit easier to read than the attributes used in the OutputCache

directive. They include:

Q NoCache Disable caching

Q Private Only cache on the client

Q Public Cache on the client and the shared proxy

Q Server Cache on the server

Q ServerAndNoCache Specify that the content is cached at the server but all others

are explicitly denied the ability to cache the response

Q ServerAndPrivate Specify that the response is cached at the server and at the client

but nowhere else; proxy servers are not allowed to cache the response

362 Part III Caching and State Management

 Output Cache Dependencies
 We saw how ASP.NET supports data caching in Chapter 15. The contents of the application

data cache in ASP.NET may be fl ushed due to various dependencies. The same is true of ASP.

NET output caching. The response object has a number of methods for setting up depen-

dencies based on cached content. For example, you may want to set up a page that renders

data from a text fi le. You can set up a CacheDependency on that text fi le so that when the

text fi le is changed, the cached output is invalidated and reloaded.

 Caching Profi les
 One of the problems associated with using the OutputCache directive directly is that the val-

ues become hard-coded. Changing the caching behavior means going in and changing the

source code of the page. A feature added to ASP.NET 2.0 and later versions is the ability to

add caching profi les. That way, setting the caching behavior variables is offl oaded to the con-

fi guration fi le, and output caching becomes an administration issue and not a programming

issue (as it should be).

 The web.confi g fi le may include an outputCacheSettings section that may contain a list of

outputCacheProfi les. The outputCacheProfi les are simply key-value pairs whose keys are

the output caching variables (such as Duration). When you mention the profi le name in the

OutputCache directive, ASP.NET will simply read the values out of the confi guration fi le and

apply them to the OutputCache directive.

 The following exercise illustrates setting up a cache profi le instead of hard-coding the values

into the page.

 Set up a cache profi le

1. Add a cache profi le to the site’s web.confi g fi le. If web.confi g isn’t already there, go

ahead and add one to the project. Then add a cache profi le to web.confi g nested be-

tween the system.web opening and closing tags. Name the cache profi le profi le.

 <configuration>

 <system.web>

 <caching>

 <outputCacheSettings>

 <outputCacheProfiles>

 <add name="profile"

 duration="60"

 varyByParam="TextBoxName" />

 </outputCacheProfiles>

 </outputCacheSettings>

 </caching>

 </system.web>

</configuration>

 Chapter 16 Caching Output 363
 2. Change the OutputCache directive in the Default.aspx page to use the new profi le:

 <%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default"

trace="false"%>

<%@ OutputCache CacheProfile="profile" %>

 3. Surf to the page. It should work exactly as it did before when the caching values were

hard-coded. That is, run the page, type a name, and note the date and time stamp.

Type a new name and note the date and time stamp. Type the original name, submit it,

and you should see the original cached page appear (as long as you complete the post

within the specifi ed time window).

 Caching User Controls
 Just as whole pages may be cached, ASP.NET supports caching User controls as well. Imagine

your job is to create a sizable Web site that allows users to navigate through information via

various navigation controls (menus, hyperlinks, and so forth). For example, imagine a part of

your page shows links or other navigation controls that lead users to the most recent news,

summary information, and other places. The actual content may change, but the links prob-

ably don’t. If the links don’t change very often and the cost of generating that section of the

page is expensive, it makes sense to move the functionality into a User control and apply the

OutputCache directive to the User control. Doing so will cause ASP.NET to cache the portion

of the page represented by the control.

 The OutputDirective may be applied to the ASCX fi le that comprises a User control. The

OutputDirective for a User control may also use the Shared property to tell ASP.NET to cache

one version of the control for all pages that use it, resulting in potentially even higher perfor-

mance over the span of many hits (the default is false).

 The following exercise illustrates caching the output of a User control.

 User controls and output caching

 1. Create a simple User control for the OutputCaching project. Navigation controls

are perfect for caching, so create a control that has a menu. Name the control

SiteMenu.ascx. Drag a Menu control onto the User control, as shown here:

364 Part III Caching and State Management

 Add some menu items, as shown in this graphic:

2. Add the OutputCache directive with the following parameters in the control source, like so:

 <%@ Control Language="C#" AutoEventWireup="true"

CodeFile="SiteMenu.ascx.cs" Inherits="SiteMenu" %>

<%@ OutputCache Duration="60" VaryByParam="none" %>

3. Create a new page in the project. Name it UseSiteMenuControl.aspx.

 Chapter 16 Caching Output 365

4. Drag the SiteMenu User control onto the UseSiteMenuControl page. When ASP.NET

loads and runs your Web page, ASP.NET will cache the User control because the User

control mentions the OutputDirective.

5. Make sure tracing is turned on in the UseSiteMenuControl.aspx fi le. (That is, set the

Trace=”true” attribute in the Page directive.) Surf to the page. The fi rst time you surf to the

page, you’ll see the following information in the control tree section of the Trace output:

 Notice the entire control tree was rendered. Push the refresh key (F5 in Internet

Explorer) while looking at UseSiteMenuControl.aspx. Examine the control tree portion

of the Trace output again. Notice that ASP.NET uses the cached control instead of re-

rendering the entire SiteMenu control.

366 Part III Caching and State Management

 When Output Caching Makes Sense
 As with other caching techniques, one of the most effective strategies is to turn on output

caching for those pages that are accessed frequently but yet are expensive to generate. Also,

be sure to cache only those pages that don’t change frequently (otherwise, you may be bet-

ter off simply not using output caching).

 For example, pages full of controls that render a great deal of HTML are probably expensive.

Imagine a page including a DataGrid displaying an employee directory. This is a perfect can-

didate for caching for several reasons. First, a database access (or even an in-memory cache

hit) is required. Second, a DataGrid is pretty expensive to render—especially if it needs to

fi gure out the schema of the employee directory table on the fl y. Finally, an employee direc-

tory probably doesn’t change very often. By caching it once, you can avoid spending a great

deal of unnecessary cycles.

 A related issue here is to be careful when typing asterisks into the output caching parameters

such as VaryByParam. Using VaryByParam=* tells ASP.NET to generate a new page for every

single request in which any query string parameter has changed. That’s almost the same as

 Chapter 16 Caching Output 367
not caching altogether—with the added cost of the memory consumed by the output cache.

However, this may make sense for Web sites with limited audiences where the parameter

variance between requests remains limited.

 In addition, be wary of how caching might affect the appearance of your page on differ-

ent browsers. Much of the time, content will appear the same regardless of the browser.

However, if you cache some content that depends on a specifi c browser feature (such as

Dynamic HTML), clients whose browsers don’t understand the feature may see some very

weird behavior in the browser.

 Tuning the behavior of the output cache is also important. Effective caching is always a mat-

ter of balance. Although you can potentially speed up your site by employing output cach-

ing, the cost is memory consumption. Using instrumentation tools can help you balance

performance against cost.

 Finally, User controls often represent a prime output caching opportunity—especially if they

don’t change frequently. Wrapping the portion of a page that doesn’t change in an output-

cached User control will usually enhance the perceived performance of your application at a

minimal cost because only the User control content is cached.

 Summary
 Caching is a tried and true way to improve the performance of almost any system. By making

frequently used content available quickly through the output cache, you can often speed up

the perceived performance of your application by a wide margin.

 Turning on output caching in ASP.NET is a matter of including the correct directive at the

top of your page. Naive use of the cache involves simply placing it on the page code and

setting the Duration to some number and the VaryByParam attribute to none. However,

you may also control various behaviors of the output cache by setting variables within

the OutputCache directive. You may also control output caching behaviors through the

HttpCachePolicy class, available through the Cache property of the Response object. Later

versions of ASP.NET support cache profi les so you don’t have to hard-code the caching pa-

rameters into the OutputDirective.

 User controls often represent a prime output caching opportunity—especially if they’re

navigation controls or some other control that doesn’t change very often. By applying the

OutputCache directive to the User control, ASP.NET caches that part of the page on which it

was placed.

368 Part III Caching and State Management
Chapter 16 Quick Reference
To Do This
Cache a page’s output Add the OutputCache directive to the page.

 Store multiple versions of a page based on

varying query string parameters

Use the VaryByParam attribute of the OutputCache directive.

 Store multiple versions of a page based on

varying headers

Use the VaryByHeader attribute of the OutputCache directive.

 Store multiple versions of a page based on

varying browsers

Use the VaryByCustom attribute of the OutputCache directive,

selecting browser as the value.

 Specify the location of the cached content Specify the Location attribute in the OutputCache directive.

 Access caching attributes programmatically Use the Cache property of the Response object, which is an

instance of the HttpCachePolicy class.

 Offl oad output caching confi guration to the

web.confi g fi le

Add outputCacheProfi le elements to your web.confi g fi le. Use

them as necessary.

 Cache a User control Apply the OutputCache directive to the control’s ASCX fi le.

To Do This

 Part IV

 Diagnostics and Plumbing
 369

 Chapter 17

 Diagnostics and Debugging
 After completing this chapter, you will be able to

Q Turn on page tracing

Q Insert custom trace messages into the page trace

Q Turn tracing on for the entire application

Q Manage custom error pages

Q Manage exceptions within your application

 Even with all the software architecture methodologies and development practices avail-

able these days, software is still very much a craft. Software libraries such as ASP.NET and

Windows Forms go a long way toward making development more standardized and predict-

able (good things in software practice). However, there are still almost inevitable times when

you need to fi gure out what’s wrong with an application that decides to behave differently

than you expected it to.

 This chapter covers the support provided by ASP.NET for fi guring out what’s wrong with your

ASP.NET application. As you can imagine, debugging Web applications introduces a whole

new set of challenges. Remember, HTTP is basically connectionless, and the only thing the

client really gets to see is a snapshot of the application. This chapter shows you how to watch

your application as it runs and how to trace the state of any particular request. We’ll also

cover managing error pages and trapping application exceptions within ASP.NET.

 Page Tracing
 The fi rst place to start with debugging is to examine ASP.NET page tracing. The Page class

has a property named Trace. When Trace is turned on, it tells the ASP.NET runtime to insert a

rendering of the entire context of the request and response at the end of the HTML sent to

the client.

 We’ve already seen page tracing to some extent. When we looked at the ASP.NET server-

side control architecture, the page trace was invaluable in understanding the structure of the

page. Remember, a rendered page is composed of a number of server-side controls collected

as a hierarchical tree. A Page nests several controls, and the controls themselves may nest

other controls (they may be nested several levels deep, as a matter of fact). The page trace

includes a section displaying the composition of the page in terms of server-side controls.
 371

372 Part IV Diagnostics and Plumbing
 Turning on Tracing
 Turning on tracing is easy. Simply set the Trace property of the page to true. You may turn on

tracing either by modifying the ASPX code directly or by setting the Trace property using the

designer. Here’s the Trace property being turned on directly within the ASPX code as part of

the page directive.

 <%@ Page Language="C#" AutoEventWireup="true" CodeFile="TraceMe.aspx.cs"

Inherits="TraceMe" Trace="true" %>

 As soon as you turn tracing on and surf to the page, you’ll see tracing information appear at

the end of the HTML stream. Listing 17-1 shows some code from the DebugORama example

that came with the CD accompanying this book. The TraceMe.aspx page builds a table of

strings as they’re entered on the site. The list of strings is kept in session state and refreshes

the table every time a new string is submitted.

 LISTING 17-1 Code That Builds a Table on Loading

 public partial class TraceMe : System.Web.UI.Page

{

 ArrayList alTableEntries = null;

 protected void Page_Load(object sender, EventArgs e)

 {

 alTableEntries = (ArrayList)this.Session["TableEntries"];

 if (alTableEntries == null)

 {

 alTableEntries = new ArrayList();

 }

 AssembleTable();

 }

 protected void AssembleTable()

 {

 this.Table1.Rows.Clear();

 foreach (string s in alTableEntries)

 {

 TableRow row = new TableRow();

 TableCell cell = new TableCell();

 cell.Text = s;

 row.Cells.Add(cell);

 this.Table1.Rows.Add(row);

 }

 }

 protected void Button1_Click(object sender, EventArgs e)

 {

 alTableEntries.Add(this.TextBox1.Text);

 this.Session["TableEntries"] = alTableEntries;

 AssembleTable();

 }

}

 Chapter 17 Diagnostics and Debugging 373
 Figure 17-1 shows how the page appears with tracing turned on.

 FIGURE 17-1 Tracing turned on for the application in Listing 17-1

 A bit farther down the tracing output, you’ll see the control tree (as we saw in several earlier

chapters). The control tree for this page is shown in Figure 17-2.

 FIGURE 17-2 Tracing turned on for the application in Listing 17-1. Notice the control tree.

374 Part IV Diagnostics and Plumbing
 Finally, scroll down a bit more and you start seeing some of the context information associated

with the request. Figures 17-3 and 17-4 show some of this context information. This application

uses session state to save the array of strings. Notice that the session state tracing shows the

contents of the session state dictionary. You also get to see other context information. For ex-

ample, the tracing section shows the session ID and the URL used to surf to this page.

 FIGURE 17-3 Tracing turned on for the application in Listing 17-1. Note the detailed information about the
context of the request.

 Of course, much of this information becomes more useful in cases in which there’s a problem

with your Web site. For example, the table might stop building itself because you somehow

removed the session state item holding the list of strings. You could detect that by examining

the page trace. If users begin to complain about layout issues with your site, you may look at

the user agent coming down with the request and learn that the client is using a browser not

accommodated by your application.

 Chapter 17 Diagnostics and Debugging 375

 FIGURE 17-4 Tracing turned on for the application in Listing 17-1. Note the detailed information about the
context of the request.

 Trace Statements
 In addition to all the request context information included with the HTML stream, the page

trace also includes specifi c statements printed out during execution. If you scroll to the Trace

Information block on the page, you can see these trace statements, shown in Figure 17-5.

 The statements that appear in Figure 17-5 were produced by the ASP.NET framework. You

can see the execution of the page progressing through the various events such as PreInit, Init,
LoadState, and so forth.

 Not only do you get tracing information from ASP.NET itself, but you may also insert your

own tracing information. The Page class’s Trace object provides a means of tracing page ex-

ecution. Here’s an exercise that shows you how to do this.

376 Part IV Diagnostics and Plumbing

FIGURE 17-5 Tracing turned on for the application in Listing 17-1. These Trace statements track the execution
of the page.

 Adding tracing statements

1. Create a new Web site called DebugORama (it can be a File System–based Web site).

Add a new page called TraceMe.aspx.

2. Open the TraceMe.aspx page and add the Label (which says “Type something in here:”),

the TextBox, the Button, and the Table as they appear in the previous fi gures. Double-

click on the Button to add a handler for the Click event. Add the code from Listing

17-1 (the code that builds the table during the Page’s Load event). Enable tracing by

including Trace=”true” in the Page directive. Run the page to ensure that page tracing is

occurring.

3. Add tracing statements in strategic places through the page’s Trace object. For ex-

ample, you might want to monitor the table as it’s being built. Do this by calling either

Trace.Write or Trace.Warn within the page. Trace.Write renders the string in black,

whereas Trace.Warn renders the tracing string in red. The fi rst parameter is a category

string you may use to help distinguish the statements you write when they fi nally ren-

der. You may add whatever you want to the category string.

 Chapter 17 Diagnostics and Debugging 377

 public partial class TraceMe : System.Web.UI.Page

{

 ArrayList alTableEntries = null;

 protected void Page_Load(object sender, EventArgs e)

 {

 alTableEntries = (ArrayList)this.Session["TableEntries"];

 if (alTableEntries == null)

 {

 Trace.Warn("Page_Load", "alTableEntries is null");

 alTableEntries = new ArrayList();

 }

 AssembleTable();

 }

 protected void AssembleTable()

 {

 this.Table1.Rows.Clear();

 foreach (String s in alTableEntries)

 {

 Trace.Write("AssembleTable", "String found: " + s);

 TableRow row = new TableRow();

 TableCell cell = new TableCell();

 cell.Text = s;

 row.Cells.Add(cell);

 this.Table1.Rows.Add(row);

 }

 }

 protected void Button1_Click(object sender, EventArgs e)

 {

 Trace.Write("Button1_Click", "Adding string: " + this.TextBox1.Text);

 alTableEntries.Add(this.TextBox1.Text);

 this.Session["TableEntries"] = alTableEntries;

 AssembleTable();

 }

}

4. Compile the program and run the Web site. You should see your trace statements ap-

pearing in the output (as long as tracing is turned on). The tracing will appear red on

your computer screen—although it appears as gray on the following graphics.

378 Part IV Diagnostics and Plumbing

 Chapter 17 Diagnostics and Debugging 379
Application Tracing
Although single page tracing is useful (especially for quick spot checks for problems), it has a

major downside in that it litters the page with lots of garbage at the end. You can use appli-

cation tracing to get around that. Application tracing shows you exactly the same details as

page tracing, except they’re held in memory and made available rendered as a different page

and through a special handler.

To turn on tracing, you need to enable tracing in web.confi g like so:

<configuration>

 <system.web>

 <trace enabled="true"/>

 </system.web>

</configuration>

This simply turns on tracing. You can actually control several aspects of page tracing. For

example, you could have tracing available on the host machine (in case you don’t want

clients getting to your trace information). You might also want to control the number of

responses that are held in memory.

Table 17-1 shows the possible values that may go in the confi guration fi le to support tracing.

TABLE 17-1 Web.Confi g Settings Supporting Tracing

Key Possible Values Meaning
enabled true

false

Enable or disable application-level tracing

localOnly true

false

Specify whether to show trace output only on local

host or everywhere

mostRecent true

false

Specify whether to recycle traces once requestLimit

is met or to keep the fi rst N (up to the requestLimit
threshold)

 pageOutput true

false

Specify whether to display trace output on individ-

ual pages in addition to caching application-level

traces

 requestLimit Decimal number Specify how many traces to store in memory be-

fore removing earlier traces (default is 10)

 writeToDiagnosticsTrace true

false

Specify whether the trace data are also piped to

System.Diagnostics.Trace

 The following exercise demonstrates how application-level tracing works and how to navi-

gate around the results.

Key Possible Values Meaning

380 Part IV Diagnostics and Plumbing

 Application-level tracing

1. Open the DebugORama project. Open the TraceMe.aspx page. Turn off tracing in the

page by ensuring the Page class’s Trace property is false.

2. Ensure that application-level tracing is turned on in web.confi g. That is, open web.confi g

and add a trace element, as shown above. If the application doesn’t yet have a confi gu-

ration fi le, you may add one by selecting Add New Item from the local project menu.

3. Surf to the page a few times.

4. In the URL that appears in the navigation bar, make the endpoint Trace.axd. Using this

name in the URL redirects request processing through a special handler that will render

the tracing results being kept in memory.

5. You should be able to see a list of requests. To see individual requests, get the request

details by clicking on the View Details link.

 Chapter 17 Diagnostics and Debugging 381

 Notice how the output is exactly the same as the output on the earlier page tracing

example. However, now the tracing information stands alone without cluttering up the

Web page.

 Enabling Tracing Programmatically
 Although much of the time you’ll fi nd yourself enabling tracing via the designer, there are

times when it’s useful to manage tracing during run time (programmatically). For example,

you might have regular clients receive normal content; however, when someone with specifi c

credentials appears, you might want to enable tracing for that individual. You might also de-

cide to modify tracing when a certain parameter comes through the request.

 The DebugORama site includes a page named EnableTracing.aspx that illustrates how to con-

trol the tracing programmatically. If the user types the correct password, the tracing is turned

on. The page also shows how to enable and disable tracing programmatically.

 public partial class EnableTracing : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void Button1_Click(object sender, EventArgs e)

 {

382 Part IV Diagnostics and Plumbing
 if (this.TextBoxSecretCode.Text == "password")

 {

 this.Trace.IsEnabled = true;

 }

 }

 protected void Button2_Click(object sender, EventArgs e)

 {

 this.Trace.IsEnabled = false;

 }

}

 The TraceFinished Event
 The tracing context includes an interesting event named TraceFinished that gives you a last

chance opportunity to log the tracing information or deal with it in some other way. The

TraceFinished event is raised by the Trace object after all request information is gathered.

 To subscribe to the event, simply set up the handler during the Page_Load event. The

DebugORama example includes a page named TraceFinished.aspx that shows gathering the

trace information and writing it to the debug console using System.Diagnostics.Debug.

 public partial class TraceFinished : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Trace.TraceFinished +=

 new TraceContextEventHandler(TracingFinished);

 }

 void TracingFinished(object sender, TraceContextEventArgs e)

 {

 foreach (TraceContextRecord traceContextRecord in e.TraceRecords)

 {

 System.Diagnostics.Debug.WriteLine(traceContextRecord.Message);

 }

 }

}

 Piping Other Trace Messages
 In the last example, tracing messages were logged manually to the debug console by set-

ting up the TraceFinished event handler in the Trace context. System.Diagnostics.Debug is a

standard .NET type that’s helpful for managing tracing and debugging information. Since

version 2.0, ASP.NET has had the ability to plug in the WebPageTraceListener type so that

calls to System.Diagnostics.Trace are also inserted into the ASP.NET trace. Setting it up is sim-

ply a matter of inserting a line into web.confi g (note the writeToDiagnosticsTrace option in

Table 17-1). A case in which this is useful is when logging compiler output. To do this, set the

 Chapter 17 Diagnostics and Debugging 383
writeToDiagnosticsTrace option to true and then turn on compiler tracing. Compiler tracing is

another setting you can set in web.confi g, but notice this lies outside the normal System.web

section of web.confi g.

 <system.codedom>

 <compilers>

 <compiler compilerOptions="/d:TRACE" />

 </compilers>

</system.codedom>

 Debugging with Visual Studio
 The tracing support built into ASP.NET works really well and is a great way to debug your ap-

plication—especially once it’s deployed. However, when you’re in development mode, having

to plant tracing messages into your page and then run it to see what happened is old school

and sometimes not the most effi cient way of debugging. Visual Studio provides excellent

debugging support through the environment, and you may use it to watch your code ex-

ecute and to step through the code one line at a time. In fact, you have access to all of Visual

Studio’s debugging facilities, even though you’re developing Web applications.

 Remember, ASP.NET and Visual Studio work in concert to make it feel like you’re doing

desktop application development, even though it’s a Web application. That goes for the de-

bugger as well. The following exercise will familiarize you with the Visual Studio debugging

environment.

 Debug an application

 1. Open the DebugORama Web site. To support debugging, web.confi g needs to include

the right settings. You may type the debugger setting in by hand if you wish; however,

Visual Studio will insert it for you once you start debugging.

 <system.web>

 <compilation debug="true"/>

</system.web>

 2. Open the TraceMe.aspx page and insert breakpoints in Page_Load, AssembleTable, and

Button1_Click. You may insert breakpoints by highlighting a line in the editor window

and pressing the F9 key. You may also select Debug, Toggle Breakpoint from the

main menu or simply click on the light gray ribbon to the left of the text in the code

editor (where the breakpoints are indicated). Visual Studio will show a big red dot to

the left of the breakpoint lines.

384 Part IV Diagnostics and Plumbing

Red

dots

3. Start debugging by pressing the F5 key. You may also debug by selecting Debug, Start
Debugging from the main menu. If debugging is not turned on in the web.confi g fi le,

Visual Studio will ask you before it sets the debugging attribute. Visual Studio will start

running the site. When it comes to your breakpoints, Visual Studio will stop execution

and highlight the current line in yellow in the window:

 Chapter 17 Diagnostics and Debugging 385

4. In this example, Page_Load is the fi rst breakpoint Visual Studio encounters. At this

point, you may start stepping through the code. F10 steps over methods, whereas F11

steps into methods. Alternatively, you may use Debug, Step Over and Debug, Step
Into from the main menu.

5. Hover your mouse cursor over any variables you see. Notice how Visual Studio displays

the value of the variable in a ToolTip.

6. Press F5 to resume the program. Visual Studio will run until it hits another breakpoint.

Run through all the breakpoints.

7. Next, post back to the server using the button. Notice the breakpoints are hit again.

Also notice that fi rst the Page_Load is hit and then the Button_Click handler. This high-

lights the ephemeral nature of a Web page. A new page is being created for each re-

quest that comes in.

8. Finally, try out a couple of the debug windows. You can monitor various aspects of your

program by selecting Debug, Window from the main menu and choosing the window.

Here’s the Locals window, showing those variables within local scope:

386 Part IV Diagnostics and Plumbing
 9. The Call Stack window shows how execution fi nally arrived at this spot. You may trace

through and follow the entire program execution up to this point.

 Other notable windows include the Watch window that lets you examine any variable

you want. In addition, the Threads window will let you see how many threads are run-

ning, what their thread IDs are, and so forth.

 Error Pages
 As we’ve seen throughout the tour of ASP.NET, one of the main goals has always been to

incorporate as much of the management of Web development as possible into ASP.NET. At

this point, Internet Information Services (IIS) is really only a middle manager in the scheme

of things. Many facilities previously handled exclusively by IIS are now handled by ASP.NET

(although IIS brings many ASP.NET features under its auspices with version 7.0 running in

Integrated mode). One of those facilities is managing custom error pages. In ASP.NET, you

may introduce custom error pages (instead of the client being bombarded with ASP.NET er-

ror messages).

 To tell ASP.NET to display a particular page on encountering errors anywhere within your

application, just tweak the web.confi g fi le. Table 17-2 shows the custom error attributes for

web.confi g.

 Chapter 17 Diagnostics and Debugging 387

TABLE 17-2 Web.Confi g Values for Setting Error Pages

Attribute Description
 defaultRedirect Direct users here in the event of an exception

 on/off on = display custom pages

off = display ASP.NET error pages

 remoteOnly Display custom errors to client, display ASP.NET errors locally

The following example illustrates how to work with custom error pages.

Work with error pages

In this example, you’ll add some error pages to your application and see what conditions

cause them to appear.

1. Open the DebugORama project.

2. Add a new Web Form named ThrowErrors.aspx to the DebugORama application.

3. Add two buttons: one to throw 404 errors (the nearly ubiquitous “object not found”

error) and one to throw other exceptions. Set the 404 button’s ID to ButtonThrow404

and set the other button’s ID to ButtonThrowOther.

4. Add two HTML pages to your application to act as custom error pages. Name one page

404Error.htm and the other SomethingBadHappened.htm. (This example uses straight

HTML pages, although you can use ASPX fi les here.)

Attribute Description

388 Part IV Diagnostics and Plumbing

5. Add some content to the error pages. The 404 error handler here displays an error message

in haiku. The other error page simply displays a label saying “Something bad happened.”

6. Tell ASP.NET to use the error pages by adding the customErrors section to web.confi g, like so:

 <configuration>

 <system.web>

 <customErrors

 defaultRedirect="SomethingBadHappened.htm" mode="On">

 <error statusCode="404"

 redirect="404Error.htm"/>

 </customErrors>

 </system.web>

</configuration>

 This tells ASP.NET to show the 404Error.htm page when a fi le isn’t found. ASP.NET will

show SomethingBadHappened.htm for any other error.

7. Now add handlers to generate the errors. Handle the 404 error button by directing

the client to a nonexistent page (in this example, there is no page named NonExistent
.aspx, so redirecting to it will cause a 404 error). Handle the second error generator by

throwing a random exception.

 public partial class ThrowErrors : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void ButtonThrow404_Click(object sender, EventArgs e)

 {

 this.Response.Redirect("NonExistent.aspx");

 }

 protected void ButtonThrowOther_Click(object sender, EventArgs e)

 Chapter 17 Diagnostics and Debugging 389
 {

 throw new Exception();

 }

}

 When you try to redirect to a nonexistent fi le, the “object not found” error page shows.

 Throwing a generic exception will cause the other page to show.

390 Part IV Diagnostics and Plumbing
 If you’re running the example in the debugger, the debugger will break as soon as an excep-

tion is encountered. To continue, and show the error page after Visual Studio reports the

exception, hit F5.

 In this example, the error pages I’ve shown don’t really help the end user because there’s no

detailed information about the exception. Your own error pages should provide a bit more

information, perhaps a way to contact someone for assistance. Before leaving debugging

and diagnostics, let’s take a look at trapping exceptions in a more graceful way.

 Unhandled Exceptions
 In the last example page that threw an exception, ASP.NET responded by redirecting to the

default error page. ASP.NET also lets you trap exceptions by setting up a handler for Error
events fi red by HttpApplication so that you may handle them more appropriately.

 The easiest way to accomplish this is to defi ne a handler in your HttpApplication-derived class

within Global.asax. With the handler connected to the event, your application will receive

notifi cations whenever something bad happens, and you can deal with it gracefully. For ex-

ample, you might log the error or show it on the debug console before redirecting the user

to an error page. The following example redirects the exception to an error page.

 <script runat="server">

 void Application_Start(Object sender, EventArgs e) {

 }

 void Application_End(Object sender, EventArgs e) {

 }

 void Application_Error(Object sender, EventArgs e) {

 Exception ex = Server.GetLastError();

 // display the exception before redirecting

 System.Diagnostics.Debug.WriteLine("Error in app: " + ex);

 if (ex is HttpUnhandledException)

 {

 Context.ClearError(); // clear error

 Server.Transfer("somethingbadhappened.htm");

 }

 }

 void Session_Start(Object sender, EventArgs e) {

 }

 void Session_End(Object sender, EventArgs e) {

 }

</script>

 Chapter 17 Diagnostics and Debugging 391
 The code above traps the exception before the redirection happens. This gives you the oppor-

tunity to log the exception (or, as in the example above, to show it in the System.Diagnostics
.Debug context).

 You may also redirect users to a different page, if you want to hijack the exception handling

before ASP.NET redirects to the page specifi ed in web.confi g. Be sure to call Context.ClearError
fi rst to clear the error so ASP.NET won’t generate its standard error page.

 Summary
 Web development is diffi cult because an application’s state can be all over the place. For

example, the application holds some of the state, the browser holds some of the state, and

some of the state is stuck in a session database. In addition, the executing portions of an ap-

plication happen in multiple places—both on the server and on the client. That calls for de-

bugging techniques different from what you’d require with a desktop application.

 ASP.NET supports page-level tracing and application-level tracing. In both cases, ASP.NET

displays the entire context of a request and response, including tracing statements. Visual

Studio also supports debugging ASP.NET applications as though they were desktop ap-

plications. You simply set up breakpoints, fi re up the debugger, and watch the fi reworks.

392 Part IV Diagnostics and Plumbing
Debugging ASP.NET applications is very much like debugging desktop applications, thanks

to Visual Studio. Moreover, the debugging works over a network, even the Internet.

Finally, ASP.NET takes over the custom error page handling process (which used to be man-

aged by IIS in classic ASP). You may direct users to new pages depending on the error

that occurs. Finally, you can trap exceptions before they redirect and perform additional

processing.

Chapter 17 Quick Reference
To Do This
Prepare a Web site for

debugging

Include the following in web.confi g:

<system.web>

 <compilation debug="true"/>

</system.web>

Enable tracing for an entire

application

Include the following in web.confi g:

<system.web>

 <trace enabled="true"/>

</system.web>

Enable tracing for your page Set the Page class’s trace attribute to true by either using the property

page in Visual Studio or declaring Trace=”true” in the page directive.

Debug a Web application in

Visual Studio

Ensure that the debug attribute is turned on in web.confi g.

Start the program running in debug mode by

1. Selecting Debug, Start Debugging from the main menu

OR

2. Pressing the F5 key

 Set up breakpoints in an

application in Visual Studio

Place the cursor on the line at which you’d like to stop execution and

1. Select Debug, Toggle Breakpoint
OR

2. Press the F9 key

OR

3. Toggle the breakpoint by clicking the mouse in the gray ribbon to the

 left of the text in the code editor

 Execute a line of source code in

the Visual Studio debugger

While the debugger is running and execution has stopped at the line you’d

like to execute

1. Select Debug, Step Over from the main menu

OR

2. Press the F10 key

To Do This

 Chapter 17 Diagnostics and Debugging 393
To Do This
Step into a line of source code

in the Visual Studio debugger

While the debugger is running and execution has stopped at the line you’d

like to execute

1. Select Debug, Step Into from the main menu

 OR

2. Press the F11 key

 Instruct ASP.NET to show a

particular page when a specifi c

HTTP error occurs

Assign the error-handling page to the specifi c error in the <customErrors>

section of web.confi g.

 Trap specifi c .NET exceptions

or deal with general unhandled

exceptions in ASP.NET

Handle exceptions, including otherwise uncaught exceptions, within

the Application_Error handler in Global.asax. Usually, you’d then redi-

rect to a specifi c page. (Note that specifi c errors will be assigned as the

InnerException of the HttpUnhandledException!)

To Do This

 Chapter 18

 The HttpApplication Class
and HTTP Modules

 After completing this chapter, you will be able to

Q Use HttpApplication as a rendezvous point for your application

Q Manage data within the HttpApplication object

Q Manage events within the HttpApplication object

Q Work with HTTP Modules

 This chapter covers working with application state and applicationwide events within your

ASP.NET application. In normal desktop applications, the notion of a global meeting place for

various parts of an application is well understood. For example, MFC, a C++ class library sup-

porting low-level Windows development, includes a class named CWinApp that holds state

useful throughout the program. This state includes such items as a handle to the current in-

stance of the application, a handle to the main window, and the parameters that were passed

in when the application started. The CWinApp class also runs the message loop—something

that can be done only within the global scope of a Windows application. A running Windows

application contains one and only one instance of the CWinApp class, and it’s universally

available from anywhere within the application.

 Windows Forms—the .NET library that supports Windows forms—has a similar class named

Application. It includes the same sort of state (command line parameters, a top-level window,

other state required by the program). The Windows Forms Application class also runs the

message loop.

 Web development also requires the same sort of “global space” that a desktop application

requires. Having a global space within a Web application makes implementing features such

as caching data and session state possible. Let’s take a look at how ASP.NET implements a

global space for Web applications.

 The Application: A Rendezvous Point
 As we’ve seen so far, one of the most distinctive aspects of Web-based development is the

requirement to be very mindful of the state of your application. By itself, raw Web applica-

tion development includes no support for dealing with state. After all, Web requests are

made over a disconnected protocol and the state of a request evaporates as soon as it hits an

endpoint.
 395

396 Part IV Diagnostics and Plumbing
 In Chapter 4, we took a look at the notion of view state within an ASP.NET application.

ASP.NET server-side controls have the option of supporting view state. View state is embed-

ded within the data going back and forth between the browser and the server and is used

(most of the time) to keep the user interface (UI) appearing as though the browser and the

server are connected continually. For example, without view state (or some special coding

within the server application), UI elements such as drop-down lists lose their state between

posts, causing the fi rst item in the list to always show as the selected item—even if it wasn’t

really the item selected.

 In Chapter 14, we looked at session state—or the data accompanying a specifi c session.

Session state is useful for items such as shopping carts, for which the application has to

associate data with a client.

 Finally, in Chapter 15, we took a look at caching state so as to avoid unnecessary round-trips

to a data source. Loading data from memory is usually much faster than loading it from a

database or regenerating it. When it comes to storing data that all parts of your application

can access, the data must be stored somewhere else besides view state and session state. We

saw that the cache is available from virtually anywhere in the application via the HttpContext
object. The HttpContext includes a reference to an instance of the HttpApplication object. In

addition to being a holding place for the cache, the application object has its own dictionary

that serves as a useful place to hold data. It works in very much the same way that the Cache
does. However, there are some subtle yet important differences between the Cache and the

dictionary held by HttpApplication.

 Keeping a dictionary and a data cache available for the rest of the application isn’t the only

good reason to implement a central application object. The other reason is to have a mecha-

nism for handling applicationwide events. We’ve seen that the Page class handles events

for a request specifi cally. However, think about how the entire ASP.NET pipeline works.

Some useful events aren’t part of the page processing or request processing mechanism.

Implementing those involves code working outside the normal page processing mechanism.

 For example, we looked at session state in Chapter 14. When a request fi rst comes through a

site whose session state is enabled, when should the session object be set up? Certainly, you

want it set up before the page-specifi c processing begins. In Chapter 10, we saw the ASP.NET

security model. When should authentication and authorization be handled? You want those

things to happen outside the context of the normal request processing, too. A fi nal example

is output caching, as we saw in Chapter 16. For output caching to work, ASP.NET needs to

intercept the request when it fi rst enters the pipeline so that it may bypass the whole page

creation process and render the cached content instead.

 ASP.NET’s HttpApplication object can manage these sorts of things. When running, the

HttpApplication object represents a rendezvous point for all the parts of your entire

 Chapter 18 The HttpApplication Class and HTTP Modules 397
Web application. If you’re looking for software patterns to identify within ASP.NET, the

HttpApplication most closely represents the singleton pattern. You treat it as a single in-

stance of an object within your application. A reference to it is accessible at any point in time

through the HttpContext class via the Current property.

 Overriding HttpApplication
 Overriding the HttpApplication to include your own state and event handling is a matter of

adding a fi le named Global.asax to your application. In fact, you may use Visual Studio to

add one to your application. Once you add a Global.asax fi le to your application, it is set up

and ready to handle a few applicationwide events. Remember from examining ASPX fi les that

Page fi les include the Page directive at the top of the fi le. The Global.asax fi le includes a simi-

lar directive. The Application directive tells the runtime compiling machinery that this fi le is

meant to serve as the application object.

 Listing 18-1 shows an example of the HttpApplication expressed within a fi le named

Global.asax. The Global.asax provided by Visual Studio overrides the Application_Start,
Application_End, Application_Error, Session_Start, and Session_End events.

 LISTING 18-1 Global.asax File and Stubbed-out Application Event Handlers

 <%@ Application Language="C#" %>

<script runat="server">

 void Application_Start(object sender, EventArgs e) {}

 void Application_End(object sender, EventArgs e) {}

 void Application_Error(object sender, EventArgs e) {}

 void Session_Start(object sender, EventArgs e) {}

 void Session_End(object sender, EventArgs e) {}

</script>

 To get an idea as to how these events work, the following example illustrates placing a piece

of data in the application’s dictionary and retrieving it later when the page loads.

 Managing application state

 1. Start a new Web site named UseApplication.

 2. Drag a GridView onto the default page. Don’t assign a data source to it yet. You’ll popu-

late it with data that are stored with the application in later steps.

398 Part IV Diagnostics and Plumbing

3. Add a Global.asax to the site. Click the right mouse button on the project in the Project

Explorer (or select Web Site, Add New Item from the main menu). Choose the

Global Application Class template, as shown here:

4. You’ve just added a fi le named Global.asax to your application. You can see that the

Application_Start event is already handled (although it does nothing right now).

5. To have some data to store with the application object, import the QuotesCollection

from Chapter 15. The project name is UseDataCaching. Select Web Site, Add Existing
Item from the main menu and fi nd the fi le QuotesCollection.cs. In addition to import-

ing the QuotesCollection.cs fi le, grab the QuotesCollection.xml and QuotesCollection.xsd
fi les from the UseDataCaching\App_Data directory.

6. Add some code to the Application_Start event to load the quotes data and place it in

the application dictionary. Server.MapPath will give you the path from which the ap-

plication is executing so you can load the XML and XSD fi les. Storing the data in the

dictionary is very much like adding it to the cache.

 void Application_Start(Object sender, EventArgs e) {

 QuotesCollection quotesCollection = new QuotesCollection();

 String strAppPath = Server.MapPath("");

 String strFilePathXml =

 strAppPath + "\\app_data\\QuotesCollection.xml";

 String strFilePathSchema = strAppPath +

 "\\app_data\\QuotesCollection.xsd";

 quotesCollection.ReadXmlSchema(strFilePathSchema);

 quotesCollection.ReadXml(strFilePathXml);

 Application["quotesCollection"] = quotesCollection;

}

 Chapter 18 The HttpApplication Class and HTTP Modules 399

7. Update Page_Load method in the Default.aspx page to load the data from the applica-

tion’s dictionary. The application state is available through the page’s reference to the

Application object. Accessing data within the dictionary is a matter of indexing it cor-

rectly. After loading the data from the dictionary, apply it to the DataSource property

in the GridView and bind the DataGrid.

 protected void Page_Load(object sender, EventArgs e)

{

 QuotesCollection quotesCollection =

 (QuotesCollection)Application["quotesCollection"];

 GridView1.DataSource = quotesCollection;

 GridView1.DataBind();

}

 Application State Caveats
 As you can see, the application state and the application data cache seem to overlap in their

functionality. Indeed, they’re both available from similar scopes (from any point in the ap-

plication), and getting the data in and out involves using the right indexer. However, the ap-

plication state and the cache vary in a couple of signifi cant ways.

 First, items that go into the application state stay there until you remove them explicitly. The

application data cache implements more fl exibility in terms of setting expirations and other

removal/refresh conditions.

 In addition, putting many items into the application state dictionary will inhibit the scalability

of your application. To make the application state thread safe, the HttpApplicationState class

has a Lock method that you may use to make the global state thread safe. Although using the

Lock method will ensure that the data are not corrupted, locking the application frequently

will greatly reduce the number of requests it can handle.

 Ideally, data going into the application state should be read only once when it is loaded—

and should be changed very infrequently, if at all. As long as you’re aware of these issues,

the application state can be a useful place to store information required by all parts of your

application.

 Handling Events
 The other useful aspect of the application object is its ability to handle applicationwide

events. As we saw in the previous example, the Global.asax fi le is a handy place to insert

event handlers. Visual Studio will insert a few for you when you simply add one to your appli-

cation. Some events are handled only in Global.asax, whereas others may be handled outside

Global.asax. The events for which Visual Studio generates stub handlers inside Global.asax

include Application_Start, Application_End, Application_Error, Session_Start, and Session_End.

A rundown of these events follows.

400 Part IV Diagnostics and Plumbing
 Application_Start
 Application_Start happens when the application is fi rst initialized—that is, when the fi rst re-

quest comes through. Because Application_Start happens fi rst (and only once) during the life-

time of an application, the most common response for the event is to load and initialize data

at the start of the application (as with the previous example).

 Application_End
 The ASP.NET runtime raises Application_End as the application is shutting down. This is a use-

ful place to clean up any resources requiring special attention for disposal.

 Application_Error
 Unfortunately, bad things sometimes happen inside Web applications. If something bad has

happened in one of your existing applications, you may already have seen the standard pale

yellow and red ASP.NET error page. Once you deploy your application, you probably don’t

want clients to see this sort of page. Intercept this event (Application_Error) to handle the er-

ror. Of course, the best place to handle exceptions is right when they occur. If an exception

goes this far, that indicates a real problem. It’s best to use this event as a last resort.

 Session_Start
 The Session_Start event occurs when a user makes an initial request to the application, which

initializes a new session. This is a good place to initialize session variables (if you want to ini-

tialize them before the page loads).

 Session_End
 This event occurs when a session is released. Sessions end when they time out or when the

Abandon method is called explicitly. This event happens only for applications whose session

state is being held in-process.

 HttpApplication Events
 The events listed previously are implemented in Visual Studio’s default Global.asax. The appli-

cation object can fi re a number of other events. Table 18-1 shows a summary of all the events

pumped through the application object. Some of these events are handled only through

Global.asax, whereas the others are handled within HttpModules.

 Chapter 18 The HttpApplication Class and HTTP Modules 401
TABLE 18-1 Applicationwide Events

Event Reason Order Only in Global.asax
Application_Start Application is spinning up. Start of app *

Application_End Application is ending. End of app *

Session_Start Session is starting. *

Session_End Session is ending. *

BeginRequest A new request has been

received.

1

AuthenticateRequest/
PostAuthenticateRequest

The user has been

authenticated—that is,

the security identity of the

user has been established.

2

AuthorizeRequest/
PostAuthorizeRequest

The user has been autho-

rized to use the requests

resource.

3

ResolveRequestCache/
PostResolveRequestCache

Occurs between authoriz-

ing the user and invoking

handler. This is where the

output caching is handled.

If content is cached, the

application can bypass

the entire page-rendering

process.

4

AcquireRequestState/
PostAcquireRequestState

Occurs when session state

needs to be initialized.

5

PreRequestHandlerExecute Occurs immediately

before request is sent to

the handler. This is a last-

minute chance to modify

the output before it heads

off to the client.

6

PostRequestHandlerExecute Occurs following the

content being sent to the

client.

7

ReleaseRequestState/
PostReleaseRequestState

Occurs following request

handling. This event

occurs so the system

may save state used if

necessary.

8

UpdateRequestCache/
PostUpdateRequestCache

Occurs following handler

execution. This is used by

caching modules to cache

responses.

9

Event Reason Order Only in Global.asax

Continued

402 Part IV Diagnostics and Plumbing

Event Reason Order Only in Global.asax
EndRequest Fires after request is

processed.

10

Disposed Occurs before the

application shuts down.

End of app

Error Fired when an unhandled

application error occurs.

When an

exception

occurs

PreSendRequestContent Fired before content is

sent to client.

PreSendRequestHeaders Fired before HTTP headers

are sent to client.

The following example shows how to time requests by intercepting the BeginRequest and the

EndRequest events within Global.asax.

Timing requests

1. Open up Global.asax within the UseApplication Web site.

2. Add handlers for BeginRequest and EndRequest. While editing the Global.asax fi le, se-

lect Application from the drop-down list on the top left side of the window, and then

select the events to add from the drop-down list on the top right side of the editing

window as shown below:

Event Reason Order Only in Global.asax

TABLE 18-1 Continued

 Chapter 18 The HttpApplication Class and HTTP Modules 403

 Visual Studio will insert the following stubs in Global.asax:

 protected void Application_BeginRequest(object sender, EventArgs e)

{

}

protected void Application_EndRequest(object sender, EventArgs e)

{

}

3. Implement the BeginRequest handler by getting the current date and time and stor-

ing them within the Items property of the current HttpContext. The Items property is

a name-value collection that you may index in the same way you index the cache, the

session state, and the HttpApplication dictionary. Implement the EndRequest handler

by comparing the time stamp obtained from the beginning of the request to the cur-

rent date and time. Print out the amount of time taken to process the request using

Response.Write.

 protected void Application_BeginRequest(object sender, EventArgs e)

{

 DateTime dateTimeBeginRequest = DateTime.Now;

 HttpContext ctx = HttpContext.Current;

 ctx.Items["dateTimeBeginRequest"] = dateTimeBeginRequest;

}

404 Part IV Diagnostics and Plumbing
protected void Application_EndRequest(object sender, EventArgs e)

{

 DateTime dateTimeEndRequest = DateTime.Now;

 HttpContext ctx = HttpContext.Current;

 DateTime dateTimeBeginRequest =

 (DateTime)ctx.Items["dateTimeBeginRequest"];

 TimeSpan duration = dateTimeEndRequest - dateTimeBeginRequest;

 Response.Write("From Global.asax: This request took " +

 duration.ToString() + "</br>");

}

 You should see the duration printed within the response returned to the browser.

 HttpModules
 Overriding Global.asax is a very convenient way to manage data and events within an appli-

cation. Visual Studio generates a Global.asax and even stubs out the more important events

for you. However, overriding Global.asax isn’t the only way to store state and handle applica-

tionwide events. The other way is to write an HTTP Module.

 HTTP Modules serve very much the same role that ISAPI fi lters served for classic ASP—as

a place to insert functionality into the request processing. HTTP Modules plug into the

ASP.NET processing chain to handle applicationwide events in the same way that Global.asax

handles applicationwide events. In fact, many ASP.NET features are implemented through

HTTP Modules.

 Existing Modules
 ASP.NET employs HTTP Modules to enable features such as output caching and session

state. To get an idea of what features are implemented via HTTP Modules, take a look at the

master confi guration fi le for your machine (that is, go to the Windows directory, look in the

Microsoft.NET directory, and drill down to the confi guration directory for the most current

release). The master web.confi g fi le mentions several modules in the httpModules section of

the confi guration, as shown in Listing 18-2. For brevity, this list does not include entire strong

names of the assemblies, but it gives you an idea as to what modules are already part of the

ASP.NET pipeline.

 LISTING 18-2 Excerpt from the Master Web.Confi g File Indicating Confi gured HttpModules

 <httpModules>

 <add name="OutputCache"

 type="System.Web.Caching.OutputCacheModule" />

 <add name="Session"

 type="System.Web.SessionState.SessionStateModule" />

 <add name="WindowsAuthentication"

 type="System.Web.Security.WindowsAuthenticationModule" />

 Chapter 18 The HttpApplication Class and HTTP Modules 405

 <add name="FormsAuthentication"

 type="System.Web.Security.FormsAuthenticationModule" />

 <add name="PassportAuthentication"

 type="System.Web.Security.PassportAuthenticationModule" />

<add name="RoleManager"

 type="System.Web.Security.RoleManagerModule" />

<add name="UrlAuthorization"

 type="System.Web.Security.UrlAuthorizationModule" />

<add name="FileAuthorization"

 type="System.Web.Security.FileAuthorizationModule" />

<add name="AnonymousIdentification"

 type="System.Web.Security.AnonymousIdentificationModule" />

<add name="Profile"

 type="System.Web.Profile.ProfileModule" />

<add name="ErrorHandlerModule"

type="System.Web.Mobile.ErrorHandlerModule" />

</httpModules>

 The httpModules section mentions the name of a module, followed by a fully specifi ed type

that implements the feature. The following features are handled by modules:

Q Output Caching

Q Session State

Q Windows Authentication

Q Forms Authentication

Q Passport Authentication

Q Role Manager

Q URL Authorization

Q File Authorization

Q Anonymous Identifi cation

Q Profi le

 Chapter 2, includes a short summary of the ASP.NET pipeline. The modules fi t into the pro-

cessing chain and take effect prior to being processed by the HttpApplication object. In fact,

IIS 7.0 uses modules extensively—especially when running in integrated mode. Although the

features themselves may require extensive code to implement (for example, imagine all the

work that went into the session state manager), the basic formula for hooking a module into

your application is pretty straightforward. Creating a module involves four steps:

1. Writing a class implementing IHttpModule

2. Writing handlers for the events you want handled

3. Subscribing to the events

4. Confi guring the module in web.confi g

406 Part IV Diagnostics and Plumbing

 Implementing a Module
 Here’s an example illustrating how HTTP Modules work. The previous example in this chap-

ter demonstrated how to time requests by handling events within Global.asax. The example

showed time stamping the beginning of a request, storing the time stamp in the current

HttpContext, and examining the time stamp as the request fi nished.

 The following example performs the same functionality. However, the example uses an HTTP

Module to handle the events.

 A timing module

1. To implement a timing module, open the Web site solution fi le for this chapter—

UseApplication. To work, the module needs to exist in an assembly. It’s easiest to write

a completely separate assembly for the module. Add a project to the solution by select-

ing File, Add, New Project from the main menu. Make the project a Class Library and

name the project TimingModule.

2. Visual Studio will add a class to the library named Class1. (The name of the fi le gener-

ated by Visual Studio is Class1.cs and the name of the class generated by Visual Studio

is Class1.) Change the name of the fi le to Timer.cs and the name of the class to Timer.
Place the code into the TimingModule namespace.

3. The module as generated by Visual Studio doesn’t understand the ASP.NET types. Add

a reference to System.Web to make the ASP.NET types available.

4. Add handlers for the beginning and ending of the request. You may borrow the code

from Global.asax if you want. The signatures for the event’s handlers are such that

the methods have the return type of void and accept two arguments: an object and

EventArgs.

 using System;

using System.Data;

using System.Configuration;

using System.Web;

/// <summary>

/// Summary description for Timer

/// </summary>

 namespace TimingModule {

 public class Timer

 {

 public Timer()

 {

 }

 public void OnBeginRequest(object o, EventArgs ea)

 {

 DateTime dateTimeBeginRequest = DateTime.Now;

 Chapter 18 The HttpApplication Class and HTTP Modules 407

 HttpContext ctx;

 ctx = HttpContext.Current;

 ctx.Items["dateTimeBeginRequest"] = dateTimeBeginRequest;

 }

 public void OnEndRequest(object o, EventArgs ea)

 {

 DateTime dateTimeEndRequest = DateTime.Now;

 HttpContext ctx;

 ctx = HttpContext.Current;

 DateTime dateTimeBeginRequest =

 (DateTime)ctx.Items["dateTimeBeginRequest"];

 TimeSpan duration = dateTimeEndRequest - dateTimeBeginRequest;

 ctx.Response.Write("From the TimingModule: This request took " +

 duration.ToString() + "</br>");

 }

 }

}

5. Add IHttpModule to the class’s inheritance list. Add implementations for the methods

Init and Dispose. The job performed by Init is to subscribe to events. The job performed

by Dispose is to release any resources used by the module (Dispose doesn’t need to do

anything in this example).

 public class Timer

 : IHttpModule

{

 public Timer()

 {

 }

 public void Init(HttpApplication httpApp)

 {

 httpApp.BeginRequest +=

 new EventHandler(this.OnBeginRequest);

 httpApp.EndRequest +=

 new EventHandler(this.OnEndRequest);

 }

 public void Dispose() { }

// ...

}

6. Add a project-level reference to the new module so you may call it from the page code.

Click the right mouse button on the UseApplication node within Solution Explorer.

Select Add Reference from the local menu. When the Add Reference dialog box ap-

pears, select the Project tab and choose the TimingModule from the list. The follow-

ing shows the Visual Studio dialog box for adding references.

408 Part IV Diagnostics and Plumbing

7. Finally, mention the TimingModule in the web.confi g fi le. It needs to appear within the

httpModules section, nested within the system.web section, like so (notice that Visual

Studio has already added a module to the confi guration fi le).

 <configuration>

 <system.web>

 <httpModules>

 <add name="TimingModule"

 type="TimingModule.Timer, TimingModule" />

 <add name="ScriptModule"

 type="System.Web.Handlers.ScriptModule,

 System.Web.Extensions, Version=3.5.0.0,

 Culture=neutral, PublicKeyToken=31BF3856AD364E35" /></httpModules>

 </httpModules>

</system.web>

</configuration>

 As long as the TimingModule assembly is available to your application (that is, it’s in the Bin

subdirectory of your virtual directory), it will be linked into the processing chain. When you

run the page, you’ll see the timing information coming from both the Global.asax fi le and the

timing module.

 See Active Modules
 We previously saw that many ASP.NET features are implemented through modules. While

you can see the modules listed within the master confi guration fi le, you can also see the list

of available modules at run time. They’re available through the current application instance.

The following exercise illustrates how to do this.

 Chapter 18 The HttpApplication Class and HTTP Modules 409

 Listing the modules

1. Add a button to the Default.aspx page of the UseApplication solution. This button will

list the attached modules, so set its Text property to Show Modules. Also add a list

box to the page that will show the modules.

2. Double-click on the button to add a Click event handler to the page.

3. Handle the button event by grabbing the list of modules from the application instance.

The list comes back as a collection that you can apply to the list box’s DataSource prop-

erty. Calling DataBind on the ListBox will put the names of all the modules in the ListBox.

 protected void ButtonShowmodules_Click(object sender, EventArgs e)

{

 HttpApplication httpApp = HttpContext.Current.ApplicationInstance;

 HttpModuleCollection httpModuleColl = httpApp.Modules;

 Response.Write("
");

 String[] rgstrModuleNames;

 rgstrModuleNames = httpModuleColl.AllKeys;

 this.ListBox1.DataSource = rgstrModuleNames;

 this.ListBox1.DataBind();

}

410 Part IV Diagnostics and Plumbing

 Running the page and clicking the Show Module button will fi ll the list box with a list of

modules plugged into the application (check out the TimingModule entry in the list).

 Storing State in Modules
 HTTP Modules are also a very handy place to store global state for your application. The fol-

lowing example shows how to track the average request duration (which requires storing the

duration of each request as part of application state).

 Tracking average request duration

1. Before inserting the functionality into the module, let’s think a bit about how to use

the information about the average request duration. You might use it to profi le and

to fi nd bottlenecks in your application. Although sending the information out to the

client browser is always useful, there might be times when you want to use the infor-

mation programmatically. To retrieve the information from the module, you’ll need to

add one or more methods (above and beyond the Init and Dispose methods) to the

TimingModule. The best way to do that is to defi ne an interface that has functions you

can use to talk to the module. The following listing defi nes an interface for retrieving

 Chapter 18 The HttpApplication Class and HTTP Modules 411

the average request duration. Create a fi le named ITimingModule.cs and add it to the

TimerModule subproject.

 public interface ITimingModule

{

 TimeSpan GetAverageLengthOfRequest();

}

2. Implement the ITimingModule interface within the Timer class. Include an ArrayList
in the Timer class to hold on to durations of the requests (you’ll need to add the

System.Collections namespace to the list of using directives). Store the duration of

the request at the end of each request (in the OnEndRequest handler). Use clock

ticks as the measurement to make it easier to compute the average duration.

Finally, implement GetAverageLengthOfRequest (the method defi ned by the

ITimingModule interface) by adding all the elements in the ArrayList and dividing

that number by the size of the ArrayList. Create a TimeSpan using the result of the

calculation and return that to the client.

 public class Timer : IHttpModule, ITimingModule

{

 public Timer()

 {

 }

 protected ArrayList _alRequestDurations = new ArrayList();

 public void Init(HttpApplication httpApp)

 {

 httpApp.BeginRequest +=

 new EventHandler(this.OnBeginRequest);

 httpApp.EndRequest +=

 new EventHandler(this.OnEndRequest);

 }

 public void Dispose() { }

 public void OnBeginRequest(object o, EventArgs ea)

 {

 DateTime dateTimeBeginRequest = DateTime.Now;

 HttpContext ctx;

 ctx = HttpContext.Current;

 ctx.Items["dateTimeBeginRequest"] = dateTimeBeginRequest;

 }

 public void OnEndRequest(object o, EventArgs ea)

 {

 DateTime dateTimeEndRequest = DateTime.Now;

 HttpContext ctx;

 ctx = HttpContext.Current;

 DateTime dateTimeBeginRequest =

 (DateTime)ctx.Items["dateTimeBeginRequest"];

 TimeSpan duration =

 dateTimeEndRequest - dateTimeBeginRequest;

412 Part IV Diagnostics and Plumbing

 ctx.Response.Write(" From the TimingModule: this request took " +

 duration.Duration().ToString() + "</br>");

 _alRequestDurations.Add(duration);

 }

 public TimeSpan GetAverageLengthOfRequest()

 {

 long lTicks = 0;

 foreach (TimeSpan timespanDuration in this._alRequestDurations)

 {

 lTicks += timespanDuration.Ticks;

 }

 long lAverageTicks = lTicks / _alRequestDurations.Count;

 TimeSpan timespanAverageDuration = new TimeSpan(lAverageTicks);

 return timespanAverageDuration;

 }

}

3. Now add some code in the Default.aspx page to examine the average time taken to

process each request. Add a button to fetch the average duration, and add a label to

display the average duration. Give the button the Text value Show Average Duration
Of Requests and the ID ButtonShowAverageDurationOfRequests. The label should

have an empty Text value and the ID LabelAverageDurationOfRequests. You’ll need

to include a reference to the TimingModule in the Default.aspx page so the page code

has access to the interface.

 Chapter 18 The HttpApplication Class and HTTP Modules 413

4. Double-click on the Show Average Duration Of Requests button within Visual Studio

to add a Click event handler. Handle the event by fetching the TimingModule from the

collection of Modules. You can fetch it by name because the collection is indexed by

module name (as specifi ed in web.confi g).

 protected void

 ButtonShowAverageDurationOfRequests_Click(

 object sender,

 EventArgs e)

{

 HttpApplication httpApp =

 HttpContext.Current.ApplicationInstance;

 HttpModuleCollection httpModuleColl = httpApp.Modules;

 IHttpModule httpModule =

 httpModuleColl.Get("TimingModule");

 ITimingModule TimingModule =

 (ITimingModule)httpModule;

 TimeSpan timeSpanAverageDurationOfRequest =

 TimingModule.GetAverageLengthOfRequest();

 LabelAverageDurationOfRequests.Text =

 timeSpanAverageDurationOfRequest.ToString();

}

 The object you get back by accessing the module collection is an HttpModule. To be

able to talk to it using the ITimingModule interface, you need to cast the reference to

the module. Once you do that, you may call GetAverageLengthOfRequest and display it

in the label.

414 Part IV Diagnostics and Plumbing
 Global.asax versus HttpModules
 Both the application object expressed through Global.asax and HTTP Modules offer a ren-

dezvous point for your application. You can use both of them to store global state between

requests as well as respond to applicationwide events. When choosing one over the other,

remember that Global.asax really goes with your application. Global.asax is intended to man-

age state and events specifi c to your application. HTTP Modules exist as completely separate

assemblies. They’re not necessarily tied to a particular application, and they may even be

signed and deployed in the Global Assembly Cache. That makes modules an ideal vehicle for

implementing generic functionality that’s useful between different applications.

 Summary
 In this chapter, we saw how the ASP.NET architecture includes a rendezvous point for all the

requests passing through an application. This is especially important in Web applications

composed of disparate components centered around a pipeline. Although there are certain

obvious places where a request context can show up (most notably in the end handler), it’s

clear that there are other points in the request chain where you need to have something to

hold on to.

 ASP.NET offers two broad choices in implementing such a “global space.” Global.asax is a

convenient representation of the HttpApplication object. ASP.NET applications have a singular

instance of the HttpApplication class. The application object includes a handy dictionary in

which to store data that need to survive and be available from all points within the applica-

tion. However, using the dictionary is widely discouraged. It is not thread safe, and locking it

to make it thread safe can have very adverse effects on the performance of your application.

In addition, Global.asax offers a place to intercept various applicationwide events.

 HTTP Modules offer very much the same functionality, although in a different package. HTTP

Modules implement the IHttpModule interface and are deployed with the application via the

web.confi g fi le. When an application starts up, the ASP.NET runtime looks in the web.confi g

fi le to see if any additional handlers need to be attached to the pipeline. (ASP.NET plugs in

a number of modules already—they implement such features as authentication and session

state.) When ASP.NET sees a new module within the web.confi g fi le, ASP.NET loads the mod-

ule and calls the Init method. Modules usually initialize by setting up handlers for various

applicationwide events.

 Chapter 18 The HttpApplication Class and HTTP Modules 415
Chapter 18 Quick Reference
To Do This
Create a custom module assembly Create a new class implementing IHttpModule.

Implement Init.
Implement Dispose.

Insert the module into the processing chain Confi gure the module in the httpModule node of the applica-

tion’s web.confi g fi le.

Handle application events in the module Write a handler (within the module) for every event you want

to handle.

During the Init method, subscribe to the events by attaching

the event handlers to the events.

 Override the application object in the

Global.asax fi le

Select Web site, Add New Item.
Select Global Application Class from the templates.

Insert your own code for responding to the applicationwide

events.

Use the application’s dictionary Access the application object (it’s always available from the

current HttpContext). Use the indexer notation to access the

dictionary.

To Do This

 Chapter 19

 Custom Handlers
 After completing this chapter, you will be able to

Q Recognize the role of custom handlers in ASP.NET

Q Write custom handlers

Q Write just-in-time compiled custom handlers

Q Confi gure your site to include your custom handler

 This chapter covers writing custom HTTP handlers. In Chapter 2, we saw the ASP.NET pipeline.

Remember that the endpoint of all requests handled by ASP.NET is always an implementation

of IHttpHandler.

 ASP.NET includes several classes capable of handling requests in the most common ways.

For example, the Page class handles requests by interpreting the query strings and returning

meaningful user interface (UI)-oriented HTML. The Service class interprets incoming query

strings as method calls and processes them accordingly. So far, we’ve been focusing on a

single handler—System.Web.UI.Page. However, there are other times when it’s appropriate to

tweak the processing or even handle it in a completely different way. You may fi nd yourself

needing to handle a request in a way not already provided through the System.Web.UI.Page

or the System.Web.Services.Service classes. What do you do then? ASP.NET supports custom

HTTP handlers for just such occasions.

 Handlers
 So far, we’ve focused most attention on the Page class. The Page class is responsible primar-

ily for managing the UI aspects of an application. Because UI processing is very involved (and

much of it is boilerplate-type code), the Page class has a great deal of functionality built into

it. The Page class will solve the majority of user interface needs that require UI processing.

 Although we haven’t come across Web services yet, the WebService class implements the de-

tails required to interpret HTTP requests as method calls. Clients call Web services by packag-

ing method calls in an XML format formalized as SOAP. (Formerly the SOAP acronym stood

for Simple Object Access Protocol, but as of SOAP 1.2 the acronym has been dropped to

avoid some earlier confusion—SOAP isn’t about objects and it isn’t necessarily simple, at least

to implement.) Clients call Web services in the same way they make HTTP requests for Web

pages—via HTTP GET and POST requests. When the request reaches the server, it becomes

the server’s job to unpack the parameters, place them on a real or virtual call stack, and fi nally
 417

418 Part IV Diagnostics and Plumbing
invoke the correct method. Most of the work required to make a method call via HTTP is well

understood and consistent and may be pushed down into the WebService class.

 As we saw in Chapter 2, the endpoint for all HTTP requests destined for ASP.NET is a class

implementing IHttpHandler. IHttpHandler is a simple interface, including a mere two methods.

However, any class implementing that interface qualifi es to participate in the HTTP pipeline as

an HTTP handler. We’ll see the interface in detail shortly.

 HTTP handlers are simply classes that implement IHttpHandler (just as HTTP modules are

classes implementing IHttpModule). Handlers are listed inside web.confi g. As with the HTTP

modules, ASP.NET comes out of the box with several HTTP handlers already (for implement-

ing features such as tracing and preventing access to sensitive fi les on the site). ASP.NET

comes with these HTTP handlers already registered in the master web.confi g confi guration

fi le (which resides alongside machine.confi g in the main confi guration directory).

 So far, ASPX, ASAX, and ASCX fi les have seemed to magically work within ASP.NET. For ex-

ample, we saw earlier that simply surfi ng to an ASPX fi le causes ASP.NET to compile the fi le

just in time and to synthesize a class based on System.Web.UI.Page. The reason the ASPX fi les

work that way is that ASP.NET includes handlers for that functionality.

 ASP.NET HTTP handlers are specifi ed in web.confi g in much the same way as HTTP modules.

The format of the handler elements includes four items. First, they include a fi le name and/or

extension to which the handler applies. This is done through the add attribute. Remember, all

HTTP requests come to the server as resource requests—the HTTP protocol is built around

the idea that requests contain resource names. The second part of the handler specifi ca-

tion, verb, is a list of verbs to which this handler applies. These verbs correspond to the HTTP

specifi cation. For example, you might want a handler to apply only to GET and not to POST

requests. Or you may wish to have a handler apply to all requests. The third element, type, is

the name of the .NET type assigned to handle the request. Finally, the last attribute, validate,

specifi es whether or not ASP.NET should load the class at startup immediately or wait until a

matching request is received.

 Listing 19-1 includes a smattering of the HTTP handlers already installed as part of ASP.NET’s

master web.confi g fi le.

 LISTING 19-1 Excerpt from the Master Web.Confi g File

 <httpHandlers>

 <add path="trace.axd" verb="*"

 type="System.Web.Handlers.TraceHandler" validate="True" />

 <add path="WebResource.axd" verb="GET"

 type="System.Web.Handlers.AssemblyResourceLoader" validate="True" />

 <add path="*.axd" verb="*"

 type="System.Web.HttpNotFoundHandler" validate="True" />

 <add path="*.aspx" verb="*"

 type="System.Web.UI.PageHandlerFactory" validate="True" />

 Chapter 19 Custom Handlers 419
 <add path="*.ashx" verb="*"

 type="System.Web.UI.SimpleHandlerFactory" validate="True" />

 <add path="*.asax" verb="*"

 type="System.Web.HttpForbiddenHandler" validate="True" />

 <add path="*.ascx" verb="*"

 type="System.Web.HttpForbiddenHandler" validate="True" />

 <add path="*.master" verb="*"

 type="System.Web.HttpForbiddenHandler" validate="True" />

 <add path="*.config" verb="*"

 type="System.Web.HttpForbiddenHandler" validate="True" />

 <add path="*.cs" verb="*"

 type="System.Web.HttpForbiddenHandler" validate="True" />

<!—More handlers follow... -->

</httpHandlers>

 Let’s take a look at a couple of specifi c handlers—the Trace handler and the Forbidden han-

dler—to get a good idea as to how having a separate request handling facility (i.e., one that

is not tied specifi cally to UI or to Web services) can be useful.

 Built-in Handlers
 One of the best examples of custom handling is the Trace handler that is built into ASP.NET.

We looked at tracing in Chapter 17. You turn tracing on within the web.confi g fi le by inserting

the trace element, <trace enabled=true />. This instructs the ASP.NET runtime to store sum-

maries of the requests going through the site so they may be viewed for diagnostic purposes.

 ASP.NET caches the tracing output in memory. To view the trace results, you surf to the

virtual directory managing the site and ask for a specifi c resource: Trace.axd. Take a look at

Listing 19-1 and you’ll see the fi rst entry among all the standard HTTP handlers is for a re-

source named Trace.axd. The tracing functionality behind ASP.NET falls outside of normal UI

processing, so it makes sense that tracing is handled by a custom handler.

 When you surf to the Trace.axd resource, the handler renders HTML that looks like the

output shown in Figure 19-1. The processing for this handler is very specifi c—the handler’s

job is to render the results of the last few requests. As you can see in Figure 19-2, selecting

the View Details link resubmits the request with a parameter id=3 in the query string. This

causes the handler to render the details of the third request. Figure 19-3 shows the Internet

Information Services (IIS) fi le mapping for fi les with the .axd extension. Although you won’t

really see this aspect until deployment time, it’s interesting to observe because it shows how

ASP.NET is very versatile in the kinds of requests it can handle. IIS handles Trace.axd requests

the same way as any other ASP.NET request. That means IIS will pass requests for resources

with an extension of .axd on to ASP.NET. Once inside the ASP.NET pipeline, the web.confi g fi le

tells ASP.NET to handle the request with the Trace handler.

420 Part IV Diagnostics and Plumbing

 FIGURE 19-1 The output of the Trace.axd handler

 FIGURE 19-2 The output of the Trace.axd handler when drilling down into a specifi c request summary

 Chapter 19 Custom Handlers 421

 FIGURE 19-3 IIS has a handler mapping for Trace.axd.

 If you look through the default web.confi g fi le a bit more, you’ll see some other critical

ASP.NET handlers. As you might expect, source code is banned explicitly from normal clients

by default. Notice that fi les such as *.cs, *.confi g, and *.vb are handled by the Forbidden han-

dler. If you try to look at source code via a Web browser, ASP.NET returns the page shown in

Figure 19-4 by default.

 FIGURE 19-4 What happens when you try to view forbidden content

422 Part IV Diagnostics and Plumbing
 Remember that ASP.NET’s confi guration is very malleable and that you may choose to let cli-

ents see your source code by one of two means. You may remove the source code extension

to ASP.NET mappings within IIS. Alternatively, you may write your own source code viewer

handlers and declare them in your application’s web.confi g fi le.

 These handlers plug into the pipeline by implementing IHttpHandler. Let’s take a look at this

key interface.

 IHttpHandler
 Here it is. Shield your eyes while you look at Listing 19-2 (just kidding—it’s not a very big

interface).

 LISTING 19-2 The IHttpHandler Interface

 public interface IHttpHandler

{

 void ProcessRequest(HttpContext ctx);

 bool IsReusable {get;}

}

 There’s really not much to it, is there? The interface includes a method named ProcessRequest
and a property named IsReusable. If the handler instance can be used multiple times, then

IsReusable should return true. If the handler generally returns static content, it’s probably

reusable. If the content is dynamic, it’s probably not reusable. The heart of the handler is the

ProcessRequest method that includes a single parameter: the current HttpContext.

 Once a request fi nally arrives at the handler (through the ProcessRequest method),

ProcessRequest can literally do anything to respond to the request. The Trace.axd handler re-

sponds to a GET request by listing the requests being tracked by the runtime. The forbidden

handler responds by tossing a roadblock in the processing pipeline so the client can’t see the

forbidden resource. A custom Web service might respond to the request by parsing the XML

payload, constructing a call stack, and making a call to an internal method.

 Implementing IHttpHandler is simple—at least from the architectural standpoint. The

ProcessRequest method takes a single parameter—the current HttpContext. However, the

code inside ProcessRequest is free to do just about anything, possibly making the internal

processing quite complex! The following example illustrates taking over the entire form-

rendering process to display a list of choices within a combo box, allowing the end client to

select from the choices, and fi nally rendering the chosen item.

 Writing a Custom Handler

 1. Create a project named CustomHandlers.

 Chapter 19 Custom Handlers 423

2. Add a new class library subproject to the CustomHandlers Web site (just as you did

when you created an HTTP module). Name the project CustomFormHandlerLib. The

name of the class it generates for you is Class1. Rename the fi le CustomFormHandler.cs
and the class CustomFormHandler.

3. The library generated by Visual Studio comes without any knowledge of the ASP.NET

classes. Add a reference to the System.Web assembly.

4. To turn the CustomFormHandler class into an eligible handler, add the IHttpHandler
interface to the inheritance list and implement ProcessRequest. Add a method named

ManageForm that takes a parameter of type HttpContext. ManageForm should write out

<html>, <body>, and <form> tags through Response.Write. Write the question “Hello

there. What’s cool about .NET?” followed by a line break. Next, write a <select> tag

and set the name attribute to “Feature.” Then write several .NET features surrounded by

<option> tags. This will produce a drop-down list box on the client’s browser. Write out

an <input> tag. The tag’s type attribute should be submit, its name attribute should be

“Lookup,” and its value attribute should be “Lookup.” Next, look up the new value for

the “Feature” selection tag within the HttpContext ’s Request.Params collection. If the

value is not null, then the end user selected something. Write the value provided by the

“Feature” selection tag. Finally, write out closing tags. That is, </form>, </body>, and </
html> tags.

 Have the ProcessRequest method call the ManageForm method like so:

 using System;

using System.Collections.Generic;

using System.Text;

using System.Web;

public class CustomFormHandler : IHttpHandler

{

 public void ProcessRequest(HttpContext ctx)

 {

 ManageForm(ctx);

 }

 public void ManageForm(HttpContext context)

 {

 context.Response.Write("<html><body><form>");

 context.Response.Write(

 "<h2>Hello there. What's cool about .NET?</h2>");

 context.Response.Write(

 "<select name='Feature'>");

 context.Response.Write(

 "<option> Strong typing</option>");

 context.Response.Write(

 "<option> Managed code</option>");

 context.Response.Write(

 "<option> Language agnosticism</option>");

424 Part IV Diagnostics and Plumbing

 context.Response.Write(

 "<option> Better security model</option>");

 context.Response.Write(

 "<option> Threading and async delegates</option>");

 context.Response.Write(

 "<option> XCOPY deployment</option>");

 context.Response.Write(

 "<option> Reasonable HTTP handling framework</option>");

 context.Response.Write("</select>");

 context.Response.Write("</br>");

 context.Response.Write(

 "<input type=submit name='Lookup' value='Lookup'></input>");

 context.Response.Write("</br>");

 if (context.Request.Params["Feature"] != null)

 {

 context.Response.Write("Hi, you picked: ");

 context.Response.Write(

 context.Request.Params["Feature"]);

 context.Response.Write(

 " as your favorite feature.</br>");

 }

 context.Response.Write("</form></body></html>");

 }

 public bool IsReusable {

 get

 {

 return true;

 }

 }

}

 The code within the ProcessRequest will render a form element and a select element

that renders a form that can be submitted by the browser. When the form is submitted

back to the server, the parameter collection will contain a Features element. The code

examines the parameter collection to see if it references a feature, and it displays the

feature if it’s been selected.

5. The class library you just created deposits its output in the project directory. In order for

ASP.NET to use the page, the resulting executable needs to live in the application direc-

tory’s bin subdirectory. You can do this by adding the CustomHandlerLib.dll as a project

reference to the Web site. Click the right mouse button on the Web site project within the

Solution Explorer and add a new project reference. Navigate to the CustomFormHandlerLib

project’s bin directory and choose the CustomFormHandlerLib.dll fi le.

6. Now update web.confi g so that it uses the handler when clients request the

CustomFormHandler resource. If you don’t already have a web.confi g in the proj-

ect, add one. Then insert an httpHandlers section that points requests for the

CustomFormHandler to the new CustomFormHandler class.

 Chapter 19 Custom Handlers 425
 <configuration >

 <appSettings/>

 <connectionStrings/>

<system.web>

 <httpHandlers>

 <!-- There will be some other entries here... -->

 <add path="*.cstm" verb="*"

 type="CustomFormHandlerLib.CustomFormHandler, CustomFormHandlerLib"

 validate="true" />

 </httpHandlers>

</system.web>

</configuration>

 Note If this site were running under IIS, you would need to tell IIS about the new fi le types to

be handled by the CustomFormHandler. If you decide to run this application under IIS (instead of

the Visual Studio Web server), you may confi gure IIS to run your handler by doing the following.

Open IIS and drill down to the CustomHandler virtual directory. Open the Features View and lo-

cate the Handler Mappings icon.

 Double-click on the Handler Mappings icon to bring up the Handler Mappings page.

426 Part IV Diagnostics and Plumbing

 Click the right mouse button in the middle of the Handler Mappings page to bring up the local

menu. Select Add Managed Handler. Type in an extension you’d like to have mapped to the

custom handler. Then assign a handler. IIS will look at all the handlers available to your applica-

tion (including the ones local to your application). Select the handler from the drop-down list,

give the handler an alias, and you’ll be able to surf to that fi le type to invoke the handler.

 Chapter 19 Custom Handlers 427
 7. Finally, create a blank Text fi le named CustomHandler.cstm to your project. You can use

the fi le with that extension to surf to the handler.

 8. Surf to the customhandler.cstm resource and ASP.NET will invoke the custom handler

you just created.

 Of course, most of this processing could be handled more easily by setting up a Web form.

However, this example shows the fl exibility of the ASP.NET handler architecture. It should also

give you more appreciation for the Web form and custom controls machinery within ASP.NET.

 Handlers and Session State
 In Chapter 14, we looked at session state. Session state works automatically within the con-

text of System.Web.UI.Page. However, custom handlers need to turn on the ability to use ses-

sion state deliberately.

 The .NET architecture uses an interesting idiom known as marker interfaces. Marker interfaces

are empty interfaces (without any methods or properties defi ned). Their sole purpose is to

signal the runtime as to various aspects of the application. For example, ASP.NET runtime of-

ten uses them to turn on and off various features. When the runtime detects a marker inter-

face as part of an object’s class hierarchy, the runtime can bring into play certain features.

 For a handler to use session state, it must have the System.Web.SessionState.IRequiresSessionState

interface in its inheritance list. That way the runtime will know to load and store session state at

the beginning and end of each request.

 Listing 19-3 shows a handler with session state enabled.

 LISTING 19-3 Example HTTP Handler That Accesses Session State

 using System;

using System.Collections.Generic;

using System.Text;

using System.Web;

using System.Web.SessionState;

public class HandlerWithSessionState : IHttpHandler, IRequiresSessionState

{

 public void ProcessRequest(HttpContext ctx)

 {

 string strData = (string)ctx.Session["SomeSessionData"];

 if (String.IsNullOrEmpty(strData))

 {

 strData = "This goes in session state";

 ctx.Session["SomeSessionData"] = strData;

 }

 ctx.Response.Write("This was in session state: " + strData);

 }

428 Part IV Diagnostics and Plumbing
 public bool IsReusable {

 get

 {

 return true;

 }

 }

}

 Generic Handlers (ASHX Files)
 Just as ASPX fi les can be compiled on the fl y (“just in time”), so can handlers. Generic han-

dlers have an extension of ASHX. They’re equivalent to custom handlers written in C# or

Visual Basic in that they contain classes that fully implement IHttpHandler. They’re convenient

in the same way ASPX fi les are convenient. You simply surf to them and they’re compiled

automatically.

 The following example illustrates the CustomFormHandler implemented as a “generic handler.”

 Writing a generic handler

 1. Add a “generic” handler to the Web site. Go to the Solution Explorer, click the right

mouse button on the CustomHandler Web site node and select Add New Item.

Select Generic Handler from the templates. Name the handler CustomFormHandler.ashx.

 2. Visual Studio generates a handler that includes a stubbed-out ProcessRequest method

and a completed IsReusable property. Write a function to emit the form-handling

code (you can borrow it from the last exercise), and call the method from inside

 Chapter 19 Custom Handlers 429
ProcessRequest. Borrow the code from the earlier example to implement the handler.

Replace the stubbed-out method and property with real implementations.

 <%@ WebHandler Language="C#" Class="CustomFormHandler" %>

using System.Web;

public class CustomFormHandler : IHttpHandler {

 public void ProcessRequest (HttpContext context) {

 ManageForm(context);

 }

 public void ManageForm(HttpContext context)

 {

 context.Response.Write("<html><body><form>");

 context.Response.Write(

 "<h2>Hello there. What's cool about .NET?</h2>");

 context.Response.Write("<select name='Feature'>");

 context.Response.Write("<option> Strong typing</option>");

 context.Response.Write("<option> Managed code</option>");

 context.Response.Write("<option> Language agnosticism</option>");

 context.Response.Write("<option> Better security model</option>");

 context.Response.Write(

 "<option> Threading and async delegates</option>");

 context.Response.Write("<option> XCOPY deployment</option>");

 context.Response.Write(

 "<option> Reasonable HTTP handling framework</option>");

 context.Response.Write("</select>");

 context.Response.Write("</br>");

 context.Response.Write(

 "<input type=submit name='Lookup' value='Lookup'></input>");

 context.Response.Write("</br>");

 if (context.Request.Params["Feature"] != null)

 {

 context.Response.Write("Hi, you picked: ");

 context.Response.Write(context.Request.Params["Feature"]);

 context.Response.Write(" as your favorite feature.</br>");

 }

 context.Response.Write("</form></body></html>");

 }

 public bool IsReusable

 {

 get

 {

 return false;

 }

 }

}

430 Part IV Diagnostics and Plumbing
 3. Browse to the CustomFormHandler.ashx fi le. It should work in just the same way as the

handler implemented in the CustomFormHandler class (that you wrote in the fi rst example):

 The advantage of using the generic handler is twofold. First, it’s usually much more conve-

nient to generate a simple handler than it is to create a whole new assembly to handle the

request. Second, you don’t need to confi gure either web.confi g or IIS (when it comes time to

deploy). That is, ASP.NET and IIS already understand what to do when encountering resource

requests with the extension of .ashx. Installing ASP.NET places those when mapping into IIS.

 However, ASHX fi les have the same limitations as ASPX and ASCX fi les in terms of their place

in an ASP.NET project. Simple generic handlers go with the project. That is, for the handler

to work, it must accompany the whole project. Alternatively, custom handlers deployed as

separate assemblies may be deployed and shared among the enterprise as Global assemblies

(that is, strongly named assemblies placed in the Global Assembly Cache).

 Summary
 ASP.NET includes a number of built-in classes to handle most kinds of requests. For

exam ple, ASP.NET includes UI handlers (System.Web.UI.Page and System.Web.UI.Control). ASP.NET

also includes a Web service handler (System.Web.Services.WebService). These classes will

 Chapter 19 Custom Handlers 431
probably handle most of the requirements you might come across. However, for those fringe

cases that require custom handling, ASP.NET supports the custom handler.

The endpoint for requests coming through ASP.NET is always a class implementing

IHttpHandler. IHttpHandler has very little surface area. You simply override the IsReusable

property and the ProcessRequest method. ProcessRequest can pretty much do anything you

want it to do. The example in this book included a handler that manages rendering a form

and handling input.

For a custom handler assembly to work, it must be mapped to a fi le path or extension in the

application’s web.confi g fi le. The extension must also be mapped within the IIS metabase if

you intend to deploy it to IIS.

ASP.NET also supports handlers that may be compiled just in time. Simple handlers are easy

to create and deploy because you don’t need to modify the web.confi g fi le, nor do you need

to modify the IIS metabase.

Chapter 19 Quick Reference
To Do This
Create a custom handler assembly Create a new class implementing IHttpHandler.

Implement the IsReusable property.

Implement ProcessRequest.

 Assign a fi le mapping to the handler in

ASP.NET

Confi gure the handler in the httpHandler segment of the

application’s web.confi g fi le.

 Assign a fi le mapping to the handler in IIS Click the right mouse button on the virtual directory.

Select Properties.

Click the Confi gure button.

Click the Add button.

Add a new extension and map it to aspnet_isapi.dll.

 Create a simple handler Select Web site, Add New Item.

Select Generic Handler from the templates.

Insert your own code for responding to the request.

To Do This

 Part V

 Services, AJAX, Deployment,
and Silverlight
 433

 Chapter 20

 ASP.NET Web Services
 After completing this chapter, you will be able to

Q Understand the importance of Web services

Q Use the technologies underlying Web services

Q Write Web services using ASP.NET

Q Consume Web services synchronously

Q Consume Web services asynchronously

 This chapter covers Web services from an ASP.NET perspective. During the past decade,

“Web services” has emerged as a buzzword for enabling the next generation of computer

connectivity. Although networking a bunch of computers isn’t trivial, it’s generally a solved

problem these days. Most workplaces in the modern world depend on an internal network of

computers to allow the people staffi ng the enterprise to communicate and work effectively.

Even though Microsoft has recently released Windows Communication Foundation (which

unifi es the programming model for sockets, Web services, Microsoft Message Queue, and

.NET Remoting), ASP.NET’s ASMX framework is still part of the ASP.NET canon and remains a

viable way to do remoting over the Internet.

 High connectivity among computers has been a goal since personal computing began.

Although only a pipe dream in the earliest years, the ability to connect computers is com-

monplace these days. With the rise of the internal company network comes the desire to tie

machines together programmatically as well. That is, a program on one machine should be

able to call program methods on another machine without human intervention. Many enter-

prises spent nearly the entire last decade of the twentieth century trying to get their comput-

ers to talk to one another programmatically. On the Microsoft platform, this was usually done

with Distributed Component Object Model (DCOM) before .NET came along.

 The next step in connecting computers is happening over the Internet. There’s already a

ubiquitous connection available (computers connected via HTTP, the HyperText Transfer

Protocol) and a well-understood wire format (XML). Together, these two elements make up

XML Web Services.

 Remoting
 The desire to call software methods “over there” from “over here” has been around ever since

the advent of distributed computing networks. Beginning in the days of Remote Procedure

Calls all the way through the latest version of DCOM, the promise of remoting has been to
 435

436 Part V Services, AJAX, Deployment, and Silverlight

exercise a network of computers to solve computing problems rather than pinning the whole

problem on a single computer.

 Remoting involves several fundamental steps:

1. The caller fl attens the local method call stack into a stream that may be sent over the

wire. This process is known as serialization.

2. The caller sends the serialized call stack across the wire.

3. The endpoint receives the serialized call stack and turns it into a usable call stack on the

server. This is known as deserialization.

4. The endpoint processes the method call.

5. The endpoint transmits the results back to the caller.

 Figure 20-1 illustrates the basic connection underlying any remoting activity.

Client

Transmitter

(proxy layer)

Receiver

(stub/sink layer)

Real object

Server

Invoke method

 FIGURE 20-1 The general remoting architecture employed by most remoting systems

 Several different network remoting technologies have emerged during the past decade,

including DCOM and CORBA. (CORBA is an acronym for Common Object Request Broker

Architecture—a remoting technology prevalent on other operating systems in the mid- to

late 1990s.) It doesn’t matter if the remoting framework is DCOM, CORBA, or even the .NET

Remoting services—the fundamental steps of remoting remain the same. For example, in

DCOM the client talks to a component called the proxy, whose job it is to fl atten the call

stack (serialization) and send it on its way. On the server side, a component called the stub

receives the network packets and turns the incoming stream into a real call on the server

(deserialization). If the framework is .NET Remoting, then the term for the proxy component

is the transparent proxy. The transparent proxy talks to the real proxy, which sends the bytes

across the network. Once at the server, a component called the sink unpacks the bytes and

turns them into a real call.

 XML Web Services work much the same way. The fundamental remoting steps are all there.

However, this time around the wire format is an XML format formalized as SOAP and the

 Chapter 20 ASP.NET Web Services 437
connection protocol is, at least for ASP.NET, HTTP. Other systems might use other connection

protocols, like the Simple Mail Transfer Protocol, or SMTP. ASP.NET, however, only supports HTTP.

 Remoting over the Web
 In the previous 19 chapters, we’ve looked primarily at how ASP.NET makes it easy to handle

a wide variety of Web application scenarios. We’ve seen that ASP.NET handles HTTP GET and

POST verbs, redirecting the request to a handler. Until now, the job of the handler has been

to process the incoming query string and render some output generally intended for human

consumption. Developing an XML Web Service is all about writing an application intended

for consumption by another program.

 XML Web Services are Internet endpoints available most commonly through HTTP and

HTTPS (Hypertext Transfer Protocol Secure). The job of an XML Web Service is to consume

HTTP requests containing XML payloads formatted as SOAP. The messages have a specifi c

schema applied to them, which in effect may be thought of as a transportable type sys-

tem. Web services are also responsible for providing metadata (Web Service Description

Language) describing the messages they consume and produce.

 SOAP
 Although it seems obvious that the Web is an excellent medium for distributing a user

interface–oriented application to the masses, it may not seem so obvious that the same tech-

nology might be used to make method calls. One of the main reasons Web services may exist

now is because different enterprises can agree on what a method call looks like, and they can

all access it over already existing HTTP connections.

 XML Web Service method calls are encoded using XML. The format that callers and ser-

vices agree on was originally named Simple Object Access Protocol. The full name has been

dropped, but the moniker “SOAP” remains. The SOAP protocol is an XML formalization for

message-based communication. SOAP defi nes how to format messages, how to bind mes-

sages over HTTP, and a standard error representation.

 Transporting the Type System
 The primary interoperability focus of XML Web Services is to widen the audience of an ap-

plication so that as many clients as possible can invoke methods of the service. Because the

connective medium involved is the Internet, any computer that can invoke HTTP requests

becomes a potential client. Paired with the ability to connect over HTTP and to format calls

as SOAP messages, a client can make calls to any of your Web service’s methods.

438 Part V Services, AJAX, Deployment, and Silverlight
 With the focus on interoperability among as many platforms as possible, it becomes very im-

portant that the caller and the service agree on the data types being passed back and forth.

When a client calls a method containing parameters, the two endpoints might each have their

own way of interpreting the parameter types. For example, passing a character string between

two .NET endpoints does not pose a major problem. However, passing a string between a

client running a non-.NET platform and a service written using .NET does pose a problem be-

cause a character string type is almost certainly represented differently on each platform.

 When calling methods between two computers using HTTP and XML, it’s very important

that a schema is provided on each end so that the parameter types are interpreted correctly.

Fortunately, this detail has been pushed down into the Web service tools that are currently

available.

 Web Service Description Language
 Given a connection protocol (HTTP) and wire format (XML + SOAP), the fi nal ingredient that

makes Web services a viable technology is the notion of a service description. Even though

two endpoints agree on the connection protocol and the wire format, the client still has to

know how to set up the call to a service.

 Services advertise their capabilities via another XML formalization named Web Service
Description Language (WSDL). WSDL specifi es the target URL of the service, the format in

which the service expects to see methods packaged, and how the messages will be encoded.

 If You Couldn’t Use ASP.NET…
 Just as there’s nothing stopping you from writing code to handle HTTP requests from scratch,

you could handle Web service requests from handwritten code. You could write a Web ser-

vice armed with only a decent XML parser and a socket library (for communicating over your

server’s communication ports). The work involved includes the following:

 1. Listening to port 80 to receive method calls

 2. Parsing the incoming XML stream, unpacking the parameters

 3. Setting up the incoming parameters and performing the work

 4. Packing a suitable XML SOAP response and sending it to the caller

 5. Advertising the service’s capabilities via WSDL

 After the second or third time implementing a service by hand, you’d probably come to the

following conclusion: Much of the work involved in making a Web service work is repetitive

and might as well be pushed into a library. That’s exactly what ASP.NET does. ASP.NET han-

dles the details of making a Web service through the System.Web.Services.WebService class.

 Chapter 20 ASP.NET Web Services 439
 A Web Service in ASP.NET
 ASP.NET handles Web services with a limited amount of programming effort. Remember

how the ASP.NET pipeline architecture works. Requests coming from clients end up at the

server’s port 80. ASP.NET Web services live in a fi le type named with the extension .asmx.

If the server is running ASP.NET, Internet Information Services (IIS) routes the request for fi les

with the ASMX extension to ASP.NET, where they’re handled like any other request.

 ASP.NET includes an attribute named WebMethod that maps a SOAP request and its response

to a real method in a class. To make the service work, you simply derive a class from System
.Web.Services.WebService and expose methods using WebMethod. When the request comes

through, the target class will be “bound” to the .asmx endpoint. As with normal page execu-

tion, the current HttpContext is always available. In addition, ASP.NET automates WSDL gen-

eration, and Microsoft provides tools to automate generating client-side proxies given WSDL

input from an XML Web Service.

 The following example illustrates an XML Web Service that retrieves quotes from the quotes

collection we saw in Chapters 15 and 18. This example will expose the quotes collection via a

set of methods expressed as an XML Web Service.

 Write an ASP.NET Web service

 1. Create a new Web site project. Name the project QuoteService. Make it a fi le system–

based ASP.NET Web Service.

 2. Rename the code fi le in App_Code from Service.cs to QuoteService.cs. Rename the

ASMX fi le from Service.asmx to QuoteService.asmx. Use the Visual Studio refactoring

facilities to change the name of the service class from Service to QuoteService. Open the

QuoteService.cs fi le. Highlight the name of the Service class and click the right mouse

button on it. From the local menu, select Rename from the Refactor menu. When

prompted, type QuoteService for the new name of the class. This will change the

name of the class in the C# code fi les. Then you’ll need to change the reference to the

service class in the .asmx fi le manually. This is the line at the top of the .asmx fi le:

 <%@ WebService Language="C#" CodeBehind="~/App_Code/QuoteService.cs" Class="Service" %>

 It should become

 <%@ WebService Language="C#" CodeBehind="~/App_Code/QuoteService.cs" Class="QuoteService" %>

 3. After all this is done, your stubbed-out XML Web Service should look like this:

 using System;

using System.Linq;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml.Linq;

440 Part V Services, AJAX, Deployment, and Silverlight

[WebService(Namespace = "http://tempuri.org/"")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

// To allow this Web Service to be called from script,

// using ASP.NET AJAX, uncomment the following line.

// [System.Web.Script.Services.ScriptService]

public class QuoteService : System.Web.Services.WebService

{

 public QuoteService () {

 //Uncomment the following line if using designed components

 //InitializeComponent();

 }

 [WebMethod]

 public string HelloWorld() {

 return "Hello World";

 }

}

 In addition to the C# fi le, you’ll also get an ASMX fi le. The XML Web Service handler

(named ASMX, with “M” standing for “method”) works very much like the ASPX page

handlers and the ASHX custom handlers. When clients surf to the ASMX page, the Web

server directs the request to the appropriate handler (the ASMX handler factory). Once

there, ASP.NET compiles the code associated with the ASMX fi le and runs it just as it

would any other HTTP handler. Here’s what the ASMX fi le looks like. There’s not much

here. Most of the code lies within the accompanying code fi le.

 <%@ WebService Language="C#"

CodeBehind="~/App_Code/QuoteService.cs" Class="QuoteService" %>

4. Surf to the QuoteService.asmx fi le to see what a default HTTP GET renders.

 Chapter 20 ASP.NET Web Services 441

 By default, ASP.NET renders the names of the available methods when you just GET the

ASMX fi le. Notice that the HelloWorld method (provided by Visual Studio) is exposed.

If you want to try running the HelloWorld method, click the HelloWorld link, which

renders a new page with a button you can click to invoke the method. The site will re-

spond with this page:

5. Examine the WSDL. Before adding any code, click the Service Description link on the

fi rst page displayed after surfi ng to the XML Web Service. The Web service will send

back the WSDL for the site. You can page through it to see what WSDL looks like. The

information contained in the WSDL is not meant for human consumption but, rather,

for client proxy generators (which we’ll examine soon).

442 Part V Services, AJAX, Deployment, and Silverlight

6. Add code to manage quotes. To have some quotes to expose as Web methods, import

the QuotesCollection from Chapter 15. The project name is UseDataCaching. Highlight

the App_Code node within the solution explorer. Select Web Site, Add Existing Item

from the main menu and fi nd the fi le QuotesCollection.cs. In addition to importing the

QuotesCollection.cs fi le, grab the QuotesCollection.xml and QuotesCollection.xsd fi les

from the UseDataCaching\App_Data directory and place them in the App_Data direc-

tory for this project.

7. Write a method to load the QuotesCollection. Put the code in the QuoteService.cs fi le.

Check fi rst to see if the QuotesCollection is in the cache. If not, create a QuotesCollection

object and load it using the quotescollection.xml and quotescollection.xsd fi les. Load

the quotes into the application cache during the construction of the QuoteService class.

When you add the data to the cache, build a dependency on the quotescollection.xml

fi le. One of the Web methods we’ll add will modify the XML fi le, so we’ll want to fl ush it

from the cache when it’s updated. The code from the data caching chapter loaded the

XML data in the Page_Load handler. In this case, there’s no page, so you need a sepa-

rate method to load the quotes. Here’s the code that does the trick. Also, notice the

addition of the System.Data namespace.

 using System;

using System.Web;

using System.Data;

using System.Web.Services;

 Chapter 20 ASP.NET Web Services 443

using System.Web.Services.Protocols;

using System.Web.Caching;

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class QuoteService : System.Web.Services.WebService

{

 QuotesCollection LoadQuotes()

 {

 QuotesCollection quotesCollection;

 HttpContext ctx = HttpContext.Current;

 quotesCollection = (QuotesCollection)ctx.Cache["quotesCollection"];

 if (quotesCollection == null)

 {

 quotesCollection = new QuotesCollection();

 String strAppPath = Server.MapPath("");

 String strFilePathXml =

 strAppPath +

 "\\App_Data\\QuotesCollection.xml";

 String strFilePathSchema =

 strAppPath +

 "\\App_Data\\QuotesCollection.xsd";

 quotesCollection.ReadXmlSchema(strFilePathSchema);

 quotesCollection.ReadXml(strFilePathXml);

 CacheDependency cacheDependency =

 new CacheDependency(strFilePathXml);

 ctx.Cache.Insert("quotesCollection",

 quotesCollection,

 cacheDependency,

 Cache.NoAbsoluteExpiration,

 Cache.NoSlidingExpiration,

 CacheItemPriority.Default,

 null);

 }

 return quotesCollection;

 }

 public QuoteService () {

 }

 [WebMethod]

 public string HelloWorld() {

 return "Hello World";

 }

}

8. Write a method that retrieves a random quote from the table and sends it back to the

client. The QuotesCollection class derives from the DataTable class, which is a collection

of DataRows. Unfortunately, returning a DataRow from a Web method doesn’t work

444 Part V Services, AJAX, Deployment, and Silverlight
because DataRow doesn’t have a default constructor. So instead, add a new class to the

Web service that wraps the quote data. That is, add a new class that contains strings for

the quote, the originator’s fi rst name, and the originator’s last name.

 Delete the HelloWorld Web method and add a new Web method. Name the new

Web method for fetching a quote GetAQuote. Have GetAQuote load the quotes using

LoadQuotes. The GetAQuote method should generate a number between zero and the

number of rows in the QuotesCollection, fetch that row from the table, wrap the data in

a Quote class, and return it to the client. Be sure to adorn the GetAQuote method with

the WebMethod attribute. To do all of this, add this code to the QuoteService.cs fi le.

 using System;

using System.Web;

using System.Data;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Web.Caching;

using System.Data;

public class Quote

{

 private string _strQuote;

 private string _strOriginatorLastName;

 private string _strOriginatorFirstName;

 public string strQuote

 {

 get { return _strQuote; }

 set { _strQuote = value; }

 }

 public string strOriginatorLastName

 {

 get { return _strOriginatorLastName; }

 set { _strOriginatorLastName = value; }

 }

 public string strOriginatorFirstName

 {

 get { return _strOriginatorFirstName; }

 set { _strOriginatorFirstName = value; }

 }

 public Quote()

 {

 }

 public Quote(String strQuote,

 String strOriginatorLastName,

 String strOriginatorFirstName)

 {

 _strQuote = strQuote;

 _strOriginatorLastName = strOriginatorLastName;

 _strOriginatorFirstName = strOriginatorFirstName;

 Chapter 20 ASP.NET Web Services 445

 }

}

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class QuoteService : System.Web.Services.WebService

{

 // Other code here...

 // LoadQuotes goes here

 [WebMethod]

 public Quote GetAQuote()

 {

 QuotesCollection quotesCollection = this.LoadQuotes();

 int nNumQuotes = quotesCollection.Rows.Count;

 Random random = new Random();

 int nQuote = random.Next(nNumQuotes);

 DataRow dataRow = quotesCollection.Rows[nQuote];

 Quote quote = new Quote((String)dataRow["Quote"],

 (String)dataRow["OriginatorLastName"],

 (String)dataRow["OriginatorFirstName"]);

 return quote;

 }

}

9. Finally, add two more methods: one to add a quote to the QuotesCollection and an-

other to fetch all the quotes. Name the method for adding quotes AddQuote. AddQuote

should take a Quote class as a parameter and use it to create a new row in the

QuotesCollection. AddQuote should reserialize the XML and XSD fi les.

 GetAllQuotes should load the quotes from the cache, place the QuotesCollection in a

DataSet, and return a DataSet. Use a DataSet because it is more easily deserialized by

the client. Be sure to adorn the methods with the WebMethod attribute.

 using System;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Web.Caching;

using System.Data;

// Quote structure goes here...

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class QuoteService : System.Web.Services.WebService

{

 // LoadQuotes goes here

 // Other code here...

 [WebMethod]

 public void AddQuote(Quote quote)

446 Part V Services, AJAX, Deployment, and Silverlight

 C

 {

 QuotesCollection quotesCollection = this.LoadQuotes();

 DataRow dr = quotesCollection.NewRow();

 dr[0] = quote.strQuote;

 dr[1] = quote.strOriginatorLastName;

 dr[2] = quote.strOriginatorFirstName;

 quotesCollection.Rows.Add(dr);

 String strAppPath = Server.MapPath("");

 String strFilePathXml =

 strAppPath + "\\App_Data\\QuotesCollection.xml";

 String strFilePathSchema =

 strAppPath + "\\App_Data\\QuotesCollection.xsd";

 quotesCollection.WriteXmlSchema(strFilePathSchema);

 quotesCollection.WriteXml(strFilePathXml);

 }

 [WebMethod]

 public DataSet GetAllQuotes()

 {

 QuotesCollection quotesCollection = LoadQuotes();

 DataSet dataSet = new DataSet();

 dataSet.Tables.Add(quotesCollection);

 return dataSet;

 }

}

 You now have an XML Web Service that will deliver quotes to the client on request. You can

surf to the ASMX page and try out the methods if you want to see them work (using the de-

fault page rendered by the ASMX fi le). However, the real power lies in writing clients against

the XML Web Service so the client can consume the Web Service programmatically.

onsuming Web Services
 Consuming a Web service is nearly as easy as writing one. The Microsoft .NET Framework and

Visual Studio have handy utilities that automatically generate proxies for XML Web Services.

Visual Studio is not the only way to consume XML Web Services, however. Many modern

applications have ways to consume XML Web Services, including such applications as the

Microsoft Offi ce suite. XML Web Services are meant to be platform independent, and most

modern computing platforms support consuming XML Web Services.

 The following example illustrates consuming the QuoteService via a small command line program.

 Use the QuoteService synchronously

1. Add a new subproject to the solution. Make the new project a console application by

selecting the Console Application template. Name the project ConsumeWebService.

 Chapter 20 ASP.NET Web Services 447

2. Create a Service Reference to the quote service. Highlight the ConsumeWebService

project in the solution explorer and click the right mouse button. Select Add Service
Reference from the local menu. You’ll see this dialog box:

 Click the Discover button to get a listing of available services. Expand the tree to show

the QuoteService:

448 Part V Services, AJAX, Deployment, and Silverlight

3. Click the QuoteServiceSoap tree node. You should see all the available services (in

this case, there are three). Give the new reference the namespace QuoteServer, which is

more meaningful.

4. Tell the proxy generator to build asynchronous methods, which you’ll need for a later

example. Click the Advanced… button of the Add Service Reference dialog box. You

should see a dialog box like the following. Make sure the Generate Asynchronous
Operations check box is checked.

 Chapter 20 ASP.NET Web Services 449

 Click OK. Visual Studio will generate a proxy for you.

 The proxy for the QuoteService is in a fi le named Reference.cs. The namespace in which

the proxy lives is QuoteServer. You may view it by double-clicking on the QuoteServer
node under the ServiceReferences in the Solution Explorer. This will bring up the Object

Browser. Double-clicking on the elements within the service references will open up the

Reference.cs fi le.

 Tip Another way to generate a proxy is to surf to the Web service, ask for the WSDL man-

ually, and then run the WSDL code through a utility named WSDL.exe.

 For example, the following query string fetches the WSDL:

 http://localhost:port/QuoteService/QuoteService.asmx?wsdl

 Simply run this URL through the WSDL command line utility:

 C:\>WSDL http://localhost:port/QuoteService/QuoteService.asmx?wsdl

 This will generate a C# proxy fi le you may use in your application.

5. Call the XML Web Service through the proxy. The name of the QuoteService proxy is

QuoteServiceSoapClient. You instantiate it like you would any other class. When you call

methods, the proxy will wrap the call in a SOAP envelope and send the request to the

destination specifi ed within the proxy. Try making calls to GetAQuote, AddQuote, and

GetAllQuotes, as shown here.

 using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

using ConsumeWebService.QuoteServer

namespace ConsumeWebService

{

 class Program

 {

 static void Main(string[] args)

 {

 Quote quote = null;

 QuoteServiceSoapClient quoteService =

 new QuoteServiceSoapClient();

 for (int i = 0; i < 10; i++)

 {

 quote = quoteService.GetAQuote();

 StringBuilder sb = new StringBuilder();

 sb.AppendFormat("Quote: {0} \n Originator: {1} {2}",

 quote.strQuote,

 quote.strOriginatorFirstName,

 quote.strOriginatorLastName);

450 Part V Services, AJAX, Deployment, and Silverlight
 System.Console.WriteLine(sb.ToString());

 System.Console.WriteLine();

 }

 Quote quoteToAdd =

 new Quote();

 quoteToAdd.strQuote = "256K RAM should be enough for ANYONE";

 quoteToAdd.strOriginatorLastName = "Gates";

 quoteToAdd.strOriginatorFirstName = "Bill";

 System.Console.WriteLine("Adding quote: ");

 quoteService.AddQuote(quoteToAdd);

 System.Console.WriteLine("Added quote. Now display quotes: ");

 DataSet dataSetQuotes = quoteService.GetAllQuotes();

 DataTable tableQuotes = dataSetQuotes.Tables[0];

 foreach (DataRow dr in tableQuotes.Rows)

 {

 StringBuilder sb = new StringBuilder();

 sb.AppendFormat("{0} {1} {2}",

 dr[0], dr[1], dr[2]);

 System.Console.WriteLine(sb.ToString());

 }

 }

 }

}

 When you run the application, you should see some output like the following.

 Remember, the beauty of XML Web Services is that they’re not tied to a particular plat-

form. The previous example shows how to consume the QuoteService (which is an ASP.NET

 Chapter 20 ASP.NET Web Services 451
application). However, Visual Studio builds proxies for any XML Web Service. You could easily

have searched for other sites that implement Web services for which Visual Studio will also

build you a suitable proxy.

 Asynchronous Execution
 The major advantage of using Web services is that they expose functionality literally world-

wide. Because the Internet is so far-reaching, you can call a method between a client located

in the United States and a service located in some place such as Australia.

 One of the downsides involved in making calls over such long distances is the latency. In ad-

dition to the expense of dropping everything locally to make a remote method invocation,

the speed of information communication is fi nite. Bits having to travel far distances make for

long waits during remote Web method calls. For that reason, the proxies generated by Visual

Studio include an asynchronous calling mechanism complete with completion callbacks.

 If you look at the proxy generated by Visual Studio (Visual Studio includes it in the source

code set. You may get to it using the Object Browser, or you may look for the fi le in the

Service References subdirectory of the project), you’ll see multiple versions of the meth-

ods exposed by the XML Web Service. For example, there’s a GetAQuote method and a

BeginGetAQuote method. The former is the synchronous method, whereas the latter invokes

the method asynchronously.

 These asynchronous method calls use the standard .NET asynchronous delegate pattern.

When you call them, you pass in a callback method using the same method signature as the

System.AsyncCallback delegate. The callback delegate defi ned for notifying the client when

the BeginGetAQuote method is fi nished is based on this delegate:

 public delegate void AsyncCallback (IAsyncResult ar)

 The callbacks include a single argument of type IAsyncResult. We’ll soon see that we can use

that to get the returned method results (in this case, a Quote class).

 To make an asynchronous method call (and then be notifi ed when it’s complete), you sim-

ply need to provide a callback method that matches the corresponding delegate and pass

the callback through the BeginXXX method call (BeginGetAQuote, BeginGetAllQuotes, or

BeginAddAQuote). Let’s work through an example to see how this works.

 Using the QuoteService asynchronously

 In this exercise, you’ll see how to call Web methods asynchronously.

 1. Add a callback for the BeginGetAQuote method. The asynchronous method calls

require a callback as the fi rst parameter. Defi ne a static callback method named

452 Part V Services, AJAX, Deployment, and Silverlight

OnGetAQuoteCallback and add it to the console application’s Program class. The

original caller—the quoteService—is passed through the IAsynchResult parameter as

the AsyncState fi eld. Cast the AsyncState fi eld of IAsyncResult to an instance of the

QuoteServiceSoapClient. Use the quoteService to call EndGetAQuote, which completes

the asynchronous call and harvests the result as a return value. Cast the return value to

a Quote class and display the quote on the screen.

 namespace ConsumeWebService

{

 class Program

 {

 public static void OnGetAQuoteCompleted(IAsyncResult ar)

 {

 QuoteServiceSoapClient quoteService =

 ar.AsyncState as QuoteServiceSoapClient;

 Quote quote =

 quoteService.EndGetAQuote(ar) as Quote;

 System.Console.WriteLine();

 StringBuilder sb = new StringBuilder();

 sb.Append("This is the callback for GetAQuote");

 sb.AppendFormat("Quote: {0} \n Originator: {1} {2}",

 quote._strQuote,

 quote._strOriginatorFirstName,

 quote._strOriginatorLastName);

 System.Console.WriteLine(sb.ToString());

 }

 // Rest of program Main etc. is here...

 }

}

2. Now augment the application to call GetAQuote asynchronously. At the end of the pro-

gram’s Main method, make a call to BeginGetAQuote. Pass the OnGetAQuoteComplete

method as the fi rst parameter and a reference to the quoteService as the second param-

eter (this is how the quoteService will be passed to the callback as AsyncState). Put a call to

System.Console.ReadLine immediately following the call to BeginAddAQuote so the pro-

gram does not end prematurely (that is, before the GetAQuoteCompleted callback fi nishes.

 using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

using ConsumeWebService.QuoteServer;

namespace ConsumeWebService

{

 class Program

 {

 // OnGetAQuoteCompleted method here...

 static void Main(string[] args)

 {

 Chapter 20 ASP.NET Web Services 453
 // other example code here

 System.Console.WriteLine();

 quoteService.BeginGetAQuote(OnGetAQuoteCompleted, quoteService);

 System.Console.WriteLine("Press Return to end the program");

 System.Console.ReadLine();

 }

 }

}

 After running the asynchronous version, you should see output like this. The callback

should display two randomly selected quotes—the result of calling the GetAQuote

method twice:

454 Part V Services, AJAX, Deployment, and Silverlight
 The screen shots look a bit odd here because of the order in which the code runs.

The program fetches 10 quotes synchronously. Then, it waits for the Enter key to be

pressed (that’s the “Press Return to end program” line you see). Remember that the last

Web method call is running asynchronously, so we see the result of the asynchronous

call even as the main thread is waiting for the Enter keypress.

 The callback mechanism is especially useful for application environments that cannot afford

to stall (for example, if the client is a Windows application).

 Evolution of Web Services
 So, it’s pretty neat that you can call a method from one computer that is implemented on an-

other. How is that useful? Web services represent the underpinnings of a whole new model for

communicating between enterprises. Here are a couple of examples of how they are useful.

 If you’ve ever received a package delivered to you via United Parcel Service (UPS), you almost

invariably need to scrawl your name on the big, brown, bulky tablet handed to you by the

guy in the brown shirt. When you sign the tablet, UPS knows that you received the package

and it can record that information. Tracking packages in real time is very useful for UPS’s

business. Recipients always want to know where their packages are at any time, and using

this technology helps UPS provide this information to end customers.

 UPS undoubtedly spent a great deal of money on its package tracking system. UPS devel-

oped the technology in the early 1990s—long before even Al Gore knew what the Internet

was. With the advent of a worldwide connected network (the Internet), small and manage-

able wireless devices to connect to the Internet, and a commonly understood wire format,

enterprises can develop functionality similar to that used by UPS for a fraction of the cost.

In addition, businesses may interact with each other on a much wider scale, which we’ll see

more and more as Service-Oriented Architecture (SOA) takes off.

 A second way in which Web services are proving useful is in supply chain management. In

the 1980s, Electronic Data Interchange (EDI) promised to allow companies to order supplies

and services automatically with little or no human intervention. The idea was that different

companies would subscribe to a data format and would be able to order supplies and ser-

vices from other enterprises in a much more streamlined way.

 Unfortunately, EDI turned out to be mostly a glorifi ed e-mail system. The formats for data in-

terchange were brittle and easily broken. Furthermore, when the format broke, it took a long

time for the companies involved to reach another agreement on a new format.

 Web services promise to help solve the problem of a brittle data interchange mechanism.

Through more elaborate orchestration frameworks (like BizTalk from Microsoft), Web services

promise to make automatic data interchange between enterprises much more doable and

affordable than ever before.

 Chapter 20 ASP.NET Web Services 455
 Through these examples, I’m hoping to make a simple point. Web services are starting to

form the underpinnings of SOAs, and companies large and small will someday use SOAs to

bind their partners’ business logic into their own, forming distributed business logic and pro-

cesses. In the end, the goal is to reduce the cost of information transport and management

while increasing robustness and security. Web services are the necessary communication

conduit for businesses of tomorrow (and even today in some cases). In the not-too-distant

future, the world will view the SOA in the same way it views the telephone and e-mail—as an

essential part of daily commerce.

 Other Features
 ASP.NET also implements a number of other features for enhancing XML Web Services. For

example, sometimes you want to include some metadata as part of a method call. If you

want to ensure that only paying clients call your Web methods, you might issue them a token

to prove they bought the service. The SOAP specifi cation defi nes SOAP headers as a way to

include such metadata in the method call.

 In addition, it’s sometimes useful to install pre- and postprocessing for Web methods.

ASP.NET supports various SOAP extensions. For example, if you wanted to write your own

encryption mechanism, you might write a client-side and a service-side extension that en-

crypts and decrypts messages interacting with your server. Describing both of these capa-

bilies is beyond the scope of this chapter, but you can fi nd many freely available examples

on the Internet. Search for such terms as “SOAPHeader” and “SOAPExtension” and you’ll fi nd

thousands of useful examples and descriptions.

 Summary
 Web services represent the next generation of computer connectivity. Instead of relying on

a closed network protocol and wire format, Web services open the availability of an applica-

tion to the entire world. Web services are built on an already existing network using a wire

format that many enterprises agree on for making method calls.

 ASP.NET automates the detailed work necessary to unpack a SOAP request and turn it into

a local method call. ASMX fi les are handlers in the same way as ASPX and ASHX fi les. ASMX

fi les implement IHttpHandler by parsing the incoming XML, calling a method in the code-

beside class, and returning a result. Simply adorning the method with the WebMethod attri-

bute inserts the necessary functionality.

 Visual Studio is also useful for consuming Web services. By adding a service reference to

your application, Visual Studio will consult the Web service for the WSDL code and use it

to build a proxy. From there, you simply instantiate the proxy and call methods. The proxy

takes care of preparing the SOAP payload and sending it. The proxies generated by Visual

456 Part V Services, AJAX, Deployment, and Silverlight
Studio also support asynchronous method invocation so that the main calling thread

doesn’t block for too long.

Chapter 20 Quick Reference
To Do This
Create a Web service From an ASP.NET project, select Web Site, Add New Item from

the main menu.

Select the Web Service template.

 Expose a class method as a Web method Apply the WebMethod attribute immediately preceding the

method signature.

 Consume a Web service From within Visual Studio, select the project in Solution Explorer.

Click the right mouse button on the project name.

Select Add Service Reference.
Locate the service and confi gure any advanced settings (such as

asynchronous method execution). Visual Studio will automatically

ask for the WSDL and build a proxy for you.

To Do This

 Chapter 21

 Windows Communication
Foundation

 After completing this chapter you will be able to

Q Understand the motivation behind Windows Communication Foundation

Q Understand the WCF architecture

Q Implement a WCF-based server

Q Build a client to use the WCF server

 Distributed Computing Redux
 The Windows Communication Foundation (WCF) represents one of three main pillars of

.NET 3.x. These three specifi c highly leverageable technologies include Windows Workfl ow

Foundation, Windows Presentation Foundation, and Windows Communication Foundation.

Each of these technologies redefi nes programming within a certain idiom. Windows Workfl ow

Foundation unifi es the business work fl ow model. Windows Presentation Foundation rede-

fi nes writing user interfaces, whether for Windows desktop applications or for the Web (using

Silverlight). Finally, Windows Communication Foundation unifi es the distributed programming

model for the Microsoft platform. Clearly unifying these fragmented programming models is

the main theme of .NET 3.5.

 To get an idea of how fragmented the distributed computing solutions are, think back to

the earliest ways to connect two computers together. At one point, the only thing you could

program in any standard way was the old venerable RS232 serial connection or through a

modem. Over the years, distributed computing on the Microsoft platform has grown to en-

compass many different protocols. For example, Windows NT supported a Remote Procedure

Call mechanism that was eventually wrapped using the Distributed Component Object

Model (DCOM). In addition, Windows also supports sockets programming. Near the turn of

the century, Microsoft released Microsoft Message Queue (MSMQ) to support disconnected

queuing-style distributed application. When it became apparent that DCOM was running

into some dead ends, Microsoft introduced .NET remoting. (The “dead ends” that DCOM im-

plemented are mainly its requirement to periodically contact client objects to remain assured

of a connection, limiting scalability, its complex programming model, diffi cult confi guration

needs, and Internet-vicious security architecture.) Finally, to help supplement a wider reach

available for distributed programming, Microsoft introduced an XML Web Service framework

within ASP.NET (the ASMX fi les you looked at earlier in Chapter 20).
 457

458 Part V Services, AJAX, Deployment, and Silverlight
 A Fragmented Communications API
 Each of the older technologies mentioned previously has its own specifi c advantages—es-

pecially when you take into account the periods during computing history that they were

introduced. However, having so many different means of writing distributed computing

applications has led to a fragmented application programming interface (API). Making the

decision as to which technology to use has always been an early decision. Earlier distributed

technologies often tied your application to a specifi c transport protocol. If you made the

wrong architectural decision or simply wanted to later migrate to a newer technology, it was

often diffi cult if not nearly impossible to do so. Even if it could be done, it was usually an

expensive proposition in terms of application redevelopment and end-user acceptance and

deployment.

 There are a number of programming and confi guration issues involved when relying on

these older technologies. The previous connection technologies coupled multiple auxiliary

factors not required directly for communicating data with the communication process itself.

For example, earlier distributed computing systems forced decisions such as how to format

data into the early stages of design, as well as into the implementation of a distributed sys-

tem. Referring back to DCOM, making DCOM remote procedure calls required an application

to be tied to the DCOM connection protocol and wire format. This forced administrators

to open port 135, the DCOM object discovery port, leading to immense security risks. .NET

improved on things by allowing you the choice of transports and wire formats (out of the

box you get a choice of using HTTP or TCP as the connection protocol, and you may use ei-

ther SOAP or the .NET binary format as the wire format). However, even with those choices

provided by .NET remoting, applications using classic .NET remoting are often fated to use a

single connection protocol and wire format once the confi guration is set. You can swap out

connection protocols and wire formats, but it’s not very easy.

 In addition to tying wire formats and connection protocols to the implementation of a

distributed system, there are many more issues cropping up when you try to connect two

computers together. The minute you try to do something useful, you have to begin think-

ing about issues such as transactions, security, reliability, and serialization—and these issues

inevitably become embedded in the application code (instead of being added later as neces-

sary). In addition, previous communication technologies don’t lend themselves to the cur-

rently in vogue Service-Oriented Architectures (SOA) where interoperability is key, although

in practice interoperability is tricky to achieve.

 WCF for Connected Systems
 WCF’s main job is to replace the previously fragmented Windows communication APIs under

a single umbrella. At the same time, WCF aims to decouple the processing of communicat-

ing over a distributed system distinct from the applications themselves. When working with

 Chapter 21 Windows Communication Foundation 459
WCF, you’ll see that the distinctions between contracts, transports, and implementation are

enforced, rather than just being a good idea. In addition, Microsoft has always been attuned

to the needs of existing applications and therefore has designed WCF to accommodate par-

tial or complete migrations from earlier communication technologies (.NET remoting or XML

Web Services) to WCF-based computing.

 SOA is becoming an important design infl uence within modern software. SOA is an archi-

tectural philosophy that encourages building large distributed systems from loosely coupled

endpoints that expose their capabilities through well-known interfaces. WCF adheres to

standard SOA principles, such as setting explicit boundaries between autonomous services,

having services be contract and policy based (rather than being class based), having business

processes be the focal point of the services (rather than services themselves), and accommo-

dating fl uctuating business models easily. WCF is designed for both high performance and

maximum interoperability.

 WCF represents a communication layer, and so introduces a level of indirection between a

distributable application and the means by which the application is distributed. As an inde-

pendent layer, WCF makes implementing and confi guring a distributed application simpler

by providing a consistent interface for managing such aspects as security, reliability, concur-

rency, transactions, throttling (throughput limitations for some or all callers or methods), seri-

alization, error handling, and instance management.

 While WCF is very at home when communicating via XML Web Services using SOAP (a stan-

dard for many existing Web services), it may also be confi gured and extended to communi-

cate using messages based on non-SOAP formats, such as custom XML formats and RSS.

 WCF is smart enough to know if both endpoints are WCF-based endpoints, in which case it

will use optimized wire encoding. The structures of the messages are the same—they’re just

encoded in binary form. WCF includes other services often required by distributed systems.

For example, WCF includes built-in queued messaging.

 WCF Constituent Elements
 WCF is composed of a few separate elements: endpoints, channels, messages, and behaviors.

Whereas earlier communication technologies tended to couple these concepts together, WCF

distinguishes them as truly separate entities. Here’s a rundown of the elements of WCF.

 WCF Endpoints
 Endpoints defi ne the originators and recipients of WCF communications. Microsoft has come

up with a clever acronym for defi ning endpoints: ABC. That is, WCF endpoints are defi ned by

an address, a binding, and a contract.

460 Part V Services, AJAX, Deployment, and Silverlight
 Address
 The address identifi es the network location of the endpoint. WCF endpoints use the address-

ing style of the transport moving the message. WCF addressing supports using both fully

qualifi ed addresses and relative addresses. For example, a fully qualifi ed Internet protocol

address looks like the following: http://someserver/someapp/mathservice.svc/calculator. WCF

supports relative addressing by using a base address and then a relative address. Base ad-

dresses are registered with the service, and WCF can fi nd services relative to the base address

of the service. For example, an endpoint might comprise a whole address using a base ad-

dress such as http://someserver/someapp/mathservice.svc and a relative address of calc.

 Binding
 WCF bindings specify how messages are transmitted. Rather than being identifi ed simply by a

transport and wire format coupled together (à la DCOM), WCF bindings are composed from a

stack of binding elements which at a minimum include a protocol, a transport, and an encoder.

 Contract
 The fi nal element defi ning an endpoint is the contract. The contract specifi es the primary

agreement between the client and the service as to what the service can do for the client.

The contract specifi es the information to be exchanged during a service call.

 WCF expresses a Service Contract as a .NET interface adorned with the [ServiceContract] attri-

bute. Methods within the WCF contract interface are annotated with the [OperationContract]
attribute. WCF interfaces may pass data structures as well. Data members within the struc-

tures are exposed as properties and adorned with the [DataMember] attribute.

 Channels
 WCF channels represent the message transmission system. WCF defi nes protocol channels
and transport channels. Protocol channels add services such as security and transactions

independently of transport. Transport channels manage the physical movement of bytes be-

tween endpoints (for example, WCF uses protocols such as MSMQ, HTTP, P2P, TCP, or Named

Pipes). WCF uses a factory pattern to make creating channels consistent.

 Behaviors
 In WFC, the service contract defi nes what the service will do. The service contract implemen-

tation specifi es exactly how the service contract functionality works. However, one of the

hallmarks of a distributed system is that it usually requires some add-on functionality that

may not necessarily be tied to contract implementation. For example, when securing a Web

service, authenticating and authorizing the client may be necessary, but it’s usually not part

 Chapter 21 Windows Communication Foundation 461
of the service contract. WFC implements this kind of add-on functionality through behaviors.
Behaviors implement the SOA higher-order notion of policy and are used to customize local

execution.

 Behaviors are governed by attributes—the main two of which are the ServiceBehaviorAttribute

and the OperationBehaviorAttribute. The ServiceBehaviorAttribute and OperationBehaviorAttribute

attributes control the following aspects of the service execution:

Q Impersonation

Q Concurrency and synchronization support

Q Transaction behavior

Q Address fi ltering and header processing

Q Serialization behavior

Q Confi guration behavior

Q Session lifetime

Q Metadata transformation

Q Instance lifetimes

 Applying these attributes to modify the server execution is easy. Just adorn a service or opera-

tion implementation with the appropriate attribute and set the properties. For example, to

require that callers of an operation support impersonation, adorn a service operation with the

OperationBehavior attribute and set the Impersonation property to ImpersonationOption.Require.

 Messages
 The fi nal element of WCF is the actual message. WCF messages are modeled on SOAP mes-

sages. They are composed of an envelope, a header, a body, and addressing information.

Of course, messages also include the information being exchanged. WCF supports three

Message Exchange Patterns: one-way, request-response, and duplex. One-way messages

are passed from the transmitter to the receiver only. Messages passed using the request

response pattern are sent from the transmitter to the receiver, and the receiver is expected

to send a reply back to the originator. Messages using the request response pattern block

until the receiver sends a response to the originator. When using the duplex messaging, ser-

vices can call back to the client while executing a service requested by the client. The default

Message Exchange Pattern is request-response.

462 Part V Services, AJAX, Deployment, and Silverlight
 How WCF Plays with ASP.NET
 Although WCF applications may be hosted by manually written servers, ASP.NET makes a

perfectly good host. You can either write your own Windows Service to act as a host, or you

can take advantage of a readily available Windows Service, IIS, and consequently ASP.NET.

WCF and ASP.NET may co-exist on a single machine in two different modes—side-by-side

mode and ASP.NET compatibility mode. Here’s a rundown of these two modes.

 Side-by-Side Mode
 When running in side-by-side mode, WCF services hosted by Internet Information Services

(IIS) are co-located with ASP.NET applications composed of .ASPX fi les and ASMX fi les (and

ASCX and ASHX fi les when necessary). ASP.NET fi les and WCF services reside inside a single,

common Application Domain (AppDomain). When run this way, ASP.NET provides common

infrastructure services such as AppDomain management and dynamic compilation for both

WCF and the ASP.NET HTTP runtime. WCF runs in side-by-side mode with ASP.NET by default.

 When running in side-by-side mode, the ASP.NET runtime manages only ASP.NET requests.

Requests meant for a WCF service go straight to the WCR-based service. Although the

ASP.NET runtime does not participate in processing the requests, there are some specifi c

ramifi cations of running in side-by-side mode.

 First, ASP.NET and WCF services can share AppDomain state. This includes such items as

static variables and public events. Although it shares an AppDomain with ASP.NET, WCF runs

independently—meaning some features you may count on when working with ASP.NET

become unavailable. Probably the major restriction is that there’s no such thing as a current

HttpContext from within a WCF service (despite WCF’s architectural similarity to ASP.NET’s

runtime pipeline). Architecturally speaking, WCF can communicate over many different pro-

tocols, including but not limited to HTTP, so an HTTP-specifi c context may not even make

sense in many given scenarios. Second, authentication and authorization can get a bit tricky.

 Even though WCF applications do not interfere with ASP.NET applications, WCF applications

may access various parts of the ASP.NET infrastructure such as the application data cache. In

fact, this chapter’s example shows one approach to accessing the cache.

 ASP.NET Compatibility Mode
 WCF is designed primarily to unify the programming model over a number of transports and

hosting environments. However, there are times when a uniform programming model with

this much fl exibility is not necessary and the application may desire or even require some of

the services provided by the ASP.NET runtime. For those cases, WCF introduces the ASP.NET

 Chapter 21 Windows Communication Foundation 463
compatibility mode. WCF’s ASP.NET compatibility mode lets you run your WCF application

as a full-fl edged ASP.NET citizen, complete with all the functionality and services available

through ASP.NET.

 WCF services that run using ASP.NET compatibility mode have complete access to the ASP.

NET pipeline and execute through the entire ASP.NET HTTP request life cycle. WCF includes

an implementation of IHttpHandler that wraps WCF services and fosters them through the

pipeline when run in ASP.NET compatibility mode. In effect, a WCF service running in ASP.

NET compatibility mode looks, tastes, and feels just like a standard ASP.NET Web service (that

is, an ASMX fi le).

 WCF applications running under the ASP.NET compatibility mode get a current HttpContext
with all its contents—the session state, the Server object, the Response object, and the

Request object. WCF applications running as ASP.NET compatible applications may secure

themselves by associating Windows Access Control Lists (ACLs) to the service’s .svc fi le. In this

manner, only specifi c Windows users could use the WCF service. ASP.NET URL authorization

also works for WCF applications running as ASP.NET compatible applications. The pipeline

remains arbitrarily extensible for WCF applications running as ASP.NET applications because

service requests are not intercepted as with the general purpose side-by-side mode—they’re

managed by ASP.NET for the entire request life cycle.

 You can turn on WCF’s ASP.NET compatibility mode at the application level through the ap-

plication’s web.confi g fi le. You can also apply ASP.NET compatibility to a specifi c WCF service

implementation.

 Writing a WCF Service
 Here’s an example of WCF service to help illustrate how WCF works. Recall the XML Web

Service example application from Chapter 20, the QuoteService that doled out pithy quotes

to any client wishing to invoke the service. The example here represents the same service—

but using a WCF-based Web site instead of an ASMX-based Web service. This way, you’ll

see what it takes to write a WCF-based service and client, and you’ll see some of the differ-

ences between WCF-based services and ASMX-based services (there are a couple of distinct

differences).

 QuotesService

 1. Start by creating a WCF project. This example takes you through the nuts and bolts of

developing a working WCF application that may be accessed from any client anywhere.

Start Visual Studio 2008. Select File, New, Web Site and choose WCF Service from the

464 Part V Services, AJAX, Deployment, and Silverlight

available templates. Name the site WCFQuotesService. The following graphic shows the

New Web Site dialog box:

2. Examine the fi les created by Visual Studio. The App_Code directory includes two fi les:

IService.cs and Service.cs. These two fi les are placeholders representing the WCF con-

tract (as a .NET interface type) and a class implementing the contract.

3. Tweak the fi les produced by Visual Studio. Name the code fi les representing the

service. IService.cs should become IQuotesService.cs, and Service.cs should become

QuotesService.cs.

4. Change the service interface name from IService to IQuotesService and change the

service class name from Service to QuotesService. Use Visual Studio’s refactoring facili-

ties to do this. That is, highlight the identifi er you want to change, click the right mouse

button in the text editor and select Rename from the Refactoring menu. Visual Studio

will make sure the change is propagated through the entire project.

5. Borrow the QuotesCollection object from the Web Service chapter. Bring in the

QuotesCollection.cs fi le from the QuotesService Web site. To do this, select the

App_Code directory in the WCFQuotesService project. Click the right mouse

button and select Add Existing Item. Go to the Web services project and pick

up the QuotesCollection class by bringing in the fi le QuotesCollection.cs. The

QuotesCollection.cs fi le will be copied into your WCF solution and added to the project.

6. Borrow the QuotesCollection.xml and QuotesCollection.xsd from the Web service ex-

ample. Select the App_Data directory in the WCFQuotesService project. Click the right

mouse click and select Add Existing Item. Go to the Web services project and pick up

the XML and XSD fi les.

 Chapter 21 Windows Communication Foundation 465

7. Develop a data contract. Now that the data and the data management code are in

place, the service needs a way to expose itself. It’s time to develop a contract for

the service. First, create a structure for passing quotes back and forth. Open the fi le

IQuotesService.cs to add the data and operation contracts. To do so, fi rst delete the

CompositeType class Visual Studio placed there for you as an example. In its place,

type in the following code for the Quote structure. The Quote structure should con-

tain three strings—one to represent the quote text and separate strings to represent

the originator’s fi rst and last names. Expose the strings as properties adorned with the

[DataMember] attribute.

 [DataContract]

public struct Quote

{

 private String _strQuote;

 [DataMember]

 public String StrQuote

 {

 get { return _strQuote; }

 set { _strQuote = value; }

 }

 private String _strOriginatorLastName;

 [DataMember]

 public String StrOriginatorLastName

 {

 get { return _strOriginatorLastName; }

 set { _strOriginatorLastName = value; }

 }

 private String _strOriginatorFirstName;

 [DataMember]

 public String StrOriginatorFirstName

 {

 get { return _strOriginatorFirstName; }

 set { _strOriginatorFirstName = value; }

 }

 public Quote(String strQuote,

 String strOriginatorLastName,

 String strOriginatorFirstName)

 {

 _strQuote = strQuote;

 _strOriginatorLastName = strOriginatorLastName;

 _strOriginatorFirstName = strOriginatorFirstName;

 }

}

466 Part V Services, AJAX, Deployment, and Silverlight

8. Next, develop a service contract for the service. In the IQuotesService.cs fi le, update the

interface to include methods to get a single quote, add a quote, and get all the quotes.

 using System.Data; // must be added to identify DataSet

[ServiceContract]

public interface IQuotesService

{

 [OperationContract]

 Quote GetAQuote();

 [OperationContract]

 void AddQuote(Quote quote);

 [OperationContract]

 DataSet GetAllQuotes();

}

9. Next, implement the service contract. Much of the work for this step is already done

from the Web service chapter example. However, there are a couple of critical differ-

ences between the two implementations (those being the Web service implementation

and the WCF implementation). Open the fi le QuotesService.cs to add the implementa-

tion. Start by implementing a method that loads the quotes into memory and stores

the collection and the ASP.NET cache. Although this application is an ASP.NET applica-

tion, ASP.NET handles WCF method calls earlier in the pipeline than normal ASP.NET

requests, and because of that there’s no such thing as a current HttpContext object.

You can still get to the cache through the HttpRuntime object, which is available within

the context of WCF. The HttpRuntime.AppDomainAppPath property includes the path

to the application that’s useful for setting up a cache dependency for the XML fi le con-

taining the quotes.

 using System.Web; // must be added to identify HttpRuntime

using System.Web.Caching; // must be added to identify Cache

using System.Data; // must be added to identify DataSet

public class QuotesService : IQuotesService

{

 QuotesCollection LoadQuotes()

 {

 QuotesCollection quotesCollection;

 quotesCollection =

 (QuotesCollection)

 HttpRuntime.Cache["quotesCollection"];

 if (quotesCollection == null)

 {

 quotesCollection = new QuotesCollection();

 String strAppPath;

 strAppPath = HttpRuntime.AppDomainAppPath;

 Chapter 21 Windows Communication Foundation 467

 String strFilePathXml =

 String.Format("{0}\\App_Data\\QuotesCollection.xml", strAppPath);

 String strFilePathSchema =

 String.Format("{0}\\App_Data\\QuotesCollection.xsd", strAppPath);

 quotesCollection.ReadXmlSchema(strFilePathSchema);

 quotesCollection.ReadXml(strFilePathXml);

 CacheDependency cacheDependency =

 new CacheDependency(strFilePathXml);

 HttpRuntime.Cache.Insert("quotesCollection",

 quotesCollection,

 cacheDependency,

 Cache.NoAbsoluteExpiration,

 Cache.NoSlidingExpiration,

 CacheItemPriority.Default,

 null);

 }

 return quotesCollection;

 }

// more code will go here...

}

10. Next, implement the GetAQuote operation. Call LoadQuotes to get the QuotesCollection

object. Generate a random number between 0 and the number of quotes in the collec-

tion and use it to select a quote within the collection. Create an instance of the Quote

structure and return it after populating it with the data from the stored quote.

 public class QuotesService : IQuotesService

{

 // LoadQuotes here...

 public Quote GetAQuote()

 {

 QuotesCollection quotesCollection = this.LoadQuotes();

 int nNumQuotes = quotesCollection.Rows.Count;

 Random random = new Random();

 int nQuote = random.Next(nNumQuotes);

 DataRow dataRow = quotesCollection.Rows[nQuote];

 Quote quote = new Quote((String)dataRow["Quote"],

 (String)dataRow["OriginatorLastName"],

 (String)dataRow["OriginatorFirstName"]);

 return quote;

 }

 // more code will go here...

}

11. Implement AddAQuote. Call LoadQuotes to get the QuotesCollection. Create a new row

in the QuotesCollection and populate it with information coming from the client (that is,

the Quote parameter). Use the HttpRuntime.AppDomainAppPath to construct the path

468 Part V Services, AJAX, Deployment, and Silverlight

to the QuotesCollection.XML fi le and use the QuotesCollection’s WriteXml method to

re-serialize the XML fi le. WriteXml is available from the QuotesCollection class because

QuotesCollection derives from System.Data.DataTable. Because it was loaded in the

cache with a fi le dependency, the cache will be invalidated and the new quotes collec-

tion will be loaded the next time around.

 public class QuotesService : IQuotesService

{

 // LoadQuotes here...

 // GetAQuote here

 public void AddQuote(Quote quote)

 {

 QuotesCollection quotesCollection = this.LoadQuotes();

 DataRow dr = quotesCollection.NewRow();

 dr[0] = quote.StrQuote;

 dr[1] = quote.StrOriginatorLastName;

 dr[2] = quote.StrOriginatorFirstName;

 quotesCollection.Rows.Add(dr);

 string strAppPath;

 strAppPath = HttpRuntime.AppDomainAppPath;

 String strFilePathXml =

 String.Format("{0}\\App_Data\\QuotesCollection.xml", strAppPath);

 String strFilePathSchema =

 String.Format("{0}\\App_Data\\QuotesCollection.xsd", strAppPath);

 quotesCollection.WriteXmlSchema(strFilePathSchema);

 quotesCollection.WriteXml(strFilePathXml);

 }

}

12. Finally, implement the GetAllQuotes operation. Create a new DataSet, load the quotes,

and add the QuotesCollection to the data set as the fi rst table. Then return the DataSet.

 public class QuotesService : IQuotesService

{

 // LoadQuotes here

 // GetAQuote here

 // AddQuote here

 public DataSet GetAllQuotes()

 {

 QuotesCollection quotesCollection = LoadQuotes();

 DataSet dataSet = new DataSet();

 dataSet.Tables.Add(quotesCollection);

 return dataSet;

 }

}

 Chapter 21 Windows Communication Foundation 469
 13. Tweak the web.confi g fi le. Now that the service is implemented, the web.confi g fi le

needs to be tweaked just slightly to expose the service. Visual Studio created this fi le

and so exposes the service that it generated—the one named Service. However, you

renamed the service to give it a more useful name in the code and the service needs

to be exposed as QuotesService now. Update the web.confi g fi le to refl ect the change.

Change the name attribute in the service node to be QuotesService. Change the contract
attribute in the endpoint node to be IQuotesService to match the interface name.

 <system.serviceModel>

 <services>

 <service

 name="QuotesService"

 behaviorConfiguration="ServiceBehavior">

 <!-- Service Endpoints -->

 <endpoint address=""

 binding="wsHttpBinding"

 contract="IQuotesService"/>

 <endpoint address="mex"

 binding="mexHttpBinding"

 contract="IMetadataExchange"/>

 </service>

 </services>

 <behaviors>

 ...

 </behaviors>

</system.serviceModel>

 That does it for building a WCF service hosted through ASP.NET that may be called from

anywhere in the world (that has Internet service available, that is). In many ways, this is very

similar to writing a classic ASP.NET Web service. However, because this service runs in ASP.

NET side-by-side mode, there’s no such thing as a current HttpContext (as is available in normal

ASP.NET applications). In many cases, this may not be necessary. You can get to many of the

critical ASP.NET runtime services (for example, the Cache) via the HttpRuntime object. If you

need ASP.NET’s full support (such as for session state if the WCF service you write depends on

session data), WCF supports the ASP.NET Compatibility mode.

 Building a WCF Client
 A WCF service is useless without any clients around to employ it. This section illustrates how

to build a client application that consumes the Quotes service. Here, you’ll see how Visual

Studio makes it very easy to create a reference to a service. You’ll see how to make WCF ser-

vice calls both synchronously and asynchronously.

470 Part V Services, AJAX, Deployment, and Silverlight

 Building the QuotesService client

1. Start Visual Studio 2008. Open the QuotesService solution and add a new project to it.

Make it a console application named ConsumeQuotesService. The following graphic il-

lustrates adding the Console project to the solution:

2. Create a reference to the QuotesService WCF application. Click the right mouse button

on the ConsumeQuotesService Project tree node within the solution explorer. Select

Add Service Reference. When the Add Service Reference dialog box shows, click the

Discover button. Select the Service.svc fi le from this project and expand its associated

tree node. After a minute, the dialog will display the service contracts that are available

through the service. Expand the Services tree in the left pane to make sure you see the

IQuotesService contract. Notice the namespace given by the dialog box—ServiceReference1.

DON’T click OK yet. The following graphic shows adding the Service Reference:

 Chapter 21 Windows Communication Foundation 471

3. Click the Advanced… button. Click on the Generate Asynchronous Operations radio

button so that Visual Studio generates the asynchronous versions of the proxy methods.

4. Click the OK button to add the service reference. Visual Studio will produce a new di-

rectory within the ConsumeQuotesService project directory named ServiceReferences.
Visual Studio generates information about the service in the form of XML fi les, XSD fi les,

and a WSDL fi le (among others). You’ll also get source code for a proxy class that will call

the service on your behalf (by default, the proxy lands in a fi le named Reference.cs.

5. Try calling the GetAQuote operation. Calling the proxy methods generated for the WCF

service calls can be a bit verbose from time to time, but they are effective and it’s much

better than setting everything up manually by yourself. First, create an instance of the

QuotesServiceClient, available from the ServiceReference you just created. Create an in-

stance of the ServiceReference1.Quote structure to receive the results of calling GetAQuote.

Call GetAQuote from the QuotesServiceClient, and print the result on the console.

 using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsumeQuotesService

{

 class Program

 {

 static void Main(string[] args)

 {

 // Get a single random quote

 ServiceReference1.QuotesServiceClient quotesServiceClient =

 new ServiceReference1.QuotesServiceClient();

 ServiceReference1.Quote quote = quotesServiceClient.GetAQuote();

 Console.WriteLine("Getting a single quote: " + quote.StrQuote);

 Console.WriteLine();

 }

 }

}

6. Now try calling AddAQuote. This will be very much like calling GetAQuote. However, this

time the request requires some parameters. Create an instance of the Quote (available

from the ServiceReference). Find some pithy quote somewhere (or make one up) and

plug it into the Quote object along with the fi rst and last names of the originator. You

can use the same instance of the QuotesServiceClient to call AddAQuote, passing the

Quote object in. The next call to GetAllQuotes will reveal that the quote was added to

the quotes collection (which we’ll see in a minute).

 using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

472 Part V Services, AJAX, Deployment, and Silverlight

namespace ConsumeQuotesService

{

 class Program

 {

 static void Main(string[] args)

 {

 // Get a single random quote

 ...

 // Now add a quote

 ServiceReference1.Quote newQuote = new ServiceReference1.Quote();

 newQuote.StrQuote = "But to me nothing - the negative, the empty" +

 "- is exceedingly powerful.";

 newQuote.StrOriginatorFirstName = "Alan";

 newQuote.StrOriginatorLastName = "Watts";

 quotesServiceClient.AddQuote(newQuote);

 Console.WriteLine("Added a quote");

 Console.WriteLine();

 }

 }

}

7. Now try calling GetAllQuotes. By now you should know the pattern pretty well. Use

the QuotesServiceClient to call GetAllQuotes. GetAllQuotes will return a DataSet ob-

ject that will contain a collection of all the quotes, so declare one of those, too. Use

the QuotesServiceClient object to call GetAllQuotes. When the call returns, use the

DataSet object to print the quotes to the console. Be sure to include the System.Data

namespace so the compiler understand the DataSet.

 using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

namespace ConsumeQuotesService

{

 class Program

 {

 static void Main(string[] args)

 {

 // Get a single random quote

 // Now add a quote

 // Now get all the quotes

 DataSet dataSet = quotesServiceClient.GetAllQuotes();

 DataTable tableQuotes = dataSet.Tables[0];

 Chapter 21 Windows Communication Foundation 473

 foreach (DataRow dr in tableQuotes.Rows)

 {

 System.Console.WriteLine(dr[0] + " " +

 dr[1] + " " + dr[2]);

 }

 }

 }

}

8. Try calling GetAQuote asynchronously. The proxy created by Visual Studio sup-

ports asynchronous invocation if you ask it to generate the asynchronous methods.

To call GetAQuote asynchronously, you’ll need to implement a callback method

that WCF will call when the method is done executing. Add a static method named

GetAQuoteCallback to your Program class. Have the method return void, and take

IAsyncResult as a parameter. When WCF calls back into this method, the IAsyncResult
parameter will be an instance of the class originating the call—an instance of

QuotesServiceClient. Declare an instance of the ServiceReference1.QuotesServiceClient
class and assign it by casting the IAsyncResult parameter’s AsyncState property to the

ServiceReference1.QuotesServiceClient type. Then declare an instance of the Quote

class and harvest the quote by calling QuotesServiceClient.EndGetAQuote, passing the

AsyncResult parameter. Finally, write the quote out to the console.

 using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

namespace ConsumeQuotesService

{

 class Program

 {

 static void Main(string[] args)

 {

 // Get a single random quote

 // Now add a quote

 // Now get all the quotes

 }

 static void GetAQuoteCallback(IAsyncResult asyncResult)

 {

 ServiceReference1.QuotesServiceClient quotesServiceClient =

 (ServiceReference1.QuotesServiceClient)

 asyncResult.AsyncState;

474 Part V Services, AJAX, Deployment, and Silverlight

 ServiceReference1.Quote quote =

 quotesServiceClient.EndGetAQuote(asyncResult);

 Console.WriteLine(quote.StrQuote);

 }

 }

}

9. Now make the asynchronous call to GetAQuote. This is easy—just call the

QuotesServiceClient ’s BeginGetAQuote method from the Program class’s Main method.

Pass in the GetAQuoteCallback method you just wrote as the fi rst parameter, and the

QuotesServiceClient object as the second parameter. Add a call to System.Console
.ReadLine to pause the main thread so that the asynchronous call has time to execute.

 using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

namespace ConsumeQuotesService

{

 class Program

 {

 static void Main(string[] args)

 {

 // Get a single random quote

 // Now add a quote

 // Now get all the quotes

 // Now call GetAQuote asynchronously

 System.Console.WriteLine(

 "Now fetching a quote asynchronously");

 Console.WriteLine();

 quotesServiceClient.BeginGetAQuote(GetAQuoteCallback,

 quotesServiceClient);

 Console.WriteLine("Press enter to exit...");

 Console.ReadLine();

 }

 static void GetAQuoteCallback(IAsyncResult asyncResult)

 {

 // implementation removed for clarity

 }

 }

}

 Chapter 21 Windows Communication Foundation 475
 10. Run the program to watch the console application call the WCFQuotesService. You

should see the following output:

 Summary
 Out of the box, The Windows Communication Foundation unifi es the programming interface

for the two modern .NET remoting technologies: standard .NET remoting and .NET XML Web

Services (and will also accommodate MSMQ and sockets communication). Although effec-

tive at the time, the communication infrastructures of the late 1980s through the mid-2000s

narrowed the design and implementation possibilities for a distributed system. WCF offers

a single framework for creating a distributed system. WCF marks clear boundaries between

the elements of a distributed system, making it much easier to design a distributed system

independently of the communication mechanism it will use eventually. WCF doesn’t hem you

into specifi c communication infrastructure choices early on. In addition, WCF makes it very

straightforward to add features such as security and transaction management.

 Distributed WCF applications are composed of several different elements: endpoints, chan-

nels, messages, and behaviors. An endpoint is defi ned by an address, a binding, and a con-

tract. Endpoints specify message originators and recipients. WCF channels represent the

means by which messages are transmitted. WCF defi nes protocol channels and transport

channels. Messages are the actual data sent between the endpoints, and behaviors specify

how a WCF service operates at run time, allowing you to confi gure the runtime characteris-

tics of the services, such as concurrency and security.

476 Part V Services, AJAX, Deployment, and Silverlight
WCF applications are easily hosted by ASP.NET. The Visual Studio ASP.NET wizard provides

a template for creating WCF applications. When hosting WCF applications via ASP.NET, you

have two options: running in ASP.NET side-by-side mode and running in ASP.NET compat-

ibility mode. When running in ASP.NET side-by-side mode, the WCF services may run in the

same AppDomain and share state and event handlers exposed by other assemblies loaded

in the AppDomain. However, normal ASP.NET features such as session state and the current

request context are unavailable. You may get to certain ASP.NET features such as the applica-

tion cache through the HttpRuntime class. When running under ASP.NET compatibility mode,

calls to the WCF service are full-fl edged ASP.NET requests. The WCF requests that run within

an ASP.NET compatible service have full access to all of ASP.NET’s features, including access

to the current HttpContext and the session state.

Chapter 21 Quick Reference
To Do This
Create a WCF-enabled Web site In Visual Studio, choose File, New, Web Site and select WCF

Service from the available templates. This will produce a WCF-

enabled Web site for you and will stub out a default contract and

implementation that you may change to fi t your needs.

 Create a service contract Service contracts are defi ned as .NET interfaces. The entire interface

should be adorned with the [ServiceContract] attribute. Interface

members meant to be exposed as individual services are adorned

with the [OperationContract] attribute. Data structures may be

passed through the interface. Structure members meant to be

visible through the interface are adorned with the [DataContract]
attribute.

 Implement the service contract Create a class that derives from the interface defi ning the service

contract and implement the members.

 Expose the WCF service as an ASP.NET

application

Make sure that the web.confi g fi le mentions the service contract and

the implementation.

 Create a client to consume the WCF

service

Use the Add Service Reference menu item found in the project’s

context menu (exposed from Visual Studio’s Solution Explorer) to

discover and locate the service metadata. Alternatively, use the

ServiceModel Metadata Utility Tool (packaged as an assembly

named Svcutil.exe).

 Customize the service’s local execu-

tion, managing execution aspects

such as security, instance lifetime,

and threading

Apply the ServiceBehaviorAttribute and OperationBehaviorAttribute

attributes as necessary to control the following aspects of the ser-

vice execution: instance lifetimes, concurrency and synchronization

support, confi guration behavior, transaction behavior, serialization

behavior, metadata transformation, session lifetime, address fi ltering

and header processing, and impersonation.

 Access the ASP.NET application cache

from a standard WCF application (one

not confi gured to run in ASP.NET

compatibility mode)

Use the HttpRuntime.Cache property.

To Do This

 Chapter 22

 AJAX
 After completing this chapter, you will be able to

Q Understand the problem AJAX solves

Q Understand ASP.NET’s support for AJAX

Q Write AJAX-enabled Web sites

Q Take advantage of AJAX as necessary to improve the user’s experience

 This chapter covers AJAX, possibly the most interesting feature added to ASP.NET recently.

AJAX stands for “Asynchronous JavaScript and XML,” and it promises to produce an entirely

new look and feel for Web sites throughout the world.

 Software evolution always seems to happen in this typical fashion: Once a technology is

grounded fi rmly (meaning the connections between the parts work and the architecture is

fundamentally sound), upgrading the end user’s experience becomes a much higher prior-

ity. AJAX’s primary reason for existence is to improve on the standard HTTP GET/POST idiom

with which Web users are so familiar. That is, the standard Web protocol in which entire

forms and pages are sent between the client and the server is getting a whole new addition.

 Although standard HTTP is functional and well understood by Web developers, it does have

certain drawbacks—the primary one being that the user is forced to wait for relatively long

periods while pages refresh. AJAX introduces technology that shields end users from having

to wait for a whole page to post. This has been a common problem within all event-driven

interfaces (Microsoft Windows being one of the best examples).

 Think back to the way HTTP normally works. When you make a request (using GET or POST,

for example), the Web browser sends the request to the server, but you can do nothing until

the request fi nishes. That is, you make the request and wait—watching the little thermom-

eter on the browser fi ll up. Once the request returns to the browser, you may begin using

the application again. The application is basically useless until the request returns. In some

cases, the browser’s window even goes completely blank. Web browsers have to wait for

Web sites to fi nish an HTTP request—in much the same way that Windows programs have to

wait for message handlers to complete their processing. (Actually, if the client browser uses

a multi threaded user interface such as Microsoft Internet Explorer, you can usually cancel

the request—but that’s all you can really do.) You can easily demonstrate this problem for

yourself by introducing a call to System.Threading.Thread.Sleep inside the Page_Load meth-

od. Putting the thread to sleep will force the end user to wait for the request to fi nish.
 477

478 Part V Services, AJAX, Deployment, and Silverlight
 The solution to this problem is to introduce some way to handle the request asynchronously.

What if there were a way to introduce asynchronous background processing into a Web site

so that the browser would appear much more responsive to the user? What if (for certain

applications) making an HTTP request didn’t stall the entire browser for the duration of the

request, but instead seemed to run the request in the background, leaving the foreground

unhindered and changing only the necessary portion of the rendered page? The site would

present a much more continuous and smooth look and feel to the user. As another example,

what if ASP.NET included some controls that injected script into the rendered pages that

modifi ed the HTML Document Object Model, providing more interaction from the client’s

point of view? Well, that’s exactly what ASP.NET’s AJAX support was designed to do.

 What Is AJAX?
 AJAX formalizes a style of programming meant to improve the user interface (UI) responsive-

ness and visual appeal of Web sites. Many of AJAX’s capabilities have been available for a

while now. AJAX consolidates several good ideas and uses them to defi ne a style of program-

ming and extends the standard HTTP mechanism that is the backbone of the Internet. Like

most Web application development environments, ASP.NET has leveraged HTTP in a very

standard way. The browser usually initiates contact with the server using an HTTP GET re-

quest, followed by any number of POSTs. The high-level application fl ow is predicated upon

sending a whole request and then waiting for an entire reply from the server. Although ASP

.NET’s server-side control architecture greatly improves back-end programming, users still get

their information a whole page at a time. It’s almost like the mainframe/terminal model pop-

ular during the 1970s and early 1980s. However, this time the terminal is one of many mod-

ern sophisticated browsers and the mainframe is replaced by a Web server (or Web Farm).

 The standard HTTP round-trip has been a useful application strategy, and the Web grew up

using it. While the Web was growing up in the late 1990s, browsers had widely varying de-

grees of functionality. For example, browsers ranged all the way from the very rudimentary

America Online Browser (which had very limited capabilities) to cell phones and PDAs, to

more sophisticated browsers such as Microsoft Internet Explorer and Netscape Navigator

that were very rich in capability. For instance, Internet Explorer supports higher level features

such as JavaScript and Dynamic HTML. This made striking a balance between usability of

your site and the reach of your site very diffi cult prior to the advent of ASP.NET.

 However, being able to run a decent browser that understands how to process client-side

scripting is almost a given for the majority of modern computing platforms. These days, most

computing platforms run a modern operating system (such as Microsoft Windows XP or

Microsoft Vista, or even MAC OS X). These platforms run browsers fully capable of support-

ing XML and JavaScript. With so many Web client platforms supporting this functionality, it

makes sense to take advantage of the capabilities. As we’ll see in this chapter, AJAX makes

good use of these modern browser features to improve the user’s experience.

 Chapter 22 AJAX 479
 In addition to extending standard HTTP, AJAX is also a very clever way to use the Web ser-

vice idiom. Web services are traditionally geared toward enterprise-to-enterprise business

communications. However, Web services are also useful on a smaller scale for handling Web

requests out of band. (“Out of band” simply means making HTTP requests using means other

than the standard page posting mechanism.) AJAX uses Web services behind the scenes to

make the client UI more responsive than when using traditional HTTP GETs and POSTs. We’ll

see how that works in this chapter—especially when we look at the ASP.NET AJAX Control

Toolkit Extender controls.

 AJAX Overview
 One of the primary changes AJAX brings to Web programming is that it depends on the

browser taking an even more active role in the process. Instead of the browser simply ren-

dering streams of HTML and executing small custom-written script blocks, AJAX includes

some new client-script libraries to facilitate the asynchronous calls back to the server. AJAX

also includes some basic server-side components to support these new asynchronous calls

coming from the client. There’s even a community-supported AJAX Control Toolkit avail-

able for ASP.NET’s AJAX implementation. Figure 22-1 shows the organization of ASP.NET’s

AJAX support.

Networking

Asynchronous requests,

XML and JSON Serialization,

Web and Application Services

Components

Nonvisual components

Behaviors, Controls

Browser Compatibility

Support for browsers:

Microsoft Internet Explorer,

Mozilla Firefox, Apple Safari

Core Services

JavaScript, Base Client

Extensions, Type System,

Events, Serialization

The AJAX Library

Client Side

Application Services

Authentication and

profile support

Scripting

Localization, Globalization,

Debugging, Tracing

Web Services

Proxy Generation,

Page Methods,

XML and JSON Serialization

Server Controls

ScriptManager, Update Panel.

Update Progress, Timer

ASP.NET Extensions for AJAX

Server Side

 FIGURE 22-1 The conceptual organization of ASP.NET’s AJAX support layers

480 Part V Services, AJAX, Deployment, and Silverlight
 Reasons to Use AJAX
 If traditional ASP.NET development is so entrenched and well established, then why would

you want to introduce AJAX? At fi rst glance, AJAX seems to introduce some new complexi-

ties into the ASP.NET programming picture. In fact, it seems to re-introduce some program-

ming idioms that ASP.NET was designed to deprecate (such as overuse of client-side script).

However, AJAX promises to produce a richer experience for the user. Because ASP.NET’s sup-

port for AJAX is nearly seamless, the added complexities are well mitigated. When building a

Web site, there are a few reasons you might choose to AJAX-enable the site.

Q AJAX improves the overall effi ciency of your site by performing parts of a Web page's

processing in the browser when appropriate. Instead of waiting for the entire HTTP

protocol to get a response from the browser, pushing certain parts of the page pro-

cessing to the client helps the client to react much more quickly. Of course, this type of

functionality has always been available—as long as you’re willing to write the code to

make it happen. ASP.NET’s AJAX support includes a number of scripts so that you can

get a lot of browser-based effi ciency by simply using a few server-side controls.

Q AJAX introduces UI elements usually found in desktop applications to a Web site. These

UI elements include such items as rectangle rounding, callouts, progress indicators, and

pop-up windows that work for a wide range of browsers (more browser-side scripting—

but most of it’s been written for you).

Q AJAX introduces partial-page updates. By refreshing only the parts of the Web page

that have been updated, the user’s wait time is reduced signifi cantly. This brings Web-

based applications much closer to desktop applications with regard to perceived UI

performance.

Q AJAX is supported by most popular browsers—not just Microsoft Internet Explorer. It

works for Mozilla Firefox and Apple Safari, too. Although it still requires some effort to

strike a balance between UI richness and the ability to reach a wider audience, the fact

that AJAX depends on features available in most modern browsers makes this balance

much easier to achieve.

Q AJAX introduces a huge number of new capabilities. Whereas standard ASP.NET’s con-

trol and page-rendering model provides great fl exibility and extensibility for program-

ming Web sites, AJAX brings in a new concept—the extender control. Extender controls

attach to existing server-side controls (such as the TextBox, ListBox, and DropDownList)
at run time and add new client-side appearances and behaviors to the controls.

Sometimes extender controls can even call a predefi ned Web service to get data to

populate list boxes and such (for example, the AutoComplete extender).

Q AJAX improves on ASP.NET’s forms authentication and profi les and personalization ser-

vices. ASP.NET’s support for authentication and personalization provided a great boon

to Web developers—and AJAX just sweetens the pot.

 Chapter 22 AJAX 481
 Today when you browse different Web sites, you’ll run into lots of examples of AJAX-style

programming. Here are some examples:

Q Colorado Geographic: http://www.coloradogeographic.com/

Q Cyber Homes: http://www.cyberhomes.com/default
.aspx?AspxAutoDetectCookieSupport=1&bhcp=1

Q Component Art: http://www.componentart.com/

 Real-World AJAX
 Throughout the 1990s and into the mid-2000s, Web applications were nearly a throwback to

1970s mainframe and minicomputer architectures. However, instead of fi nding a single large

computer serving dumb terminals, Web applications consist of a Web server (or a Web Farm)

connected to smart browsers capable of fairly sophisticated rendering capabilities. Until

recently, Web applications took their input via HTTP forms and presented output via HTML

pages. The real trick in understanding standard Web applications is to see the disconnected

and stateless nature of HTTP. Classic Web applications can only show a snapshot of the state

of the application.

 As we’ll see in this chapter, Microsoft supports standard AJAX idioms and patterns within its

ASP.NET framework. However, AJAX is more a style of Web programming involving out-of-

band HTTP requests than any specifi c technology.

 You’ve no doubt seen sites engaging the new interface features and stylings available

through AJAX programming. Examples include Microsoft.com, Google.com, and Yahoo.com.

Very often while browsing these sites, you’ll see modern features such as automatic page up-

dates without you having to generate a postback explicitly. Modal-type dialog boxes requir-

ing your attention will pop up until you dismiss them. These are all features available through

AJAX-style programming patterns, and ASP.NET has lots of new support for it.

 If you’re a long-time Microsoft-platform Web developer, you may be asking yourself whether

AJAX is something really worthwhile or whether you might be able to get much of the same

type of functionality using a tried and true technology like DHTML.

 AJAX in Perspective
 Any seasoned Web developer targeting Microsoft Internet Explorer as the browser is un-

doubtedly familiar with Dynamic HTML (DHTML). DHTML is a technology running at the

browser for enabling Windows desktop-style UI elements into the Web client environment.

DHTML was a good start, and AJAX brings the promise of more desktop-like capabilities to

Web applications.

482 Part V Services, AJAX, Deployment, and Silverlight
 AJAX makes available wider capabilities than simply using DHTML. DHTML is primarily

about being able to change the style declarations of an HTML element through JavaScript.

However, that’s about as far as it goes. DHTML is very useful for implementing such UI fea-

tures as having a menu drop down when the mouse is rolled over it. AJAX expands on this

idea of client-based UI using JavaScript as well as out-of-band calls to the server. Because

AJAX is based on out-of-band server requests (rather than relying only on a lot of client script

code), AJAX has the potential for much more growth in terms of future capabilities than

DHTML.

 AJAX represents another level in client-side performance for Web application. Through AJAX,

Web sites can now support features such as partial page updates, ToolTips and pop-up win-

dows, and data-driven UI elements (that get their data from Web services).

 ASP.NET Server-Side Support for AJAX
 Much of ASP.NET’s support for AJAX resides in a collection of server-side controls responsible

for rendering AJAX-style output to the browser. Recall from Chapter 3 on the page rendering

model that the entire page-rendering process of an ASP.NET application is broken down into

little bite-sized chunks. Each individual bit of rendering is handled by a class derived from

System.Web.UI.Control. The entire job of a server-side control is to render output that places

HTML elements in the output stream so they appear correctly in the browser. For example,

ListBox controls render a <select/> tag. TextBox controls render an <input type=”text” /> tag.

ASP.NET’s AJAX server-side controls render AJAX-style script along with HTML to the browser.

 ASP.NET’s AJAX support consists of these server-side controls along with client code scripts

that integrate to produce AJAX-like behavior. Here’s a description of the most frequently

used offi cial ASP.NET AJAX server controls: ScriptManager, ScriptManagerProxy, UpdatePanel,
UpdateProgress, and Timer.

 ScriptManager Control
 The ScriptManager control manages script resources for the page. The ScriptManager con-

trol’s primary action is to register the AJAX Library script with the page so the client script

may use type system extensions. The ScriptManager also makes possible partial-page render-

ing and supports localization as well as custom user scripts. The ScriptManager assists with

out-of-band calls back to the server. Any ASP.NET site wishing to use AJAX must include an

instance of the ScriptManager control on any page using AJAX functionality.

 ScriptManagerProxy Control
 Scripts on a Web page often require a bit of special handling in terms of how the server

renders them. Normally, the page uses a ScriptManager control to organize the scripts at

 Chapter 22 AJAX 483
the page level. Nested components such as content pages and User controls require the

ScriptManagerProxy to manage script and service references to pages that already have a

ScriptManager control.

 This is most notable in the case of Master Pages. The Master Page typically houses the

ScriptManager control. However, ASP.NET will throw an exception if a second instance

of ScriptManager is found within a given page. So what would content pages do if they

needed to access the ScriptManager control that the Master Page contains? The answer is

that the content page should house the ScriptManagerProxy control and work with the true

ScriptManager control via the proxy. Of course, as mentioned, this also applies to User con-

trols as well.

 UpdatePanel Control
 The UpdatePanel control supports partial page updates by tying together specifi c server-side

controls and events that cause them to render. The UpdatePanel control causes only selected

parts of the page to be refreshed instead of refreshing the whole page (as happens during a

normal HTTP postback).

 UpdateProgress Control
 The UpdateProgress control coordinates status information about partial-page updates as

they occur within UpdatePanel controls. The UpdateProgress control supports intermediate

feedback for long-running operations.

 Timer Control
 The Timer control will issue postbacks at defi ned intervals. Although the Timer control will

perform a normal postback (posting the whole page), it is especially useful when coordinated

with the UpdatePanel control to perform periodic partial-page updates.

 AJAX Client Support
 ASP.NET’s AJAX client-side support is centered around a set of JavaScript libraries. The follow-

ing layers are included in the ASP.NET AJAX script libraries:

Q The browser compatibility layer for assisting in managing compatibility across the most

frequently used browsers. Whereas ASP.NET by itself implements browser capabilities

on the server end, this layer handles compatibility on the client end (the browsers sup-

ported include Internet Explorer, Mozilla Firefox, and Apple Safari).

484 Part V Services, AJAX, Deployment, and Silverlight

Q The ASP.NET AJAX core services layer extends the normal JavaScript environment by

introducing classes, namespaces, event handling, data types, and object serialization

that are useful in AJAX programming.

Q The ASP.NET AJAX base class library for clients includes various components, such as

components for string management and for extended error handling.

Q The networking layer of the AJAX client-side support manages communication with

Web-based services and applications. The networking layer also handles asynchronous

remote method calls.

 The piece de resistance of ASP.NET’s AJAX support is the community-supported Control

Toolkit. Although everything mentioned previously provides solid infrastructure for ASP.NET

AJAX, AJAX isn’t really compelling until you add a rich tool set.

 ASP.NET AJAX Control Toolkit
 The ASP.NET AJAX Control Toolkit is a collection of components (and samples showing how

to use them) encapsulating AJAX’s capabilities. When you browse through the samples, you

can get an idea of the kind of user experiences available through the controls and extenders.

The Control Toolkit also provides a powerful software development kit for creating custom

controls and extenders. You can download the ASP.NET AJAX Control Toolkit from the ASP.

NET AJAX Web site.

 The AJAX Control Toolkit is a separate download and not automatically included with Visual

Studio 2008. To use the controls in the toolkit, follow these steps:

1. Download the tool. There are two versions—2.0 and 3.5. Version 3.5 is the most up to

date and requires .NET 3.5 on your development machine. (See http://asp.net/ajax/
ajaxcontroltoolkit/ for details.)

2. After unzipping the Toolkit fi le, open the AjaxControlToolkit solution fi le in Visual

Studio.

3. Build the AjaxControlKit project.

4. The compilation process will produce a fi le named AjaxControlToolkit.dll in the

AjaxControlToolkit\bin directory.

5. Click the right mouse button on the Toolbox in Visual Studio, select Choose Items…

from the menu. Browse to the AjaxControlToolkit.dll fi le in the AjaxControlToolkit\bin

directory and include the DLL. This will bring all the new AJAX Controls from the toolkit

into Visual Studio so you may drag and drop them onto forms in your applications.

 Chapter 22 AJAX 485
Other ASP.NET AJAX Community-Supported Stuff
Although not quite offi cially part of AJAX, you’ll fi nd a wealth of AJAX-enabled server-side

controls and client-side scripts available through a community-supported effort. The support

includes ASP.NET AJAX community-supported controls (mentioned previously) as well as sup-

port for client declarative syntax (XML-script) and more.

AJAX Control Toolkit Potpourri
There are a number of other extenders and controls available through a community-supported

effort. You can fi nd a link to the AJAX Control Toolkit through http://asp.net/ajax/. We’ll see

a few of the controls available from the toolkit throughout this chapter. Table 22-1 lists the

controls and extenders available through this toolkit.

TABLE 22-1 The ASP.NET Control Toolkit

Component Description
Accordion This extender is useful for displaying a group of panes one pane at a

time. It’s similar to using several CollapsiblePanels constrained to allow

only one to be expanded at a time. The Accordion is composed of a

group of AccordionPane controls.

 AlwaysVisibleControl This extender is useful for pinning a control to the page so its posi-

tion remains constant while content behind it moves and scrolls.

 Animation This extender provides a clean interface for animating page content.

 AutoComplete This extender is designed to communicate with a Web service to list

possible text entries based on what’s already in the text box.

 Calendar This extender is targeted for the TextBox control providing client-side

date-picking functionality in a customizable way.

 CascadingDropDown This extender is targeted toward the DropDownList control. It functions

to populate a set of related DropDownList controls automatically.

 CollapsiblePanel This extender is targeted toward the Panel control for adding collaps-

ible sections to a Web page.

 Confi rmButton This extender is targeted toward the Button control (and types derived

from the Button control) useful for displaying messages to the user.

The scenarios for which this extender is useful include those requir-

ing confi rmation from the user (for example, where linking to another

page might cause your end user to lose state).

 DragPanel This is an extender targeted toward Panel controls for adding the

capability for users to drag the Panel around the page.

 DropDown This extender implements a SharePoint-style drop-down menu.

 DropShadow This extender is targeted toward the Panel control that applies a drop

shadow to the Panel.

 DynamicPopulate This extender uses an HTML string returned by a Web service or page

method call.

Component Description

Continued

486 Part V Services, AJAX, Deployment, and Silverlight
Component Description
FilteredTextBox This extender is used to ensure that an end user enters only valid

characters into a text box.

HoverMenu This extender is targeted for any WebControl that associates that con-

trol with a pop-up panel for displaying additional content. It’s activated

when the user hovers the mouse cursor over the targeted control.

 ListSearch This extender searches items in a designated ListBox or DropDownList
based on keystrokes as they’re typed by the user.

 MaskedEdit This extender is targeted toward TextBox controls to constrain the

kind of text that the TextBox will accept by applying a mask.

 ModalPopup This extender mimics the standard Windows modal dialog box

behavior. Using the ModalPopup, a page may display content of a

pop-up window that focuses attention on itself until it is dismissed

explicitly by the end user.

 MutuallyExclusiveCheckBox This extender is targeted toward the CheckBox control. The extender

groups Checkbox controls using a key. When a number of CheckBox

controls all share the same key, the extender ensures that only a

single check box will appear checked at a time.

NoBot This control attempts to provide CAPTCHA (Completely Automated

Public Turing test to tell Computers and Humans Apart)-like bot/

spam detection and prevention without requiring any user interac-

tion. While using a noninteractive approach may be bypassed more

easily than one requiring actual human interaction, this implementa-

tion is invisible.

NumericUpDown This extender is targeted toward the TextBox control to create a con-

trol very similar to the standard Windows Edit control with the Spin

button. The extender adds “up” and “down” buttons for incrementing

and decrementing the value in the TextBox.

 PagingBulletedList This extender is targeted toward the BulletedList control. The extender

enables sorted paging on the client side.

 PasswordStrength This extender is targeted toward the TextBox control to help when

end users type passwords. While the normal TextBox only hides the

actual text, the PasswordStrength extender also displays the strength

of the password using visual cues.

PopupControl This extender is targeted toward all controls. Its purpose is to open a

pop-up window for displaying additional relevant content.

Rating This control renders a rating system from which end users rate some-

thing using images to represent a rating (stars are common).

ReorderList This ASP.NET AJAX control implements a bulleted, data-bound list

with items that can be reordered interactively.

ResizableControl This extender works with any element on a Web page. Once associated

with an element, the ResizableControl gives the user the ability to

resize that control. The ResizableControl puts a handle on the lower

right corner of the control.

Component Description

 TABLE 22-1 Continued

Continued

 Chapter 22 AJAX 487
Component Description
RoundedCorners The RoundedCorners extender may be applied to any Web page ele-

ment to turn square corners into rounded corners.

Slider This extender is targeted to the TextBox control. It adds a graphical slider

that the end user may use to change the numeric value in the TextBox.

 SlideShow This extender controls and adds buttons to move between images

individually and to play the slide show automatically.

 Tabs This server-side control manages a set of tabbed panels for manag-

ing content on a page.

 TextBoxWatermark TextBoxWatermark extends the TextBox control to display a message

while the TextBox is empty. Once TextBox contains some text, the

TextBox appears as a normal TextBox.

 ToggleButton This extender extends the CheckBox to show custom images refl ect-

ing the state of the CheckBox.

 UpdatePanelAnimation This extender provides a clean interface for animating content associ-

ated with an UpdatePanel.

ValidatorCallout ValidatorCallout extends the validator controls (such as

RequiredFieldValidator and RangeValidator). The callouts are small

pop-up windows that appear near the UI elements containing incor-

rect data to direct user focus toward them.

Getting Familiar with AJAX
Here’s a short example to help get you familiar with AJAX. It’s a very simple Web Forms appli-

cation that shows behind-the-scenes page content updates with the UpdatePanel server-side

control. In this exercise, you’ll create a page with labels showing the date and time that the

page loads. One label will be outside the UpdatePanel, and the other label will be inside the

UpdatePanel. You’ll be able to see how partial page updates work by comparing the date and

time shown in each label.

A simple partial page update

 1. Create a new Web site project named AJAXORama. Make it a fi le system Web site.

Earlier versions of the AJAX toolkit (for Visual Studio 2005) required a special “AJAX

Enabled Web site” template. The template inserted specifi c entries into the confi gura-

tion fi le necessary for AJAX to work. Visual Studio 2008 creates “AJAX Enabled “ proj-

ects right off the bat. Make sure the default.aspx fi le is open.

 2. Add a ScriptManager control to the page. Pick one up off the Toolbox and drop it on

the page (you’ll fi nd it under a different tab in the toolbox than the normal control

tab.). Using the AJAX controls requires a ScriptManager to appear prior to any other

AJAX controls on the page. By convention, the control is usually placed outside the DIV

Component Description

TABLE 22-1 Continued

488 Part V Services, AJAX, Deployment, and Silverlight

Visual Studio creates for you. After placing the script manager control on your page,

the <body> element in the Source view should look like so:

 <body>

 <form id="form1" runat="server">

 <asp:ScriptManager ID="ScriptManager1" runat="server">

 </asp:ScriptManager>

 <div>

 </div>

 </form>

</body>

3. Drag a Label control into the Default.aspx form. From the Properties window, give the

Label control the name LabelDateTimeOfPageLoad.Then drop a Button on the form as

well. Give it the text Click Me. Open the code beside fi le (default.aspx.cs) and update

the Page_Load handler to have the label display the current date and time.

 using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 this.LabelDateTimeOfPageLoad.Text = DateTime.Now.ToString();

 }

}

4. Run the page and generate some postbacks by clicking the button a few times. Notice

that the label on the page updates with the current date and time each time the button

is clicked.

5. Add an UpdatePanel control to the page (you’ll fi nd this control alongside the

ScriptManager control in the AJAX Control Toolkit tab). Then pick up another Label
from the Toolbox and drop it into the content area of the UpdatePanel. Name the label

LabelDateTimeOfButtonClick.

6. Add some code to the Page_Load method to have the label show the current date

and time.

 using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

 Chapter 22 AJAX 489

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 this.LabelDateTimeOfPageLoad.Text = DateTime.Now.ToString();

 this.LabelDateTimeOfButtonClick.Text =

 DateTime.Now.ToString();

 }

}

 The following graphic shows the UpdatePanel, Button, and Labels as seen within the Visual

Studio designer (there are some line breaks in between so that the page is readable):

7. Run the page and generate some postbacks by clicking the button. Both labels should

be showing the date and time of the postback (that is, they should show the same

time). Although the second label is inside the UpdatePanel, the action causing the post-

back is happening outside the UpdatePanel.

490 Part V Services, AJAX, Deployment, and Silverlight

 The following graphic shows the Web page running without the Button being associated

with the UpdatePanel:

8. Now delete the current button from the form and drop a new button into the

UpdatePanel1 control. Add a Label to the UpdatePanel1 as well. Name the new label

LabelDateTimeOfButtonPress. Look at the Default.aspx fi le to see what was produced:

 <%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <asp:ScriptManager

 ID="ScriptManager1" runat="server" />

 <asp:Label ID="LabelDateTimeOfPageLoad"

 runat="server"></asp:Label>

 <asp:UpdatePanel ID="UpdatePanel1" runat="server">

 Chapter 22 AJAX 491

 <ContentTemplate>

 <asp:Label ID="LabelDateTimeOfButtonPress"

 runat="server">

 </asp:Label>

 <asp:Button ID="Button1"

 runat="server" Text="Click Me" />

 </ContentTemplate>

 </asp:UpdatePanel>

 </form>

</body>

</html>

 The new Button should now appear nested inside the UpdatePanel along with the

new Label.

9. Run the page and generate some postbacks by pressing the button. Notice that only

the label showing the date and time enclosed in the UpdatePanel is updated. This

is known as a partial page update, since only part of the page is actually updated in

response to a page action, such as clicking the button. Partial page updates are also

sometimes referred to as callbacks rather than postbacks. The following graphic shows

the Web page running with the Button being associated with the UpdatePanel.

10. Add an UpdatePanel trigger. Because the second label and the button are both as-

sociated with the single UpdatePanel, only the second Label is updated in response to

the postback generated by the button. If you could only set up partial page updates

492 Part V Services, AJAX, Deployment, and Silverlight

based on elements tied to a single UpdatePanel, that would be fairly restrictive. As it

turns out, the UpdatePanel supports a collection of triggers that will generate partial

page updates. To see how this works, you need to fi rst move the button outside the

UpdatePanel (so that the button generates a full normal postback). The easiest way is to

simply drag a button onto the form (making sure it lands outside the UpdatePanel).

 Because the button is outside the UpdatePanel again, postbacks generated by the but-

ton are no longer tied solely to the second label, and the partial page update behavior

you saw in Step 9 is again non-functional.

11. Update the UpdatePanel’s Triggers collection to include the Button’s Click event. With

the designer open, select the UpdatePanel. Go to the properties Window and choose

Triggers. This presents a dialog box as shown in the following graphic.

 Add a trigger and set the control ID to the button’s ID and the event to Click. (Note

that the handy drop-down lists for each property assist you with this selection.) Run the

page. Clicking the button should now generate a callback (causing a partial page up-

date) in which the fi rst label continues to show the date and time of the original page

load and the second label shows the date and time of the button click. Pretty cool!

 Async Callbacks
 As you know by this point, standard Web pages require the browser to instigate post-

backs. Many times, postbacks are generated by clicking on a Button control (in ASP.NET

terms). However, most ASP.NET controls may be enabled to generate postbacks as well.

For example, if you’d like to receive a postback whenever a user selects an item in a

DropDownList, just fl ip the AutoPostBack property to true, and the control will generate

the normal postback whenever the selected item changes.

 In some cases, an entire postback is warranted for events such as when the selected

item changes. However, in most cases generating postbacks that often will be distracting

 Chapter 22 AJAX 493
for the user and lead to very poor performance for your page. That’s because standard

postbacks refresh the whole page.

 ASP.NET’s AJAX support introduces the notion of the “asynchronous” postback. This is

done using JavaScript running inside the client page. The XMLHttpRequest object posts

data to server—making an end run around the normal postback. The server returns

data as XML, JSON, or HTML and has to refresh only part of the page. The JavaScript

running in the page replaces old HTML within the Document Object Model with new

HTML based on the results of the asynchronous postback.

 If you’ve done any amount of client-side script programming, you can imagine how

much work doing something like this can be. Performing asynchronous postbacks and

updating pages usually requires a lot of JavaScript.

 The UpdatePanel control you just used in this exercise hides all of the client-side code

and also the server-side plumbing. Also, because of ASP.NET’s well-architected server-

side control infrastructure, the UpdatePanel maintains the same server-side control

model you’re used to seeing in ASP.NET.

 The Timer
 In addition to causing partial page updates via an event generated by a control (like a button

click), AJAX includes a timer to cause regularly scheduled events. You can fi nd the Timer control

alongside the other standard AJAX controls in the Toolbox. By dropping a Timer on a page, you

can generate automatic postbacks to the server.

 Some uses for the Timer include a “shout box”—like an open chat where a number of users

type in messages and they appear near the top like a conversation. Another reason you might

like an automatic postback is if you wanted to update a live Web camera picture or to refresh

some other frequently updated content.

 The Timer is very easy to use—simply drop it on a page which hosts a ScriptManager. The

default settings for the timer cause the timer to generate postbacks every minute (every

60,000 milliseconds). The Timer is enabled by default and begins fi ring events as soon as the

page loads.

 Here’s an exercise using the Timer to write a simple chat page that displays messages from

a number of users who are logged in. The conversation is immediately updated for the user

typing in a message. However, users who have not refreshed since the last message don’t get

to see it—unless they perform a refresh. The page uses a Timer to update the conversation

automatically. At fi rst, the entire page is refreshed. Then the chat page uses an UpdatePanel
to update only the chat log (which is the element that has changed).

494 Part V Services, AJAX, Deployment, and Silverlight

 Using the Timer: Creating a chat page

1. Open the AJAXORama application if it’s not already open. The fi rst step is to create

a list of chat messages that can be seen from a number of different sessions. Add a

global application class to the project by clicking the right mouse button in the Solution

Explorer and selecting Add New Item. Choose Global Application Class as the type of

fi le to add. This will add a fi le named Global.asax to your Web site.

2. Update the Application_Start method in Global.asax to create a list for storing messages

and add the list to the application cache. Using an Import statement at the top makes it

more convenient to use the generic List collection.

 <%@ Application Language="C#" %>

<%@ Import Namespace="System.Collections.Generic" %>

<script runat="server">

 void Application_Start(object sender, EventArgs e)

 {

 // Code that runs on application startup

 List<string> messages = new List<string>();

 HttpContext.Current.Cache["Messages"] = messages;

 }

 void Application_End(object sender, EventArgs e)

 {

 }

 void Application_Error(object sender, EventArgs e)

 {

 }

 void Session_Start(object sender, EventArgs e)

 {

 }

 void Session_End(object sender, EventArgs e)

 {

 }

</script>

3. Create a chat page by adding a new page to the Web site and calling it

GroupChat.aspx. This will hold a text box with messages as they accumulate, and it also

gives users a means of adding messages.

4. When the messages are coming in, it would be very useful to know who sent what

messages. This page will force users to identify themselves fi rst—then they can start

adding messages. First, type in the text Group Chatting... following the ScriptManager.
Give it a large font style with block display so that it’s on its own line. Following that,

type in the text First, give us your name:. Then, pick up a TextBox control from the

Toolbox and drop it on the page. Give the TextBox the ID TextBoxUserID. Drop a

 Chapter 22 AJAX 495

Button on the page so the user can submit his or her name. Give it the text Submit ID

and the ID ButtonSubmitID.

5. Drop another TextBox onto the page. This one will hold the messages, so make it large

(800 pixels wide by 150 pixels high should do the trick). Set the TextBox ’s TextMode

property to MultiLine, and set the ReadOnly property to True. Give the TextBox the ID

TextBoxConversation.

6. Drop one more TextBox onto the page. This one will hold the user’s current message.

Give the TextBox the ID TextBoxMessage.

7. Add one more Button to the page. This one will let the user submit the current message

and should have the text Add Your Message. Be sure to give the button the ID value

ButtonAddYourMessage. The following graphic shows a possible layout of these controls.

8. Open the code beside fi le GroupChat.aspx.cs for editing. Add a method that retrieves

the user’s name from session state. Note you should also add the using clause for

System.Collections.Generic as later we’ll need to access the generic list we placed in the

application cache (Step 2):

 using System;

using System.Data;

using System.Configuration;

496 Part V Services, AJAX, Deployment, and Silverlight

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected string GetUserID()

 {

 string strUserID =

 (string) Session["UserID"];

 return strUserID;

 }

}

9. Add a method to update the UI so that users may only type messages after they’ve

identifi ed themselves. If the user has not been identifi ed (that is, the session variable is

not there), then disable the chat conversation UI elements and enable the user identifi -

cation UI elements. If the user has been identifi ed, then enable the chat conversation UI

elements and disable the user identifi cation UI elements.

 using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 // other code goes here...

 void ManageUI()

 {

 if (GetUserID() == null)

 Chapter 22 AJAX 497

 {

 // if this is the first request, then get the user's ID

 TextBoxMessage.Enabled = false;

 TextBoxConversation.Enabled = false;

 ButtonAddYourMessage.Enabled = false;

 ButtonSubmitID.Enabled = true;

 TextBoxUserID.Enabled = true;

 }

 else

 {

 // if this is the first request, then get the user's ID

 TextBoxMessage.Enabled = true;

 TextBoxConversation.Enabled = true;

 ButtonAddYourMessage.Enabled = true;

 ButtonSubmitID.Enabled = false;

 TextBoxUserID.Enabled = false;

 }

 }

}

10. Add a Click event handler for the Button that stores the user ID (ButtonSubmitID). The

method should store the user’s identity in session state and then call ManageUI to

enable and disable the correct controls.

 using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 // other page code goes here...

 protected void ButtonSubmitID_Click(object sender, EventArgs e)

 {

 Session["UserID"] = TextBoxUserID.Text;

 ManageUI();

 }

}

498 Part V Services, AJAX, Deployment, and Silverlight

11. Add a method to the page for refreshing the conversation. The code should look up

the message list in the application cache and build a string that shows the messages in

reverse order (so the most recent is on top). Then the method should set the conversa-

tion TextBox ’s Text property to the new string (that is, the text property of the TextBox

one showing the conversation).

 using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{

 // other page code goes here...

 void RefreshConversation()

 {

 List<string> messages = (List<string>)Cache["Messages"];

 if (messages != null)

 {

 string strConversation = "";

 int nMessages = messages.Count;

 for(int i = nMessages-1; i >=0; i--)

 {

 string s;

 s = messages[i];

 strConversation += s;

 strConversation += "\r\n";

 }

 TextBoxConversation.Text =

 strConversation;

 }

 }

}

12. Add a Click event handler. Double-click on the Button and add a Click event handler

to respond to the user submitting his or her message (ButtonAddYourMessage). The

method should grab the text from the user’s message TextBox, prepend the user’s ID

to it, and add it to the list of messages held in the application cache. Then the method

should call RefreshConversation to make sure the new message appears in the conver-

sation TextBox.

 Chapter 22 AJAX 499

 using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{

 // Other code goes here...

 protected void ButtonAddYourMessage_Click(object sender,

 EventArgs e)

 {

 // Add the message to the conversation...

 if (this.TextBoxMessage.Text.Length > 0)

 {

 List<string> messages = (List<string>)Cache["Messages"];

 if (messages != null)

 {

 TextBoxConversation.Text = "";

 string strUserID = GetUserID();

 if (strUserID != null)

 {

 messages.Add(strUserID +

 ": " +

 TextBoxMessage.Text);

 RefreshConversation();

 TextBoxMessage.Text = "";

 }

 }

 }

 }

}

13. Update the Page_Load method to call ManageUI and RefreshConversation.

 using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

500 Part V Services, AJAX, Deployment, and Silverlight

using System.Xml.Linq;

using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{

 // Other code goes here...

 protected void Page_Load(object sender, EventArgs e)

 {

 ManageUI();

 RefreshConversation();

 }

}

14. Now run the page to see how it works. Once you’ve identifi ed yourself, you can start

typing messages in—and you’ll see them appear in the conversation TextBox. Try

browsing the page using two separate browsers. Do you see an issue? The user typing

a message gets to see the message appear in the conversation right away. However,

other users involved in the chat don’t see any new messages until after they submit

messages of their own. Let’s solve this issue by dropping an AJAX Timer onto the page.

15. Pick up a ScriptManager from the AJAX controls and drop it on the page. Then pick up

a Timer from the AJAX controls and drop it on the page. Although the AJAX Timer will

start generating postbacks automatically, the default interval is 60,000 milliseconds,

or once per minute. Set the Timer’s Interval property to something more reasonable,

such as 10,000 milliseconds (or 10 seconds). Now run both pages and see what hap-

pens. You should see the pages posting back automatically every 10 seconds. However,

there’s still one more issue with this scenario. If you watch carefully enough, you’ll see

the whole page being refreshed—even though the user name is not changing. During

the conversation, you’re really only interested in seeing the conversation TextBox being

updated. Let’s fi x that by putting in an UpdatePanel.

16. Pick up an UpdatePanel from the AJAX controls and drop it on the page. Position the

UpdatePanel so that it can hold the conversation text box. Move the conversation text

box so that it’s positioned within the UpdatePanel. Modify the UpdatePanel’s triggers

so that it includes the Timer’s Tick event. Now run the chat pages, and you should see

only the conversation text box being updated on each timer tick. The following graphic

shows the new layout of the page employing the UpdatePanel.

 Chapter 22 AJAX 501

 The ASP.NET AJAX Timer is useful whenever you need regular, periodic posts back to the

server. You can see here how it’s especially useful when combined with the UpdatePanel do-

ing periodic partial page updates.

 Updating Progress
 A recurring theme when programming any UI environment is keeping the user updated as to

the progress of a long-running operation. If you’re programming Windows Forms, you can

use the BackgroundWorker component and show progress updating using the Progress con-

trol. Programming for the Web requires a slightly different strategy. ASP.NET’s AJAX support

includes a component for this—the ASP.NET AJAX UpdateProgress control.

 UpdateProgress controls display during asynchronous postbacks. All UpdateProgress controls

on the page become visible when any UpdatePanel control triggers an asynchronous postback.

502 Part V Services, AJAX, Deployment, and Silverlight

 Here’s an exercise for using an UpdateProgress control on a page.

 Using the UpdateProgress control

1. Add a new page. Add a new page to the AJAXORama site named

UseUpdateProgressControl.aspx.

2. Pick up a ScriptManager from the Toolbox and drop it on the page.

3. Pick up an UpdatePanel and drop it on the page. Give the panel the ID

UpdatePanelForProgress so you can identify it later. Add a Button to the update

panel that will begin a long-running operation. Give it the ID ButtonLongOperation

and the text Activate Long Operation.

4. Add a Click event handler for the button. The easiest way to create a long-running

operation is to put the thread to sleep for a few seconds, as shown here. By introduc-

ing a long-running operation here, you’ll have a way to test the UpdateProgress con-

trol and see how it works when the request takes a long time to complete.

 public partial class UseUpdateProgressControl : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void

 ButtonLongOperation_Click(object sender,

 EventArgs e)

 {

 // Put thread to sleep for five seconds

 System.Threading.Thread.Sleep(5000);

 }

}

5. Now add an UpdateProgress control to the page. An UpdateProgress control must be

tied to a specifi c UpdatePanel. Set the UpdateProgress control’s AssociatedUpdatePanelID

property to the UpdatePanelForProgress panel you just added.

6. Add a ProgressTemplate to the UpdateProgress control—this is where the content for

the update display will be declared. Add a Label to the ProgressTemplate so you will be

able see it when it appears on the page.

 <asp:UpdateProgress ID="UpdateProgress1"

 runat="server"

 AssociatedUpdatePanelID="UpdatePanelForProgress"

 DisplayAfter="100">

 <ProgressTemplate>

 <asp:Label ID="Label1" runat="server"

 Text="What's happening? This takes a long time...">

 </asp:Label>

 </ProgressTemplate>

</asp:UpdateProgress>

 Chapter 22 AJAX 503

7. Run the page to see what happens. When you press the button that executes the long-

running operation, you should see the UpdateProgress control show its content auto-

matically. This graphic shows the UpdateProgress control in action.

8. Finally, no asynchronous progress updating UI technology is complete without a means

to cancel the long-running operation. If you wish to cancel the long-running operation,

you may do so by inserting a little of your own JavaScript into the page. You’ll need to

do this manually because there’s no support for this using the Wizards. Write a client-

side script block and place it near the top of the page—just before the <html> tag.

The script block should get the instance of the Sys.WebForms.PageRequestManager. The

PageRequestManager is a class that’s available to the client as part of the script injected

by the ASP.NET AJAX server-side controls. The PageRequestManager has a method

named get_isInAsyncPostBack() that you can use to fi gure out whether the page is in the

middle of an asynchronous callback (generated by the UpdatePanel). If the page is in

the middle of an asynchronous callback, use the PageRequestManager’s abortPostBack()
method to quit the request. Add a Button to the ProgressTemplate and then assign its

OnClientClick property to make a call to your new abortAsyncPostback method. In addi-

tion to setting the OnClientClick property to the new abort method, insert return false;
immediately following the call to the abort method, as shown in the following code (insert-

ing “return false;” prevents the browser from issuing a postback).

504 Part V Services, AJAX, Deployment, and Silverlight
 <%@ Page Language="C#"

 AutoEventWireup="true"

CodeFile="UseUpdateProgressControl.aspx.cs"

Inherits="UseUpdateProgressControl" %>

<!DOCTYPE html PUBLIC

"...">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Untitled Page</title>

<script type="text/javascript">

 function abortAsyncPostback()

 {

 var obj =

 Sys.WebForms.PageRequestManager.getInstance();

 if(obj.get_isInAsyncPostBack())

 {

 obj.abortPostBack();

 }

 }

</script>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:ScriptManager ID="ScriptManager1" runat="server">

 </asp:ScriptManager>

 </div>

 <asp:UpdateProgress ID="UpdateProgress1"

 runat="server"

 AssociatedUpdatePanelID="UpdatePanelForProgress"

 DisplayAfter="100">

 <ProgressTemplate>

 <asp:Label ID="Label1" runat="server"

 Text="What's happening? This takes a long time...">

 </asp:Label>

 <asp:Button ID="Cancel" runat="server"

 OnClientClick="abortAsyncPostback(); return false;"

 Text="Cancel" />

 </ProgressTemplate>

 </asp:UpdateProgress>

 <asp:UpdatePanel ID="UpdatePanelForProgress" runat="server">

 <ContentTemplate>

 This is from the update panel

 <asp:Button ID="ButtonLongOperation"

 runat="server"

 onclick="ButtonLongOperation_Click"

 Text="Activate Long Operation" />

 </ContentTemplate>

 </asp:UpdatePanel>

 Chapter 22 AJAX 505
 </form>

</body>

</html>

 Caution Caveat Cancel: As you can see, canceling an asynchronous postback is completely a

client-side affair. Canceling a long-running operation on the client end is tantamount to discon-

necting the client from the server. Once the client is disconnected from the server, the client will

never see the response from the server.

 Also, while the client is happy that he or she could cancel the operation, the server may never
know that the client canceled. So, the big caveat here is to plan for such a cancellation by mak-

ing sure you program long-running blocking operations carefully so they don’t spin out of con-

trol. Although IIS 6 and IIS 7 should hopefully refresh the application pool eventually for such

runaway threads, it’s better to depend on your own good programming practices to make sure

long-running operations end reasonably nicely.

 ASP.NET’s AJAX support provides a great infrastructure for managing partial page updates

and for setting up other events such as regular timer ticks. Now let’s take a look at ASP.NET’s

AJAX Extender Controls.

 Extender Controls
 The UpdatePanel provided a way to update only a portion of the page. That’s pretty amaz-

ing. However, AJAX’s compelling features have a very broad reach. One of the most useful

features is the Extender Control architecture.

 Extender Controls target existing control to extend functionality in the target. While controls

such as the ScriptManager and the Timer do a lot of heavy lifting in terms of injecting lots

of script code into the page as it’s rendered, the Extender Controls often involve managing

the markup (HTML) in the resultant page.

 Here are a couple of examples to familiarize you with ASP.NET AJAX Extender Controls. The

fi rst one we’ll look at is the AutoComplete Extender.

 The AutoComplete Extender
 This extender attaches to a standard ASP.NET TextBox. As the end user types text into the

TextBox, the AutoComplete Extender calls a Web service to look up candidate entries based

on the results of the Web service call. The example borrows a component from the chapter on

caching—it’s the quotes collection containing a number of famous quotes by various people.

506 Part V Services, AJAX, Deployment, and Silverlight

 Using the AutoComplete extender

1. Add a new page to AJAXORama. Because this page will host the AutoComplete

Extender, name it UseAutocompleteExtender.

2. Add an instance of the ScriptManager control to the page you just added.

3. Borrow the QuotesCollection class from Chapter 15. Remember, the class derives from

System.Data.Table and holds a collection of famous quotes and their originators. You

can add the component to AJAXORama by creating an App_Code directory under the

project node in the Visual Studio Project Explorer, clicking the right mouse button on

the App_Code directory, selecting Add Existing Item, and locating the QuotesCollection.

cs fi le associated with the UseDataCaching example from Chapter 15.

4. Add a method to retrieve the quotes based on the last name. The method should accept

the last name of the originator as a string parameter. The System.Data.DataView class

you’ll use for retrieving a specifi c quote is useful for performing queries on a table in

memory. The method should return the quotes as a list of strings. There may be none,

one, or many, depending on the selected quote author. You’ll use this function shortly.

 using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Collections.Generic;

/// <summary>

/// Summary description for QuotesCollection

/// </summary>

public class QuotesCollection : DataTable

{

 public QuotesCollection()

 { }

 public void Synthesize()

 {

 this.TableName = "Quotations";

 DataRow dr;

 Columns.Add(new DataColumn("Quote", typeof(string)));

 Columns.Add(new DataColumn("OriginatorLastName", typeof(string)));

 Columns.Add(new DataColumn(@"OriginatorFirstName",

 typeof(string)));

 dr = this.NewRow();

 dr[0] = "Imagination is more important than knowledge.";

 dr[1] = "Einstein";

 Chapter 22 AJAX 507

 dr[2] = "Albert";

 Rows.Add(dr);

 // Other quotes added here...

 }

 public string[]

 GetQuotesByLastName(string strLastName)

 {

 List<string> list = new List<string>();

 DataView dvQuotes = new DataView(this);

 string strFilter = String.Format("OriginatorLastName = '{0}'", strLastName)

 dvQuotes.RowFilter = strFilter;

 foreach (DataRowView drv in dvQuotes)

 {

 string strQuote =

 drv["Quote"].ToString();

 list.Add(strQuote);

 }

 return list.ToArray();

 }

}

5. Add a class named QuotesManager to the Web site’s App_Code directory to manage

caching. The Caching example from which this code was borrowed stores and retrieves

the QuotesCollection during the Page_Load event. Because the QuotesCollection will be

used within a Web service, the caching will have to happen elsewhere. To do this, add

a public static method named GetQuotesFromCache to retrieve the QuotesCollection

from the cache.

 using System;

using System.Data;

using System.Configuration;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

/// <summary>

/// Summary description for QuotesManager

/// </summary>

public class QuotesManager

{

 public QuotesManager()

 {

 }

508 Part V Services, AJAX, Deployment, and Silverlight

 public static QuotesCollection GetQuotesFromCache()

 {

 QuotesCollection quotes;

 quotes =

 (QuotesCollection)HttpContext.Current.Cache["quotes"];

 if (quotes == null)

 {

 quotes = new QuotesCollection();

 quotes.Synthesize();

 }

 return quotes;

 }

}

6. Add an XML Web Service to your application. Click the right mouse button on the

project and add an ASMX fi le to your application. Name the service QuoteService.

The WebService and WebServiceBinding attributes may be removed but be sure to

adorn the XML Web Service class with the [System.Web.Script.Services.ScriptService]
attribute. That way, it will be available to the AutoComplete extender later on. The

AutoCompleteExtender will use the XML Web Service to populate its drop-down list box.

7. Add a method to get the last names of the quote originators—that’s the method that

will populate the drop-down box. The method should take a string representing the

text already typed in as the fi rst parameter, an integer representing the maximum

number of strings to return. Grab the QuotesCollection from the cache using the

QuoteManager’s static method GetQuotesFromCache. Use the QuotesCollection to get

the rows from the QuotesCollection. Finally, iterate through the rows and add the origi-

nator’s last name to the list of strings to be returned if it starts with the prefi x passed in

as the parameter. The Common Language Runtime’s (CLR) String type includes a method

named StartsWith that’s useful to fi gure out if a string starts with a certain prefi x. Note

you’ll also have to add using statements for generic collections and data (as shown).

 using System;

using System.Linq;

using System.Web;

using System.Collections;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml.Linq;

using System.Data;

using System.Collections.Generic;

[System.Web.Script.Services.ScriptService]

public class QuoteService : System.Web.Services.WebService

{

 [WebMethod]

 public string[]

 GetQuoteOriginatorLastNames(string prefixText,

 int count)

 Chapter 22 AJAX 509

 {

 List<string> list = new List<string>();

 QuotesCollection quotes =

 QuotesManager.GetQuotesFromCache();

 prefixText = prefixText.ToLower();

 foreach (DataRow dr in quotes.Rows)

 {

 string strName =

 dr["OriginatorLastName"].ToString();

 if (strName.ToLower().StartsWith(prefixText))

 {

 if (!list.Contains(strName))

 {

 list.Add(strName);

 }

 }

 }

 return list.GetRange(0,

 System.Math.Min(count, list.Count)).ToArray();

 }

}

8. Now drop a TextBox on the UseAutocompleteExtender page to hold the originator’s last

name to be looked up. Give the TextBox an ID of TextBoxOriginatorLastName.

9. Pick up an AutoComplete extender from the AJAX Toolbox and add it to the page.

Point the AutoComplete’s TargetControlID to the TextBox holding the originator’s

last name, TextBoxOriginatorLastName. Make the MinimumPrefi x length 1, the

ServiceMethod GetQuoteOriginatorLastNames, and the ServicePath quoteservice
.asmx. This wires up the AutoComplete extender so that it will take text from the

TextBoxOriginatorLastName TextBox and use it to feed the XML Web Service

GetQuoteOriginatorLastNames method.

 <cc1:AutoCompleteExtender

 ID="AutoCompleteExtenderForOriginatorLastName"

 TargetControlID="TextBoxOriginatorLastName"

 MinimumPrefixLength="1"

 ServiceMethod="GetQuoteOriginatorLastNames"

 ServicePath="quoteservice.asmx"

 runat="server">

</cc1:AutoCompleteExtender>

10. Add a TextBox to the page to hold the quotes. Name the TextBox TextBoxQuotes.

11. Update the Page_Load method. It should look up the quotes based on the name

in the text box by retrieving the QuoteCollection and calling the QuoteCollection’s

GetQuotesByLastName method.

510 Part V Services, AJAX, Deployment, and Silverlight

 using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

using System.Collections.Generic;

using System.Text;

public partial class UseAutocompleteExtender :

System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 QuotesCollection quotes =

 QuotesManager.GetQuotesFromCache();

 string[] quotesArray =

 quotes.GetQuotesByLastName(TextBoxOriginatorLastName.Text);

 if (quotesArray != null && quotesArray.Length > 0)

 {

 StringBuilder str = new StringBuilder();

 foreach (string s in quotesArray)

 {

 str.AppendFormat("{0}\r\n", s);

 }

 this.TextBoxQuotes.Text = str.ToString();

 }

 else

 {

 this.TextBoxQuotes.Text = "No quotes match your request.";

 }

 }

}

12. To make the page updates more effi cient, drop an UpdatePanel onto the page. Put the

TextBox for holding the quotes in the UpdatePanel. Put a button in the UpdatePanel.
This will cause only the TextBox showing the quotes to be updated (instead of the

whole-page refresh).

13. Add two asynchPostBack triggers to the UpdatePanel. The fi rst trigger should connect

the TextBoxOriginatorLastName TextBox to the TextChanged event. The second trigger

should connect the ButtonFindQuotes button to the button’s Click event.

 The following graphic shows the layout of the page using the AutoComplete Ex-

ten der in action.

 Chapter 22 AJAX 511

14. Run the page. As you type originator names into the TextBox, you should see a drop-

down list appear containing candidate names based on the QuotesCollection’s contents.

 The AutoComplete Extender is an excellent example of the sort of things at which ASP.NET’s

AJAX support excels. Microsoft Internet Explorer has had its own autocomplete feature built

into it for quite a while. Microsoft Internet Explorer remembers often-used names of HTML

input text tags and recent values that have been used for them. For example, when you go

online to buy an airline ticket at some point and go back to buy another one later, watch

what happens as you type in your address. You’ll very often see Microsoft Internet Explorer’s

autocomplete feature show a drop-down list box below the address text box showing the last

few addresses you’ve typed that begin with the text showing in the text box.

 The ASP.NET AutoComplete Extender works very much like this. However, the major differ-

ence is that the end user sees input candidates generated by the Web site rather than simply

a history of recent entries. Of course, the Web site could mimic this functionality by tracking

a user’s profi le identity and store a history of what a particular user has typed in to a specifi c

input fi eld on a page. The actual process of generating autocomplete candidates is com-

pletely up to the Web server, giving a whole new level of power and fl exibility to program-

ming user-friendly Web sites.

512 Part V Services, AJAX, Deployment, and Silverlight

 A Modal Pop-up Dialog-Style Component
 Another interesting feature provided by AJAX making Web applications appear more like

desktop applications is the ModalPopup Extender. Historically, navigating a Web site involves

walking down into the hierarchy of a Web site and climbing back out. When a user provides

inputs as he or she works with a page, the only means available to give feedback about the

quality of the data has been through the validation controls. In addition, standard Web pag-

es have no facility to focus the users’ attention while they type in the information.

 The traditional desktop application usually employs modal dialog boxes to focus user atten-

tion when gathering important information from the end user. The model is very simple

and elegant—the end user is presented with a situation in which he or she must enter some

data and Click OK or Cancel before moving on. After dismissing the dialog, the end user sees

exactly the same screen he or she saw right before the dialog appeared. There’s no ambigu-

ity and no involved process where the end user walks up and down some arbitrary page

hierarchy.

 This example shows how to use the pop-up dialog extender control. You’ll create a page with

some standard content and then have a modal dialog-style pop-up show right before sub-

mitting the page.

 Using a ModalPopup extender

1. Add a new page to AJAXORama to host the pop-up extender. Call it

UseModalPopupExtender.

2. As with all the other examples using AJAX controls, pick up a ScriptManager from the

toolbox and add it to the page.

3. Add a title to the page (the example here uses “ASP.NET Code of Content”). Give the

banner some prominence by surrounding it in <h1> and </h1> tags.

4. Pick up a Panel from the toolbox and add it to the page. It will hold the page’s nor-

mal content.

5. Add a Button to the Panel for submitting the content. Give the Button the ID

ButtonSubmit and the text Submit and create a button Click event handler. You’ll

need this button later.

6. Place some content on the panel. The content in this sample application uses several

check boxes that the modal dialog pop-up will examine before the page is submitted.

 <h1 >ASP.NET Code Of Conduct </h1>

<asp:Panel ID="Panel1" runat="server"

 style="z-index: 1;left: 10px;top: 70px;

 position: absolute;height: 213px;width: 724px;

 margin-bottom: 0px;">

 Chapter 22 AJAX 513

 <asp:Label ID="Label1" runat="server"

 Text="Name of Developer:"></asp:Label>

 <asp:TextBox ID="TextBox1"

 runat="server"></asp:TextBox>

 As an ASP.NET developer, I promise to

 <input type="checkbox" name="Check" id="Checkbox1"/>

 <label for="Check1">Use Forms Authentication</label>

 <input type="checkbox" name="Check" id="Checkbox2"/>

 <label for="Check2">Separate UI From Code</label>

 <input type="checkbox" name="Check" id="Checkbox3"/>

 <label for="Check3">Take Advantage of Custom Controls</label>

 <input type="checkbox" name="Check" id="Checkbox4"/>

 <label for="Check4">Give AJAX a try</label>

 <asp:Button ID="ButtonSubmit" runat="server" Text="Submit"

 onclick="ButtonSubmit_Click" />

 </asp:Panel>

7. Add another Panel to the page to represent the pop-up. Give this Panel a light yellow

background color so that you’ll be able to see it when it comes up. It should also have

the ID PanelModalPopup.

8. Add some content to the new Panel that’s going to serve as the modal pop-up. At the

very least, the popup should have OK and Cancel buttons. Give the OK and Cancel
buttons the ID values ButtonOK and ButtonCancel. You’ll need them a bit later.

 <asp:Panel ID="PanelModalPopup" runat="server"

 BorderColor="Black"

 BorderStyle="Solid"

 BackColor="LightYellow" Height="72px"

 Width="403px">

 <asp:Label

 Text="Are you sure these are the correct entries?"

 runat="server">

 </asp:Label>

 <asp:Button ID="ButtonOK"

 runat="server"

 Text="OK" />

 <asp:Button ID="ButtonCancel"

 runat="server" Text="Cancel" />

</asp:Panel>

514 Part V Services, AJAX, Deployment, and Silverlight

9. Add a script block to the ASPX fi le. You’ll need to do this by hand. Write functions to

handle the OK and Cancel buttons. The example here examines check boxes to see

which ones have been checked and then displays an alert to show which features have

been chosen. The Cancel handler simply displays an alert saying the Cancel button

was pressed.

 <script type="text/javascript">

 function onOk() {

 var optionsChosen;

 optionsChosen = "Options chosen: ";

 if($get('Checkbox1').checked)

 {

 optionsChosen =

 optionsChosen.toString() +

 "Use Forms Authentication ";

 }

 if($get('Checkbox2').checked)

 {

 optionsChosen =

 optionsChosen.toString() +

 "Separate UI From Code ";

 }

 if($get('Checkbox3').checked)

 {

 optionsChosen =

 optionsChosen.toString() +

 "Take Advantage of Custom Controls ";

 }

 if($get('Checkbox4').checked)

 {

 optionsChosen =

 optionsChosen.toString() +

 "Give AJAX a try ";

 }

 alert(optionsChosen);

 }

 function onCancel() {

 alert("Cancel was pressed");

 }

</script>

10. Pick up the ModalPopup Extender from the toolbox and add it to the page.

11. Add the following markup to the page. This will set various properties on the new

ModalPopup Extender. It will set the OkControIID property to ButtonOK and it will

set the CancelControlID property to ButtonCancel. It will also set the OnCancelScript
property to onCancel() (the client-side Cancel script handler you just wrote). Set

 Chapter 22 AJAX 515

OnOkScript=”onOk()” (the client-side OK script handler you just wrote). Finally, the fol-

lowing markup will set the TargetControlID property to be ButtonSubmit.

 <cc1:ModalPopupExtender

 ID="ModalPopupExtender1"

 OkControlID="ButtonOK"

 CancelControlID="ButtonCancel"

 OnCancelScript="onCancel()"

 OnOkScript="onOk()"

 TargetControlID="ButtonSubmit"

 PopupControlID="PanelModalPopup">

 runat="server"

 DynamicServicePath="" Enabled="True"

 </cc1:ModalPopupExtender>

 This graphic shows the layout of the page using the ModalPopup Extender within Visual

Studio 2008.

12. Run the page. When you click the Submit button, the Panel designated to be the modal

popup window will be activated (remember, the Submit button is the TargetControlID

of the ModalPopup Extender). When you dismiss the popup using OK or Cancel, you

should see the client-side scripts being executed. The following graphic image shows

the ModalPopup Extender displaying the modal pop-up panel.

516 Part V Services, AJAX, Deployment, and Silverlight

 Summary
 Without a doubt, supporting AJAX is one of the most important new features of ASP.NET.

Using AJAX in your ASP.NET applications helps you improve your Web site’s user experience

by getting rid of unnecessary postbacks and whole-page refreshes. In addition, AJAX is use-

ful for modifying certain standard server-side controls and HTML elements to change their

appearances and behaviors to seem much more “desktop-like.” Although many technologies

and tricks to improve the user interface experience have been around for a while (DHTML,

writing your own client-side script, etc.), AJAX represents the fi rst standard user interface

technology available for targeting multiple client platforms. In addition, ASP.NET wraps these

capabilities up nice and neatly so they’re very convenient to use.

 In this chapter, we saw how to use ASP.NET’s new UpdatePanel to perform partial page up-

dates. We also saw how the Timer produces regularly scheduled postbacks and is especially

useful in conjunction with the UpdatePanel. We saw how the UpdateProgress control displays

progress information asynchronously. In addition, we got to see how the AutoComplete

Extender will talk to a Web service to produce an effective “autocomplete” experience, and

we saw how the ModalPopup Extender allows you to show a Panel as though it were a modal

dialog box within a desktop application.

 Chapter 22 AJAX 517
If you feel the urge and have the gumption to look at the HTML and script produced by a

page using ASP.NET AJAX controls, it’s very interesting. You’ll also realize the power and

convenience of ASP.NET’s AJAX support. It’s better to have someone else have all that script

code packaged within a server-side control than it is to have to write it all by hand.

Chapter 22 Quick Reference
 To Do This
 Enable a Web site for AJAX Normal Web sites generated by Visual Studio 2008’s tem-

plate are AJAX-enabled by default. However, you must add a

ScriptManager to a page before using any of the AJAX server-

side controls.

 Implement partial page updating in your

page

From within an ASP.NET project, select an UpdatePanel from

the toolbox. Controls that you place in the UpdatePanel will

trigger updates for only that panel, leaving the rest of the page

untouched.

 Assign arbitrary triggers to an UpdatePanel
(that is, trigger partial page updates us-

ing controls and events not related to the

panel)

Modify an UpdatePanel’s trigger collection to include the new

events and controls. Highlight the UpdatePanel from within the

Visual Studio designer. Select the Triggers property from within

the property editor. Assign triggers as appropriate.

 Implement regularly timed automatic

posts from your page

Use the AJAX Timer control, which will cause a postback to the

server at regular intervals.

 Use AJAX to apply special UI nuances to

your Web page

After installing Visual Studio 2008, you can create AJAX-enabled

sites, and use the new AJAX-specifi c server-side controls avail-

able in the AJAX toolkit. Select the control you need. Most AJAX

server-side controls may be programmed completely from the

server. However, some controls require a bit of JavaScript on the

client end.

To Do This

 Chapter 23

 ASP.NET and WPF Content
 After completing this chapter, you will be able to

Q Understand the benefi ts of Windows Presentation Foundation (WPF) over traditional

Windowing user interfaces

Q Add WPF-based content to your Web site

Q Understand where Silverlight fi ts into the picture of Web development

 In Chapter 22, we looked at AJAX, which represents a major improvement to Web-based user

interfaces (UIs). AJAX adds many elements to Web-based user interfaces that have only been

available to desktop applications. For example, AJAX’s AutoComplete extender allows users

typing text into a TextBox to select from options generated dynamically from a Web service.

The ModalPopupExtender allows you to play content in a pane that behaves like a standard

Windows modal dialog box at run time.

 As rich as these new user interface additions are, there’s still room for even more. AJAX still

relies fundamentally on HTML, and although HTML includes a huge set of tags that render to

standard user interface elements, they stop there. WPF changes that. WPF represents a new

way to write user interfaces, and it turns standard Windows- and Web-based user interface

programming on its head.

 What Is WPF?
 Windows-based user interface programming is based on an architecture that has remained

fundamentally unchanged for more than a quarter century. Back in the early 1980s and

through today, all applications have had the same basic underpinnings. The main application

runs a message loop, picking up Windows messages off of the message queue and deposit-

ing them into a window handler. Every window is responsible for rendering its own presenta-

tion. That’s every window—all the way from the top-level window of the application down to

the most minor control on the window.

 Nearly all Windows applications you see today use the Win32 API at the lowest level—even

Visual Basic 6.0 applications. The classic Win32 API has worked well for a long time. However,

its design is beginning to show its age. Because every window and control is responsible for

its own rendering using the Win32 Graphics Device Interface—GDI, or the GDI+ interface

in the case of Windows Forms—we see fundamental user interface limitations that are built

into the design of Windows. The GDI and GDI+ interfaces have a huge array of functions.

However, it takes a lot of work to do much more than basic drawing and text rendering. That
 519

520 Part V Services, AJAX, Deployment, and Silverlight
is, special effects such as transformations, transparency, and video play integration are dif-

fi cult to accomplish using the current Windows graphics interface. Windows does support a

richer graphics-based interface named Direct X; however, using it is often beyond the scope

of most Windows applications and normally reserved for game programmers.

 The limitations of the classic Windows API have prompted Microsoft to develop a new pro-

gramming interface. It’s called the Windows Presentation Foundation (WPF).

 WPF makes programming special effects for a Windows applications (including presenting

Web content—as we’ll see here) very approachable. The WPF libraries comprise a number of

classes that work together very much like the Windows Forms classes work together (on the

surface, at least—underneath the goings-on are very different from Windows Forms).

 WPF represents a very rich programming interface for developing a user interface. Here’s a

short list of the kinds of features available through WPF (this is a broad summary and is not

exhaustive):

Q User interface elements that may be modifi ed in all kinds of ways much more easily

than can be done with Win32 and subclassing

Q Paths, shapes, and geometries for drawing two-dimensional presentations

Q Transforms (scale, translate, rotation, and skewing) that allow consistent and uniform

modifi cations to all user interface elements

Q Ability to manage the opacity of individual elements

Q Built-in layout panels

Q Brushes—image, video, and drawing brushes for fi lling areas on the screen

Q Animations

 WPF applications arrange the UI elements using layout panels. Rather than relying on ab-

solute positioning (as is the case for Win32 applications) or fl ow layout (as is the case for

ASP.NET pages), WPF introduces a number of layout options including:

Q Grid Elements are placed in a table

Q StackPanel Elements are stacked vertically or horizontally

Q Canvas Elements are positioned absolutely

Q DockPanel Elements are positioned against the sides of the host

Q WrapPanel Elements are repositioned to fi t when host is resized

 The example we’ll see a bit later uses the Canvas.

 A typical WPF application is crafted from fi les in very much the same way as an ASP.NET ap-

plication. A stand-alone WPF application includes a main application object (that runs the

 Chapter 23 ASP.NET and WPF Content 521
message loop) and one or more Windows (a browser-based WPF application is made up of

Pages). WPF application components are typically composed from a markup fi le—just like ASP.

NET pages. WPF layouts are defi ned using eXtensible Application Markup Language (XAML).

XAML fi les describe a WPF layout’s logical tree—a collection of WPF user interface elements.

A WPF application is made up of Common Language Runtime (CLR) classes underneath the

façade of markup language—very like ASP.NET’s object model. XAML fi les represent instruc-

tions for constructing a logical tree of visual elements. In the case of a stand-alone Windows

application, the logical tree exists within a top-level window. In the case of a browser-based

application, the logical tree exists within a browser pane. The following is a short XAML list-

ing that displays “Hello World” within a button, hosted in a browser pane:

<Page

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >

<Button Height="100" Width="100">Hello World</Button>

</Page>

The code listed here doesn’t do a whole lot, but it provides an example of the fundamental

structure of a WPF page as expressed in XAML. When run, the XAML you see listed starts a

browser session and displays a button with the string “Hello World” as its content (provided

the XAML plug-in is installed). In a real application, instead of containing a single button with

a string, the top-level WPF node can contain elaborate layouts using the different layout

panels available in WPF. We’ll see an example of that soon.

How Does It Relate to the Web?
What does this all mean for Web applications? Microsoft Internet Explorer (as well as other

browsers running on Windows) is based on the classic Windows architecture. Browsers are

responsible for rendering HTML using the graphic interface available to Windows—the

Graphics Device Interface (GDI). Consequently, accomplishing special effects via browsers

(and normal HTML) is just as diffi cult as with normal Windows programs.

Web programming is based on submitting HTTP requests to a server, processing the re-

quest, and sending the response back to the client. In that sense, any user interface–specifi c

responses are constrained to whatever can be expressed in HTML. The Web is dynamic and

HTML is basically a document technology.

 What if there were another markup language that provided more than just simple tags that

could be interpreted by an HTML browser? Well, that’s what XAML is when used within the

context of a Web application.

<Page

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >

<Button Height="100" Width="100">Hello World</Button>

</Page>

522 Part V Services, AJAX, Deployment, and Silverlight
 Remember the previous code snippet? Figure 23-1 shows how it appears in Internet Explorer

when you load the XAML fi le into the browser (simply double-click the fi le name in Windows

Explorer).

 FIGURE 23-1 Button rendered as specifi ed by XAML

 When adding WPF-based content directly to a Web site, you have three options: presenting

the content through loose XAML fi les, creating an XAML-based Browser Application (XBAP),

or using Silverlight.

 Loose XAML Files
 As you saw just a moment ago, if you place a properly formatted XAML fi le within your site

and make it available through a Web server, any browser capable of using the XAML plug-in

(such as Microsoft Internet Explorer) will pick it up and render it. This is one option for pre-

senting WPF-based content from a Web site. This technique is useful for rendering semidyn-

amic content—that is, for rendering anything expressible using pure XAML fi les.

 The WPF programming model marries XAML layout instructions with accompanying code

modules—in very much the same way ASP.NET does. Events generated from user interface

 Chapter 23 ASP.NET and WPF Content 523
elements are handled within the accompanying code. Deploying content as loose XAML fi les

precludes adding event handlers and accompanying code.

 However, WPF elements are dynamic in the sense that they may be animated, and user in-

terface elements may be tied together using only XAML. That’s why WPF content expressed

only through XAML is semidynamic. You can hook up some interactive elements using only

XAML, but there’s a limit. For example, you may render a list of names of images in a list box

and allow users to select an image to zoom all through XAML. You may attach slider con-

trols to user interface elements so the end user can change various aspects of the elements

through the slider. However, you may not implement event handlers for controls—that re-

quires deploying a WPF application as an XBAP application.

 XBAP Applications
 XBAPs represent another way to deploy WPF content over the Web. They’re a bit more com-

plex than loose XAML fi les. In addition to expressing layout, XBAP supports accompanying

executable code for each page. When you deploy a WPF application over the Web, the client

gets the WPF visual layout and the accompanying code downloaded to the client machine.

Events occurring within the XBAP application are handled on the client side.

 The upside of deploying an application as an XBAP application is that it works in very much

the same way that a Windows desktop application works. For example, the application can

handle mouse-click movements and can respond to control events all at the client side.

 Although XBAP applications are not related directly to ASP.NET, XBAP content may be hosted

within ASP.NET-served pages in the same way that loose XAML content may be served. That is,

you may make redirects to XBAP fi les or host XBAP fi les from within <iframe> HTML elements.

 Visual Studio includes a Wizard for generating XBAP applications. Using XBAP, you may

present WPF content. In addition, the user interface elements contained in the WPF con-

tent can respond to events and messages the same way as any other desktop application.

When browsers surf to your XBAP application (which will ultimately be deployed via Internet

Information Services—IIS), they will have a very desktop-like experience in terms of user in-

terface rendering and responsiveness, even though the application is running in a browser.

 WPF Content and Web Applications
 WPF content may be served up from an ASP.NET application in much the same way ASP.NET

serves up other content. You may include loose XAML fi les in a Web application, or you may

host some specifi c WPF content within an <iframe> HTML element.

524 Part V Services, AJAX, Deployment, and Silverlight

 Add XAML content to a site

 Here’s an exercise illustrating how WPF content may be used within an ASP.NET application.

1. Create a new Web site project in Visual Studio. Name the project XAMLORama. Make it

a File System site.

2. Use Visual Studio to add a new text fi le to the project. Click the right mouse button on

the XAMLORama project node within Visual Studio and select Add New Item. Select

a text fi le type from the templates.

3. Rename the fi le so that it has an XAML extension. This fi le will show a paper airplane

drawing, so name the fi le PaperAirplane.xaml.

4. Add some XAML content to the fi le, starting by defi ning the top-level layout node.

Include the following XML namespaces and make the window 750 units wide:

 <Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="750">

</Page>

 All WPF layouts begin with a top-level node. In this case, the node is a Page so that it

will show up in the client’s browser.

5. Add a Grid to the page, and add two row defi nitions and two column defi nitions.

 <Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="750">

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition/>

 <RowDefinition Height="100"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition Width="25"/>

 </Grid.ColumnDefinitions>

 </Grid>

</Page>

6. Now add WPF elements to the grid. Add a Canvas to the upper left corner of the Grid,

and make the Background SkyBlue. Add two Slider controls to the Grid, too. The fi rst

Slider will control the X position of the airplane. Name the Slider sliderX. Put the slider

into row 1, and use the ColumnSpan to stretch the Slider across two columns. The maxi-

mum value of this slider should be 500. The second Slider should be oriented vertically

and should occupy column 1 in the Grid. Use the RowSpan to stretch the Slider across

both rows. This slider will control the rotation of the airplane. Name this Slider
sliderRotate. Its maximum value should be 360.

 Chapter 23 ASP.NET and WPF Content 525

 <Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="750">

 <Grid

 <!-- Grid column and row definitions are here... -->

 <Canvas Background="SkyBlue" Grid.Row="0"

 Grid.Column="0">

 </Canvas>

 <Slider x:Name="sliderRotate" Orientation="Vertical"

 Grid.Row="0"

 Minimum="0" Maximum="360"

 Grid.Column="1"></Slider>

 <Slider x:Name="sliderX" Maximum="500"

 Grid.Column="0" Grid.Row="1"

 Grid.ColumnSpan="2"></Slider>

 </Grid>

</Page>

7. Now add the airplane and connect it to the sliders using XAML data binding. Here’s

how. Create the airplane drawing using a WPF Path. The Path draws a series of line seg-

ments using a specifi c pen. Make the Stroke Black and the StrokeThickness 3. The Path

data should connect the following points. Move the cursor to 0,0 and then draw a line

to 250,50, and then to 200,75 to 0,0. Then move the cursor to 200,75 and draw a line to

190,115 and another line to 180,85 to 0,0. Then move the cursor to 180,85 and draw a

line to 140,105 and then to 0,0. Finally, move the cursor to 190,115 and draw a line to

158,93. Set the Path’s relationship to the Top of the Canvas to be 200. Bind the Path’s

relationship to the Left of the Canvas to sliderX ’s Value. Finally, add a RenderTransform

to the Path and include a RotateTransform. Bind the RotateTransform’s Angle to

sliderRotate’s Value. Set the Path’s RenderTransformOrigin to .5, .5. Here’s the Path code:

 <Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="750">

 <Grid>

 <!-- Grid column and row definitions are here... -->

 <Canvas Background="SkyBlue" Grid.Row="0"

 Grid.Column="0">

 <Path Stroke="Black" StrokeThickness="2" Fill="White"

 Data="M0,0 L250,50 L200,75 L0,0 M200,75 L190,115 L180,85

 L0,0 M180,85 L140,105 L0,0 M190,115 L158,93"

 RenderTransformOrigin=".5, .5"

 Canvas.Top="200"

 Canvas.Left="{Binding ElementName=sliderX,Path=Value}" >

 <Path.RenderTransform>

 <RotateTransform Angle=

 "{Binding ElementName=sliderRotate,Path=Value}"/>

 </Path.RenderTransform>

 </Path>

 </Canvas>

 <!—Sliders go here... -->

 </Grid>

</Page>

526 Part V Services, AJAX, Deployment, and Silverlight

 After setting up the Canvas, the Path, and the Sliders in the grid, you should see it ap-

pear like this in Visual Studio:

8. Now run the page. Because Visual Studio doesn’t allow you to run loose XAML fi les

directly, you’ll need to navigate from the default page. Add a Hyperlink to the Default

.aspx page and set the NavigationUrl property to PaperAirplane.xaml. Surf to the de-

fault page and click on the hyperlink that loads the XAML fi le in the browser. It should

appear like this:

 Chapter 23 ASP.NET and WPF Content 527

9. Experiment with moving the Sliders around. Because the vertical Slider controls the

angle of rotation, moving it up will cause the airplane to spin in a clockwise direction.

Because the horizontal Slider is connected to the Path’s Canvas.Left property, moving

the horizontal Slider will move the plane along the X axis, like this:

10. Now integrate the new WPF content with some HTML. Add a new Page to the

XAMLORama fi le by clicking the right mouse button on the XAMLORama node within

the Solution Explorer and adding a new Web page. Name the page PaperAirplane.aspx.

Add an <iframe> tag to the page in between the <div> tags Visual Studio provides you

with. Set the <iframe> height to 500 and the width to 750. Finally, set the <iframe> src

to PaperAirplane.xaml.

 <%@ Page Language="C#" AutoEventWireup="true" CodeFile="PaperAirplane.aspx.cs"

 Inherits="PaperAirplane" %>

<!DOCTYPE html PUBLIC "...">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

528 Part V Services, AJAX, Deployment, and Silverlight

 <iframe height="500"

 width="750"

 src="paperairplane.xaml"></iframe>

 </div>

 </form>

</body>

</html>

11. Run the page. The PaperAirplane.xaml content will appear in a frame within the page.

The XAML content will have the same functionality within the frame as it did when run

in the browser:

 Because this is rendered from a normal ASP.NET page, you could include ASP.NET

server controls along with the WPF content.

 The previous example illustrates how it’s possible to integrate HTML with XAML-based con-

tent. Although this lies somewhat outside of the normal ASP.NET pipeline, XAML-based WPF

content is still useful in many cases. A full investigation of WPF is beyond the scope of this

book. WPF and XAML offer entirely new ways to present content to the end user. Because it

is such new technology, the different ways in which it may be exploited are only now being

invented and discovered.

 Chapter 23 ASP.NET and WPF Content 529
 What about Silverlight?
 As a Web developer, you’ve probably been unable to avoid hearing the buzz about

Microsoft’s Silverlight product. Until now, the only effective way to produce dynamic Web

content has been through Macromedia Flash. Flash is a plug-in for rendering dynamic con-

tent over the Web (i.e., animations). However, with the advent of WPF and its dynamic con-

tent capabilities, we now have a markup technology that rivals Flash in raw capability if we

can fi nd a way to deliver it to the browser. Although other dynamic content technologies

have certainly worked, they’ve had some serious shortcomings as far as the developer experi-

ence is concerned. Microsoft Silverlight changes this.

 Microsoft Silverlight is a platform-independent WPF rendering engine. Without Silverlight,

the only way to render WPF content within a browser is to run Microsoft Internet Explorer or

the Firefox browser with the XAML plug-in. Silverlight is packaged as an ActiveX Control for

Microsoft client platforms. For example, the Apple Safari browser is supported by Silverlight.

 Silverlight enables animations and rich two-dimensional graphics and video playback. Silverlight

applications are not quite as rich as a full-fl edged WPF desktop application or an XBAP applica-

tion, but they provide a richer programming model than is available through AJAX.

 The arenas in which Silverlight will probably be most used include multimedia applications,

applications requiring rich animations (such as page-turning simulations), and any other ap-

plications requiring the richness of the most modern user interface technologies available.

 A Silverlight page consists of four basic parts. First is an HTML fi le describing the overall

page. Second, the Silverlight software development kit includes a fi le named Silverlight.js
that’s used to activate the Silverlight control and get things going. Third, a Silverlight applica-

tion includes an XAML fi le for providing WPF-based layout instructions. Finally, a Silverlight

application includes several JavaScript code fi les for handling client-side events.

 Hot on the heels of Silverlight version 1.0 is Silverlight version 2.0. Silverlight 2.0 includes a

cross-platform CLR engine and support for C#, threading support, Web service client proxy

support, and it targets .NET 3.5 and Visual Studio 2008.

 Summary
 ASP.NET made major improvements to the craft of Web application programming. With the

addition of AJAX and Windows Communication Foundation (WCF) into the already rich ASP.

NET programming toolset, Web applications for the Microsoft platform are becoming nearly

indistinguishable from desktop Windows applications. However, Web-based programming

is still fundamentally document based. Web applications are dynamic in that an application

can tailor responses to suit the client’s request. However, the responses are still in the form of

HTML (or XML in the case of a Web service). WPF changes this.

530 Part V Services, AJAX, Deployment, and Silverlight
WPF is a new user interface technology that turns Windows programming on its head. For

example, it removes the traditional one window handle per user interface element rule. This

makes applying stunning visual effects more approachable than with earlier technologies

(that is, OpenGL and DirectX). In addition, WPF-style programming draws a clear distinction

between visual layout and program logic (in much the same way aspx fi les do) paving the

way for robust design tools tailored toward Human Computer Interface professionals. Finally,

the ability to integrate WPF content into Web sites is constantly improving (for example, with

the advent of Silverlight). These features combine to open the way for a revolution in rich

content. WPF may be integrated into Web sites in several ways. Web sites may expose WPF-

based content through loose XAML fi les. In addition, WPF applications may be deployed over

the Web using XBAP technology. Finally, Microsoft Silverlight introduces a platform-

independent way to render rich content expressed via XAML.

Chapter 23 Quick Reference
To Do This
Add an XAML fi le to your site Click the right mouse button on the project node within Visual Studio’s

Solution Explorer. Choose Add New Item. Select Text File from the

available templates. Be sure to name the fi le with an .xaml extension.

 Declare a Page within the XAML fi le At the top of the fi le, add a beginning <Page> tag and an ending </Page>

tag. Using WPF within XAML requires the standard WPF namespace

“http://schemas.microsoft.com/winfx/2006/xaml/presentation” and the

keywords namespace “http://schemas.microsoft.com/winfx/2006/xaml”

(which is often mapped to “x”).

 Add a Canvas to the Page Use the <Canvas> opening tag and the </Canvas> closing tag. Nest

objects you’d like displayed in the canvas between the opening and

closing tags.

 Add content to the Canvas Nest objects you’d like to appear on the canvas between the <Canvas>

opening tag and the </Canvas> closing tag. Assign positions within

the canvas using the Canvas.Top and Canvas.Right properties.

 Add a Grid to a Page Declare a <Grid> opening tag and a </Grid> closing tag on the page.

Use the Grid’s RowDefi nitions and the Grid’s ColumnDefi nitions proper-

ties to defi ne the rows and columns.

 Add content to the Grid Nest objects you’d like to appear on the canvas between the <Grid>

opening tag and the </Grid> closing tag. Assign positions within the

grid using the Grid.Row and Grid.Column properties.

To Do This

 Chapter 24

 How Web Application Types
Affect Deployment

 After completing this chapter, you will be able to

Q Recognize ways the Visual Studio project models affect deployment

Q Build a Web setup utility

 The past 23 chapters focused on how the various features of ASP.NET work. A major theme

within ASP.NET has always been to solve the most common use cases as far as developing

Web sites is concerned. We saw ASP.NET’s

Q Rendering model, which breaks down page rendering into small manageable pieces via

server-side controls

Q Support for data binding, easing the task of rendering collections

Q Login controls covering the most common login scenarios

Q Session state that makes tracking users manageable

Q Navigation and site map support

Q XML Web Services as well as Windows Communication Foundation (WCF)-based Web

site service support

Q Support for creating a common look and feel for an application through Master Pages

and Themes

Q Support for AJAX-style programming

 After building a feature-rich application that streamlines your company operations or drives

customers to your business, you need to be able to deploy it and manage it effectively. That’s

the topic of this chapter—how the various Visual Studio models affect your deployment

strategy. In addition, we’ll look at building a Web setup project.

 Visual Studio Projects
 Visual Studio gives you several options when building a Web site project (as opposed to

earlier versions that depended on Internet Information Services—IIS). These project models

include the HTTP project, the FTP project, and the fi le project. Here’s a summary of how each

model works.
 531

532 Part V Services, AJAX, Deployment, and Silverlight
 HTTP Project
 The HTTP project is most like the fi rst ASP.NET project development model available from

Visual Studio (that is, pre–Visual Studio 2005). Using the HTTP project model, Visual Studio

creates a virtual directory under IIS and uses IIS to intercept requests during development

time. Under this model, the solution fi le (the .sln fi le) resides in a directory specifi ed under

Visual Studio’s project settings directory. The source code for the project is stored in the IIS

virtual directory (that is, \Inetpub\wwwroot).

 You may either have Visual Studio create a virtual directory for you or you may create a vir-

tual directory ahead of time. You may store the code for your Web site in any folder. The

virtual directory just needs to point to that location.

 Use this option if you want to work as closely as possible with IIS. Using an IIS Web site during

development lets you test the entire request path as it will run in production (not just the path

through the Visual Studio integrated Web server). This is important if you want to test an ap-

plication that leverages IIS security or requires ISAPI fi lters, application pooling, or some other

specifi c IIS features to run effectively. One other reason to create a local Web site is to test your

application against a local version of IIS. Using IIS as part of the development environment

makes it easier to test these things. Of course, the downside to this approach is that IIS must be

installed on your machine (it’s not installed automatically on Windows XP—you have to take a

deliberate step to install it). Having IIS on your machine may also compromise security. Many

company policies prohibit you from running IIS on your development machine for this reason.

 FTP Project
 The FTP project is meant for those projects you want to manage remotely through an FTP

server. For example, this is a good option if you use a remote hosting service to host your

Web site. The FTP site option represents a reasonable means of getting fi les from your devel-

opment environment to the hosting site.

 When creating this type of site, Visual Studio will connect to any FTP server for which you

have fi le and directory read and write privileges. You then use Visual Studio to manage the

content on the remote FTP server.

 You might use this option to test the Web site on the live-deployed server where it will actu-

ally be deployed.

 File System Project
 The fi le project is probably the most developer-oriented project (most of the examples in

this book use the File System–style Web site). File System projects rely on the Web server

integrated with Visual Studio instead of IIS. When you specify a fi le system Web site, you

 Chapter 24 How Web Application Types Affect Deployment 533
may tell Visual Studio to put it anywhere on your fi le system or in a shared folder on another

computer.

 If you don’t have access to IIS, or you don’t have administration rights to the system on which

you’re developing, then you’ll want to create a File System–based Web site project. The site

runs locally but independently of IIS. The most common scenario in this case is to develop

and test a Web site on the fi le system. Then, when it comes time to expose your site, simply

create an IIS virtual directory and point it to the pages in the fi le system Web site.

 Another aspect of developing ASP.NET Web applications, aside from selecting the proper proj-

ect type, is deciding whether or not to precompile your Web app. By default, Visual Studio does

not precompile your Web application. Once you’ve developed a site using Visual Studio, you

may decide to precompile it for performance reasons. Let’s look at this option next.

 Precompiling
 The earliest versions of Visual Studio automatically built ASP.NET applications when you se-

lected the Build, Build Solution menu item. All the source code (the VB and the CS fi les) was

compiled into a resulting assembly named the same as the project. This precompiled assem-

bly went into the project’s Bin directory and became part of the fi les used for deployment.

ASP.NET will still precompile an application for you. However, now you have two choices with

regard to recompilation—using a virtual path (for applications already defi ned in IIS) and us-

ing a physical path (for sites that live on the fi le system). In addition, you must be deliberate

about precompiling. The two precompilation options are precompile for performance and

precompile for deployment. Precompiling a Web site involves using command line tools.

 Precompiling for Performance
 The fi rst option is also known as “precompiling in place.” This is useful for existing sites for

which you want to enhance performance. When you precompile the source code behind

your site, the primary benefi t is that ASP.NET doesn’t have to run that initial compilation

when the site is hit for the fi rst time. If your site requires frequent updates to the code base,

you may see a small amount of performance improvement.

 To precompile an IIS-based site in place, open a Visual Studio command window. Navigate

to the .NET directory on your machine (probably Windows\Microsoft.Net\Framework\

<versionnumber>). In that directory is a program named aspnet_compiler. Execute the

aspnet_compiler program, with the name of the Web site as known by IIS following the –v

switch. For example, if IIS has a virtual directory named MySite, the following command line

will build it. The precompiled application ends up in the Temporary ASP.NET Files directory

under your current .NET directory.

 aspnet_compiler -v MySite

534 Part V Services, AJAX, Deployment, and Silverlight

 If the Web site is a fi le system Web site without an IIS virtual directory, use the –p command

line parameter to specify the physical path.

 This compilation option precompiles the code and places it in the Bin directory for the

application.

 Precompiling for Deployment
 Compiling for deployment involves compiling the code for a site and directing the output

to a special directory from which it may be copied to the deployment machine or used in a

setup project (as we’ll see momentarily). In this case, the compiler produces assemblies from

all ASP.NET source fi les that are normally compiled at run time. That includes the code for the

pages, source code within the App_Code directory, and resource fi les.

 To precompile a site for deployment, open a Visual Studio command window. Navigate to

the .NET directory. Run the aspnet_compiler command line program, specifying the source

as either a virtual path or a physical path. Provide the target folder following the input direc-

tory. For example, the following command builds the code in the MySite virtual directory and

puts the resulting compiled version in C:\MySiteTarget:

 aspnet_compiler -v MySite c:\MySiteTarget

 If you add a –u command line parameter at the end of the command line, the compiler will

compile some of the code and leave the page code fi les to be compiled just in time.

 Once the code is compiled, one of the options you have is to build a Web setup program.

The following example illustrates creating a Web setup program.

 Creating a Web site installer

1. Start by creating a new site. Make it an HTTP site. Name the site DeployThis.

2. Create some content for the site. For example, add a few pages to the site, or borrow

content from an earlier example. What’s important here is that there is at least a page

(some content), not what the content entails.

3. Precompile the site for deployment. Tell the aspnet_compiler to use the DeployThis

virtual directory as the source and to direct it to a target holding directory. The fol-

lowing graphic illustrates the command line. Use the –f option to overwrite the target

directory, if existing fi les are found there. Use the –u option at the end of the com-

mand line to instruct the compiler to make an updateable Web site. By making this an

updateable site, you can modify the site on the remote server. That is, the site fi les are

copied to the target directory. Any changes made in the fi les on the server will be re-

fl ected when the site is run.

 aspnet_compiler -v DeployThis c:\deploythis -f -u

 Chapter 24 How Web Application Types Affect Deployment 535

4. After the compiler runs, you’ll have a target directory full of compiled code. The follow-

ing graphic illustrates the results of the compilation.

536 Part V Services, AJAX, Deployment, and Silverlight

5. Add a second project to the solution. Make it a Web Setup Project, as shown in the fol-

lowing graphic. Name the project SetupDeployThis.

6. Visual Studio will generate a new setup project for you. You should see a screen like the

following after Visual Studio is done churning.

 Chapter 24 How Web Application Types Affect Deployment 537

7. Click the right mouse button on the Web Application Folder to add the Web fi les. Navigate

to the target directory containing the site code. This will be the precompile directory.

8. Add the Web fi les from the precompile directory by clicking Open.

538 Part V Services, AJAX, Deployment, and Silverlight

9. Add the DLLs to the Bin directory by clicking the right mouse button on the Bin node

to get the File Open dialog box. Then search for and select all the fi les in the target

directory’s Bin directory. Click Open.

10. After adding all the fi les, the directory structure should look like this. The Bin directory

will have the site DLLs.

 Chapter 24 How Web Application Types Affect Deployment 539

11. The Setup project properties include a prerequisite dialog box that you may review

to ensure that certain prerequisites are installed on the end computer. To access the

Prerequisites dialog box, click the right mouse button on the SetupDeployThis

project to access the project’s master property page collection. In the main property

page (Build), click the Prerequisites button. The following graphic illustrates the pre-

requisites dialog box. Notice that the .NET Framework box is checked, as is Windows

Installer. Assign any other prerequisites that may be required (none in this case) and

click OK.

12. Click the right mouse button on the SetupDeployThis project and select Build. The

resulting MSI fi le goes in the debug directory of the project.

13. Try running the Microsoft Installer fi le (the MSI fi le). The MSI fi le will guide you through

several steps as it installs the Web site, as shown in the following graphics.

540 Part V Services, AJAX, Deployment, and Silverlight

 Chapter 24 How Web Application Types Affect Deployment 541

14. Now examine IIS. Refresh the Default Web Site node and look for the DeployThis virtual

directory (unless you named it something else during the install process). IIS will have

the DeployThis site.

15. After the site is installed, you can surf to it as you can any other site.

542 Part V Services, AJAX, Deployment, and Silverlight

 Setting up installation packages is a good way to distribute a Web application across a set

of servers. You can push the MSI fi le to the server as necessary and run it. However, using

an installation package isn’t the only way to distribute the application. You may also literally

copy the entire directory from a development machine to the server (XCOPY deployment), or

you may use some other fi le transfer mechanism to move the bits. The next exercise demon-

strates Publishing a Web site.

 Note The term XCOPY deployment refers to the installation strategy available during the late

1980s, when MS-DOS 3.x–5.x ran on most systems. The basic idea was to copy an entire directory

structure and place it on the target machine, which you could do with the old MS-DOS xcopy

command. The directory structure in those days was pretty isolated and transferring entire direc-

tory structures was reasonable.

 Publishing a Web Site
 A Web setup project is useful for distributing your site to several servers via distributable me-

dia (a CD or DVD). Another option for deploying your site is to Publish it using Visual Studio.

 Chapter 24 How Web Application Types Affect Deployment 543

There’s an option within Visual Studio for publishing the site under the Build menu. Here’s an

exercise showing how to publish a Web site.

 Publishing a Web site

1. Start by creating a new site. Make it a File System–type site. Name the site PublishMe.

2. Add a Master page to the site.

3. Delete the Default.aspx page from the site. Add a new Web page to the site and select

the new master page. Visual Studio will name the new page Default.aspx.

4. Then add two more pages to the site (selecting the master page). Name the pages

Page1.aspx and Page2.aspx.

5. Put labels on each of the pages to distinguish them. Make Page1’s label say This is
Page 1 and make Page2’s label say This is Page 2. Make the label for Default.aspx say

This is the Home page.

6. Add a menu to the master page so that users may nagivate through the page. Edit

each of the menu items. The fi rst menu item’s Text property should say Home and

the NavigateUrl property should point to Default.aspx. The second menu item’s Text
property should say Page 1 and the NavigateUrl property should point to Page1.aspx.

The third menu item’s Text property should say Page 2 and the NavigateUrl property

should point to Page2.aspx.

 Go to Visual Studio’s Build menu and select Publish. Visual Studio will show this dialog box:

7. Type the name of the directory into which you’d like Visual Studio to place the fi les.

After this step is complete, you may create an IIS virtual directory that points to the

newly created directory and start surfi ng. Keep in mind that the published location

need not be on your local system. However, to publish a Web site in this manner re-

quires you to have access permissions on the remote server, and in the case of HTTP

544 Part V Services, AJAX, Deployment, and Silverlight
publishing, Front Page Extensions must be present and correctly confi gured on the re-

mote server as well.

 8. Click OK to publish the site.

Summary
In this chapter, we looked at how the various Visual Studio projects affect the deployment

strategy for your Web site. Visual Studio provides several models, including

Q HTTP sites that use IIS on the development machine

Q File system sites that exist in the development fi le system, using the Web server built

into Visual Studio

Q FTP sites, where the bits are transferred to the target server via FTP

In addition to copying the software directly to the deployment machine, you may also pre-

compile the application before copying it. By precompiling, you save the fi rst end user to hit

your site the few seconds it takes to compile the site. Of course, the subsequent hits take a

much shorter time. However, if you foresee the site churning a lot, it may be worthwhile to

precompile for performance. In addition, you may precompile the application so as to deploy

it using an installer or a copying technique.

Chapter 24 Quick Reference
To Do This
Work on a Web site locally without going

through IIS

Create a File System Web site.

Work on a Web site using IIS Create an HTTP Web site.

Work on a Web site by copying fi les over to the

server FTP

Create an FTP site.

Precompile for performance or for deployment Use the aspnet_compiler utility to precompile the code or

publish it using Visual Studio.

Publish a Web application Use Visual Studio’s Build, Publish option. Visual Studio will

push the fi les to the directory you specify (which may be an

IIS virtual directory.

 Create an Installer for your Web application Add a second project to your solution.

Make it a Web Setup Project.

Add the necessary fi les to the project to make it work.

Build the installer.

To Do This

Glossary

ADO.NET (ActiveX Data Objects for .NET)
Libraries providing Managed Code

access to data services within

Microsoft .NET.

AJAX (Asynchronous JavaScript and XML)
A Web-based programming style in

which requests for data from a Web

Server are made out of band rather

than through the normal HTTP request

mechanism.

ASP.NET (Active Server Pages for .NET)
Libraries for handling incoming HTTP

requests running under Microsoft .NET.

Assembly The fi les that make up a

Microsoft .NET application. This includes

the manifest and deployment informa-

tion as well as the MSIL code to be ex-

ecuted by the runtime.

Authentication The process of proving an

end user’s identity.

Authorization The process of allowing or

disallowing system features based on a

specifi c user’s identity.

C# An object-oriented and type-safe

programming language supported

by Microsoft for use with the .NET

framework.

Caching A widely used performance-

enhanc ing technique in which commonly

used data or content that is expensive

to create is stored in memory for quick

access.

Client An application requesting informa-

tion or services from a server.

CLR (Common Language Runtime) The

.NET infrastructure responsible for

executing the MSIL code generated by

multiple language syntaxes.

Handler The component within the

ASP.NET pipeline that actually handles

an HTTP request.

HTML (HyperText Markup Language)
Commonly used document layout lan-

guage that supports hyperlinks.

HTTP (HyperText Transfer Protocol) A

standard Internet protocol used to trans-

port content and control information

across the World Wide Web (WWW).

HttpApplication A class within the ASP.NET

framework representing the central ren-

dezvous point for the application.

HttpContext A class within the ASP.NET

framework representing the entire state

of an HTTP request, including references

to session state and the Response object.

Internet A collection of arbitrary hetero-

geneous computers loosely connected

throughout the world.

Managed Code Code executed by the CLR.

Master Page A type of ASP.NET Web page

that defi nes the common look and feel

for a set of pages.

Method A member function defi ned within

a .NET class or struct.

Module Within the context of ASP.NET,

modules represent a way to do pre-

and postprocessing within the ASP.NET

pipeline.
 545

546 Glossary
MSIL (Microsoft Intermediate Language)
Machine-independent representation of

executable code resulting from compiling

a language such as C# or Visual Basic.

Property A CLR convention for exposing a

class or structure’s member data (implicit

getters and setters for the member data).

Request A class within the ASP.NET frame-

work representing state coming from

the client.

Response A class within the ASP.NET frame-

work representing state going to the

client.

Server A program for providing information

for clients.

Session State A state that is associated with

a specifi c client.

SOA (Service-Oriented Architecture) An

approach to software architecture in

which information is processed over a

loosely connected network.

SOAP A commonly used network wire for-

mat for Web Services.

WCF (Windows Communication
Foundation) Microsoft technology for

unifying Web service–style remoting and

.NET-style remoting.

Web Colloquial term representing all the

nodes on the Internet.

Web Service A program running through a

Web server typically providing informa-

tion and services.

WPF (Windows Presentation Foundation)
High-performance graphics and pre-

sentation technology useful for writing

Windows programs and presenting con-

tent in the browser.

XML (eXtensible Markup Language)
A fl exible markup language useful

for describing any type of structured

data in a platform-independent

way.

Index
A
access rules, 224–225
Accordion extender, 485
AcquireRequestState event, 401
Active Data Objects (ADO).NET,

241–242, 244
ActiveX controls, 62–63
add attribute, 418
Add New Item, in Visual Studio,

53–54
address, Windows Communication

Foundation, 460
ADO.NET, 241–242, 244
AJAX. See Asynchronous Java And

XML programming model
(AJAX)

AlwaysVisibleControl extender, 485
Animation extender, 485
anonymous authentication, 208. See

also authentication
anonymous personalization, 289–290.

See also per sonalization
anonymous user profi les, 289. See

also user profi les
AppearanceEditorPart control, 149,

154
AppendCacheExtension, 360
Application class, 395
application pooling, 31
application settings management,

202
application state

caveats, 399
management, 397–399

application tracing, 379–383
Application_End event, 400–401
Application_Error event, 400
applications

debugging in Visual Studio,
383–386

desktop vs. Web-based, 3
Web parts, 147

Application_Start event, 400–401
application-wide events, 395, 396,

399–404
ASP (classic)

consistency considerations in, 169
dynamic content, 61
processing in, 46
Response object in, 32
script blocks in, 35

ASP.NET 1.x
code style, 43–44
confi guration management, 194

ASP.NET architecture, 35–40
ASP.NET compilation model, 41–42
ASP.NET Web Site, in Visual Studio,

52
.aspx page, compiling, 41
assemblies, viewing, 41–42
Asynchronous Java And XML

programming model (AJAX)
Accordion extender, 485
AlwaysVisibleControl extender,

485
Animation extender, 485
AutoComplete extender, 485,

505–511
browser support, 480, 483
Calendar extender, 485
CascadingDropDown extender,

485
client-side support, 483–487
CollapsiblePanel extender, 485
Confi rmButton extender, 485
Control Toolkit, 484
defi nition, 478–479
DragPanel extender, 485
DropDown extender, 485
DropShadow extender, 485
DynamicPopulate extender, 485
effi ciency and, 480
extender controls and, 480,

485–487
FilteredTextBox extender, 486
HoverMenu extender, 486
ListSearch extender, 486
MaskedEdit extender, 486
ModalPopup extender, 486,

512–515
MutuallyExclusiveCheckBox

extender, 486
networking layer, 484
NumericUpDown extender, 486
overview, 479–482
PagingBulletedList extender, 486
PasswordStrength extender, 486
PopupControl extender, 486
Rating control, 486
in real world, 481
reasons to use, 480–481
ReorderList control, 486
ResizableControl extender, 486

rise of, 63
RoundedCorners extender, 487
ScriptManager control, 482
ScriptManagerProxy control,

482
server-side support for, 482–483
Slider extender, 487
SlideShow extender, 487
Tabs control, 487
TextBoxWatermark extender,

487
Timer control, 483, 493–501
ToggleButton extender, 487
UpdatePanel control, 483
UpdatePanelAnimation extender,

487
UpdateProgress control, 483
user interface and, 480
ValidatorCallout extender, 487
Web Services and, 479

asynchronous method calls,
451–454

asynchronous postbacks, 492–493
attributes

add, 418
CacheProfi le, 355
defaultRedirect, 387
Duration, 355
Inherits, 44
Language, 64
Location, 355
in Master Pages, 171
NoStore, 355
on/off, 387
remoteOnly, 387
runat, 34
runat=server, 64
Shared, 356
SqlDependency, 356
Src, 44
Trace, 65–66
type, 418
validate, 418
VaryByContentEncoding, 356
VaryByControl, 359
VaryByCustom, 356, 359
VaryByHeader, 356, 359–360
VaryByParam, 356, 359, 360
verb, 418
WebMethod, 439

Authenticate, 215
AuthenticateRequest event, 401
 547

548 authentication
authentication. See also
authorization; security

anonymous, 208
ASP.NET services, 214–219
cookies, 217
defi nition, 207
forms, 209–214
in Internet Information Services

(IIS), 209
login pages, 211–213
optional login page, 215–219
Passport, 214
Windows, 214
Windows network, 208

authorization. See also
authentication; security

defi nition, 228
user, 229–231

AuthorizeRequest event, 401
AutoComplete extender, 485,

505–511
AutoDetect session state tracking,

316
AutoPostBack property, 238

B
banners, 179
BeginRequest event, 401–404
BehaviorEditorPart control, 149
behaviors, Windows Communi-

cation Foundation, 460–461
bindings, Windows Communication

Foundation, 460
BrowseDisplayMode, 152
browsers

AJAX support, 480, 483
HTTP requests from, 4–6
output caching and, 355

built-in Web parts, 149–158. See
also Web parts

built-in zones, 148. See also zones
buttons

event handlers, 74
ImageButton, 131
ImageMap, 131–133
Visual Studio, 73–74

C
cache and caching, data

application benefi ting from,
329–331

clearing, 345–348
database requests vs., 331
DataSets in memory, 336–338
dependencies, 341–345
dynamic data and, 331

expirations, 338–341
impact of, 333
Insert method, 335–336
management, 335–348
mechanism of, 331–333
SQL Server dependency,

344–345
trace information, 333
uses of, 329, 331

CacheProfi le attribute, 355
caching output

AppendCacheExtension, 360
browsers and, 355
confi guration, 189
controls, 363–366
defi nition, 351
dependencies, 362
Duration attribute, 355
HttpCachePolicy class, 360
Location attribute, 355
locations, 361
management, 354–363
NoStore attribute, 355
parameters, 355–356
performance and, 354
profi les, 362
query data and, 355
SetCacheAbility, 360
SetETag, 360
SetExpires, 360
SetLastModifi ed, 360
SetMaxAge, 360
SetRevalidation, 360
SetValidUntilExpires, 360
SetVaryByCustom, 360
Shared attribute, 356
SqlDependency attribute, 356
Substitution control, 357
uses of, 366–367
VaryByContentEncoding attribute,

356
VaryByControl attribute, 359
VaryByCustom attribute, 356, 359
VaryByHeader attribute, 356,

359–360
VaryByParam attribute, 356, 359,

360
Calendar extender, 485
Call Stack window, in Visual Studio,

386
cancelling long-running operations,

503–505
CAPTCHA, 486
Cascading Style Sheets (CSS),

181–182
CascadingDropDown extender, 485
CatalogZone, 148
ChangePassword control, 226

channels, Windows Communication
Foundation, 460

chat rooms, 493–501
CheckBox control, 486–487
checkout process, 318
classes

Application, 395
CustomFormHandler, 423–427
CWinApp, 395
DataSet, 244
FormsAuthentication, 214–215
HttpApplication. See main heading
HttpCachePolicy, 360
HttpContext, 46, 48–49, 396
HttpWorkerRequest, 46
ListControl, 234–236
partial, 45
PersonalizationProvider, 286
in request architecture, 41
Service, 417
SiteMap, 265
SplitMe, 45
System.Web.UI.Control, 79–80
System.Web.UI.Page, 80, 104
System.Web.UI.UserControl, 112
System.Web.UI.WebControl, 83
WebRequest, 6
WebService, 417

classic ASP
consistency considerations in,

169
dynamic content, 61
processing in, 46
Response object in, 32
script blocks in, 35

classic mode (IIS), 37–38
clearing, of cache, 345–348
client-side AJAX support, 483–487
client-side validation, 127. See also

validation
closed system security, 208. See also

security
CLR. See Common Language

Runtime (CLR)
COBRA. See Common Object

Request Broker Architecture
(COBRA)

code, executable
mixing with HTML, 31–33
via script block, 34–35

code behind, 43–44
code beside, 44–46, 64
coding options, 43
collaboration sites, 146
CollapsiblePanel extender, 485
collections

representing with data binding,
233–236

 data binding 549
representing without data
binding, 233

CommandBuilder, 246
Common Language Runtime (CLR)

dictionary of, 329
script blocks in, 35

Common Object Request Broker
Architecture (COBRA), 436

CompareValidator control, 122
compilation model, 41–42
compiler tracing, 382. See also

tracing
Completely Automated Public

Turing test to tell Computers
and Humans Apart (CAPTCHA),
486

Component Object Model
infrastructure, 62

components
history, 62–63
UI packaging, 62–67

composite controls. See also
controls

advantages of, 118
CreateChildControls, 106
custom, 104–112
number of, 104
palindrome checker example,

104–112
rendered vs., 103–104
System.Web.UI.Page class,

104
System.Web.UI.UserControl class,

112
User controls, 112–118
utility of, 103

confi guration
caching output, 189
fi les, 189
Internet Information Services,

200–204
machine.confi g, 191, 193
management, 194–199
.NET, 190–200
parameters, 189
section handlers, 191–192
session state, 189, 191, 311–314
site map, 269–270
Web Site Administration Tool

(WSAT), 195–199
web.confi g, 193–194, 196
Windows, 189–190

Confi rmButton extender, 485
ConnectDisplayMode, 152
connection strings, 201–202
connections, database, 241–243
ConnectionZone, 149
connectivity, database, 244

consistency
Master Pages, 170–181
Web sites, 169–170

content, dynamic
in classic ASP, 61
in HTML, 9–12

contract, Windows Communication
Foundation, 460, 465

Control Toolkit, AJAX, 484
control tree, 66
controls. See also Web parts

ActiveX, 62–63
AJAX server-side, 482–483
AppearanceEditorPart, 149, 154
BehaviorEditorPart, 149
caching, 363–366
ChangePassword, 226
CheckBox, 486–487
choosing types, 118
code-beside access, 64
CompareValidator, 122
composite. See composite

controls
CreateUserWizard, 226
CustomValidator, 122, 129
data binding, 234–236
data-bound, 251–258
DataList, 236, 257, 305–311
DataSource, 234, 246–251
DeclarativeCatalogPart, 149
DetailsView, 235, 255–256
extender, 480, 485–487, 505–516
FormView, 235, 254–255
GridView, 235, 252–254, 305–311
history, 62–63
Image, 130–131
image-based, 130–140
ImportCatalogPart, 149
layout considerations, 76
LayoutEditorPart, 149
ListControl-based, 234–236
LiteralControl, 107
login, 225–228
Login, 226
LoginName, 226
LoginStatus, 226
LoginView, 226
in Master Pages, 171
Menu, 235, 263–264, 267
Multiview, 138–140
naming, 123
navigation, 263–265, 267–270
NoBot, 486
PageCatalogPart, 149
in panes, 138–140
PasswordRecovery, 226
PropertyGridEditorPart, 150
RangeValidator, 122, 129, 487

Rating, 486
rendered. See rendered controls
rendering as tags, 59–61
ReorderList, 486
Repeater, 236
RequiredFieldValidator, 122, 124,

487
ScriptManager, 482
ScriptManagerProxy, 482
server-side. See server-side

controls
SiteMapPath, 263–264, 268
Substitution, 357
Tabs, 487
testing, 75–76
Timer, 483, 493–501
TreeView, 134–137, 235, 263–264,

267
UpdatePanel, 483, 487–492,

501–505
UpdateProgress, 483, 501–505
ValidationSummary, 122, 125
validator. See validator controls
View, 138–140
Wizard, 317–323

ControlToValidate property, 122
cookies

authentication, 217
session state tracking, 314
sessionID, 317

CookieSupported property, 215
CreateChildControls, 106. See also

controls
CreateUserWizard control, 226
CSS. See Cascading Style Sheets (CSS)
Current property, 49
CurrentNode event, 266
custom controls

composite, 104–112
rendered, 81–88
shortcomings of, 170
Web Parts vs., 145

CustomFormHandler class, 423–427
CustomValidator control, 122, 129
CWinApp class, 395

D
DACLs. See Discretionary Access

Control Lists (DACLs)
data binding

collection representing with,
233–236

collection representing without,
233

controls, 234–236
DataList control for, 236
declarative, 234

550 data-bound controls
data binding, continued
DetailsView control for, 235
FormView control for, 235
GridView control for, 235
Menu control for, 235
Repeater control for, 236
simple, 236–240
TreeView control for, 235

data-bound controls, 251–258
data cache and caching

application benefi ting from,
329–331

application state vs., 399
clearing, 345–348
database requests vs., 331
DataSets in memory, 336–338
dependencies, 341–345
dynamic data and, 331
expirations, 338–341
impact of, 333
Insert method, 335–336
management, 335–348
mechanism of, 331–333
SQL Server dependency, 344–345
trace information, 333
uses of, 329, 331

data providers, 196
DataAdapter, 245
databases

accessor, 247
caching vs., 331
CommandBuilder, 246
commands, 243–244
connections, 241–243
connectivity, 244
DataList control, 257
DataReader, 244
DataSet, 244
DetailsView control, 255–256
FormView control, 254–255
GridView control, 252–254
Language Integrated Query

(LINQ), 259–261
.NET, 241–246
results management, 244–246
scalability, 244
session state storage in, 312, 314
Structured Query Language (SQL),

243
DataList control, 236, 257, 305–311
DataReader, 244
DataSet class, 244
DataSets in memory, 336–338
DataSource controls, 234, 246–251
DataSource property, 236
DataSourceID property, 234
DCOM (Distributed Component

Object Model), 435–436, 457

debugging
in class-based architecture, 41
controls in Visual Studio, 75–76
with Visual Studio, 383–386

declarative data binding, 234. See
also data binding

DeclarativeCatalogPart control, 149
Decrypt, 215
defaultRedirect attribute, 387
delegates, events and, 107
dependencies

data cache, 341–345
output cache, 362
SQL Server, 344–345

deployment, precompiling for,
534–542

DesignDisplayMode, 152
desktop applications, vs. Web-

based, 3
DetailsView control, 235, 255–256
device profi le session state tracking,

316
directories, virtual

in HelloWorld Web application,
26–27

physical paths for, 27
Visual Studio HTTP project and,

532
Discretionary Access Control Lists

(DACLs), 208
display modes, Web parts, 152
Display property, 130
Disposed event, 402
Distributed Component Object

Model (DCOM), 435–436, 457
distributed computing

history, 457
problems with, 458

DragPanel extender, 485
DropDown extender, 485
drop-down list, in Visual Studio,

72–73
DropShadow extender, 485
Duration attribute, 355
dynamic content

in classic ASP, 61
in HTML, 9–12

Dynamic HTML, 481
Dynamic value for Display property,

130
DynamicPopulate extender, 485

E
EDI. See Electronic Data Exchange

(EDI)
EditDisplayMode, 152
EditorZone, 149

effi ciency, AJAX and, 480
Electronic Data Exchange (EDI), 454
Empty Web Site, in Visual Studio, 52
Enabled property, 266
enabled tracing value, 379
Encrypt, 215
endpoints, Windows Communi-

cation Foundation, 459
EndRequest event, 402–404
environment variables, 190
Error event (HttpApplication class),

402
error messages, 122
error pages, 386–390
event handlers

application-wide, 399–404
buttons, 74
delegates, 107
HttpApplication overriding and,

397–404
preprocessing and, 40

events
AcquireRequestState, 401
Application_End, 400–401
Application_Error, 400
Application_Start, 400–401
application-wide, 396, 399–404
AuthenticateRequest, 401
AuthorizeRequest, 401
BeginRequest, 401–404
controls exposing, 92–95
CurrentNode, 266
Disposed, 402
EndRequest, 402–404
Error (HttpApplication class), 402
modules and, 404
PostAcquireRequestState, 401
PostAuthenticateRequest, 401
PostAuthorizeRequest, 401
PostReleaseRequestState, 401
PostRequestHandlerExecute, 401
PostResolveRequestCache, 401
PostUpdateRequestCache, 401
PreRequestHandlerExecute, 401
PreSendRequestContent, 402
PreSendRequestHeaders, 402
ReleaseRequestState, 401
ResolveRequestCache, 401
Session_End, 400–401
Session_Start, 400–401
SiteMap, 266, 274–275
SiteMapResolve, 266, 274–275
TraceFinished, 381
tree node, 136
UpdateRequestCache, 401

exceptions, unhandled, 390–391.
See also debugging; error
pages

 HttpApplication 551
executable code
mixing with HTML, 31–33
via script block, 34–35

expirations
cache, 338–341
sliding, 340–341

extender controls, 480, 485–487,
505–516

extenders
Accordion, 485
AlwaysVisibleControl, 485
Animation, 485
AutoComplete, 485, 505–511
Calendar, 485
CascadingDropDown, 485
CollapsiblePanel, 485
Confi rmButton, 485
DragPanel, 485
DropDown, 485
DropShadow, 485
DynamicPopulate, 485
FilteredTextBox, 486
HoverMenu, 486
ListSearch, 486
MaskedEdit, 486
ModalPopup, 486, 512–515
MutuallyExclusiveCheckBox, 486
NumericUpDown, 486
PagingBulletedList, 486
PasswordStrength, 486
PopupControl, 486
ResizableControl, 486
RoundedCorners, 487
Slider, 487
SlideShow, 487
TextBoxWatermark, 487
ToggleButton, 487
UpdatePanelAnimation, 487
ValidatorCallout, 487

eXtensible Application Markup
Language (XAML). See also
Windows Presentation
Foundation

applications (XBAP), 522, 523
loose fi les, 522–523
Web applications and, 521–522
in WPF layouts, 521

eXtensible HyperText Markup
Language (XHTML), 170

eXtensible Markup Language (XML),
190

F
File System–based Web sites, 50, 58,

532–533
File Transfer Protocol (FTP), 51, 58,

532

FilteredTextBox extender, 486
“fi re hose mode,” 244
Flash, Macromedia, 529
Forbidden handler, 421
formatting. See also layout

banners, 179
consistency in, 169–170
Master Pages, 170–181
Skins, 185–186
Themes, 181–184
tree views, 134
validation, 121–122
Visual Studio, 70

forms
authentication, 209–214
considerations for, 141
HTML, 10–12
multiple, from validation control

groups, 130
passwords, 123
User controls vs., 112
validation, 121–122
Windows, 395

FormsAuthentication class, 214–215
FormsCookieName property, 215
FormsCookiePatch property, 215
FormView control, 235, 254–255
FTP. See File Transfer Protocol (FTP)

G
GDI (Graphics Device Interface),

519, 521
generic handlers, 428–430
GET command

in HTTP, 4
HTTP handlers and, 417
in request path, 36

GetAuthCookie, 215
GetRedirectUrl, 215
GetResponse, 6
Global Assembly Cache, 118
graphical user interface (GUI). See

user interface (UI)
Graphics Device Interface (GDI),

519, 521
GridView control, 235, 252–254,

305–311
grouping, validation controls, 130
GUI. See user interface (UI)

H
handler mappings, 37–38
handlers. See event handlers;

HyperText Transfer Protocol
(HTTP) handlers

HashPasswordForStoringInConfi gFile,
215

HEAD command, 4
header information, 5–6
HelloWorld Web application

building, 26–30
in Visual Studio, 52–57

hierarchical lists, 134–137
HoverMenu extender, 486
HtmlTextWriter

controls and, 95–97
in palindrome checker example,

90
HTTP. See HyperText Transfer

Protocol (HTTP)
HTTP.SYS, 39–40
HttpApplication

AcquireRequestState event, 401
Application_End event, 400–401
Application_Error event, 400
Application_Start event, 400–401
AuthenticateRequest event, 401
AuthorizeRequest event, 401
BeginRequest event, 401–404
Disposed event, 402
EndRequest event, 402–404
Error event, 402
Lock, 399
overriding, 397–404
in pipeline, 48
PostAcquireRequestState event,

401
PostAuthenticateRequest event,

401
PostAuthorizeRequest event, 401
PostReleaseRequestState event,

401
PostRequestHandlerExecute event,

401
PostResolveRequestCache event,

401
PostUpdateRequestCache event,

401
PreRequestHandlerExecute event,

401
PreSendRequestContent event,

402
PreSendRequestHeaders event,

402
processing, 46
as rendezvous point, 396
ReleaseRequestState event, 401
ResolveRequestCache event,

401
Session_End event, 400–401
Session_Start event, 400–401
UpdateRequestCache event,

401

552 HttpCachePolicy class
HttpCachePolicy class, 360
HttpContext class, 46, 48–49, 396
HttpContext object, 297
HttpModules

application-wide events and,
404

creating, 405
existing, 404–405
Global.asax vs., 414
in IIS, 405
implementing, 406–408
overview of, 49
seeing active, 408–410
state storage in, 410–413
timing, 406–408
in web.confi g, 404–405

HttpWorkerRequest class, 46
Hypercard, 4
hyperlink Web parts, 158–167
HyperText Markup Language

(HTML)
controls in, 59–61
converting to ASP.NET appli-

cation, 29–30
Dynamic, 481
dynamic content, 9–12
forms, 10–12
for HelloWorld applications, 28
history of, 8
HTTP requests and, 8–9
mixing with executable code,

31–33
HyperText Transfer Protocol (HTTP)

CustomFormHandler class,
423–427

drawbacks of, 477–478
GET command, 4, 417
HEAD command, 4
history of, 4
IHttpHandler, 418, 422–427
overview of, 4
pipeline, 46–49
POST command, 4, 417
requests. See requests, HTTP
Trace, 419

HyperText Transfer Protocol (HTTP)
handlers

add attribute, 418
defi nition, 418
Forbidden, 421
generic, 428–430
marker interfaces, 427
session state and, 427
type attribute, 418
validate attribute, 418
verb attribute, 418
in web.confi g, 418–419
WebService class, 417

I
IDataReader, 244
identities, user, 219–225
IHttpHandler, 418, 422–427
IIS. See Internet Information

Services (IIS)
ILDASM tool, 41
image-based controls, 130–140
Image control, 130–131
ImageButton, 131
ImageMap, 131–133
implicit properties, 236. See also

properties
ImportCatalogPart control, 149
“in proc” session state storage, 311,

313
INamingContainer, 105
indexer, 299, 329
Inherits attribute, 44
initialization fi les, 190
Insert method, 335–336
installation packages, 542
Integrated mode (IIS)

Classic mode, 37–38
handler mappings, 37
security and, 36

Internet Information Services (IIS)
application pooling, 31
authentication, 209
confi guration from, 200–204
handler mappings, 37–38
in HelloWorld Web application,

26–27
Integrated mode, 36
local Web sites, 50
LocalSystem, 31
modules in, 405
pipeline 5.x and 6.x, 46
pipeline 7.0, 47
remote Web sites, 51
request path through, 35–40
securing, 208–209
versions, 36, 39
virtual directories and, 26–27
Visual Studio HTTP project and,

532
Windows Communication

Foundation and, 462
IsValid property, 128
Items property, 403
IValidator interface, 127

J
Java Virtual Machine, 62
JavaScript, in client-side validation,

127

L
labels

for controls, 123
in Visual Studio, 71–72

Language attribute, 64
Language Integrated Query (LINQ),

259–261
layout. See also formatting

banners, 179
consistency across site, 169–170
Master Pages, 170–181
Skins, 185–186
Themes, 181–184
Visual Studio considerations, 76

LayoutEditorPart control, 149
LINQ (Language Integrated Query),

259–261
ListControl class, 234–236
ListSearch extender, 486
LiteralControl, 107. See also

controls
local IIS Web sites, 50
LocalSystem, 31
localOnly tracing value, 379
Location attribute, 355
locations, output caching, 361
Lock method, in HttpApplication

class, 399
Login control, 226
login controls, 225–228. See also

controls
login pages, 211–213, 215–219,

227–228
LoginName control, 226
LoginStatus control, 226
LoginUrl, 215
LoginView control, 226
long-running operations, canceling,

503–505
loose XAML fi les, 522–523

M
machine.confi g, 191, 193
Macromedia Flash, 529
mangled URL, 289
mapping, URL, 278–282
marker interfaces, 427
MaskedEdit extender, 486
Master Pages, 170–181
memory, DataSets in, 336–338
Menu control, 235, 263–264, 267
messages, Windows Communication

Foundation, 461
Microsoft Foundation Class (MFC)

Library, 395
Microsoft Silverlight. See Silverlight

 profi les (user) 553
Microsoft Visual Studio. See Visual
Studio

ModalPopup extender, 486, 512–515
Modify Style, 70
modules

application-wide events and, 404
creating, 405
existing, 404–405
Global.asax vs., 414
in IIS, 405
implementing, 406–408
overview of, 49
seeing active, 408–410
state storage in, 410–413
timing, 406–408
in web.confi g, 404–405

mostRecent tracing value, 379
MultiView control, 138–140
MutuallyExclusiveCheckBox

extender, 486

N
naming, of controls, 123
navigation

ASP.NET support, 263–266
controls, 263–265, 267–270
custom node attributes, 275–277
development of, 270–277
idioms, 263
importance of, 263
Menu control, 263–264, 267
site maps, 264–266
SiteMapPath control, 263–264,

268
SiteMapProvider, 265
TreeView control, 263–264, 267
URL mapping, 278–282

.NET confi guration, 190–200

.NET databases, 241–246
network remoting, 435–438
network security

Web-based vs., 207. See also
security

Windows, 208
NoBot control, 486
nodes, custom attributes for,

275–277
NoStore attribute, 355
NumericUpDown extender, 486

O
objects

HttpApplication. See main heading
HttpContext, 297
HttpModules. See main heading
Request, 35

Response, 32
Session, 297–298

on/off attribute, 387
optional login page, 215–219
output caching

AppendCacheExtension, 360
browsers and, 355
CacheProfi le attribute, 355
confi guration, 189
of controls, 363–366
defi nition, 351
dependencies, 362
Duration attribute, 355
HttpCachePolicy class, 360
Location attribute, 355
locations, 361
management, 354–363
NoStore attribute, 355
page content, 351–354
parameters, 355–356
performance and, 354
profi les, 362
query data and, 355
SetCacheAbility, 360
SetETag, 360
SetExpires, 360
SetLastModifi ed, 360
SetMaxAge, 360
SetRevalidation, 360
SetValidUntilExpires, 360
SetVaryByCustom, 360
Shared attribute, 356
Substitution control, 357
uses of, 366–367
VaryByContentEncoding attribute,

356
VaryByControl attribute, 359
VaryByCustom attribute, 356, 359
VaryByHeader attribute, 356, 359
VaryByParam attribute, 356, 359,

360
OutputCache directive, 352,

354–360

P
package tracking, 454
page state, vs. session state,

299–304
PageCatalogPart control, 149
pageOutput tracing value, 379
pages, Web. See also Web sites

building in Visual Studio, 68–77
buttons, 73–74
drop-down lists, 72–73
error, 386–390
labels, 71–72
Master Pages, 170–181

output caching, 351–354
partial-page updates, 480
validation, 127–129
validator controls in, 123–127
Visual Studio layout

considerations, 76
Web parts, 147, 150–158

PagingBulletedList extender, 486
palindrome checker example

as composite control, 104–112
as rendered control, 88–92
as User control, 112–118

panes, controls in, 138–140
parameters, confi guration, 189
partial classes, 45. See also classes
partial-page updates, 480
Passport authentication, 214
PasswordRecovery control, 226
passwords, 123, 215, 226
PasswordStrength extender, 486
PATH variable, 190
patterns, validating, 128–129
personalization. See also user

profi les
anonymous, 289–290
in ASP.NET, 286
PersonalizationProvider class, 286
providers, 286
web visit, 285–286
web.confi g defi nitions, 287

PersonalizationProvider class, 286
pipeline, HTTP, 46–49
PopupControl extender, 486
POST command, 4, 417
PostAcquireRequestState event, 401
PostAuthenticateRequest event, 401
PostAuthorizeRequest event, 401
postbacks, 492–493
PostReleaseRequestState event, 401
PostRequestHandlerExecute event,

401
PostResolveRequestCache event, 401
PostUpdateRequestCache event, 401
precompiling, 533–542
preprocessing, 40
PreRequestHandlerExecute event,

401
PreSendRequestContent event, 402
PreSendRequestHeaders event, 402
profi les (caching), 362
profi les (user)

anonymous, 289
defi nition of, 286
information, 287–288
saving changes, 288
Session member and, 287
users and, 289–293
web.confi g defi nitions, 287

554 programmatic tracing
programmatic tracing, 381
progress updates, 501–505
project wizard, Visual Studio, 50–51
properties

AutoPostBack, 238
ControlToValidate, 122
CookieSupported, 215
Current, 49
DataSource, 236
DataSourceID, 234
Display, 130
Enabled, 266
exposing member variables as,

237
FormsCookieName, 215
FormsCookiePatch, 215
implicit, 236
IsValid, 128
Items, 403
Provider, 266
Providers, 266
RequireSSL, 215
RootNode, 266
SlidingExpiration, 215
User controls and, 114
user profi le, 287
validator controls, 130
ViewState, 98–101

PropertyGridEditorPart control, 150
provider factory, 241
provider pattern, 241–242
Provider property, 266
providers, data, 196, 241–242
Providers property, 266
publishing, 542–543

R
RangeValidator control, 122, 129,

487
Rating control, 486
RedirectFromLoginPage, 215
Registry, Windows, 190
RegularExpressionValidator control,

122, 127
ReleaseRequestState event, 401
remote Web sites, in Visual Studio,

51
remoteOnly attribute, 387
remoting

data types and, 437–438
fundamental steps, 436
over Web, 437–438
SOAP, 437

rendered controls. See also controls
adding to toolbox, 91
composite vs., 103–104
disadvantages, 103

event exposing, 92–95
HtmlTextWriter and, 95–97
palindrome checker example,

88–92
System.Web.UI.Control class,

79–80
view state, 98–101
Visual Studio custom, 81–88

ReorderList control, 486
Repeater control, 236
Request object, 35
requestLimit tracing value, 379
requests, HTTP

browser, 4–6
without browser, 6–7
classes and, 41
header information, 5–6
HTML and, 8–9
path of, 35–40
TELNET, 5
in Visual Studio, 6–7
WebRequest class, 6

RequiredFieldValidator control, 122,
124, 487

RequireSSL property, 215
ResizableControl extender, 486
ResolveRequestCache event, 401
Response object, 32, 35
results management, database,

244–246
roles, user, 219–225
RootNode property, 266
RoundedCorners extender, 487
runat attribute, 34
runat=server attribute, 64

S
scalability

database, 244
dictionary and, 399

script blocks
in classic ASP, 35
executable code via, 34–35
server-side, 63–64

ScriptManager control, 482
ScriptManagerProxy control, 482
section handlers, confi guration,

191–192
security. See also authentication;

authorization
access rules, 224–225
application pooling, 31
in closed systems, 208
Discretionary Access Control Lists

(DACLs), 208
importance of, 207
Integrated mode for IIS, 36

Internet Information Services (IIS),
208–209

login controls, 225–228
network vs. Web-based, 207
trimming, 278
user management, 219–225
Web-based, 207–214
Windows, 208

server-side AJAX support, 482–483
server-side code blocks, 34
server-side code execution, 31–33
server-side controls. See also

controls
introduction, 63–64
types of, 79
validator controls and, 122
vs. Web parts, 145

server-side script blocks, 63–64
server-side validation, 127. See also

validation
Service class, 417
Service-Oriented Architecture

(SOA), 454–455, 459
Session object, 287, 297–298
session state

ASP.NET and, 298–299
ASP.NET support, 297
AutoDetect tracking, 316
complex data and, 304–311
confi guration section handlers,

191
confi guring, 311–314
cookie tracking, 314
database storage, 312, 314
DataList control, 305–311
defi nition, 298
device profi les and, 316
disabling, 311–312
GridView control, 305–311
handlers and, 427
importance of, 297–298
“in proc” storage, 311, 313
indexer, 299
management, 204
page state vs., 299–304
as parameter, 189
shopping carts and, 304
state server storage, 312–313
stateNetworkTimeout, 317
timeouts, 317
tracing, 374
tracking, 314–317
URL tracking, 316
web.confi g, 317
Wizard control as alternative,

317–323
Session_End event, 400–401
Session_Start event, 400–401

 user profi les 555
SetCacheAbility, 360
SetETag, 360
SetExpires, 360
SetLastModifi ed, 360
SetMaxAge, 360
SetRevalidation, 360
SetValidUntilExpires, 360
SetVaryByCustom, 360
Shared attribute, 356
SharePoint, 146
shopping carts, 304
“shout box,” 493
side-by-side mode, Windows

Communication Foundation,
462

SignOut, 215
Silverlight, 529
site map confi guration, 269–270
site maps, 264–266
SiteMap class, 265
SiteMapNode, 266, 275–277
SiteMapPath control, 263–264, 268
SiteMapProvider, 265
SiteMapResolve event, 266, 274–275
Skins, 185–186
Slider extender, 487
SlideShow extender, 487
sliding expirations, 340–341
SlidingExpiration property, 215
SOA (Service-Oriented

Architecture), 454–455, 459
SOAP, 417, 437, 459
social networking sites, 145
Split tab, Visual Studio, 69
SplitMe class, 45
SQL (Structured Query Language),

243
SQL Server dependency, 344–345
SqlDependency attribute, 356
Src attribute, 44
state

application. See main heading
caching. See data cache and

caching
control, 98–101
session. See main heading
storage in modules, 410–413
view, 98–101, 396

state servers, 312–313
stateNetworkTimeout, 317
Static value of Display property, 130
Structured Query Language (SQL),

243
stub handlers, 399–404
style sheets, 182
Substitution control, 357
supply chain management, 454
System.Web.UI.Control class, 79–80

System.Web.UI.Page class
composite controls, 104
rendered controls, 80

System.Web.UI.UserControl class,
112

System.Web.UI.WebControl class,
83

System.Diagnostics.Debug, 382
System.Diagnostics.Trace, 382

T
Tabs control, 487
tags

in Master Pages, 170
rendering controls as, 59–61

TCP monitors, 5
TcpTrace, 5
TELNET, 5
TEMP variable, 190
TextBoxWatermark extender, 487
Themes, 181–184, 286
Threads window, in Visual Studio,

386
timeouts, session state, 317
Timer control, 483, 493–501
timing modules, 406–408
ToggleButton extender, 487
Trace handler, 419
TraceFinished event, 381
Trace.Warn, 376–378
Trace.Write, 376–378
tracing

application, 379–383
compiler, 382
confi guration fi le values,

379
data cache, 333
enabled, 379
localOnly, 379
message piping, 382
mostRecent, 379
pageOutput, 379
programmatic enabling,

381
requestLimit, 379
self-supplied, 375–377
session state, 374
statements, 375–377
turning on, 372–374
writeToDiagnosticsTrace,

379
tracking session state, 314–317
trapping exceptions, 390–391
TreeView control, 134–137, 235,

263–264, 267
trimming, security, 278
type attribute, 418

U
UI. See user interface (UI)
unhandled exceptions, 390–391. See

also debugging; error pages
Uniform Resource Locator (URL)

mangled, 289
mapping, 278–282
session state tracking, 316

United Parcel Service (UPS), 454
Universal Resource Indicator (URI)

authentication, 210
session information, 191

update progress, 501–505
UpdatePanel control, 483, 487–492,

501–505
UpdatePanelAnimation extender,

487
UpdateProgress control, 483,

501–505
UpdateRequestCache event, 401
URI. See Universal Resource

Indicator (URI)
URL. See Uniform Resource Locator

(URL)
user authentication. See also

authorization; security
anonymous, 208
ASP.NET services, 214–219
cookies, 217
defi nition, 207
forms, 209–214
in Internet Information Services

(IIS), 209
login pages, 211–213
optional login page, 215–219
Passport, 214
Windows, 214
Windows network, 208

user authorization, 229–231
User controls, 112–118, 170. See also

controls
user data, validation of, 121–122
user interface (UI)

ActiveX controls, 62–63
AJAX and, 480
control tags for, 59–61
controls history, 62–63
packaging as components, 62–67
System Web.UI.Control class,

79–80
user management, 219–225
user profi les. See also

personalization
anonymous, 289
defi nition of, 286
information, 287–288
saving changes, 288

556 validate attribute
user profi les, continued
Session member and, 287
users and, 289–293
web.confi g defi nitions, 287

V
validate attribute, 418
validation

client-side, 127
importance of, 121–122
JavaScript and, 127
mechanism of, 127–129
of patterns, 128–129
server-side, 127
of user data, 121–122

ValidationSummary control, 122,
125

validator controls. See also controls
CompareValidator, 122
creating page with, 123–127
CustomValidator, 122, 129
grouping, 130
list of, 122
mechanism of, 122
properties, 130
RangeValidator, 122, 129
RegularExpressionValidator, 122,

127
RequiredFieldValidator, 122, 124
server-side controls, 122
ValidationSummary, 122, 125

ValidatorCallout extender, 487
variables, environment, 190
VaryByContentEncoding attribute,

356
VaryByControl attribute, 359
VaryByCustom attribute, 356, 359
VaryByHeader attribute, 356,

359–360
VaryByParam attribute, 356, 359,

360
VBXs (Visual Basic Controls), 62
verb attribute, 418
View control, 138–140
view state, 98–101, 396
ViewState property, 98–101
virtual directories

in HelloWorld Web application,
26–27

physical paths for, 27
Visual Studio HTTP project and,

532
Visual Basic Controls (VBXs), 62
Visual Studio

Add New Item, 53–54
adding controls to toolbox, 91
AJAX Control Toolkit, 484

ASP.NET Web Site, 52
buttons, 73–74
Call Stack, 386
control adding, 68–77
control testing, 75–76
custom controls, 81–88
debugging with, 383–386
drop-down list, 72–73
Empty Web Site, 52
File System–based Web sites, 50,

58, 532–533
FTP project, 532
FTP Web sites in, 51, 58
HelloWorld in, 52–57
HTTP project, 532
HTTP requests in, 6–7
ILDASM, 41
layout, 54
layout considerations, 76
local IIS Web sites in, 50
Master Pages in, 172
page building, 68–77
page labels, 71–72
precompiling in, 533–542
project wizard, 50–51
projects, 531–533
remote Web sites in, 51
Split tab, 69
stub handler events, 399–404
text box, 72
text formatting, 70
Threads window, 386
tree view in, 134–137
User controls in, 112
Watch window, 386
Web server, 50
Web Site Administration Tool

(WSAT), 195–199
XBAP applications in, 522, 523

W
Watch window, in Visual Studio, 386
Web-based applications, vs.

desktop, 3
Web-based security, 207–214. See

also security
Web pages. See also Web sites

building in Visual Studio, 68–77
buttons, 73–74
drop-down lists, 72–73
error, 386–390
labels, 71–72
Master Pages, 170–181
output caching, 351–354
partial-page updates, 480
validation, 127–129
validator controls in, 123–127

Visual Studio layout con-
siderations, 76

Web parts, 147, 150–158
Web parts. See also controls

adding, 149
AppearanceEditorPart, 149, 154
application development, 147
architecture, 147–158
BehaviorEditorPart, 149
built-in, 149–158
built-in zones, 148
custom controls vs., 145
DeclarativeCatalogPart, 149
developing, 147, 158–167
display modes, 152
history, 146
hyperlink, 158–167
ImportCatalogPart, 149
LayoutEditorPart, 149
page development, 147, 150–158
PageCatalogPart, 149
PropertyGridEditorPart, 150
server-side controls vs., 145
social networking sites, 145
utility of, 146–147

Web Service Description Language
(WSDL), 438, 441

Web Services
AJAX and, 479
in ASP.NET, 439–446
without ASP.NET, 438
asynchronous execution,

451–454
AutoComplete extender, 505–511
consuming, 446–451
evolution of, 454–455
overview of, 435
remoting, 435–438
WebMethod attribute, 439

Web Site Administration Tool
(WSAT), 195–199, 232

Web site navigation
ASP.NET support, 263–266
controls, 263–265, 267–270
development of, 270–277
idioms, 263
importance of, 263
Menu control, 263–264, 267
site maps, 264–266
SiteMapPath control, 263–264,

268
SiteMapProvider, 265
TreeView control, 263–264, 267

Web sites
AJAX and speed of, 478–479
collaborative, 146
consistency in, 169–170
custom node attributes, 275–277

 zones 557
effi ciency of, 480
File System–based, 50
FTP, 51, 58
local IIS, 50
personalization of visits, 285–286
publishing, 542–543
remote, 51
social networking, 145
URL mapping, 278–282
validation, 121–122
in Visual Studio project wizard,

50–51
Webcams, 493
web.confi g

confi guration, 193–194, 196
HTTP handlers in, 418–419
HttpModules in, 404–405
session state, 317
user profi le defi nitions, 287
Windows Communication

Foundation and, 469
WebMethod attribute, 439
WebPageTraceListener, 382
WebPartManager, 148
WebRequest class, 6
WebService class, 417
WebUIValidation.js, 127
WebZones, 148
Win32, 519, 520
Windows authentication, 214
Windows Communication

Foundation
address, 460
ASP.NET and, 462–463

ASP.NET compatibility mode,
462–463

behaviors, 460–461
bindings, 460
channels, 460
client, 469–475
for connected systems, 458–459
constituent elements, 459–461
contract, 460, 465
endpoints, 459
messages, 461
as Service-Oriented Architecture,

459
service writing, 463–469
side-by-side mode with IIS, 462
Web Services and, 435
web.confi g and, 469

Windows confi guration, 189–190
Windows forms, 395
Windows Live ID, 214
Windows Presentation Foundation.

See also eXtensible Application
Markup Language (XAML)

content and Web applications,
523–528

features, 520
layout in, 520–521
overview of, 519–521
Silverlight and, 529
Web and, 521–522
Windows Communication

Foundation and, 457
Windows Procedures, 62
Windows Registry, 190

Windows security, 208. See also
security

Windows Workfl ow Foundation,
457

Wizard control, 317–323
writeToDiagnosticsTrace tracing

value, 379
WSAT (Web Site Administration

Tool), 195–199, 232
WSDL (Web Service Description

Language), 438, 441

X
XAML. See eXtensible Application

Markup Language (XAML)
XBAP (XML-based Browser

Application), 522, 523
XCOPY deployment, 542
XHTML (eXtensible HyperText

Markup Language), 170
XML. See eXtensible Markup

Language (XML)
XML site maps, 265–266

Z
zones

built-in, 148
CatalogZone, 148
ConnectionZone, 149
EditorZone, 149
WebZones, 148

George Shepherd
George Shepherd is a software consultant who specializes in

Microsoft .NET technologies. As an instructor for DevelopMentor,

George delivers short seminars that cover .NET, ASP.NET, and WPF.

George is the author and co-author of several other books on soft-

ware development, including MFC Internals (Addison-Wesley) and

Programming Visual C++ .NET (Microsoft Press). He has served as

contributing editor for MSDN Magazine and Dr. Dobb’s Journal and

is a contributing architect for Syncfusion’s Essential .NET toolset.

p
h

o
to

 b
y

M
ic

h
a
e
l
S
a
n

fo
rd

	Cover
	Copyright Page

	Dedication
	Contents at a Glance
	Table of Contents
	Introduction
	The Road to ASP.NET 3.5
	ASP.NET 1.0 and 1.1
	ASP.NET 2.0
	ASP.NET 3.5

	Using This Book
	Who Is This Book For?
	Organization of This Book
	Getting Started
	Finding Your Best Starting Point in This Book

	Conventions and Features in This Book
	Conventions
	Other Features

	System Requirements
	Using Microsoft Access
	Code Samples
	Installing the C# Code Samples
	Using the Code Samples
	Uninstalling the Code Samples

	Software Release
	Support for This Book

	Acknowledgments
	Part I: Fundamentals
	Chapter 1: Web Application Basics
	HTTP Requests
	HTTP Requests from a Browser
	Making HTTP Requests without a Browser

	HyperText Markup Language
	Dynamic Content
	HTML Forms
	Common Gateway Interface (Very Retro)
	The Microsoft Platform as a Web Server

	Internet Information Services
	Internet Services Application Programming Interface DLLs
	Internet Information Services

	Classic ASP (Putting ASP.NET into Perspective)
	Web Development Concepts
	ASP.NET
	Summary
	Chapter 1 Quick Reference

	Chapter 2: ASP.NET Application Fundamentals
	The Canonical Hello World Application
	Building the HelloWorld Web Application
	Mixing HTML with Executable Code
	Server-Side Executable Blocks

	The ASP.NET Compilation Model
	Coding Options
	ASP.NET 1.x Style
	Modern ASP.NET Style

	The ASP.NET HTTP Pipeline
	The IIS 5.x and IIS 6.x Pipeline
	The IIS 7.0 Integrated Pipeline
	Tapping the Pipeline

	Visual Studio and ASP.NET
	Local IIS Web Sites
	File System–Based Web Sites
	FTP Web Sites
	Remote Web Sites
	Hello World and Visual Studio

	Summary
	Chapter 2 Quick Reference

	Chapter 3: The Page Rendering Model
	Rendering Controls as Tags
	Packaging UI as Components
	The Page Using ASP.NET
	The Page’s Rendering Model
	The Page’s Control Tree

	Adding Controls Using Visual Studio
	Building a Page with Visual Studio
	Layout Considerations

	Summary
	Chapter 3 Quick Reference

	Chapter 4: Custom Rendered Controls
	The Control Class
	Visual Studio and Custom Controls
	A Palindrome Checker
	Controls and Events
	HtmlTextWriter and Controls
	Controls and ViewState
	Summary
	Chapter 4 Quick Reference

	Chapter 5: Composite Controls
	Composite Controls versus Rendered Controls
	Custom Composite Controls
	User Controls
	When to Use Each Type of Control
	Summary
	Chapter 5 Quick Reference

	Chapter 6: Control Potpourri
	Validation
	How Page Validation Works
	Other Validators
	Validator Properties

	Image-Based Controls
	TreeView
	MultiView
	Summary
	Chapter 6 Quick Reference

	Part II: Advanced Features
	Chapter 7: Web Parts
	A Brief History of Web Parts
	What Good Are Web Parts?
	Developing Web Parts Controls
	Web Parts Page Development
	Web Parts Application Development

	The Web Parts Architecture
	WebPartManager and WebZones
	Built-in Zones
	Built-in Web Parts

	Developing a Web Part
	Summary
	Chapter 7 Quick Reference

	Chapter 8: A Consistent Look and Feel
	A Consistent Look and Feel
	ASP.NET Master Pages
	Themes
	Skins
	Summary
	Chapter 8 Quick Reference

	Chapter 9: Configuration
	Windows Configuration
	.NET Configuration
	Machine.Config
	Configuration Section Handlers
	Web.Config
	Managing Configuration in ASP.NET 1.x
	Managing Configuration in Later Versions of ASP.NET

	Configuring ASP.NET from IIS
	Summary
	Chapter 9 Quick Reference

	Chapter 10: Logging In
	Web-Based Security
	Securing IIS
	Basic Forms Authentication

	ASP.NET Authentication Services
	The FormsAuthentication Class
	An Optional Login Page

	Managing Users
	ASP.NET Login Controls
	Authorizing Users
	Summary
	Chapter 10 Quick Reference

	Chapter 11: Data Binding
	Representing Collections without Data Binding
	Representing Collections with Data Binding
	ListControl-Based Controls
	TreeView
	Menu
	FormView
	GridView
	DetailsView
	DataList
	Repeater

	Simple Data Binding
	Accessing Databases
	The .NET Database Story
	Connections
	Commands
	Managing Results

	ASP.NET Data Sources
	Other Data-bound Controls
	LINQ
	Summary
	Chapter 11 Quick Reference

	Chapter 12: Web Site Navigation
	ASP.NET’s Navigation Support
	The Navigation Controls
	XML Site Maps
	The SiteMapProvider
	The SiteMap Class
	The SiteMapNode

	The Navigation Controls
	The Menu and TreeView Controls
	The SiteMapPath Control
	Site Map Configuration

	Building a Navigable Web Site
	Trapping the SiteMapResolve Event
	Custom Attributes for Each Node
	Security Trimming
	URL Mapping
	Summary
	Chapter 12 Quick Reference

	Chapter 13: Personalization
	Personalizing Web Visits
	Personalization in ASP.NET
	User Profiles
	Personalization Providers

	Using Personalization
	Defining Profiles in Web.Config
	Using Profile Information
	Saving Profile Changes
	Profiles and Users

	Summary
	Chapter 13 Quick Reference

	Part III: Caching and State Management
	Chapter 14: Session State
	Why Session State?
	ASP.NET and Session State
	Introduction to Session State
	Session State and More Complex Data
	Configuring Session State
	Turning Off Session State
	Storing Session State InProc
	Storing Session State in a State Server
	Storing Session State in a Database

	Tracking Session State
	Tracking Session State with Cookies
	Tracking Session State with the URL
	Using AutoDetect
	Applying Device Profiles
	Session State Timeouts

	Other Session Configuration Settings
	The Wizard Control: Alternative to Session State
	Summary
	Chapter 14 Quick Reference

	Chapter 15: Application Data Caching
	Using the Data Cache
	Impact of Caching
	Managing the Cache
	DataSets in Memory
	Cache Expirations
	Cache Dependencies
	The SQL Server Dependency
	Clearing the Cache

	Summary
	Chapter 15 Quick Reference

	Chapter 16: Caching Output
	Caching Page Content
	Managing Cached Content
	Modifying the OutputCache Directive
	The HttpCachePolicy
	Caching Locations
	Output Cache Dependencies
	Caching Profiles

	Caching User Controls
	When Output Caching Makes Sense
	Summary
	Chapter 16 Quick Reference

	Part IV: Diagnostics and Plumbing
	Chapter 17: Diagnostics and Debugging
	Page Tracing
	Turning on Tracing
	Trace Statements

	Application Tracing
	Enabling Tracing Programmatically
	The TraceFinished Event
	Piping Other Trace Messages

	Debugging with Visual Studio
	Error Pages
	Unhandled Exceptions
	Summary
	Chapter 17 Quick Reference

	Chapter 18: The HttpApplication Class and HTTP Modules
	The Application: A Rendezvous Point
	Overriding HttpApplication
	Application State Caveats
	Handling Events
	HttpApplication Events

	HttpModules
	Existing Modules
	Implementing a Module
	See Active Modules
	Storing State in Modules

	Global.asax versus HttpModules
	Summary
	Chapter 18 Quick Reference

	Chapter 19: Custom Handlers
	Handlers
	Built-in Handlers
	IHttpHandler
	Handlers and Session State
	Generic Handlers (ASHX Files)
	Summary
	Chapter 19 Quick Reference

	Part V: Services, AJAX, Deployment, and Silverlight
	Chapter 20: ASP.NET Web Services
	Remoting
	Remoting over the Web
	SOAP
	Transporting the Type System
	Web Service Description Language

	If You Couldn’t Use ASP.NET…
	A Web Service in ASP.NET
	Consuming Web Services
	Asynchronous Execution
	Evolution of Web Services
	Other Features
	Summary
	Chapter 20 Quick Reference

	Chapter 21: Windows Communication Foundation
	Distributed Computing Redux
	A Fragmented Communications API
	WCF for Connected Systems
	WCF Constituent Elements
	WCF Endpoints
	Channels
	Behaviors
	Messages

	How WCF Plays with ASP.NET
	Side-by-Side Mode
	ASP.NET Compatibility Mode

	Writing a WCF Service
	Building a WCF Client
	Summary
	Chapter 21 Quick Reference

	Chapter 22: AJAX
	What Is AJAX?
	AJAX Overview
	Reasons to Use AJAX
	Real-World AJAX
	AJAX in Perspective

	ASP.NET Server-Side Support for AJAX
	ScriptManager Control
	ScriptManagerProxy Control
	UpdatePanel Control
	UpdateProgress Control
	Timer Control

	AJAX Client Support
	ASP.NET AJAX Control Toolkit
	Other ASP.NET AJAX Community-Supported Stuff
	AJAX Control Toolkit Potpourri

	Getting Familiar with AJAX
	The Timer
	Updating Progress
	Extender Controls
	The AutoComplete Extender
	A Modal Pop-up Dialog-Style Component

	Summary
	Chapter 22 Quick Reference

	Chapter 23: ASP.NET and WPF Content
	What Is WPF?
	How Does It Relate to the Web?
	Loose XAML Files
	XBAP Applications

	WPF Content and Web Applications
	What about Silverlight?
	Summary
	Chapter 23 Quick Reference

	Chapter 24: How Web Application Types Affect Deployment
	Visual Studio Projects
	HTTP Project
	FTP Project
	File System Project

	Precompiling
	Precompiling for Performance
	Precompiling for Deployment
	Publishing a Web Site

	Summary
	Chapter 24 Quick Reference

	Glossary
	Index
	About the Author

