
Deborah A. Dahl    Editor 

Multimodal 
Interaction 
with W3C 
Standards
Toward Natural User Interfaces to 
Everything



Multimodal Interaction with W3C Standards



Deborah A. Dahl

Editor

Multimodal Interaction
with W3C Standards

Toward Natural User Interfaces
to Everything



Editor
Deborah A. Dahl
Conversational Technologies
Plymouth Meeting, PA, USA

ISBN 978-3-319-42814-7 ISBN 978-3-319-42816-1 (eBook)
DOI 10.1007/978-3-319-42816-1

Library of Congress Control Number: 2016952224

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To the memory of my parents,
Robert and Marilyn Dahl



Foreword

The world of computing is changing rapidly, as we move from desktop computers

to tablets, mobile phones, watches, rings, and other things such as devices

containing embedded computers or sensors connected to the Internet. New modes

of input to computers are evolving from keyboarding and clicking to speaking,

gesturing, seeing, and sensing our actions and behaviors. Future applications will

integrate information from one or more user inputs and determine the appropriate

response.

Standards are one approach to taming the exponential growth of this complexity

and opportunity. Standard APIs hide the complexity of how hardware and software

platforms work. These APIs enable application developers to access the functions

provided by platforms and to create new and exciting applications. Given a standard

API, different platform developers will optimize internal processes for specialized

hardware or software, enabling application developers to (1) choose the best

platform available for their application; (2) implement software on multiple plat-

forms, using the same API; and (3) switch from one platform to another as new

platforms become available and old platforms become obsolete.

This book introduces existing and potential standards for multimodal technolo-

gies and provides examples of how these standards can integrate multiple modes of

input for user interaction with existing applications. It also provides suggestions

about the features, functions, and capabilities that new platforms might provide to

application developers.

If you are a platform developer, this book will help you determine which new

features you might add to existing platforms or include in future platforms. Stan-

dard APIs enable platform developers to enter the marketplace with new platforms

that compete with established platforms.

If you are an application developer, this book will help you understand which

new features will be available on future hardware and software platforms and which

APIs will be available to access those features. With this insight, you can plan how

to use these new features and functions when creating new applications.

vii



If you are a visionary and plan road maps for exciting innovative applications,

this book will help you conceptualize, design, and implement future applications.

V.P., Larson Technical Services,

Co-program Chair,

SpeechTEK Conference

James A. Larson

viii Foreword



Preface

From tiny fitness trackers to huge industrial robots, we are interacting today with

devices in shapes, sizes, and capabilities that would have been hard to imagine

when the traditional graphical user interface (GUI) first became popular in the

1980s. As we move further and further away from the classic desktop paradigm,

with input limited to mouse and keyboard, and a large screen as the only output

modality, it is becoming increasingly apparent that the decades-old GUI interface is

a poor fit for today’s computer-human interactions. While the growth of touch

interfaces has been especially dramatic, we are now also starting to see applications

that make use of many other forms of interaction, including voice, handwriting,

emotion recognition, natural language understanding, and object recognition.

As these forms of interaction (modalities) are combined into systems, the

importance of having standard ways for them to communicate with each other

and with application logic is apparent. The sheer variety and complexity of multi-

modal technologies makes it impractical for most implementers to handle the full

range of possible modalities (current and future) with proprietary APIs.

To address this need, the World Wide Web Consortium (W3C) has developed a

comprehensive set of standards for multimodal interaction which are well-suited as

the basis of interoperable multimodal applications. However, most of the informa-

tion about these standards is currently available only in the formal standards

documents, conference presentations, and a few academic journal papers. All of

these can be hard to find and are not very accessible to most technologists. In

addition, papers on applications that use the standards are similarly scattered among

many different resources.

This book will address this gap with clearly presented overviews of the full suite

of W3C multimodal standards, as well as some relevant standards from other

standards bodies. In addition, to illustrate the standards in use, it also includes

ix



descriptions of implemented platforms and case studies of applications that use the

standards. Finally, a future directions section discusses new ideas for other stan-

dards as well as for new applications.

Plymouth Meeting, PA, USA Deborah A. Dahl

x Preface



Acknowledgments

The standards described in this book would not have been possible without the

vision and support of the World Wide Web Consortium. From the first W3C Voice

Workshop in 1998 in Cambridge, Massachusetts where the idea of a standard

language for voice applications was initially discussed, to the present, the W3C

has consistently supported the goal of providing powerful, comprehensive, and

usable standard languages to support voice and multimodal application develop-

ment. Despite the fact that it is easy to think of the web as just focused on graphical

interaction, the W3C has supported work that takes a broader perspective on

human-computer interaction than simply responding to graphical interaction

events. This broader perspective includes voice, ink, and gesture-based interaction

as well as the more abstract idea of interaction management. As the Chair of the

Multimodal Interaction Working Group, I have had the privilege of working with

many talented and dedicated individuals over the years. For many years of support,

I would like to thank Philipp Hoschka, the W3C domain leader for the Ubiquitous

Web throughout the history of both the Voice Browser and Multimodal Interaction

Working Groups. In addition, we would also like to thank Judy Brewer, domain

leader for the Web Accessibility Initiative, for discussions of how these standards

can be used for enhancing accessibility. We are also of course very grateful to Sir

Tim Berners-Lee, the director of the W3C, for inventing the web and founding the

W3C in the first place.

Our W3C team contacts have helped steer the Voice Browser and Multimodal

Working Group chairs through the W3C process. They’ve helped the groups

prepare documents, understand the stages of a W3C standard, and helped us find

relevant points of interaction with other W3C working groups and other standards

bodies. We are very grateful to Dave Raggett, Max Froumentin, Kazuyuki

Ashimura, and Matt Wormer for their work over the years as team contacts for

the Voice Browser Working Group and the Multimodal Interaction Working

Group.

The Voice Browser Working Group was the first W3C working group that

worked on user interface standards beyond the graphical user interface, specifically

xi



focusing on voice interaction. I am extremely grateful for the inspiring leadership of

the Voice Browser chairs, Jim Larson, Dan Burnett, and the late Scott McGlashan.

Jim Larson is an amazing meeting facilitator who can always cut to the chase and

push a group toward consensus. Jim is never afraid to ask the question that

everyone’s been thinking about. Dan has an incredible mastery of detail and a

deep knowledge of the standards and is a careful and thorough leader who always

makes sure that everyone has a chance to express their opinion.

The late Scott McGlashan served as cochair of the Voice Browser Working

Group. He also led the VoiceXML 2.0 and speech grammar efforts. Scott was a rare

person who combined brilliant technical skills with efficient and organized leader-

ship. Scott managed the hundreds of VoiceXML change requests with efficiency,

dispatch, and a keen eye for opportunities for consensus.

The editors of standards documents play a key role in making the standards

possible. From the first steps after a working group decides to create a standard for a

particular area, through the final publication of an official standard, the editors

guide the participants through the process, even when the work is contentious or,

worse, tedious. Inevitably, in the sometimes lengthy standards development pro-

cess, there will be times when companies decide that they can no longer support

work on the standard or when key working group members change companies and

can no longer participate. It is the editors who step up to compensate for changes in

participation, helping to bring new people on board and making sure that the work

continues. In the Voice Browser Working Group, the editors in chief at the time of

the final publication of each standard were:

1. VoiceXML: Scott McGlashan

2. VoiceXML 2.1: Matt Oshry

3. Speech Recognition Grammar Specification: Andrew Hunt and Scott

McGlashan

4. Semantic Interpretation for Speech Recognition: Luc Van Tichelen and Dave

Burke

5. Speech Synthesis Markup Language: Dan Burnett, Mark Walker, and Andrew

Hunt

6. Pronunciation Lexicon Specification: Paolo Baggia

7. Call Control Markup Language: R. J. Auburn

8. State Chart XML: Jim Barnett

The Multimodal Working Group editors at the time of final publication of the

standards include:

1. MMI Architecture: Jim Barnett

2. EMMA: Michael Johnston

3. InkML: Stephen Watt and Tom Underhill

4. EmotionML: Felix Burkhardt and Marc Schroeder

5. Discovery and Registration: Helena Rodriguez (in progress)

Developing an official W3C standard is a tremendous amount of work which

requires participation from many team members. Since the beginning of the Voice

xii Acknowledgments



Browser Working Group in 1999, there have been dozens of participants in the

Voice Browser and Multimodal Interaction Working Groups. Some have only

attended a few calls, but many members of both working groups have spent

countless hours helping to define the standards and write the documents. Others

have worked on the important task of developing implementation tests and testing.

The standards would not have been possible without their efforts.

I am also very grateful for the colleagues who took time from their many other

commitments to review the chapters in this book and to provide helpful comments

to the authors. The reviewers were Nuno Almeida, Masahiro Araki, Paolo Baggia,

Jim Barnett, Harry Bunt, Felix Burkhardt, Dan Burnett, Carlos Duarte, Jesus Garcia

Laborda, Michael Johnston, James Larson, Teresa Magal-Royo, Rob Marchand,

Jean-Claude Moissinac, Miguel Oliveira e Silva, Catherine Pelachaud, Stefan

Radomski, Vikram Ramanarayanan, B. Helena Rodriguez, Dirk Schnelle-Walka,

Samuel Silva, David Suendermann-Oeft Antonio Teixera, and Raj Tumuluri. Their

thoughtful comments improved the quality of the book immeasurably. I am espe-

cially grateful to several of the reviewers who reviewed extra papers when a paper

needed an additional review, sometimes on very short notice. I would like to thank

Mary James, senior editor at Springer, for first suggesting this book and helping me

through the process. Our project coordinator at Springer, Brinda Megasyamalan,

always had a quick and helpful response to every question.

Finally, I would like to thank my family: my husband, Richard Schranz, who has

always been happy to join me at W3C meetings in interesting places; my daughter

Sarah Schranz-Oliveira; my son-in-law Nuno Cancela Oliveira; and my son Peter

Schranz, for all their love and support.

Acknowledgments xiii



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Part I Standards

1 Introduction to the Multimodal Architecture Specification . . . . . . . 3

Jim Barnett

2 The Role and Importance of Speech Standards . . . . . . . . . . . . . . . . 19

Paolo Baggia, Daniel C. Burnett, Rob Marchand, and Val Matula

3 Extensible Multimodal Annotation for Intelligent

Interactive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Michael Johnston

4 EmotionML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Felix Burkhardt, Catherine Pelachaud, Bj€orn W. Schuller,

and Enrico Zovato

5 Introduction to SCXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Jim Barnett

6 Dialogue Act Annotation with the ISO 24617-2 Standard . . . . . . . . 109

Harry Bunt, Volha Petukhova, David Traum,

and Jan Alexandersson

7 Six-Layered Model for Multimodal Interaction Systems . . . . . . . . . 137

Kouichi Katsurada, Tsuneo Nitta, Masahiro Araki,

and Kazuyuki Ashimura

8 WebRTC: Handling Media on the Web . . . . . . . . . . . . . . . . . . . . . 155

Daniel C. Burnett

xv



Part II Implementations

9 Developing Portable Context-Aware Multimodal Applications

for Connected Devices Using the W3C Multimodal Architecture . . 173

Raj Tumuluri and Nagesh Kharidi

10 SCXML on Resource Constrained Devices . . . . . . . . . . . . . . . . . . . 213

Stefan Radomski, Jens Heuschkel, Dirk Schnelle-Walka,

and Max Mühlhäuser

11 Standard Portals for Intelligent Services . . . . . . . . . . . . . . . . . . . . . 257

Deborah A. Dahl

12 Applications of the Multimodal Interaction Architecture

in Ambient Assisted Living . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

António Teixeira, Nuno Almeida, Carlos Pereira,

Miguel Oliveira e Silva, Diogo Vieira, and António Teixeira

Part III Applications

13 Assembling the Jigsaw: How Multiple Open Standards

Are Synergistically Combined in the HALEF Multimodal

Dialog System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Vikram Ramanarayanan, David Suendermann-Oeft,

Patrick Lange, Robert Mundkowsky, Alexei V. Ivanov,

Zhou Yu, Yao Qian, and Keelan Evanini

14 A Case Study of Audio Alignment for Multimedia
Language Learning: Applications of SRGS and EMMA

in Colibro Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Deborah A. Dahl and Brian Dooner

Part IV Future Directions

15 Discovery and Registration: Finding and Integrating

Components into Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . 325

B. Helena Rodrı́guez and Jean-Claude Moissinac

16 Multimodal Interactivity in Foreign Language Testing . . . . . . . . . . 351

Teresa Magal-Royo and Jesús Garcı́a Laborda

17 Multi-Device Applications Using the Multimodal Architecture . . . . 367

Nuno Almeida, Samuel Silva, António Teixeira, and Diogo Vieira

18 Multimodal Interaction Description Language Based

on Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Masahiro Araki

xvi Contents



19 Multimodal Fusion and Fission within the W3C MMI

Architectural Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Dirk Schnelle-Walka, Carlos Duarte, and Stefan Radomski

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Contents xvii



Introduction

Multimodal Interaction Standards

We live in an era of increasingly accelerated technology advances. Factors like

Moore’s Law, smaller and faster devices and networks, improvements in the ability

of technologists to cooperate on shared research interests, and the disaggregation of

capabilities that has given us things like web services and cloud computing, all

combined with an investment market that catalyzes creativity, innovation, and

entrepreneurship, are combining to drive technology at an incredible rate. Within

this world of technology advancement, the multimodal component technologies

that are the subject of this book, including speech recognition, touch, typed and

gesture interpretation, and natural language understanding, have also become

dramatically more capable.

Another, crucially important, factor in the accelerating development of technol-

ogy innovation infrastructure has been standards. Standards such as HTTP and

HTML make it possible for small organizations and even individuals to contribute

to larger projects. They reduce duplication of effort across projects, and they make

it possible for components developed by different organizations to interoperate. In

only a few years, we have come to take such things as voice interfaces and voice

search on our mobile devices for granted. But even more exciting possibilities are

ahead of us as new interaction modalities become available and as these natural

interface capabilities become more interoperable. Only the largest organizations

can possibly have enough expertise in all the multimodal interaction technologies to

provide a complete proprietary platform for multimodal applications. But if sys-

tems are composed of interoperable components, smaller organizations can con-

tribute components to larger systems.

Standards are the foundation of cross-vendor interoperability. The goal of this

book is to provide an introduction to existing and potential standards for multi-

modal technologies, to showcase some examples of the standards in action, and to

provide some suggestions for where multimodal standards can go in the future. It is

xix



hoped that this book will inspire developers, both in start-ups and in large organi-

zations, to take advantage of standards in order to make existing applications more

reliable and efficient, as well as to make possible completely new types of appli-

cations. In addition, we also hope to inspire organizations and individual developers

to work on improving the standards and to think of new ways that multimodal

technologies can work together to create innovative and disruptive applications for

the twenty-first century. In this book, the focus is on the interfaces between

components that enable multimodal components to work together in systems, rather

than the design of multimodal applications. Design considerations for multimodal

user interfaces are addressed in recent related books such as [1, 2].

Speech and Multimodal Interaction

The vision of natural spoken language interaction with computers was present from

the very beginning of computers, starting with Turing’s original 1950 paper

[3] describing the idea that people could interact with computers using natural

language. However, one fact about speech and natural language interaction with

computers that has been proven repeatedly in the over 60 years since the publication

of Turing’s paper is that vision is cheap. The difficulty of the technical problem has

been dramatically underestimated, and there have been countless predictions of

how soon we would be able to talk to our computers “just like talking to a person.”

In fact, the user experience with even the most sophisticated of today’s systems is

far from the experience of talking to another person. The technology has certainly

improved dramatically in the last few years, however, and we do now have real

time, spoken interaction with systems.

Human interaction with computers was originally all about making the humans

accommodate themselves to the computer’s limitations. Only a few highly skilled

professionals were able to use computers. As computers become easier to use, their

benefits become available to more and more people.

Keyboards and graphical displays greatly improved human-computer interaction

over earlier technologies such as punched cards. The computer-human interface

took a tremendous leap forward with the introduction of the now very familiar

graphical interface. It could be argued that, between the introduction of the graph-

ical user interface by the Xerox Alto in 1973 and the introduction of Apple Siri

2011, a period of 38 years, the human-computer interface was completely based on

the graphical desktop metaphor. The graphical user interface made it possible for

nonprofessionals, or at least non-enthusiasts, to use computers, greatly extending

their value.

Nevertheless, the current graphical web is not easy for everyone to use, yet

nearly everyone can benefit from the kinds of information and functionality that the

web and indeed computers, in general, can provide. Some people have trouble

seeing a screen, typing, moving a mouse, or understanding complex text. For these

users, alternative modalities of interaction are crucial. Spoken and haptic output can

help users avoid the requirement of having to see a screen, speech input can help

xx Introduction



people with motor issues, and interaction paradigms like directed dialog can help

those who are unable to understand complex language.

The touch interface introduced with smartphones and tablets further extended

the power of computers to more kinds of users. Now even very young children can

use tablets. Finally, with the addition of high-quality speech-based interfaces, the

reach of computers is further broadened, and with ambient devices like the Amazon

Echo, anyone who can speak can access the computer, without even having to find a

tablet or phone. The computer is simply available, whenever it is needed.

Multimodal interaction is a big part of the opening up of computers to a broader

population, because, through speech, it enables people to use smaller and cheaper

devices with small screens and keyboards or even no screen and no keyboard.

Multimodal Interaction Standards

The idea of combining voice and graphical interaction has been explored in the

research literature for many years. The 1980 paper “Put that there” [4] which

discussed combining gesture and speech was an early example. Multimodal output

combining graphical and text output was described in 1990 by Feiner and

McKeown [5]. Research on multimodal interaction continued through the 1990s,

for example, in the work of Sharon Oviatt, Philip Cohen, and their collaborators [6–

8]. This initial work focused largely on research and did not concern itself with

interoperability across different systems.

The goal of creating shared interface standards that could make it easier for

teams to collaborate in the development of multimodal systems emerged as part of

the DARPA Galaxy project [9, 10]. Going beyond a single project, the idea of

formalizing multimodal interaction standards through a standards body was raised

at the beginning of the World Wide Web Consortium (W3C) Voice Browser

Working Group [11] in 1999. Multimodal interaction was originally a subgroup

of the Voice Browser Group. The Voice Browser Working Group was working on

standards for unimodal voice systems, including standards for voice dialogs, speech

grammars, text to speech markup, and natural language understanding. Many of

these standards provided the foundations for later multimodal standards.

Two industry proposals for integrating voice with HTML were developed in

2002. These were Speech Application Language Tags (SALT) and XHTML

+Voice. In response to this interest, the W3C decided to create a separate working

group focused specifically on standards for multimodal systems, the Multimodal

Interaction Working Group [12]. Because the two industry proposals only covered

the limited use case of integration of voice into HTML, the Multimodal Interaction

Working Group decided to take a more abstract and generic approach that could be

extended to many different interaction modalities. This group adopted the Voice

Browser’s efforts at developing a natural language standard, Natural Language

Semantics Markup Language (NLSML) [13], which expanded to cover multimodal

use cases and became Extensible Multimodal Annotation (EMMA) [14, 15]. The

Multimodal Interaction Working Group went on the develop standards for

Introduction xxi



multimodal architectures, emotion annotation, and electronic ink, in addition to

EMMA. This book will describe these standards, talk about implemented platforms,

discuss applications of the standards, and, finally, present ideas for future multi-

modal standards and their applications.

How the Standards Fit Together

This book discusses the standards for natural computer-human interaction which

have been developed over the past 17 years, primarily within the World Wide Web

Consortium Voice Browser Working Group and Multimodal Interaction Working

Group. Together, the standards are designed to support multimodal interaction from

the initial user input, through analysis and interpretation, to the final system output

to the user.

We can divide the standards into three categories: languages for controlling

processors, protocols for communications among components, and formats for

representing input and output. To see the overall organization of how the standards

fit together in systems, we will refer to Figs. 1 and 2. These figures show how

multimodal systems for input and output are composed of components that accept

and interpret input, prepare and present output, and conduct an interaction between

the user and the system.

Life Cycle Events
+

EMMA

Object 
recognition

Gesture

Handwriting

Camera

Multimodal 
fusion

Interaction 
management

Gesture 
recognition

select

Handwriting 
recognition

“I want that”

OCR
“I want that” 

E+E

Multimodal Input

Legend

Natural language 
understanding

Keyboard

E+E

Speech Speech
recognition
“I want that”

E+E

E+E

Pointing
select

E+E

E+E

E+E

E+E

E+E

E+E

E+E+ 
I

E+ E +
E

Life Cycle Events
+

EMMA 
+

InkML
Life Cycle Events

+
EMMA

+
EmotionML

Emotion 
recognition

E+ E +
E

E+E+ 
I

SCXML

VoiceXML

SRGS +
SISR
PLS

Fig. 1 Multimodal inputs and some associated standards

xxii Introduction



Formats for Controlling Processors

These are declarative formats that define the operations for a processor. With the

exception of State Chart XML (SCXML), they are all related to voice processing.

The voice standards include the following:

1. Pronunciation Lexicon Specification (PLS) defines an XML format for describ-

ing the pronunciations for words which can be used with both speech recognizers

and speech synthesizers.

2. Speech Recognizer Grammar Specification (SRGS) defines two formats for

defining context-free speech grammars: an XML format and an ABNF format.

3. Semantic Interpretation for Speech Recognition (SISR), used in conjunction

with SRGS, is a format for defining the semantic interpretation of recognized

speech.

4. Speech Synthesis Markup Language (SSML) is an XML format for representing

instructions for a text to speech synthesizer.

5. VoiceXML is a declarative XML format for specifying spoken form-filling

dialogs, including defining prompts (which may include SSML instructions for

prompts rendered with TTS or instructions to play audio files), referring to speech

grammars defined with SRGS, and specifying the information (fields or slots) to

be filled in during the course of a dialog. VoiceXML documents are interpreted by

VoiceXML platforms which conduct the actual dialogs with users.

Graphics

Text 

Multimodal 
fission

Interaction 
management

Multimodal Output

Speech

Life Cycle Events
+

EMMA
E+E

Legend

Life Cycle Events
+

EMMA 
+

HTML

E+ E +
HTML

E+E
E+ E +
HTML

E+E

E+E +
SSML

Life Cycle Events
+

EMMA
+

SSML

E+E +
SSML

SCXML

VoiceXML

Fig. 2 Multimodal outputs and some associated standards

Introduction xxiii



In Fig. 1, we see the voice recognition standards next to the speech recognition

component, since they are used by a speech recognizer.

The voice standards—VoiceXML, SRGS, SISR, PLS, and SSML—are

discussed in Chap. 2.

State Chart XML (SCXML) was developed by the Voice Browser Working

Group, but plays an important role in multimodal applications as an Interaction

Manager. SCXML is a declarative XML formalization of Harel State Charts. It can

be used to define state chart-based processes, including, but not limited to, voice-

based and multimodal dialogs. One important use case of SCXML is its use as an

Interaction Manager, or dialog controller, in multimodal systems. It is shown as the

Interaction Manager in Figs. 1 and 2, reacting to events triggered by user inputs and

producing system outputs. SCXML is discussed in Chap. 5, and an implementation

of SCXML is discussed in Chap. 10.

Communications Among Components

The multimodal architecture, discussed in Chap. 1, defines the behavior of the

components of a multimodal system (the Interaction Manager and the Modality

Components) and specifies the format that they must use to communicate with each

other (Life Cycle Events). The first “E” in the circles in Figs. 1 and 2 stands for

“Events” and refers to a Life Cycle Event going between an Interaction Manager

and a Modality Component. The Life Cycle Events consist of basic operations that

an Interaction Manager might use to control components—operations like “Start,”

“Cancel,” “Pause,” “Resume,” and so on. The events are defined as having standard

fields, including, for example, the source and destination of the event and a context

ID that associates the event with a particular context. Application-specific infor-

mation for a particular operation is contained in the “Data” field. There is no

specific syntax defined for Life Cycle Events, although there are informative

examples in XML contained in the specification. Events could be represented in

XML, JSON, or binary objects, depending on the requirements of the application.

Similarly, the events are transport-agnostic. Although there are informative HTTP

examples in the specification, other protocols could be used, for example,

WebSockets, which would be particularly applicable because of its bidirectional

nature.

Representation of Input and Output

Representing Uninterpreted Input

Uninterpreted input is the initial user input, which is often in a binary form as audio,

images, or video. In most cases, existing formats are available for representing this

kind of input, so there was no need to define new standards for these formats. The

xxiv Introduction

http://dx.doi.org/10.1007/978-3-319-42816-1_2
http://dx.doi.org/10.1007/978-3-319-42816-1_5
http://dx.doi.org/10.1007/978-3-319-42816-1_10
http://dx.doi.org/10.1007/978-3-319-42816-1_1


single exception in the multimodal standards suite is Ink Markup Language

(InkML) [16, 17], designed to represent the initial electronic input from a user,

using a stylus or finger. In addition to representing ink itself (in the <trace>
element), InkML also provides a rich set of metadata that preserves the appearance

of the original input. Some examples of InkMLmetadata include channels for color,

width, pen orientation, and timing for each sample point within a trace. Use cases

for InkML include remote collaboration for mathematicians, efficient storage of

signatures and other handwriting, archiving of academic lectures, and representing

handwriting recognition results along with the original handwriting. This last use

case involves combining InkML with EMMA and is shown in Fig. 1 in the modality

path that starts with “Handwriting.”

Representing Interpreted User Input

Extensible Multimodal Annotation

EMMA is the primary format in the MMI standards suite for representing user

inputs, as shown by the circles marked “E +E” (Events + EMMA), “E +E + I”

(Events + EMMA+ InkML), and “E +E+E” (Events + EMMA+EmotionML) in

Fig. 1. EMMA is designed to represent user input, as it is processed in a sequence

of stages, in a uniform format, starting with an initial result from a processor like a

speech recognizer or handwriting recognizer. Additional levels of interpretation can

be provided by processes such as natural language understanding or sentiment

analysis. Each successive stage in processing augments and enriches the growing

EMMA document with its results. The fact that EMMA is a uniform representation

across modalities also facilitates the fusion of inputs from different modalities.

EMMA is available as a speech recognition output format in the MRCP v2

[18] protocol for controlling speech recognizers and synthesizers as well as theWeb

Speech API [19] proposal for using speech recognition and speech synthesis in

browsers. EMMA 2.0 can also represent system output, as shown in Fig. 2, and as

described below.

EMMA is discussed in detail in Chap. 3.

Emotion ML

Another format for representing a specific type of interpreted user input is Emotion

Markup Language (EmotionML). EmotionML is an XML format for representing

emotions expressed by a variety of means (face, voice, text, etc.). EmotionML can

be embedded in EMMA, which simplifies the task of fusing emotion recognition

results with utterance interpretation results. EmotionML can also be used for

describing affective output to be rendered as output by a system (e.g., by TTS),

as described below.

EmotionML is discussed in detail in Chap. 4.

Introduction xxv

http://dx.doi.org/10.1007/978-3-319-42816-1_3
http://dx.doi.org/10.1007/978-3-319-42816-1_4


Representing the Semantics of System Output

Figure 2 looks at the standards from the perspective of output. Starting from an

intended system output produced by an Interaction Manager, represented in EMMA

2.0, the intended output can be separated into distinct output modalities, or

fissioned, into more concrete representations appropriate for presentation to a user.

EMMA 2.0

EMMA 2.0 includes the ability to represent the semantics of system output in

addition to user input. This means that it is now possible to represent both the

human and system sides of the dialog in a single, standard, uniform format. It also

supports multimodal fission, by allowing the Interaction Manager to create a high-

level, abstract representation of the system response, which can be progressively

refined and divided into modality-specific presentations through different stages of

processing. In effect, this process is the inverse of the process of handling user

inputs defined in EMMA 1.0. In addition to supporting more maintainable systems

by dividing the tasks of determining system intent from rendering the intent in

specific modalities, this architecture supports accessibility by making it easier to

present content in different forms for different users.

Overview of Sections

Part I Standards

The book begins with a description of the standards themselves. The formal

standards documents can be very technical and are often written in “Standardsese”

that has the goal of defining the standards very precisely, making it possible for

widely dispersed teams to create interoperable implementations. In some cases, this

goal has the consequence that the resulting standards document is difficult to

understand. Standards documents try to eliminate any ambiguity about what an

implementation must do to be conformant to the standard, and they often refer to a

chain of underlying standards and standards bodies that may not be easy to follow.

These characteristics are important for implementers, but they can make it difficult

for other readers, including students, developers, and business people, to understand

just what the standard is for and how they can use it. Tutorials and primers for many

standards exist, but they are scattered among various books, presentations, and

journal articles.

In Part I of this book, we bring together overviews of seven W3C, ITSCJ and

ISO standards in what we hope is a more introductory and human-friendly format

than the official standards documents. Part I covers the multimodal architecture, the

xxvi Introduction



suite of speech standards, EMMA, EmotionML, and SCXML. ISO dialog stan-

dards, which go deeper into the semantics of actual utterances that does EMMA, are

reviewed in Chap. 6. A multimodal standard published by ITSCJ (Information

Technology Standards Commission of Japan) is described in Chap. 7. The standard

described in Chap. 7 is similar to the W3C standard, but provides a more fine-

grained set of events and processing layers. Part I also includes Web Real-Time

Communications (WebRTC) [20], developed by the W3C Web Real-Time Com-

munications Working Group, in Chap. 8.

Part II Platforms

Part II discusses implementations of the standards in platforms intended to support

multiple applications. Three platforms are discussed. Chapter 9 describes what is

probably the most comprehensive implementation of the multimodal architecture,

developed by Openstream. The Openstream implementation supports interactive

spoken multimodal dialog systems and multimodal annotation for human-human

interaction. Chapter 10 provides insight into an implementation of SCXML for

resource-constrained devices, which could prove to be very valuable for applica-

tions in the Internet of Things. Chapter 11 describes an implementation of a

multimodal architecture conformant modality component for natural language

understanding and explains how the EMMA and multimodal architecture standards

can be used to wrap native processing components so that their functionalities can

be accessed in a standard way. Chapter 12 describes HALEF, an open source,

standards-based, dialog system platform that is currently primarily voice-based, but

which is moving toward incorporating multimodal capabilities.

Part III Applications

Part III includes two chapters on applications that make use of the standards.

Chapter 13 describes applications in ambient-assisted living. Chapter 14 describes

using SRGS and EMMA for a simple approach to text and audio alignment in

bilingual books.

Part IV Future Directions

Standards for these dynamic technologies evolve. This evolution is a balance

between gaining the benefits of vendor-independent interoperability and at the

same time without constraining innovation. Even in the familiar GUI world of

web browsers, this tension is reflected in the many differences between the major

Introduction xxvii

http://dx.doi.org/10.1007/978-3-319-42816-1_6
http://dx.doi.org/10.1007/978-3-319-42816-1_7
http://dx.doi.org/10.1007/978-3-319-42816-1_7
http://dx.doi.org/10.1007/978-3-319-42816-1_8
http://dx.doi.org/10.1007/978-3-319-42816-1_9
http://dx.doi.org/10.1007/978-3-319-42816-1_10
http://dx.doi.org/10.1007/978-3-319-42816-1_11
http://dx.doi.org/10.1007/978-3-319-42816-1_12
http://dx.doi.org/10.1007/978-3-319-42816-1_13
http://dx.doi.org/10.1007/978-3-319-42816-1_14


browsers in their implementations of HTML. We often see “you must use X

browser to view this page.” Websites like http://www.caniuse.com are needed to

provide guidance on the state of HTML features and Javascript APIs in various

browsers and their plans for implementation. It is inevitable that, as standards are

implemented and used, limitations become apparent and people start to notice

where many vendors are doing similar things, thus showing where standardization

is possible. Plug-ins and polyfill Javascript libraries start to emerge as developers

realize that they need functionalities that are not included in current standards. One

vendor implements a feature that everyone recognizes as valuable, and then other

vendors add it, opening up the possibility of a new standard feature. Industry

consortia start to coalesce to promote new ideas. New devices and new function-

alities give rise to new use cases, which in turn stimulate new ideas about func-

tionalities that can be standardized. Eventually, a formal standard can emerge, or

the ideas can continue as de facto standards.

Part IV talks about directions in the development of future standards. Chapter 15

describes standards that will be needed in the Internet of Things as dynamically

configured systems become more prevalent. As users move into and out of envi-

ronments, modality services will be able to advertise their availability and status.

They can become part of an application as needed and then can be detached from

the application when they are no longer needed or when they are no longer

available. Chapter 16 talks about current and future ideas for multimodal applica-

tions in foreign language testing. Chapter 17 extends the use cases to include multi-

device applications. Chapter 18 describes an approach to interaction management

based on semantic data models, referring to semantic web standards OWL [21] and

RDF [22]. Finally, Chap. 19 extends the multimodal architecture to include more

detail, specifically adding components for multimodal fission and fusion.

References

1. Oviatt, S., & Cohen, P. R. (2015). The paradigm shift to multimodality in contemporary
computer interfaces. San Rafael CA: Morgan and Claypool.

2. Shaked, N., & Winter, U. (Eds.). (2016). Design of multimodal mobile interfaces. Berlin:
Walter De Gruyter Inc.

3. Turing, A. (1950). Computing machinery and intelligence. Mind, 59, 433–460.
4. Bolt, R. (1980). Put-that-there: Voice and gesture at the graphics interface. Computer

Graphics, 14, 262–270.
5. Feiner, S. K., & McKeown, K. R. (1990). Coordinating text and graphics in explanation

generation. In: AAAI-90: Proceedings of the 8th National Conference on Artificial Intelli-
gence, vol I (pp. 442–449). AAAI Press/The MIT Press.

6. Oviatt, S. L. (1999). Ten myths of multimodal interaction. Communications of the ACM, 42,
74–81.

7. Oviatt, S., DeAngeli, A., & Kuhn, K. (1997). Integration and synchronization of input modes

during multimodal human-computer interaction. In: Proceedings of Conference on Human
Factors in Computing Systems (CHI ’97) (pp. 415–422). New York, NY: ACM Press.

xxviii Introduction

http://www.caniuse.com/
http://dx.doi.org/10.1007/978-3-319-42816-1_15
http://dx.doi.org/10.1007/978-3-319-42816-1_16
http://dx.doi.org/10.1007/978-3-319-42816-1_17
http://dx.doi.org/10.1007/978-3-319-42816-1_18
http://dx.doi.org/10.1007/978-3-319-42816-1_19


8. Cohen, P. R., Oviatt, S. L. (1995). The role of voice input for human-machine communica-

tion. Proceedings of the National Academy of Sciences, 92, 9921–9927.
9. Bayer, S. (2005). Building a standards and research community with the galaxy communica-

tor software infrastructure. In: D. A. Dahl (Ed.), Practical Spoken Dialog Systems, vol 26.
Text, speech and language technology (pp. 166–196). Dordrecht: Kluwer Academic

Publishers.
10. Seneff, S., Lau, R., & Polifroni, J. (1999). Organization, communication, and control in the

Galaxy-II Conversational System. In: Proceedings of the Eurospeech 1999, Budapest, 1999.
11. W3C W3C Voice Browser Group Home Page. http://www.w3.org/Voice/.

12. W3C. (2004). Multimodal Interaction Working Group Home Page. http://www.w3.org/2002/

mmi/.

13. Dahl, D. A. (2000). Natural language semantics markup language for the speech interface

framework. W3C. http://www.w3.org/TR/nl-spec/.

14. Johnston, M., Baggia, P., Burnett, D., Carter, J., Dahl, D. A., McCobb, G., et al. (2009)

EMMA: Extensible MultiModal Annotation markup language. W3C. http://www.w3.org/TR/

emma/. Accessed November 9, 2012.

15. Johnston, M., Dahl, D. A., Denny, T., & Kharidi, N. (2015). EMMA: Extensible MultiModal

Annotation markup language Version 2.0. World Wide Web Consortium. http://www.w3.org/

TR/emma20/. Accessed December 16, 2015.

16. Watt, S. M., Underhill, T., Chee, Y. -M., Franke, K., Froumentin, M., Madhvanath, S.,

et al. (2011). Ink markup language (InkML). World wide web consortium. http://www.w3.

org/TR/InkML. Accessed November 27, 2012.

17. Watt, S. M. (2007) New aspects of InkML for pen-based computing. In: International
Conference on Document Analysis and Recognition, (ICDAR), Curitiba, Brazil, September

23–26, 2007. IEEE Computer Society, pp. 457–460.

18. Shanmugham, S., & Burnett, D. C. (2008). Media resource control protocol version

2 (MRCPv2). Internet Engineering Task Force. http://tools.ietf.org/html/draft-ietf-speechsc-

mrcpv2-16.

19. Shires, G., & Wennborg, H. (2012). Web speech API specification. https://dvcs.w3.org/hg/

speech-api/raw-file/tip/speechapi.html. Accessed May 31, 2016.

20. Bergkvist, A., Burnett, D. C., Jennings, C., & Narayanan, A. (2016). WebRTC 1.0: Real-time
communication between browsers. World Wide Web Consortium. http://www.w3.org/TR/

webrtc/. Accessed November 28, 2012.

21. W3C OWLWorking Group. (2012). OWL 2 web ontology language document overview (2nd

ed.). World Wide Web Consortium. http://www.w3.org/TR/owl2-overview/. Accessed April

9, 2014.

22. Antoniou, G., & van Harmelen, F. (2004). A semantic web primer. Cambridge, MA: MIT

Press.

Introduction xxix

http://www.w3.org/Voice/
http://www.w3.org/2002/mmi/
http://www.w3.org/2002/mmi/
http://www.w3.org/TR/nl-spec/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/InkML
http://www.w3.org/TR/InkML
http://tools.ietf.org/html/draft-ietf-speechsc-mrcpv2-16
http://tools.ietf.org/html/draft-ietf-speechsc-mrcpv2-16
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/owl2-overview/


Part I

Standards



Chapter 1

Introduction to the Multimodal Architecture
Specification

Jim Barnett

Abstract The W3C’s Multimodal Architecture standard is a high-level design

featuring loosely coupled components. Its goal is to encourage interoperability

and re-use of components, without enforcing any particular approach to building

multimodal applications. This paper offers an overview of the architecture,

outlining its components and the events they use to communicate, as well as giving

basic examples of how it can be applied in practice.

1.1 Overview

Many standards emerge in areas where the technology is stable and industry

participants think that they understand the field well enough to be able to codify

existing best practices. However the consensus within the Multimodal Interaction

Working Group of the W3C was that best practices for multimodal application

development had not yet emerged. The group therefore took it as its task to support

exploration, rather than trying to codify any particular approach to multimodal

applications. The goal of the Multimodal Architecture and Interfaces standard [1] is

to encourage re-use and interoperability while being flexible enough to allow a wide

variety of approaches to application development. The Working Group’s hope is

that this architecture will make it easier for application developers to assemble

existing components to get a base multimodal system, thus freeing them up to

concentrate on building their applications.

As part of the discussions that lead to the Multimodal Architecture, the group

considered existing multimodal languages, in particular SALT [2] and HTML5 [3].

SALT was specifically designed as a multimodal language, and consisted of speech

tags that could be inserted into HTML or similar languages. HTML5 in turn has

multimodal capabilities, such as video, which were absent from earlier versions of

J. Barnett (*)

Department of Architecture Team, Genesys, Daly City, CA, USA

e-mail: jim.barnett@genesys.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_1

3

mailto:jim.barnett@genesys.com


HTML. One problem with this approach is that it is both language- and modality-

specific. For example, neither SALT nor HTML5 supports haptic sensors, nor do

they provide an extension point that would allow them to be integrated in a

straightforward manner. Furthermore, in both cases overall control and coordina-

tion of the modalities is provided by HTML, which was not designed as a control

language. Multimodal application developers using HTML5 are thus locked into a

specific graphical language with limited control capabilities and no easy way to add

new modalities. As a result of these limitations, HTML5 is not a good framework

for multimodal experimentation.

The Multimodal Working Group’s conclusion is that it was too early to commit

to any modality-specific language. For example, VoiceXML [4] has been highly

successful as language for speech applications, particularly over the phone. How-

ever there is no guarantee that it will turn out to be the best language for speech-

enabled multimodal applications. Therefore the Working Group decided to define a

framework which would support a variety of languages, both for individual modal-

ities and for overall coordination and control. The framework should rely on simple,

high-level interfaces that would make it easy to incorporate existing languages such

as VoiceXML as well as new languages that haven’t been defined yet. The Working

Group’s goal was to make as few technology commitments as possible, while still

allowing the development of sophisticated applications from a wide variety of

re-usable components. Of necessity the result of the Group’s work is a high-level

framework rather than the description of a specific system, but the goal of the

abstraction is to let application developers decide how the details should be filled in.

We will first look at the components of the high-level architecture and then at the

events that pass between them.

1.2 The Architecture

The basic design principles of the architecture are as follows:

1. The architecture should make no assumptions about the internal structure of

components.

2. The architecture should allow components to be distributed or co-located.

3. Overall control flow and modality coordination should be separated from user

interaction.

4. The various modalities should be independent of each other. In particular,

adding a new modality should not require changes to any existing ones.

5. The architecture should make no assumptions about how and when modalities

will be combined.

The third and fourth principles motivate the most basic features of the design. In

particular item 3 requires that there be a separate control module that is responsible

for coordination among the modalities. The individual modalities will of course

need their own internal control flow. For example, a VoiceXML-based speech

4 J. Barnett



recognition component has its own internal logic to coordinate prompt playing,

speech recognition, barge-in, and the collection of results. However the speech

recognition component should not be attempting to control what is happening in the

graphics component. Similarly the graphics component should be responsible for

visual input and output, without concern for what is happening in the voice

modality. The fourth point re-enforces this separation of responsibilities. If the

speech component is controlling speech input and output only, while the graphics

component is concerned with the GUI only, then it should be possible to add a

haptic component without modifying either of the existing components.

The core idea of the architecture is thus to factor the system into an Interaction

Manager (IM) and multiple Modality Components (MCs).

The Interaction Manager is responsible for control flow and coordination among

the Modality Components. It does not interact with the user directly or handle

media streams, but controls the user interaction by controlling the various MCs.

If the user is using speech to fill in a graphical form, the IM would be responsible

for starting the speech Modality Component and then taking the speech results from

the speech MC and passing them to the graphics component. The IM is thus

responsible for tracking the overall progress of the application, knowing what

information has been gathered, and deciding what to do next, but it leaves the

details of the interactions in the various modalities up to the MCs. A wide variety of

languages can be used to implement Interaction Managers, but SCXML [5] is well

suited to this task and was defined with this architecture in mind.

The Multimodal Architecture also defines an application-level Data Component

which is logically separate from the Interaction Manager. The Data Component is

intended to store application-level data, and the Interaction Manager is able to

access it and update it. However the architecture does not define the interface

between the Data Component and the IM, so in practice the IM will provide its

own built-in Data Component.

Modality Components are responsible for interacting with the user. There are

few requirements placed on Modality Components beyond this. In particular, the

specification does not define what a “modality” is. A Modality Component may

handle input or output or both. In general, it is possible to have “coarse-grained”

Modality Components that combine multiple media that could be treated as sepa-

rate modalities. For example, a VoiceXML-based Modality Component would

offer both ASR and TTS capabilities, but it would also be possible to have one

MC for ASR and another for TTS. Many Modality Components will have a

scripting interface to allow developers to customize their behavior. VoiceXML is

again a good example of this. However it is also possible to have hard-coded

Modality Components whose behavior cannot be customized.

Note that to the extent that HTML5 is a multimodal language, it acts both as an

Interaction Manager and as a Modality Component. The W3C Multimodal Archi-

tecture tries to provide more flexibility so that an application can use HTML5 as a

graphical MC without being restricted to its limited control flow capabilities.

It is also possible to nest Modality Components. That is, multiple MCs plus an

Interaction Manager can look like single MC to a higher-level Interaction Manager.

1 Introduction to the Multimodal Architecture Specification 5



This design can be useful if some MCs need to be tightly coupled with each other,

while they are more loosely coordinated with others. For example, ASR and TTS

modalities are usually tightly coupled to coordinate prompt playing with recogni-

tion and barge-in. If a system was working directly with individual ASR and TTS

Modality Components, it might want to couple them closely using a separate

Interaction Manager. The resulting complex Modality Component would offer

prompt and recognize capabilities to the larger application, similar to a native

VoiceXML Modality Component.

In addition to the Interaction Manager and Modality Components, the architec-

ture contains a Runtime Framework, which provides the infrastructure necessary to

start and stop components, as well as enabling communication. The Runtime

Framework contains a Transport Layer which must provide reliable, in-order

delivery of events between the IM and the MCs. The Transport Layer might be

HTTP for loosely coupled and distributed components or something proprietary for

co-located and tightly coupled components. Overall, the Multimodal Architecture

and Interfaces specification provides little detail on the Runtime Framework.

However the separate Discovery and Registration specification [6] is filling in

part of this gap.

Security is important for multimodal applications since they will often be

dealing with sensitive information such as credit card numbers. However security

is outside the scope of the Multimodal Architecture and Interfaces specification.

The W3C Multimodal Working Group assumes that developers will consult the

relevant security specifications when building their systems.

A diagram of the W3C Multimodal Architecture, taken from the specification

[1], is given below (Fig. 1.1).

Overall, the W3C’s Multimodal Architecture should look fairly familiar (lack

of originality is considered a good thing in standards group work). One model for

this design is the DARPA Hub Architecture, also known as the Galaxy Communi-

cator [7]. The architecture can also be taken as an instance of the Model/View/

Controller paradigm (especially when the data model is separate). Specifically, the

Modality Components represent the view, while the Interaction Manager is the

Controller.

The goal of this design is to chop the system up into pieces that are likely to

make good re-usable components. For example, there are a number of open source

SCXML interpreters that can be used as Interaction Managers. Similarly, an open

source VoiceXML interpreter can be used as a Modality Component. On the other

hand, the looseness of definition of Modality Components including the lack of a

clear definition of “modality” is designed to allow room for experimentation while

still providing enough structure so that the results of innovation can be re-used.

6 J. Barnett



1.3 The Interfaces

In addition to specifying the overall architecture, the Multimodal Architecture and

Interfaces specification defines a set of events that are exchanged by the compo-

nents. Since the specification does not commit to what the Modality Components

are or to how they are implemented, the event set is high-level and generic, but still

sufficient to build real-world applications. In keeping with the high-level nature of

the event set, the events are defined as an abstract set of “fields,” which any actual

implementation would have to map onto a concrete syntax such as XML or JSON.

The transport for the events is also not defined.

The majority of events are defined in request/response pairs. Certain fields are

common to all events. The “target” field contains the address of the intended

recipient, and allows the underlying messaging infrastructure to deliver the event.

The “source” field gives the address of the sender, and the recipient of an event

should be able to send a response to this address. The “context” field identifies a

particular interaction with a user. For example, most VoiceXML and SCXML

interpreters can handle multiple simultaneous sessions, so the “context” field allows

the interpreters to determine which user session that event belongs to. The speci-

fication does not define the duration of a “context,” but the Interaction Manager and

all the Modality Components that are interacting with the user share the same

“context,” and it is possible for individual Modality Components to join and leave

Interaction
Manager

Data
Component

Transport Layer

Modality
Component

Modality
Component

Runtime Framework

Fig. 1.1 Components of the multimodal architecture

1 Introduction to the Multimodal Architecture Specification 7



the system during the lifetime of a “context.” Finally a “RequestID” field allows

components to match requests and responses, while the “data” field holds arbitrary

data, and can be used to pass application-specific information.

Here is an overview of the event set:

• NewContextRequest/NewContextResponse. The first step in starting a new user

interaction is creating a new context. If a Modality Component detects the

presence of a new user, for example, by a phone call coming into a VoiceXML

interpreter or a new visitor walking up to a multimodal kiosk, it can send the

NewContextRequest event to the Interaction Manager. The IM will then respond

by sending a NewContextResponse to the Modality Component containing a

newly created context identifier. At this point all that has happened is a bit of

book-keeping. The interaction with the user won’t start until the IM sends a

StartRequest (see below) to one or more Modality Components. The

NewContextRequest is used when a Modality Component wants to create a

new user interaction. The Interaction Manager can also create a new interaction

at any point by sending a PrepareRequest or a StartRequest containing a new

context identifier to one or more Modality Components. Thus a new user

interaction may be started either by a Modality Component or by the Interaction

Manager.

• StartRequest/StartResponse. The Interaction Manager starts a user interaction by

sending a StartRequest to one or more Modality Components. The Modality

Components return a StartResponse to acknowledge that they have begun

running. The StartRequest contains two mutually exclusive fields, Content and

ContentURL, that are used to instruct the Modality Component how it should

interact with the user. It is most natural to think of these fields as specifying the

markup that the Modality Component should execute. For a VoiceXML inter-

preter, for example, the Content field would contain an in-line specification of

VoiceXML markup, while the ContentURL field would specify the URL to

download the markup from. However Modality Components need not be con-

trolled by markup. For ones that are not, the Content or ContentURL fields could

contain platform-specific parameters or commands that would modify or control

the behavior of the Modality Component. It is also possible to have a hard-coded

Modality Component that runs the same way no matter what is specified in these

fields.

• PrepareRequest/PrepareResponse. The PrepareRequest event is an optional event

that the Interaction Manager can send before the StartRequest. It contains the

same Content or ContentURL fields as the StartRequest. The purpose of the

PrepareRequest is to allow a Modality Component to get ready to run by, e.g.,

downloading markup, compiling grammars, or any other operations that will allow

it to start immediately upon receipt of the StartRequest. The PrepareRequest is

useful for Modality Components that need to be tightly synchronized, for exam-

ple, a text-to-speech engine that reads out a message while a graphical display

highlights the words as they are spoken. If we simply send StartRequests to both

components, it might take one longer to get going than the other, so coordination

8 J. Barnett



will be smoother if the PrepareRequest allows both to prepare to start with

minimal delay. The PrepareResponse is sent by the Modality Component back

to the Interaction Manager to acknowledge the PrepareRequest.

• DoneNotification. This event is not part of a request/response pair, though it can

be considered to be a delayed response to the Start Request. It is sent by a

Modality Component to the Interaction Manager to indicate that it has finished

its processing. For example, a text-to-speech system would send it when it had

finished playing out the text specified in the StartRequest, or a VoiceXML

interpreter would send a DoneNotification when it had finished executing its

markup. (In this case, the VoiceXML interpreter might include an EMMA [8]

representation of the recognition results in the event.) Not all Modality Compo-

nents have a built-in concept of termination, so the DoneNotification is optional.

For example, a simple graphical component might keep displaying the informa-

tion that it had been told to display indefinitely until it received a new Start

Request telling it to display different information. Such a component would

never send a DoneNotification.

• PauseRequest/PauseResponse. The Interaction Manager may send a

PauseRequest to a Modality Component, asking it to suspend its interactions

with the user. The Modality Component then responds with a PauseResponse

once it has paused. If a Modality Component is unable to pause, it will send a

PauseResponse containing an error code.

• ResumeRequest/ResumeResponse. The Interaction Manager may send a

ResumeRequest to any Modality Component that it has previously paused.

The Modality Component will return a ResumeResponse once it has resumed

processing. It is an error for the Interaction Manager to send a ResumeResponse

to a Modality Component that has not previously been paused.

• CancelRequest/CancelResponse. The Interaction Manager may send a

CancelRequest to any Modality Component telling it to stop running. The

Modality Component will stop collecting user input and return a

CancelResponse.

• ExtensionNotification. This event is intended to carry application- or platform-

specific logic. Either the Interaction Manager or the Modality Components may

send it, and no response is required (though the recipient could reply with

another ExtensionNotification). This event includes a “name” field, which

holds the name of the application- or platform-specific event, as well as an

optional “data” field, which can hold an application- or platform-specific pay-

load. A re-usable component, whether an Interaction Manager or a Modality

Component, should document the set of ExtensionNotifications that it expects to

send and receive, as well as their semantics.

• ClearContextRequest/ClearContextResponse. The Interaction Manager can

send a ClearContextRequest to a Modality Component to indicate that the

particular context/interaction is finished. The Modality Component is not

required to take any specific action in response to this event, but normally it

would free up any resources it has allocated to the interaction (cached grammars,

adapted voice models, etc.) The Modality Component then responds with a

ClearContextResponse.

1 Introduction to the Multimodal Architecture Specification 9



• StatusRequest/StatusResponse. This event may be sent by either the Interaction

Manager or a Modality Component, and is intended to provide keep-alive

functionality. The recipient will reply with the StatusResponse event with a

“status” field containing “alive” or “dead.” (If the recipient doesn’t respond at

all, it is obviously dead.) The “context” field in the StatusRequest event is

optional. If it is present, the recipient will reply with the status of that specific

context/interaction. (A status of “alive” means that the context is still active and

can receive further events.) If the “context” field is absent, the recipient replies

with the status of the underlying server. In this case, a status of “alive” means

that the server is able to process new contexts/interactions.

1.4 Some Examples

As an example of how this event set could be used in practice, consider a simple

application running on a hand-held device consisting of a form that can be filled out

either by speech or by typing in the values of fields in the GUI. This application

would consist of a GUI Modality Component, a Speech Modality Component, and

the Interaction Manager. The Modality Components gather the values of the fields

and return them to the Interaction Manager, which will process then and submit the

form when it is complete.

The event flow for starting the application and filling out a single field by speech

would be as follows:

1. The IM sends a StartRequest event to the GUI MC.

2. The GUI MC displays the form and returns a StartResponse event.

3. The user selects a field by tapping on it. The GUI MC sends an ExtensionNo-

tification with the name of the field to IM.

4. The IM sends a StartRequest to the Speech MC. The selected field will be

specified in-line in the “Content” field or via a URL in the “ContentURL” field.

5. The Speech MC starts listening for speech and sends a Start Response.

6. The user speaks the value of the field. The Speech MC returns a DoneNoti-

fication containing the recognition result.

7. The IM sends an ExtensionNotification to the GUI MC specifying the value of

the field (taken from the DoneNotification). The GUI MC updates its display

with this value (Fig. 1.2).

If it takes the Speech Modality Component an appreciable amount of time to

load and compile its grammars, and response time is a concern, the application

could be modified so that the Interaction Manager would send multiple

PrepareRequests to the Speech MC at start-up time, allowing it to prepare its

grammars before the GUI MC displayed the form. In this case, the Speech MC

would send a separate PrepareResponse for each request, and the IM would wait for

all the responses before sending the StartRequest to the GUI MC. Events 1–7 would

then occur in the same order as shown above.

10 J. Barnett



Now suppose that the user types in the value rather than speaking it. Events 1–5

remain the same, but this time it is the GUI MC that returns the value to the IM. The

resulting event flow is as follows:

1. The IM sends a StartRequest event to the GUI MC.

2. The GUI MC displays the form and returns a StartResponse event.

3. The user selects a field by tapping on it. The GUI MC sends an ExtensionNo-

tification with the name of the field to IM.

4. The IM sends a StartRequest to the Speech MC. The grammar for the selected

field will be specified in-line in the “Content” field or via URL in the

“ContentURL” field.

5. The Speech MC starts listening for speech and sends a Start Response.

6. The user types the value of the field. The GUI MC returns an ExtensionNo-

tifcation containing the value. (Unlike the Speech MC, the GUI MC does not

return values in a DoneNotification because it will keep running—that is,

displaying the form—after it returns the result.)

7. The IM sends a CancelRequest to the Speech MC.

8. The Speech MC stops listening for speech and returns a CancelResponse

(Fig. 1.3).

Since the user is using two modalities, there is a possibility of conflict, for

example, if the user types one value and speaks another for a given field. It is the

Interaction Manager’s job to resolve such problems. It should keep its own Data

Interaction Manager

GUI Modality Component
Speech Modality Component

1 2 3
7

4
5

6

Fig. 1.2 Event sequence for filling a single field by voice

1 Introduction to the Multimodal Architecture Specification 11



Component updated with the current state of the form. If a Modality Component

sends the IM a value for a field that already has a value in the IM’s Data

Component, the IM knows a conflict has arisen. It is up to the application developer

to decide what heuristic to use to resolve such conflicts since the Multimodal

Architecture and Interfaces specification does not attempt to incorporate or enforce

any particular approach to user interface development.

It is possible to modify the application so that the speech recognition doesn’t
follow the GUI field by field. Given a Modality Component that supports

VoiceXML, the Interaction Manager can send it a StartRequest with a VoiceXML

script that can capture the entire form. The VoiceXML Modality Component will

now prompt the user for the various fields and gather input independent of what the

GUI is doing. In fact, the user can speak the value for one field while simulta-

neously typing in the value of another. A sample event flow for such an application

is given below:

1. The IM sends a StartRequest to the GUI MC.

2. The IM sends a StartRequest to the VoiceXML MC, either specifying

the VoiceXML script in-line via the “Content” field, or by URL via the

“ContentURL” field. (This event could also have been sent before the

StartRequest to the GUI MC.)

3. The GUI MC displays the form and returns a StartResponse. (Depending on

the timing of the application, this event could arrive at the IM before it sends the

StartRequest to the VoiceXML MC.)

Interaction Manager

GUI Modality Component
Speech Modality Component

1 2 3
6

4
5

7
8

Fig. 1.3 Event sequence for filling a single field via the GUI

12 J. Barnett



4. The VoiceXML MC loads the VoiceXML script and starts prompting the user

for input. It then sends a StartResponse to the IM.

5. The VoiceXML MC obtains the value of one field and returns it to the IM in an

ExtensionNotification Event.

6. The IM notifies the GUI MC of the field value with an ExtensionNotification

event. The GUI MC updates its display accordingly.

7. The GUI MC obtains the value for a field and notifies the IM of it with an

ExtensionNotification event.

8. The IM sends the field value to the VoiceXML MC in an ExtensionNotification

event. If the VoiceXML MC updates its internal data model with this value, the

Form Interpretation Algorithm [9] will ensure that it does not prompt the user for

the value of this field.

. . ... the user continues filling out the form using both modalities. . ...

9. The VoiceXML MC obtains the value for the final field and returns it to the IM

in a DoneNotification.

10. The IM sends an ExtensionRequest to the GUI MC with the final value. The

GUI MC updates its display (Fig. 1.4).

At the end of the event sequence shown above (i.e., after event ten reaches the

GUI MC), the GUI MC is displaying the completed form, and the VoiceXML MC

has stopped running. It is up to the application developer what happens next. The

Interaction Manager will presumably submit or save the form. If more information

Interaction Manager

GUI Modality Component
VoiceXML Modality Component

1 3 6 7 10

2
5

4

9
8

Fig. 1.4 Event sequence for filling multiple fields with voice and GUI

1 Introduction to the Multimodal Architecture Specification 13



needs to be gathered, the Interaction Manager could send new StartRequests to both

the GUI MC and the VoiceXML MC to continue the interaction with the user. One

subtlety to note is the importance of the ContextID. If the new StartRequests

contain the same ContextID as those in events 1–10, the Modality Components

will view these requests as a continuation of the earlier interaction. Thus both

Modality Components will keep any user adaptation they have performed. For

example, the VoiceXML Modality Component will keep any speaker adaptation it

has done to its voice models, while the GUI Modality Component will keep any

display adjustments or special fonts that the user has selected. On the other hand, if

the Interaction Manager sends ClearContextRequests before the StartRequests or

simply uses a new ContextID in the StartRequests, the Modality Components will

treat the requests as the start of a new interaction, possibly with a new user.

1.5 Adding a New Modality Component

As is clear from these examples, Modality Components do not communicate

directly with each other, but only with the Interaction Manager. The value of this

loose coupling becomes clear when a new Modality Component is introduced.

Suppose the application is extended with a tablet capable of performing handwrit-

ing recognition. This Handwriting Modality Component will also communicate

only with the Interaction Manager, sending it results via ExtensionNotifications.

Neither the GUI nor the Speech Components need to be modified to work with the

Handwriting Modality Component and their communication with the Interaction

Manager will not change. The event flow for the user entering a field value with

handwriting is shown:

1. The user taps on a field to select it. The GUI MC sends an ExtensionNotification

to the IM telling it which field has been selected.

2. The IM sends the StartRequest to the Speech MC.

3. The Speech MC starts recognizing and returns a StartResponse.

4. The user writes out the value of the field using a stylus. The Handwriting MC

sends this result back to the IM in an ExtensionNotification.

5. The IM sends an ExtensionNotification to the GUI MC containing the value for

the field. The GUI updates its display.

6. The IM sends a CancelNotification to the Speech MC.

7. The Speech MC stops listening for speech and sends a CancelReponse. (The IM

could just as easily have cancelled the Speech MC before notifying the GUI

MC.) (Fig. 1.5)

Comparing this example to the first and second ones, it is clear that when the user

enters a value via handwriting, the Speech MC receives the same events as when the

user entered the value via the GUI MC. Similarly, the GUI MC receives the same

event as when the user entered the value with speech. In fact, each Modality

Component knows only that some other component has provided a value for the

14 J. Barnett



field in question. Only the Interaction Manager is aware of the new Modality

Component. It is clear from this that the key to a successful implementation of

the Multimodal Architecture and Interfaces specification is a powerful and flexible

Interaction Manager, particularly one with good event handling capabilities. Given

such an Interaction Manager, the design of the individual Modality Components is

significantly simplified.

One important feature of the examples is the prevalence of ExtensionNoti-

fication events. The Multimodal Working Group felt that it was too early to define

specific interfaces to modalities, with the result that ExtensionNotification carries a

lot of the modality-specific logic. A Modality Component that supports this archi-

tecture will likely specify a lot of its interface in terms of ExtensionNotifications.

For example, the GUI Modality Component’s API specification might say that it

will update the value of a field upon receipt of an ExtensionNotification event with

name¼“fieldValue” and data¼“fieldname¼value.” One reason SCXML is a good

candidate for an Interaction Manager language is that it has the ability to send and

receive events with a variety of payloads, so that an SCXML interpreter can work

with different Modality Components without requiring additional coding or inte-

gration work, particularly if the Modality Components support HTTP as an event

transport.

Interaction Manager

GUI Modality
Component

Handwriting Modality
Component

Speech Modality
Component

1
5

26 34
7

Fig. 1.5 Event sequence with handwriting component added

1 Introduction to the Multimodal Architecture Specification 15



1.6 Conclusion

The W3C’s Multimodal Architecture is far from the last word on the subject. It is

intended as an initial framework to allow cooperation and experimentation. As

developers gain experience with this framework, the W3C Multimodal Working

can modify it, extend it, or replace it altogether if a superior alternative emerges.

The event set is quite high-level and will undoubtedly need to be refined if it

becomes widely used. One obvious step would be to require support for a specific

event syntax and transport protocol (for example, XML over HTTP). This would

obviously facilitate interoperability and the only reason the Multimodal Working

Group did not include such a requirement in the specification was the lack of

consensus on what the syntax and transport protocol should be.

As another possibility for refinement, notice how often ExtensionNotifications

are used in the examples given above to tell a Modality Component to update its

internal data model. Perhaps an UpdateData event would prove useful. A further

possibility would be to add modality-specific events. For example, if consensus

emerges on how to manage a speech recognition system in a multimodal context,

then a speech-specific event set could be defined.

Similarly, the multimodal architecture is quite high-level and will need to be

articulated further. One possibility would be to add an Input Fusion component to

the Interaction Manager. Consider the case of a user who says “I want to go here”

and clicks on map. The utterance “I want to go here” will be returned by the speech

Modality Component while the click will be captured by a graphical Modality

Component. To understand the utterance, the system must combine the input from

the two modalities and resolve “here” to the location on the map that the user

clicked on. Right now this sort of combination is one of the many responsibilities of

the Interaction Manager, but it might make sense to have a component that

specialized in this task. Such a component would also be responsible for resolving

conflicts between the voice and graphics Modality Components that were noted in

the examples above, namely when the user types and speaks a value for the same

field at the same time. See [10] in this volume for a more detailed discussion of how

such a component might work. The Multimodal Working Group considered adding

an Input Fusion component to the architecture, but decided that it didn’t make sense

to try to standardize the interface to such a component when there was not good

enough agreement at the time about how it should work.

Finally, it is clear that many existing languages aren’t easy to use as Modality

Components because they don’t allow fine-grained control. Both HTML and

VoiceXML are designed to be complete stand-alone interfaces and it is not easy

for an external component like an Interaction Manager to instruct a web browser

what part of a page to display, or to tell a running VoiceXML interpreter to pause

jump to another part of a form. Modality Component languages will fit into the

W3C multimodal architecture much more easily if they are designed to accept

asynchronous updates to both their data models and their flow of control.

16 J. Barnett



References

1. Barnett, J., Bodell, M., Dahl, D., Kliche, I., Larson, J., Porter, B., et al. (2012). Multimodal

architecture and interfaces. W3C Recommendation. http://www.w3.org/TR/mmi-arch/.

2. SALT Forum (2002). Speech Application Language Tags. http://xml.coverpages.org/SALT-

FinalSpecificationV10.zip.

3. Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navarra, E., O’Connor, E., et al. (2014).
HTML5. W3C Recommendation. https://www.w3.org/TR/html5/.

4. Oshry, M., Auburn, R., Baggia, P., Bodell, M., Burke, D., Burnett, D., et al. (2007). Voice

Extensible Markup Language (VoiceXML) 2.1. W3C Recommendation. https://www.w3.org/

TR/2007/REC-voicexml21-20070619/.

5. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D., Carter, J., et al. (2015). State

Chart XML (SCXML) State Machine Notation for Control Abstraction. W3C Recommenda-

tion. https://www.w3.org/TR/scxml/.

6. Rodriguez, B. H., Barnett, J., Dahl, D., Tumuluri, R., Kharidi, N., & Ashimura, K. (2015).

Discovery and registration of multimodal modality components: State handling. W3C Work-

ing Draft. https://www.w3.org/TR/mmi-mc-discovery/.

7. Galaxy Communicator (2003). http://communicator.sourceforge.net/sites/MITRE/distribu

tions/GalaxyCommunicator/docs/manual/.

8. Johnston, M., Baggia, P., Burnett, D., Carter, J., Dahl, D., McCobb, G., et al. (2009). EMMA:

Extensible MultiModal Annotation markup language. W3C Recommendation. http://www.

w3.org/TR/2009/REC-emma-20090210/.

9. McGlashan, S., Burnett, D., Carter, J., Danielsen, P., Ferrans, J., Hunt, A., et al. (2004). Voice

Extensible Markup Language (VXML) Version 2.0. Appendix C. W3C Recommendation.

https://www.w3.org/TR/voicexml20/#dmlAFIA.

10. Schnelle-Walka, D., Duarte, C., & Radomski, S. (2016). Multimodal fusion and fission within

the MMI architectural pattern. In D. Dahl (Ed.),Multimodal Interaction with W3C Standards:
Toward Natural User Interfaces to Everything. New York, NY: Springer.

1 Introduction to the Multimodal Architecture Specification 17

http://www.w3.org/TR/mmi-arch/
http://xml.coverpages.org/SALT-FinalSpecificationV10.zip
http://xml.coverpages.org/SALT-FinalSpecificationV10.zip
https://www.w3.org/TR/html5/
https://www.w3.org/TR/2007/REC-voicexml21-20070619/
https://www.w3.org/TR/2007/REC-voicexml21-20070619/
https://www.w3.org/TR/scxml/
https://www.w3.org/TR/mmi-mc-discovery/
http://communicator.sourceforge.net/sites/MITRE/distributions/GalaxyCommunicator/docs/manual/
http://communicator.sourceforge.net/sites/MITRE/distributions/GalaxyCommunicator/docs/manual/
http://www.w3.org/TR/2009/REC-emma-20090210/
http://www.w3.org/TR/2009/REC-emma-20090210/
https://www.w3.org/TR/voicexml20/#dmlAFIA


Chapter 2

The Role and Importance of Speech
Standards

Paolo Baggia, Daniel C. Burnett, Rob Marchand, and Val Matula

Abstract Within only a few years the landscape of speech and DTMF applications

changed from being based on proprietary languages to being completely based on

speech standards. In that, a role of primary importance was played by W3C Voice

Browser Working Group (VBWG). This chapter describes this change, the impli-

cations, and highlights the standards created by the W3C VBWG, as well as the

benefits that these standards can induce in many other application fields, including

multi-modal interfaces.

2.1 Introduction

A strong wind of change was sweeping the stuffy world of Interactive Voice

Response (IVR) and speech applications in general. This call for change developed

in the very last years of the last century, resulting in a key event—the workshop on

“Voice Browsers” held in Cambridge, MA on 13 October 1998 [1]. The workshop

was sponsored by the W3C, and it raised huge interest in the standardization of

voice application technologies. The direct result was the birth of a W3C Working

Group—the Voice Browser Working Group (W3C VBWG [2]), formed to create an

interconnected family of standards. This chapter offers a short introduction to most

of the W3C VBWG standards and also describes their close relationship with the

W3C Multimodal Interaction Working Group (W3C MMI [3]).

P. Baggia (*)

Department of Enterprise, Nuance Communications, Inc., Torino, Italy

e-mail: paolo.baggia@nuance.com

D.C. Burnett

StandardsPlay, Lilburn, GA, USA

R. Marchand

Genesys, Markham, ON, Canada

V. Matula

Avaya Inc., Santa Clara, CA, USA

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_2

19

mailto:paolo.baggia@nuance.com


Several factors combined to drive this change; the most relevant ones are

– The development of an IVR application was cumbersome and required the use of

proprietary IDEs that were bound to individual vendors. At the time of the

formation of the VBWG, IVR technology was proprietary and there was virtu-

ally no chance to exchange expertise or application assets between them.

– Speech technologies were very limited in their use; only simple commands,

menu options, and sequences of digits were allowed. However, the core speech

technologies were rapidly evolving to be more powerful and flexible and to

allow a new generation of speech applications.

– Voice interactions were limited to simple menu navigation, with no flexibility to

allow more advanced dialog capabilities. Their implementation was clumsy.

– But the most powerful factor was the advent of the Internet era: the HTTP

protocol, the HTML language, and the flourishing of web sites. All these

advances were based on public standards, while the world of voice applications

was missing the opportunity to follow these new trends.

It was this combination of factors that drove the creation of the W3C VBWG,

changing forever the world of voice applications. With the Working Group, a large

number of companies now had a place to work together on this standardization

effort, strongly motivated by a common interest. These companies included: speech

technology makers (at that time L&H, Philips, Nuance, SpeechWorks, Loquendo,

and Entropic), research laboratories (MIT, Rutgers, AT&T Bell Labs, and CSELT),

large telephone companies (Lucent, AT&T, BT, Deutsche Telekom, France Tele-

com, Telecom Italia, Motorola, and Nokia), large software and hardware companies

(Microsoft, HP, Intel, IBM, and Unisys), newly formed Voice Platform companies

(PipeBeach, Voxpilot, Vocalocity, VoiceGenie, and Voxeo), hosting and developer

studios (HeyAnita, BeVocal, and Tellme), IVR vendors (Avaya, Genesys,

Comverse, and CISCO), and many more.

In the meantime, an industry organization named the VoiceXML Forum [4],

created by AT&T, Lucent, Motorola, and IBM, proposed a new language called

VoiceXML 1.0 [5] and started to evangelize its adoption. The newly created W3C

VBWG, led at various times by Jim Larson (Intel), Scott McGlashan (PipeBeach

and HP), and Dan Burnett (Voxeo and StandardsPlay), selected VoiceXML 1.0 as

the starting candidate to inspire the creation of the standard to come.

With the standardization of VoiceXML and related technologies now firmly in

the hands of the W3C, the VoiceXML Forum took on a complementary role in the

evolution of VoiceXML. The Forum took on responsibilities including:

– Education: The Forum developed tutorials, sample applications, and produced a

monthly e-zine for the developer community [6].

– Evangelism: The Forum marketed VoiceXML as an emerging standard to the

IVR community, both on-line and at industry conferences.

– Conformance: Perhaps the most critical role of the Forum was the development

of conformance test suites (based on the W3C specification Implementation

20 P. Baggia et al.



Reports1) for VoiceXML, SSML, and SRGS. The Forum also provided inde-

pendent third-party conformance test certifications.

– Developer certification: The Forum created a VoiceXML Developer Certifica-

tion program, including several test suites and access to third party certification

testing. This helped to build a developer community.

– Technology and tools evaluation: The Forum hosted several committees with the

task of assessing evolving technologies and tools related to the adoption of

VoiceXML. These groups investigated speech technology protocol standardiza-

tion, security aspects (including biometrics), and other topics.

These areas are outside the scope of W3C standards development, yet are critical

in supporting adoption and acceptance of a new standard. The role fulfilled by the

VoiceXML Forum helped avoid early standards fragmentation, and fostered adop-

tion of VoiceXML by industry.

This collaboration accelerated the cooperative effort to create the foundations of

a new generation of voice applications based on public standards. In a short time an

incredible sequence of Working Drafts was published, demonstrating the innova-

tion under development. Supported by the broad involvement of stakeholders from

different groups, the IVR industry began to implement these drafts as soon as they

were delivered. Adoption worries were rapidly left behind in this new ecosystem.

In March 2004, after just 4 years, the first complete standards, i.e., W3C

Recommendations, were released: VoiceXML 2.0 [7] for authoring a voice appli-

cation; SRGS 1.0 [8] for precisely defining the syntax of speech grammars; and

SSML 1.0 [9] for controlling speech synthesis (or text-to-speech). A few years later,

in April/June 2007, a second round of W3C Recommendations concluded, deliv-

ering: VoiceXML 2.1 [10], adding some interesting features on top of VoiceXML

2.0; and SISR 1.0 [11], formalizing the representation of meaning within a speech

grammar and complementing SRGS 1.0. The work didn’t stop there. SSML 1.0 was

revised to version 1.1 [12] to ease the internationalization of speech synthesis in

other world regions; PLS 1.0 [13], a language to describe phonetic lexicons

supporting interoperability between SRGS 1.0 and SSML 1.0/1.1, was created;

and finally CCXML 1.0 [14] was developed as a real time language to implement

call control in a voice browser platform. In the rest of this chapter, these languages

will be briefly introduced and other aspects of this revolution will be highlighted.

It is worth noting that the entire industry took the advent of the W3C VBWG

standards as a change to be immediately adopted. Vendors implemented the

standards in their solutions, so that the IVR and telephony application world started

to speak the VoiceXML standard language in a matter of a few years. The use of

VoiceXML enforced a clean separation between the IVR platforms and the hosting

of voice applications accessed by HTTP/HTTPS. Voice applications were at first

1 All W3C Recommendations include a reference to an Implementation Report document to assess

the implementability of the proposed standard. For instance, the VoiceXML 2.0 Implementation

Report [44] was very important in showing how to implement a procedure to automate most of the

tests.

2 The Role and Importance of Speech Standards 21



static “pages” stored on a Web server, and then progressively became dynamic as

the rest of theWeb evolved. A side effect of this adoption of the web architecture by

VoiceXML was that many web-related technologies became available to IVR

applications. For example, VoiceXML 2.1 added the <data> element to take

advantage of emerging AJAX access to web services. Infrastructure elements like

web caches and load balancers were immediately useful within IVR deployments.

Several books and articles describing VoiceXML were published. A review of the

language is presented in [15] from the W3C VBWG Chair Jim Larson. For a

discussion of VoiceXML in the broader context of Spoken Dialogue Systems

see [16]. Many start-ups sprang up to offer voice browsers, tools, hosting and, as

in all industry sectors, the larger companies filled out their offerings by acquiring

these start-ups.

Over time this process slowed down, indicating that the revolution had occurred,

but it also meant that continued change was becoming more difficult. There was a

definite and very ambitious attempt to re-write VoiceXML to be extensible and

modular, simplifying the incorporation of future advances, but this radical

re-formulation stopped after producing the first Working Draft (VoiceXML 3.0

[17]). The last advance was to lay down and complete SCXML 1.0 [18], described

in another chapter of this book. This language offers to both the IVR world and the

world of multimodal applications a clean and powerful way to encode the interac-

tion of different components thorough Harel’s state-charts [19]. Other activities that
were not completed included a standard for speaker verification/identification from

voice prints and statistical language models [20].

The W3C VBWG had completed its role, developing the solid foundation of

an open and powerful generation of standards, so it closed its activities in

October of 2015 [21]. The VoiceXML Forum remains active in sustaining the

VoiceXML 2.0/2.1 ecosystem, most notably with work in Conformance and Devel-

oper Certification.

As with most technologies, these standards will remain for a long time in the core

of these industries, but there may also be opportunities to reuse them in novel ways

and to fuel new advances and revolutions. The variegated world of multimodal

interfaces and, more generally, of the Internet of Things (IoT), will greatly benefit

from the work of theW3CVBWG, especially for a speechmodality. Voice continues

to prove to be themost powerful means for humans to control and influence the world

around us. Section 2.4 describes the role of voice standards in these additional

domains, while Sect. 2.2 is devoted to explaining the standards developed by W3C

VBWG and Sect. 2.3 complements the discussion with related IETF protocols.

2.2 Quick Tour of W3C VBWG Major Standards

This section presents a quick tour of the W3C VBWG standards. The review will be

limited to a brief introduction with some highlights of the major benefits of each

standard.

22 P. Baggia et al.



Although VoiceXML is the most visible of the VBWG standards, there are a

number of related languages that work together with VoiceXML to provide a

complete facility for creating IVR applications. The individual languages have

also in some cases been used independently for other purposes as well, such as:

– The grammar language, SRGS 1.0, for processing text input instead of speech.

– The speech synthesis language, SSML 1.0/1.1, for talking books, or assistive

applications.

– The pronunciation lexicon language, PLS 1.0, in language training applications.

– The call control language, CCXML 1.0, for managing calls over IP.

– The state-chart language, SCXML 1.0, for generalized interactions in a multi-

modal interface.

The following is a brief description of these standards developed by

W3C VBWG.

2.2.1 VoiceXML 2.0

The Voice Extensible Markup Language (VoiceXML), version 2.0. [7], is the

flagship and most relevant standard produced by the W3C VBWG. It is an XML

markup language specialized to declaratively describe a dialog interaction between

a caller and an automated application. The language leverages all the advantages of

the Web: an application is stored in a Web Application server; it might be statically

or dynamically generated; a specialized user agent, called a Voice Browser, down-

loads and interprets a VoiceXML application, together with scripts, audio prompts,

and grammars; the syntax is enforced by an XML Schema or a DTD; the application

might be in any human language and declares an appropriate encoding; and so on.

The standard was built on top of the initial VoiceXML 1.0 [5] proposal made by

the VoiceXML Forum [4]. The original Forum members were from AT&T, IBM,

Lucent Technologies, and Motorola. In the W3C VBWG, a much larger number of

people from many companies and organizations participated in the joint effort to

transform the proposal into a widely accepted standard. This promise was realized

in March 2004, when VoiceXML 2.0 was declared a W3C Recommendation, with

nine companies2 presenting an Implementation Report to demonstrate interest in

promoting this standard in the industry. The Implementation Report was based on a

test suite of over 600 test assertions defined in a special language to facilitate its

automation. Based upon this test suite, the VoiceXML Forum delivered a Platform

Certification program [22] with at least 27 platforms certified to date.

2 The companies which submitted an Implementation Report [44] for VoiceXML 2.0 were nine:

Comverse, Genesys, Loquendo, Motorola, PublicVoiceXML Consortium, Tellme Networks,

Vocalocity, VoiceGenie Technologies, and Voxpilot.

2 The Role and Importance of Speech Standards 23



A VoiceXML application is made of dialogs whose building blocks are the

<menu> and <form> elements. The former is used for designing simple menu-

based IVR applications, while the latter is used for extending the interaction to form

filling, where an algorithm called the Form Interpretation Algorithm (FIA,

described in Appendix C of the specification [7]) is used. The FIA precisely

describes how the filling of different <field>s is performed. VoiceXML 2.0

also supports extending the interaction to a mixed-initiative dialog, where addi-

tional flexibility allows a caller to say more complex sentences, like: “I’d like to

travel from Boston to Detroit in First Class next Monday around noon.” In this

modality, several<field>s are filled at the same time to take maximum advantage

of the compactness and flexibility of natural language.

A novelty of VoiceXML 2.0 was to delegate3 the definition of speech grammars

and of synthesized prompts to two interoperable standards. These standards are:

SRGS 1.0 [8] for grammars and SSML 1.0 [9] for prompts, described below. This

choice allowed the standards to be developed in parallel, but more importantly it

promoted the reuse of speech recognition and of speech synthesis in other applica-

tion contexts, such as multimodal interfaces, or appliances. The <field> element

may include one or more <prompt>s to solicit the caller to say or type the

expected information and several <grammar>s to model callers’ sentences, while
the <filled> element is triggered if the information items are collected either by

voice or DTMF, upon which they are automatically stored in a variable associated

with the <field> itself. The filling of field values will restart the collection cycle

as described in the FIA algorithm.

Besides the <field> element, other form items are supported by VoiceXML

2.0 to enrich the dialog interaction. For instance:

– <block> element to declare prompts and to perform a block of computations;

– <record> element to record the caller’s voice and provide access to the stored
audio;

– <transfer> element to transfer a call to another party either by a “bridge” or

a “blind” transfer;

– <subdialog> element to pause the current interaction, spawn the processing

of another context to complete a task, and then return to the calling environment

with the results;

– <object> element to allow for new functionality extensions; this was used

for extending the capabilities of a voice browser to allow additional features, for

instance, the inclusion of voice biometrics capabilities in a VoiceXML

application.

Data are handled and processed by an ECMAScript processor with elements in

the language to declare and assign variables (<var> and <assign> elements)

or load scripts (<script> element). The variables are organized into different

3 The XML Schema of VoiceXML 2.0 includes the references to: SRGS 1.0 and SSML 1.0 XML

Schemas, see Appendix O of VoiceXML 2.0 specification [7].

24 P. Baggia et al.



scope levels: “application” for the sharing of data across different VoiceXML

documents, “document” for variables that need to be visible across a single docu-

ment, “dialog” for variables active only inside a single <form> or <menu>, and

the internal context of an inner element. Above these scopes, there is an additional

one called “session” that contains read-only variables related to that specific

session. For instance, the session scope provides access to telephony information

(e.g., ANI, DNIS, etc.). Finally, each recognition step allows the browser to access

information related to the most recently occurring recognition. Some examples

include the input modality (either “voice” or “dtmf”), a numeric value for the

confidence of the results, the recognized/keyed text and the meaning of that

interaction.

The FIA describes the flow of the interaction inside a dialog element. To

transition to the next dialog a <goto> element contains a URI attribute that

points either to a dialog in the same document or to another VoiceXML document

to which to transition. The <submit> element is used to upload data collected

during the dialog interaction to the Web Application. The result is a new

VoiceXML page for continuing the interaction. Moreover, an event handling

mechanism is present to allow firing predefined events: “help,” “repeat,” but also

“noinput” and “nomatch” to indicate a missing response from the caller, or that the

input was not properly recognized. It is also possible to throw (<throw> element)

user defined events that will trigger the execution of a handler defined via the

<catch> element. In this way the application can deal with predefined and

unexpected behaviors by continuing within the same dialog under the FIA, or by

transitioning to another one, or even by closing the interaction. An application can

be explicitly terminated by the <exit> element or closed via the

<disconnect> element. The latter hangs up the call if necessary.

The VoiceXML specification had a terrific impact on the IVR industry, being

widely adopted even before the language was completed. The traditional IVR

platform vendors had to change their architectures by including either a home-

grown VoiceXML browser or one obtained by acquiring a newly formed start-up

company. Other vendors opted for hosting the VoiceXML browser and providing a

Web-based development environment to create, test, and deploy voice applications.

Some examples include HeyAnita, BeVocal, TellMe, and Voxeo, all since acquired

by major players. Other companies specialized in tools or development environ-

ments, and they were progressively acquired as well. The VoiceXML Forum

provided user groups, newsletters, journals, and events to sustain the VoiceXML

ecosystem. A critical contribution from the Forum was the development of two

Certification Programs, the previously mentioned Platform Certification and a

Developer Certification program, both still active at present.

2 The Role and Importance of Speech Standards 25



2.2.2 VoiceXML 2.1

Although the VoiceXML 2.0 specification was immediately implemented and

rapidly became the major standard for voice and DTMF applications, a follow-on

effort added a limited number of extensions. This key collection of extensions was

published in June 2007 as VoiceXML 2.1 [10]. It includes eight additional features,

including a means to dynamically reference grammars and scripts, a new

<foreach> iteration element for dynamically composing prompts or executing

computations on list of objects, and a <data> element to allow a VoiceXML

application to dynamically load data from a server using the equivalent of an XML

HTTP Request. These extensions were all motivated by the need to reduce the

number of (expensive) VoiceXML page transitions. With VoiceXML 2.1 a single

running VoiceXML page was able to adapt to external or dynamic conditions. In

addition, the <transfer> element was extended with a new “consultation”

mode to allow the interaction to be suspended while a transfer was attempted,

resuming it if the transfer was not possible. The recording capabilities were

extended to be active during the recognition to enable fetching of both the audio

and the recognition results. Finally, the<disconnect> element was extended to

return a list of results.

The VoiceXML 2.1 extensions were also widely implemented, and the

VoiceXML Forum Platform Certification Program was extended to additionally

certify both VoiceXML 2.1 and the grammar language described in the next

section.

2.2.3 SRGS 1.0

Speech recognition greatly benefits by knowing in advance what a caller might say.

A speech grammar is a compact way to declaratively describe the admissible

sentences. The W3C VBWG was very successful in clearly defining the syntax of

speech grammars. SRGS 1.0, the Speech Recognition Grammar Specification [8],

defines two different formats for encoding a grammar: an XML format, called

GRXML, and a textual one, called ABNF (cfr Augmented Backus-Naur Form). The

two formats are homologous, with very irrelevant differences. A grammar defines

sequences of words/phrases or alternatives to be legally accepted by the speech

recognizer. The grammar is organized into rules, where only a few are accessible

from the outside (declared “public”), while all the others are hidden (declared

“private”) to enforce modularity and a clean composition among different grammar

files.

If words define the admissible sentences, a grammar also provides a way to

compose a result to be returned to the application. This is done by the execution of

small scripts contained in the <tag> element, with the following permitted as a

26 P. Baggia et al.



return value: numbers “123” when the caller speaks “one hundred twenty three,”

date and time expressions, telephone numbers, or arbitrary key-value pairs.

The SRGS 1.0 specification immediately became the format supported by all

speech recognition engines, allowing them to interoperate within a VoiceXML

platform.

2.2.4 SISR 1.0

The production of a result remained undefined in the SRGS 1.0 specification,

having been delegated to a subsequent specification, “Semantic Interpretation for

Speech Recognition” (SISR 1.0 [11]), which was released as a W3C Recommen-

dation in April 2007. SISR 1.0 formally defines the content of the <tag> element

in SRGS 1.0 grammars to be an ECMA-327 [23] script. While ECMA-327 is a

constrained version of ECMAScript, the goal was to gain computational efficiency

to enable more extensive speech recognition engine processing.

The language defines how rules produce results and how they return them when

they are referenced. This process allows the final result of a grammar to be

composed progressively. Attention was paid to allow both a sequential and parallel

execution of the result composition.

The presence of scripting capabilities inside a grammar helped move

application-dependent normalization inside of the grammar and to clearly separate

the application needs from the need for a natural way of expressing the caller’s
expected language.

2.2.5 SSML 1.0 and 1.1

Another effort was to define how to control a speech synthesis, or text-to-speech,

engine. The controls help the engine to render the textual prompt in the most

accurate way. The XML markup language for this purpose is the Speech Synthesis

Markup Language (SSML 1.0 [9]).

SSML 1.0 includes elements that describe the structure of the text to be spoken

(<p> element for paragraphs, and <s> element for sentences), text normalization

and phonetic input (<sub> element for textual substitutions and<phoneme> for

pronunciations), prosodic features such as pauses (<break> element), speed and

rate (<prosody> element), and how to change the speaking voice (<voice>
element).

An extension of SSML 1.0, SSML 1.1 [12], was a continuation of the standard-

ization effort to promote the use of SSML to more international languages, in

particular Asian and Indian languages.

2 The Role and Importance of Speech Standards 27



2.2.6 PLS 1.0

Both speech grammars and synthesized prompts might require customizing the

pronunciation for a specific application domain. This is often done by adding a

reference to a user lexicon. The Pronunciation Lexicon Specification (PLS 1.0 [13])

was created to allow for the definition of a standard lexicon fully interoperable with

SRGS 1.0 and SSML 1.0/1.1. The lexicon is a container of entries, <lexeme>
elements, with a textual part described by the <grapheme> element and textual

replacements provided by the <alias> element or phonetic transcriptions by

<phoneme> elements.

PLS 1.0 documents support the expansion of abbreviations and acronyms,

addressing both multiple orthographies and multiple pronunciations. PLS 1.0

became a W3C Recommendation in October 2008.

2.2.7 CCXML 1.0

Another language defined by the W3C VBWG focused on programming the call

control of a voice browser in an innovative way. An XML markup language was

developed to define handlers for telephony events generated by a telephone con-

nection or a VoIP SIP interaction. The Voice Browser Call Control (CCXML 1.0

[14]) language was designed to allow a very efficient implementation completely

based upon events and handlers to avoid creating any latency that might impact the

underlying signaling.

A CCXML engine is also able to send and receive events through an HTTP/

HTTPS connector, which allows for the generation of outbound calls from a web

application and for the monitoring of calls and conferences via a web interface.

During the definition of CCXML 1.0 the W3C VBWG decided to start another

effort to define a state-chart language to generalize the ideas behind CCXML 1.0.

This new specification was State Chart XML (SCXML): State Machine Notation

for Control Abstraction (SCXML 1.0 [18]) described in another chapter of this

volume, and it can be used as the key component to control a generalized interaction

in a multi-modal interface.

2.3 IETF, Companion Protocols

The VoiceXML revolution wouldn’t have been possible without the presence of

several other standards, especially protocols. For instance, in a Voice Platform the

application documents, which might include VoiceXML 2.0/2.1 pages, SRGS 1.0

grammars, audio files, ECMAScript scripts, and PLS 1.0 lexicons, are accessed

through HTTP/HTTPS protocols, as in any other Web user agent. Many of the web

28 P. Baggia et al.



browser/web server related protocols apply equally well to voice browsers as well.

For example, voice browsers respect content-types, cookies, and cache control

directives, as used by web browsers.

A new requirement for IVR platforms is standardization of the communication

between the VoiceXML browser platform and the servers providing speech

resources. Historically based on proprietary APIs and formats, speech recognition

resources require grammars and audio, returning recognition results to the IVR

platform. Similarly, text to speech resources require text that is to be rendered, and

then return audio to the IVR platform. With the definition of SSML, SRGS, and

SISR, the high-level interaction with the speech resources became standardized. A

standard network level protocol was then defined for speech resources by the IETF

[24]. Media Resource Control Protocol (MRCP), whose initial draft was proposed

by CISCO, Nuance and SpeechWorks in April 2006 was standardized as MRCPv1

(RFC 4463 [45]). MRCPv1 is based on Real time Protocol (RTP) for media

transport and on Real time Streaming Protocol (RTSP) for controlling speech

resources such as speech synthesizers and speech or DTMF recognizers. The

MRCP protocol defines the requests, responses, and events to control the processing

inside resource servers. For a detailed description of the MRCP protocol in rela-

tionship with W3C VBWG standards see [26].

The introduction of MRCPv1 allowed voice platforms to be implemented with a

distributed and scalable architecture, and was hence immediately adopted by all the

IVR platforms. In the meantime, the standardization process continued with the

definition of MRCPv2, becoming an IETF standard in November 2012 (RFC 6787

[25]). MRCPv2 is based on Session Initiation Protocol (SIP) for signaling and

Session Description Protocol (SDP) for exchanging and negotiating capabilities.

Moreover, MRCPv2 was extended to access new resources for recording and

speaker verification and identification, and to support encryption.

2.4 Current Trends and Future Evolutions

Although the W3C VWBG is now closed [21], the influence of its standards is still

broadly felt across many sectors. In the IVR/Customer Care world, the presence of

VoiceXML and related standards is ubiquitous, and there are no signs this will

change in the near future. There is an established industry in place, so drastic

changes are very unlikely. In less than 15 years the W3C VBWG standards

moved from an idea to mandatory requirements for a whole industry—a remarkable

outcome.

Other speech languages developed outside of the W3C VBWG include XHTML

+Voice [28] from IBM and Opera Software to allow a direct integration of

VoiceXML in an XHTML document, and Speech Application Language Tags

(SALT) [29] from a consortium led by Microsoft, to integrate speech into a web

application. More recently, Google started a separate effort to develop the Web

Speech API in a W3C Community Group to enable web developers to incorporate

speech recognition and synthesis into their web pages; the Final Report is available

at [30].

2 The Role and Importance of Speech Standards 29



There are several innovations and new application domains that might require

these standards when ready to integrate a voice or textual interaction. A quick

review of the trends and evolutions that are happening are quickly described in the

following sections.

2.4.1 IVR in the Multi-Channel World

The IVR world today is experiencing change due to the proliferation of channels

available to a customer for seeking support or gathering information. In the recent

past the only available way was a phone call, and while these days the phone call is

still predominant, the contribution of other channels is increasingly evident. For

instance, textual chats may be offered to a user during a web session, often with

the presence of dedicated agents, and sometimes including even some degree of

automation. Moreover, a web site often provides more than web search inside its

content, for instance, a text interaction to intelligently search among FAQs or even a

limited capability to provide precise answers to customer requests. Finally, social

media is becoming a place for seeking support as well, and can be used to express

very polarized—and highly visible—opinions on the company of interest. For exam-

ple, a high-profile complaint on twitter will often result in a rapid response to a

problem, perhaps out of proportion to the original issue.

Given all of these options, users may switch between channels (multi-channel) if

they run into challenges, or will often use multiple channels at once (omni-

channel). Consequently, most vendors in the customer experience field must sup-

port a number of different channels in their solutions. In order to integrate and

correlate interactions taking place over multiple channels, possibly over disparate

time spans (consider a voice call vs. an SMS exchange), the standards specific to a

particular channel (for example, VoiceXML for voice, HTML for web) must be

combined with the ability to receive and send events and data, manage state, and

coordinate activities over multiple channels. SCXML (more fully described in a

separate chapter) fulfills these requirements, providing the ability to coordinate

between channels. For example, an inbound voice call can be connected to a

VoiceXML session under SCXML control. Once the call is complete, the

SCXML session can schedule a follow-up SMS message to the original caller as

a reminder (perhaps days later) or as a transaction summary (immediately).

An omni-channel session could, after an inbound voice caller is identified, take

advantage of the fact the caller was browsing the company web site when they

decided to call. This could lead to a co-browse web session with the caller still on

the phone, helping to complete a transaction or solve a problem.

There may be opportunities for the use of VBWG standards in other ways as

well. For example, representation of meaning, or extraction of meaning from

textual inputs—gathered using chat or SMS channels—might be enabled using

SRGS or SISR. In another example, the SSML standard could be used to improve

the rendering of text to speech in web-based interfaces. In the areas of multi-

channel and omni-channel communications, the W3C VBWG standards can per-

haps extend their role beyond voice interactions to be exploited with other channels.

30 P. Baggia et al.



2.4.2 Virtual Assistants

Since the deployment of the Siri virtual assistant on Apple’s iPhone and iPad in

2011, interest in Virtual Assistants (VAs) in general has increased. The VAs can

take the aspect of avatars, or, like Siri, be just a speaking voice, allowing users to

ask open-ended questions, and typically using cloud resources to determine intent

and return results. This new kind of voice activated VA is moving beyond mobile

phones to cars, and to home appliances—e.g., Amazon Echo and the home robot

Jibo. A distinctive characteristic of this kind of VA is the ability to speak and

understand user commands, sometimes with amusement and/or irony in the answers

and with personality.

In this area there is still a strong need to extend the capabilities of the interaction,

but certainly voice is the most natural means with which to interact with these

Virtual Assistants, allowing multiple requests to be packed into a single sentence.

The standards produced by the VBWG have less applicability in this realm.

VoiceXML is best suited for applications that are system-directed rather than user-

directed as is seen in typical VAs. However, the supporting standards may have a

role to play. SCXML can be used as described in Sect. 2.4.1 to coordinate multiple

channels and interactions, where the VA can be viewed as another channel. SISR

and the Extensible Multi-Modal Annotation (EMMA 1.0 [27]) specification can be

used to exchange information related to input, intent, and output across different

channels. Multimodal interfaces and EMMA are further detailed in the following

section.

2.4.3 Multimodal Interfaces

A richer style of interaction can be offered by a multimodal interface, which

integrates not only a voice modality, but also gesture, text, haptic, or other kind

of input. A multimodal interface is able to integrate requests given by different

complementary and supplementary modalities. The W3C MMIWG [3] is respon-

sible for developing standards in this area, but the cross-collaboration with the W3C

VBWG was very well maintained. For instance, the main specification developed

by the W3C MMIWG is an MMI architecture framework [31] whose key compo-

nents are an Interaction Manager and one or more Modality Components. Among

them, voice input is dealt with by a specific Modality Component that can be

directly modeled using W3C VBWG standards. For instance, SRGS 1.0 can be

used for speech recognition, SSML 1.0 for speech synthesis, and VoiceXML 2.1 for

modular dialogs.

A core aspect of multimodal interfaces is the need to integrate meanings from

different modalities. This is made possible by the Extensible Multi-Modal Anno-

tation (EMMA 1.0 [27]) specification. EMMA 1.0 was designed to encode meaning

representations produced by SRGS 1.0, where semantic interpretation by SISR 1.0

2 The Role and Importance of Speech Standards 31



can produce results in EMMA 1.0 format. This volume describes in a dedicated

chapter the recent extensions to the EMMA specification (EMMA 2.0 [32]) to

extend its role from representing input only, to also cover a variety of outputs.

Another important contribution of W3C VBWG standards is the use of SCXML 1.0

[18] to direct the Interaction Manager inside the MMI Architecture Framework.

This direction is proposed by many authors (cf. [33, 34]), and a related workshop

has been active since 2014. The “EICS Workshop on Engineering Interactive

Computer Systems with SCXML” [35] demonstrates the interest of the research

community in this topic.

Finally, the W3C MMIWG produced a standard for describing emotions

expressed by face, voice, or other modalities. The EmotionML 1.0 [36] standard

is a good candidate to be integrated with SISR 1.0 to encode emotions recognized in

human voice. Similarly, EmotionML 1.0 could be used with SSML 1.0 to instruct a

speech synthesis engine to express emotions. A detailed description of EmotionML

1.0 is present in another chapter of this volume.

2.4.4 Internet of Things

The Web continues to evolve and expand, now with the theoretical inclusion of all

objects interconnected by a network interface, often called Internet of Things (IoT).

These objects can be anything in the surrounding environment including, for

example, home appliances, cars, hand-held devices, televisions, etc. In literature

there are many examples where both the SCXML 1.0 and VoiceXML 2.1 standards

are proposed for a variety of IoT applications. These range from the SmartHome

[37, 38], Ambient Assisted Living [39], Semantic Sensor Network [40] to more

general Pervasive Environments [41, 42], and embedded applications like automo-

tive ones [43]. In those projects, the control of interactions allowed by SCXML 1.0

is fundamental and often inside the MMI Architecture previously described. More-

over, a user can take advantage of a voice interaction within this multifaceted

world. The W3C VBWG speech related standards offer the basis for implementing

this voice interaction. Examples are voice commands from a mobile device to

inquire about the status of home appliances and also give commands to remotely

activate these appliances.

2.5 Conclusion

This chapter has described the development and evolution of speech-related stan-

dards, and how they have impacted the IVR industry and voice applications. The

shift from proprietary to standards-based technologies provided many important

benefits, including:

32 P. Baggia et al.



– Conversion of an industry from fragmented and proprietary development to

environments that more easily interoperate and support application portability.

Application portability prior to standards availability generally meant a com-

plete reimplementation. Now, it may be as simple as completion of testing. An

ancillary to this is the education of a workforce that is more portable as well.

– The ability to leverage widely available web-related technologies within speech

environments, supporting common techniques of scaling, architecture, and

development practices. And although voice user interface design and telephony

are important skills, many of the other skills required to implement IVR infra-

structure are now more easily available due to the migration to a web-based

architecture. This can also mean one less silo in an organization, reducing costs.

– A separation of interface presentation from business logic. It is now common to

use the same business-level web services to support web, voice, and other

channels.

These benefits, along with advancements in speech technology, have allowed the

construction of more powerful voice applications while improving portability,

maintainability, and interoperability. Although some of these advancements may

have occurred without the development of speech related standards, it is likely that

voice application development would have remained as a separate silo within the

organization, requiring niche skills across the breadth of an implementation. There

are also some useful lessons that may be taken from the W3C VBWG standards

development experience:

– The standards themselves are important, but shouldn’t be developed in a vac-

uum. The involvement of industry from the beginning ensured a set of standards

that would meet real-world needs. The VoiceXML ecosystem provided impor-

tant support for the acceptance of the standards developed within the W3C.

– A modular collection of standards can possibly support changes in technology

over a longer period of time. While VoiceXML itself is modeled around a

particular type of interaction (and is limited by the FIA in this regard), the

supporting standards (SCXML, SRGS, and SSML) have provided value for

other communication channels and interaction types. However, it is more diffi-

cult to advance multiple specifications simultaneously, and to ensure completion

of a complete set meeting the original need.

The development of speech-related standards by the W3C, in combination with

wide support—both through the W3C and the VoiceXML Forum—led to a trans-

formation of the Interactive Voice Response industry. This transformation remains

an important component in overall contact center modernization, and has aided in

the advancement of voice application usage and usability.

2 The Role and Importance of Speech Standards 33



References

1. W3C (1998). Voice Browsers, W3C Workshop, Cambridge, MA. https://www.w3.org/Voice/

1998/Workshop/. Accessed 1 Mar 2016.

2. W3C (2016). Voice Browser Working Group. https://www.w3.org/Voice/. Accessed 1 Mar

2016.

3. W3C (2016). Multimodal Interaction Working Group. https://www.w3.org/2002/mmi/.

Accessed 1 Mar 2016.

4. VoiceXML Forum (2016). http://www.voicexml.org/. Accessed 1 Mar 2016.

5. VoiceXML Forum (2000). Voice eXtensible Markup Language (VoiceXML) version 1.0.

https://www.w3.org/TR/voicexml/. Accessed 1 Mar 2016.

6. VoiceXML Forum (2016). e-zine. http://www.voicexml.org/voicexml-review-archive/.

Accessed 15 Mar 2016.

7. McGlashan, S., Burnett, D. C., Carter, J., Danielsen, P., Ferrans, J., Hunt, A., et al. (2004).

Voice Extensible Markup Language (VoiceXML) version 2.0, W3C Recommendation. https://

www.w3.org/TR/voicexml20/. Accessed 1 Mar 2016.

8. Hunt, A., & McGlashan, S. (2004). Speech Recognition Grammar Specification Version 1.0,

W3C Recommendation. https://www.w3.org/TR/speech-grammar/. Accessed 1 Mar 2016.

9. Burnett, D. C., Walker, M. R., & Hunt, A. (2004). Speech Synthesis Markup Language

(SSML) Version 1.0, W3C Recommendation. https://www.w3.org/TR/speech-synthesis/.

Accessed 1 Mar 2016.

10. Oshry, M., Auburn, R. J., Baggia, P., Bodell, M., Burke, D., Burnett, D. C., et al. (2007). Voice

Extensible Markup Language (VoiceXML) 2.1, W3C Recommendation. https://www.w3.org/

TR/voicexml21/. Accessed 1 Mar 2016.

11. van Tichelen, L., & Burke, D. (2007). Semantic Interpretation for Speech Recognition (SISR)

Version 1.0, W3C Recommendation. https://www.w3.org/TR/semantic-interpretation/.

Accessed 1 Mar 2016.

12. Burnett, D. C., & Shuang, Z. W. (2010). Speech Synthesis Markup Language (SSML) Version

1.1, W3C Recommendation. https://www.w3.org/TR/speech-synthesis11/. Accessed 1 Mar

2016.

13. Baggia, P. (2008). Pronunciation Lexicon Specification (PLS) Version 1.0, W3C Recommen-

dation. https://www.w3.org/TR/pronunciation-lexicon/. Accessed 1 Mar 2016.

14. Auburn, R. J. (2011). Voice Browser Call Control: CCXML Version 1.0, W3C Recommen-

dation. https://www.w3.org/TR/ccxml/. Accessed 1 Mar 2016.

15. Larson, J. A. (2007). W3C speech interface language: VoiceXML. IEEE Signal Processing
Magazine, 4(3), 126–130.

16. Jokinen, K., & McTear, M. (2009). Spoken dialogue systems. Princeton, NJ: Morgan &

Claypool.

17. McGlashan, S., Burnett, D. C., Akolkar, R., Auburn, R. J., Baggia, P., Barnett, J., et al. (2010).

Voice Extensible Markup Language (VoiceXML) Version 3.0, W3C Working Draft. https://

www.w3.org/TR/voicexml30/. Accessed 1 Mar 2016.

18. Barnett, J., Akolkar, R., Auburn, R. J., Bodell, M., Carter, J., McGlashan, S., et al. (2015). State

Chart XML (SCXML): State Machine Notation for Control Abstraction, W3C Recommenda-

tion. https://www.w3.org/TR/scxml/. Accessed 1 Mar 2016.

19. Harel, D. (1987). StateCharts: A visual formalism for complex systems. Journal Science of
Computer Programming, 8(3), 231–274.

20. Brown, M. K., Kellner, A., & Raggett, D. (2001). Stochastic Language Models (N-Gram)

Specification, W3C Working Draft. https://www.w3.org/TR/ngram-spec/. Accessed 1 Mar

2016.

21. Burnett, D. C. (2015). ALL: Thoughts and thanks as the VBWG comes to a close. W3C

Mailing List Archive. https://lists.w3.org/Archives/Public/www-voice/2015JulSep/0029.html.

Accessed 1 Mar 2016.

34 P. Baggia et al.

https://www.w3.org/Voice/1998/Workshop/
https://www.w3.org/Voice/1998/Workshop/
https://www.w3.org/Voice/
https://www.w3.org/2002/mmi/
http://www.voicexml.org/
https://www.w3.org/TR/voicexml/
http://www.voicexml.org/voicexml-review-archive/
https://www.w3.org/TR/voicexml20/
https://www.w3.org/TR/voicexml20/
https://www.w3.org/TR/speech-grammar/
https://www.w3.org/TR/speech-synthesis/
https://www.w3.org/TR/voicexml21/
https://www.w3.org/TR/voicexml21/
https://www.w3.org/TR/semantic-interpretation/
https://www.w3.org/TR/speech-synthesis11/
https://www.w3.org/TR/pronunciation-lexicon/
https://www.w3.org/TR/ccxml/
https://www.w3.org/TR/voicexml30/
https://www.w3.org/TR/voicexml30/
https://www.w3.org/TR/scxml/
https://www.w3.org/TR/ngram-spec/
https://lists.w3.org/Archives/Public/www-voice/2015JulSep/0029.html


22. VoiceXML Forum (2016). VoiceXML Platform Certification Program. http://www.voicexml.

org/certification-programs/voicexml-platform-certification-program/. Accessed 1 Mar 2016.

23. ECMA (2001). ECMAScript 3rd Edition Compact Profile. http://www.ecma-international.org/

publications/files/ECMA-ST-WITHDRAWN/Ecma-327.pdf. Accessed 1 Mar 2016.

24. The Internet Engineering Task Force (IETF) (2016). https://www.ietf.org/. Accessed 1 Mar

2016.

25. Burnett, D., & Shanmugham, S. (2012). Media Resource Control Protocol Version

2 (MRCPv2), RFC 6787—Internet Standard. http://www.rfc-base.org/txt/rfc-6787.txt.

Accessed 1 Mar 2016.

26. Burke, D. (2007). Speech processing for ip networks: Media resource control protocol
(MRCP). New York, NY: Wiley.

27. Johnston, M., Baggia, P., Burnett, D. C., Carter, J., Dahl, D. A., McCobb, G., et al. (2009).

EMMA: Extensible MultiModal Annotation markup language, W3C Recommendation.

https://www.w3.org/TR/emma/. Accessed 1 Mar 2016.

28. Axelsson, J., Cross, C., Lie, H. W., McCobb, G., Raman, T. V., Wilson, L. (2001). XHTML

+Voice Profile 1.0, W3C Note. https://www.w3.org/TR/xhtml+voice/. Accessed 1 Mar 2016.

29. Microsoft Corporation, Speech Application Language Tags (SALT) (2003). Technical article.

https://msdn.microsoft.com/en-us/library/ms994629.aspx. Accessed 1 Mar 2013.

30. Shires, G., & Wennborg, H. (2012). Web Speech API Specification, W3C Community Group

Final Report. https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html. Accessed 1 Mar

2016.

31. Barnett, J., Bodell, M., Dahl, D., Kliche, I., Larson, J., Porter, B., et al. (2012). Multimodal

Architecture and Interfaces, W3C Recommendation. https://www.w3.org/TR/mmi-arch/.

Accessed 15 Mar 2016.

32. Johnston, M., Dahl, D., Denney, T., & Kharidi, N. (2015). EMMA: Extensible MultiModal

Annotation markup language Version 2.0, W3C Working Draft. https://www.w3.org/TR/

emma20/. Accessed 15 Mar 2016.

33. Kistner, G., & Neurenberger, C. (2004). Developing user interfaces using SCXML statecharts.

In Proceedings of the 1st EICS Workshop on Engineering Interactive Computer Systems with
SCXML, pp. 5–11. http://tuprints.ulb.tu-darmstadt.de/4053/.

34. Almeida, N., Silva, S., & Teixeira, A. (2004). Multimodal multi-device application

supported by an SCXML state chart machine. In Proceedings of the 1st EICS Workshop on
Engineering Interactive Computer Systems with SCXML. pp. 12–17. http://tuprints.ulb.tu-
darmstadt.de/4053/.

35. Schnelle-Walka, D., Radomski, S., Lager, T., Barnett, J., Dahl, D., Mühlhäuser, M. (Eds.)

(2014). Proceedings of the 1st EICS Workshop on Engineering Interactive Computer Systems
with SCXML. Darmstadt: TU Darmstadt.

36. Burkhardt, F., Schr€oder, M., Baggia, P., Pelachaud, C., Peter, C., & Zovato, E. (2014).

Emotion Markup Language (EmotionML) 1.0, W3C Recommendation. https://www.w3.org/

TR/emotionml/. Accessed 15 Mar 2016.

37. Schnelle-Walka, D., Radeck-Arneth, S., & Striebinger, J. (2015). Multimodal dialog manage-

ment in a smart home context with SCXML. In Proceedings 2nd Workshop on Engineering
Interactive Systems with SCXML, Duisburg, DE.

38. López, G., Peláez, V., González, R., & Lobato, V. (2011). Voice control in smart homes using
distant microphones: A VoiceXML-based approach, in ambient intelligence. Lecture Notes in
Computer Science (Vol. 7040) (pp. 172–181). Berlin/Heidelberg: Springer.

39. Teixeira, A., Almeida, N., Pereira, C., & Oliveira, M. (2013). W3C MMI architecture as a
basis for enhanced interaction for ambient assisted living. New York, NY: W3CWorkshop on

Rich Multimodal Application Development.

40. Sigüenza, A., Blanco, J. L., Bernat, J., & Hernández, L. A. (2010). Using SCXML for semantic

sensor networks. In Proceedings of the 3rd International Workshop on Semantic Sensor
Networks (SSN10). Workshop at the 9th International Semantic Web Conference

(ISWC2010) - ISWC 2010 Workshops Volume V, Shanghai, China, pp. 33–48. http://ceur-

ws.org/Vol-668/.

2 The Role and Importance of Speech Standards 35

http://www.voicexml.org/certification-programs/voicexml-platform-certification-program/
http://www.voicexml.org/certification-programs/voicexml-platform-certification-program/
http://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/Ecma-327.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/Ecma-327.pdf
https://www.ietf.org/
http://www.rfc-base.org/txt/rfc-6787.txt
https://www.w3.org/TR/emma/
https://www.w3.org/TR/xhtml+voice/
https://msdn.microsoft.com/en-us/library/ms994629.aspx
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://www.w3.org/TR/mmi-arch/
https://www.w3.org/TR/emma20/
https://www.w3.org/TR/emma20/
http://tuprints.ulb.tu-darmstadt.de/4053/
http://tuprints.ulb.tu-darmstadt.de/4053/
http://tuprints.ulb.tu-darmstadt.de/4053/
https://www.w3.org/TR/emotionml/
https://www.w3.org/TR/emotionml/
http://ceur-ws.org/Vol-668/
http://ceur-ws.org/Vol-668/


41. Radomski, S., & Schnelle-Walka, D. (2012). VoiceXML for pervasive environments. Inter-
national Journal of Mobile Human Computer Interaction, 4(2), 18–36.

42. Schnelle-Walka, D., Radomski, S., & Mühlh~auser, M. (2015). Modern standards for

VoiceXML in pervasive multimodal applications. In J. Lumsden (Ed.), Emerging perspectives
on the design, use, and evaluation of mobile and handheld devices. IGI Global: http://www.igi-
global.com/book/emerging-perspectives-design-use-evaluation/125520

43. Bühler, D., & Hamerich, S. W. (2005). Towards VoiceXML compilation for portable embed-

ded applications in ubiquitous environments. In Proceedings of Interspeech 2005, Lisbon, PT,
pp. 3397–3400. http://www.isca-speech.org/archive/interspeech_2005/i05_3397.html; http://

www.isca-speech.org/archive/interspeech_2005/index.html.

44. Oshry, M., Adeeb, R., Baggia, P., Blackman, A., Bodell, M., Burke, D., et al. (2004).

VoiceXML 2.0 Implementation Report. https://www.w3.org/Voice/2004/vxml-ir/.

Accessed 1 Mar 2016.

45. Shanmugham, S., Monaco, P., & Eberman, B. (2006). A Media Resource Control Protocol

(MRCP), RFC 4463—Informational. https://tools.ietf.org/html/rfc4463. Accessed 1Mar 2016.

36 P. Baggia et al.

http://www.igi-global.com/book/emerging-perspectives-design-use-evaluation/125520
http://www.igi-global.com/book/emerging-perspectives-design-use-evaluation/125520
http://www.isca-speech.org/archive/interspeech_2005/i05_3397.html
http://www.isca-speech.org/archive/interspeech_2005/index.html
http://www.isca-speech.org/archive/interspeech_2005/index.html
https://www.w3.org/Voice/2004/vxml-ir/
https://tools.ietf.org/html/rfc4463


Chapter 3

Extensible Multimodal Annotation
for Intelligent Interactive Systems

Michael Johnston

Abstract Multimodal interactive systems enabling combination of natural modal-

ities such as speech, touch, and gesture make it easier and more effective for users

to interact with applications and services, whether on mobile devices, or in smart

homes or cars. However, building these systems remains a complex and highly

specialized task, in part because of the need to integrate multiple disparate and

distributed system components. This task is further hindered by proprietary

representations for input and output to different types of modality processing

components such as speech recognizers, gesture recognizers, natural language

understanding components and dialog managers. The W3C EMMA standard

addresses this challenge and simplifies multimodal application authoring by

providing a common representation language for capturing the interpretation of

user inputs and system outputs and associated metadata. In this chapter, we describe

the EMMA markup language and demonstrate its capabilities through presentation

of a series of illustrative examples.

3.1 Introduction

Multimodal interfaces that allow users to provide input using different modes such

as speech, touch, and gesture and support system responses combining speech,

graphics, and other modes enable the creation of more natural and effective

interactive systems for accessing information and services [1–3]. The critical

property of these systems is that, since different modes offer different affordances

for expressing content, through multimodality the user (or system) is empowered to

use the mode or combination of modes best suited to the specific information to be

conveyed or task to be completed [4, 5]. Having more than mode available also

allows the user to switch among modes to overcome recognition problems, such as

errorful speech recognition in a noisy environment [6], or to adapt to the particular

physical or social environment. For example, the user might switch from voice to

typing for entering sensitive information such as a credit card number or user ID.

M. Johnston (*)

Interactions Corporation, New York, NY, USA

e-mail: mjohnston@interactions.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_3

37

mailto:mjohnston@interactions.com


Interaction with mobile devices such as smart phones and tablets has always

been a central use case for multimodal interaction and one that has become even

more important given the widespread availability of these devices and the ubiquity

of high speed mobile data networks. Increasingly though, multimodality has a

broader range of applicability which extends to the connected car, control of

smart devices in the home (and the Internet of Things (IOT) more broadly),

interaction with media systems, wearable computers, control of virtual environ-

ments, and interaction with social and assistive robots.

Numerous multimodal prototypes have been developed across the years [7–19],

and we are now starting to see deployment of truly multimodal systems

[20, 21]. However, despite the increasing demand for and applicability of multi-

modal systems, building and maintaining them remains a complex and highly

specialized task. One of the key challenges is that these systems typically involve

integrating multiple different subcomponents, such as speech recognition, gesture

recognition, natural language understanding, multimodal fusion, dialog modeling,

and natural language generation. Communication among these components is not

standardized and frequently involves a combination of ad hoc and proprietary

protocols. As a result, it is difficult or impossible to plug-and-play components

from different vendors or research sites, limiting the ability of authors to rapidly

pull components together to prototype and develop effective solutions. The advent

of cloud-based APIs for some of the technologies including speech recognition and

natural language understanding is lowering the barrier of entry for development of

spoken and multimodal interactive systems but further illustrates the integration

problem as all of the APIs currently provide results in different formats with

different encoding of metadata.

The extensible multimodal annotation (EMMA) markup language described in

this chapter addresses this problem by providing a standardized common language

for representing the processing of inputs to (and outputs from1) spoken and multi-

modal interactive systems. EMMA provides a representation language for encap-

sulating and annotating the interpretation of inputs to a multimodal system.

Critically, the EMMA language does not standardize the semantic representation

itself. For example, there is no standard markup for particular commands or intents,

e.g., <search_flight/> for an airline query. The semantic representation

remains application specific. EMMA instead provides a standard set of containers

for different possible interpretations and sequences and groups of interpretations.

The language also provides a set of attributes and elements for capturing common

metadata regarding inputs and their interpretation such as timestamps, confidence

measures, type of media involved, reference to the location of a signal file, and

description of the device used to capture input. In essence, EMMA provides the

“glue” that connects together the components of a spoken or multimodal interactive

system. We present a multimodal architecture here, but note that EMMA also has

1 The W3C recommendation EMMA 1.0 only addresses inputs. Proposals for EMMA 2.0 extend

the standard to represent output processing.

38 M. Johnston



significant utility for unimodal architectures as they also involve multiple compo-

nents. Figure 3.1 lays out the common components of an interactive multimodal

system and indicates where EMMA can be used for communication among

components.

The EMMA language became a W3C Recommendation in 2009 [22]. The

standardized form of EMMA is XML. In ongoing work, which we discuss later in

the chapter, JavaScript Object Notation (JSON) formulations of the EMMA stan-

dard are being developed. Also, the EMMA language has provisions for carrying

non-XML semantic payloads. While the initial formulation of EMMA only

addressed input, in more recent proposals for an EMMA 2.0 [23], extensions to

the language include support for using EMMA for expressing the stages of

processing of output from spoken and multimodal systems. We also discuss this

in Sect. 3.5 below.

EMMA is the language used to represent the interpretation of inputs by modality

components in the W3C multimodal architecture specification [24]. The

DoneNotification event in the multimodal architecture embeds an EMMA

document in the <mmi:Data> element.

Historically for telephony-based spoken language systems there has been some

degree of standardization. Natural Language Semantic Markup Language

(NLSML) [25] was developed and published as a W3C working draft. NLSML

provides for a basic set of metadata including confidence scores indication of

grammar used, timestamps, and mode. NLSML was focused on speech input and

Fig. 3.1 Role of EMMA in a multimodal interactive system

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 39



has limited capability for expressing ambiguity and capturing multimodal inputs

and more detailed metadata. It was adopted as the required result format for the

Media Resource Control Protocol (MRCP) [26]. MRCP in turn has become the

dominant standard in the space of interactive voice response (IVR) systems for

accessing speech resources such as speech recognition servers. EMMA was devel-

oped within W3C as the direct replacement for NLSML and offers the capabilities

needed for results for spoken language systems and for multimodal systems. The

second version of MRCP, MRCP V2 [27] specifies that results may be returned in

either NLSML or in the EMMA markup language.

In Sect. 3.2 below, we outline the basics of the EMMA language and provide

illustrative examples showing the key metadata that can be captured. In Sect. 3.3 we

focus specifically on the capabilities of the language for capturing the uncertainty

and ambiguity that is characteristic of input through natural modalities to interac-

tive systems. Here we discuss representations of N-best lists and lattices and

describe the scope of annotations over more complex EMMA documents that

express multiple different possible hypotheses. In Sect. 3.4, we discuss the capa-

bilities of the language for expressing sequences of inputs and grouping inputs,

including examples of multimodal inputs, and the built-in mechanisms in the

language for expressing and cross-referencing multiple stages of processing of

input within a single EMMA document or across several EMMA documents. In

Sect. 3.5, we present recent work on extending the EMMA language to support

representation of the processing and realization of system output. In Sect. 3.6, we

discuss recent work on alternative formats such as JSON for the EMMA language.

Section 3.7 concludes the chapter.

3.2 The Basics of EMMA

The EMMA language is an XML markup that provides mechanisms for capturing

and annotating the results of the various stages of processing of user inputs. While

in EMMA 2.0 the language is extended to system output, in the rest of Sects. 3.2,

3.3, and 3.4 we limit the discussion to input as specified in the EMMA 1.0

recommendation [22].

There are two key aspects to the language: a series of elements (e.g., <emma:
interpretation>, <emma:group>, <emma:one-of>, <emma:
sequence>,<emma:lattice>) that are used as containers for interpretations

of the user’s inputs, and a series of annotation attributes and elements which are

used to provide standardized access to various pieces of common metadata associ-

ated with those inputs. These annotations include timestamps (emma:start,
emma:end) and confidence score values (emma:confidence). Annotations

with simple values, and for which there can only be one per interpretation such as

timestamps and confidence scores are captured as attributes. Other annotations such

as <emma:derived-from>, <emma:model>, and <emma:grammar>
for which there may be more than one per interpretation or which have internal

structure are captured as elements.

40 M. Johnston



Given the broad range of input types to be supported, a critical design feature of

EMMA is that it does not attempt to standardize the semantic representation

assigned to inputs; rather it provides a series of standardized containers for mode

and application specific markup, and a set of standardized annotations for common

metadata. The language enables extensibility through the <emma:info> ele-

ment, which is a container for application or vendor specific annotations on inputs.

Note that individual EMMA documents are not intended to be authored directly by

humans; rather they are generated automatically by system components such as

speech recognizers, image recognizers, natural language understanding compo-

nents, and multimodal fusion engines. They are, however, intended to be manipu-

lated and read by humans in logging and annotation tools.

To make this more concrete, we consider an illustrative example. The EMMA

document in Fig. 3.2 is an example of EMMA markup that might be produced by a

natural language understanding component in an interactive spoken or multimodal

system for making travel reservations. In this use case, the user is interacting with a

speech-enabled mobile application and has requested information about flights

from Boston to Denver.

Fig. 3.2 EMMA example: voice input

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 41



All EMMA documents start with the root element<emma:emma>. This has an

attribute indicating the version of EMMA along with standard XML namespace and

schema declarations. To simplify presentation, in the rest of the examples in the

chapter the namespace and schema information will be left out. Within <emma:
emma> we find the core of an EMMA document: a tree of container elements

<emma:one-of>, <emma:group>, and <emma:sequence>, terminating

in a number of <emma:interpretation> elements indicating individual

interpretations of the input.

In this initial example, we present the most basic case where there is a single

<emma:interpretation> element containing application specific markup

resulting from processing a single user input. In this example, the EMMA document

is produced by a natural language understanding (NLU) component. The semantic

representation assigned by theNLUconsists of anXMLelement<flight> containing

two sub elements, <orig/> and <dest/>, specifying the origin and destination

cities, respectively, for a flight query, in this case “Boston” and “Denver.”
Interpretation elements are required to have an <id> attribute that can be used

to refer to the specific interpretation. In addition to the <id> attribute there are a

series of annotation attributes which provide detailed metadata associated with the

input and its interpretation. Some of these are required, such as emma:medium
and emma:mode, while others such as emma:signal and emma:confidence
are optional.

The first set of these annotation attributes provide a simple classification of the

input. The attributes emma:medium and emma:mode provide a classification of

the user input medium and the specific modality, respectively. The values for

emma:medium are from the closed set of values “acoustic,” “tactile,”
and “visual.” In this example, the emma:medium value is “acoustic” and

the specific modality is “voice.” The values for mode are from an open set

including the values: “voice,” “ink,” “gui,” “keys,” “video,” and “pho-
tograph.” Multimodal inputs will have multiple values, space separated, within

their medium and mode attributes. The emma:function attribute differentiates

interactive dialog “dialog” from other uses such as recording and verification.

The attribute emma:verbal takes a boolean value indicating whether the input is

verbal language. This is used to distinguish, for example, handwriting (letters) from

freehand drawing (lines, areas) in pen input. Spoken language input, as in this case,

will be emma:verbal¼“true.”
Timestamps are a key type of metadata for different modes and are frequently

used as a constraint an multimodal fusion strategies. EMMA provides both absolute

and relative timestamp mechanisms. In the example, the attributes emma:start
and emma:end are absolute timestamps indicating the start and end of the user

input signal in standard Unix timestamps (milliseconds from Jan 1 1970). Temporal

information can also be specified relative to other signals or to, for example, the

beginning of an interaction or session. emma:time-ref-uri specifies what the

time is relative to and emma:offset-to-start the offset in milliseconds. In

the case where the reference item is an interval, emma:time-ref-anchor-
point is used to indicate whether the offset is from the “start” or “end.” There
is also an emma:duration attribute which specifies the duration of an input in

milliseconds, 3060 ms in our example.

42 M. Johnston



The language of the input is captured using the emma:lang attribute which

takes as values the standard language identifiers defined in IETF BCP 47 [28]. In the

example, “en-US” indicates that this spoken input was in US English. If instead

the input was in French language (“des vols de Boston á denver”), the value would

be “fr”. Note that emma:lang indicates the language of the actual input signal.

For example, if the interpretation was the result of machine translation from French

to English, the emma:lang would remain “fr” because that was the language of
the original signal. This is in contrast to xml:lang which is used to indicate the

language of characters within the element it appears on.

The attribute emma:tokens indicates the strings of tokens that were processed

in determining the interpretation. In our example of spoken input, these tokens are

words. In other modalities, such as gesture, the token stream might contain symbols

representing gestures. The emma:confidence attribute is used to annotate the

degree of certainty assigned to the interpretation by the processor generating the

interpretation. emma:confidence takes a value between 0 and 1.2

The next bundle of annotations provide information about the signal processed.

The emma:source attribute contains a Uniform Resource Identifier (URI) which

provides a characterization of the source of the input, such as the device, or

microphone, or camera used to capture the input signal. In this example, the device

and platform is specified. emma:signal is used to provide a pointer to the input

signal file. In our case this is an audio file. In the case of a visual input the signal

might be an image or video file. The size of the signal can be specified using the

emma:signal-size attribute those value indicates the size of the signal file in

8-bit octets. The emma:media-type attribute contains the MIME type of the

signal, and provides a convenient location for specifying the codec and sampling

rate (AMR encoded audio at 8000 Hz in this case).

The emma:process attribute is URI valued and provides a description of the

process which resulted in the current interpretation. In Fig. 3.2, it indicates that the

process was speech recognition (asr) and specifies the recognizer version.

The next two attributes, emma:grammar-ref and emma:model-ref, are
used to provide references to the annotation elements <emma:grammar> and

<emma:model>. The<emma:grammar> element, which appears as a child of

<emma:emma>, is used to provide a reference or inline specification of a gram-

mar used in generating the interpretation. Similarly the element <emma:model>
is used for inline specification or reference to the data model of the semantic

representation within the <emma:interpretation>. Both grammars and

models are handled in this way with an emma:*-ref attribute and an element

in order to support multiple models or grammars being associated with an

2 The EMMA language does not require the confidence score to be a probability and there is no

expectation or requirement that confidence values are comparable across different producers of

EMMA other than that values closer to 1 are higher in confidence while values closer to 0 are lower

in confidence.

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 43



interpretation. This also supports use cases where there are multiple interpretations

and each is associated with specific models and grammars.

In addition to the standardized set of annotations in EMMA, there is also a

mechanism for adding vendor and application specific metadata. These are placed

within the <emma:info> element which may appear either under <emma:
emma> or within a specific <emma:interpretation> or other container.

In our example, <emma:info> is used to introduce a vendor specific session

identifier. In the proposal for EMMA 2.0, an emma:info-ref attribute is

introduced to enable association of <emma:info> elements with specific inter-

pretations by reference.

We now consider another example where EMMA is used instead for represen-

tation of the output of an image recognizer (Fig. 3.3). In this case, the camera on a

mobile device has been used to take a picture as part of an interactive application.

The medium is “visual” and mode “photograph.” Function is “dialog”
as this is an input to an interactive system, and emma:verbal is “false.” The
signal in this case is a jpg file. Instead of speech recognition, in this case the process

is image classification. In this example, <emma:info> is being used to provide

vendor specific annotations of the width and height in pixels of the image being

processed. The interpretation in this case is application specific XML specifying

that the result was classification of the image as a ball of color green. The overall

confidence for the interpretation is given in the emma:confidence on the

<emma:interpretation> element. We illustrate here an additional

Fig. 3.3 EMMA example: visual input

44 M. Johnston



capability of the mechanism in that emma:confidence can also appear directly

on elements in the application specific markup, in this case indicating the confi-

dence of the classification of the overall type of object and the confidence in the

color classification. Another attribute which can apply directly to application

markup is emma:tokens, enabling specification of the specific words that

resulted in particular parameters in the semantic representation.

As a third and final example we consider input in the tactile medium. In this case

the user draws a route on a map on a touch screen with their finger as part of

interaction with a mobile application (Fig. 3.4). The EMMA interpretation is the

result of gesture classification of the ink trace (Fig. 3.5).

In this example, the mode is “ink” and function is “dialog.” A gesture line is

non-verbal so emma:verbal¼“false.” In the case of handwritten words,

emma:verbal would be true. The signal in this example is an XML file

containing InkML representation of the input ink trace made on the map

[29]. InkML has a specific registered MIME type captured in emma:media-
type. In our example interpretation, there is application specific XML markup

indicating that the recognition result is of type “line” and the specific set of

coordinates. In this case, the confidence in the interpretation is fairly low “0.20”.

Fig. 3.4 Example of ink

input on map display

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 45



EMMA provides a couple of specific annotations for cases with missing or

uninterpretable input. An EMMA result can signal the absence of input with

emma:no-input¼“true” on the EMMA interpretation:

<emma:interpretation id¼”id4” emma:medium¼”acoustic” emma:

mode¼”voice” emma:no-input¼”true”/>.

Cases where there is an input but it is considered to be uninterpretable are

marked as follows:

<emma:interpretation id¼”id5” emma:medium¼”tactile” emma:

mode¼”ink” emma:uninterpreted¼”true”/>.

Interpretations marked as emma:uninterpreted¼”true” may result

from, for example, the inability of a parser to assign a parse to string (in the case

of natural language parsing or understanding), or in other cases where there is a

result but its confidence falls below some pre-defined threshold. For example, if for

the gesture recognizer producing the EMMA in Fig. 3.5 there was a confidence

threshold on gesture recognition of “0.25” the recognizer would instead return an

empty <emma:interpretation> with emma:uninterpreted¼“true.”

Fig. 3.5 EMMA example: tactile input

46 M. Johnston



3.3 Capturing Ambiguity and Non-determinacy

One of the key characteristics and challenges of input modes such as speech,

gesture, and computer vision, employed in multimodal interactive systems, is that

despite dramatic performance improvements in recent years these natural input

modes remain a source of error and furthermore user inputs may be ambiguous and

uncertain. One aspect of EMMA that addresses this is availability of confidence

annotations both at the interpretation level and within specific semantic markup.

These scores can be used by a dialog management component to drive rejection and

confirmation strategies.

However, it is often the case that errors resulting from taking the top scoring

interpretation of a mode can be resolved later either through fusion with content

from other modes [3, 8, 20, 30] or through use of dialog and contextual information

to rescore multiple hypotheses [31]. Furthermore, spoken dialog management and

multimodal interface techniques can utilize multiple hypotheses in order to clarify

uncertain inputs directly with the user. For example, in a multimodal interface for a

task such as recognition of a spoken name, multiple hypotheses can be presented to

the user in list form allowing them to select the desired result [32]. In addition, in

voice search applications multiple recognition results can be used to retrieve search

results. See [33] for one illustration of the use of multiple ASR results in a question

answering task.

Given these motivations, a critical component in the design of the EMMA

language is support for representation of multiple possible interpretations of user

input. The <emma:one-of> container provides the core mechanism for repre-

sentation of disjunction of possible interpretations. The language also supports

direct representation of lattices, graphs which compactly represent multiple differ-

ent possible interpretations of the input. We present first the use of <emma:one-
of> to represent N-best lists of possible interpretations. Like <emma:
interpretation>, <emma:one-of> is a container element and can appear

as a child of <emma:emma>. In turn, <emma:one-of> itself contains a list of

other container elements. In the example in Fig. 3.6, we return to the speech input

use case from Sect. 3.2 of input to a flight information system, and show it with

N-best results. Each separate result is in an <emma:interpretation> under

<emma:one-of>. This captures the fact that there were three competing inter-

pretations of the spoken input, a flight query from Boston to Denver, a flight query

from Austin to Denver, or a query to search for stores in downtown Austin.

Much of the metadata associated with the input, such as the classification into

medium and mode, the timing information, signal, media type, language, and

process is more about the signal and its handling and is common to all of the

interpretations. To avoid having to repeat annotations that apply across multiple

interpretations, EMMA allows for annotations to appear on the <emma:one-
of> directly and defines a scoping relation on annotations. Annotations on an

<emma:one-of> element are assumed to apply to all of the interpretations

within the <emma:one-of>. Certain annotations are not shared and are specific

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 47



to individual interpretations. For example, for speech recognition results these are

the confidence scores and <emma:tokens>. In certain applications, emma:
lang might also be specific to some interpretations if the system in question

recognizes multiple languages. If a confidence measure is present the interpreta-

tions must be listed in order of confidence, best first.

The contents of <emma:one-of> can also be the other container elements

such as <emma:group> and <emma:sequence>. <emma:one-of> ele-

ments can be nested to structure a set of interpretations based on the source of the

ambiguity. For example, an N-best list of recognition results where individual ASR

strings have multiple possible interpretations can be represented as a list of

<emma:one-of> elements embedded within an<emma:one-of>. Figure 3.7

contains an example from an interactive mobile assistant where the string is

recognized as either “action movies tonight” or “action movies tomorrow” and

the natural language understanding (NLU) assigns each one an interpretation as

either a search for movies in theaters or a search for movies on television. The

attribute “disjunction-type” on<emma:one-of> can be used to annotate

the source of the ambiguity at each level of the embedding.

In some use cases, these representations of multiple hypotheses will be con-

sumed by a dialog manager and contextual information may be used in order to

Fig. 3.6 EMMA representation of N-best lists: <emma:one-of>

48 M. Johnston



select among hypotheses. For example, considering Fig. 3.7, knowledge of the

preceding conversation, such as whether the user has been searching for television

vs. planning an evening out can be used to select among the hypotheses. N-best

hypotheses can also be used to drive clarification strategies, for example, in speech

if given the context we assume this is a television programming search, given the

remaining ambiguity on the time value, the system might construct a targeted

clarification question [34, 35] such as “action movies when?”. In a multimodal

context, the system could instead decide to present multiple options to the user

visually. In the example in Fig. 3.8, the <emma:one-of> contains a series of

different recognition results of different person names and an associated language

understanding (tagging of first and last name). These different options can be

presented directly to the user as a visual menu as in Fig. 3.9 with an accompanying

prompt “Who were you trying to call?”. This kind of multimodal confirmation is

Fig. 3.7 EMMA embedded <emma:one-of>

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 49



particularly effective on mobile devices with a touch display where a spinnable list

can easily be used to pick among even quite a long list of alternatives [32].

In addition to N-best lists, EMMA also provides a mechanism for direct repre-

sentation of lattices or confusion networks. Lattices and confusion networks pro-

vide a more compact representation and are particularly useful when the range of

alternatives is large. A lattice is a directed graph which represents a series of

possible interpretations of the input signal. A lattice has a start state and one or

more end states, and symbols such as words label transitions between intervening

states. Each path through the lattice represents a possible recognition result.

Fig. 3.8 N-best lists of names represented in <emma:one-of>

Fig. 3.9 Visual interface

for disambiguation

50 M. Johnston



A confusion network (or word confusion network) is a special case of a lattice that

presents alternatives word by word. The alternatives in lattices and confusion

networks are often weighted.

Lattices are a commonly available output from speech recognizers, and are also

useful for other modes including representation of the possible interpretations of

gesture input. Consider first an example from speech recognition. If the user has

said “flights to boston from Portland tomorrow,” a possible resulting speech

recognition lattice can be represented graphically as a finite state automaton as in

Fig. 3.10.

This representation compactly represents a list of eight strings, enumerated in

Fig. 3.11, each a different path through the lattice. Lattices are encoded in EMMA

using the <emma:lattice> element, which includes initial and final
attributes to capture the start and end states of the lattice. Each arc in the lattice is

captured in an<emma:arc> element with “from” and “to” attributes giving the
origin state and destination state for the arc. Arcs can also be weighted using the

emma:cost attribute. The example in Fig. 3.12 shows the EMMA representation

of the lattice in Fig. 3.10.

The lattice representation capability also has important applications for other

modes such as gestures made with a stylus or hand motion. We present here an

example drawn from Johnston and Bangalore [36] showing the representation of the

possible different interpretations of ink input to a mobile application as a finite state

machine. After gesture and handwriting recognition, the ink trace in Fig. 3.13 (left)

could be assigned multiple different interpretations. These are represented in the

finite state automaton in Fig. 3.13 (right). The path “G hw 0” represents recognition

of the input as a handwritten digit “0”. The path “G area sel 2 rest SEM(r12,r15)”

Fig. 3.10 Speech recognition lattice example

Fig. 3.11 N-best list of strings captured by lattice

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 51



represents the interpretation of this ink gesture as a selection of two restaurants. The

remaining path “G area loc SEM(points..)” represents recognition of the gesture as

an area which indicates a particular geographic extent on the map. In a multimodal

system with combined multimodal commands, the restaurant selection path might

combine with a speech command such as “compare these restaurants” while the

location path might combine with “zoom in here.” For more details on this

representation and its use to support interactive multimodal systems see Johnston

and Bangalore [36]. This representation of ink gesture can be captured in EMMA

markup using the <emma:lattice> element as in Fig. 3.14.

3.4 Groups, Sequences, and Derivations

Groupings of inputs and sequences of inputs can be represented using the remaining

container elements <emma:group> and <emma:sequence> each of which

itself can contain multiple container elements.

Fig. 3.12 EMMA representation of speech recognition lattice with <emma:lattice>

Fig. 3.13 Example of ink input and lattice representation

52 M. Johnston



One key use case for<emma:group> is for containing bundles of multimodal

input, which in turn may then be passed to a multimodal integration component in

order to determine their combined interpretation. In the example in Fig. 3.15 there

has been a spoken input “traffic along this route” and the user has drawn a line on a

visual display that is captured as an ink trace (for an example of this kind of ink

input see Fig. 3.4 above). This package of multimodal input can be captured in

<emma:group> as a grouping, in this case of two N-best lists in <emma:one-
of>. The <emma:group-info> element can be used to provide information,

in application specific markup, regarding the criteria by which the inputs were

grouped. In this case, the <emma:group-info> indicates that the inputs are

grouped based on their respective time intervals overlapping.

The <emma:sequence> container is essentially a special case of <emma:
group> in which the inputs represented in the containers inside the <emma:
sequence> are required to be in temporal order. For example, a sequence of two

point gestures made on a 2D visual display could be represented as in Fig. 3.16.

A key characteristic of input processing in interactive multimodal systems is that

there are often multiple different stages of processing. For example, a speech signal

may be processed by a speech recognizer yielding an EMMA result containing

speech recognition hypotheses. These may then be consumed by a natural language

understanding component yielding a list of possible semantic representations for

the input. That in turn may serve as input to a multimodal integration component

where the speech interpretation is combined with possible interpretations of the

gesture, in order to yield a multimodal interpretation (see, for example, [37] for one

example of a declarative approach to multimodal integration). The output of

multimodal integration can then be consumed by a dialog manager or interaction

management component that controls the overall flow of the interaction.

Each stage of processing yields a different EMMA document. The EMMA

language provides a mechanism for representing the connections between these

Fig. 3.14 EMMA representation of ink lattice

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 53



derivations or processing steps in handling input to interactive systems. The

<emma:derived-from> element is an empty element which can appear inside

<emma:interpretation> or other containers and provides a pointer to the

Fig. 3.16 EMMA sequence container example

Fig. 3.15 EMMA representation of multimodal input using <emma:group>

54 M. Johnston



<emma:interpretation> or other container element that was input to the

process indicated in emma:process in order to generate that interpretation. The

resource attribute on <emma:derived-from> is URI valued and provides

the reference to the container the interpretation is derived from. The other attribute

composite indicates whether this is an interpretation derived by combining

multiple modalities of input. In one case of a multimodal combination there will

be two or more <emma:derived-from> elements pointing to the different

modes being combined. The references can be to other documents, or alternatively,

the previous stages of processing can be held in an element <emma:
derivation> under <emma:emma> and referenced within the document,

enabling a whole chain of processing to be captured in a single document. This

format is particularly useful for logging.

We return to the multimodal example from Fig. 3.15. Assuming that the docu-

ment containing the EMMA group is processed by a multimodal fusion component,

the multimodal combined result and the earlier stages of processing can be

represented in a single document as in Fig. 3.17. The combined interpretation

appears directly under <emma:emma>. In this case there are two possible com-

bined interpretations and each has two <emma:derived-from> elements

inside referencing the unimodal interpretations, held in the <emma:
derivation> container lower in the document that were combined to derive

those multimodal interpretations.

The EMMA mechanisms we have described so far are all part of the EMMA 1.0

specification that was established as a W3C recommendation in 2009 [22]. In the

next two sections, we present some key extensions and enhancements to the

language that are being developed as part of the enhanced EMMA 2.0 language

[23] and related work.

3.5 Extending EMMA to System Outputs

All of the markup described so far is directed specifically at the representation and

annotation of input such as speech commands, drawings made on touch displays,

and free-form hand/arm gesture (the right hand side of Fig. 3.1). Much the same set

of concerns and requirements for containing representatives and providing meta-

data apply also to the outputs generated by interactive spoken and multimodal

systems. As in the case of input, often there are multiple stages of processing. For

example, a dialog manager may generate a semantic representation capturing the

desired next action of a system, which is then processed by a natural language

generation component yielding a sequence of words, which is then passed to a

speech synthesis component for rendering as audio.

As in the input side, there are also needs in the output processing pipeline for

representation of multiple alternatives. For example, natural language generation

models can generate multiple possible candidate utterances which are rescored

or selected among based on considerations downstream, such as the quality of the

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 55



Fig. 3.17 Multimodal combination with representation of derivation using <emma:derived-
from>

56 M. Johnston



text-to-speech rendering. In these cases,<emma:one-of> can be used to capture

multiple alternative outputs. System output can also be multimodal. <emma:
group> can be used to contain contributions for multiple modes being generated

by a multimodal presentation planning component which takes a semantic repre-

sentation from a dialog manager and distributes it across the available modalities

such as speech and graphical displays.

In order to address this asymmetry and extend the utility of EMMA, EMMA 2.0

includes an <emma:output> element, the output variant of <emma:
interpretation> for containment of planned system output. <emma:
output> is a container element and can appear directly under <emma:emma>
or as a child of the various containers,<emma:one-of>,<emma:group>, etc.

To make this more concrete, consider the example in Fig. 3.18. In this case, assume

the user has asked which airlines have flights from Denver to Boston on September

20th. The dialog manager conducts a search and generates a semantic representa-

tion, the <inform> element here indicates information to be conveyed to the

user. In this example, the <time> element contains an expression in

TIMEML [38].

Note that for <emma:output> many of the same annotation attributes and

elements are relevant but in some cases have a subtly different semantics. emma:
confidence in this case is not a recognition confidence, but rather the confidence

of the dialog manager in the decision to make this response. The emma:medium
and emma:mode and the emma:lang are not the actual classification of an input

but rather the desired medium and mode and language that the output should be

rendered in, in this case voice output in US English. The annotation emma:
media-type can be used to indicate the desired codec and sampling rate for

audio output. Other annotations are more complex, for example, at the point that a

response is specified by the dialog manager, timestamps indicate not the actual

timing of input but the desired or proposed timing of output. Generally a dialog

manager may not be able to specify the absolute timing of output. Relative

timestamps can potentially be used to capture the desired temporal relation between

Fig. 3.18 EMMA representation for output from dialog manager

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 57



multiple chunks or modes of system output, e.g., spacing between multiple spoken

utterances or coordination of speech and visual presentation. Absolute timestamps

potentially could be added by later stages of processing and captured in logs

indicating the actual time of playback of the audio.

The EMMA output representation in Fig. 3.18 would be consumed by a natural

language generation component yielding a new EMMA document (Fig. 3.19)

capturing multiple possible different surface realizations of the semantic represen-

tation into English text. Here we see the use of <emma:one-of> to represent

indeterminacy in system output generation with confidence scores associated with

each possible output. The payload in these examples is in SSML [39] a W3C

standard language for specifying speech to be rendered by text-to-speech engines.

The MIME type for the content of <emma:output> is specified in emma:
result-format. Here again you see the EMMA scope mechanism at work,

the annotations, emma:medium, emma:mode, emma:process, etc., appear on
<emma:one-of> and are assumed to apply to all of the enclosed <emma:
output> elements. Assuming the document in Fig. 3.18 is accessible by URI,

the <emma:derived-from> element provides a reference to the <emma:
output> that was processed by the natural language generation component in

order to generate the <emma:one-of> in Fig. 3.19.

In a multimodal system, the same semantic representation in Fig. 3.18 could be

processed by a multimodal presentation planner creating an <emma:group>
with two <emma:output> elements, one with graphical content in HTML5

and another with SSML text to be rendered by TTS. In this case,<emma:group>
is used as a container for the results of multimodal fission. Relative timestamps can

be used in order to specify the temporal synchronization of the graphical element of

the response and the speech element of the response.

Fig. 3.19 EMMA representation for output from natural language generation component

58 M. Johnston



3.6 JSON Representation for EMMA

When the EMMA language was initially developed, XML representations were

dominant in the standards community both for document markup and for messaging

among components. In that setting, it was natural to adopt XML for EMMA. Since

then, along with the increase in the capabilities and use of both client side and

server side JavaScript, JSON [40] has become prevalent as a format for communi-

cation among web services, an interchange format among different programming

languages, and also for specification of content to be rendered by various client side

frameworks. Here I discuss some previous and ongoing work in EMMA to integrate

with and support JSON.

In EMMA 2.0 [23] there are proposals for an extension to the language to enable

specification of non-XML payloads for <emma:interpretation> and

<emma:output>. The emma:result-format attribute can be used to spec-

ify the MIME type of the content in the payload and the XML character data

mechanism (CDATA) can be used to embed non-XML content directly inline. For

example, if the result of an NLU processor was in JSON format, instead of having to

convert to XML for inclusion in an EMMA document, the content could be

contained directly by specifying the emma:result-format as “applica-
tion/json” as in the example in Fig. 3.20. In this case, the spoken input “I want

a medium coke and a large pepperoni pizza with mushrooms” is assigned a

semantic representation in JSON by a natural language understanding component.

The representation could be built, for example, by SISR attachments [41] to an

SRGS grammar [42]. The <emma:literal> element is in EMMA 1.0 and is

used to support string literals as the contents of an<emma:interpretation>.

In this example it contains the CDATA.

In ongoing work, a JSON specific variant of EMMA is being developed. Many

of the details of this representation are still under discussion, but here we present a

possible representation and discuss some of the issues. Figure 3.21 is an example of

possible JSON format for an N-best list with two recognition results and their

interpretations.

JSON consists of sets of attributes and values captured in {} with“:” between the

attributes and values. Values may themselves be sets of attributes and values,

atomic strings, or lists in square brackets []. The distinction between elements

and attributes that there is in XML is not present in JSON. As a result there is no

way to place annotations directly on a container such as a one-of. The assumption

we make here instead is that annotations applying to a container appear as sisters of

the attribute introducing its contents, in this case “emma:one-of.” In order to

allow for multiple interpretations, “emma:one-of” is list valued. The semantic

representation in each interpretation is itself encoded in JSON. Annotations that

apply to the “emma:interpretation” appear as sister attributes in that array

of attributes and values. Although JSON has no inbuilt mechanism similar to

namespaces in XML, we maintain the “emma:” prefix on EMMA containers

and annotations here in order to differentiate the EMMA language from the

JSON representation of the application specific content.

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 59



Many issues remain to be worked out, but a native JSON version of EMMA

would potentially be extremely beneficial to developers building multimodal inter-

active systems in an environment where they are primarily loading, processing, and

generating JSON rather than XML.

Fig. 3.20 EMMA XML with JSON semantic representation

Fig. 3.21 EMMA JSON representation

60 M. Johnston



3.7 Conclusion

In recent years, driven by the widespread availability of mobile devices, in-car

systems, and smart home technologies with touch screens, cameras, and voice input

and output, there is increasing demand for the creation of spoken and multimodal

interactive systems. These systems remain complex to author in part as they involve

integration of multiple different systems components that have to work in concert to

provide a robust and compelling user experience. In this chapter, we have described

and illustrated the EMMA language, a recent W3C standard for representation of

the interpretation of input to and output from spoken and multimodal interactive

systems.

EMMA provides a series of containers and annotations that facilitate the repre-

sentation of common metadata required for representation of inputs in different

modalities. Key features of the language include mechanisms for representation of

the ambiguous and uncertain input resulting from recognition and interpretation of

natural input modalities and mechanisms supporting representation of grouping and

temporal sequences of inputs—important capabilities for capturing composite

inputs distributed over multiple input modes. The language also provides flexibility

so that multiple levels of processing can be captured incrementally within a single

growing document, or distributed across multiple EMMA documents with cross-

references capturing the derivation of the final interpretation from the initial input

signal.

The use of XML as a language for representing user inputs facilitates the

generation and parsing of EMMA documents by EMMA producers and consumers,

since tools for XML parsing and querying are readily available in almost all

programming environments. The rich representation of input in EMMA and its

extensibility facilitate the capture of detailed interaction logs for system analysis,

debugging, and training models.

In recent work, proposals have been developed for the extension of the EMMA

language from input representation to system output, completing the circle and

enabling use of a common representation for the majority of communication among

components of a spoken or multimodal system. In ongoing work, the EMMA

language is being extended to other formats, providing support for embedding of

JSON and other representations, along with evolving proposals for a native JSON

version of EMMA. Other future directions for EMMA include support for incre-

mental results from speech recognizers and other modality processing components,

extensions to enable use of EMMA for capture not just of machine interpretation of

inputs but also metadata added by human annotators, and support for new metadata

types including more detailed specification of the location in which input is

received.

Acknowledgements I would like to acknowledge the many contributors to the EMMA standard

from around the world including Deborah Dahl, Kazuyuki Ashimura, Paolo Baggia, Roberto

Pieraccini, Dan Burnett, Dave Raggett, Stephen Potter, Nagesh Kharidi, Raj Tumuluri,

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 61



Jerry Carter, Wu Chou, Gerry McCobb, Tim Denney, Max Froumentin, Katrina Halonen, Jin Liu,

Massimo Romanelli, T. V. Raman, and Yuan Shao.

References

1. Hauptmann, A. (1989). Speech and gesture for graphic image manipulation. In Proceedings of
CHI’89, Austin, TX, pp. 241–245.

2. Nishimoto, T., Shida, N., Kobayashi, T., & Shirai, K. (1995). Improving human interface in

drawing tool using speech, mouse, and keyboard. In Proceedings of the 4th IEEE International
Workshop on Robot and Human Communication, ROMAN95, Tokyo, Japan, pp. 107–112.

3. Oviatt, S. L. (1999). Mutual disambiguation of recognition errors in a multimodal architecture.

In Proceedings of the Conference on Human Factors in Computing Systems: CHI’99, Pitts-
burgh, PA, pp. 576–583.

4. Cohen, P. R. (1992). The role of natural language in a multimodal interface. In Proceedings of
the 5th Annual ACM Symposium on User Interface Software and Technology, Monterey, CA,

ACM Press, New York, NY, pp. 143–149

5. Rudnicky, A., & Hauptman, A. (1992). Multimodal interactions in speech systems. In

M. Blattner & R. Dannenberg (Eds.), Multimedia interface design (pp. 147–172).

New York: ACM Press.

6. Oviatt S., & VanGent, R. (1996). Error resolution during multimodal human-computer inter-

action. In Proceedings of International Conference on Spoken Language Processing (ICSLP),
Philadelphia, PA, USA, pp. 204–207.

7. Allgayer, J., Jansen-Winkeln, R. M., Reddig, C., & Reithinger, N. (1989). Bidirectional use of

knowledge in the multi-modal NL access system XTRA. In Proceedings of IJCAI, Detroit, MI,

USA, pp. 1492–1497.

8. Bangalore, S., & Johnston, M. (2000). Tight-coupling of multimodal language processing with

speech recognition. In Proceedings of the International Conference on Spoken Language
Processing, Beijing, pp. 126–129.

9. Bolt, R. A. (1980). “Put-That-There”: Voice and gesture at the graphics interface. Computer
Graphics, 14(3), 262–270.

10. Chai, J., Hong, P., & Zhou, M. (2004). A probabilistic approach to reference resolution in

multimodal user interfaces. In Proceedings of 9th International Conference on Intelligent User
Interfaces (IUI), Madeira, pp. 70–77.

11. Cohen, P. R., Johnston, M., McGee, D., Oviatt, S. L., Pittman, J., Smith, I., et al. (1997).

Multimodal interaction for distributed interactive simulation. In Proceedings of Innovative
Applications of Artificial Intelligence Conference. Menlo Park: AAAI/MIT Press.

12. House, D., & Wirn, M. (2000). Adapt—A multimodal conversational dialogue system in an

apartment domain. In Proceedings of the International Conference on Spoken Language
Processing (ICSLP), Beijing, pp. 134–137.

13. Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, P., Walker, M., et al. (2002).

MATCH: An architecture for multimodal dialog systems. In Proceedings of the Association of
Computational Linguistics Annual Conference, Philadelphia, PA, pp. 376–383.

14. Koons, D. B., Sparrell, C. J., & Thorisson, K. R. (1993). Integrating simultaneous input from

speech, gaze, and hand gestures. In M. T. Maybury (Ed.), Intelligent multimedia interfaces
(pp. 257–276). Cambridge, MA: AAAI Press/MIT Press.

15. Neal, J. G., & Shapiro, S. C. (1991). Intelligent multi-media interface technology. In J. W.

Sullivan & S. W. Tyler (Eds.), Intelligent user interfaces (pp. 45–68). New York: Addison

Wesley.

62 M. Johnston



16. Sharma, R., Yeasin, M., Krahnstoever, N., Rauschert, I., Cai, G., Brewer, I., MacEachren,

A. M., & Sengupta, K. (2003). Speech-gesture driven multimodal interfaces for crisis man-

agement. Proceedings of the IEEE, 91(9), 1327–1354.
17. Wahlster, W. (2002). SmartKom: Fusion and fission of speech, gestures, and facial expres-

sions. In Proceedings of the 1st International Workshop on Man-Machine Symbiotic Systems,
Kyoto, pp. 213–225.

18. Waibel, A., Vo, M., Duchnowski, P., & Manke, S. (1996). Multimodal interfaces. AI Review
Journal, 10:299–319.

19. Wauchope, K. (1994). Eucalyptus: Integrating natural language input with a graphical user

interface. Naval Research Laboratory, Report NRL/FR/5510-94-9711.

20. Cohen, P. R., Kaiser, E. C., Buchanan, C. M., & Lind, S. (2015). Sketch-Thru-Plan: A

multimodal interface for command and control. Communications of ACM, 58(4), 56–65.
21. Johnston, M., & Ehlen, P. (2010). Speak4itSM: Multimodal interaction in the wild. In Pro-

ceedings of IEEE Spoken Language Technology Workshop, Berkeley, CA, pp. 59–60.
22. Johnston, M., Baggia, P., Burnett, D. C., Carter, J., Dahl, D. A., McCobb, G., et al. (2009).

EMMA:Extensible MultiModal Annotation markup language. W3C Recommendation. https://

www.w3.org/TR/2009/REC-emma-20090210/.

23. Johnston, M., Dahl, D. A., Denney, T., & Kharidi, N. (2015). EMMA: Extensible MultiModal

Annotation markup language Version 2.0. W3C Public working draft. https://www.w3.org/

TR/emma20/. Accessed Sept 2015.

24. Barnett, J., Bodell, M., Dahl, D., Kliche, I., Larson, J., Porter, B., et al. (2012). Multimodal

architecture and interfaces. W3C Recommendation. https://www.w3.org/TR/mmi-arch/.

25. Dahl, D. (2000). Natural language semantics markup language for the speech interface

framework. W3C Working Draft. https://www.w3.org/TR/2000/WD-nl-spec-20001120/.

26. Shanmugham, S., Monaco, P., & Eberman, B. (2006). A media resource control protocol

(MRCP). IETF RFC 4463. https://tools.ietf.org/html/rfc4463.

27. Burnett, D., & Shanmugham, S. (2012). Media resource control protocol Version

2 (MRCPv2). IETF RFC 6787. https://tools.ietf.org/html/rfc6787.

28. Phillips, A., & Davis, M. (2006). Tags for the Identification of Languages, IETF. http://www.

rfc-editor.org/rfc/bcp/bcp47.txt.

29. Chee, Y.-M., Franke, K., Froumentin, M., Madhvanath, S., Magana, J. A., Pakosz, G.,

et al. (2011). Ink markup language (InkML). W3C Recommendation. https://www.w3.org/

TR/InkML/.

30. Kaiser, E., Olwal, A., McGee, D., Benko, H., Corradini, A., Li, X., et al. (2003). Mutual

disambiguation of 3D multimodal interaction in augmented and virtual reality. In Proceedings
of the 5th International Conference on Multimodal Interfaces (ICMI), Vancover, BC, Canada,
pp. 12–19.

31. Jonson, R. (2006). Dialog context-based re-ranking of ASR hypotheses. In Proceedings of
IEEE Spoken Language Technology Workshop, Palm Beach, Aruba, pp. 174–177.

32. Johnston, M. (2009). Building multimodal applications with EMMA. In Proceedings of the
ICMI Conference, Boston, MA, USA, pp. 47–54.

33. Mishra, T., & Bangalore, S. (2011). Finite-state models for speech-based search on mobile

devices. Natural Language Engineering, 17(2), 243–264.
34. Stoyanchev, S., & Johnston, M. (2015). Localized error detection for targeted clarification in a

virtual assistant. In Proceedings of International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Bribane, Australia, pp. 5241–5245.

35. Stoyanchev, S., Liu, A., & Hirschberg, J. (2014). Towards natural clarification questions in

dialogue systems. In Proceedings of AISB, London, England.
36. Johnston, M., & Bangalore, S. (2009). Robust understanding in multimodal interfaces. Com-

putational Linguistics, 35(3), 345–397.
37. Johnston, M. (1998). Unification-based multimodal parsing. In Proceedings of the Association

for Computational Linguistics Annual Conference (ACL). Montreal, pp. 624–630.

3 Extensible Multimodal Annotation for Intelligent Interactive Systems 63

https://www.w3.org/TR/2009/REC-emma-20090210/
https://www.w3.org/TR/2009/REC-emma-20090210/
https://www.w3.org/TR/emma20/
https://www.w3.org/TR/emma20/
https://www.w3.org/TR/mmi-arch/
https://www.w3.org/TR/2000/WD-nl-spec-20001120/
https://tools.ietf.org/html/rfc4463
https://tools.ietf.org/html/rfc6787
http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.rfc-editor.org/rfc/bcp/bcp47.txt
https://www.w3.org/TR/InkML/
https://www.w3.org/TR/InkML/


38. Pustejovsky, J., Casta~no, J., Ingria, R., Saurı́, R., Gaizauskas, R., Setzer, A., et al. (2003).
TimeML: Robust specification of event and temporal expressions in text. In Proceedings of
Fifth International Workshop on Computational Semantics (IWCS-5), Tilburg, The

Netherlands.

39. Burnett, D., Walker, M. R., & Hunt, A. (2004). Speech synthesis markup language (SSML)

Version 1.0. W3C Recommendation. https://www.w3.org/TR/speech-synthesis/.

40. ECMA International (2013). The JSON data interchange format. Standard ECMA-404. http://

www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf. Accessed 14 May

2016.

41. Van Tichelen, L., & Burke, D. (2007). Semantic interpretation for speech recognition (SISR)

Version 1.0. W3C Recommendation. https://www.w3.org/TR/semantic-interpretation/.

42. Hunt, A., & McGlashan, S. (2004). Speech recognition grammar specification Version 1.0.

W3C Recommendation. https://www.w3.org/TR/speech-grammar/.

64 M. Johnston

https://www.w3.org/TR/speech-synthesis/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.w3.org/TR/semantic-interpretation/
https://www.w3.org/TR/speech-grammar/


Chapter 4

EmotionML

Felix Burkhardt, Catherine Pelachaud, Bj€orn W. Schuller,

and Enrico Zovato

Abstract EmotionML is a W3C recommendation to represent emotion related states

in data processing systems. Given the lack of agreement in the literature on the most

relevant aspects of emotion, it is important to provide a relatively rich set of

descriptivemechanisms. It is possible to use EmotionML both as a standalonemarkup

and as a plug-in annotation in different contexts. Emotions can be represented in

terms of four types of descriptions taken from the scientific literature: categories,

dimensions, appraisals, and action tendencies, with a single <emotion> element

containing one or more of such descriptors. EmotionML provides a set of emotion

vocabularies taken from the scientific and psychology literature. Whenever users have

a need for a different vocabulary, however, they can simply define their own custom

vocabulary and use it in the same way as the suggested vocabularies. Several

applications have already been realized on the basis of EmotionML.

4.1 Introduction

EmotionML is a W3C recommendation to represent emotion related states in data

processing systems. It was developed by a subgroup of the W3C MMI (Multimodal

Interaction) Working Group chaired by Deborah Dahl in a first version from

F. Burkhardt (*)

Telekom Innovation Laboratories, Winterfeldstr. 21, 10785 Berlin, Germany

e-mail: Felix.Burkhardt@telekom.de

C. Pelachaud

LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France

e-mail: catherine.pelachaud@telecom-paristech.fr

B.W. Schuller

Imperial College, London, UK

University of Passau, Chair CIS, Passau, Germany

e-mail: schuller@ieee.org

E. Zovato

Nuance, Turin, Italy

e-mail: ezovato@gmail.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_4

65

mailto:Felix.Burkhardt@telekom.de
mailto:catherine.pelachaud@telecom-paristech.fr
mailto:schuller@ieee.org
mailto:ezovato@gmail.com


approximately 2005 until 2013, most of this time the development was led by Marc

Schr€oder.
In the scientific literature on emotion research, there is no single agreed descrip-

tion of emotions, not even a clear consensus on the use of terms like affect, emotion,

or other related phenomena. For a markup language representing emotional phe-

nomena it therefore appears important to allow the representation of their most

relevant aspects in the wider sense. Given the lack of agreement in the literature on

the most relevant aspects of emotion, it is inevitable to provide a relatively rich set

of descriptive mechanisms.

It is possible to use EmotionML both as a standalone markup and as a plug-in

annotation in different contexts. Emotions can be represented in terms of four types

of descriptions taken from the scientific literature: categories, dimensions,

appraisals, and action tendencies, with a single <emotion> element containing

one or more of such descriptors.

This chapter starts with a report on the analysis of use cases and requirements in

Sect. 4.2. Section 4.3 gives a brief overview on previous attempts to formalize

emotional vocabularies. In the following we discuss the elements that constitute

EmotionML in Sect. 4.4. Section 4.5 motivates the suggested emotion vocabularies

that were published as a W3C Note. Lastly, Sect. 4.6 introduces applications that

were realized on the basis of EmotionML. The chapter closes with conclusions and

outlook in Sect. 4.7.

4.2 Use Cases and Requirements

Although there are differences in emotion modeling theories, there is a sort of

consensus on the essential components of emergent emotions. Among these the

most important are feelings, appraisal, action tendencies, and emotion expressions

(for example expressed in facial expressions, body gestures, and vocal cues). A

shared formalism of encoding these aspects of emotions is a key point to allow

inter-operability in technological environments.

The goal of representing emotions in a markup language was addressed with a

bottom-up approach. Use cases were gathered from contributors with different

expertise in the field of emotion in technology and research. The working group

iteratively extracted requirements on the markup language from a number of

39 collected use cases. Based on these requirements, a syntax for EmotionML has

been produced.

The collected use cases can be classified into three broader categories:

• Data Annotation

• Emotion Recognition

• Emotion Generation

Data annotation class includes many use cases that deal with human annotation

of the emotion contained in some material, for example by means of a simple text,

66 F. Burkhardt et al.



or a node in an XML tree, representing pictures or voice recordings. The main

requirement is defining the scope of the annotated emotion together with the

emotion annotation itself. Annotation of emotions can be an important factor in

training data for emotion classification. In data annotation it is sometimes necessary

to keep track of the evolution of the emotion over time. An important requirement is

in fact the possibility to trace events over time, in order to annotate the “dynamic”

aspects of emotions, beyond the static ones.

The Emotion Recognition use cases deal with the detection of low level features

from human–human or human–machine interaction. These features could be, for

example, speech prosodic features [1] or facial action parameters [2]. Recognition

can be unimodal or multimodal, where individual modalities can be merged. In this

case timing and synchronization mechanisms are required. In emotion recognition

also confidence measures have to be taken into consideration.

The Emotion Generation use cases deal mainly with the generation of face and

body gestures and the generation of emotional speech. Emotion eliciting events

trigger the generation of emotional behavior, through a mapping mechanism in

which certain states are associated with specific behavioral actions.

These use cases showed that there is a big variety of information that is passed to

and received from an emotion processing system. As a consequence, the emotion

markup language had among its requirements a flexible method of receiving and

sending data. The definition of which kind of information can be handled had to be

specified as well.

The analysis of use cases showed that one of the primary requirements for the

emotion markup language was the definition of a way of interfacing with external

representations of data involved in the processes. In other words this markup

language should not try to represent the expression of emotion itself, for example

facial expressions or sensor data. Other languages should be used for this purpose.

Also the system oriented concepts of input and output are replaced by more specific

concepts like “experiencer,” “trigger,” and “observable behavior.”

The emotion markup language has among its requirements the possibility to

describe emotions both in terms of categories, defined in specific sets (see Sect. 4.5),

and of dimensions, for example “evaluation,” “activation,” and “power.” Beyond

categories and dimensions the emotion markup language includes the possibility to

specify “action tendencies” which are tendencies linked to specific emotions (e.g.,

anger can be linked to a tendency to attack). Also emotion “appraisals” can be

described. These are important in cases where emotions play a role in driving

behavior, i.e. when emotions are used to model the behavior of a person.

EmotionML has also to deal with mixed emotions and has to include the

possibility to define a value in a well-defined scale for each of the component

emotions. Temporal aspects are also important. The emotion markup language has

to specify absolute times, relative times, and interval durations. As previously

mentioned an important requirement is the specification of the time evolution of a

dynamic scale value, through a tracing mechanism.

Meta information has to be also taken into account, such as the specification of

the degree of confidence or probability that the represented emotion is correct.

4 EmotionML 67



The modality through which an emotion is expressed is also useful information.

A general mechanism to specify meta information has been added in EmotionML

allowing the definition of key-value pairs, in a similar fashion as in the EMMA

markup language (@todo: link to EMMA chapter).

A mechanism to link the emotion description to external source of data is

mandatory, since many use cases rely on media representations like video or

audio files, pictures, documents, etc. Also the semantics of the external link has

to be specified, and EmotionML fulfills this requirement by means of a specific

attribute (“role”), that indicates whether the referenced link points to an observable

behavior expressing the emotion, to the subject experiencing the emotion, to an

emotion eliciting event, or to an object towards which an emotion-related action is

directed.

4.3 Previous Work

The representation of emotions and related states has been part of several activities.

For example, as part of their Virtual HumanMarkup Language, the Curtin University

of Technology introduced in the Interface project EML, Emotion Markup Language,

a vocabulary used to control the emotional expression of virtual characters.

In the area of labelling schemes, maybe the most thorough attempt to propose an

encompassing labelling scheme for emotion-related phenomena has been the work

on the HUMAINE database [3].

The relevant concepts were identified in prose, and made available as a set of

configuration files for the video annotation tool Anvil [4]. A formal representation

format was not proposed in this work. Markup languages including emotion-related

information were defined mainly in the context of research systems generating

emotion-related behaviour of ECAs (Embodied Conversational Agent).

The expressive richness is usually limited to a small set of emotion categories,

possibly an intensity dimension, and in some cases a three-dimensional continuous

representation of activation-evaluation-power space (see [5] for a review).

For example, the Affective Presentation Markup Language APML [6] provides

an attribute “affect” to encode an emotion category for an utterance

(a “performative”) or for a part of it:

<performative type¼”inform” affect¼”afraid”>

Do I have to go to the dentist?

</performative>

An interesting contribution to the domain of computerized processing and

representation of emotion-related concepts is A Layered Model of Affect, ALMA

[7]. Following the OCC model [8], ALMA uses appraisal mechanisms to trigger

emotions from events, objects, and actions in the world. Emotions have an intensity

varying over time. Each individual emotion influences mood as a longer-term

68 F. Burkhardt et al.



affective state. ALMA uses an XML-based markup language named AffectML in

two places: to represent the antecedents to emotion, i.e. the appraisals leading to

emotions, or to represent the impact that emotions and moods have on a virtual

agent’s behaviour.

4.4 Emotion Markup Language Elements

Based on the requirements, a syntax for EmotionML has been produced in a

sequence of steps.

The following snippet exemplifies the principles of the EmotionML syntax.

<sentence id¼”sent1”>

Do I have to go to the dentist?

</sentence>

<emotion xmlns¼”http://www.w3. org /2009/10/ emotionml”

category�set¼”http: / /... / xml # everyday�categories”>

<category name ¼”afraid ” value¼”0.4”/>

<reference role¼”expressedBy” uri¼”#sent1”/>

</emotion>

The following properties can be observed:

• The emotion annotation is self-contained within an <emotion> element.

• All emotion elements belong to a specific namespace.

• It is explicit in the example that emotion is represented in terms of categories.

• It is explicit from which category set the category label is chosen.

• The link to the annotated material is realized via a reference.

EmotionML is conceived as a plug-in language, with the aim to be usable in

many different contexts. Therefore, proper encapsulation is essential. All informa-

tion concerning an individual emotion annotation is contained within a single

<emotion> element. All emotion markup belongs to a unique XML namespace.

EmotionML differs from many other markup languages in the sense that it does

not enclose the annotated material. In order to link the emotion markup with the

annotated material, either the reference mechanism in EmotionML or another

mechanism external to EmotionML can be used.

A top-level element emotionml enables the creation of stand-alone EmotionML

documents, essentially grouping a number of emotion annotations together, but also

providing document-level mechanisms for annotating global meta data and for

defining emotion vocabularies (see below). It is thus possible to use EmotionML

both as a standalone markup and as a plug-in annotation in different contexts.

4 EmotionML 69



4.4.1 Representations of Emotion

Emotions can be represented in terms of four types of descriptions taken from the

scientific literature [9]: <category>, <dimension>, <appraisal>, and

<action�tendency>. An <emotion> element can contain one or more of these

descriptors; each descriptor must have a name attribute and can have a value

attribute indicating the intensity of the respective descriptor. For <dimension>,

the value attribute is mandatory, since a dimensional emotion description is always

a position on one or more scales; for the other descriptions, it is possible to omit the

value to only make a binary statement about the presence of a given category,

appraisal or action tendency.

The following example illustrates a number of possible uses of the core emotion

representations.

<category name ¼”affectionate ”/>

<dimension name ¼”valence ” value¼”0.9”/>

<appraisal name ¼”agent�s e l f ”/>

<action�tendency name ¼”approach”/>

4.4.2 Mechanism for Referring to an Emotion Vocabulary

Since there is no single agreed-upon vocabulary for each of the four types of

emotion descriptions, EmotionML provides a mandatory mechanism for identify-

ing the vocabulary used in a given <emotion>. The mechanism consists in

attributes of <emotion> named category�set, dimension�set, etc., indicating

which vocabulary of descriptors for annotating categories, dimensions, appraisals,

and action tendencies are used in that emotion annotation. These attributes contain a

URI pointing to an XML representation of a vocabulary definition. In order to

verify that an emotion annotation is valid, an EmotionML processor must retrieve

the vocabulary definition and check that every name of a corresponding descriptor is

part of that vocabulary.

Some vocabularies are suggested by the W3C [10]. Users are encouraged to use

them to make EmotionML documents interoperable.

4.4.3 Meta-Information

Several types of meta-information can be represented in EmotionML.

First, each emotion descriptor (such as <category>) can have a confidence

attribute to indicate the expected reliability of this piece of the annotation. This can

70 F. Burkhardt et al.



reflect the confidence of a human annotator or the probability computed by a

machine classifier. If several descriptors are used jointly within an <emotion>,

each descriptor has its own confidence attribute. For example, it is possible to have

high confidence in, say, the arousal dimension but be uncertain about the pleasure

dimension:

<emotion dimension�set¼”http://www.w3.

org/ TR /emotion� voc/xml # pad �dimensions”>

<dimension name ¼”arousal ” value ¼”0.7” confidence ¼”0.9”/>

<dimension name ¼”pleasure ” value ¼”0.6” confidence ¼”0.3”/>

</emotion>

Each <emotion> can have an expressed�through attribute providing a list of

modalities through which the emotion is expressed. Given the open-ended appli-

cation domains for EmotionML, it is naturally difficult to provide a complete list of

relevant modalities. The solution provided in EmotionML is to propose a list of

human-centric modalities, such as gaze, face, voice, etc., and to allow arbitrary

additional values. The following example represents a case where an emotion is

recognized from, or to be generated in, face and voice:

<emotion category�set¼”http: / /... / xml

# everyday�categories ” expressed�through¼”face voice”>

<category name ¼”s a t i s f a c t i o n ”/>

</emotion>

For arbitrary additional meta data, EmotionML provides an <info> element

which can contain arbitrary XML structures. The <info> element can occur as a

child of <emotion> to provide local meta data, i.e. additional information about

the specific emotion annotation; it can also occur in standalone EmotionML

documents as a child of the root node <emotionml> to provide global meta data,

i.e. information that is constant for all emotion annotations in the document. This

can include information about sensor settings, annotator identities, situational

context, etc.

4.4.4 References to the “Rest of the World”

Emotion annotation is always about something. There is a subject “experiencing”

(or simulating) the emotion. This can be a human, a virtual agent, a robot, etc. There

is observable behavior expressing the emotion, such as facial expressions, gestures,

or vocal effects. With suitable measurement tools, this can also include physiolog-

ical changes such as sweating or a change in heart rate or blood pressure. Emotions

are often caused or triggered by an identifiable entity, such as a person, an object, an

event, etc. More precisely, the appraisals leading to the emotion are triggered by

4 EmotionML 71



that entity. And finally, emotions, or more precisely the emotion-related action

tendencies, may be directed towards an entity, such as a person or an object.

EmotionML considers all of these external entities to be out of scope of the

language itself; however, it provides a generic mechanism for referring to such

entities. Each <emotion> can use one or more <reference> elements to point to

arbitrary URIs. A <reference> has a role attribute, which can have one of the

following four values: expressedBy (default), experiencedBy, triggeredBy,

and targetedAt. Using this mechanism, it is possible to point to arbitrary entities

filling the above-mentioned four roles; all that is required is that these entities be

identified by a URI.

4.4.5 Time

Time is relevant to EmotionML in the sense that it is necessary to represent the time

during which an emotion annotation is applicable. In this sense, temporal specifi-

cation complements the above-mentioned reference mechanism.

Representing time is an astonishingly complex issue. A number of different

mechanisms are required to cover the range of possible use cases. First, it may be

necessary to link to a time span in media, such as video or audio recordings. For this

purpose, the <reference role¼”expressedBy”> mechanism can use a so-called

Media Fragment URI to point to a time span within the media [11]. Second, time

may be represented on an absolute or relative scale. Absolute time is represented in

milliseconds since 1 January 1970, using the attributes start, end, and duration.

Absolute times are useful for applications such as affective diaries, which record

emotions throughout the day, and whose purpose is to link back emotions to the

situations in which they were encountered. Other applications require relative time,

for example time since the start of a session. Here, the mechanism borrowed from

EMMA is the combination of time�ref�uri and offset�to�start. The former

provides a reference to the entity defining the meaning of time 0; the latter is time,

in milliseconds, since that moment.

4.4.6 Representing Continuous Values and Dynamic
Changes

A mentioned above, the emotion descriptors <category>, <dimension>, etc. can

have a value attribute to indicate the position on a scale corresponding to the

respective descriptor. In the case of a dimension, the value indicates the position on

that dimension, which is mandatory information for dimensions; in the case of

categories, appraisals, and action tendencies, the value can be optionally used to

indicate the extent to which the respective item is present.

72 F. Burkhardt et al.



In all cases, the value attribute contains a floating-point number between 0 and 1.

The two end points of that scale represent the most extreme possible values, for

example the lowest and highest possible positions on a dimension, or the

complete absence of an emotion category vs. the most intense possible state

of that category.

The value attribute thus provides a fine-grained control of the position on a

scale, which is constant throughout the temporal scope of the individual

<emotion> annotation. It is also possible to represent changes over time of these

scale values, using the <trace> element which can be a child of any <category>,

<dimension>, <appraisal>, or <action�tendency> element. This makes it

possible to encode trace-type annotations of emotions as produced.

4.5 Vocabularies

As described above, EmotionML takes into account a number of key concepts from

scientific emotion research [5]. Four types of descriptions are available: categories,

dimensions, appraisals, and action tendencies. These types correspond to the four

main existing representation scheme of emotions.

Depending on the tradition of emotion research and on the use case, it may be

appropriate to use any single one of these representations; alternatively, it may also

make sense to use combinations of descriptions to characterize more fully the

various aspects of an emotional state that are observed: how the value attributed

to an appraisal caused the emotion; how an emotion can be described in terms of a

category and/or a set of dimensions; and the potential actions an individual may be

executing when an emotion is triggered. Insofar, EmotionML is a powerful repre-

sentational device.

This description glosses over one important detail, however. Whereas emotion

researchers may agree to some extent on the types of facets that play a role in the

emotion process (such as appraisals, feeling, expression, etc.), there is no general

consensus on the representation schema nor on the descriptive vocabularies that

should be used. Which set of emotion categories is considered appropriate varies

dramatically between the different traditions, and even within a tradition such as the

Darwinian tradition of emotion research, there is no agreed set of emotion catego-

ries that should be considered as the most important ones (see, e.g., [12]). Similarly,

emotion theoreticians do not agree on the number nor the type of dimensions to

consider. Similar remarks can be made for appraisals.

For this reason, any attempt to enforce a closed set of descriptors for emotions

would invariably draw heavy criticism from a range of research fields. Given that

there is no consensus in the community, it is impossible to produce a consensus

annotation in a standard markup language. The obvious alternative is to leave the

choice of descriptors up to the users; however, this would dramatically limit

interoperability.

4 EmotionML 73



The solution pursued in EmotionML is of a third kind. The notion of an ‘emotion

vocabulary’ is introduced: any specific emotion annotation must be specific about

the vocabulary that is being used in that annotation. This makes it possible to define

in a clear way the terms that make sense in a given research tradition. Components

that want to interoperate need to settle on the emotion vocabularies to use; whether

a given piece of EmotionML markup can be meaningfully interpreted by an

EmotionML engine can be determined.

The specification includes a mechanism for defining emotion vocabularies. It

consists of a ‘<vocabulary>’ element containing a number of ‘<item>’ elements.

A vocabulary has a ‘type’ attribute, indicating whether it is a vocabulary for

representing categories, dimensions, appraisals, or action tendencies. A vocabulary

item has a ‘name’ attribute. Both the entire vocabulary and each individual item can

have an ‘<info>’ child to provide arbitrary metadata.

A W3C Working Group Note [13] complements the specification to provide

EmotionML with a set of emotion vocabularies taken from the scientific and

psychology literature. When the user considers them suitable, these vocabularies

rather than other arbitrary vocabularies should be used in order to promote

interoperability.

Whenever users have a need for a different vocabulary, however, they can

simply define their own custom vocabulary and use it in the same way as the

vocabularies listed in the Note. This makes it possible to add any vocabularies from

scientific research that are missing from the pre-defined set, as well as application-

specific vocabularies.

In selecting emotion vocabularies, the group has applied the following criteria.

The primary guiding principle has been to select vocabularies that are either

commonly used in technological contexts, or represent current emotion models

from the scientific and psychology literature. A further criterion is related to the

difficulty to define mappings between categories, dimensions, appraisals, and

action tendencies.

For this reason, groups of vocabularies were included for which some of these

mappings are likely to be definable in the future.

The following vocabularies are defined. For categorical descriptions, the “big

six” basic emotion (often referred to as universal) vocabulary by Ekman [4], an

everyday emotion vocabulary by Cowie et al. [14], and three sets of categories that

lend themselves to mappings to, respectively, appraisals, dimensions, and action

tendencies: the 22 OCC labels of emotion categories [8], the 24 labels used by

Fontaine et al. [15] that are further defined in terms of 4 dimensions, and the

12 categories that are linked to actions tendency as introduced by Frijda [16].

Three dimensional vocabularies are provided, the pleasure-arousal-dominance

(PAD) vocabulary by Mehrabian [17], the four-dimensional vocabulary proposed

by Fontaine et al. [15], and a vocabulary providing a single ‘intensity’ dimension

for such use cases that want to represent solely the intensity of an emotion without

any statement regarding the nature of that emotion. For appraisal, three vocabular-

ies are proposed: the appraisals defined in the OCC model of emotions [8],

Scherer’s Stimulus Evaluation Checks which are part of the Component Process

74 F. Burkhardt et al.



Model of emotions [18], and the appraisals used in the computational model of

emotions EMA [19]. Finally, for action tendencies, only a single vocabulary is

currently listed, namely that proposed by Frijda [10]. The following example

represents the call for an emotion described by its four dimensions based on

Fontaine et al. [16]:

<emotion dimension�set¼”http://www.w3. org/ TR /emotion� voc/xml

#fsre �dimensions”>

<dimension name ¼”valence ” value¼”0.8”/> <! high positive

valence ��>

<dimension name ¼”arousal ” value¼”0.5”/> <! average arousal ��>

<dimension name ¼”potency” value¼”0.2”/> <! very low potency ��>

<dimension name ¼”unpredictability ” value¼”0.4”/> <! some-

how lower than average predictable event ��>

</emotion>

While these vocabularies should provide users with a solid basis, it is likely that

additional vocabularies or clarifications about the current vocabularies will be

requested. Due to the rather informal nature of a W3C Note, it is rather easy to

provide future versions of the document that provide the additional information

required.

4.6 Applications

In the following, a range of applications is named that provide EmotionML support

on the input and/or output side. While a complete listing is not possible due to the

increasing usage of the standard, a selection has been made on the criteria to

(a) cover for the different use-cases as listed above and (b) based on popularity

and spread of the solutions to solve these. Some actually delivered implementation

reports to the recommendation.1 The applications are grouped.

4.6.1 Data Annotation

GTrace provides a tool for the annotation of continuous dimensional emotion in the

sense of “traces” whether the emotion primitive such as arousal or valence is rising

or falling over time [20]. This is done via a mouse (or joystick, etc.) in a 1D window

that is shown side-by-side with the material to be annotated. Various pre-specified

1https://www.w3.org/2002/mmi/2013/emotionml-ir/.

4 EmotionML 75

https://www.w3.org/2002/mmi/2013/emotionml-ir/


scales are provided and one can customize these or add new ones. The program is

fully compatible with EmotionML.

The Speechalyzer by Deutsche Telekom Laboratories is an open source project

for analysis, annotation, and transcription of speech files [21]. It can be used to

rapidly judge large numbers of audio files emotionally, an automatic classification

is integrated. The Speechalyzer was part of a project to identify disgruntled

customers in an automated voice service portal [22] with two use cases in mode:

(a) transfer angry users to a trained human agent, and (b) gain some statistic insight

on the number of angry customers at the end of each day. It utilizes EmotionML as

an exchange format to import and export emotionally annotated speech data.

iHEARu-PLAY is a gamified crowd-sourcing platform [23] that supports audio,

image, and video annotation for emotion supporting EmotionML. It also allows for

crowd-sourced recording of data. At present, dynamic active learning abilities are

integrated.

Further examples of annotation software supporting EmotionML include

DocEmoX, a tool to annotate documents in 3D emotion space [24],

4.6.2 Emotion Recognition

The openSMILE tool first developed during the European SEMAINE project

supports extraction of large audio feature spaces in real time for emotion analysis

from audio and video [25] and has also been used for other modalities such as

physiological data or CAN-Bus data in the car. It is written in C++ and has been

ported to Android for mobile usage. The main features are the capability of on-line

incremental processing and high modularity that allows for feature extractor com-

ponents to be freely interconnected for the creation of custom features via a simple

configuration file. Further, new components can be added to openSMILE via an

easy plugin interface and a comprehensive API. openSMILE is free software

licensed under the GPL license. The toolkit has matured to a standard in the field

of Affective Computing also due to its usage in a broad range of competitions in the

field including AVEC 2011–2016, Interspeech ComParE 2009–2016, EmotiW, and

MediaEval.

The openEAR extension of openSMILE provides pre-trained models for emo-

tion recognition and a ready-to-use speech emotion recognition engine [26].

The EyesWeb platform was enhanced in the ASC-Inclusion European project

enabling it to send text messages containing emotion Markup Language messages

to give information about recognized emotions from body gestures [27]. EyesWeb

is an open platform that supports a wide number of input devices including motion

capture systems, various types of professional and low cost video cameras, game

interfaces (e.g., Kinect, Wii), multichannel audio input (e.g., microphones), and

analog inputs (e.g., for physiological signals). Supported outputs include

multichannel audio, video, analog devices, and robotic platforms.

76 F. Burkhardt et al.



4.6.3 Emotion Generation

MARY TTS is an open-source, multilingual text-to-speech synthesis platform that

includes modules for expressive speech synthesis [28]. Particularly the support for

both categorical and dimensional representations of emotions by EmotionML is

important to Mary’s expressive speech synthesis. These categories and dimensions

are implemented by modifying the predicted pitch contours, pitch level, and

speaking rate.

Using this approach, expressive synthesis is most effective when using

HMM-based voices, since the statistical parametric synthesis framework allows

appropriate prosody to be realized with consistent quality. Expressive unit selection

voices support EmotionML best if they are built from multiple-style speech data-

bases [29], which preserve intonation and voice quality better than when applying

signal manipulation to conventional unit-selection output.

Greta is a real-time 3D embodied conversational agent with a 3D model of an

agent compliant with MPEG-4 animation standard [30]. It is able to communicate

using a rich palette of verbal and nonverbal behaviours. Greta can talk and

simultaneously show facial expressions, gestures, gaze, and head movements.

Besides the standard XML languages FML and BML that allow to define the

communicative intentions and behaviours, EmotionML support was added and

used in a range of European projects such as SEMAINE, TARDIS, and ARIA-

VALUSPA.

4.6.4 Platforms and Projects

The SEMAINE platform [31] stems from the European Semaine-Project. It pro-

vides a free to use virtual agent system including full audio/visual input analysis

(e.g., via openSMILE) and output generation (via MARY TTS and Greta) as well

as a dialogue manager. The communication between modules is based on

EmotionML.

Finally, a range of projects use the standard. Examples are the above named

SEMAINE and ARIA-VALUSPA European projects, both dealing with audiovi-

sual emotionally intelligent chatbots. Further the ASC-Inclusion and De-ENIGMA

projects aiming to help children on the autism spectrum to learn about emotions, the

TARDIS European project that provides serious gaming to young individuals to

prepare for their first job interviews, the MixedEmotions and SEWA European

projects focusing on sentiment analysis as well as a range of national projects such

as the Finnish “Detecting and visualizing emotions and their changes in text”

project [32, 33].

4 EmotionML 77



4.7 Conclusions

We presented EmotionML, a W3C recommendation to represent emotion related

states in data processing systems.

It is possible to use EmotionML both as a standalone markup and as a plug-in

annotation in different contexts. Emotions can be represented in terms of four types

of descriptions taken from the scientific literature: categories, dimensions,

appraisals, and action tendencies, with a single <emotion> element containing

one or more of such descriptors.

A W3C Working Group Note complements the specification to provide

EmotionML with a set of suggested emotion vocabularies taken from the scientific

and psychology literature. Whenever users have a need for a different vocabulary,

however, they can simply define their own custom vocabulary and use it in the same

way as the vocabularies listed in the Note.

Several applications have already been realized on the basis of EmotionML but

we’re still far away from widespread use. This of course reflects the fact that

emotion processing systems are still in their technological infancy and up to now

are more research topic than product feature.

Nonetheless we believe that with the spreading of user interfaces that are more

natural than keyboard typing, as, for example, speech interfaces, wearables or

physical sensors, emotional processing will become a necessity for such systems

to be able to interact in a natural and intuitive manner.

Another technology trend that pushes emotional processing is the renaissance of

artificial intelligence, as intelligence and emotions are strongly connected concepts.

We hope this article encourages the reader to use EmotionML in her/his own

projects and give feedback to the W3C to pave the way towards EmotionML

version 2.0. Some topics that came up in the group’s discussions have been left

out in the first version, for the sake of simplicity. For example, the blend of

emotions, emotion regulation, or a direct link to RDF (Resource Description

Framework) for semantic annotation was dropped at some point. Another issue

that could be pursued are requirements that resolve from use cases concerned with

sentiment analysis, which is an important topic given the automatic analysis of user

generated content.

References

1. Devillers, L., Vidrascu, L., & Lamel, L. (2005). Challenges in real-life emotion annotation and

machine learning based detection. Neural Networks, 18(4), 407–422 (2005 special issue).

2. Tekalp, A. M., & Ostermann, J. (2000). Face and 2-D mesh animation in MPEG-4. Image
Communication Journal, 15, 387–421.

3. Douglas-Cowie, E., Cowie, R., Sneddon, I., Cox, C., Lowry, O., McRorie, M., et al. (2007).

The HUMAINE database: Addressing the collection and annotation of naturalistic and induced

78 F. Burkhardt et al.



emotional data. In Proceedings of Affective Computing and Intelligent Interaction, Lisbon,
Portugal (pp. 488–500).

4. Kipp, M. (2014). ANVIL: a universal video research tool. In J. Durand, U. Gut, & G.

Kristofferson (Eds.), Handbook of corpus phonology, pp. 420–436. Oxford: Oxford University
Press.

5. Schr€oder, M., Pirker, H., Lamolle, M., Burkhardt, F., Peter, C., & Zovato, E. (2011).

Representing emotions and related states in technological systems. In P. Petta, R. Cowie, &

C. Pelachaud (Eds.), Emotion-oriented systems – The humaine handbook (pp. 367–386).

Berlin: Springer.

6. de Carolis, B., Pelachaud, C., Poggi, I., & Steedman, M. (2004). APML, a markup language for

believable behavior generation. In H. Prendinger & M. Ishizuka (Eds.), Life-like characters
(pp. 65–85). New York: Springer.

7. Gebhard, P. (2005). ALMA - A layered model of affect. In Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-
05), Utrecht.

8. Ortony, A., Clore, G. L., & Collins, A. (1988). The cognitive structure of emotion. Cambridge,

UK: Cambridge University Press.

9. Schr€oder, M., Pirker, H., Lamolle, M, Burkhardt, F., Peter, C., & Zovato, E. (2011).

Representing emotions and related states in technological systems. In Emotion-oriented
systems - The humaine handbook (pp. 367–386). Berlin: Springer.

10. Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press.

11. Troncy, R., Mannens, E., Pfeiffer, S., & van Deursen, D. (2012, March 15). Media fragments

URI 1.0: W3c proposed recommendation.

12. Cowie, R., & Cornelius, R. R. (2003). Describing the emotional states that are expressed in

speech. Speech Communication, 40(1–2), 5–32.
13. Schr€oder, M., Pelachaud, C., Ashimura, K., Baggia, P., Burkhardt, F., Oltramari, A.,

et al. (2011). Vocabularies for emotionml. http://www.w3.org/TR/emotion-voc/

14. Cowie, R., Douglas-Cowie, E., Appolloni, B., Taylor, J., Romano, A., & Fellenz, W. (1999).

What a neural net needs to know about emotion words. In N. Mastorakis (Ed.), Computational
intelligence and applications (pp. 109–114). Singapore: World Scientific & Engineering

Society Press.

15. Fontaine, J. R. J., Scherer, K. R., Roesch, E. B., & Ellsworth, P. C. (2007). The world of

emotions is not two-dimensional. Psychological Science, 18(12), 1050–1057.
16. Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press.

17. Mehrabian, A. (1996). Pleasure-arousal-dominance: A general framework for describing and

measuring individual differences in temperament. Current Psychology, 14(4), 261–292.
18. Scherer, K. R. (1999). Appraisal theory. In T. Dalgleish & M. J. Power (Eds.), Handbook of

cognition & emotion (pp. 637–663). New York: Wiley.

19. Gratch, J., & Marsella, S. (2004). A domain-independent framework for modeling emotion.

Cognitive Systems Research, 5(4), 269–306.
20. Cowie, R., Sawey, M., Doherty, C., Jaimovich, J., Fyans, C., & Stapleton, P. (2013). Gtrace:

General trace program compatible with emotionml. In 2013 Humaine Association Conference
on Affective Computing and Intelligent Interaction (ACII) (pp. 709–710). New York: IEEE.

21. Burkhardt, F. (2011). Speechalyzer: A software tool to process speech data. In Proceedings of
the ESSV, Elektronische Sprachsignalverarbeitung.

22. Burkhardt, F., Polzehl, T., Stegmann, J., Metze, F., & Huber, R. (2009). Detecting real life

anger. In Proceedings ICASSP, Taipei, Taiwan (Vol. 4).

23. Hantke, S., Appel, T., Eyben, F., & Schuller, B. (2015). iHEARu-PLAY: Introducing a game

for crowd sourced data collection for affective computing. In Proceedings of 1st International
Workshop on Automatic Sentiment Analysis in the Wild (WASA 2015), Xi’an, P.R. China
(pp. 891–897). New York: IEEE.

4 EmotionML 79

http://www.w3.org/TR/emotion-voc/


24. Kouroupetroglou, G., Tsonos, D., & Vlahos, E. (2009). Docemox: A system for the

typography-derived emotional annotation of documents. In Universal Access in Human-
Computer Interaction. Applications and Services (pp. 550–558). New York: Springer.

25. Eyben, F., Weninger, F., Groß, F., & Schuller, B. (2013). Recent developments in openSMILE,

the Munich open-source multimedia feature extractor. In Proceedings of the 21st ACM
International Conference on Multimedia, MM 2013, Barcelona, Spain (pp. 835–838).

New York: ACM.

26. Eyben, F., W€ollmer, M., & Schuller, B. (2009, September). openEAR – Introducing the

Munich open-source emotion and affect recognition toolkit. In Proceedings 3rd International
Conference on Affective Computing and Intelligent Interaction and Workshops, ACII 2009,
Amsterdam, The Netherlands (Vol. I, pp. 576–581). HUMAINE Association. New York:

IEEE.

27. Piana, S., Staglianò, A., Camurri, A., & Odone, F. (2013). A set of full-body movement

features for emotion recognition to help children affected by autism spectrum condition. In

IDGEI International Workshop.
28. Charfuelan, M., & Steiner, I. (2013). Expressive speech synthesis in mary tts using audiobook

data and emotionml. In Proceedings of Interspeech.
29. Steiner, I., Schr€oder, M., & Klepp, A. (2013). The PAVOQUE corpus as a resource for analysis

and synthesis of expressive speech. Proceedings of Phonetik & Phonologie (Vol. 9).
30. Bevacqua, E., Prepin, K., Niewiadomski, R., de Sevin, E., & Pelachaud, C. (2010). Greta:

Towards an interactive conversational virtual companion. In Artificial Companions in Society:
Perspectives on the Present and Future (pp. 143–156).

31. Schr€oder, M., Bevacqua, E., Cowie, R., Eyben, F., Gunes, H., Heylen, D., et al. (2012).

Building autonomous sensitive artificial listeners. IEEE Transactions on Affective Computing,
3(2), 165–183.

32. Munezero, M., Kakkonen, T., & Montero, C. S. (2011). Towards automatic detection of

antisocial behavior from texts. In Sentiment analysis where AI meets psychology (SAAIP)
(p. 20).

33. Burkhardt, F., Becker-Asano, C., Begoli, E., Cowie, R., Fobe, G., & Gebhard, P. (2014).

Application of emotionml. In Proceedings of the 5th International Workshop on Emotion,
Sentiment, Social Signals and Linked Open Data (ES3LOD).

80 F. Burkhardt et al.



Chapter 5

Introduction to SCXML

Jim Barnett

Abstract SCXML is a control flow language based on Harel State Charts. It offers

powerful, application-independent control constructs, along with a plug-in capabil-

ity that allows platforms to customize the language for specific domains. This paper

offers an overview of the language along with examples of its use.

5.1 Overview

SCXML [1] is a modality-independent control flow language that is adaptable to a

wide range of tasks. It was developed in the W3C’s Voice Browser Working Group

as part of an attempt to separate control flow from the user interaction. The specific

motivation for SCXML was the observation that in VoiceXML [2], control flow and

user interaction are not cleanly separated, and, as a result, it could be difficult to

re-use VoiceXML markup. For example, a company might develop a VoiceXML

routine to collect a caller’s credit card number as part of a retail application, and

then want to re-use it for a customer service application. At an abstract level, the

logic for collecting the credit card number is the same in the two applications, but

the relevant voice interaction markup in the retail application is tangled up with

control flow logic that is specific to that application (for example, deciding where to

go next in the retail application once we have gathered the credit card number).

Thus re-using the credit card collection routine was not a simple cut-and-paste

operation, but a complex re-write that attempted to disentangle the user interaction

logic from the control flow logic. The Voice Browser Group therefore decided to

develop SCXML as a modality-independent control flow language. Although the

Group’s primary interest was centered on interactive voice dialogs, the fact that

SCXML is a pure control flow language means that it can be used for a wide variety

of modalities and tasks.

J. Barnett (*)

Department of Architecture Team, Genesys, Daly City, CA, USA

e-mail: jim.barnett@genesys.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_5

81

mailto:jim.barnett@genesys.com


SCXML is a state machine language, and is based on Harel State Charts

[3]. Professor David Harel developed a powerful, compact, graphical state machine

notation, which is capable of expressing anything from simple event handlers to

complex, loosely coupled processes operating in parallel. Harel’s goal was to model

reactive systems, namely those that respond to their environment. It is possible to

use Harel State Charts (or SCXML) to model a fixed, predictable process flow—do

x then 2 s later do y then immediately do z—but their expressiveness is wasted in

such applications. They are best suited to situations where we don’t know exactly

what will happen next or when it will happen, where we have to react to whatever

happens whenever it happens. This uncertainty is a basic feature of user interface

applications; in voice applications we don’t know when the user will speak or what

he will say. Multimodal applications add an additional layer of uncertainty, since

we don’t know which modality the user will select—will he speak, click on an icon,

or do both at once? Such applications are interactive, rather than simply reactive,

since we can guide users by offering them alternatives or prompting them for

needed information. Harel State Charts (and SCXML) turn out to be equally well

suited to interactive applications and purely reactive ones.

Another advantage of Harel State Charts is that they are part of UML [4], so they

have been widely used for design of a broad variety of applications. However Harel

State Charts and UML are purely graphical languages, used only at the design time.

The task for SCXML is to define the desired run-time behavior.

The definition of the run-time consists of specifying the behavior of the SCXML

interpreter, describing how it interprets SCXML markup, and, in particular, how it

processes and generates events. The bulk of the SCXML specification is devoted to

providing these definitions. Furthermore, as part of the W3C standardization pro-

cess, the Voice Browser Working Group produced a suite of tests that demonstrated

that there were multiple interoperable implementations of specification [5]. The

specification also includes a pseudo-code algorithm that shows how one might

implement the language, but implementers are not required to follow it (as long as

their behavior matches the requirements of the specification).

One of the most important parts of the run-time specification consists in defining

the interpreter’s interactions with underlying platform. SCXML is a pure control

flow language so it can’t actually do anything without hooks to interact with its

environment. Furthermore, these hooks must be extensible to allow the language to

be adapted to different domains. SCXML therefore is based on a pluggable design

consisting of the core language plus platform-specific plugins. The specification

defines some plugins that the Voice Browser Group thought would be commonly

useful, but platforms are free to add their own.

SCXML offers four kinds of plugability:

• Invocation. An SCXML script can invoke other scripts. For example, an

SCXML state machine representing a voice user interface might invoke

VoiceXML scripts to interact with the user.

• Executable Content. An SCXML interpreter can extend the language with new

primitives that expose capabilities of the underlying platform. For example, if

82 J. Barnett



SCXML was being used to control a robot, the platform might offer primitives to

rotate the robot, to move its arm, and to grasp an object.

• Data Model. An SCXML interpreter may define one or more data plus scripting

languages that can be used to store values and perform calculations. Since

ECMAScript is such an obvious candidate for this purpose, the SCXML spec-

ification defines an ECMAScript data model, but platforms are free to define

others if they chose.

• Event I/O Processor. An SCXML interpreter may offer various event transport

mechanisms that provide scripts the ability to exchange events/messages with

other components in the environment. As was the case with ECMAScript, the

Voice Browser Group considered HTTP to be widely useful for event transport,

so the SCXML specification defines a basic HTTP transport mechanism, but

platforms may define other transports (or none at all, in the case of applications

where no communication with outside components is needed).

SCXML is defined so that these various plugins can be used without changing

the semantics of the core state machine language. The result is a powerful control

flow language that can be customized for wide variety of applications by plugging

in customized components that are suitable for the domain in question.

5.2 Basic State Machine Concepts

At the heart of state machines is the concept of a state, which represents the

condition of an object or process. For example, consider a light which has two

states: on and off. When the light goes from on to off or vice versa, we say it takes a

transition between those states. Transitions are triggered by events which represent
actions in the world. In the case of the light, the relevant event is toggling its switch,

which moves it from state “on” to state “off” or from state “off” to state “on.”
This simple pair of states is represented in SCXML as follows:

<state id¼”on”>
<transition event¼”toggle” target¼”off”/>
</state>

<state id¼”off”>
<transition event¼”toggle” target¼”on”/>

</state>

The “event” attribute in <transition> specifies the event which triggers

the transition, and the “target” attribute specifies the state that the system will be in

after the transition is taken. If an event does not trigger a transition, it is discarded.

Thus in the example above, events other than “toggle” will simply be ignored

because they do not trigger any transitions.

5 Introduction to SCXML 83



To turn this pair of states into a full state machine, we would add a

<scxml>. . .</scxml> wrapper element which specifies, among other things,

whether the state machine starts in state “on” or state “off.”

5.3 Extensions to Basic State Machines

5.3.1 Data Model

The simple state machine defined in the previous section consisting of states, events,

and transitions is a finite state automation such as you will encounter in a course on

formal language theory. Harel enriched this basic notation with additional concepts

that increase the expressiveness of the language. One such feature is the data model,

which allows application authors to declare variables and assign values to them.1

The following state machine skeleton declares a variable called “counter” and

initializes it to 0.2

<scxml. . ...>
<datamodel>

<data id¼”counter” expr¼”0”/>
</datamodel>

..........
</scxml>

In addition to initializing the value of a variable, we can assign new values to it at

run-time using the <assign> element. We also have <onentry> and

<onexit> elements as children of <state> that contain operations (such as

<assign>) that are executed whenever the state is entered or exited. Expanding

our skeleton example, we add an “enterPassword” state and increment the

“counter” variable each time we enter it (in this and subsequent examples, we

use italics to highlight the relevant parts of the state machine):

<scxml. . ...>
<datamodel>
<data id¼”counter” expr¼”0”/>

</datamodel>
<state id¼”enterPassword”>
<onentry>

1 The term “data model” is the SCXML equivalent for what Harel called an “action language.”
2 An SCXML implementation will support one or more data model languages, for example,

ECMAScript or XPath. To avoid the syntactic details of specific languages, the examples in this

paper use a neutral notation whose meaning should be intuitively clear.

84 J. Barnett



<assign location¼”counter” expr¼”counter + 1”/>
</onentry>

</state>
..........
</scxml>

The “counter” variable is thus keeping track of the number of times we enter

the “enterPassword” state. This is useful because the data model can be used to

place conditions on transitions, via the “cond” attribute of the <transition>
element. We will complete our example to represent a typical login sequence in

which the user either succeeds or is locked out after five unsuccessful attempts. We

add a “loggedIn” state and a “lockedOut” state, and also add an “initial”
attribute to <scxml> indicating that we start off in the “enterPassword”
state. We also add three transitions from the “enterPassword” state. One

transition takes us to the “loggedIn” state if we get an “accepted” event (mean-

ing that the password has been accepted). Another transition takes us back to the

“enterPassword” state if we get a “rejected” event and “counter” is less
than or equal to 5. (Exiting and re-entering the “enterPassword” state will

increment “counter.”) A third transition takes us to the “lockedOut” state

when we get a “rejected” event and “counter” is greater than 5.

<scxml initial¼”enterPassword”. . ..>
<datamodel>
<data id¼”counter” expr¼”0”/>

</datamodel>
<state id¼”enterPassword”>
<onentry>

<assign location¼”counter” expr¼”counter + 1”/>
</onentry>
<transition event¼”accepted” target¼”loggedIn”/>
<transition event¼”rejected” cond¼”counter <¼ 5”

target¼”enterPassword”/>
<transition event¼”rejected” cond¼”counter>¼6”

target¼”lockedOut”/>
</state>
<state id¼”loggedIn”/>
<state id¼”lockedOut”/>

</scxml>

5 Introduction to SCXML 85



5.4 Operations and Conditions

In addition to <assign>, SCXML supports an <if>, <elseif>, <else>
conditional construction, and a <foreach> construction that allows iteration

over the members of a collection (if the underlying data model supports arrays or

lists), a<log> element that logs a message in a platform-dependent manner, and a

<raise> element that generates an event. It is possible to place these operations

inside <onentry>, <onexit>, or inside <transition>, where it will be

executed when the transition is taken. Finally, wherever a single operation can

occur, it is possible to place multiple operations, which will be executed in

document order. Here is an example using the <log> tag to show the order of

operations when a transition is taken:

<scxml initial¼”state1”. . ..>
<state id¼”state1”>
<transition event¼”e” target¼”state2”>

<log expr¼”In transition\n”/>
</transition>
<onexit>

<log expr¼”Leaving state1/n”/>
</onexit>

</state>
<state id¼”state2”>
<onentry>

<log expr¼”Entering state2”/>
</onentry>

</state>
</scxml>

This state machine starts off in state1. When event “e” occurs, it transitions to

state2. When the transition is taken, we first execute the operations in state1’s
<onexit> handler. Then we execute those in the <transition> itself, then

those in state2’s<onentry> handler. Thus when the transition completes, the log

file will contain:

Leaving state1
In transition
Entering state2

Note that the order in which the log expressions are printed is different from the

order in which they occur in the SCXML document. What matters is the order in

which the state machine executes its operations.

Here is a somewhat contrived example showing the ordering of operations and

the use of <if>:

86 J. Barnett



<scxml initial¼”state1”. . ..>
<datamodel>
<data id¼”counter” expr¼”0”/>

<state id¼”state1”>
<onentry>

<assign location¼”counter” expr¼”counter + 1”/>
</onentry>
<transition event¼”e” target¼”state2”>

<if expr¼”counter > 1”>
<raise event¼”event2”/>

</if>
<assign location¼”counter” expr¼”counter – 1”/>

</transition>
<onexit>

<if expr¼”counter > 1”>
<raise event¼”event1”/>

</if>
<assign location¼”counter” expr¼”counter + 1”/>

</onexit>
</state>
<state id¼”state2”>
<onentry>

<if expr¼”counter > 1”>
<raise event¼”event3”/>

<else>
<raise event¼”event4”/>

</if>
</onentry>

</state>
</scxml>

Again we start off in state1. The data model initializes variable “counter” to
0, but the <onentry> element of state1 increments it to 1. When event “e” is

raised we go to state2. (In this example we assume that “e” is raised by some

external entity.) We execute the<onexit> code in state1. The<onexit> code

consists of an <if> statement followed by an <assign> statement. The <if>
statement raises “event1” if “counter” is greater than 1. “counter” is not

greater than 1, so we don’t raise “event1”. The following <assign> statement

increments “counter” to 2, and we now execute the statements inside the

<transition>. The first statement is an <if> that checks that “counter” is

now greater than 1, and then raises “event2”. The next statement is an

<assign> that decrements “counter.” Now we enter state2. Its <onentry>
block consists of an <if> statement with an <else> clause. The <if>
statement raises “event3” if “counter” is greater than 1. It is not, so we execute
the <else> clause which raises “event4”. Thus the result of taking the

5 Introduction to SCXML 87



transition from state1 to state2 is to generate events “event2” and “event4” (but
not events “event1” and “event3”). “counter” is equal to 1 when we start to

take the transition, and when we finish it, but it does have the value 2 for a moment

during the transition, which is why “event2” gets raised. (To be precise, in

Harel’s state chart model all transitions and operations are instantaneous, so the

“moment” during which “counter” equals 2 has no duration. In an SCXML

implementation, of course, nothing is instantaneous, so there will be a very short

interval of time during with “counter” will have the value 2.)

5.5 Executable Content

These operations that can occur in <onentry>, <onexit>, and inside transi-

tions, along with the <if> conditional and <foreach> are called “executable

content.” Executable content occurs in blocks consisting of one or more elements,

which are executed in document order. If the execution of an element of executable

content causes an error, the remaining elements in the block are not executed. This

leads to one subtlety in the definition of SCXML. Multiple instances of

<onexit> and <onentry> are allowed inside <state>. When multiple

instances occur, the executable content they contain is executed in document

order (when the state is entered for <onentry> and when it is exited for

<onexit>). The only difference between a single large block of executable

content and multiple smaller blocks involves error handling. Consider the case

below, an <onentry> element containing three elements of executable content:

<onentry>
<content1/>
<content2/>
<content3/>

</onentry>

Suppose that the execution of <content2> causes an error. The execution of

that block of executable content will terminate, and <content3> will not be

executed. If we want <content3> to be executed even if there is an error in an

earlier element, we can put it in a separate block (i.e., in a separate <onentry>
element:

<onentry>
<content1/>
<content2/>

</onentry>
<onentry>

<content3/>
</onentry>

88 J. Barnett



Since <content3> is in a separate block, its execution is not affected by

errors in other, earlier blocks of executable content.

5.6 External Communications

One of the most useful pieces of executable content is the<send> element, which

can be used to send events/messages to external entities.3 The format of the

message and the means of delivery are specified by the Event I/O Processor that

is used. The SCXML specification defines a Basic HTTP Event I/O Processor that

delivers messages by HTTP POST, and platforms are free to define other ones. As

an example of <send>, suppose that an online store accepts orders at the URI

http://somestore.com/orders. We can use <send> to place an order as follows:

<send event¼”newOrder” target¼”http://somestore.com/
orders” type¼http://www.w3.org/TR/scxml/
#BasicHTTPEventProcessor>

<param name¼”username” location¼”. . .”/>
<param name¼”password” location¼”. . .”/>
<param name¼”firstItem” location¼”. . .”/>
<param name¼”secondItem location¼”. . .”/>

. . .. . .. . ..
</send>

In this example, the “event” parameter gives the name of the message,

“target” gives the URI to deliver the message to, and “type” is used to specify

that the Basic HTTP Event I/O Processor is to be used. (Implementations are

allowed to come up with shorter, more user-friendly names for Event I/O Pro-

cessors, such as type¼”HTTP.”) The <param> elements are used to define

HTTP POST parameters to include with the message.4 The values of the “name”

attribute can be anything, and depend on what the receiving end expects (so in this

case, we must know that somestore.com expects the items in the order to be labelled

“firstItem,” “secondItem,” etc.). The “location” attributes fetch the

corresponding values from the data model. (The “location” attribute is also

used with <assign>. Its value can be a path expression referring to any part of

the data model, not just the top level variables that are declared with<data>. This

3<send> can also be used to raise events in the current SCXML session or in other SCXML

sessions.
4<send> also has an optional “namelist” attribute that can be used in place of <param> to

include data in the message. The value of “namelist” is a series of space-separated data model

locations. The names and values at those locations will be included as key-value pairs in the

message.<param> is a more general and flexible method of incorporating data into the message,

but “namelist” can be a useful shorthand notation.

5 Introduction to SCXML 89

http://somestore.com/orders


is useful in data models based on languages like ECMAScript or XPath, where
the value of a top level variable may be a complex tree structure.)

Event I/O Processors can be used to receive events as well as send them.

Suppose somestore.com replies to all orders by sending back an

“orderAccepted” or “orderRejected” event. We can now send the order

and use transitions to handle these replies:

<state id¼”placingOrder”>
<onentry>
<send target¼http://somestore.com/orders. . ..>

. . .. . .. . ..
</send>

</onentry>
<transition event¼”orderAccepted”

target¼”orderSuccessful”/>
<transitionevent¼”orderRejected”

target¼”orderFailed”/>
</state>

The “orderFailed” states will contain the logic to decide whether to retry

the order or to skip it altogether, while the “orderSuccessfull” state can

proceed to the next stage of processing knowing that the order has been accepted.

(In general, it is simpler to split the different outcomes into different states, rather

than having one big messy state that attempts to handle both success and failure.)

One other useful feature of <send> is the “delay” attribute which can be

used to delay the delivery of the event, along with the <cancel> element, which

can be used to cancel a delayed event that hasn’t been delivered yet. These features
are useful primarily for setting timers. Suppose we are worried that somestore.com

might not deliver any response to our order. Given the way the “placingOrder”
state is defined above, it will sit there forever waiting for either the

“orderAccepted” or “orderRejected” event. We can break out of that

situation by sending a delayed event as a timer in the following way:

<state id¼”placingOrder”>
<onentry>
<send target¼http://somestore.com/orders. . ..>

. . .. . .. . ..
</send>
<send delay¼”30s” event¼”timerExpired” id¼”timer1”/>

</onentry>
<transition event¼”orderAccepted”

target¼”orderSuccessfull”>
<cancel sendid¼”timer1”/>

</transition>
<transition event¼”orderRejected”

90 J. Barnett



target¼”orderFailed”>
<cancel sendid¼”timer1”/>

</transition>
<transition event¼”timerExpired” target¼”noResponse”/>

</state>

Here in the <onentry>, right after we send the order to somestore.com, we

send a “timerExpired” event that is to be delivered after 30 s. Since we do not

specify a “target” URI for this event, the event will be raised in this session (i.e.,
the one in which the delayed <send> tag was executed). We now add

<cancel> elements as executable content to the transitions on

“orderAccepted” and “orderRejected.” (The “sendid” attribute on the

<cancel> elements must match the “id” element on the <send> because

there might be multiple delayed <send>s in this session, and we need to know

which one to cancel.) Thus if we get the “orderAccepted” or

“orderRejected” event within 30 s of the time we submitted the order, the

“timerExpired” event will be cancelled (meaning it will never be raised).

Therefore if the “timerExpired” event occurs, we know that 30 s have expired

and we have not received either “orderAccepted” or “orderRejected”
from somestore.com. We now move to the “noResponse” state, which will

determine what to do next. For example, if we think that the lack of response was

due to an intermittent connectivity problem, the “noReponse” state could set its

own timer, wait a minute or so, and then return to the “placingOrder” state to
try again. (The “noResponse” state would need to use a counter, as shown above
in the password example, to keep from looping back to “enterOrder” indefi-

nitely in the case where the connectivity problem was persistent.)

5.7 Invoking Platform Resources

The<invoke> element provides another way to interact with platform resources.

As its name implies, it is intended to invoke processing by such a resource. Suppose

we have an SCXML application that is managing a voice-based order processing

system. As part of handling an order, we need to get the customer’s address. The
following snippet of SCXML markup invokes a VoiceXML script to do this:

<state id¼”address”>
<invoke type¼”vxml” src¼”http://somestore.com/

orders/getAddress.vxml/”>
</state>

5 Introduction to SCXML 91

http://somestore.com/
http://somestore.com/


When we enter the “address” state, the platform will start up an instance of

the “getAddress.vxml” script.5 The “type” attribute indicates the kind of

resource to invoke, and the “src” attribute specifies the markup that the resource

should execute.6 We can think of the <invoke> element as delegating the

activity of the “address” state to the VoiceXML interpreter. In specific, if we

leave the “address” state while the VoiceXML interpreter is still running, its

execution will be cancelled. On the other hand, if the VoiceXML interpreter

terminates while we are still in the “address” state, the platform will automatically

generate a “done.invoke” event to indicate the completion. We can add a

transition triggered by the “done” event to take us to the next state in the order

processing once the address has been collected:

<state id¼”address”>
<invoke type¼”vxml” src¼”http://somestore.com/

orders/getAddress.vxml/”>
<transition event¼”done.invoke” target¼”creditCard”/>

</state>

On the other hand, suppose that the “cancel” event indicates that order

processing should be cancelled. We can add a transition for this event out of the

“address” state and the platform will shut down the VoiceXML processing

cleanly and deallocate any voice resources:

<state id¼”address”>
<invoke type¼”vxml” src¼”http://somestore.com/orders/

getAddress.vxml/”>
<transition event¼”done.invoke” target¼”creditCard”/>
<transition event¼”cancel” target¼”terminateOrder”/>

</state>

All SCXML implementations must support SCXML scripts invoking other

SCXML scripts (thus providing a simple form of state machine re-use), but

otherwise the set of invocable resources is platform-specific. SCXML platforms

that support voice user interfaces are likely to support invocation of VoiceXML, but

they are not required to do so. When SCXML scripts invoke other SCXML scripts,

they may communicate using the<send> element, and return data in the “done.
invoke” event. In the case of other types of resources, the communication

mechanisms will be platform-specific. In the example above, for instance, the

5We will see below that this is not strictly true. The platform will not invoke the VoiceXML script

if it can determine that it is about to leave the “address” state immediately.
6 The SCXML specification defines “http://www.w3.org/TR/voicexml21/” as the

proper value for “type” to indicate a VoiceXML 2.1 interpreter, but platforms are allowed to

support author-friendly shorthand notations such as “vxml.”

92 J. Barnett

http://www.w3.org/TR/voicexml21/


platform would have to specify how the VoiceXML interpreter returned the address

to the SCXML script, whether in the “done.invoke” event or by some other

platform-specific method. (The example above is incomplete in that the address

gathered by the VoiceXML script is not added to the SCXML data model.)

As in the case of <send>, <param> and “namelist” can be used to pass

data from the SCXML session to the invoked process.

Multiple instances of<invoke> are permitted in a state. Suppose that we want

to offer the user the choice of providing information either by voice or by typing in

a GUI. We can invoke the voice user interface and the GUI at the same time. One of

the two will complete and return a “done.invoke” event, while the other will

just sit there waiting for input. In this case, though, we will want to know which one

of the invocations completed since subsequent processing may depend on whether

the user choose voice or GUI input. We can add an “id” attribute to the

<invoke> element, and the platform will use that value as part of the done

event7:

<state id¼”address”>
<invoke type¼”vxml” id¼”voice” src¼”http://somestore.

com/orders/getAddress.vxml/”>
<invoke type¼”html” id¼”GUI” src¼”http://somestore.

com/orders/getAddress.html/”>
<transition event¼”done.invoke.voice”

target¼”continueVoiceInput”/>
<transition event¼”done.invoke.GUI”

target¼”continueGUIInput”
<transition event¼”cancel” target¼”terminateOrder”/>

</state>

In fact, there is always an id at the end of the “done.invoke” event, because
the platform will generate one if the author does not provide it. The reason that

<transition event¼”done.invoke”. . ./> is triggered though the

event’s name is “done.invoke.<someID>” (where<someID> can be any string)

is that SCXML does prefix matching on event names. Specifically, an event name

consists of tokens separated by the period “.”. A transition matches an event if the

value of the “event” attribute consists of a string of tokens that is a prefix of the

tokens in the event name. Thus <transition event¼”done.invoke”. . ./
>matches events named “done.invoke.foo,” “done.invoke.foo.bar,”
and “done.invoke.anything”. In fact, <transition
event¼”done”. . ./> also matches all of these events. However,

event¼”done.invoke” does not match “done.inv” since “invoke” and

“inv” are different tokens.

7 In this example, we assume that the platform lets us use <invoke> with type “html” to

display an HTML page. This would be platform-specific functionality and is not part of the

SCXML standard.

5 Introduction to SCXML 93



In addition, the “event” expression in a transition may contain multiple, space

separated event descriptions, and the transition matches an event if the event name

matches any of the descriptions. For example, <transition event¼”this
that the.other”. . ./> will match events “this.now,” “that.then,” and
“the.other.thing,” but not “the” (since “the.other” is not a prefix of

“the”). In general, SCXML transitions match sets of events, with the set being

larger or smaller depending on how specific the “event¼. . .” expression is.

5.8 Compound States

Consider a complex retail application that must get the user’s credit card informa-

tion as part of its processing. We can think of “getting credit card information” as a

single state in that application, or we can break it down into sub tasks, such as

“getting first name,” “getting last name,” “getting card type,” “getting card num-

ber,” etc. In Harel’s model, we call “get credit card information” a compound state,

namely one that contains multiple substates. In SCXML, this is represented as

follows:

<state id¼”getCCInfo”>
<state id¼”getFirstName”. . .../>
<state id¼”getLastName”. . ./>

. . .. . .. . ..
<state id¼”getCCNumber”. . ./>

. . .. . .. . ..
</state>

When the state machine is in the “getCCInfo” state, it is always in one and

only one of its substates (which one it is in will change as processing proceeds).

Furthermore, the substates themselves may be complex. For example, the

“getCCNumber” state might itself consist of two steps: querying for the number

and then confirming it with the user. The resulting nested state structure would look

like this:

<state id¼”getCCInfo”>
<state id¼”getFirstName”. . .../>
<state id¼”getLastName”. . ./>

. . .. . .. . ..
<state id¼”getCCNumber”. . .>
<state id¼”queryCCNumber”. . ../>
<state id¼”confirmCCNumber”. . ./>

</state>
. . .. . .. . ..
</state>

94 J. Barnett



As a result of this nested structure, an SCXML state machine may be in multiple

states at the same time. For example, if the state machine is in

“confirmCCNumber,” it is also in “getCCNumber” and “getCCInfo.” A

state with no child <state> elements is called an atomic state, while one with

<state> children is called a compound state. (“confirmCCNumber” and

“queryCCNumber” are atomic states, while “getCCNumber” and

“getCCInfo” are compound states.)

A state machine moves among the substates of a complex state by taking

transitions. For example, suppose we have a VoiceXML script that we can invoke

to capture the user’s first name, and that we want to ask for his last name once we

have the first name. The resulting state structure would look like this:

<state id¼”getCCInfo”>
<state id¼”getFirstName”>
<invoke src¼”firstName.vxml” type¼”vxml”/>
<transition event¼”done.invoke”

target¼”getLastName”/>
</state>
<state id¼”getLastName”. . ./>

. . .. . .. . ..
<state id¼”getCCNumber”. . .>
<state id¼”queryCCNumber”. . ../>
<state id¼”confirmCCNumber”. . ./>

</state>
. . .. . .. . ..
</state>

Transitions may take atomic or compound states as targets. When considered as

the target of a transition, a compound state bears a certain resemblance to a

sub-routine. Suppose the retail application containing the credit card logic is

being developed by multiple people. The person responsible for the high-level

logic can insert a transition to “getCCInfo” without needing to know anything

about the internal structure of its substates. That internal structure can be changed—

for example, by making “getLastName” a compound state—without requiring

modifications to any state or transition that takes the parent state “getCCInfo” as
its target.

When a transition takes a compound state like “getCCInfo” as its target, the
state machine needs to know which of its substates it should start in. We therefore

introduce an “initial” attribute on compound states, similar to the one on

<scxml>.

<state id¼”getCCInfo” initial¼”getFirstName”>
<state id¼”getFirstName”>
<invoke src¼”firstName.vxml” type¼”vxml”/>
<transition event¼”done.invoke”

target¼”getLastName”/>

5 Introduction to SCXML 95



</state>
<state id¼”getLastName”. . ./>

. . .. . .. . ..
<state id¼”getCCNumber” initial¼”queryCCNumber”>
<state id¼”queryCCNumber”. . ../>
<state id¼”confirmCCNumber”. . ./>

</state>
. . .. . .. . ..
</state>

In this example, if a transition takes “getCCInfo” as its target, it will start off
in substate “getFirstName.” Similarly, if a transition takes “getCCNumber”
as its target, the state machine will start off in substate “queryCCNumber.”8

We refer to states specified by the “initial” attribute as default initial states,

because they can be overridden by transitions that explicitly target a substate. For

example, if a transition takes “getLastName” as its target, the “initial”
attribute on “getCCInfo” will have no effect and the state machine will go

directly to “getLastName.”
A compound state may also have a <final> child element. As the name

indicates, entering a <final> child indicates that the compound state has finished

its processing (that is, moving through its child states). When the state machine

enters the <final> child of a compound state, it automatically raises the event

“done.state.<id>”, where “<id>” is the id of the parent state. This event

can serve as a signal to the rest of the state machine that it is time to leave the

compound state. Expanding our example, we add a transition from “getCCInfo”
indicating that it should go to state “prepareShipment” when it terminates its

processing (that is, when it enters final state “ccDone”).9

<state id¼”getCCInfo” initial¼”getFirstName”>
<transition event¼”done.state.getCCInfo” target¼”pre-

pareShipment”/>
<final id¼”ccDone”/>
<state id¼”getFirstName”>

8 The logic of default initial states is somewhat more complex than the example indicates. First of

all, the value of the “initial” attribute can be any descendent state, not just an immediate child.

Second, a state may contain a child <initial> element which contains a <transition>
instead of the “initial” attribute, If such an <initial> child is present, the state machine

uses that transition to determine the initial descendent state. The only practical difference between

an “initial” attribute and an <initial> element is that the transition in the latter may

contain executable content, which will be executed when and if the transition is used to determine

the default initial state. Finally, if neither an “initial” attribute nor an <initial> child is

present, the default initial state is the first child state in document order.
9<final> states may have<onentry> and<onexit> children, as well as a<donedata>
child that specifies data to be included in the “done.state.<id>” event, but they may not

contain transitions or substates.

96 J. Barnett



<invoke src¼”firstName.vxml” type¼”vxml”/>
<transition event¼”done.invoke”

target¼”getLastName”/>
</state>
<state id¼”getLastName”. . ./>

. . .. . .. . ..
<state id¼”getCCNumber” initial¼”queryCCNumber”>
<state id¼”queryCCNumber”. . ../>
<state id¼”confirmCCNumber”. . ./>

</state>
. . .. . .. . ..
</state>

5.9 Selecting Transitions

SCXML documents contain a large number of <transition> elements. Tran-

sitions may occur in atomic or compound states, and multiple transitions can occur

in any state.10 The location of the transitions within the document is significant

since the SCXML interpreter follows a specific order in deciding which transition to

take. First of all, the SCXML interpreter only considers transitions in the states that

it is currently in. (We refer to these as the active states.) Second, the interpreter

considers the transitions in an active state in document order. Consider the follow-

ing example:

<state id¼”state1”>
<transition event¼”e” cond¼”x>1” target¼”state2”/>
<transition event¼”e” cond¼”x<2” target¼”state3”/>

</state>

If the state machine is in “state1” and event “e” occurs, the interpreter will

consider the first transition and evaluate its condition. If “x>1” is true, it will take
the transition and go to “state2,” even if “x<2” also evaluates to true. Only if

“x>1” evaluates to false will it consider the second transition. It will transition to

“state3” only if “x>1” is false and “x<2” is true.
Finally, the SCXML interpreter looks for transitions first in the active atomic

state, and only considers transitions in its parent (and the parent of its parent, etc.) if

it does not find a matching transition in the child.11 This is useful because

10 Transitions may also occur in parallel states, which are discussed in the next section.
11 In a state machine consisting only of compound and atomic states, only one atomic state can be

active at a time, and when it is active, all its ancestors (parent, parent of parent, etc.) are active. If

the state machine includes parallel states, which are discussed in the next section, more than one

atomic state can be active.

5 Introduction to SCXML 97



transitions in ancestor states serve as defaults which are taken only if they are not

overridden by transitions their descendent states. Returning to the credit card

example, suppose that the system can raise an ‘invalidValue’ error at any

point, indicating perhaps a speech recognition failure or some other problem. If we

want to transfer to a human operator when this happens, we can put a single

transition in the top level “getCCInfo” state:

<state id¼”getCCInfo” initial¼”getFirstName”>
<transition event¼”invalidValue” target¼”transfer-

ToOperator”/>
<transition event¼”done.state. CCInfo” target¼”prepar-

eShipment”/>
<final id¼”ccDone”/>
<state id¼”getFirstName”>
<invoke src¼”firstName.vxml” type¼”vxml”/>
<transition event¼”done.invoke”

target¼”getLastName”/>
</state>
<state id¼”getLastName”. . ./>

. . .. . .. . ..
<state id¼”getCCNumber” initial¼”queryCCNumber”>
<state id¼”queryCCNumber”. . ../>
<state id¼”confirmCCNumber”. . ./>

</state>
. . .. . .. . ..
</state>

Suppose that the state machine is in the “queryCCNumber” state when

“invalidValue” is raised. The interpreter will first look in that state for a

transition matching the event. It won’t find one so it will next check in the parent

state “getCCNumber.” It again will not find a transition matching

“invalidValue”, so it will check in the parent state of “getCCNumber.” It

will find a transition matching “invalidValue” in “getCCInfo,” so it will

take this transition and go to “transferToOperator.” Similar logic will apply

if the state machine is in any of the children of “getCCInfo” (or in any of their

children, etc.).

Now suppose that we would like to treat the “invalidValue” event differ-

ently when the state machine is in “queryCCNumber.” For example, an invalid

value might indicate possible fraud so the state machine will go to a special state to

check for that. If we put a transition to “checkForFraud” in

“queryCCNumber,” the state machine will take that transition if it is in that

state when “invalidValue” is raised, but in any other state, it will still take the

transition to “transferToOperator” that is in the ancestor “getCCInfo”
state:

98 J. Barnett



<state id¼”getCCInfo” initial¼”getFirstName”>
<transition event¼”invalidValue” target¼”transfer-

ToOperator”/>
<transition event¼”done.state.CCInfo” target¼”prepar-

eShipment”/>
<final id¼”ccDone”/>
<state id¼”getFirstName”>
<invoke src¼”firstName.vxml” type¼”vxml”/>

<transition event¼”done.invoke” target¼”getLastName”/>
</state>
<state id¼”getLastName”. . ./>

. . .. . .. . ..
<state id¼”getCCNumber” initial¼”queryCCNumber”>
<state id¼”queryCCNumber”>

<transition event¼”invalidValue” target¼”check-
ForFraud”/>

</state>
<state id¼”confirmCCNumber”. . ./>

</state>
. . .. . .. . ..
</state>

There are further subtleties in how SCXML selects transitions. When the state

machine enters a new state, it first checks for eventless transitions (ones without an

“event” attribute), then for transitions triggered by internal events (events raised

by the platform or the <raise> element), and last of all for transitions triggered

by external events (events generated by external entities).12 Consider the following

example:

<state id¼”state1”>
<onentry>
<raise event¼”event1”/>

</onentry>
<transition event¼”event1” target¼”state2”/>
<transition cond¼”x > 1” target¼”state3”/>

</state>

The<onentry> element of “state1” raises event “event1,” and there is a
transition triggered by “event1” going to “state2.” However there is also an

eventless transition with condition “x > 1”. The SCXML interpreter will test this

12 The <send> element can be used to raise either internal or external events.

5 Introduction to SCXML 99



transition first, and if x is greater than 1 the state machine will go directly to

“state3” without considering transitions triggered by “event1.”13 In fact the

interpreter will select transitions triggered by “event1” only when it reaches a

state that has no eventless transition that can be taken (that is, a state with no

transition that lacks an “event” attribute and whose “cond” attribute evaluates to
“true”). This sequence of processing events and transitions is also relevant for

<invoke>, since the interpreter will execute <invoke> elements only when it

has processed all eventless transitions and all transitions triggered by internal

events, and is waiting for an external event. In our example above, there would

be no point in putting an <invoke> element in “state1” since it would never

be executed. Whenever the state machine enters “state1,” it goes immediately to

either “state2” or “state3,” so there is no point in starting an invocation that

will be cancelled right away.

Another quirk involves targetless transitions, namely those that lack a “tar-
get” attribute. When a state machine takes such a transition, it stays in its current

state(s). It is thus different from a transition that takes its parent state as its target.

Consider the following example:

<state id¼”state1”>
<onentry>
<assign location¼”var1” expr¼”var1 + 1”/>

</onentry>
<transition event¼”event1” target¼”state1”/>
<transition event¼”event2”>
<assign location¼”var2” expr¼”var2 + 1”/>

</transition>
</state>

When the state machine is in “state1” and “event1” occurs, it will take the
transition with “target” of “state1.” It will therefore exit “state1” and

re-enter it, executing the <onentry> element and incrementing “var1”. How-
ever if “event2” occurs, the state machine will select the targetless transition, and

not exit and re-enter “state1,” and thus not increment “var1”. However it will
execute the <assign> element that it contains, and increment “var2”. A

targetless transition is thus a kind of event handler, which contains executable

content to be executed when a certain event occurs, without causing a change of

state.14

13 Note that the eventless transition to “state3” is taken even though the transition to “state2”
precedes it in the document. The SCXML interpreter uses document order to choose among

transitions that have the same type of trigger. So first it considers all eventless transitions in

document order, then all transitions triggered by internal events in document order, then all

transitions triggered by external events in document order.
14 A targetless transition that does not contain executable content does nothing. It is harmless but

useless.

100 J. Barnett



5.10 Parallel States

We now come to one of the most complex and powerful features of Harel State

Charts, namely parallel states. A <parallel> element will have two or more

child states, which are normally themselves compound states. When the state

machine enters a <parallel> state it also enters all of its child states. This is

a bit like being in multiple state machines at the same time, but those state machines

(i.e., the child states) are not isolated from each other. In particular, the child states

see the same set of events, share a data model, and can check to see which states

other children are in. As an example of this, consider two companies doing a joint

software development project. There is a business side to the work, and a technical

side, and the two are somewhat independent of each other. Suppose the business

side moves through the following states: preliminary discussions, negotiation of

terms, signing of the contract, and joint sales. Meanwhile, the technical side moves

through states: discussion of concept, high-level architecture, detailed design, joint

testing, sharing of source code, and development complete. The two sides do not

move through their states in lock step. In particular, the technical side of the state

machine could be in either high-level architecture, detailed design, or joint testing

while the business side was in negation of terms or signing contract. To represent

this, we start with a <parallel> element with child states “BusinessNego-
tiations” and “TechnicalWork.” Their child states are the ones mentioned

above.

<parallel id¼”JointDevelopment”>
<state id¼”BusinessNegotiations”

initial¼”preliminaryDiscussions”>
<state id¼”preliminaryDiscussions”. . ./>
<state id¼”negotiationOfTerms”. . ./>
<state id¼”signingContract”. . ./>
<state id¼”jointSales”. . ./>

</state>
<state id¼”TechnicalWork”

initial¼”discussionOfConcept”>
<state id¼”discussionOfConcept”. . ./>
<state id¼”highLevelArchitecture”. . ./>
<state id¼”detailedDesign”. . ./>
<state id¼”jointTesting”. . ./>
<state id¼”shareSourceCode”. . ./>
<state id¼”developmentDone”. . ./>

</state>
</parallel>

When the state machine enters “JointDevelopment” it also enters both

“BusinessNegotations” and “TechnicalWork.” Since those two states

5 Introduction to SCXML 101



are themselves compound states, the state machine must be in a single child state for

each of them. Since “BusinessNegotiations” has four child states, and

“TechnicalWork” has six, there are 24 possible pairs of child states that we

could be in. The semantics of the <parallel> element allows all these combi-

nations to exist, just as if “BusinessNegotiations” and

“TechnicalWork” were separate state machines.

However, we want to place some constraints on which combinations of states

can occur. Suppose, for example, that we don’t want “BusinessNegotions”
and “TechnicalWork” to leave their initial states (“preliminaryDis-
cussions” and “discussionOfConcept,” respectively) until a

Non-Disclosure Agreement has been signed. We can introduce an event,

“ndaSigned” and place transitions for it in both the initial states:

<parallel id¼”JointDevelopment”>
<state id¼”BusinessNegotiations”

initial¼”preliminaryDiscussions”>
<state id¼”preliminaryDiscussions”>

<transition event¼”ndaSigned”
target¼”negotiationOfTerms”/>

</state>
<state id¼”negotiationOfTerms”. . ./>
<state id¼”signingContract”. . ./>
<state id¼”jointSales”. . ./>
</state>

<state id¼”TechnicalWork”
initial¼”discussionOfConcept”>

<state id¼”discussionOfConcept”>
<transition event¼”ndaSigned”

target¼”highLevelArchitecture”/>
</state>
<state id¼”highLevelArchitecture”. . ./>
<state id¼”detailedDesign”. . ./>
<state id¼”jointTesting”. . ./>
<state id¼”shareSourceCode”. . ./>
<state id¼”developmentDone”. . ./>

</state>
</parallel>

When the “ndaSigned” event occurs, we select a transition for it in each of the
active atomic states. Therefore that single event will cause a transition from

“preliminaryDicussions” to “negotiationOfTerms” and from

“discussionOfConcept” to “highLevelArchitecture.” (Either one

of these states could have ignored this event, of course. If only one of the active

atomic states had a transition that matched this event, only that transition would

have been taken. If neither had a matching transition, no transition would have been

102 J. Barnett



taken.) Thus the fact that the children of a <parallel> state see the same set of

events permits coordinated transitions without requiring them.

Now suppose that we add another constraint, namely that source code cannot be

shared until the contract has been signed. We don’t know how long it will take to

sign the contract, or what state inside “TechnicalWork” we will be in when that
happens, so we cannot rely on shared events here. Instead we add a

“contractSigned” variable in the data model and have the “BusinessNe-
gotiations” state set it to “true” when it leaves the “signingContract”
state15:

<parallel id¼”JointDevelopment”>
<datamodel>
<data id¼”contractSigned” expr¼”false”/>

</datamodel>
<state id¼”BusinessNegotiations”

initial¼”preliminaryDiscussions”>
<state id¼”preliminaryDiscussions”>

<transition event¼”ndaSigned”
target¼”negotiationOfTerms”/>

</state>
<state id¼”negotiationOfTerms”. . ./>
<state id¼”signingContract”>
<onexit>

<assign location¼”contractSigned” expr¼”true”/>
</onexit>
</state>
<state id¼”jointSales”. . ./>
</state>

<state id¼”TechnicalWork”
initial¼”discussionOfConcept”>

<state id¼”discussionOfConcept”>
<transition event¼”ndaSigned”

target¼”highLevelArchitecture”/>
</state>
<state id¼”highLevelArchitecture”. . ./>
<state id¼”detailedDesign”. . ./>
<state id¼”jointTesting”. . ./>
<state id¼”shareSourceCode”. . ./>
<state id¼”developmentDone”. . ./>

</state>
</parallel>

15 The <datamodel> element may occur as a child of <scxml> or of any <state> or

<parallel> element.

5 Introduction to SCXML 103



Now we check this flag in the transition from “jointTesting” to

“shareSourceCode”:

<parallel id¼”JointDevelopment”>
<datamodel>
<data id¼”contractSigned” expr¼”false”/>

</datamodel>
<state id¼”BusinessNegotiations”

initial¼”preliminaryDiscussions”>
<state id¼”preliminaryDiscussions”>

<transition event¼”ndaSigned”
target¼”negotiationOfTerms”/>

</state>
<state id¼”negotiationOfTerms”. . ./>
<state id¼”signingContract”>

<onexit>
<assign location¼”contractSigned” expr¼”true”/>

</onexit>
</state>
<state id¼”jointSales”. . ./>

</state>
<state id¼”TechnicalWork”

initial¼”discussionOfConcept”>
<state id¼”discussionOfConcept”>

<transition event¼”ndaSigned”
target¼”highLevelArchitecture”/>

</state>
<state id¼”highLevelArchitecture”. . ./>
<state id¼”detailedDesign”. . ./>
<state id¼”jointTesting”>

<transition cond¼”contractSigned ¼¼ true”
target¼”shareSourceCode”/>

</state>
<state id¼”shareSourceCode”. . ./>
<state id¼”developmentDone”. . ./>

</state>
</parallel>

In a realistic state machine the condition on the transition would be more

complicated, since we would need to check that the joint testing was actually

complete, but this example shows how the children of <parallel> can com-

municate via the shared data model.

There is also an “In()” predicate that can be used in conditions to check which
state another parallel substate is in. We might be tempted to use this predicate to

check that the high-level architecture was complete before signing the contract, by

104 J. Barnett



checking that the “TechnicalWork” child had advanced to the

“detailedDesign” state in the following manner:

<parallel id¼”JointDevelopment”>
<datamodel>
<data id¼”contractSigned” expr¼”false”/>

</datamodel>
<state id¼”BusinessNegotiations”

initial¼”preliminaryDiscussions”>
<state id¼”preliminaryDiscussions”>

<transition event¼”ndaSigned”
target¼”negotiationOfTerms”/>

</state>
<state id¼”negotiationOfTerms”>

<transition cond¼”In(‘detailedDesign’)
target¼”signingContract”/>

</state>
<state id¼”signingContract”>

<onexit>
<assign location¼”contractSigned” expr¼”true”/>

</onexit>
</state>

<state id¼”jointSales”. . ./>
</state>
<state id¼”TechnicalWork”

initial¼”discussionOfConcept”>
<state id¼”discussionOfConcept”>

<transition event¼”ndaSigned”
target¼”highLevelArchitecture”/>

</state>
<state id¼”highLevelArchitecture”. . ./>
<state id¼”detailedDesign”. . ./>
<state id¼”jointTesting”>

<transition cond¼”contractSigned ¼¼ true”
target¼”shareSourceCode”/>

</state>
<state id¼”shareSourceCode”. . ./>
<state id¼”developmentDone”. . ./>

</state>
</parallel>

Now the state machine will not transition from “negotiationOfTerms” to
“signingContract” unless it is also in the “detailedDesign” state. How-
ever this isn’t actually what we want. Suppose that the technical work progresses

quickly and the state machine has moved to the “jointTesting” state by the

5 Introduction to SCXML 105



time the business side is ready to move from “negotiationOfTerms” to

“signingContract.” The business side state machine will be blocked and

will never move to “signingContract” because the technical side will never

return to “detailedDesign.” The right thing to do in this case would be to use a
flag such as the “contractSigned” on shown above. This example should stand

as a warning that it is important to think through the state logic carefully, partic-

ularly when using parallel states.16

5.11 Conclusion

SCXML was not specifically defined for multimodal applications, but it is well

suited to them. First of all, it contains powerful constructs such as <onentry>
and <onexit> handlers, conditions on transitions, and compound states, which

can express complex logic in a compact, relatively perspicuous notation. In partic-

ular, parallel states provide a loose coordination between activities that is well

suited to multimodal interfaces, where the various modalities are usually partly, but

not completely, independent.

A second reason that SCXML is suitable for multimodal applications is that it

offers a variety of means for interacting with the application environment. Multi-

modal applications need to access a broad variety of platform capabilities and to

interact with other components in their environment. <send>, <invoke> and

executable content provide hooks into such capabilities.

Furthermore the hooks that SCXML provides are customizable, giving platform

developers the ability to modify the language to match their domain. For example,

the data model is an important part of just about any application, but no single data

model is right for all domains. The SCXML specification defines an ECMAScript

data model, but allows platforms to define others. In fact, the specification only

specifies how a data model called “ecmascript” must behave. A platform that

wanted to use ECMAScript but with a different behavior could define its own

data model and call it “ecmascriptTheWayWeThinkItShouldBe.” That

data model would not be part of the standard, the way the existing “ecmascript”
data model is, but applications that used it would still be valid SCXML applica-

tions. For example, the Voice Browser Group provided a test suite for SCXML as

part of the standardization process [5]. The purpose of the tests was to show that

there were interoperable implementations of the language, in the sense that they

passed the same set of tests. One implementation passed all the tests for the core

16 SCXML is one of the most powerful foot-shooting weapons ever developed, and it is easy to

write state machines that block or go into infinite loops. Individual implementations or develop-

ment tools may include safety features such as reachability analysis or non-terminating loop

detection, but the specification does not include any safeguards that might restrict the power of

the language.

106 J. Barnett



language using a data model that was very different from the ones defined by the

Voice Browser Group.17

Similarly for <send> the SCXML specification defines an SCXML Event I/O

Processor, which can be used to communicate with other SCXML sessions (partic-

ularly ones created by<invoke>) and a Basic HTTP Event I/O Processor, which

can be used to communicate with any component that can accept or send HTTP

messages. However platforms may define other Event I/O Processors to suit their

needs. As an example, the Voice Brower Group defined a DOM Event I/O Proces-

sor, which can be useful when working inside a web browser, using SCXML to

control an HTML page [6].18

Finally, platforms can use <invoke> or custom executable content to provide

access a broad range of resources. <invoke> is particularly well suited to

re-using existing languages such as VoiceXML.

In summary, SCXML combines Harel’s powerful, application-independent state
machine logic with flexible, customizable hooks into platform, and environment

resources. The result is a control flow language that can be adapted to a wide variety

of domains, including multimodal applications.

References

1. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D., Carter, J., et al. (2015). State chart

XML (SCXML) state machine notation for control abstraction. W3C Recommendation. https://

www.w3.org/TR/scxml/.

2. Oshry, M., Auburn, R., Baggia, P., Bodell, M., Burke, D., Burnett, D., et al. (2007). Voice

extensible markup language (VoiceXML) 2.1. W3C Recommendation. https://www.w3.org/

TR/2007/REC-voicexml21-20070619/.

3. Harel, D., & Politi, M. (1998). Modeling reactive systems with statecharts: The STATEMATE
approach. http://www.wisdom.weizmann.ac.il/~dharel/reactive_systems.html.

4. Object Management Group (2009). UML specification version 2.3. http://www.omg.org/spec/

UML/2.3/.

5. Barnett, J. (2015). SCXML implementation report. https://www.w3.org/Voice/2013/scxml-irp/.

6. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D., Carter, J., et al. (2015). DOM event

I/O processor for SCXML. W3C Working Group Note. https://www.w3.org/TR/scxml-dom-

iop/.

7. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D., Carter, J., et al. (2015). XPath data

model for SCXML. W3C Working Group Note. https://www.w3.org/TR/scxml-xpath-dm/.

17 In addition to the “ecmascript” datamodel, the Voice Browser Group also defined an XPath

data model [7]. It was removed from the final specification because the group did not receive

enough implementation reports for it.
18 Like the XPath Data Model, the DOM Event I/O Processor was removed from the final

specification due to the lack of sufficient implementation reports.

5 Introduction to SCXML 107

https://www.w3.org/TR/scxml/
https://www.w3.org/TR/scxml/
https://www.w3.org/TR/2007/REC-voicexml21-20070619/
https://www.w3.org/TR/2007/REC-voicexml21-20070619/
http://www.wisdom.weizmann.ac.il/~dharel/reactive_systems.html
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/
https://www.w3.org/Voice/2013/scxml-irp/
https://www.w3.org/TR/scxml-dom-iop/
https://www.w3.org/TR/scxml-dom-iop/
https://www.w3.org/TR/scxml-xpath-dm/


Chapter 6

Dialogue Act Annotation with the ISO
24617-2 Standard

Harry Bunt, Volha Petukhova, David Traum, and Jan Alexandersson

Abstract This chapter describes recent and ongoing annotation efforts using the

ISO 24617-2 standard for dialogue act annotation. Experimental studies are reported

on the annotation by human annotators and by annotation machines of some of the

specific features of the ISO annotation scheme, such as its multidimensional anno-

tation of communicative functions, the recognition of each of its nine dimensions,

and the recognition of dialogue act qualifiers for certainty, conditionality, and

sentiment. The construction of corpora of dialogues, annotated according to ISO

24617-2, is discussed, including the recent DBOX and DialogBank corpora.

6.1 Introduction

The ISO 24617-2 annotation standard [10, 11, 30] has been designed for the

annotation of spoken, written and multimodal dialogue with information about the

dialogue acts that make up a dialogue, with the aim to create interoperable annotated

resources. A dialogue act is a unit in the description of communicative behaviour

H. Bunt (*)

Tilburg Center for Cognition and Communication (TiCC), Tilburg University,

Tilburg, The Netherlands

e-mail: bunt@uvt.nl

V. Petukhova

Spoken Language Systems Group, Saarland University, Saarbrücken, Germany

e-mail: v.petukhova@lsv.uni-saarland.de

D. Traum

Institute fro Creative Technologies, University of Southern California,

Los Angeles, CA 90094, USA

e-mail: traum@ict.usc.edu

J. Alexandersson

Department of Intelligent User Interfaces DFKI, Gernan Research Center for Artificial

Intelligence, Saarbrücken, Germany

e-mail: janal@dfki.de

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_6

109

mailto:bunt@uvt.nl
mailto:v.petukhova@lsv.uni-saarland.de
mailto:traum@ict.usc.edu
mailto:janal@dfki.de


that corresponds semantically to certain changes that the speaker wants to bring

about in the information state of an addressee. ISO 24617-2 defines a dialogue act as

(1) Communicative activity of a dialogue participant, interpreted as having a
certain communicative function and semantic content.

The communicative function of a dialogue act, such as Propositional Question,
Inform, Confirmation, Request, Apology, or Answer, specifies how the act’s seman-

tic content changes the information state of an addressee upon understanding the

speaker’s communicative behaviour.

According to the annotation schemes that existed prior to the establishment of

ISO 24617-2 and its immediate predecessor DITþþ, such as DAMSL; MRDA;

HCRC Map Task; Verbmobil; SWBD-DAMSL; and DIT,1 dialogue act annotation

consisted of segmenting a dialogue into certain grammatical units and marking up

each unit with one or more communicative function labels. The ISO 24617-2

standard supports the annotation of dialogue acts in semantically more complete

ways by additionally annotating the following aspects:

Dimensions The annotation scheme supports ‘multidimensional’ annotation, where

multiple communicative functions may be assigned to dialogue segments; dif-

ferent from DAMSL and other multidimensional schemes, the ISO scheme uses

an explicitly defined notion of ‘dimension’, which corresponds to a certain type

of semantic content.

Qualifiers are defined for expressing that a dialogue act is performed conditionally,

with uncertainty, or with a particular sentiment.

Functional and feedback dependence relations link a dialogue act to other units

in a dialogue, e.g. for indicating which question is answered by a given answer,

or which utterance a speaker is providing feedback about.

Rhetorical relationsmay optionally be annotated to indicate, e.g. that one dialogue

act motivates the performance of another dialogue act.

The following example illustrates the use of dimensions, communicative func-

tions, qualifiers, dependence relations, and rhetorical relations (where "#fs1",

"#fs2", and "#fs3" indicate the segments in P1’s and P2’s utterances that express

a dialogue act—see Section 6.2.2 for more on segmentation).

(2) 1. P1: Is there an earlier connection?

2. P2: Ehm,.. no, unfortunately there isn’t.

<diaml xmlns:"http://www.iso.org/diaml/">
<dialogueAct xml:id¼"da1" target¼"#fs1"

sender¼"#p1" addressee¼"#p2"
communicativeFunction¼"propositionalQuestion" dimension¼"task"/>

<dialogueAct xml:id¼"da2" target¼"#fs2"

sender¼"#p2" addressee¼"#p1"

communicativeFunction¼"stalling" dimension¼"timeManagement"/>

1See Allen and Core [2], Dhillon et al. [19], Carletta et al. [16], Jurafsky et al. [32], Alexandersson

et al. [1], Bunt [4, 5].

110 H. Bunt et al.

http://www.iso.org/diaml/


<dialogueAct xml:id¼"da3" target¼"#fs2"

sender¼"#p2" addressee¼"#p1"

communicativeFunction¼"turnTake" dimension¼"turnManagement"/>
<dialogueAct xml:id¼"da4" target¼"#fs3"

sender¼"#p2" addressee¼"#p1"

communicativeFunction¼"answer"dimension¼"task"sentiment¼"regret"

functionalDependence¼"#da1"/>
</diaml>

The development of ISO 24617-2 was supported by annotation experiments in

which preliminary versions of the scheme were tested for their usability by human

annotators and by machine-learned annotation. After its establishment as an inter-

national standard in 2012, further annotation efforts have been undertaken in

applying the standard in several corpus annotation, collection, and re-annotation

projects. This chapter describes the most substantial of these experiments and

annotation efforts.

This chapter is organized as follows. Section 6.2 outlines the use of the ISO

24617-2 annotation scheme. Section 6.3 describes the results of experiments

concerned with some of the special features of the annotation scheme. Section 6.4

presents several new and emerging corpora of dialogues, annotated with the ISO

24617-2 annotation scheme. Section 6.5 closes this chapter with concluding remarks

and perspectives for future studies and applications using the ISO 24617-2 standard.

6.2 Annotating with ISO 24617-2

6.2.1 Features of the ISO 25617-2 Annotation Standard

Dimensions Utterances in dialogue often have more than one communicative

function, as several authors have observed [3, 4, 8, 40, 46]. The following dialogue

fragment illustrates this:

(3) 1. Anne: Henry, can you take us through these slides?

2. Henry: Ehm. . . sure, just ordering my notes.

In the first utterance, Anne makes a request and assigns the next speaking turn to

Henry. In the second utterance, Henry accepts the turn and stalls for time; accepts

the request, and explains why he does not fulfill the request right away. The

multidimensional DITþþ annotation scheme was designed to optimally support

the annotation of multifunctional utterances [7]. This scheme is based on a

well-founded notion of dimension, inspired by the observation that participation

in a dialogue involves a range of communicative activities beyond those strictly

related to performing the task or activity that motivates the dialogue. Dialogue

participants also perform communicative activities such as giving and eliciting

feedback, taking turns, stalling for time, and showing attention; moreover, they

often perform several of these activities at the same time. The term ‘dimension’

refers to these various types of communicative activity.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 111



The ISO 24617-2 annotation scheme inherits the following nine dimensions

from the DITþþ scheme: (1) Task: dialogue acts that move the task or activity

forward which motivates the dialogue; (2–3) Feedback, divided into Auto- and
Allo-Feedback: acts providing or eliciting information about the processing of

previous utterances by the current speaker or by the current addressee, respectively;

(4) Turn Management: activities for obtaining, keeping, releasing, or assigning the

right to speak; (5) Time Management: acts for managing the use of time in the

interaction; (6) Discourse Structuring: dialogue acts dealing with topic manage-

ment, opening and closing (sub-)dialogues, or otherwise structuring the dialogue;

(7–8) Own- and Partner Communication Management: actions by the speaker to

edit his current contribution or a contribution of another current speaker, respec-

tively; (9) Social Obligations Management: dialogue acts for dealing with social

conventions such as greeting, introducing oneself, apologizing, and thanking.

The ISO 224617-2 inventory of communicative functions consists of 56 of the

88 functions of the DITþþ taxonomy.2 Some of these are specific for a particular

dimension; for instance Turn Take is specific for Turn Management; Stalling is

specific for Time Management, and Self-Correction is specific for Own Commu-

nication Management. Other functions can be applied in any dimension; for exam-

ple, You misunderstood me is an Inform in the Allo-Feedback dimension. All types

of question, statement, and answer can be used in any dimension, and the same is

true for commissive and directive functions, such as Offer, Suggest, and Request.
These functions are called general-purpose functions, as opposed to dimension-
specific functions. Table 6.1 lists the communicative functions defined in ISO

24617-2.

Qualifiers The different qualifiers defined in ISO 24617-2 are applicable to differ-

ent classes of dialogue acts. Sentiment qualifiers are applicable to any dialogue

act with a general-purpose function (GPF); conditionality qualifiers to dialogue

acts with a commissive or directive function (Promise, Offer, Suggestion,
Request, etc.); and certainty qualifiers are applicable to dialogue acts with an

‘information-providing’ function’ (Inform, Agreement, Disagreement, Correc-
tion, Answer, Confirm, Disconfirm).

Functional Dependence Relations are indispensable for the interpretation of

dialogue acts that are responsive in nature, such as Answer, Confirmation,
Disagreement, Accept Apology, and Decline Offer. The semantic content of

these acts depends crucially on the content of the dialogue act that they respond

to. Functional dependence relations connect occurrences of such dialogue acts to

their ‘antecedent’ and correspond to links for marking up a segment not only as

having the function of an answer, for example, but also indicating which

question is answered.

Feedback Dependence Relations play a similar role for determining the semantic

content of feedback acts, which is co-determined by the utterance(s) that the

2DITþþ has a fine-grained set of 29 feedback functions, whereas ISO 241617-2 has only 5, which

are, however, more reliably annotated.

112 H. Bunt et al.



feedback is about. Feedback acts often refer to the immediately preceding

utterance, but can also refer further back and to more than one utterance

[39]. The ISO 24617-2 annotation scheme therefore includes links for marking

up these dependences; an example occurs in (7).

Rhetorical Relations, which have been studied extensively for written texts, also

occur in spoken dialogue where they occur in two different ways, illustrated in

the following examples (where the participants talk about remote TV controls):

(4) 1. A: I can never find them.

2. B That’s because they don’t have a fixed location.

(5) 1. A: Where would you position the buttons?

2. A: I think that has some impact on many things

Table 6.1 ISO 24617-2 communicative functions

General-purpose Dimension-specific communicative functions

communicative functions Function Dimension

Inform AutoPositive Auto-Feedback

Agreement AutoNegative

Disagreement AlloPositive Allo-Feedback

Correction AlloNegative

Answer FeedbackElicitation

Confirm Staling Time Management

Disconfirm Pausing

Question Turn Take Turn Management

Set-Question Turn Grab

Propositional Question Turn Accept

Choice-Question Turn Keep

Check-Question Turn Give

Offer Turn Release

Address Offer Self-Correction Own Communication Man.

Accept Offer Self-Error

Decline Offer Retraction

Promise Completion Partner Communication Man.

Request Correct Misspeaking

Address Request Init-Greeting Social Obligations Man.

Accept Request Return Greeting

Decline Request Init-Self-Introduction

Suggest Return Self-Introduction

Address Suggest Apology

Accept Suggest Accept Apology

Decline Suggest Thanking

Instruct Accept Thanking

Init-Goodbye

Return Goodbye

Interaction Structuring Discourse Structuring

6 Dialogue Act Annotation with the ISO 24617-2 Standard 113



In (6.2.1) the dialogue acts expressed by A’s and B’s utterances are related by a

Cause relation between their respective semantic contents: the content of the

second causes the content of the first; in (6.2.1), by contrast, the second dialogue

act forms a reason for performing the first, so the causal relation is between the two

dialogue acts as a whole, rather than between their semantic contents. The annota-

tion of a rhetorical relation is illustrated in example (6.2.3).

Different from functional and feedback dependences, which are an integral part

of dialogue acts with a responsive function and of feedback acts, respectively,

rhetorical relations give additional information about the ways in which dialogue

acts are semantically or pragmatically related.

6.2.2 Multidimensional Segmentation

Dialogues are often segmented into turns, defined as stretches of communicative

behaviour produced by one speaker, bounded by periods of inactivity of that speaker.

Such a segmentation is too coarse for accurate dialogue act annotation, as example

(3) above illustrates. More accurate annotation is possible by using ‘functional
segments’ as the units to which annotations are attached. Functional segments are

defined as the minimal stretches of communicative behaviour that have a communi-
cative function—‘minimal’ in the sense of not containing material that does not

contribute to its communicative function(s). Functional segments are mostly shorter

than turns, may be discontinuous, may overlap, and may have parts contributed by

different speakers. Functional segments by definition have at least one communica-

tive function, and possibly several. An example of the use of functional segments is

shown in (6), where we see the utterance The first train to the airport on Sunday is
at. . .let me see. . . 6.16 in response to the question What time is the first train to the
airport on Sunday? The response has parts which have a communicative function in

three different dimensions: Task, Auto-Feedback (expressed by the repetition in the

second utterance), and Time Management; in each of these dimensions the relevant

functional segment is shown; the DiAML annotation is represented in (6.2.2).

(6) C: What time is the first train to the airport on Sunday?

I: The first train to the airport on Sunday is at. . .let me see. . . 6.16

Auto-Feedback fs2 The first train to the airport on Sunday
Task: fs3 The First train to the airport on Sunday is at 6.16
Time Man. fs4 . . .let me see. . .

<diaml xmlns:"http://www.iso.org/diaml/">

<dialogueAct xml:id¼"da1" target¼"#fs1"
sender¼"#p1" addressee¼"#p2"
communicativeFunction¼"setQuestion" dimension¼"task"/>

<dialogueAct xml:id¼"da2" target¼"#fs2"
sender¼"#p2"addressee¼"#p1"
communicativeFunction¼"autoPositive"

dimension¼"autoFeedback" feedbackDependence¼"#fs1"/>

114 H. Bunt et al.

http://www.iso.org/diaml/


(7) <dialogueAct xml:id¼"da3" target¼"#fs3"

sender¼"#p2" addressee¼"#p1" communicativeFunction¼"answer"

dimension¼"task" functionalDependence¼"#da1"/>
<dialogueAct xml:id¼"da4" target¼"#fs4"

sender¼"#p2" addressee¼"#p1"

communicativeFunction¼"stalling"dimension¼"timeManagement"/>
</diaml>

6.2.3 The Dialogue Act Markup Language (DiAML)

The ISO 24617-2 standard includes the specification of the Dialogue Act Markup

Language (DiAML), designed in accordance with the ISO Linguistic Annotation

Framework (ISO 24612 [31]), which draws a distinction between the concepts of

annotation and representation. The term ‘annotation’ refers to the linguistic infor-

mation that is added to segments of language data, independent of the format in

which the information is represented; ‘representation’ refers to the format in which

an annotation is rendered, independent of its content [28].

This distinction is implemented in the DiAML definition following the ISO

Principles for Semantic Annotation (ISO 24617-6; see also [9]). The definition

specifies, besides a class of XML-based representation structures, also a class of

more abstract annotation structures with a formal semantics. These components are

called the concrete and abstract syntax, respectively. Annotation structures are

set-theoretical structures like pairs and triples, for which the concrete syntax defines

an XML-based rendering. An annotation structure is a set of entity structures,
which contain semantic information about a functional segment, and link struc-
tures, which describe semantic relations between functional segments. An entity

structure contains the conceptual information of a single dialogue act, and specifies:

(1) a sender; (2) one or more addressees; (3) possible other participants, like an

audience or side-participants; (4) a communicative function; (5) a dimension;

(6) possible qualifiers for sentiment,3 conditionality or certainty; and (7) zero, one

or more functional dependence relations or feedback dependence relations.

The concrete syntax, defined following the CASCADES method (see ISO

24617-6 [31] and [9]), has a unit that corresponds to entity structures in the form

of the XML element dialogueAct, as illustrated in (2). The question asked by

participant P1 is represented by the dialogueAct element with identifier da1,

which refers to the functional segment fs1 formed by P1’s utterance. Participant

P2’s response consists of two functional segments. First, a turn-initial Ehm,. . .
which forms a multifunctional segment signalling that P2 is taking the turn and

also stalls for time. The second functional segment contains the actual answer,

3ISO 24617-2 does not prescribe the use of any particular set of sentiment labels. See, e.g., the

EmotionML language (www.w3.org/TR/emotionml) for possible choices in this respect.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 115

http://www.w3.org/TR/emotionml


which includes an expression of regret that is annotated by means of a qualifier,

represented as the value of the sentiment attribute.

Functional dependence relations are components of a dialogueAct element

since they form part of a dialogue act viewed as a semantic unit. The same is true for

feedback dependence relations as a component of a feedback act, as illustrated in

example (6). Rhetorical relations, by contrast, do not play a role in determining the

meaning of a dialogue act, but provide additional information about the semantic/

pragmatic relations between dialogue acts. They are represented by means of
rhetoricalLink elements as shown in (8).

(8) 1. P4: Where would you position the buttons?

2. P4: I think that has some impact on many things

<diaml xmlns:"http://www.iso.org/diaml/">

<dialogueAct xml:id¼"da1" target¼"#fs1"

sender¼"#p4" addressee¼"#p3"

communicativeFunction¼"setQuestion" dimension¼"task"/>

<dialogueAct xml:id¼"da2" target¼"#fs2"

sender¼"#p4" addressee¼"#p3"

communicativeFunction¼"inform" dimension¼"task"/>

<rhetoricalLink dact¼"#da2"

rhetoRelatum¼"#da1" rhetoRel¼"cause"/>

</diaml>

6.3 Experiences in the Use of ISO 24617-2

6.3.1 Communicative Function Recognition

Multidimensional annotation using a rich inventory of dialogue act tags is often

thought to be too difficult for human annotators as well as for automatic annotation

to give reliable results. In order to investigate this, Geertzen and Bunt [24] deter-

mined the inter-annotator agreement for assigning communicative functions in the

ten dimensions of DITþþ, nine of which are inherited by ISO 24617-2.

They observed that, when a hierarchically structured tag set is used, the popular

standard kappa coefficient [17] is not an appropriate measure of agreement, since

the assignment to a functional segment of two different but hierarchically related

tags, like Answer and Confirm, or Inform and Agreement, does not reflect total

disagreement, as the standard kappa would assume, but partial (dis-)agreement,

since a Confirm act is a particular kind of Answer, and an Agreement is a particular
kind of Inform. Instead, they defined a weighted kappa coefficient, using Cohen’s

weighted kappa coefficient [18] with a distance metric that takes the hierarchical

structure of the tag set into account (see also [34]). The taxonomically weighted
kappa is defined as follows:

116 H. Bunt et al.

http://www.iso.org/diaml/


(9) κtw¼ 1� Σð1�δði, jÞÞ�Poij
Σð1�δði, jÞÞ�Peij

where the distance metric δij measures disagreement and is a real number normal-

ized in the range between 0 and 1 (Poi and Pei are observed and expected probabil-

ities, respectively). Table 6.2 shows standard and taxonomically weighted kappa

scores per ISO 246170-2 dimension, averaged over all annotation pairs, for the

DIAMOND corpus.4

The agreement scores indicate that human annotators can reliably use a rich,

multidimensional annotation scheme like ISO 24617-2 or DITþþ. The usability and
reliability of an annotation scheme is not just a matter of the size or simplicity of the

tag set, but rather of the conceptual clarity of the tags, their definitions and

accompanying annotation guidelines.

6.3.2 Dimension Recognition

The notion of a dimension, as used in ISO 24617-2 and DITþþ, is defined as

follows:

(10) A dimension is a class of dialogue acts concerned with one particular aspect
of communication that a dialogue act can address independently from other
dimensions [6].

Geertzen et al. [26] assessed the recognizability of dimensions by human

annotators and by automatic means. Three annotators independently annotated

dialogues from the DIAMOND and OVIS5 corpora with dimension tags. Table 6.3

presents agreement scores expressed in terms of Cohen’s kappa and tagging

Table 6.2 Standard and weighted kappa-scores for annotator agreement in the annotation of

communicative functions, per ISO 24617-2 dimension (adapted from [24])

Dimension Standard kappa Weighted kappa

Po Pe κ Po Pe κtw
Task 0.52 0.09 0.47 0.76 0.17 0.71

Auto-Feedback 0.32 0.14 0.21 0.87 0.69 0.57

Allo-Feedback 0.53 0.19 0.42 0.79 0.50 0.58

Turn Management 0.90 0.42 0.82 0.90 0.42 0.82

Time Management 0.91 0.79 0.58 0.91 0.79 0.58

Own Communication Management 1.00 0.50 1.00 1.0 0 0.95 1.00

Partner Communication Management 1.00 1.00 – 1.00 1.00 –

Dialogue structuring 0.87 0.48 0.74 0.87 0.48 0.74

Social Obligation Management 1.00 0.19 1.00 1.00 0.19 1.00

4See Geertzen et al. [25].
5See http://www.let.rug.nl/vannoord/Ovis/.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 117

http://www.let.rug.nl/vannoord/Ovis/


accuracy (comparing with a gold standard, see [26]). The table shows near perfect

agreement between annotators, and moreover that accuracy is very high. Human

annotators can apparently recognize the dimensions of the ISO 24617-2 standard

almost perfectly.

To assess the machine learnability of dimension recognition, the rule induction

algorithm Ripper was applied to data from the AMI, OVIS, and DIAMOND

corpora. The features included in the data sets relate to prosody (minimum,

maximum, mean, and standard deviation of pitch); energy; voicing; duration;

occurrence of words (a bag-of-words vector); and dialogue history: tags of ten

previous turns. Table 6.4 presents the scores obtained in tenfold cross-validation

experiments. The results indicate that the dimensions of DITþþ and ISO 24617-2

are automatically recognizable with fairly high accuracy.

Table 6.3 Inter-annotator agreement and tagging accuracy per dimension for the OVIS and

DIAMOND corpora

Dimension Annotator agreement Accuracy

Po Pe κ Po Pe κ

Task 0.85 0.1 0.83 0.91 0.47 0.81

Auto-Feedback 0.91 0.1 0.90 0.94 0.24 0.92

Allo-Feedback 0.93 0.1 0.92 0.95 0.43 0.91

Turn Management 0.93 0.1 0.92 0.92 0.08 0.92

Time Management 0.99 0.1 0.99 0.99 0.11 0.90

Discourse Structuring 0.99 0.1 0.99 0.87 0.05 0.87

Contact Management 0.99 0.1 0.99 0.91 0.14 0.89

Own Communication Man. 0.99 0.1 0.99 1.00 0.02 1.00

Partner Communication Man. 0.99 0.1 0.99 1.00 0.02 1.00

Social Obligation Man. 0.99 0.1 0.99 0.95 0.09 0.95

Table 6.4 Automatic dimension recognition scores in terms of accuracy (in %), with baseline

scores (BL, classifier based on the dimension tag of the previous utterance), for AMI, DIAMOND,

and OVIS data sets

Dimension DIAMOND AMI OVIS

BL Accuracy BL Accuracy BL Accuracy

Task 64.9 70.5 66.8 72.3 60.8 73.5

Auto-Feedback 71.1 85.1 77.9 89.7 66.1 75.9

Allo-Feedback 86.9 96.6 96.7 99.3 52.5 80.1

Turn Management 69.5 90.0 59.0 93.0 89.8 99.2

Time Management 65.6 82.2 69.7 99.4 95.5 99.4

Discourse Structuring 59.0 67.9 98.0 92.5 76.3 89.4

Contact Management 88.0 95.2 99.8 99.8 87.7 98.5

Own Communication Man. 77.4 83.1 89.6 94.1 99.7 99.7

Partner Communication Man. 45.4 62.6 99.7 99.7 99.8 99.8

Social Obligation Management 80.3 92.2 99.6 99.6 96.2 98.4

118 H. Bunt et al.



6.3.3 Machine-Learned Dialogue Act Recognition

Petukhova and Bunt (2011) investigated the automatic classification of dialogue

acts for unsegmented spoken dialogue. Table 6.5 shows the results of the combined

classification of dimension and communicative function, using three different

‘local’ classifiers that apply to local utterance features. The DERsc error-rate metric

is based on the Dialog Act Error Rate (DER) defined by Zimmermann et al. [46],

which considers a word to be correctly classified if it has been assigned the correct

dialogue act type, and it lies in the correct segment. Table 6.6 shows the results for

two-step classification (manual segmentation followed by communicative function

Table 6.5 Overview of F- and DERsc-scores for joint segmentation and classification in each ISO

24617-2 dimension for Map Task data. Best scores in bold face

Classification task BL BayesNet Ripper

Dimension F1 DERsc F1 DERsc F1 DERsc

Task 43.8 70.2 79.7 41.9 77.7 58.5

Auto-Feedback 64.6 60.6 65.4 55.2 80.1 43.9

Allo-Feedback 30.7 91.2 59.3 54.0 72.7 51.8

Turn Management 50.3 47.5 70.8 40.9 81.4 36.2

Time management 54.2 28.4 72.1 20.3 83.6 10.4

Discourse Structuring 33.2 95.1 62.5 44.3 66.7 43.5

Contact Management 24.7 93.2 57.0 79.5 11.0 93.5

Own Communication Man. 11.2 97.4 42.9 64.7 28.6 92.1

Partner Communication Man. 14.3 95.2 61.5 55.2 66.7 50.1

Social Obligations Management 08.8 96.2 40.0 71.8 85.7 21.4

Table 6.6 Overview of F-scores on baseline (BL) and classifiers for two-step segmentation and

classification tasks. Best scores in bold face

Classification BL NBayes Ripper IB1

Task 66.8 71.2 72.3 53.6

Auto-Feedback 77.9 86.0 89.7 85.9

Allo-Feedback 79.7 99.3 99.2 98.8

Turn M.: initial 93.2 92.9 93.2 88.0

Turn M.: final 58.9 85.1 91.1 69.6

Time management 69.7 99.2 99.4 99.5

Discourse Structuring 69.3 99.3 99.3 99.1

Contact Management 89.8 99.8 99.8 99.8

Own Communication Management 89.6 90.0 94.1 85.6

Partner Communication Management 99.7 99.7 99.7 99.7

Social Obligations Management 99.6 99.6 99.6 99.6

6 Dialogue Act Annotation with the ISO 24617-2 Standard 119



classification), which can be seen to work better for all dimensions except the Task

dimension (the most important one).

The fact that dialogue utterances are often multifunctional, having a communi-

cative function in more than one dimension, makes dialogue act recognition a

complex task. Splitting up the task may make it more manageable. A widely used

strategy is to split a multi-class learning task into several binary learning tasks.

Learning multiple classes, however, allows a learning algorithm to exploit interac-

tions among classes. Petukhova and Bunt (2011) split the task in such a way that a

classifier needs to learn (1) communicative functions in isolation; (2) semantically

related functions together, e.g. all information-seeking functions (all types of

questions) or all information-providing functions (all types of answers and

informs). In total 64 classifiers were built for dialogue act recognition in AMI

data and 43 for Map Task data.

Using local classifiers that produce all possible output predictions (‘hypotheses’)

given a certain input leads to some predictions being false, since a local classifier

never revisits a decision that it has made, in contrast with a human interpreter.

Decisions should preferably be based not only on local features of the input, but

also on broader contextual information. Therefore, Petukhova and Bunt (2011)

trained higher-level ‘global’ classifiers that have, along with features extracted

locally from the input data, the partial output predicted so far from all local

classifiers. (This technique is also called ‘meta-classification’ or ‘late fusion’.)

Five previously predicted class labels were used, taking into account that the

average length of a functional segment in the data is 4.4 tokens. This was found

to result in a 10–15% improvement. Some incorrect predictions are still made,

since the decision is sometimes based on incorrect previous predictions.

A strategy to optimize the use of output hypotheses is to perform a global search

in the output space looking for best predictions. This is not always the best strategy,

however, since the highest-ranking predictions are not always correct in a given

context. A possible solution is to postpone the decision until some (or all) future

predictions have been made for the rest of the current segment. For training, the

classifier then uses not only previous predictions as additional features, but also

future predictions of local classifiers. This forces the classifier to not immediately

select the highest-ranking predictions, but to also consider lower-ranking predic-

tions that could be better in the context.

Table 6.7 gives an overview of the global classification results based on added

previous and next predictions of local classifiers. Both classifiers performed very

well, outperforming the use of only local classifiers by a broad margin

(cf. Table 6.5). It may be noted that the overall performance reported here is

substantially better than the results of other approaches that have been reported in

the literature. For instance, Reithinger and Klesen [43] report an average tagging

accuracy of 74.7% of applying techniques based on n-gram modelling to

Verbmobil data; transformation-based learning applied to the same data achieved

an accuracy of 75.1% [44]. Hidden Markov Models used for dialogue act classifi-

cation in the Switchboard corpus gave a tagging accuracy of 71% [45]; and [33]

120 H. Bunt et al.



report an accuracy of 73.8% for the application to data from the OVIS corpus of a

memory-based approach based on the k-nearest neighbour algorithm.

Altogether, an incremental, token-based approach with global classifiers that

exploit the outputs of local classifiers, applied to previous and subsequent tokens,

results in excellent dialogue act recognition scores for unsegmented spoken dia-

logue. This can be seen as strong evidence for the machine learnability of the ISO

24717-2 annotation scheme.

6.3.4 Qualifier Recognition

The recognition of dialogue act qualifiers by human annotators was investigated by

Petukhova [36]. The task in these experiments, involving four untrained annotators

(undergraduate students), was to assign qualifier values to functional segments in

pre-annotated dialogue fragments from the AMI corpus and the TRAINS corpus.6

Table 6.8 shows that there are no systematic differences between annotators in

assigning values for qualifier tags. They achieved moderate agreement

(0. 4< κ< 0. 6) on labelling certainty for the AMI data; the agreement for this

category when labelling TRAINS dialogues is substantial (0. 6< κ< 0. 8). The

difference can be explained by the fact that AMI dialogues are more difficult to

annotate for untrained annotators: AMI meetings are considerably more complex,

as they are both multi-party and multi-modal. The best recognized category is

Table 6.7 Overview of F-scores and DERsc when global classifiers are used for AMI and Map

Task data, based on added predictions of local classifiers for five previous and five next tokens.

Best scores in bold face

Classification AMI data Map Task data

BayesNet Ripper BayesNet Ripper

Dimension F1 DERsc F1 DERsc F1 DERsc F1 DERsc

Task 82.6 9.5 86.1 8.3 85.8 12.2 80.8 9.1

Auto-Feedback 81.9 1.9 95.1 0.6 84.4 15.0 93.0 7.6

Allo-Feedback 96.3 0.6 95.7 0.5 95.3 4.6 94.6 6.9

Turn Management:initial 85.7 1.5 81.5 1.6 89.5 8.2 91.0 8.0

Turn Management:close 90.9 3.8 91.2 3.6 82.9 17.1 77.2 18.9

Time management 90.4 2.4 93.4 1.7 94.9 5.5 92.8 6.1

Discourse Structuring 82.1 1.7 78.3 1.8 85.7 12.4 87.4 8.2

Contact Management 87.9 1.2 94.3 0.6 87.4 9.9 88.3 7.4

Own Communication Man. 78.4 2.2 81.6 2.0 87.2 9.8 87.4 7.6

Partner Communication Man. 71.8 2.4 70.0 4.6 86.7 11.1 86.8 9.8

Social Obligations Man. 98.6 0.4 98.6 0.5 97.9 1.1 97.9 1.2

6See https://www.cs.rochester.edu/research/speech.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 121

https://www.cs.rochester.edu/research/speech


conditionality, for which annotators achieved substantial to near perfect agreement

(κ> 0. 8).

Inter-annotator agreement scores for certainty and sentiment were influenced

negatively by the fact that one of the values that annotators could choose for these

qualifiers was ‘neutral’; some annotators assigned this qualifier to every segment

that did not clearly express a certainty or a sentiment, while others assigned a

certainty or a sentiment qualifier only to those segments which they judged as

expressing a particular sentiment or (un)certainty.

6.4 Annotated Corpora

6.4.1 The DBOX Corpus

In the European project DBOX,7 which aims to develop interactive games based on

spoken natural language human-computer dialogues, a corpus has been collected in

a Wizard-of-Oz setting. A set of quiz games was designed where the Wizard holds

the facts about a famous person’s life and the player’s task is to guess this person’s

name by asking questions.

In total 338 dialogues were collected with a total duration of 16 h, comprising

about 6000 speaking turns. The collected data has been transcribed and annotated

using the ISO 24617-2 annotation scheme. Table 6.9 shows that inter-annotator

agreement between two trained annotators ranged between 0.55 and 0.94 in terms

of Cohen’s kappa for segmentation and between 0.55 and 1.00 for the annotation of

dialogue acts in the various dimensions (see [38] for details). For relations between

dialogue acts the agreements ranged from 0.66 to 0.88.

Table 6.8 Cohen’s kappa scores for inter-annotator agreement on the assignment of qualifiers per

annotator pair for AMI and TRAINS data

Annotator AMI dialogues TRAINS dialogues

pair Certainty Conditionality Sentiment Certainty Conditionality

1, 2 0.49 0.79 0.70 0.64 0.88

1, 3 0.48 0.64 0.66 0.70 0.73

1, 4 0.42 0.65 0.25 0.64 0.93

2, 3 0.47 0.85 0.60 0.68 0.64

2, 4 0.35 0.79 0.36 0.71 0.88

3, 4 0.38 0.65 0.30 0.75 0.73

7Eureka project E! 7152, see https://www.lsv.uni-saarland.de/index.php?id¼71.

122 H. Bunt et al.

https://www.lsv.uni-saarland.de/index.php?id=71
https://www.lsv.uni-saarland.de/index.php?id=71


6.4.2 Youth Parliament Debate Data

As part of the FP 7 European project Metalogue,8 data have been analysed from

three sessions of the UK Youth Parliament (YP). The sessions are video recorded

and available on YouTube.9 In these sessions, the YP members, aged 11–18, debate

issues addressing sex education; university tuition fees; and job opportunities for

young people.

The annotated corpus consists of 1388 functional segments from 35 speakers.

Table 6.10 provides an overview of the relative frequencies of functional tags per

ISO-dimension.

Of the dialogue acts in the Task dimension, 41.4% are Inform acts, which are

often connected by rhetorical relations. For example:

(11) D121: Let us be clear, sex education covers a wide range of issues

affecting young people [Inform]
D122: These include safe sex practices, STIs and legal issues

surrounding consent and abuse [Inform Elaboration D121]

The ISO 24617-2 standard does not prescribe the use of any particular set of

rhetorical relations; for the annotation of the DBOX corpus a combination was used

of the hierarchy of relations used in the PennDiscourse Treebank (PDTB, [41]) and the

taxonomy defined in [27]. Table 6.11 shows the distribution in the corpus of the

rhetorical relations associated with Inform acts. The corpus is used for designing the

DialogueManagermoduleof the dialogue system that is built in theMetalogueproject.

Table 6.9 Inter-annotator agreement on segmentation and annotation of communicative

functions per ISO dimension and on annotation of relations of the ISO relation types

ISO 24617-2 dimension Segmentation (κ) Function (κ)
Task 0.88 0.81

Auto-feedback 0.78 0.79

Allo-Feedback 0.94 0.95

Turn Management 0.71 0.64

Time Management 0.86 0.86

Discourse Structuring 0.88 0.55

Own Communication Management 0.55 0.98

Partner Communication Management n.a. n.a.

Social Obligations Management 0.77 1.00

ISO 24617-2 relation type Relations

Functional dependence 0.88 0.68

Feedback dependence 0.88 0.88

Rhetorical relations 0.88 0.68

8See http://www.metalogue.eu.
9See, for example, http://www.youtube.com/watch?v¼g2Fg-LJHPA4. For information about the

UK Youth Parliament, see http://www.ukyouthparliament.org.uk/

6 Dialogue Act Annotation with the ISO 24617-2 Standard 123

http://www.metalogue.eu
http://www.youtube.com/watch?v=g2Fg-LJHPA4
http://www.youtube.com/watch?v=g2Fg-LJHPA4
http://www.ukyouthparliament.org.uk/


6.4.3 The SWBD-ISO Corpus

Fang and collaborators made an effort to assign ISO 24617-2 annotations to the

dialogues in the Switchboard Dialog Act (SWBD-DA) corpus (see Fang

et al. [20–22]).10 This resource contains 1155 5-min conversations, orthographi-

cally transcribed in about 1.5 million word tokens. Each utterance in the corpus is

segmented in ‘slash units’, defined as “maximally a sentence; slash units below the

sentence level correspond to parts of the narrative which are not sentential but which

the annotator interprets as complete” [35]. The corpus comprises 223,606 slash units,

which are annotated with a communicative function tag from the SWBD-DAMSL

annotation scheme, a variation of the DAMSL scheme defined specifically for this

purpose [32]. See example (6.4.3), where ‘qy’ is the SWBD-DAMSL tag for yes/no

questions and ‘utt1’ indicates the first slash unit within a turn.

Table 6.10 Distribution of

functional tags across

ISO-dimensions in the UK YP

corpus

ISO 24617-2 dimension Frequency (%)

Task 54.9

Auto Feedback 2.9

Allo Feedback 1.0

Turn Management 22.7

Time Management 21.1

Discourse Structuring 10.0

Own Communication Management 7.3

Partner Communication Management 0.0

Social Obligations Management 1.2

Table 6.11 Distribution of

rhetorical relations associated

with Inform acts in the corpus

Rhetorical Relative Annotator

relation frequency agreement

Elaborationa 28.1 0.67

Evidencea 21.4 0.72

Justifyb 16.1 0.76

Conditionb 0.7 0.34

Motivationa 1.4 0.48

Backgrounda 0.3 0.18

Causeb 3.4 0.37

Resultb 2.2 0.26

Reasonc 10.6 0.33

Concludea 5.7 0.71

Restatementb 10.1 0.76

Inter-annotator agreement in terms of Cohen’skappaa As defined

by Hovy and Maier [27]b In bothtaxonomiesc As defined in the

PDTB

10The Switchboard corpus is distributed by the Linguistic Data Consortium: https://www.ldc.

upenn.edu.

124 H. Bunt et al.

https://www.ldc.upenn.edu
https://www.ldc.upenn.edu


(12) qy A.1 utt1: { D Well, } { F uh, } does the company you work for test for

drugs? /

In addition to this marking up of communicative functions, in-line markups are

also used to mark ‘discourse markers’ such as { D Well, }, which often signal a

rhetorical relation; filled pauses, like { F uh, }, restarts and repetitions, such as

[I think, I think] and some other types of ‘disfluencies’.

To assess the possibility of converting SWBD-DA annotations to ISO 24617-2

annotations, first a detailed comparison was made of the two sets of communicative

functions, revealing 14 one-to-one correspondences and 26 many-to-one equiva-

lences. These tags can thus be converted automatically to ISO tags, which accounts

for 83.97% of the SWBD-DAMSL tags in the corpus. Six SWBD-DAMSL func-

tion tags have a one-to-many correspondence with 26 ISO tags, corresponding to

5.74% of the Switchboard corpus; about 30% of these cases can be converted

automatically to an ISO tag by taking the tagging of the preceding slash unit into

account; for example, an utterance tagged ‘aa’ (i.e., Accept) following an offer

should be assigned the ISO tag Accept Offer, while it should be assigned the ISO tag

Accept Request when following a request. For those cases where such a contextual

disambiguation does not help, manual annotation was performed (see Fang

et al. [22]).11

Altogether, through combined automatic conversion and manual annotation

200.605 utterances (89.71% of the Switchboard corpus) were assigned ISO

24617-2 communicative function tags. Table 6.12 shows the distribution of func-

tion tags in the resulting ‘SWBD-ISO’ corpus.

6.4.4 The DialogBank

In a recent initiative at Tilburg University a publicly available corpus has been

created called the DialogBank, which consists of dialogues with gold standard

annotations in DiAML according to the ISO 24617-2 standard. While

recommending the use of XML for representing annotation structures as defined

by the DiAML abstract syntax, the standard allows representations in other formats

as long as these have the properties of being (1) complete, i.e. defining a rendering

of any annotation structure defined by the abstract syntax, and (2) unambiguous,
i.e. every representation encodes only one annotation structure. Representation

formats that have these properties can be converted to and from the DiAML-

XML format without loss of information. For some of the dialogues in the

DialogBank, an alternative tabular representation format was defined that has

11The remaining 10.29% of SWBD-DAMSL tags cannot be converted into ISO tags since they are

not really concerned with communicative functions, such as the SWBD-DAMSL tags ‘non-

verbal’, ‘uninterpretable’, ‘quoted material’, ‘transcription error’.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 125



T
a
b
le

6
.1
2

D
is
tr
ib
u
ti
o
n
o
f
IS
O

2
4
6
1
7
-2

co
m
m
u
n
ic
at
iv
e
fu
n
ct
io
n
ta
g
s
th
e
S
W
B
D
-I
S
O

co
rp
u
s

IS
O
2
4
6
1
7
-2

U
tt
er
an
ce
s

IS
O
2
4
6
1
7
-2

U
tt
er
an
ce
s

C
o
m
m
.
fu
n
ct
io
n
s

#
%

C
u
m

%
C
o
m
m
.
fu
n
ct
io
n
s

#
%

C
u
m

%

in
fo
rm

1
2
0
2
2
7

5
3
.7
6
7

5
3
.7
7

in
st
ru
ct

1
0
6

0
.0
4
7

8
9
.4
4

au
to
P
o
si
ti
v
e

4
6
3
8
2

2
0
.7
4
3

7
4
.5
1

ac
ce
p
tS
u
g
g
es
t

9
9

0
.0
4
4

8
9
.4
8

ag
re
em

en
t

1
0
9
3
4

4
.8
9
0

7
9
.4
0

ac
ce
p
tA
p
o
lo
g
y

7
9

0
.0
3
5

8
9
.5
2

p
ro
p
o
si
ti
o
n
al
Q
u
es
ti
o
n

5
8
9
6

2
.6
3
7

8
2
.0
4

th
an
k
in
g

7
9

0
.0
3
5

8
9
.5
5

co
n
fi
rm

3
1
1
5

1
.3
9
3

8
3
.4
3

o
ff
er

7
1

0
.0
3
2

8
9
.5
8

in
it
ia
lG
o
o
d
b
y
e

2
6
6
1

1
.1
9
0

8
4
.6
2

ac
ce
p
tR
eq
u
es
t

6
5

0
.0
2
9

8
9
.6
1

se
tQ
u
es
ti
o
n

2
1
7
4

0
.9
7
2

8
5
.5
9

si
g
n
al
S
p
ea
k
in
g
E
rr
o
r

5
6

0
.0
2
5

8
9
.6
4

d
is
co
n
fi
rm

1
5
9
7

0
.7
1
4

8
6
.3
1

p
ro
m
is
e

4
1

0
.0
1
8

8
9
.6
6

an
sw

er
1
5
2
2

0
.6
8
1

8
6
.9
9

co
rr
ec
ti
o
n

2
9

0
.0
1
3

8
9
.6
7

ch
ec
k
Q
u
es
ti
o
n

1
4
7
1

0
.6
5
8

8
7
.6
4

ac
ce
p
tO
ff
er

2
6

0
.0
1
2

8
9
.6
8

co
m
p
le
ti
o
n

8
1
3

0
.3
6
4

8
8
.0
1

tu
rn
T
ak
e

1
8

0
.0
0
8

8
9
.6
9

q
u
es
ti
o
n

6
8
0

0
.3
0
4

8
8
.3
1

al
lo
P
o
si
ti
v
e

1
7

0
.0
0
8

8
9
.7
0

st
al
li
n
g

5
8
0

0
.2
5
9

8
8
.5
7

co
rr
ec
tM

is
sp
ea
k
in
g

1
4

0
.0
0
6

8
9
.7
0

ch
o
ic
eQ

u
es
ti
o
n

5
0
6

0
.2
2
6

8
8
.8
0

se
lf
C
o
rr
ec
ti
o
n

8
0
.0
0
4

8
9
.7
1

su
g
g
es
t

3
6
9

0
.1
6
5

8
8
.9
6

ac
ce
p
tT
h
an
k
in
g

6
0
.0
0
3

8
9
.7
1

au
to
N
eg
at
iv
e

3
0
7

0
.1
3
7

8
9
.1
0

d
ec
li
n
eO

ff
er

3
0
.0
0
1

8
9
.7
1

re
q
u
es
t

2
7
8

0
.1
2
4

8
9
.2
2

d
ec
li
n
eR

eq
u
es
t

3
0
.0
0
1

8
9
.7
1

d
is
ag
re
em

en
t

2
5
8

0
.1
1
5

8
9
.3
4

tu
rn
R
el
ea
se

2
0
.0
0
1

8
9
.7
1

ap
o
lo
g
y

1
1
2

0
.0
5
0

8
9
.3
9

d
ec
li
n
eS
u
g
g
es
t

1
0
.0
0
0

8
9
.7
1

n
o
n
-f
u
n
ct
io
n
al

ta
g
s

2
3
0
0
1

1
0
.2
9

1
0
0
.0
0

T
o
ta
l

2
2
3
6
0
6

1
0
0
.0
0

126 H. Bunt et al.



these properties and that is more convenient for human readers (see Bunt

et al. [14]).

The annotations include not only the multidimensional marking up of commu-

nicative functions and dimensions, but also of functional dependence relations;

feedback dependence relations; rhetorical relations; and qualifiers for certainty,

conditionality and sentiment.

The DialogBank currently contains dialogues taken from four English-language

corpora: the HCRC Map Task, Switchboard, TRAINS, and DBOX corpora, and

four Dutch-language corpora: the OVIS, DIAMOND, Dutch Map Task,12 and

Schiphol13 corpora. Addition is foreseen of dialogues from the AMI corpus, the

YP corpus, and several other corpora.

6.4.4.1 Map Task and DBOX Dialogues

The Map Task and DBOX dialogues in the DialogBank were annotated using the

ANVIL tool in which a facility has been created to export annotations in the

DiAML-XML reference format of ISO 24617-2 [13]. Example (14) in the Appen-

dix shows the result for a very short dialogue fragment. This format is perfect for

machine consumption, but rather inconvenient for human readers, for example for

checking the correctness of annotations. The more compact tabular formats shown

below are more attractive in that respect.

The DBOX application (quiz game dialogues) called for some small extensions

to the ISO annotation scheme, which were made in accordance with the guidelines

included in the ISO 24617-2 standard for extending the annotation scheme. Two

additional dimensions were introduced: Task Management (also familiar from

DAMSL), for dialogue acts where the rules of the game are discussed, and Contact

Management, also familiar from DITþþ, for dialogue acts where the participants

establish, check, or end contact between them.

6.4.4.2 Switchboard Dialogues

The dialogues in the Switchboard corpus were originally represented in a 3-column

tabular format where the leftmost column contains an identifier of the slash unit in

the third column, and the middle column contains an SWBD-DAMSL function

tag.14 In constructing the SWBD-ISO corpus, all in-line markups of filled pauses

were replaced by Stalling tags and in-line markups of restarts by SelfCorrection
tags. The result looks as shown in (13).

12See http://doc//.ukdataservice.ac.uk/doc/4632/mrdoc/pdf/4632userguide.pdf.
13See Prüst et al. [42].
14The Switchboard corpus is also available in NXT format [15], without in-line markups.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 127

http://doc.ukdataservice.ac.uk/doc/4632/mrdoc/pdf/4632userguide.pdf


(13)

While convenient for human readers, this format is not optimal for computer

processing. The numbering of speaker turns and slash units is redundant (and turns

have no special status in the ISO standard), and the rightmost column contains a

mixed bag of information types (speaker, turn number, slash unit number within

turn, transcribed slash unit, and disfluency and other markups). It could be

converted to an XML representation like DiAML-XML by interpreting the first

column as the values of the xml:id attribute, the second as the values of the
communicativeFunction attribute, and the third as the values of the sender

and target attributes and the textual rendering of slash units. However, represen-

tations like (13) differ from DiAML-annotations in three fundamental respects:

(1) slash units do not always correspond to functional segments, which in general

form a more fine-grained way of segmenting a dialogue; (2) the use of in-line

markups goes against the ISO requirement that annotations should be in stand-off

form; and (3) annotations according to ISO 24617-2 contain more information than

just communicative functions, in particular also dimensions, qualifiers, and depen-

dence relations, which are semantically indispensable.

These differences are taken into account in the design of a tabular representation

format, called ‘DiAML-TabSW’, that is relatively close to that of (6.4.4.2), and

facilitates comparison between the SWBD-DAMSL and ISO annotation schemes.

For incorporating annotated Switchboard dialogues into the DialogBank, first,

existing annotated dialogues were re-segmented into functional segments, and the

functional segments that do not correspond to a slash unit were newly annotated

with ISO 24617-2 communicative function tags and dimension tags. Second, a copy

was made of the slash unit transcriptions in which all in-line markups were

interpreted in terms of communicative functions, rhetorical relations, or qualifiers

whenever possible, and removed. Third, the functional segments were represented

in stand-off fashion by referring to a file that contains segment definitions in terms

of word tokens or time points. Finally, the annotations of functional segments were

enriched with functional and feedback dependences, qualifiers, and rhetorical

relations.

sw01-0105-0001-A001-01 setQuestion

A.1 utt1: Jimmy, {D so } how do you

get most of your news? /

sw01-0105-0002-B002-01 stalling B.2 utt1: {D Well, } [ I kind of, +

selfCorrection {F uh, } I ] watch the,

stalling {F uh, } national news

answer everyday, for one /

sw01-0105-0003-B002-02 answer B.2 utt2: I also read one or two papers

a day /

sw01-0105-0004-B002-03 selfCorrection

inform

B.2 utt3: {C and } [ I’m a, + I’m

pretty much a ] news junkie /

sw01-0105-0005-B002-04 answer B.2 utt4: {C and } I tune in to CNN

a lot./

sw01-0105-0006-A003-01 autoPositive A 3 utt1: {F Oh, } wow /

128 H. Bunt et al.



Figure 6.1 shows the resulting representation. The first four columns represent

the annotations proper: (1) functional segment identifiers; (2) dialogue act identi-

fiers; (3) dialogue acts; and (4) sender, with much of the information concentrated

in the third column: dimension, communicative function, dependences (as in “Ta:

answer (da2)”), qualifiers and rhetorical relations. The fifth and sixths, s, containing

functional segment texts and turn transcripts, column have been added for the

convenience of human readers, and have no formal status.

markables ID Dialogue acts Sp FS text Turn transcript
sw01-0105-fs.1 da1 Ta:setQuestion A Jimmy, so how Jimmy, {D so } how

do you get most do you get most
of your news? of your news? /

B {D Well, } [ I kind of,
+ {F uh, } I ] watch
the, national news
every day, for one /
I also read one or two
papers a day /
{C and } [ I’m a,
+ I’m pretty much a ] /
news junkie {C and } I
tune in to CNN a lot /

sw01-0105-fs.2 da2 TiM:stalling B Well,
da3 TuM:turnTake

sw01-0105-fs.3 da4 OCM: B I kind of, I
selfCorrection

sw01-0105-fs.4 da5 TiM;stalling B uh
sw01-0105-fs.5 da6 Ta:answer

(Fu:da1)
B I watch the national

news every day,
for one

sw01-0105-fs.6 da7 TiM:stalling B uh
sw01-0105-fs.7 da8 Ta:answer (da2) B I also read one or

{Expansion: two papers a day
foregr da7}

sw01-0105-fs.8 da9 TuM:turnKeep B and
sw01-0105-fs.9 da10 OCM: B I’m a, I’m pretty

selfCorrection much a
sw01-0105-fs.10 da11 Ta:inform B I’m pretty much a

news junkie
sw01-0105-fs.11 da12 TuM:turnKeep B and
sw01-0105-fs.12 da13 Ta:answer

(Fu:da1)
B I tune in to CNN

{Expansion:
a lot

foregr da7, da9}
sw01-0105-fs.13 da14 AuF:autoPositive

(Fe: da6 ,da8,
da13)

A Oh, wow. Oh, wow

Fig. 6.1 ISO 24617-2 annotation of dialogue fragment in example (6.4.4.2), represented in

DiAML-TabSW format. (Ta¼Task, TiM¼Time Management, TuM¼Turn Management,

OCM¼Own Communication Management, AuF¼Auto-Feedback)

6 Dialogue Act Annotation with the ISO 24617-2 Standard 129



6.4.4.3 Other Annotated Dialogues and Their Representation

The dialogues in the DIAMOND corpus were originally annotated with the DITþþ

annotation scheme, for which the DitAT annotation tool was developed [23]; this

tool produces representations in a multi-column tabular format with a separate

column for each dimension. For inclusion of ISO 24617-2 versions of these

annotations in the DialogBank, a new multi-column tabular format was defined,

the ‘DiAML-MultiTab’ format, with one column identifying functional segments in

stand-off fashion, as in the DiAML-TabSW format, one column indicating the

speaker, and one column per dimension for representing communicative functions,

qualifiers, dependence relations, and rhetorical relations. Figure 6.2 illustrates this

format, which was proven to be convertible without loss of information to DiAML-

XML and vice versa [14]. In the example, those columns have been suppressed that

correspond to dimensions in which no communicative functions were marked up

for this fragment.

The DiAML-MultiTab format was used also for representing re-annotated

dialogues from the OVIS and TRAINS corpora, and newly annotated Schiphol

dialogues.

mark- sp fs text turn Task Auto- Turn Time Discourse SocialObl.
ables transcript Feedback Man. Man. Struct. Man.

hello, can I
help you

TR1-fs.1 s hello da1:Init.
Greeting

TR1-fs.2 s can I da2:Offer
help you

uhm, yes
hello,maybe,
I’d like to
take a
tanker...

TR1-fs.3 u uhm da3: da4:
Turn Stalling
Take

TR1-fs.4 u yes hello da5:Pos.
(Fe:da1)

TR1-fs.5 u yes maybe da6:
Accept
Offer
[uncertain]
(Fu:da2)

TR1-fs.6 u I’like to da7:
take... Inform

Fig. 6.2 ISO 24617-2 annotation of TRAINS dialogue fragment represented in DiAML-MultiTab

format

130 H. Bunt et al.



6.5 Conclusions and Perspectives

The ISO 24617-2 standard for dialogue annotation has as its main features a rich

taxonomy of clearly defined communicative functions, including many functions

from previously developed annotation schemes such as DAMSL, DITþþ, and ICSI-
MRDA; the distinction of nine dimensions, inherited from the DITþþ schema;

functional and feedback dependence relations that account for semantic depen-

dences between dialogue acts; the use of qualifiers for expressing (un�)certainty,

conditionality and sentiment; and rhetorical relations among dialogue acts. In this

chapter, experiences and experiments were discussed that investigate how these

features play out in human and automatic dialogue annotation.

New and emerging corpora were discussed that contain dialogues, annotated

according to the ISO 24617-2 standard, notably the DBOX, YP, and DialogBank

corpora. Such resources offer a promising basis for the study of human communi-

cation as well as for the design and training of modules in dialogue systems, such as

recognizers of communicative functions in human interactive behaviour, and dia-

logue managers in speech-based or multimodal dialogue systems.

Appendix

This appendix shows the ISO 24617-2 annotation of the first two utterances of a

Map Task dialogue in the DialogBank corpus, as produced with the ANVIL tool

and exported in DiAML format. In a TEI-compliant way,15 the first part identifies

the two dialogue participants (“p1” and “p2”), followed by a second part that

identifies the word tokens in the audio-video input stream, and a third part that

identifies the functional segments in terms of the word tokens. The last part

represents the dialogue act annotations in the DIAML format of the ISO standard.

(14) G: right

G: go south and you’ll pass some cliffs on your right

F: okay

<?xml version¼"1.0" encoding¼"UTF-8"?>

<TEI xmlns¼"http://www.tei-c.org/ns/1.0">

<profileDescr xmlns¼"">

<particDescr xml:id¼"p1">

<p>the 1. participant</p>

</particDescr>

<particDescr xml:id¼"p2">

<p>the 2. participant</p>

15Text Encoding Initiative: www.tei.org.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 131

http://www.tei.org


</particDescr>

</profileDescr>

<text>

<body />

<div>

<head>The dialogue turns, segmented into words

(TEI-compliant)</head>

<u>

<w xml:id¼"w1">right</w>

<w xml:id¼"w2">go</w>

<w xml:id¼"w3">south</w>

<w xml:id¼"w4">and</w>

<w xml:id¼"w5">you’ll</w>

<w xml:id¼"w6">pass</w>

<w xml:id¼"w7">some</w>

<w xml:id¼"w8">cliffs</w>

<w xml:id¼"w9">on</w>

<w xml:id¼"w10">your</w>

<w xml:id¼"w11">right</w>

<w xml:id¼"w12">okay</w>

...

</u>

</div>

<div>

<head>Identification of functional segments</head>

<spanGrp xml:id¼"ves1" type¼"functionalVerbalSegment">

<span xml:id¼"ts1" type¼"textStretch" from¼"w1" to¼"w1" />

</spanGrp>

<fs type¼"functionalSegment" xml:id¼"fs1">

<f name¼"verbalComponent" fVal¼"#ves1" />

</fs>

<spanGrp xml:id¼"ves2" type¼"functionalVerbalSegment">

<span xml:id¼"ts2" type¼"textStretch" from¼"w2" to¼"w11" />

</spanGrp>

<fs type¼"functionalSegment" xml:id¼"fs2">

<f name¼"verbalComponent" fVal¼"#ves2" />

</fs>

<spanGrp xml:id¼"ves3" type¼"functionalVerbalSegment">

<span xml:id¼"ts3" type¼"textStretch" from¼"w12" to¼"w12" />

</spanGrp>

<fs type¼"functionalSegment" xml:id¼"fs3">

<f name¼"verbalComponent" fVal¼"#ves3" />

</fs>

</div>

<diaml xmlns¼"http://www.iso.org/diaml">

132 H. Bunt et al.



<dialogueAct xml:id¼"da1"

target¼"#fs1" sender¼"#p1" addressee¼"#p2"

dimension¼"turnManagement" communicativeFunction¼"turnTake" />

<dialogueAct xml:id¼"da2"

target¼"#fs1" sender¼"#p1" addressee¼"#p2"

dimension¼"discourseStructuring"communicativeFunction¼"opening" />

<dialogueAct xml:id¼"da3"

target¼"#fs2" sender¼"#p1" addressee¼"#p2"

dimension¼"task" communicativeFunction¼"instruct" />

<dialogueAct xml:id¼"da4"

target¼"#fs3" sender¼"#p2" addressee¼"#p1"

dimension¼"autoFeedback" communicativeFunction¼"autoPositive"

feedbackDependence¼"#fs2" />

</diaml>

</text>

</TEI>

References

1. Alexandersson, J., Buschbeck-Wolf, B., Fujinami, T., Kipp, M., Koch, S., Maier, E.,

et al. (1998). Dialogue acts in VERBMOBIL-2 (second edition). Verbmobil Report 226.

Saarbrücken: DFKI.
2. Allen, J., & Core, M. (1997). DAMSL: Dialogue act markup in several layers (Draft 2.1).

Technical Report. Rochester, NY: University of Rochester.

3. Allwood, J. (1992). On dialogue cohesion. Gothenburg University, Department of Linguistics.

4. Bunt, H. (1994). Context and dialogue control. Think Quarterly, 3(1), 19–31.
5. Bunt, H. (2000). Dialogue pragmatics and context specification. In H. Bunt &W. Black (Eds.),

Abduction, belief and context in dialogue. Studies in computational pragmatics (pp. 81–150).
Amsterdam: John Benjamins.

6. Bunt, H. (2006). Dimensions in dialogue annotation. In Proceedings 5th International Con-
ference on Language Resources and Evaluation (LREC 2006), Genova, Paris. ELRA.

7. Bunt, H. (2009). The DITþþ taxonomy for functional for dialogue markup. In D. Heylen,

C. Pelachaud, R. Catizone, & D. Traum (Eds.), Proceedings of EDAML-AAMAS Workshop
“Towards a Standard Markup Language for Embodied Dialogue Acts”, Budapest (pp. 36–48).

8. Bunt, H. (2011). Multifunctionality in dialogue. Computer, Speech and Language, 25,
222–245.

9. Bunt, H. (2015). On the principles of semantic annotation. In Proceedings 11th Joint ACL-ISO
Workshop on Interoperable Semantic Annotation (ISA-11), London (pp. 1–13).

10. Bunt, H., Alexandersson, J., Carletta, J., Choe, J.-W., Fang, A., Hasida, K., et al. (2010).

Towards and ISO standard for dialogue act annotation. In Proceedings 7th International
Conference on Language Resources and Evaluation (LREC 2010), Malta, Paris. ELDA.

11. Bunt, H., Alexandersson, J., Choe, J.-W., Fang, A., Hasida, K., Petukhova, V., et al. (2012).

ISO 24617-2: A semantically-based standard for dialogue annotation. In Proceedings of 8th
International Conference on Language Resources and Evaluation (LREC 2012), Istanbul.
Paris: ELDA.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 133



12. Bunt, H., Fang, A., Cao, J., Liu, X., & Petukhova, V. (2013). Issues in the addition of ISO

standard annotations to the Switchboard corpus. In Proceedings 9th Joint ISO - ACL SIGSEM
Workshop on Interoperable Semantic Annotation (ISA-9), Potsdam (pp. 59–70).

13. Bunt, H., Kipp, M., & Petukhova, V. (2012). Using DiAML and ANVIL for multimodal

dialogue annotation. In Proceedings 8th International Conference on Language Resources and
Evaluation (LREC 2012), Istanbul. Paris: ELRA.

14. Bunt, H., Petukhova, V., Malchanau, A., & Wijnhoven, K. (2016). The DialogBank. In

Proceedings 10th International Conference on Language Resources and Evaluation (LREC
2016), Portoroz, Slovenia. Paris: ELRA.

15. Calhoun, S., Carletta, J., Brenier, J., Mayo, N., Jurafsky, D., Steedman, M., et al. (2010). The

NXT-format Switchboard corpus: A rich resource for investigating the syntax, semantics,

pragmatics and prosody of dialogue. Language Resources and Evaluation, 44(4), 387–419.
16. Carletta, J., Isard, S., Kowtko, J., & Doherty-Sneddon, G. (1996). HCRC dialogue structure

coding manual. Technical Report HCRC/TR-82, University of Edinburgh.

17. Cohen, J. (1960). A coefficient of agreement for nominal scales. Education and Psychological
Measurement, 20, 37–46.

18. Cohen, J. (1968). Weighted kappa: Nominal scale agreement with provision for scaled

disagreement or partial credit. Psychological Bulletin, 70, 213–261.
19. Dhillon, R., Bhagat, S., Carvey, H., & Schriberg, E. (2004).Meeting recorder project: Dialogue

labelling guide. ICSI Technical Report TR-04-002. University of California at Berkeley.

20. Fang, A., Cao, J., Bunt, H., & Liu, X. (2011). Relating the semantics of dialogue acts to

linguistic properties: A machine learning perspective through lexical cues. In Proceedings
IEEE-ICSC 2011 Workshop on Semantic Annotation for Computational Linguistic Resources,
Stanford, CA.

21. Fang, A., Cao, J., Bunt, H., & Liu, X. (2012). The annotation of the Switchboard corpus with

the new ISO standard for dialogue act analysis. In Proceedings 8th Joint ISO - ACL SIGSEM
Workshop on Interoperable Semantic Annotation (ISA-8), Pisa (pp. 13–18).

22. Fang, A., Cao, J., Bunt, H., & Liu, X. (2012). Applicability verification of a new ISO standard

for dialogue act annotation with the Switchboard corpus. In Proceedings of EACL 2012
Workshop on Innovative Hybrid Approaches to the Processing of Textual Data, Avignon.

23. Geertzen, J. (2007). DitAT: A flexible tool to support web-based dialogue annotation. In

Proceedings 7th International Conference on Computational Semantics (IWCS-7), Tilburg
(pp. 320–323).

24. Geertzen, J., & Bunt, H. (2006). Measuring annotator agreement in a complex, hierarchical

dialogue act schema. In Proceedings SIGDIAL 2006, Sydney.
25. Geertzen, J., Girard, Y., & Morante, R. (2004). The DIAMOND project. In Proceedings of 8th

Workshop on the Semantics and Pragmatics of Dialogue (CATALOG 2004), Barcelona.
26. Geertzen, J., Petukhova, V., & Bunt, H. (2008). Evaluating dialogue act tagging with naive and

expert annotators. In Proceedings 6th International Conference on Language Resources and
Evaluation (LREC 2008), Marrakech. Paris: ELDA.

27. Hovy, E., & Maier, E. (1995). Parsimonious or profligate: How many and which discourse
structure relations? ISI Research Report. Marina del Rey: Information Sciences Institute,

University of Southern California.

28. Ide, N., & Romary, L. (2004). International standard for a linguistic annotation framework.

Natural Language Engineering, 10, 211–225.
29. ISO (2011). ISO 24612: Language Resource Management - Linguistic Annotation Framework

(LAF). Geneva: ISO.
30. ISO (2012). ISO 24617-2: Language Resource Management - Semantic Annotation Frame-

work (SemAF) - Part 2: Dialogue Acts. Geneva: ISO.

31. ISO (2016). ISO 24617-6: Language Resource Management - Semantic Annotation Frame-

work (SemAF) - Part 6: Principles of Semantic Annotation. Geneva: ISO.

32. Jurafsky, D., Shriberg, E., & Biasca, D. (1997). Switchboard SWBD-DAMSL shallow-
discourse-function annotation: Coders manual, Draft 1.3. University of Colorado.

134 H. Bunt et al.



33. Lendvai, P., van den Bosch, A., Krahmer, E., & Canisius, S. (2004). Memory-based robust

interpretation of recognised speech. In Proceedings 9th International Conference on Speech
and Computer (SPECOM’04), St. Petersburg (pp. 415–422).

34. Lesch, S., Kleinbauer, T., & Alexandersson, J. (2005). A new metric for the evaluation of

dialog act classification. In Proceedings 9th Workshop on the Semantics and Pragmatics of
Dialogue (DIALOR), Nancy.

35. Meteer, M., & Taylor, A. (1995). Dysflency annotation stylebook for the Switchboard corpus.
Washington: Linguistic Data Consortium.

36. Petukhova, V. (2011). Multidimensional dialogue modelling. Ph.D. dissertation. Tilburg

University.

37. Petukhova, V., & Bunt, H. (2011). Incremental dialogue act understanding. In Proceedings
Ninth International Conference on Computational Semantics (IWCS 2011), Oxford (pp. 235–

244).

38. Petukhova, V., Gropp, M., Klakow, D., Eigner, G., Topf, M., Srb, S., et al. (2014). The DBOX

corpus collection of spoken human-human and human-machine dialogues. In Proceedings 9th
International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik,
Iceland.

39. Petukhova, V., Prévot, L., & Bunt, H. (2011). Multi-level discourse relations between dialogue

units. In Proceedings 6th Joint ACL-ISO Workshop on Interoperable Semantic Annotation
(ISA-6), Oxford (pp. 18–28).

40. Popescu-Belis, A. (2005). Dialogue acts: One or more dimensions? ISSCOWorking Paper 62.

Geneva: ISSCO.

41. Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A., et al. (2008). The Penn

Discourse TreeBank 2.0. In Proceedings 6th International Conference on Language Resources
and Systems (LREC 2008), Marrakech.

42. Prüst, H., Minnen, G., & Beun, R.-J. (1984). Transcriptie dialooogesperiment juni/juli 1984.
IPO Rapport 481. Institute for Perception Research, Eindhoven University of Technology.

43. Reithinger, N., & Klesen, M. (1997). Dialogue act classification using language models. In

Proceedings of Eurospeech-97 (pp. 2235–2238).

44. Samuel, K., Carberry, S., & Vijay-Shanker, K. (1998). Dialogue act tagging with

transformation-based learning. In Proceedings ACL 1998, Montreal (pp. 1150–1156).

45. Stolcke, A., Res, K., Coccaro, K., Shriberg, E., Bates, R., Jurafsky, D., et al. (2000). Dialogue

act modeling for automatic tagging and recognition of conversational speech. Computational
Linguistics, 26(3), 339–373.

46. Traum, D. (2000). 20 questions on dialogue act taxonomies. Journal of Semantics, 17(1), 7–30.
47. Zimmermann, M., Lui, Y., Shriberg, E., & Stolcke, A. (2005). Toward joint segmentation and

classification of dialogue acts in multiparty meetings. In Proceedings of the Multimodal
Interaction and Related Machine Learning Algorithms Workshop (MLMI-05) (pp. 187–193).
Berlin: Springer.

6 Dialogue Act Annotation with the ISO 24617-2 Standard 135



Chapter 7

Six-Layered Model for Multimodal
Interaction Systems

Kouichi Katsurada, Tsuneo Nitta, Masahiro Araki,

and Kazuyuki Ashimura

Abstract We have proposed a six-layered model for multimodal interaction

(MMI) systems as an Information Technology Standards Commission of Japan

(ITSCJ) standard. It specifies an architecture of an MMI system composed of six

layers: application layer, task control layer, a-modal dialogue control, a-modal ,
multimodal conversion, modality-dependent layer, and input–output devices. The

standard defines the role of each layer in an MMI system, its granularity, and

the events transferred between the layers. The EMMA format is employed as the

container of the input results. In this chapter, we introduce the outline of

the proposed model and show its practical implementation as a Web-based MMI

system.

7.1 Background

Multimodal interaction (MMI) is expected to be a future human–machine interface

to communicate with smart phones, car navigation systems, information appliances,

robots, and so on. Many researchers have developed advanced MMI systems, and

K. Katsurada (*)

Department of Information Science, Tokyo University of Science, Noda-shi, Chiba, Japan

e-mail: katsurada@rs.tus.ac.jp

T. Nitta

Green Computing Systems Research Organization, Waseda University,

Shinjuku-ku, Tokyo, Japan

M. Araki

Department of Information Science, Kyoto Institute of Technology, Kyoto, Japan

K. Ashimura

Keio Research Institute at SFC, Keio University, Fujisawa-shi,

Kanagawa, Japan

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_7

137

mailto:katsurada@rs.tus.ac.jp


demonstrated them at some exhibitions and research conferences [1]. However,

they are not regularly used in daily life because researchers do not usually publish

the detailed specifications of their MMI systems such as module configuration and

message transfer. Therefore, if a developer would like to reuse parts of an existing

MMI system, it is difficult because its modules are a kind of black box. Hence, it is

necessary to specify some standards that help rapid implementation of the modules

that are connected in an MMI system in a complicated way and reduce troubles in

building the whole system.

The W3CMMI working group [2] has proposed some standards to cope with the

problem. The group launched in 2002 and published five specifications and some

notes on system architecture: some markup languages to represent input interpre-

tation, emotion, and so on. For system architecture, they published a Russian Doll

model based on the model-view-controller (MVC) paradigm [3]. Because the

Russian Doll model enables modules that are designed with arbitrary granularity,

it has a great flexibility in designing the modules in an MMI system. The group also

proposed an XML-based language, EMMA (Extensible Multimodal Annotation

markup language), for annotating the interpretation of user inputs to be used in a

higher level of dialogue management [4].

In contrast, our Information Technology Standards Commission of Japan

(ITSCJ) standard for MMI architecture defines more restricted modules adapted

for their roles in an MMI system [5, 6]. The modules in the architecture are

positioned in one of six layers: application layer, task control layer, a-modal

(modality independent) dialogue control, a-modal , multimodal conversion,

modality-dependent layer, and input–output devices. In the architecture, the mod-

ules in each layer have different responsibilities in an MMI system. Therefore, the

events transferred between layers differ according to the layers. The advantage of

this architecture is that it is easy to understand the range of tasks when replacing or

newly developing the modules [7].

In the following sections, we present the outline of the ITSCJ standard for the

MMI architecture and the events transferred between the layers. We also introduce

an example of an MMI system conforming to this architecture.

7.2 Six-Layered Model for Multimodal Interaction
Systems

In our proposed MMI architecture, an MMI system is composed of the modules

classified into six layers and an external user/device model. Figure 7.1 shows the

overview of an MMI system. The events transferred between layers are different in

each layer. In this section, we outline the roles of each layer, discuss event transfer

between layers, and show examples of an event transfer sequence that appears in an

MMI system in some situations.

138 K. Katsurada et al.



7.2.1 Six Layers and User/Device Model

The six layers are composed of the input–output devices layer (the first layer), a

modality-dependent layer (the second layer), an a-modal,multimodal conversion

layer (the third layer), an a-modal dialogue control layer (the fourth layer), a task

control layer (the fifth layer), and an application layer (the sixth layer). The

granularity changes from fine (that is, close to the device) to coarse (that is, far

from the device) with increasing layer level. The system also has a user/device

model component outside these layers. The component can be used for managing

the status of the user and the devices. This section presents the outlines of each layer

and the user/device model and their roles in an MMI system.

7.2.1.1 Input–Output Device Layer (First Layer)

This layer controls the input–output devices. The modules in this layer are the

wrapper programs between the devices and the MMI system. Because the data

format for accessing devices depends on their types, OS, and modalities, we do not

define a concrete interface between this layer and the second layer.

Input device Input device Output device Output device

Sinple
synthesizer

Highly-functional
synthesizer

Modality integrator Modality differentiator

Interaction control

Task control

Data model Application logic
D

evice m
odel / U

ser m
odel

↑EMMA

EMMA

EMMA
XISL, 

MIML[24]

<input>, <output>

↓<input
type=“*” ..>

↓<output
type=“*” ..>

1st layer:
input/output devices

2nd layer:
Modality dependent

3rd layer:
A-modal � multimodal 
Convertor

4th layer:
A-modal dialogue
control

5th layer:
Task control

6th layer:
Application

Events

Events

Controls/contentsControls/contents

Recognition results
Events

Integrated results/
Events

Contents Contents

Contents

Results/events

Events/controlAccess

Simple
recognizer

Highly-functional
recognizer

Fig. 7.1 Overview of the six-layered model of MMI systems [24]

7 Six-Layered Model for Multimodal Interaction Systems 139



7.2.1.2 Modality-Dependent Layer (Second Layer)

The second layer controls each modality such as speech inputs/outputs, animation

of the anthropomorphic agent, and inputs/outputs using a touch screen. The

modality-dependent information is received from the third layer. It interprets and

processes these elements defined in markup languages as follows: <rect>
element in SVG [8], <prompt> element in VoiceXML [9], and <listen>
element in SSML [10] or SALT [11]. The recognition modules reply with the

EMMA format results [4] to the third layer, whereas the synthesis modules return

some response events to the third layer. The EMMA format is employed because it

is best suited to represent input interpretations whose granularities are different

among layers.

Some modules in this layer are implemented as simple recognizers/synthesizers

that work as wrapper programs for the modality recognizers/synthesizers. The other

modules, which would not be discriminated from the simple modules in the third

layer, are highly functional recognizers/synthesizers that control multiple simple

submodules (such as an animated agent with speech synthesis). This type of

complex module is implemented by combining modules that perform the following

three functions.

1. Distributor

A function to distribute an output to multiple modules and send the inputs

from multiple modules to a module/device.

2. Filter

Input format conversion and information extraction function.

3. Trigger

A function to call conditional operation according to input values.

Figure 7.2 illustrates a sample configuration of the second layer module. In this

example, a speech recognition result is delivered to two filters through a distributor;

a copy is sent to a GUI output module through the trigger, and the other is given to

the modality integrator in the third layer.

7.2.1.3 A-Modal , Multimodal Conversion Layer (Third Layer)

The modality-dependent result obtained in the second layer should be converted

into an a-modal semantic result that is handled in the dialogue management layer.

This layer is responsible for converting the modality-dependent information into

modality-independent information, and vice versa. It also integrates inputs, differ-

entiates outputs, and controls the synchronization of multiple inputs and outputs.

For example, interpretation of sequential/simultaneous inputs and synchronization

of sequential/simultaneous outputs are executed in this layer. This layer is

140 K. Katsurada et al.



composed of two modules: the modality integration module and the modality

differentiation module.

The modality integration module accepts some restrictions on a user’s input

(such as data type) from the fourth layer and sends the converted information (such

as speech recognition grammar) to the second layer. The information from the

fourth layer may include some modality-dependent information. This module

accepts the input result from the second layer in the EMMA format and sends it

to the fourth layer after eliminating the modality-dependent information. The inputs

from multiple modules in the second layer are integrated in this layer based on the

rules defined in some markup languages such as the <operation> element in

XISL [12].

The modality differentiation module accepts the output contents from the fourth

layer and sends them to the second layer after converting into the modality-

dependent formats (such as sentences processed in the speech synthesis module).

The contents sent from the fourth layer may include modality-dependent informa-

tion. The details of differentiation rules such as synchronization of timing should be

defined by markup languages such as SMIL [13] or XISL.

7.2.1.4 A-Modal Dialogue Control Layer (Fourth Layer)

Management of form filling and dialogue state transition are executed in this layer.

The fourth layer should be implemented in a single module because it receives

a-modal dialogue control information (possibly including modality-dependent

information) described in markup languages (such as <form> element in

VoiceXML2.1 with FIA, or <form> element of XHTML [14]) from the fifth

layer, interprets it, and executes it. This layer is responsible for managing task

Modality integrator Modality differentiator

2nd layer:
Modality dependent

3rd layer: 
A-modal multimodal 
convertor

Trigger

FilterFilter FilterFilter

Distributor Distributor

Speech recognition module GUI output module

Fig. 7.2 A sample configuration of the second layer module

7 Six-Layered Model for Multimodal Interaction Systems 141



internal dialogues such as prompting for form filling, handling a barge-in from a

user, and system interruption control. The results are sent to the fifth layer

according to the description in the markup language.

7.2.1.5 Task Control Layer (Fifth Layer)

The fifth layer controls dialogue tasks and communicates with the sixth layer. This

layer should be implemented as a single module and generates interaction patterns

that are sent to the fourth layer. A controller description written in the Rails

framework [15] or SCXML [16] is a candidate language for describing the activity

of this layer.

7.2.1.6 Application Layer (Sixth Layer)

The data model and application logic are implemented in this layer. The definition

of an API is required to communicate with the fifth layer. We do not define any

specification for this layer.

7.2.1.7 User Model and Device Model

This component provides an API to contact the user/device model variables that are

defined in some external ontology. It provides the user’s and device’s information to

the layers second to fifth. For the lower layers, set/get functions to change/obtain

the user/device status are prepared. For the higher layers, publish/subscribe func-

tions to notify the changes of status are provided.

7.2.2 Events Transferred Between Layers

7.2.2.1 The Interface Between Second (Modality Dependent) and Third

(A-Modal , Multimodal Conversion) Layers

The role of the second layer is to unify multiple input–output devices by combining

the distributor, filter, and trigger functions. It provides a unified interface to the third

layer. Its configuration is almost the same as the Russian Doll model proposed in

the W3C MMI architecture [3]. The components accessed from the third layer

should be designed with consideration for extensibility, versatility, and efficiency

of description in the third layer. Most of the input–output events transferred

between the second and third layers are asynchronous events that are integrated

and synchronized in the third layer. Therefore, the interface between the second and

third layers should be a set of asynchronous event pairs.

142 K. Katsurada et al.



The events defined in this layer are based on those defined in Sect. 6.2 (Standard

Life Cycle Events) in theW3CMMI architecture [3]. However, some events related

to input–output modalities are modified for compatibility with the upper layers. The

events transferred between the second and third layers are shown in Table 7.1.

7.2.2.2 The Interface Between Third (A-Modal , Multimodal

Conversion) and Fourth (A-Modal Dialogue Control) Layers

and Inside Third Layer

The events transferred between the third and fourth layers include a unit of possible

inputs, an output execution, and their results. The same kinds of events are

transferred between the input integration module and the output differentiation

module inside the third layer. The internal third layer events are used to send

some detailed information that should not be intermediated by the dialogue control

layer. The events transferred between the third and fourth layers and inside the third

layer are listed in Table 7.2.

7.2.2.3 The Interface Between the Fourth (A-Modal Dialogue Control)

and Fifth (Task Control) Layers

The fifth layer sends the events that contain the form to be executed (filled) in the

fourth layer when the task-level operation determines the action. The published

event can contain the list of possible field values as its optional argument. These

values are calculated based on the information from the current state of the

dialogue, the status of the sixth layer or the user model.

Table 7.1 Transferred events between the second and third layers

Input events Output events Common events

StartSessionRequest StartSessionRequest NewContextRequest

UpdateParameterRequest UpdateParameterRequest PrepareRequest

StartInputRequest SetOutputContentRequest ClearContextRequest

StopInputRequest StartOutputRequest ExtentionNotification

EndSessionRequest SuspendOutputRequest StatusRequest

ErrorNotification ResumeOutputRequest

InputNotification StopOutputRequest

HelpInputNotification EndSessionRequest

NoinputNotification WaitingInputNotification

NomatchNotification InformCurrentInputNotification

ErrorNotification

EndOutputNotification

Corresponding “Response” events are prepared for all “Request” events

7 Six-Layered Model for Multimodal Interaction Systems 143



From the fourth layer, the events to notify the status of a form are sent to the fifth

layer. The events in the EMMA format are published when the form is completely

filled or a field value is changed during the form filling. The fifth layer decides

which form to execute using application logic after updating the user model

according to the results received from the fourth layer.

Table 7.3 shows the list of events transferred between the fourth and fifth layers.

7.2.2.4 The Interface Between Each Layer and Device/User Model

Component

Each layer has a different interface with the device/user model component because

the layers need different information held in the component. The information

required in each layer is shown below.

• The device model sends the start events to the second layer when the MMI

system is booted up because this layer must activate the recognition/synthesis

Table 7.2 Transferred events between the third and fourth layers and inside the third layer

From fourth layer to
input integrator

From fourth layer to output
differentiator Internal third layer

StartSessionRequest StartSessionRequest StartInputRequest

InitializeRequest InitializeRequest StopInputRequest

UpdateParameterRequest UpdateParameterRequest WaitingInputRequest

SetInputContentRequest SetOutputContentRequest InformCurrentInputNotification

StartInputRequest StartOutputRequest StartOutputRequest

StopInputRequest RepromptRequest RepromptRequest

EndSessionRequest RetryRequest RetryRequest

StatusRequest SuspendOutputRequest SuspendOutputRequest

ErrorNotification ResumeOutputRequest ResumeOutputRequest

ExtensionNotification StopOutputRequest StopOutputRequest

StatusRequest ErrorNotification

EndSessionRequest EndOurputNotification

ErrorNotification ExtensionNotification

ExtensionNotification

From input integrator to
fourth layer

From output differentiator to
fourth layer

AcceptNormalInput

Notification

EndOutputNotification

NoinputNotification ErrorNotification

NomatchNotification ExtensionNotification

HelpInputNotification

ErrorNotification

ExtensionNotification

Corresponding “Response” events are prepared for all “Request” events

144 K. Katsurada et al.



modules. While the MMI system is running, the second layer sends the change of

module status and user model variables to the device model and the user model,

respectively.

• The third layer obtains the information on the change of the second layer’s status
through the device model.

• The fourth layer is independent of modality. Therefore, it communicates with

the user model only.

• The fifth layer is also independent of modality. Therefore, it communicates with

the user model only. Moreover, the fifth layer does not update the user model.

Table 7.4 enumerates the transferred events between each layer and the device/

user model component.

7.2.3 Some Examples of Event Transfer

This section presents two examples of event transfer among layers. The first

example, shown in Fig. 7.3, illustrates the session start and end procedures.

At first, the higher layers send StartSessionRequest events to lower layers and

receive corresponding responses. The initialization process is then executed. If

some parameter must be changed in a lower layer, the UpdateParameterRequest
events are sent to the lower layers. The EndSessionRequest events are sent to the

lower layers when the session ends.

The second example shows how the user’s inputs are processed in an MMI

system. As shown in Fig. 7.4, some prompts are output before starting the input

standby. If the system does not accept a barge-in, the StartInputRequest events that
start input standby are sent to the lower layers after accepting the EndOutputNoti-
fication event as shown in the upper part of Fig. 7.4. If the system accepts the barge-

in, the StartInputRequest events are sent to the lower layers before accepting the

EndOutputNotification event as illustrated in the lower part of Fig. 7.4. In this case,
the StopOutputRequest events are sent to the output modules if the system accepts

an input.

Table 7.3 Transferred events

between the fourth and fifth

layers

Fifth to fourth events Fourth to fifth events

StartForm FilledForm

StopForm ChangedField

Common events

NewContextRequest NewContextResponse

PrepareRequest PrepareResponse

ClearContextRequest ClearContextResponse

ExtentionNotification StatusResponse

StatusRequest

7 Six-Layered Model for Multimodal Interaction Systems 145



7.3 Practical Implementation in the Web-Based MMI
System

7.3.1 Outline of the Web-Based MMI System

In this section, we introduce a Web-based MMI system [17] constructed based on

the proposed architecture. This system uses some modules developed in the Galatea

project [18] which aims to construct an anthropomorphic agent-based MMI system.

In the Web-based MMI system, we used the speech recognizer Julius [19], the

speech synthesizer Galatea talk [20], the facial image generator Galatea FSM [21],

and the dialogue scenario description language XISL and its interpreter [22], which

are provided in the Galatea toolkit [23]. Figure 7.5 illustrates the configuration of

theWeb-based MMI system. The first layer is implemented on aWeb browser and a

server side program. The second layer is composed of some modules provided in

the Galatea toolkit and their wrapper programs to adapt to the six-layered model.

Modality integration and differentiation in the third layer are achieved by

interpreting some elements described in XISL that specify multimodal inputs and

outputs. The fourth and fifth layers are combined into an XISL interpreter in this

system.

Table 7.4 Transferred events between the device/user model component and each layer

The second layer The third layer

Device model to second layer Device model to third layer

StartSession SetAvailableModality

EndSession SuspendModality

Second layer to device model Third layer to device model

SessionClosed SetDeviceModelAttribute

GetDeviceModelAttribute

SubscribeDeviceModelAttribute

UnsubscribeDeviceModelAttribute

Second layer to user model Third layer to user model

RecognizedInteractionError SetUserModelAttribute

GetUserModelAttribute

SubscribeUserModelAttribute

UnsubscribeUserModelAttribute

The fourth layer The fifth layer

Fourth layer to user model Fifth layer to user model

SetUserModelAttribute SubscribeUserModelAttribute

GetUserModelAttribute UnsubscribeUserModelAttribute

SubscribeUserModelAttribute

UnsubscribeUserModelAttribute

146 K. Katsurada et al.



4th layer 3rd 
(Input intetgrator)

3rd (Output 
differen�ator) 2nd (Input) 2nd (Output)

Session start

Initialization

StartSessionRequest()

Session start and end

StartSessionRequest()

StartSessionRequest()
StartSessionRequest()

InitializeRequest()

PrepareRequest()

PrepareRequest()

InitializeRequest()

Parameter 
update

UpdateParameterRequest()
UpdateParameterRequest()

UpdateParameterRequest()
UpdateParameterRequest()

Session end
EndSessionRequest()

EndSessionRequest()

EndSessionRequest()

EndSessionRequest()

Fig. 7.3 Example of event transfer: session start and end

7 Six-Layered Model for Multimodal Interaction Systems 147



4th layer 3rd 
(Input intetgrator)

3rd (Output 
differen�ator) 2nd (Input) 2nd (Output)

non barge-in

Set input

Set prompt

Output 
prompt

Input 
standby

Accept 
input

Generate output 
contents

SetInputContentRequest()

SetOutputContentRequest()

WaitingInputRequest()

SetOutputContentRequest()

StartOutputRequest()
StartOutputRequest()

EndOutputNotification()EndOutputNotification()

StartInputRequest()
StartInputRequest()

InputNotification()AcceptNormalInputNotification()

Accept 
barge-in

Set input

Set prompt

Output 
prompt

Input 
standby

Accept 
input

Generate output 
contents

SetInputContentRequest()

SetOutputContentRequest()

WaitingInputRequest()

SetOutputContentRequest()

StartOutputRequest()
StartOutputRequest()

EndOutputNotification()EndOutputNotification()

StartInputRequest()
StartInputRequest()

InputNotification()AcceptNormalInputNotification()

Stop output

StopOutputRequest()

StopOutputRequest()

User’ s input processing

Fig. 7.4 Example of event transfer: processing a user’s input

148 K. Katsurada et al.



7.3.2 Implementation of Each Layer

7.3.2.1 Implementation of the First Layer

The first layer in our Web-based MMI system is composed of two parts: a browser

side module and a server side module. The browser side module is a user interface.

It records the speech from the user and outputs the sounds and the anthropomorphic

agent. It is implemented using JavaScript, Adobe Flash, and the Java Applet for

execution on aWeb-browser. The server side module is a wrapper program between

the second layer and the Web browser. It is implemented as a servlet using the Java

language.

7.3.2.2 Implementation of the Second Layer

The modality input manager accepts pointing and speech inputs. The speech inputs

are recognized using Julius. The recognition results and pointing information are

sent to the third layer by the events in the EMMA format. The modality output

manager accepts the speech synthesis and the anthropomorphic agent information

from the third layer. It invokes Galatea talk and Galatea FSM through the agent

manager and accepts the synthesized speech and facial animation. These contents

are sent to the first layer and output to the Web browser.

XISL Interpreter

Input Integrate Manager Output Control Manager

Modality Input Manager

Agent Manager

Session Manager

Browser Controller

Sound Recorder Agent Presenter

4th layer: A-modal dialogue control

Browser

Server

Input Integrator

Julius
Galatea Talk

Output Controller

Agent Video(FLV)

XISL

XML

XHTML

Modality Output Manager

Galatea FSM

Input 
Integrator

Input 
interpretor

Output 
generator

Output 
differentiator

3rd layer:
A-modal 
multimodal
conversion

2nd layer:
Modality 
dependent

1st layer: 
Input/output 
devices

6th layer: 
Application

5th layer: Task control
+

User Speech(WAV)

Fig. 7.5 Configuration of the web-based MMI system

7 Six-Layered Model for Multimodal Interaction Systems 149



7.3.2.3 Implementation of the Third Layer

The input integration manager and the output control manager are the wrapper

modules for event handling. They also manage the input integrator and output

controller. This system structure makes it easy to replace the input integrator or

output controller when different algorithms are appropriate for integration and

differentiation.

In this MMI system, the input integrator accepts the<operation> element in

an XISL description. This element includes a set of inputs to be accepted in a given

situation. After interpreting it, the integrator sends modality-dependent information

(such as speech grammar) to the second layer. The accepted inputs sent from the

second layer are stored in the integrator and integrated in this module according to

the description of the <operation> element. A sample of the <operation>
element is shown in Fig. 7.6. This<operation> element accepts a speech input

or a click input alternatively.

The output controller accepts the <prompt> and <action> elements in an

XISL description that contains the output contents. The controller controls the

output timing (such as sequential, parallel) described in the XISL and sends it to

the second layer. A sample of the <prompt> element is shown in Fig. 7.7. This

<prompt> element outputs two sentences of speech “Hello, this is MMI online

shop.” and “Please select an item.” sequentially with some expressions of a female

anthropomorphic agent.

Fig. 7.6 Example of the <operation> element

Fig. 7.7 Example of the <prompt> element

150 K. Katsurada et al.



7.3.2.4 Implementation of the Fourth and Fifth Layers

The fourth and fifth layers are integrated into a module in this Web-based MMI

system. This module controls the dialogue state and tasks. XISL is used for this

purpose. The module is implemented as an extension of the existing XISL inter-

preter. Figure 7.8 describes a sample XISL document.

7.3.2.5 An Application Constructed Using the Web-Based MMI System

We developed an MMI application using the Web-based MMI system. Its screen

shot is illustrated in Fig. 7.9. An anthropomorphic agent produced from a real facial

image is displayed on the left side of the browser. The right side constitutes an

Fig. 7.8 Example XISL document

7 Six-Layered Model for Multimodal Interaction Systems 151



online shopping site. A user can interact with this system using speech or/and

pointing. The output from the MMI system is given in speech with an anthropo-

morphic agent and a Web page.

7.4 Conclusions

In this chapter we presented a six-layered model for MMI systems published as an

ITSCJ standard. This standard clarifies the role of each module by placing it on one

of the six layers. The standard also provides the events transferred between layers

that are designed to send necessary and sufficient information to the other layers.

Because the modules that conform to this standard have well-defined role and

interface, it is easy for a developer to replace a module with another one. This is

a desirable feature for facilitating the development of MMI systems by reusing

existing systems.

In the future, we would like to provide a reference system and a toolkit to

develop MMI systems based on the proposed architecture.

Fig. 7.9 Screen shot of the web-based MMI system

152 K. Katsurada et al.



References

1. Turk, M. (2014). Multimodal interaction: A review. Pattern Recognition Letters, 36, 189–195.
2. W3C Multimodal Interaction Working Group. https://www.w3.org/2002/mmi/.

3. Multimodal Architecture and Interfaces. https://www.w3.org/TR/2012/REC-mmi-arch-

20121025/.

4. EMMA1.0. https://www.w3.org/TR/2009/REC-emma-20090210/.

5. ITSCJ standard for hierarchical MMI architecture. https://www.itscj.ipsj.or.jp/ipsj-ts/ts0012/

mmi-arch.html (in Japanese).

6. Six-layered MMI architecture (position paper). https://www.w3.org/2007/08/mmi-arch/

papers/position.pdf.

7. Nitta, T., Katsurada, K., Araki, M., Nishimoto, T., Amakasu T., & Kawamoto, S. (2007).

Proposal of a hierarchical architecture for multimodal interactive systems. IPSJ SIG Technical

Reports, Tokyo, Japan 2007-SLP-68 (pp. 7–12) (in Japanese).

8. SVG. https://www.w3.org/TR/SVG/.

9. VoiceXML2.1. https://www.w3.org/TR/voicexml21/.

10. SSML1.1. https://www.w3.org/TR/speech-synthesis11/.

11. Wang, K. (2002). SALT: A spoken language interface for web-based multimodal dialog

systems. In Proceedings of ICSLP’02, Denver, USA, pp. 2241–2244.
12. Katsurada, K., Nakamura, Y., Yamada, H., & Nitta, T. (2003). XISL: A language for

describing multimodal interaction scenarios. In Proceedings of ICMI’03, Vancouver, Canada,
pp. 281–284.

13. SMIL3.0. https://www.w3.org/TR/2008/REC-SMIL3-20081201/.

14. XHTML2.0. https://www.w3.org/TR/xhtml2/.

15. Araki, M., & Mizukami, Y. (2011). Development of a data-driven framework for multimodal

interactive systems. In Proceedings of the Paralinguistic Information and Its Integration in
Spoken Dialogue Systems Workshop, Granada, Spain pp. 91–101.

16. SCXML. https://www.w3.org/TR/scxml/.

17. Katsurada, K., Kirihata, T., Kudo, M., Takada, J., & Nitta, T. (2008). A browser-based

multimodal interaction system. In Proceedings of ICMI’08, Chania, Greece pp. 195–196.
18. Kawamoto, S., Shimodaira, H., Nitta, T., Nishimoto, T., Nakamura, S., Itou, K., Morishima, S.,

Yotsukura, T., Kai, A., Lee, A., Yamashita, Y., Kobayashi, T., Tokuda, K., Hirose, K.,

Minematsu, N., Yamada, A., Den, Y., Utsuro, T., & Sagayama, S. (2004). Galatea: Open-

source software for developing anthropomorphic spoken dialog agents. In H. Prendinger & M.

Ishizuka (Eds.), Life-like characters (pp. 187–211). Heidelberg: Springer.
19. Kawahara, T., Kobayashi, T., Takeda, K., Minematsu, N., Itou, K., Yamamoto, M., et al.

(1998). Sharable software repository for Japanese large vocabulary continuous speech recog-

nition. In Proceedings of ICSLP’98, Sydney, Australia pp. 3257–3260.

20. Yoshimura, T., Tokuda, K., Kobayashi, T., Masuko, T., & Kitamura, T. (1999). Simultaneous

modeling of spectrum, pitch and duration in hmm-based speech synthesis. In Proceedings of
EUROSPEECH’99, Budapest, Hungary pp. 2347–2350.

21. Yotsukura, T., & Morishima, S. (2002). An open source development tool for anthropomor-

phic dialog agent-face image synthesis and lip synchronization. In Proceedings of IEEE
MMSP2002, St. Thomas, USA, pp. 272–275.

22. Katsurada, K., Ootani, Y., Nakamura, Y., Kobayashi, S., Yamada, H., & Nitta, T. (2002). A

modality independent MMI system architecture. In Proceedings of ICSLP’02, Denver, USA,
pp. 2549–2552.

23. Katsurada, K., Lee, A., Kawahara, T., Yotsukura, T., Morishima, S., Nishimoto, T., et al.

(2009). Development of a toolkit for spoken dialog systems with an anthropomorphic agent:

Galatea. In Proceedings of APSIPA09, Sapporo, Japan pp. 148–153.

24. Araki, M., & Tachibana, K. (2006). Multimodal dialog description language for rapid system

development. In Proceedings of SigDIAL06, Sydney, Australia, pp. 109–116.

7 Six-Layered Model for Multimodal Interaction Systems 153

https://www.w3.org/2002/mmi/
https://www.w3.org/TR/2012/REC-mmi-arch-20121025/
https://www.w3.org/TR/2012/REC-mmi-arch-20121025/
https://www.w3.org/TR/2009/REC-emma-20090210/
https://www.itscj.ipsj.or.jp/ipsj-ts/ts0012/mmi-arch.html
https://www.itscj.ipsj.or.jp/ipsj-ts/ts0012/mmi-arch.html
https://www.w3.org/2007/08/mmi-arch/papers/position.pdf
https://www.w3.org/2007/08/mmi-arch/papers/position.pdf
https://www.w3.org/TR/SVG/
https://www.w3.org/TR/voicexml21/
https://www.w3.org/TR/speech-synthesis11/
https://www.w3.org/TR/2008/REC-SMIL3-20081201/
https://www.w3.org/TR/xhtml2/
https://www.w3.org/TR/scxml/


Chapter 8

WebRTC: Handling Media on the Web

Daniel C. Burnett

Abstract WebRTC is a growing set of JavaScript APIs for HTML5 that make it

easy to capture media from cameras and microphones, screens, windows, and

applications, and even from other HTML elements and then stream that media,

live, directly to other web browsers. Different from the traditional client–server

model of the web, this client-to-client communication enables more efficient

communications, particularly in combination with the built-in firewall traversal

capabilities. Also built in are critical signal processing capabilities and top-quality

codecs. Ultimately, the most significant aspect of WebRTC is how it enables

communications to be embedded into existing web applications, deepening engage-

ment, and enhancing community.

8.1 Introduction

WebRTC is a growing set of JavaScript Application Programming Interfaces

(APIs) for the web’s Hypertext Markup Language (HTML5) [1] that make it easy

to capture media from cameras and microphones, screens, windows, and applica-

tions, and even from other HTML elements and then stream that media, live,

directly to other web browsers. This is actually quite new for the web, since the

traditional model on the web is client–server, where end users are represented by

web browser clients that connect to cloud-based servers. For the first time, it is now

possible to establish a media (and data) connection directly between two client web

browsers. This can have significant advantages of scale when media can be sent

peer-to-peer, but WebRTC also includes ICE, Interactive Connectivity Establish-

ment [2], a protocol designed to figure out the best way to get media from one client

to another despite Network Address Translation (NAT) devices such as routers,

gateways, and firewalls in the way. This is all provided for free.

D.C. Burnett (*)

StandardsPlay, Lilburn, GA, USA

e-mail: dan@burnettconsultingservices.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_8

155

mailto:dan@burnettconsultingservices.com


Traditionally, writing a real-world communications application was made more

difficult by the need to build echo cancellation, packet loss concealment, and other

basic streamed audio processing capabilities. Now this is built-in as well, allowing

for even the simplest of JavaScript applications to make use of these advanced, yet

critical, capabilities. Additionally, the royalty-free, real-time streaming audio and

video codecs that are now provided in the browsers are high-quality, state-of-the-art

codecs, which means that audio and video quality right out of the box is limited

more by the cameras, microphones, and speakers, than by the technology or even

bandwidth (within reason).

Most importantly, WebRTC allows for communications to be embedded in

existing web applications rather than being separate. This allows for all of the

web context to be pulled along into the call or chat, improving customer interac-

tions while keeping customers within the enterprise’s application scope. This, along
with the data channel for sending arbitrary data in addition to the streaming media,

is particularly helpful for online gaming as well.

Browser
(with WebRTC)

Real-time Multi-media

Web Server
(Supplies HTML
and JavaScript)

Signaling Server
(Enables exchange of

media negotiation
and ICE candidates)

ICE Servers: STUN and TURN
(Allows gathering of
ICE candidates for

NAT Traversal)

Browser
(with WebRTC)

NATNAT

8.2 The Mechanics

Before talking about the technologies in WebRTC, it is important to understand that

WebRTC work is happening at two different levels: the JavaScript API level and

the Internet protocol level.

The public APIs for WebRTC are JavaScript extensions to HTML 5 and are

defined in the WebRTC Working Group [3] at the World Wide Web Consortium

(W3C) [4]. As a part of HTML, these APIs are implemented by web browsers such

as Google Chrome and Mozilla Firefox and are available to the world of web

application developers. To make these APIs work, the web browsers need to

156 D.C. Burnett



implement lower-level protocols designed for transporting media over the Internet.

Originally designed for use with SIP-based [5] Voice over IP calls, protocols such

as RTP [6], RTCP [6], DTLS [7], SCTP [8], STUN [9], TURN [10], and ICE [2] are

what is actually used to establish connections and send and receive media. These

protocols are defined in the RTCWEB and other working groups within the Internet

Engineering Task Force (IETF) [11]. Thankfully, many of the same organizations

and individuals are involved in both W3C and IETF, simplifying the coordination

between the efforts at the two different levels.

Officially, WebRTC is only two new technologies: the ability to capture media

(audio and video) without a plugin and the ability to transport that media directly

from one web browser to another. In practice, there are many new technologies

involved. Media capture only requires that browsers be able to access cameras,

microphones, and other media sources attached to the device the browser is running

on. Media transmission, however, has required that browsers support a whole host

of new technologies:

• Codecs

To be sent electronically, media must be encoded in some way. There are

several reasons for this: digitization, redundancy, compression, and security.

Let’s use audio as an example. Audio in the real world, as registered by human

ears, is a compression wave in the air. A microphone is merely a flexible

membrane that converts wave-like movements of air into wave-like changes in

voltage and/or current in an electronic circuit. Note that both of these are

smoothly varying, continuous movements over time. Digitization is the process

of sampling these continuous movements at regular time intervals and

converting them into numeric values within some range. Thus, an 8 kHz, 8 bit

pulse-code-modulated (PCM) digitization is merely a sampling of the micro-

phone voltage or current 8000 times per second (8 kHz) and a conversion of the

sampled value into a number between 0 and 255 (8 bits), giving us a stream of

8 bit values at a rate of one every 125 μs. This is an encoding but is considered

trivial, since a media stream in this encoding is essentially ready to be converted

back into voltage on a circuit for playback over a speaker. However, let’s say it’s
a stereo audio stream, meaning that our stream of bits actually represents two

separate audio channels. In that case the bits from the digitized left and right

channels have to be combined into this stereo encoding and then split apart again

(or decoded) into the individual streams in order to be played out on separate left

and right speakers. The software or hardware that pairs together an encoder and a

decoder is a called a coder–decoder, or a codec for short.

Codecs don’t just combine together affiliated media as in the stereo example

above. Codecs also sometimes have redundant information such as repeated bits,

checksums, or error-correcting bits to deal with the fact that corruption or loss of

bits in transmission can occur. Also, codecs nowadays usually have significant

compression included in order to send the maximum amount of data using the

smallest number of bits, allowing for better-quality audio (and video) even in

conditions with low bandwidth. Finally, modern codecs either incorporate

8 WebRTC: Handling Media on the Web 157



encryption directly or are intended to be encrypted in order to reduce the

potential for abuse by either malicious interception or passive monitoring.

Browsers supporting WebRTC now include support for today’s most

advanced audio and video codecs. G.711 [12], the equivalent of basic digitiza-

tion, is supported for backwards compatibility, but WebRTC browsers are also

required to support Opus [13], the most powerful and flexible audio codec

available today. Opus automatically adjusts what it sends based on the currently

available network performance. On the video side, browsers are officially

required to support both VP8 [14] and H.264 [15]. Both are approximately

equivalent in performance but vary significantly in known intellectual property

challenges, licensing terms, and configurability.

• Echo cancellation and packet loss concealment

Real-time communications stacks have to deal with the problems of both

audio and unreliable Internet-based transmission. One of the former problems is

echo, where the playback of audio gets fed back into the input microphone.

Although arbitrary feedback cannot be cancelled, a first level of feedback

elimination is crucial to making played audio be intelligible. An Internet trans-

mission problem is the fact that packets of audio data can be lost. There are a

variety of Internet protocols whose sole purpose is to conceal the loss of packets.

These, and other signal processing technologies, are now built in to web

browsers. This is wonderful for web developers. With no changes to application

code, over the past few years the quality of the audio and video in WebRTC

browsers has improved purely due to fixes and enhancements in the browser

signal processing code.

• Congestion control

TCP [16] has, built into it, some automatic controls to deal with network

congestion. RTP, the protocol used to send real-time audio and video, does not.

However, there are protocols to add congestion control to RTP media flows.

Between support for those and other decisions made for WebRTC, the browsers

now have substantial code to make intelligent decisions regarding congestion,

from adjusting the parameters of codecs on the fly to make them adapt properly

as network bandwidth and throughput degrade, to switching to other codecs, to

prioritizing packets of some media flows over others, to suspending high-

bandwidth flows such as video as needed.

• NAT traversal

The Internet Protocol (IP) [17] was created in order to connect between

different local area networks, which is why it is an inter- (between) network,

or internet, protocol. At the time, there were a variety of other protocols used for

local area networks, Ethernet [18] and Token Ring [19] being the most common.

Fairly quickly researchers and network administrators realized that it was con-

venient to just give every machine a unique IP (IPv4, actually) address, a 4-byte

string such as 15.2.3.4, and to then use the Internet Protocol as a “meta-protocol”

in order to hide the details of the differences in the more transmission-specific

158 D.C. Burnett



protocols such as Ethernet, Token Ring, and now Wi-Fi [20]. As we all know by

now, the set of 4-byte addresses available for use has run out. Many years ago

Internet Service Providers (ISPs), as well as organizational network administra-

tors, began using only a small number of public Internet addresses that were then

mapped by a Network Address Translator (NAT) to a larger number of private

internal IP addresses, typically beginning with either 10. or 192.168. (addresses

reserved as private). These NATs (called routers or gateways today) often added

firewall and policy functions, making them crucial for more than just network

address translation (also abbreviated “NAT”).

These NATs are a problem for peer-to-peer traffic. Why? Because when

computer A wishes to send media to computer B, it’s not clear which IP address

to use. Sending media to the private IP address of B definitely won’t work, and
sending it to the public address of B’s NAT won’t work unless the NAT knows

the private address to which it should forward the media packets. This is where

ICE comes in. Interactive Connectivity Establishment (ICE) makes use of STUN

(Secure Tunneling around NATs) and TURN (Tunneling using Relays around

NATs) to set all of this up. Basically, each computer asks a STUN server it

knows about to tell it what public IP address the STUN server sees for it. This

also causes the NAT to watch for return packets that will be sent back to the

private address, setting up a “mapping” that will be used when media flows later.

Both computers then tell each other what IP addresses they can be reached at,

and both start sending test packets to see which addresses work. Once they both

find addresses that work, they can send packets.

This firewall “hole punching” is something that game players first worked out

in order to get peer-to-peer connections to work over the Internet. Now it is built

into web browsers and used automatically by WebRTC.

The tremendous advantage of these technologies that are now built into

WebRTC browsers is that they greatly simplify the process of creating func-

tional web communications. The simpler they can be made to work, the more

power is given to the millions of web developers in the world.

8.3 Developing with WebRTC

There are three main new pieces of code required in a full WebRTC application:

media capture, signaling, and media transmission. Although a full explanation of

the WebRTC APIs is beyond the scope of this chapter, a brief highlight of the core

APIs is necessary in order to understand what can be done with it.

8 WebRTC: Handling Media on the Web 159



8.3.1 Promises

First, a brief summary of Promises is in order.

A new feature of ECMAScript (JavaScript) 6 is Promises [21], a way to

represent the result of an asynchronous function call. A Promise is an object that

will eventually resolve with a value or reject with a “reason” (an error value). Two

nice properties of Promises are that handlers can easily be set to execute upon the

resolve or reject conditions and that Promise objects can be chained together in a

way similar to JQuery [22] objects.

An example might help to clarify. The setTimeout() function in JavaScript

executes a callback after a specified number of milliseconds:

setTimeout(callback, millisecondDelay);

This can be turned into a Promise as follows:

function pleaseWait(duration) {

var p ¼ new Promise(function(resolve, reject) {

setTimeout(function() {

resolve("I waited");

}, duration);

};

return p;

}

Now it can be used as follows:

pleaseWait(5)

.then(function(x) {

console.log("promise fulfulled: " + x);

})

.catch(function(y) {

console.log("promise rejected: " + y);

});

Note that the then() method runs the given handler if/when the Promise resolves,

while the catch() method runs its handler if/when the Promise fails. In this particular

example we resolve the Promise (the first bit of code) with the value “I waited” after

the given number of milliseconds has expired. So in this example, “promise

fulfilled: I waited” would be sent to the console.

Let’s say that we had a function that logged a value to the console and then

returned a Promise. We could then chain our method calls as follows:

160 D.C. Burnett



pleaseWait(5)

.then(logSomethingAndReturnPromise)

.then(function() {

return pleaseWait(10);

})

.then(function() {

console.log("all done");

})

.catch(function(y) {

console.log("failed somewhere: " + y);

});

In this case our code would wait 5 ms, log something, wait 10 ms, and log “all

done.” If for some reason the code failed at any point in the chain, it would log

“failed somewhere” to the console, because an uncaught failure (Promise rejection)

will “fall down” through the chain until it reaches a catch method.

There are a variety of helpful resources and tutorials on the web [23–26] to learn

how to work with Promises and, particularly, with the tricky edge cases they can have.

8.3.2 Media Capture

Defined in the Media Capture and Streams specification [27], the getUserMedia
() call is used to get access to cameras and microphones on the computer or mobile

device. The most basic call looks like this:

<script>

. . .

// find video element in my app

var myHTMLVideoElement ¼
document.getElementById(“myVideo”);

// get microphone and camera

navigator.mediaDevices.getUserMedia(

“audio”: true; “video”: true)

.then(function(s) {

myAudioAndVideoStream ¼ s;

// play audio and video in video element

myHTMLVideoElement.srcObject ¼ s;

};

. . .

</script>

. . .

<video id¼“myVideo” autoplay¼“autoplay”

muted¼“true”/>

8 WebRTC: Handling Media on the Web 161



The getUserMedia() Promise resolves with a MediaStream, which

is a collection of zero or more MediaStreamTrack objects. Each

MediaStreamTrack object represents one flow of media of one type. In the

example above, the returned MediaStream would contain two tracks, one for the

audio and one for the video. Of course, tracks can be added to or removed from a

MediaStream, so it could contain any number of tracks of any type, but each

individual track only contains audio from a single source or video from a single

source.

In the example above, the new ‘srcObject’ property on the video element

takes a MediaStream as a value and plays it as if it were a URI on the web that had

been assigned to the “src” property of the video element.

An important additional function of the getUserMedia() call is to obtain

permission from the end user to access the requested sources. If the access is for a

secure origin, as in localhost or a site accessed with HTTPS [28], the browser will

ask once and, if permission is granted, save the permission for that origin (site). If

the access is for an insecure origin, such as when using HTTP [29–34] to access a

site, Google Chrome will not even allow permission to be given, while Mozilla

Firefox will ask every time for permission.

8.3.3 Signaling

One of the most confusing aspects of WebRTC when first getting started is the fact

that signaling is not standardized. The term “signaling” is typically used in com-

munication systems to mean the information used to set up a call, as opposed to the

audio and/or video of the call itself which is referred to as “media.” In traditional

telephony systems SS7, or Signaling System 7 [35], is the most common in recent

history. In Voice over IP (VoIP) systems, where telephone calls are made over the

Internet, the Session Initiation Protocol (SIP) is used for call setup (signaling),

while the Real-Time Protocol (RTP) is used for the media. Note that both SS7 and

SIP are standard signaling protocols. WebRTC, by design, does not standardize a

signaling protocol. WebRTC does not define how setup information is to be

exchanged between two browsers that wish to communicate, although it does define

the process by which the two browsers must agree on the details of what they send

each other (called the “negotiation”).

WebRTC developers will often refer to “the signalling channel,” by which they

mean whatever method the web developer has chosen to convey setup information

from one browser to the other. This choice is completely up to the developer but

will typically require relaying through some server on the web since there is no way

(other than the peer connection that will be set up after the signaling channel) for

two browsers to communicate directly with one another. Common ways to do this

relaying are via Web Sockets [36] or HTTP polling to a web server, via a web

service such as PubNub [37] or FireBase [38], or via a traditional signaling server

such as a SIP registrar/proxy server if using SIP as the signaling protocol. All of

162 D.C. Burnett



these are possible through either custom JavaScript code or libraries such as JsSip

[39] and sipML5 [40].

A key consequence/principle to keep in mind here is that notions of identity,

authentication, authorization, location, and gatewaying are all included in signal-

ing. WebRTC assumes that all decisions about which browser to contact, how to

contact that browser, whether contact with that browser is permitted, etc., have

already been made in the process of setting up “the signaling channel.”

8.3.4 Media Transmission

TheWebRTC specification [41] defines a set of JavaScript APIs that cause things to

happen at a protocol level. The key things a web developer needs to do are

– Create a peer connection

– Indicate that media should be sent

– Negotiate the media connection

Creating a peer connection can be done by executing something like

var pc ¼ new PeerConnection();

A track can then be scheduled to be sent over the peer connection by calling

pc.addTrack(myVideoTrack);

Negotiation of the media connection is a two-part process on each end. In order

to send media, each side needs an SDP (media description) offer and an SDP

answer. One of these must be for itself (the “local” end), and the other must be

for the “remote” end. Each side can only create one description and must get the

other one, the remote one, from the other browser. This negotiation process is

referred to as “SDP offer/answer.”

The offer/answer protocol used in WebRTC was originally designed for use with

SIP. The idea is that one side (usually the one placing a call) would generate and

send a media description, including a list of acceptable codecs and their parameters,

for each media flow, in the format of SDP (Session Description Protocol). This

description is known as the offer. The other side would review this offer and

construct a subset of it to send back, called the answer. In this way both sides

have agreed not only on what can be sent and received, but also the formats that are

acceptable. The JavaScript Session Establishment Protocol (JSEP) [42] defines a

version of this SDP offer/answer protocol for use in WebRTC. In the WebRTC

version of offer/answer, SDP is still used as the text format for offered codecs and

their parameters, and the browsers generate this SDP for the developer, but the

WebRTC application is responsible for exchanging the offers and answers using the

signaling channel.

8 WebRTC: Handling Media on the Web 163



In JavaScript, the way all of this happens is that the calling side executes

something like

pc.createOffer()

.then(function(localdescription) {

pc.setLocalDescription(localdescription);

// . . . also send localdescription to the

// other browser over the signaling channel

})

The receiving side (the other browser), upon receiving the remote offer over the

signaling channel, executes something like

pc.setRemoteDescription(remotedescription)

.then(function(remotedescription) {

pc.createAnswer()

.then(function(localdescription) {

pc.setLocalDescription(localdescription);

// . . . also send localdescription to the

// other browser over signaling channel

});

});

Note that the setting of the local description is the same process on both

browsers. The only difference is that in one case it’s an offer and in the other it’s
an answer.

For more information about SDP, there is a nice tutorial at [43].

8.4 Support

WebRTC work officially began in 2011 with the launch of webrtc.org and the

creation of the standards working groups at W3C and IETF. Since then there have

been numerous implementation milestones, even though the standards are not yet

done. Most importantly, several years ago Chrome and Firefox demonstrated basic

call interoperability, something they have maintained since. At the time of this

writing Apple has not yet announced support for WebRTC, although they have

hired for WebRTC implementer positions. Microsoft Internet Explorer and Edge

both support the getUserMedia() call. Edge plans support for Object RTC

(ORTC) [44], a separate (and originally competing) effort from WebRTC that

provides lower-level controls. Just last year the ORTC and WebRTC groups got

together and decided that all official standards work for both after WebRTC 1.0 will

happen in the WebRTC Working Group, meaning that the efforts are effectively

merging after WebRTC 1.0. Although the groups also agreed that WebRTC 1.0

164 D.C. Burnett

http://webrtc.org/


applications will be expected to work in the next version of WebRTC (even though

work on the next version has not yet begun), it is not clear at this time what

Microsoft plans to support of WebRTC 1.0.

What is a developer to do? With the standards still in flux, with varying levels of

implementation support so far in the different browsers, and with unknowns around

Microsoft and Apple, it can be challenging to know what can be done today. Several

sites have sprung up that are useful. First, webrtc.org [45] has not only good info but

also libwebrtc, Google’s C++ library that underlies the Chrome implementation.

Second, iswebrtcreadyyet.com [46] maintains a dashboard showing which features

are implemented by which browsers. Third, webrtchacks.com [47] has a wealth of

blog posts describing various features and how to access them on the different

browsers, whether they are prefixed or implemented as the standard says.

For developers just getting started with WebRTC, the first WebRTC book [48]

and the WebRTC School online training [49] may be helpful. Also, the

“adapter.js” library [50] attempts to provide a standards-compliant shim

layer that will work on current and past versions of Chrome and Firefox. This

library file is maintained by both Google andMozilla. Using this library initially is a

great way to get started playing with WebRTC, and then reviewing the contents of

the adapter file is a great way to learn what the differences are between Chrome and

Firefox.

Although this entire chapter talks only about web browser use of WebRTC, the

APIs are also available in the C++ library mentioned above. Google has committed

to having the C++ APIs match as closely as possible the JavaScript APIs defined in

the standards. A number of companies have built more complete system libraries on

top of this one, including the Temasys WebRTC plugin [51].

On Android devices today, both Chrome and Opera support WebRTC.

Ericsson’s Bowser browser for iOS also has WebRTC support. Anything else on

mobile has to be done using the C++ library above or something that integrates it.

8.5 Tools and Services

There are quite a few tools and services available for developing with WebRTC,

ranging from alternate APIs built on top of WebRTC, to signaling libraries, to

services for signaling and for TURN (media relay).

Some APIs built on top of WebRTC are those by TokBox [52], APIDaze [53],

APIzee [54], Twilio [55], and Tropo [56] (now part of Cisco).

The largest group of signaling libraries is for SIP signaling, which can be quite

helpful when building an application that is required to interoperate with an existing

SIP infrastructure. These libraries include JsSIP, sipML5, and SIP.js [57]. Asterisk

[58], OverSIP [59], and Kamailio [60] are three different SIP servers that have

support for clients using those SIP libraries.

8 WebRTC: Handling Media on the Web 165

http://webrtc.org/
http://iswebrtcreadyyet.com/
http://webrtchacks.com/


Third-party signaling services, or services that can easily be used as such,

include PubNub and FireBase. Both Twilio and Xirsys [61] provide pay-as-you-

go TURN servers.

8.6 Uses of WebRTC Today

WebRTC use is mainstream, yet, paradoxically, still not widespread. Some of the

more well-known uses of WebRTC are in Google Hangouts, Amazon Mayday, and

Facebook Messenger. Virtually every telecommunications carrier now has a web

front-end to their network that uses WebRTC, and every unified communications

platform does as well. However, what is most interesting are the uses of WebRTC

to add communications into existing applications. Most of these are proprietary and

restricted to members, but that’s the point. For example, a site that already connects

together a support group for alcoholics could add the ability to do virtual group

sessions if that would help its members. Pipe.com [62] makes use of a feature this

paper has not really covered yet, and that is the data channel. In addition to sending

and receiving streaming real-time media, WebRTC can also establish data channels

peer-to-peer that can carry arbitrary data. Originally envisioned as a way for game

developers to send position data, events such as shooting or being shot, etc., the data

channel is definitely unlimited in its uses. Pipe.com uses it to provide peer-to-peer

file sharing that is incredibly easy to use.

8.7 Multimodal Use

Given the subject of this book, it is appropriate to say a few words about how

WebRTC can be used to build or enhance multimodal web applications. Obviously

the acquisition of local cameras and microphones allows for video input that can be

used for gesture recognition and/or sign language, augmented reality, and object or

situation recognition, and audio input that can be modified and/or mixed locally, or

sent to a remote speech recognition engine (or anywhere else, for that matter).

The ability to send media directly between browsers, when the network permits,

is obviously useful for multimodal applications that need either remote processing

of media (such as advanced gesture or speech recognition) or media from one

endpoint that needs to be conveyed to another. An example might be video of an

intersection where facial recognition or crowd formation analysis is being done. So

many devices already contain an IP stack, particularly in the Internet of Things

world, that adding a WebRTC stack can be relatively inexpensive.

166 D.C. Burnett

http://pipe.com/
http://pipe.com/


References

1. Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navara, E. D., O’Connor, E., et al. (2014).
HTML5: A vocabulary and associated APIs for HTML and XHTML. https://www.w3.org/TR/

html5/. Accessed 21 Apr 2016.

2. Rosenberg, J. (2010). Interactie connectivity establishment (ICE): A protocol for network

address translator (NAT) traversal for offer/answer protocols, RFC5245. https://tools.ietf.org/

rfc/rfc5245.txt. Accessed 21 Apr 2016.

3. World Wide Web Consortium (2016). Web real-time communications working group. https://

www.w3.org/2011/04/webrtc/. Accessed 21 Apr 2016.

4. World Wide Web Consortium (2016). https://www.w3.org/. Accessed 21 Apr 2016.

5. Rosenberg, J., Shulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

et al. (2002). SIP: Session initiation protocol, RFC3261. https://www.ietf.org/rfc/rfc3261.txt.

Accessed 21 Apr 2016.

6. Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (2003). RTP: A transport protocol

for real-time applications, RFC3550. https://tools.ietf.org/rfc/rfc3550.txt. Accessed 21 Apr

2016.

7. Rescorla, E., & Modadugu, N. (2006). Datagram transport layer security, RFC4347. https://

tools.ietf.org/rfc/rfc4347.txt. Accessed 21 Apr 2016.

8. Stewart, R. (2007). Stream control transmission protocol, RFC4960. https://tools.ietf.org/rfc/

rfc4960.txt. Accessed 21 Apr 2016.

9. Rosenberg, J., Mahy, R., Matthews, P., & Wing, D. (2008). Session traversal utilities for NAT

(STUN), RFC5389. https://tools.ietf.org/rfc/rfc5389.txt. Accessed 21 Apr 2016.

10. Mahy, R., Matthews, P., & Rosenberg, J. (2010). Traversal using relays around NAT (TURN):

Relay extensions to session traversal utilities for NAT (STUN), RFC5766. https://tools.ietf.

org/rfc/rfc5766.txt. Accessed 21 Apr 2016.

11. Internet Engineering Task Force (2016). https://www.ietf.org/. Accessed 21 Apr 2016.

12. International Telecommunication Union (1988). Pulse Code Modulation (PCM) of voice

frequencies, ITU-T G.711. https://www.itu.int/rec/T-REC-G.711-198811-I/en. Accessed

21 Apr 2016.

13. Valin, J. M., Vos, K., & Terriberry, T. (2012). Definition of the opus audio codec. https://tools.

ietf.org/rfc/rfc6716.txt. Accessed 21 Apr 2016.

14. Westin, P., Lundin, H., Glover, M., Uberti, J., & Galligan, F. (2016). RTP payload format for

VP8 video, RFC7741. https://tools.ietf.org/html/rfc7741. Accessed 21 Apr 2016.

15. International Telecommunications Union (2016). H.264: Advanced video coding for generic

audiovisual services, ITU-T H.264. http://www.itu.int/rec/T-REC-H.264. Accessed 21 Apr

2016.

16. Information Sciences Institute, University of Southern California (1981). Transmission control

protocol, RFC793. https://www.ietf.org/rfc/rfc793.txt. Accessed 21 Apr 2016.

17. Information Sciences Institute, University of Southern California (1981). Internet protocol,

RFC791. https://www.ietf.org/rfc/rfc0791.txt. Accessed 21 Apr 2016.

18. Instititute of Electrical and Electronics Engineers (2012). ETHERNET, IEEE 802.3. http://

standards.ieee.org/getieee802/download/802.3-2012.zip. Accessed 21 Apr 2016.

19. Institute of Electrical and Electronics Engineers (1989). IEEE standard for local area networks:

Token ring access method and physical layer specifications, IEEE 802.5-1989. https://stan

dards.ieee.org/findstds/standard/802.5-1989.html. Accessed 21 Apr 2016.

20. Institute of Electrical and Electronics Engineers (2012). IEEE 802.11: Wireless LANs. http://

standards.ieee.org/about/get/802/802.11.html. Accessed 21 Apr 2016.

21. Cavalier, B., & Denicola, D. (2014). Promises/A+. https://promisesaplus.com/. Accessed

21 Apr 2016.

22. jQuery Foundation (2016). jQuery. https://jquery.com/. Accessed 21 Apr 2016.

23. Archibald, J. (2014). JavaScript promises: There and back again. http://www.html5rocks.com/

en/tutorials/es6/promises/. Accessed 21 Apr 2016.

8 WebRTC: Handling Media on the Web 167

https://www.w3.org/TR/html5/
https://www.w3.org/TR/html5/
https://tools.ietf.org/rfc/rfc5245.txt
https://tools.ietf.org/rfc/rfc5245.txt
https://www.w3.org/2011/04/webrtc/
https://www.w3.org/2011/04/webrtc/
https://www.w3.org/
https://www.ietf.org/rfc/rfc3261.txt
https://tools.ietf.org/rfc/rfc3550.txt
https://tools.ietf.org/rfc/rfc4347.txt
https://tools.ietf.org/rfc/rfc4347.txt
https://tools.ietf.org/rfc/rfc4960.txt
https://tools.ietf.org/rfc/rfc4960.txt
https://tools.ietf.org/rfc/rfc5389.txt
https://tools.ietf.org/rfc/rfc5766.txt
https://tools.ietf.org/rfc/rfc5766.txt
https://www.ietf.org/
https://www.itu.int/rec/T-REC-G.711-198811-I/en
https://tools.ietf.org/rfc/rfc6716.txt
https://tools.ietf.org/rfc/rfc6716.txt
https://tools.ietf.org/html/rfc7741
http://www.itu.int/rec/T-REC-H.264
https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc0791.txt
http://standards.ieee.org/getieee802/download/802.3-2012.zip
http://standards.ieee.org/getieee802/download/802.3-2012.zip
https://standards.ieee.org/findstds/standard/802.5-1989.html
https://standards.ieee.org/findstds/standard/802.5-1989.html
http://standards.ieee.org/about/get/802/802.11.html
http://standards.ieee.org/about/get/802/802.11.html
https://promisesaplus.com/
https://jquery.com/
http://www.html5rocks.com/en/tutorials/es6/promises/
http://www.html5rocks.com/en/tutorials/es6/promises/


24. Erdi, B. (2015). JavaScript promises: A tutorial with examples. http://www.toptal.com/

javascript/javascript-promises. Accessed 21 Apr 2016.

25. Franklin, J. (2015). Embracing promises in JavaScript. http://javascriptplayground.com/blog/

2015/02/promises/. Accessed 21 Apr 2016.

26. Mozilla Foundation (2016). Promise. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Promise. Accessed 21 Apr 2016.

27. Burnett, D. C., Bergkvist, A., Jennings, C., & Narayan, A. (2016). Media capture and streams.

https://www.w3.org/TR/mediacapture-streams/. Accessed 21 Apr 2016.

28. Rescorla, E. (2000). HTTP over TLS, RFC2818. https://tools.ietf.org/rfc/rfc2818.txt.

Accessed 21 Apr 2016.

29. Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Message syntax

and routing, RFC7230. https://tools.ietf.org/rfc/rfc7230.txt. Accessed 21 Apr 2016.

30. Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Semantics and

content, RFC7231. https://tools.ietf.org/rfc/rfc7231.txt. Accessed 21 Apr 2016.

31. Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Conditional

requests, RFC7232. https://tools.ietf.org/rfc/rfc7232.txt. Accessed 21 Apr 2016.

32. Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Range requests,

RFC7233. https://tools.ietf.org/rfc/rfc7233.txt. Accessed 21 Apr 2016.

33. Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Caching,

RFC7234. https://tools.ietf.org/rfc/rfc7234.txt. Accessed 21 Apr 2016.

34. Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (HTTP/1.1): Authentication,

RFC7235. https://tools.ietf.org/rfc/rfc7235.txt. Accessed 21 Apr 2016.

35. International Telecommunications Union (1993). Q.700 introduction to CCITT signalling

system No. 7. http://www.itu.int/rec/T-REC-Q.700-199303-I/e. Accessed 21 Apr 2016.

36. Fette, I., & Melnikov, A. (2011). The WebSocket Protocol, RFC6455. https://tools.ietf.org/rfc/

rfc6455.txt. Accessed 21 Apr 2016.

37. PubNub (2016). PubNub. https://www.pubnub.com/. Accessed 21 Apr 2016.

38. Firebase (2016). Firebase. https://www.firebase.com/. Accessed 21 Apr 2016.

39. Versatica (2015). JsSIP: The JavaScript SIP library. http://www.jssip.net/. Accessed 21 Apr

2016.

40. Doubango Telecom (2016). sipML5 API. https://www.doubango.org/sipml5/. Accessed

21 Apr 2016.

41. Bergkvist, A., Burnett, D. C., Jennings, C., Narayan, A., & Aboba, B. (2016). WebRTC 1.0:

Real-time communication between browsers. https://www.w3.org/TR/webrtc/. Accessed

21 Apr 2016.

42. Uberti, J., Jennings, C., & Rescorla, E. (2016). Javascript session establishment protocol.

https://tools.ietf.org/id/draft-ietf-rtcweb-jsep-14.txt. Accessed 21 Apr 2016.

43. Banerjee, K. (2005). SDP introduction. http://siptutorial.net/SDP/index.html. Accessed 21 Apr

2016.

44. World Wide Web Consortium (2016). ORTC (Object Real-Time Communications) Commu-

nity Group. https://www.w3.org/community/ortc/. Accessed 21 Apr 2016.

45. The WebRTC project authors (2011). WebRTC. https://webrtc.org/. Accessed 21 Apr 2016.

46. &yet, 710 George Washington Way Ste A, Richland, WA 99352 (2016). Is WebRTC ready

yet? Browser support scorecard. http://iswebrtcreadyyet.com/. Accessed 21 Apr 2016.

47. Hart, C., Ávila, V. P., Levent-Levi, T., & Hancke, P. (2016). webrtcHacks. https://

webrtchacks.com/. Accessed 21 Apr 2016.

48. Johnston, A. B., & Burnett, D. C. (2014). WebRTC: APIs and RTCWEB protocols of the
HTML5 real-time web. St. Louis: Digital Codex.

49. The SIP School (2016). WebRTC school. https://www.webrtcschool.com/. Accessed 21 Apr

2016.

50. The WebRTC project authors and GitHub, Inc. (2016). adapter.js: WebRTC adapter. https://

webrtc.github.com/adapter/adapter-latest.js. Accessed 21 Apr 2016.

168 D.C. Burnett

http://www.toptal.com/javascript/javascript-promises
http://www.toptal.com/javascript/javascript-promises
http://javascriptplayground.com/blog/2015/02/promises/
http://javascriptplayground.com/blog/2015/02/promises/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.w3.org/TR/mediacapture-streams/
https://tools.ietf.org/rfc/rfc2818.txt
https://tools.ietf.org/rfc/rfc7230.txt
https://tools.ietf.org/rfc/rfc7231.txt
https://tools.ietf.org/rfc/rfc7232.txt
https://tools.ietf.org/rfc/rfc7233.txt
https://tools.ietf.org/rfc/rfc7234.txt
https://tools.ietf.org/rfc/rfc7235.txt
http://www.itu.int/rec/T-REC-Q.700-199303-I/e
https://tools.ietf.org/rfc/rfc6455.txt
https://tools.ietf.org/rfc/rfc6455.txt
https://www.pubnub.com/
https://www.firebase.com/
http://www.jssip.net/
https://www.doubango.org/sipml5/
https://www.w3.org/TR/webrtc/
https://tools.ietf.org/id/draft-ietf-rtcweb-jsep-14.txt
http://siptutorial.net/SDP/index.html
https://www.w3.org/community/ortc/
https://webrtc.org/
http://iswebrtcreadyyet.com/
https://webrtchacks.com/
https://webrtchacks.com/
https://www.webrtcschool.com/
https://webrtc.github.com/adapter/adapter-latest.js
https://webrtc.github.com/adapter/adapter-latest.js


51. Temasys (2016). WebRTC plugins. http://confluence.temasys.com.sg/display/TWPP.

Accessed 21 Apr 2016.

52. TokBox (2015). OpenTok platform. https://tokbox.com/developer/. Accessed 21 Apr 2016.

53. Widget4Call (2016). Apidaze. http://www.apidaze.io/. Accessed 21 Apr 2016.

54. Apizee (2016). ApiRTC. https://apirtc.com/. Accessed 21 Apr 2016.

55. Twilio (2016). Twilio. https://www.twilio.com/. Accessed 21 Apr 2016.

56. Cisco (2016). Tropo. https://www.tropo.com/. Accessed 21 Apr 2016.

57. onsip (2016). SIP.js. http://sipjs.com/. Accessed 21 Apr 2016.

58. Digium, Inc. (2016). Asterisk. http://www.asterisk.org/. Accessed 21 Apr 2016.

59. Versatica (2016). OverSIP. http://www.oversip.net/. Accessed 21 Apr 2016.

60. Kamailio SIP Server Project (2015). Kamailio: The open source SIP server. http://www.

kamailio.org/w/. Accessed 21 Apr 2016.

61. XirSys (2014). XirSys. https://xirsys.com/. Accessed 21 Apr 2016.

62. Pipe Dream Technologies GmbH (2016). The pipe service. https://pipe.com/. Accessed

21 Apr 2016.

8 WebRTC: Handling Media on the Web 169

http://confluence.temasys.com.sg/display/TWPP
https://tokbox.com/developer/
http://www.apidaze.io/
https://apirtc.com/
https://www.twilio.com/
https://www.tropo.com/
http://sipjs.com/
http://www.asterisk.org/
http://www.oversip.net/
http://www.kamailio.org/w/
http://www.kamailio.org/w/
https://xirsys.com/
https://pipe.com/


Part II

Implementations



Chapter 9

Developing Portable Context-Aware
Multimodal Applications for Connected
Devices Using the W3C Multimodal
Architecture

Raj Tumuluri and Nagesh Kharidi

Abstract Cue-me™ is one of the reference implementations of the W3C’s multi-

modal interaction (MMI) architecture and is a context-aware multimodal authoring

and run-time platform that securely houses various modality components and

facilitates cross-platform development of multimodal applications. It features sev-

eral multimodal elements such as Face Recognition, Speech Recognition (ASR)

and Synthesis (TTS), Digital annotations/gestures (Ink), Motion Sensing and

EEG-headset based interactions that were developed using W3CMMI Architecture

and Markup Languages. The MMI architecture described elsewhere in this volume

facilitates single-authoring of multimodal applications and shields the developers

from the nuances of the implementation of individual modality components or their

distribution.

9.1 Introduction

Given the proliferation of mobile devices/operating systems, developing and

maintaining applications is a challenge for authors of applications. Ensuring usabil-

ity, which largely depends on the availability of modes-of-interaction, while being

mobile is even a bigger challenge, with all the complexities of dealing with various

modality components such as Speech Recognizers, Synthesizers, Sensory inter-

faces, etc. Built as a reference implementation of W3C’s Multimodal Architecture

[1], Cue-me Multimodal Platform (“Cue-me”) provides a multiplatform framework

for the development of applications across mobile devices. Applications developed

using the Cue-me architecture can run on desktops, laptops, tablets and a host of

smartphone, wearable, and robotic devices.

R. Tumuluri (*) • N. Kharidi

Openstream Inc, Somerset, NJ, USA

e-mail: raj@openstream.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_9

173

mailto:raj@openstream.com


9.2 Architecture Overview

The Cue-me architecture is based on the W3CMMI Framework [2]. The goal of the

design is to provide a general and flexible framework providing interoperability

among remote and local components on the device. The framework is based on the

MVC Design Pattern widely used in languages such as Java and C++. The design

pattern proposes three main parts: a Data Model that represents the underlying

logical structure of the data and associated integrity constraints, one or more Views
which correspond to the objects that the user directly interacts with, and a Control-
ler which sits between the data model and the views. The separation between data

and user interface provides considerable flexibility in how the data is presented and

how the user interacts with that data. While the MVC paradigm has been tradition-

ally applied to graphical user interfaces, it lends itself to the broader context of

multimodal interaction where the user is able to use a combination of visual, aural,

and tactile modalities.

9.2.1 Run-Time Framework

At the core, the Cue-me run-time framework consists of the Interaction Manager,

interacting with several components in the framework. The Core components are

HTML-GUI and Voice. Other components can be added based on the application

interaction requirements. This approach provides the following flexibilities

(Fig. 9.1):

• Granular Application Footprint Control for different devices and applications

• Platform extensibility using the component architecture

• Component level update/control

Figure 9.1 depicts the Cue-me platform with component interaction between the

GUI, Voice, and other modalities. The application itself (Application Server and

Database) can be local or remote.

9.2.2 Core Run-time Framework Components

The core run-time framework components consist of:

• GUI Modality (HTML)

• Voice Modality (providing speech interaction capability).

The core components provide the framework for building a multimodal appli-

cation across platforms. The Modality Components can support local and remote

interaction based on the platform choice and application configuration.

174 R. Tumuluri and N. Kharidi



For example, voice processing can be done remotely on a server or locally based

on the choice of platform and the type of voice processing required by the

application.

9.2.3 Other Components for Multimodal Applications

Mobility Applications require platform level component support. Cue-me achieves

application portability by implementing mobile functionality using the component

framework via the Interaction Manager. Some examples of other components are

• Ink Component using InkML [3]

• Signature Component

• DB Sync Component

. . .. . ..

Application Data

Application Server

HTTP

Interaction Manager

Modality Component API

GUI Modality (HTML) Voice Modality Digital Ink Modality+ ...

Fig. 9.1 Cue-me MMI architectural overview

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 175



Because the Cue-me architecture uses an open framework for component inte-

gration (W3C MMI framework), components can be built by third parties and

plugged in.

Hence, Cue-me is an extensible platform—components specific to the target

platform can be plugged into the framework architecture for interaction via the

Interaction Manager.

9.2.4 Anatomy of a Multimodal Application

A multimodal application developer must provide XML and text application files

for each of the following components:

• GUI: The visual application delivers HTML or XHTML and the various

supporting images and files including JavaScript and CSS to the web browser.

It is very important that the GUI application is tailored to look and feel and run

on a wide variety of mobile devices and wearables. The visual application should

therefore be tested on as many different devices as possible before it is deployed.

Two web sites which perform an analysis on the performance and quality of

the visual mobile application are dev.mobi (http://ready.mobi) and the W3C

mobile web initiative (http://validator.w3.org/mobile/).

• Voice: The voice application consists of a number of grammar and TTS files

delivered to a speech engine for processing. The formats of the grammar and

TTS files depend on what is supported by the speech engine. Grammar file

formats include JSGF, ABNF, and SRGS. TTS file formats are either raw text or

SSML. A developer should know what file formats the speech engine supports.

Other XML file formats may be used according to various requirements such as

support for a legacy IVR application ported to run on Cue-me. This application may

run one or more VoiceXML and/or CCXML files.

• Interaction Manager: The Cue-me Interaction Manager runs a variant of State

Chart XML (SCXML) [4, 5], known as X-SCXML on the mobile phone or PDA.

X-SCXML which implements SCXML, (with the exception of parallel states for

want of resource optimization on mobile devices), can be used to integrate the

interaction between the visual, voice, ink, and other modalities.

9.2.5 Basic Application Development Steps

Here are the basic application development steps, as shown by Fig. 9.3, below:

1. Create a Dynamic web project within a development environment such as

Eclipse. Eclipse should be version 3.4.2 or higher and at a minimum the Web

Standard Tools (WST) must be installed.

176 R. Tumuluri and N. Kharidi

http://ready.mobi/
http://validator.w3.org/mobile/


2. Create the visual web application, or import a legacy application into the project

as required. The web application should be adapted for browsers running on

mobile devices with limited memory and processing resources.

3. Identify the various states in the application. Each state may be associated with a

separate web page or a web page may have more than one state, if the page can

be associated with more than one set of active grammars. Generally, a unique set

of active grammars represents a separate state.

4. Create the voice grammars, or modify for Cue-me if already available. There

should be one or more grammars representing all controls and fields for each

application web page. Usually there are grammars which remain active across

several or all web pages.

5. Each grammar should also have a corresponding text file for displaying for the

user what the user can say when the grammar is active.

6. The X-SCXML document is developed to integrate the voice and visual user

interactions. When complete, a cookie is added to the application’s home web

page specifying the URL location of the X-SCXML document:

<%
Cookie
cookie = new Cookie ("IM-Loc", "http://www.ex.com/im/im.scxml");
cookie.setMaxAge (10);
response.addCookie (cookie);
%>

• A web page can set the Interaction Manager to another state using a cookie to

specify the new state. For example, a JSP may have:

<%
Cookie cookie = new Cookie ("IM-State", "trade");
cookie.setMaxAge (10); // Do NOT set Max Age more than 10-20 s
response.addCookie (cookie);
%>

• The X-SCXML may direct the GUI component to execute a JavaScript

function (e.g., in response to a voiceResult event). This function must of

course be defined in the active web page.

7. The application and the voice proxy (one of the Cue-me deliverables) must both

be deployed to a web server. After configuring the voice and proxy, the appli-

cation is tested on a mobile phone running the Cue-me multimodal platform.

• The web application and voice proxy may be deployed on different applica-

tion servers (Figs. 9.2 and 9.3).

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 177



9.2.6 Application Components Overview

A basic multimodal web application should have markup and software for

processing by the following components:

• Application Server and Database (for business logic)

• Interaction Manager (for multimodal interaction integration)

• Voice Client Modality

• GUI Modality

• Access to a Cue-me Multimodal Server to provide voice interactions among

other multimodal features.

Fig. 9.2 Overall application development flow

Fig. 9.3 Basic multimodal application development steps

178 R. Tumuluri and N. Kharidi



Figure 9.4 shows the object model of the Cue-me components on the client.

The components which reside on the client device are the Interaction Manager,

the GUI (or HTML) modality, and the Voice client. GUI modality interactions, as

represented by HTML, are deployed by an Application Server such as Apache

Tomcat. The Cue-me Multimodal Server runs on a remote server and provides

support for voice interactions.

When the voice recognition and TTS are rendered by a Cue-me Multimodal

Server, the voice modality spans both client and server with a voice component on

the client communicating with the server. However, voice recognition and TTS

may both be rendered on the device, or recognition may be rendered by the server

and TTS rendered on the device, or vice versa.

Both the GUI and Voice components on the device communicate with an

Interaction Manager, which performs the modality integration by processing an

X-SCXML document. X-SCXML is covered in a later section in this document.

9.2.6.1 Application Server

The Application Server deploys the application for the GUI modality represented

by HTML and the X-SCXML for processing by the Interaction Manager. For an

Application Server such as IBMWebSphere, the application is comprised of JSP’s,
Servlets, and static HTML pages.

Typically the application requires one or more databases for storing user

information.

The application server returns some flavor of HTML or XHTML to the GUI

component of Cue-me in response to an HTTP GET or POST request. This response

Event Queue

Browser View
Component

Cue-me Application

Voice ComponentInteraction Manager

X-SCXML

Fig. 9.4 Cue-me components object model

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 179



may contain the URL location of the X-SCXML document required by Cue-me’s
Interaction Manager Component. The URL location is returned to the client in the

response header as a Cookie:

Set-Cookie:

IM-Loc¼http://www.example.com/ChineseFood/im/im.scxml;

The response may also contain a cookie for setting the ID of one of the states

contained in the X-SCXML document. In response to this directive the Interaction

Manager will move to this state. The cookie is specified as follows:

Set-Cookie:

IM-State¼home;

The application server may specify the location of the X-SCXML document and

set the state at one time by appending a “#” followed by the state ID to the IM-Loc

cookie:

Set-Cookie:

IM-Loc¼http://www.example.com/ChineseFood/im/im.xscxml#changeorder;

If the application sets a cookie for IM-Loc with the initial state appended, as

shown as above, and also sets a cookie for IM-State, the cookie for IM-State is

ignored. This is because the contents of the IM-Loc cookie always have priority.

Best practice is to set a separate IM-Loc and IM-State cookies and not append the

state to the IM-Loc URL.

The application server may return an X-SCXML document in response to the

HTTP request. Support for processing X-SCXML should be specified in the HTTP

Accept header as follows:

Accept: application/xscxml+xml, text/html, text/plain, image/*

9.2.6.2 Interaction Manager

The Interaction Manager (IM) processes one or more X-SCXML documents for a

single multimodal application, where X-SCXML is an XML language derived from

SCXML. The X-SCXML directs the IM to retrieve resources, add event listeners

to specified events, and to process the events generated by each multimodal

component.

While X-SCXML is similar to SCXML, a number of small changes were made

to facilitate processing on the client. This “SCXML-like” language is processed by

the IM as follows (examples included):

(1) Set each modality component’s base URI for documents retrieved from the

server:

<base id¼"x-voice" url¼"http://A.B.C.D/sb/voice"/>

or, preferably:

<send event¼"base" url¼"$APP_BASE/voice"/>

180 R. Tumuluri and N. Kharidi

http://www.example.com/ChineseFood/im/im.scxml
http://www.example.com/ChineseFood/im/im.xscxml#changeorder
http://a.b.c.d/sb/voice


As shown above, the Cue-me Platform supports an $APP_BASE macro

containing the application’s host address and application context. According

to the example above,

$APP_BASE ¼ http://A.B.C.D/sb

$HOST is the other supported macro and contains the value of the applica-

tion’s host address. According to the example above,

$HOST ¼ http://A.B.C.D

(2) Send initial (e.g., initialize or prepare) commands to the modality components:

<send event¼"prepare" to¼"x-voice" url¼"http://. . ./voice"/>

(3) On entry to a state send one or more commands to the modality components:

<send event¼"addGrammar" to¼"x-voice" url¼"login.jsgf"/>

<send event¼"addHelp" to¼"x-html" url¼"login.txt"/>

(4) Add an event listener to listen for a click event and in response send a command

to the voice modality to response with TTS (e.g., “you said hello”):

<go on¼"click" node¼"hello_id">

<send event¼"playUrl" to¼"x-voice" url¼"voice/sayHello.txt"/>

</go>

(5) Go to the menu state if the event data contains the “order” string:

<go on¼"location" to¼"menu" if¼"event.name¼¼’order’"/>

The Interaction Manager is composed of the following components.

9.2.7 XML Language Parser

The parser is a SAX parser which parses the X-SCXML into a state machine object.

While it parses the X-SCXML it also generates events for initial processing and

adds event handlers to the modality components.

9.2.8 State Machine

The state machine maintains the current state and retrieves the actions for an event

which triggers an event handler. It also returns the actions contained by the onentry
and onexit tags for each state, and the final tag for the document.

9.2.9 Event Queue

All events are placed on an internal event queue to be processed one-by-one by the

Interaction Manager.

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 181

http://a.b.c.d/sb
http://a.b.c.d/


9.2.10 Data Model

The current application may have a data model specified by the X-SCXML

document. The data model is a set of EcmaScript variables, which may be assigned

in the X-SCXML with the <assign> tag and accessed by the <send> tag’s “expr”
attribute. The<script> tag may also be used to declare, assign, and access variables

and functions.

9.2.11 X-SCXML Markup Language

The X-SCXMLMarkup language defines the actions and event listeners for a set of

states enabling multimodal interactions between the user of a mobile device and a

web application running on the device.

X-SCXML is a simplified version of State Chart XML (SCXML) [4, 5], an XML

language that represents the execution environment of a state machine based on

Harel state charts.

A state machine as defined by X-SCXML is a set of:

• States: A state embodies information about the current situation in the system.

• Events: An event is an input message to the state machine.

• Transitions: A transition is either a change from one state to another, usually

triggered by an event, or it is a set of actions to be performed when triggered by

an event.

• Data model variables.

• Actions: An action is an activity to be performed by the state machine at a given

point in time.

• Primitives: to express guard conditions on transitions.

X-SCXML is processed by an Interaction Manager (IM) residing on a limited

resource mobile client. The IM’s role on the client is generally to enable multi-

modal interaction between a web application and the user, as defined by the W3C

Multimodal Interaction Working Group’s architecture.
According to this architecture:

• A state is the set of currently active grammars, files, web pages, etc., in the

multimodal system.

• A life-cycle event is a message sent between a modality component (Speech,

Visual, SMS, Ink, etc.) and the IM.

• An action is an activity the IM requests the modality component to perform.

• A transition moves the system either to another multimodal state or triggers a set

of actions to be performed by one or more modality component. For the latter

case, a transition defines an event handler.

182 R. Tumuluri and N. Kharidi



X-SCXML is a mobile profile of SCXML (https://www.w3.org/TR/scxml/), in

that it currently excludes the SCXML <parallel> tag which can capture concurrent

behavior within a state machine, as it is not a requirement for most mobile

applications.

Here is an example X-SCXML document representing a “Food Order” applica-

tion. Its outermost state is identified as “home.” The “home” state has one “order”

state. For any voice result event received by the IM while within the nested states,

the view component calls a JavaScript function “handleCommand” with a param-

eter string contained in the “event.value” property.

The data model declares an EcmaScript variable, “_data.welcome.” Upon enter-

ing the “home” state, the voice component is instructed to play, “Welcome to

Chinese Food Order!.”

<?xml version="1.0" encoding="UTF-8"?>
<xscxml initialstate="home" version="1.0">

<initial>
<send event="base" to="x-html" url="$APP_BASE/gram/"/>

<send event="base" to="x-voice" url="$APP_BASE/gram/"/>
<send event="prepare" to="x-voice" url="$HOST/mmivoice"/>

</initial>
<datamodel>

<data id="welcome" expr="'Welcome to Chinese Food Order!'">
</datamodal>
<state id="home">

<onentry>
<send event="addGrammar" to="x-voice" url="chineseord.gram"/>
<send event="addHelp" to="x-html" url="chineseord.txt"/>
<send event="playText" to="x-html" expr="_data.welcome"/>

</onentry>
<go on="voiceResult" from="x-voice">

<send event="execute" data="event.value" to="x-html"
target="handleCommand" />

</go>
<state id="order">

<onentry>
<send event="addGrammar" to="x-voice" url="foods.gram"/>

<send event="addHelp" to="x-html" url="foods.txt"/>
</onentry>
<onexit>
<send event="removeGrammar" to="x-voice" url="foods.gram"/>

<send event="removeHelp" to="x-html" url="foods.txt"/>
</onexit>

</state>
</state>
<final>

<send event="unPrepare" to="x-voice" url="$HOST/mmivoice"/>
</final>

</xscxml>

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 183

https://www.w3.org/TR/scxml/


9.2.12 Cue-me Multimodal Server

The Multimodal Server is required for a voice component configured for remote

speech recognition and synthesis. The Multimodal Server handles communication

and data transfers between the Voice Component running on the client.

The Multimodal Server processes speech input against one or more provided

grammars, returns results, and generates TTS audio to be rendered by the device.

This is the remote speech processing model and no application resources need to be

stored on the Server.

9.2.13 Voice Component

The Voice Component records the speech input and plays the output (TTS) as

directed by the Interaction Manager. It will send the recorded input to either a

remote or local speech engine for processing, depending on how the mobile device

is configured.

Events and data from the Multimodal Server are forwarded to the Interaction

Manager as events for processing.

9.2.14 GUI Modality

The GUI modality is the mobile phone’s Web Browser, except that it also adds

event listeners as directed by the IM, sends events to the IM, and handles events

from the IM. Event listeners added to the GUI modality add listeners for DOM

events to the current HTML page.

The GUI modality can listen for the any of the HTMLDOMEvents supported by

HTML 5.

9.3 X-SCXML Processing

9.3.1 Introduction

The X-SCXML document is processed on a mobile device after being downloaded

from a remote server. While it is being parsed all initial actions as well as on-entry

actions for the initial state are placed on the internal event queue for processing by

the IM.

For each state the parser encounters it also saves all go transitions to a state

object identified by the state’s identifier. If the state is the initial state it adds an “add
event listener” event to the event queue for each go transition.

184 R. Tumuluri and N. Kharidi



Once the state objects are constructed for all the states the state machine is

created to store the states as well as the final section of the X-SCXML document.

The state machine sets the current state to the state identified by the “initialstate”

attribute on the <xscxml> tag.

The X-SCXML is comprised of the following:

9.3.2 Data Model

The <datamodel> tag declares the data model for the X-SCXML application. One

or more<data> tags below<datamodel> declare a set of EcmaScript variables for

storing and accessing information during X-SCXML document processing.

9.3.3 Initial and Final

The <initial> tag contains a set of actions, each denoted by the<send> tag, which

one or more modality components are to perform with the initialization of the

X-SCXML document.

The <final> tag complements the <initial> tag, containing the set of <send>
actions which the modality components are to perform upon exiting the application.

9.3.4 States

At any time a multimodal application may be in one of a set of interaction states.

Each active state has its own set of the files (e.g., grammars, web page, etc.) and

event handlers. Some or all of these files and handlers may be replaced when there

is a transition to another state.

States may be nested. There are several advantages of having nested states:

(1) the outermost state can be the global state for the application. That is, event

handlers declared in the outermost state apply to all the nested states below. (2) The

X-SCXML can model applications which are more complex. (3) X-SCXML is

more compliant with Harel State charts and SCXML. Transformations between

SCXML and X-SCXML are thereby simpler.

9.3.4.1 State Transitions

A state transition is declared with the<go> tag and is usually triggered by an event

from a modality component. The next state is declared by the <go> tag’s “to”

attribute.

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 185



Here is an example state transition:

<go on="voiceResult" from="x-voice" to="foodorder" node="myhome"/>

9.3.4.2 Event Handlers

An event handler is declared with the<go> tag and is usually triggered by an event

from a modality component. For example, a “voiceResult” event from the voice

modality might trigger an action to update a field within a web page with the data

returned with the “voiceResult” event.

A <go> tag which is an event handler won’t have the “to” attribute and has one
or more <send> tags as children. If there are conditionals specified by <if>,

<elseif>, and <else> tags, only <send> actions below the conditionals which

evaluate to true upon receipt of the event are performed by the modality

components.

Here is an example event handler:

<go on="voiceResult" from="x-voice">
<send event="execute" data="event.data" to="x-html"

target="handleCommand" />
</go>

9.3.4.3 On Entry and On Exit Processing

A state may contain one<onentry> and one<onexit> tag. When the state machine

transitions to a new state the actions contained by the<onentry> tag below the new

state are sent by the IM to the modality components.

The <onexit> tag is the complementary to <onentry>; the actions contained

below <onexit> for the old state are performed when the state machine transitions

to a new state.

9.3.5 Event Types

Following the W3CMMI Life-cycle API, the modality components support various

API calls as appropriate.

9.3.5.1 Voice Client Event Types

The Voice Client event types are independent of the location of the speech

rendering with the exception of the “prepare” and “unPrepare” events. The latter

186 R. Tumuluri and N. Kharidi



events are required by the Voice Proxy for setting up and tearing down resources on

the remote Voice Server.

9.3.5.2 Visual (GUI) Modality Event Types

Event types emitted by visual modality

Event Description Detail

click User clicks on a DOM node MouseEventDetail

getFieldResponse Returns content requested with the getField

event

Target is the id of an

HTML tag containing

text

newPage A new web page has been received Title of the Web Page

URL of the Web page

newContextRequest A new X-SCXML document is available

(discovered in HTML header or cookie)

URL of the X-SCXML

document

nextState Move to a new X-SCXML state New state IDa

aThe Interaction Manager ignores the nextState event if currently in the state specified by the

event’s new state ID.

9.3.6 Example getField, getFieldResponse, and playText

A typical use case for the getField and getFieldResponse event combination is to

get the contents of a text area or paragraph and forward to the voice client to be

played as TTS. For example, the X-SCXML can be programmed to request a

paragraph identified by “art_text_id” when requested by the user. When the

getFieldResponse event is received, the contents of the associated event.property

can be included as data with the playText event sent to the voice component. The

X-SCXML snippet is shown below:

<go on="voiceResult" from="x-voice">
<if node="readId"/>

<send event="getField" to="x-html" target="art_text_id" />
</if>

</go>
<go on="getFieldResponse" from="x-html">

<send event="playText" data="event.value" to="x-voice" />
</go>

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 187



9.3.7 Example Noinput and Message

A possible use case for the noinput and message event combination is to display a

message for the user when the voice client emits a noinput event. The message lets

the user know that the voice client is waiting for speech input. The X-SCXML

snippet is shown below:

<go on="noinput" from="x-voice">
<send event="message" to="x-html" data="Please begin \

talking. Press help if you need help as to what to say." />
</go>

9.3.7.1 The Event Object

An event object is included with every event put on the internal queue by a modality

component. This object is most useful in capturing the voice result when a user’s
speech input has matched against a grammar. The event object has two properties:

• Name—the node name or the name associated with a name/value pair of a

semantic interpretation result.

• Value—the raw result of the value associated with a name/value pair of a

semantic interpretation result.

The event object properties include confidence levels and other properties

conforming to the W3C EMMA language [6–8] for annotating recognized user

input.

9.3.7.2 URL Macros

The IM will process the following two macros when encountered in an X-SCXML

document:

• $HOST: This macro represents the server host of the current X-SCXML docu-

ment’s URL. It consists of protocol + host name + [optional] port number. For

example, $HOST would contain “http://example.com:5650” if the X-SCXML

was retrieved from “http://example.com:5650/im/example.xml.”

• $APP_BASE: This macro represents the host plus the application context root

retrieved from the current X-SCXML document’s URL. For the above example,

$APP_BASE would contain “http://example.com:5650/im.”

As already explained IM is the linchpin for both modality and context, and forms

the control plane driving/adapting the behavior of the application for the given

context/device or situation.

188 R. Tumuluri and N. Kharidi

http://example.com:5650/
http://example.com:5650/im/example.xml
http://example.com:5650/im


The ContextDeliveryArchitecture CoDA component (aka Delivery Context
Component) delivers device context information like location, camera, accelera-

tion, etc. The application uses this context information and drives behavior via state

transitions in the IM.

Several Enterprise Utility and Infrastructure components like Database, Syn-
chronization, etc., are available and co-ordinated through the Interaction Manager

(IM) for Enterprise application use.

For the purposes of on-device integration of both Enterprise and Cloud Appli-

cation services, the component architecture is extensible to include application

level components connecting to external services and creating services based

mashups (Fig. 9.5).

Upon application launch, the Interaction Manager starts the Interaction and

initializes one or more components based on the Application’s SCXML document.

The SCXML document itself may be present locally, or obtained from a URL

resource. As part of the HTML Component initialization, HTML resources are

either obtained from the Cue-me™ sandbox or via URL request to the appropriate

server. Speech, Gesture, and other components are initialized and the Application is

ready to execute.

The typical execution model is depicted in Fig. 9.6.

9.4 Application Development

Resources for the application are created and packaged using Open Web IDEs or an

Eclipse IDE with Cue-me™ Studio Plugins.

Fig. 9.5 Anatomy of a Cue-me™ application

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 189



9.4.1 HTML Editor with Interaction Context
(SCXML) Palette

Interaction Context defines the interaction modes and device peripherals that a

Cue-me app can interact with. Interaction Context is device-specific because

devices capabilities and peripherals differ.

Cue-me Studio provides an HTML Editor with SCXML palette. The SCXML

palette allows users to bind the SCXML components to the elements of HTML

document. For example, a Text input field can have a Gesture and Scanner inputs in

addition to the keyboard input.

The following picture shows the HTML Editor with the SCXML Palette on its

right (Fig. 9.7).

9.4.2 Multimodal Interactions (SCXML)

SCXML Editor is an XML editor with enhanced code assist for multimodal

components and events. The editor can be used to edit a multimodal application’s
Interaction Manager (IM) document that was generated.

9.4.2.1 Components

Components like “x-html, x-voice, etc.,” handle the action events from IM and

perform requested actions. Components can also raise events after performing the

Fig. 9.6 MMI (cue-me) application execution model

190 R. Tumuluri and N. Kharidi



requested actions. In the following picture, code assist after (ctrl+space bar), “to¼”

displays the list of components (Fig. 9.8).

9.4.2.2 Action Events

Action Events are the events that can be sent to Components like “x-html.” In the

following picture, code assist after (ctrl+space bar), “event¼” displays the list of

events that can be sent to components.

Fig. 9.7 HTML editor with SCXML palette

Fig. 9.8 SCXML editor

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 191



9.4.2.3 Raised Events

Raised Events are the events that can be raised on Actions like “go.” In the

following picture, code assist displays the list of raised events (Fig. 9.9a, b).

9.5 Example: The Chinese Food Order Application

This section will put all the previous sections together by describing an example

multimodal application and how all the pieces, HTML, grammars, and X-SCXML,

fit together.

The following two images show the main page of the Chinese Food Order

application. In most cases developers will be adding multimodal interaction to a

legacy web application so it makes sense to start with the HTML pages or JSPs.

All pages will generally have a set of global controls for navigating the appli-

cation while other fields and buttons can be said to be specific to each of the pages.

It is important that each web page has a unique title. Because multiple web

pages may be served by the same servlet, the different responses (pages) can refer to

same URL. Cue-me adjusts interaction state by associating each web page with a

unique combination of URL and title. Requiring a unique title is a good practice in

any case and <title> is a required XHTML tag (Fig. 9.10).

The next step is to add the voice interaction to this page. Adding voice interac-

tion means adding the grammar and help files which will perform the same actions

as clicking on the buttons and entering text into the fields with a keypad or stylus.

Here is the Chinese Food Order grammar in SRGS or ABNF format:

#ABNF 1.0 iso-8859-1;

language en-US;

mode voice;

root $chineseorder;

tag-format <semantics/1.0>;

public $chineseorder ¼ [I would like | I’d like] [to (order|get)]

[please] [give me] ((change [my | the] order {$.changeOrder¼true})

| (what is (my | the) order {$.what¼true})

| (submit [my | the] [order] {$.done¼true})

| ([I’m] (done | finished | ready) [with] [my | the] [order] {$.done¼true})

| ([and] ([an] egg roll {$.appEggRoll¼true}

| [some] pork dumplings {$.appPkDump¼true}

| [some] crispy spring rolls {$.appCriSpr¼true}

| [with] [a|an|some] fried rice {$.riceFried¼true}

| roast pork noodle soup {$.spRoastPk¼true}

| hot and sour soup {$.spHotSour¼true}

| chicken with sweet corn soup {$.spChicken¼true}

| mixed vegetables in oyster sauce {$.entree¼"Mixed Vegetables"}

192 R. Tumuluri and N. Kharidi



Fig. 9.9 (a) Action events, (b) Raised events

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 193



| pineapple sweet and sour pork {$.entree¼"Sweet and Sour Pork"}

| moo shoo pork {$.entree¼"Moo Shu Pork"}

| ginger chicken {$.entree¼"Ginger Chicken"}

| beef with vegetables {$.entree¼"Beef"}

| deep fried shrimp {$.entree¼"Shrimp"}))<1->);

9.5.1 Chinese Food Order Global Grammar

Grammars for Cue-me should always be written in the above format using semantic

interpretation to set the node and value. The node and value set with semantic

interpretation correspond to the name and value properties of the event object

associated with the voiceResult event processed by X-SCXML. For example, “$.

entree¼”Shrimp” sets the node to “entree” and the value to “Shrimp.”

Associated with each grammar should be a help file which tells the user what he

or she can say on the page. This is a text file stored on a server along with the

grammar file. Here is an example help file for the above Chinese Food Order

grammar:

You may specify most or all of your order at one time, if you already know what

you want.

For example, you could say:

I would like moo shoo pork, with

an eggroll, hot and sour soup,

and some fried rice.

Fig. 9.10 Chinese food order demo

194 R. Tumuluri and N. Kharidi



To change your order you can say:

I’d like to change my order.

When done with your order you can say:

Submit my order.

To hear your order you can say:

What is my order?

9.5.2 Chinese Food Order Grammar Help Text

9.5.2.1 Interaction Integration with X-SCXML

The Interaction Manager integrates the visual and voice interactions as directed by

the X-SCXML document associated with the Chinese Food Order application. Each

modality component has an identifier: “x-html” identifies the GUI and “x-voice”

identifies the voice. The X-SCXML document’s initial state is “home.”

In the initial section of the X-SCXML, each component’s base URL is set, the voice

component is directed to prepare the voice modality for this client session, add the

global Chinese Food Order grammar, and get the help text to be displayed by the GUI.

<?xml version="1.0" encoding="UTF-8"?>
<xscxml initialstate="home">

<initial>
<send event="base" to="x-html" url="$APP_BASE/gram/"/>

<send event="base" to="x-voice" url="$APP_BASE/gram/"/>
<send event="prepare" to="x-voice" url="$HOST/.../mmivoice"/>

</initial>

9.5.3 Initial Section

The data model declares EcmaScript variables for use during the X-SCXML

document processing. The Chinese Food Order application defines one variable,

“welcome” which is accessed as “_data.welcome” within the application.

<datamodel>
<data id="welcome" expr="'Welcome to Chinese Food Order!'"/>

</datamodel>

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 195



9.5.4 Data Model Section

The Chinese Food X-SCXML has a home state and a nested state below the home

state so to update the single page dynamically as if the user was engaged in a dialog.

On entry to the home state for the page the grammar and help text events for the

page are added. The voice component is also sent the welcome message to play

contained in the “_data.welcome” variable.

The X-SCXML<go> tag specifies an event handler. For example, when a voice

result event is received by the Interaction Manager, the Interaction Manager will

send a JavaScript execute event to the GUI component. The JavaScript function

submit_form will be called if the event name is “submitButton,” and in other words

when the user clicked on the button with ID attribute set to “submitButton.” If the

global attribute is set to “true,” this event handler is active for all the states in the

grammar. This is the global event handler associated with the global Chinese Food

Order grammar.

Here are the order form and nested dialog state sections:

<state id="orderform" initialstate="dialog">
<onentry>

<send event="addGrammar" to="x-voice" url="chineseorder.gram"/>
<send event="addHelp" to="x-html" url="chineseorder.txt"/>
<send event="playText" to="x-voice" expr="_data.order"/>

</onentry>
<state id="dialog">

<go on="voiceResult" from="x-voice" to="dialog"
cond="event.name!='changeOrder'&amp;&amp;event.name!='done'&amp;&amp;event.name!='what'">

<send event="setField" data="event.value" to="x-html" target="event.name"/>
</go>

</state>
<go on="click" from="x-html" node="submitButton" to="orderform">

<send event="playText" to="x-voice" data="Thanks for your order!"/>
<send event="execute" to="x-html" target="submit_form"/>

</go>

<go on="voiceResult" from="x-voice" node="done" to="orderform">
<send event="playText" to="x-voice" data="Thanks for your order!"/>

<send event="execute" to="x-html" target="submit_form"/>
</go>

<go on="voiceResult" from="x-voice" to="changeorder" node="changeOrder"/>
<go on="voiceResult" from="x-voice" node="what" global="true">

<send event="execute" to="x-html" target="getOrder"/>
</go>

<go on="executeResponse" from="x-html" node="getOrder" global="true">
<send event="playText" to="x-voice" expr="event.value"/>

</go>
<onexit>

<send event="removeGrammar" to="x-voice" url="chineseorder.gram"/>
<send event="removeHelp" to="x-html" url="chineseorder.txt"/>
</onexit>

</state> ...

196 R. Tumuluri and N. Kharidi



9.5.5 Order Form State

On exit from the order form state the order form grammar and help files are

removed from the speech engine.

The Interaction Manager can direct the GUI component to update a field with the

“setField” event. For example, when the voice result has an event node set to

anything besides “changeOrder,” “done,” or “what”, the GUI is directed to set the

field with ID set to the value contained in the event object’s name property, with a

value contained in the value property.

<go on="voiceResult" from="x-voice" to="dialog"
cond="event.name!='changeOrder'&amp;&amp;event.name!='done'&amp;&amp;event.name!='what'">

<send event="setField" data="event.value" to="x-html" target="event.name"/>
</go>

9.5.6 Set Field with ID Contained in the Event Object’s
Name Property

In the final section of the X-SCXML document, the voice proxy is told to unprepare

the current session.

<final>
<send event="unPrepare" to="x-voice" url="/MMoic...Proxy/mmivoice"/>

</final>

9.5.7 Final Section

9.5.7.1 Add a Cookie to the Home Page

When development of the X-SCXML document is complete, a cookie must be

added to the home page specifying its URL location. For example, for the Chinese

Food Order application, the cookie is added to the market’s summary JSP as

follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<%
Cookie cookie = 

new Cookie ("IM-Loc", "http://example.xml/Chinese/im/ch.xscxml");
cookie.setMaxAge(10); // Do NOT set Max Age more than 1 0-20 s
cookie.setVersion(1);
response.addCookie(cookie);
%>

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 197



9.5.7.2 “IM-Loc” Cookie for the X-SCXML URL

The “IM-Loc” cookie should not have a max age set to more than 20 s. Otherwise, it

may remain active after the user leaves the Chinese Food Order application.

9.6 Extending the MMI Architecture to Connected Devices

9.6.1 Development of a Prototype Multimodal Robot
Using MMI

Let’s call our robot EasyHealthAssistant EHA. EHA uses Text-To-Speech (TTS),

Speech recognition, Face Recognition, Motion sensing and Mindwave (EEG)

interactions to effectively engage patients and care-givers. The robot features

bluetooth connectivity to third party health devices and wearables such as a

Blood Pressure Monitor or electronic fitness trackers. EHA keeps care-givers

informed by providing real time updates concerning the patient’s adherence, vital
readings, and any new developments in the condition of the patient. The robot

facilitates video conference calls leveraging WebRTC with the physician or the

care-giver on command (speech/touch) (Fig. 9.11).

9.6.2 Design of EHA

EHA is a static robot which has a revolving head and three passive Infrared Motion

(PIR) sensors. The camera, display, microphone, and speakers from a phone are

located on the revolving head. When motion is detected, the head turns in the

corresponding direction and faces the user (Fig. 9.12).

One of the core functions of EHA is the dispensing of medication to the correct

user at the prescribed time. While, the servos, motors, PIR sensors, and Wi-Fi

connectivity are controlled using an Arduino microcontroller, the robot itself is

controlled by EHA program implemented using the W3C Multimodal architecture,

leveraging Openstream’s Cue-me multimodal platform.

The control-logic (Interaction Manager) is implemented in SCXML, while the

modality components are implemented in other languages with events flowing

between Interaction Manager and modality components including the Arduino

controller (Fig. 9.13).

198 R. Tumuluri and N. Kharidi



Fig. 9.11 Feature-overview

Fig. 9.12 Functional prototype (fully built and sectional views)

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 199



9.6.3 Motion Detection

There are three PIR sensors located 120� apart to allow for a full range of motion

sensing. The “motion detected” event is the trigger which begins the interaction

between the user and EHA. When motion is detected, the robot turns to face the

direction of motion and launches face recognition and face tracking.

9.6.4 Face Recognition

The face recognition engine serves the purpose of authentication and personaliza-

tion for the user. The authentication of the user gives EHA context for any

upcoming interaction, such as reminding the user when it is time to take medication

Fig. 9.13 Sample flow and

high-level events

200 R. Tumuluri and N. Kharidi



or if the care-giver has changed the regimen, while it improves the quality of the

interaction by referring to the user with her first name (Fig. 9.14).

An EMMA 2.0-based representation of the face recognition result is given

below. The result includes an ID and name corresponding to the recognized

match. More than one match can be returned, in which case, the confidence score

can be used to arrive at the most likely match.

<emma:emma version¼"2.0"

xmlns:emma¼"http://www.w3.org/2003/04/emma"

xmlns:xsi¼"http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation¼"http://www.w3.org/2003/04/emma

http://www.w3.org/TR/2009/REC-emma-20090210/emma.xsd"

xmlns¼"http://www.example.com/example">

<emma:one-of id¼"r1" emma:start¼"1087995961542" emma:

end¼"1087995963542"

emma:medium¼"visual" emma:mode¼"video" "emma:device-

type:”camera” emma:source¼"http://example.com/camera/LFDJ-

43U">

<emma:interpretation id¼"int1" emma:confidence¼"0.85">

<matchId>43879</matchId>

<matchName>John Doe</matchName>

</emma:interpretation>

Fig. 9.14 Face-recognition

(enhanced camera-

component)

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 201



<emma:interpretation id¼"int2" emma:confidence¼"0.27">

<matchId>90328</matchId>

<matchName>Mark Johnson</matchName>

</emma:interpretation>

</emma:one-of>

</emma:emma>

9.6.5 Face Tracking

Face tracking allows EHA to respond to the users movements in a more human-like

manner. Once motion is detected and the head turns in the corresponding direction,

the camera locates the user and sends commands to the neck servo to face the user

squarely. As the user moves around, EHA will continue to track the user’s face and
adjust its head-position accordingly.

An EMMA 2.0-based representation of the face tracking result is given below.

The tracking information is provided in terms of the top-left and bottom-right

co-ordinates of the “box” that contains the face in the picture captured by the

video camera. It is assumed that there is a single face in the picture being

interpreted. The incremental results feature of EMMA 2.0 is used here so that

face tracking data can be continuously generated as the user’s movements are

tracked.

<emma:emma version¼"2.0"

xmlns:emma¼"http://www.w3.org/2003/04/emma"

xmlns:xsi¼"http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation¼"http://www.w3.org/2003/04/emma

http://www.w3.org/TR/2009/REC-emma-20090210/emma.xsd"

xmlns¼"http://www.example.com/example">

<emma:one-of id¼"r1" emma:start¼"1087995961542" emma:

end¼"1087995963542"

emma:medium¼"visual" emma:mode¼"video" emma:device-type:”camera”

emma:source¼"http://example.com/camera/LFDJ-43U">

<emma:interpretation id¼"int1" emma:confidence¼"0.7"

emma:tokens¼"{‘top-left’:{‘x’:323.219, ‘y’:643.980}, ‘bottom-

right’:{‘x’:732.543, ‘y’:132.376}} ">

emma:token-type¼"json"

emma:stream-id¼"s1"

emma:stream-seq-num¼"0"

emma:stream-status¼"begin"

emma:stream-token-span¼"0-1"

emma:stream-full-result¼"true"

</emma:interpretation>

202 R. Tumuluri and N. Kharidi



<emma:interpretation id¼"int2" emma:confidence¼"0.43"

emma:tokens¼"{‘top-left’:{‘x’:196.088, ‘y’:778.692}, ‘bottom-

right’:{‘x’:478.011, ‘y’:389.289}} ">

emma:token-type¼"json"

emma:stream-id¼"s1"

emma:stream-seq-num¼"0"

emma:stream-status¼"begin"

emma:stream-token-span¼"0-1"

emma:stream-full-result¼"true"

</emma:interpretation>

</emma:one-of>

</emma:emma>

9.6.6 TTS and Speech Recognition

EHA is equipped with TTS and local speech recognition to make the interaction

with the user more natural. The speech recognizer uses a lead word to reduce false

positive recognition and end of speech recognition to simulate a normal conversa-

tion (Fig. 9.15).

9.6.7 EEG Headset

There are two modes for EHA; a passive mode, where the user provides commands

and the robots executes them, and an active mode where EHA initiates and drives

the interaction. Once paired with the NeuroSky Mindwave headset, EHA asks

binary questions in a logical progression and a redundant manner. The user has to

voluntarily blink for an affirmative response. This method of interaction is capable

of communicating with individuals that are incapable of speech or are disabled in a

way that prevents from using normal interaction (Fig. 9.16).

9.6.8 Bluetooth Integration

EHA leverages Cue-me™’s Bluetooth Low Energy (BLE) component and can read

directly from Bluetooth Health-care Device Profile (HDP) and other compatible

health-monitoring devices and medical instrumentation obviating the need for user

to enter the readings manually off the instrument-displays.

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 203



Fig. 9.16 Mindwave

headset

Fig. 9.15 Monitoring vitals

204 R. Tumuluri and N. Kharidi



9.6.9 Ink and Speech Annotation

EHA facilitates capture of images using camera and high-lighting the picture with

Ink and Voice annotations. The annotations are exchanged as W3C Synchronized

Multimedia Integration Language (SMIL) documents for maintaining the isochro-

nous nature of the multimodal annotations as shown below:

Sample SMIL document:

<smil>

<head>

<layout>

<root-layout width¼"240" height¼"299" />

</layout>

</head>

<body>

<par>

<audio src¼"audio_10_0.wav" begin¼"500" dur¼"6486"

region¼"main" />

<audio src¼"audio_10_1.wav" begin¼"15029" dur¼"10696"

region¼"main" />

<img src¼"image_10.jpg" region¼"main" />

<ref src¼"inkml_10.xml" type¼"application/inkml+xml"

region¼"main" />

</par>

</body>

</smil>

The corresponding InkML document referenced in the SMIL document is as

given below ( truncated for brevity) :

<?xml version¼"1.0" encoding¼"utf-8" standalone¼"yes"?>

<inkml:ink xmlns:inkml¼"http://www.w3.org/2003/InkML">

<inkml:definitions>

<inkml:context xml:id¼"ct_0" >

<inkml:inkSource xml:id¼"inksrc_0" >

<inkml:traceFormat>

<inkml:channel name¼"X" type¼"integer" max¼"480"

units¼"dev"/>

<inkml:channel name¼"Y" type¼"integer" max¼"598"

units¼"dev"/>

</inkml:traceFormat>

<inkml:channelProperties>

<inkml:channelProperty channel¼"X" name¼"resolution"

value¼"0" units¼"1/dev"/>

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 205



<inkml:channelProperty channel¼"Y" name¼"resolution"

value¼"0" units¼"1/dev"/>

</inkml:channelProperties>

</inkml:inkSource>

</inkml:context>

<inkml:brush xml:id¼"br_0">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_1">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_2">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_3">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_4">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_5">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_6">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_7">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

206 R. Tumuluri and N. Kharidi



<inkml:brush xml:id¼"br_8">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_9">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

<inkml:brush xml:id¼"br_10">

<inkml:brushProperty name¼"color" value¼"#FF0000" />

<inkml:brushProperty name¼"width" value¼"3" units¼"dev" />

<inkml:brushProperty name¼"style" value¼"1" />

</inkml:brush>

</inkml:definitions>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_0"

duration¼"1284" timeOffset¼"1001" >281 48,281 48,277 48,277 48,273

48,273 48,269 50,269 50,264 51,264 51,261 51,261 51,255 53,255 53,247

55,247 55,237 57,237 57,229 59,229 59,225 60,225 60,221 62,221 62,212

64,212 64,208 65,208 65,201 69,201 69,197 70,197 70,196 71,196 71,189

75,189 75,187 77,187 77,181 83,181 83,177 87,177 87,175 92,175 92,173

96,173 96,171 103,171 103,171 106,171 106,169 114,169 114,171 117,171

117,172 124,172 124,175 128,175 128,176 133,176 133,180 139,180

139,184 144,184 144,189 149,189 149,193 152,193 152,199 155,199

155,203 157,203 157,208 160,208 160,216 162,216 162,221 163,221

163,233 164,233 164,248 165,248 165,257 164,257 164,263 164,263

164,268 164,268 164,277 163,277 163,283 162,283 162,292 161,292

161,296 160,296 160,301 159,301 159,311 157,311 157,316 157,316

157,327 154,327 154,332 153,332 153,343 150,343 150,352 148,352

148,356 146,356 146,359 145,359 145,363 143,363 143,369 139,369

139,372 137,372 137,375 135,375 135,377 132,377 132,393 109,393

109,395 107,395 107,395 103,395 103,395 101,395 101,393 97,393 97,393

96,393 96,392 90,392 90,392 86,392 86,391 84,391 84,391 83,391 83,389

79,389 79,387 76,387 76,384 74,384 74,381 72,381 72,379 70,379 70,376

68,376 68,373 66,373 66,371 64,371 64,367 63,367 63,364 61,364 61,360

59,360 59,357 57,357 57,353 55,353 55,348 54,348 54,345 53,345 53,340

51,340 51,337 50,337 50,332 47,332 47,325 45,325 45,321 44,321 44,319

43,319 43,315 43,315 43,308 43,308 43,304 43,304 43,296 44,296 44,291

45,291 45,281 47,281 47,276 48,276 48,276 48,276 48</inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_1" duration¼"955"

timeOffset¼"3537" >545 69,545 69,541 70,541 70,537 70,537 70,533

70,533 70,529 71,529 71,525 72,525 72,521 74,521 74,517 74,517 74,512

76,512 76,507 78,507 78,504 79,504 79,501 81,501 81,499 83,499 83,493

86,493 86,492 87,492 87,489 89,489 89,485 93,485 93,481 96,481 96,480

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 207



98,480 98,455 130,455 130,452 138,452 138,451 141,451 141,451 144,451

144,451 148,451 148,451 152,451 152,455 162,455 162,456 165,456

165,460 169,460 169,464 174,464 174,468 177,468 177,477 185,477

185,484 189,484 189,488 192,488 192,491 193,491 193,496 194,496

194,505 196,505 196,509 197,509 197,520 197,520 197,525 197,525

197,535 195,535 195,555 190,555 190,565 186,565 186,569 184,569

184,573 181,573 181,577 179,577 179,584 173,584 173,591 169,591

169,593 165,593 165,597 161,597 161,599 157,599 157,601 151,601

151,604 143,604 143,607 136,607 136,607 132,607 132,608 124,608

124,609 121,609 121,609 118,609 118,609 115,609 115,608 110,608

110,607 107,607 107,605 104,605 104,604 102,604 102,601 97,601 97,600

95,600 95,600 93,600 93,597 88,597 88,596 87,596 87,592 83,592 83,591

81,591 81,588 79,588 79,585 78,585 78,579 76,579 76,573 75,573 75,571

75,571 75,567 75,567 75,561 74,561 74,556 73,556 73,556 73,556 73</

inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_2" duration¼"647"

timeOffset¼"8272" >59 220,59 220,60 222,60 222,64 229,64 229,67

233,67 233,68 237,68 237,71 242,71 242,73 249,73 249,75 253,75 253,76

256,76 256,79 262,79 262,80 266,80 266,80 267,80 267</inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_3" duration¼"110"

timeOffset¼"8941" >76 241,76 241,79 239,79 239,81 237,81 237,85

234,85 234,88 232,88 232,93 229,93 229,93 229,93 229</inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_4" duration¼"262"

timeOffset¼"9314" >91 214,91 214,91 217,91 217,92 218,92 218,95

226,95 226,97 232,97 232,99 235,99 235,107 250,107 250,111 251,111

251,111 251,111 251</inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_5" duration¼"354"

timeOffset¼"9854" >121 245,121 245,123 243,123 243,125 242,125

242,127 239,127 239,132 234,132 234,133 230,133 230,136 225,136

225,135 220,135 220,133 218,133 218,132 215,132 215,124 213,124

213,117 217,117 217,113 222,113 222,112 225,112 225,112 234,112

234,113 238,113 238,121 240,121 240,125 241,125 241,128 240,128

240,132 240,132 240,139 238,139 238,141 236,141 236,144 234,144

234,147 232,147 232,147 230,147 230,147 230,147 230</inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_6" duration¼"361"

timeOffset¼"10382" >151 201,151 201,155 203,155 203,156 205,156

205,159 207,159 207,160 210,160 210,163 214,163 214,165 218,165

218,167 221,167 221,167 225,167 225,164 222,164 222,164 220,164

220,164 218,164 218,164 216,164 216,163 214,163 214,163 211,163

211,163 209,163 209,161 202,161 202,163 200,163 200,164 198,164

198,165 197,165 197,168 195,168 195,168 195,168 195</inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_7" duration¼"346"

timeOffset¼"10962" >200 210,200 210,203 208,203 208,204 206,204

206,204 204,204 204,205 202,205 202,205 200,205 200,205 194,205

194,204 189,204 189,203 187,203 187,200 185,200 185,191 189,191

208 R. Tumuluri and N. Kharidi



189,188 192,188 192,185 197,185 197,184 201,184 201,184 204,184

204,184 209,184 209,185 211,185 211,192 213,192 213,195 213,195

213,199 212,199 212,203 212,203 212,209 209,209 209,216 207,216

207,219 205,219 205,223 202,223 202,223 202,223 202</inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_8" duration¼"1012"

timeOffset¼"16118" >397 214,397 214,395 214,395 214,389 215,389

215,383 215,383 215,373 216,373 216,369 217,369 217,361 218,361

218,353 221,353 221,349 222,349 222,344 223,344 223,336 226,336

226,331 229,331 229,327 230,327 230,323 233,323 233,315 238,315

238,311 240,311 240,301 248,301 248,299 252,299 252,297 255,297

255,293 262,293 262,293 266,293 266,292 269,292 269,292 273,292

273,293 281,293 281,295 285,295 285,295 289,295 289,296 293,296

293,299 297,299 297,300 301,300 301,309 312,309 312,316 319,316

319,320 323,320 323,324 326,324 326,333 332,333 332,337 335,337

335,344 336,344 336,360 342,360 342,367 343,367 343,373 344,373

344,379 345,379 345,404 345,404 345,411 344,411 344,417 344,417

344,424 343,424 343,437 340,437 340,443 340,443 340,449 338,449

338,457 336,457 336,465 333,465 333,475 331,475 331,491 325,491

325,511 319,511 319,516 316,516 316,524 311,524 311,528 310,528

310,531 307,531 307,536 302,536 302,537 299,537 299,541 292,541

292,543 288,543 288,543 286,543 286,544 279,544 279,543 271,543

271,540 270,540 270,539 268,539 268,533 265,533 265,531 263,531

263,528 262,528 262,523 257,523 257,520 254,520 254,515 249,515

249,512 246,512 246,508 243,508 243,501 239,501 239,497 238,497

238,493 237,493 237,484 233,484 233,480 231,480 231,475 230,475

230,465 226,465 226,461 223,461 223,409 214,409 214,403 214,403

214,397 214,397 214,383 214,383 214,379 214,379 214,379 214,379

214</inkml:trace>

<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_9" duration¼"792"

timeOffset¼"18293" >105 375,105 375,111 376,111 376,121 377,121

377,128 378,128 378,139 378,139 378,144 377,144 377,149 376,149

376,171 372,171 372,180 368,180 368,185 366,185 366,193 362,193

362,196 360,196 360,204 355,204 355,207 352,207 352,211 348,211

348,217 341,217 341,220 337,220 337,223 333,223 333,228 325,228

325,229 321,229 321,232 315,232 315,233 311,233 311,232 309,232

309,229 304,229 304,228 303,228 303,221 299,221 299,219 296,219

296,215 295,215 295,204 289,204 289,196 286,196 286,192 285,192

285,187 284,187 284,176 283,176 283,165 283,165 283,159 283,159

283,152 283,152 283,143 283,143 283,137 283,137 283,133 284,133

284,121 287,121 287,116 291,116 291,112 292,112 292,108 295,108

295,101 299,101 299,99 301,99 301,92 306,92 306,88 308,88 308,83

313,83 313,80 316,80 316,79 319,79 319,77 328,77 328,79 331,79 331,81

337,81 337,83 340,83 340,84 343,84 343,87 349,87 349,88 352,88 352,91

357,91 357,92 360,92 360,96 364,96 364,101 367,101 367,107 368,107

368,111 368,111 368,115 367,115 367,120 366,120 366,124 366,124

366,129 365,129 365,139 365,139 365,139 365,139 365</inkml:trace>

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 209



<inkml:trace contextRef¼"#ct_0" brushRef¼"#br_10" duration¼"598"

timeOffset¼"20416" >608 218,608 218,604 220,604 220,600 222,600

222,596 224,596 224,592 226,592 226,587 230,587 230,584 233,584

233,583 234,583 234,580 238,580 238,579 240,579 240,577 242,577

242,577 245,577 245,575 250,575 250,575 252,575 252,572 255,572

255,572 260,572 260,572 265,572 265,573 269,573 269,577 272,577

272,583 274,583 274,587 275,587 275,592 276,592 276,596 276,596

276,601 275,601 275,607 272,607 272,609 271,609 271,611 269,611

269,616 265,616 265,617 263,617 263,620 260,620 260,620 256,620

256,620 251,620 251,620 249,620 249,620 245,620 245,620 242,620

242,621 238,621 238,621 236,621 236,621 234,621 234,619 230,619

230,617 229,617 229,601 222,601 222,601 222,601 222</inkml:trace>

</inkml:ink>

The captured image and audio recording play while redrawing the ink trace on

the image, enabling sharing of rich annotations with care-givers.

9.7 Conclusion

Implementation of the platform using the W3C MMI architecture helped in

streamlining the process of structured authoring for application developers. It

mainly helped in the separation of concerns between application-design and

interaction-design and helped them focus on the application functionality without

unduly getting distracted by the differences in the features of underlying device/OS

architecture. Further, it helped portability of their applications while shielding

authors from nuances of the implementation of modality-components or getting

locked-in to a particular vendor’s speech-engine or location-service or other modal-

ity components. The soundness of the component-architecture of MMI enabled

authors in extending modality components and thus the Cue-me platform to suit

their needs. As of the date of writing this book, Cue-me applications are deployed

on over 3.5 million devices around the world. The types of deployed applications

range from banking and financial services, field-force automation, retail-store

operations, health-care services, and corporate applications facilitating collabora-

tion and enhancing human interaction, while increasing user-productivity. It helped

support distributed deployment of applications across connected devices. Some of

the latest features of the Cue-me platform include registration and discovery of

modality components, so that authors can now write applications that can dynam-

ically discover and bind to modality components/services.

Acknowledgments Thanks to all the team members of Openstream especially, R. Anthapu,

R. Sripada, G. McCobb, K. Patel, N. Shah, T. Sindhaghatta, S. Anthapu, B. Narayana, and

S. Khandavilli, who helped in the design and development and the guidance and help provided

by D. Dahl, K. Ashimura at W3C MMI.

210 R. Tumuluri and N. Kharidi



References

1. Barnett, J., Bodell, M., Dahl, D. A., Kliche, I., Tumuluri, R., Larson, J., Porter, B., et al. (2012).

Multimodal architecture and interfaces. World Wide Web Consortium. http://www.w3.org/TR/

mmi-arch/. Accessed 20 Nov 2012.

2. Larson, J. A., Raman, T. V., & Raggett, D. (2002). W3C Multimodal Interaction Framework.

W3C. http://www.w3.org/TR/mmi-framework/.

3. Watt, S. M., Underhill, T., Chee, Y.-M., Franke, K., Froumentin, M., Madhvanath, S.,

et al. (2011). Ink Markup Language (InkML). World Wide Web Consortium. http://www.w3.

org/TR/InkML. Accessed Nov 2012.

4. Barnett, J. (2016). Introduction to SCXML. In D. Dahl (Ed.),Multimodal interaction with W3C
standards: toward natural user interfaces to everything. New York, NY: Springer.

5. Barnett, J., Akolkar, R., Auburn, R. J., Bodell, M., Burnett, D. C., Carter, J. et al. (2015) State

Chart XML (SCXML): State Machine Notation for Control Abstraction. World Wide Web

Consortium. http://www.w3.org/TR/scxml/. Accessed 20 Feb 2016.

6. Johnston, M. (2016). EMMA. In D. Dahl (Ed.), Multimodal interaction with W3C standards:
towards natural user interfaces to everything. New York, NY: Springer.

7. Johnston, M., Baggia, P., Burnett, D., Carter, J., Dahl, D. A., McCobb, G., et al. (2009). EMMA:

Extensible MultiModal Annotation markup language. W3C. http://www.w3.org/TR/emma/.

Accessed 9 Nov 2012.

8. Johnston, M., Dahl, D. A., Denny, T., & Kharidi, N. (2015). EMMA: Extensible MultiModal

Annotation markup language Version 2.0. World Wide Web Consortium. http://www.w3.org/

TR/emma20/. Accessed 16 Dec 2015.

URL’s

Easy Health Assistant use case video: http://youtu.be/x2Tte0QyTiA.

Openstream Easy Health Assistant Mindwave Demo: http://youtu.be/aEgdRU-yM2o.

Poor Medication adherence costs $290 Billion Annually: http://mobilehealthnews.com/3901/poor-

medication-costs-290-billion-a-year/.

W3C Multimodal Architecture: http://www.w3.org/TR/mmi-arch/.

Cue-me™ Multimodal Authoring Platform: http://www.openstream.com/cueme.

SCXML – State Chart XML: (http://www.w3.org/TR/scxml/).

Neurosky Mindwave: http://neurosky.com/products-markets/eeg-biosensors/hardware/.

9 Developing Portable Context-Aware Multimodal Applications for Connected. . . 211

http://www.w3.org/TR/mmi-arch/
http://www.w3.org/TR/mmi-arch/
http://www.w3.org/TR/mmi-framework/
http://www.w3.org/TR/InkML
http://www.w3.org/TR/InkML
http://www.w3.org/TR/scxml/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/emma20/
http://youtu.be/x2Tte0QyTiA
http://youtu.be/aEgdRU-yM2o
http://mobilehealthnews.com/3901/poor-medication-costs-290-billion-a-year/
http://mobilehealthnews.com/3901/poor-medication-costs-290-billion-a-year/
http://www.w3.org/TR/mmi-arch/
http://www.openstream.com/cueme
http://www.w3.org/TR/scxml/
http://neurosky.com/products-markets/eeg-biosensors/hardware/


Chapter 10

SCXML on Resource Constrained Devices

Stefan Radomski, Jens Heuschkel, Dirk Schnelle-Walka,

and Max M€uhlhäuser

Abstract Ever since their introduction as a visual formalism by Harel et al. in

1987, state-charts played an important role to formally specify the behavior of

reactive systems. However, various shortcomings in their original formalization

lead to a plethora of formal semantics for their interpretation in the subsequent

years. In 2005, the W3C Voice Browser Working Group started an attempt to

specify SCXML as an XML dialect and corresponding semantic for state-charts and

their interpretation, promoted to W3C recommendation status in 2015. In the

context of multimodal interaction, SCXML derives a special relevance as the

markup language proposed to express dialog models as descriptions of interaction

in the multimodal dialog system specified by the W3C Multimodal Interaction

Working Group. However, corresponding SCXML interpreters are oftentimes

embedded in elaborate host environments, are very simplified or require significant

resources when interpreted. In this chapter, we present a more compact, equivalent

representation for SCXML documents as native data structures with a respective

syntactical transformation and their interpretation by an implementation in ANSI

C. We discuss the characteristics of the approach in terms of binary size, memory

requirements, and processing speed. This will, ultimately, enable us to gain the

insights to transform SCXML state-charts for embedded systems with very limited

processing capabilities and even integrated circuits.

S. Radomski (*)

TU Darmstadt, Telekooperation Group, Darmstadt, Germany

e-mail: radomski@tk.tu-darmstadt.de

J. Heuschkel

TU Darmstadt, Telekooperation Group, Darmstadt, Germany

e-mail: heuschkel@tk.tu-darmstadt.de

D. Schnelle-Walka

S1nn GmbH & Co. KG, Stuttgart, Germany

e-mail: dirk.schnelle-walka@s1nn.de

M. Mühlhäuser
TU Darmstadt, Telekooperation Group, Darmstadt, Germany

e-mail: max@tk.tu-darmstadt.de

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_10

213

mailto:radomski@tk.tu-darmstadt.de
mailto:heuschkel@tk.tu-darmstadt.de
mailto:dirk.schnelle-walka@s1nn.de
mailto:max@tk.tu-darmstadt.de


10.1 Introduction

The State-Chart eXtensible Markup Language (SCXML) is a W3C recommenda-

tion for a specific syntax and semantics of Harel state-charts [4] as a compact visual

formalism for state-transitioning systems. It was finalized in September of 2015 [6]

and is suggested in the W3C Multimodal Architecture and Interfaces recommen-

dation [1] as a possible description of interaction managers to control modality

components in a multimodal user interface. While state-charts, as a visual formal-

ism, were already proposed by Harel in 1987, deficiencies with the initial seman-

tic [5] lead to the development and scientific publication of more than 40 different

semantics in the subsequent years [3, 9].

As such, the endeavor of SCXML to standardize the syntax and semantic via

the W3C is direly needed to reestablish compatibility of the various tools and

platforms available to model and interpret Harel state-charts. However, the syn-

tactical description of SCXML as an XML dialect and several language features

implied by tests in the SCXML Implementation Report Plan (IRP) strongly

suggest an implementation via interpretation at runtime with a full XML document

object model still available. While this overall approach has been spectacularly

successful, e.g., with HTML [2] and enables considerable flexibility to dynami-

cally adapt the XML description via scripting during interpretation, it severely

limits the applicability of SCXML to platforms with sufficient computing power

and memory.

In the following sections, we will describe an approach to preprocess SCXML

documents into more suitable data structures and present an implementation of the

microstep(T) function in ANSI C. This implementation, by a large margin,

outperforms the pseudo-code description of the same algorithm in Appendix D of

the SCXML recommendation. This is relevant as many SCXML interpreters do

indeed align their implementation of this central piece of functionality with the

pseudo-code description. Furthermore, by employing the syntax and semantics of

ANSI C as a formal programming language, we do address one point of critique

with the pseudo-code in Appendix D, that is to provide an actually executable

description for microstep(T).
While the evaluation of the ANSI C algorithm will already show general

applicability for even the smallest off-the-shelf micro-controllers, the last part

of this chapter will describe a first approach for a transformation from SCXML

onto VHDL as a hardware description language. Such a description would

allow to mold SCXML documents into Field Programmable Gate Arrays

(FPGAs) and even Application Specific Integrated Circuits (ASICs), which

we expect to gain elevated relevance in the scope of applications for the

Internet Of Things (IoT).

214 S. Radomski et al.



10.2 Semantic of SCXML

Before we dive into the actual algorithms, we will need to define some important

sets and relations from the SCXML recommendation that are relevant to retrace the

algorithms’ functionality and convince ourselves of their correctness. This section

does assume a passing familiarity with the SCXML recommendation or, at least,

with Harel state-charts in general.

The interpretation and execution of an SCXML document at runtime can be

conceived as a series of microsteps over a set of transitions (T ) enabled by an

event e. At any point in time, the interpreter is in a given configuration as a set of

proper states that are said to be active. Any change to the configuration of an

interpreter is assumed to be instantaneous (perfect synchronicity hypothesis [9])

and always caused by events that enable transitions. A special non-event ε is

introduced in the SCXML recommendation to extend this notion for spontaneous

transitions. Figure 10.1 summarizes the sequence of activities for an interpreter

within a microstep(T) iteration. Every iteration starts with establishing the

current event as follows:

1. If the previous iteration did not exhaust spontaneous transitions, set the current

event to ε as the non-event (1a) that only enables event-less (spontaneous)

transitions.

2. If there were no more spontaneous transitions enabled by ε in the previous

iteration, dequeue an event from the internal event queue (1b).
3. If there are no events remaining on the internal event queue, attempt to dequeue

from the external queue (1c) or block execution until an event becomes avail-

able. After a series of such micro-steps and before dequeuing an event, the

interpreter is said to have performed a macro-step and reached a new stable

configuration. At this point, a compliant interpreter has to make sure that all

invocations for external systems specified via <invoke> within states of the

active configurations are started and all other such invocations stopped.

Observable 
PerformancePreparations

Set event 
as empty

Are there 
internal events 

queued?

Are there 
external events 

queued?

Can there be 
spontaneous 

transitions left?

No

No

NoWait

Dequeue 
internal 
event

Dequeue 
external 
event

E
st

ab
lis

h 
op

tim
al

 tr
an

si
tio

n 
se

t

Yes

Yes

Yes

Establish 
Exit Set

Remember 
History

Establish 
Entry Set

Exit States

Take 
Transitions

Enter 
States

Start / Stop 
Invokers

1a

1b

1c

2

3a

3b

3c

4a

4b

4c

Fig. 10.1 Flow of activities within a micro-step iteration

10 SCXML on Resource Constrained Devices 215



Now, whenever we are about to proceed to the next activity (2), we can assume

an event to be set (be it ε or an actual event). For this given event e, we will have to
establish the optimal transition set. To this effect, the SCXML recommendation

defines a containment hierarchy of transition sets as follows:

• Active Transitions

All <transition> elements contained as direct children of states in the

active configurations are said to be active. They form the superset of all other

transition sets below.

• Matched Transitions

The subset of active transitions, with at least one event descriptor in their event
attribute matching the current event’s name are said to be matching. If the

current event is the ε event, all active transitions with no event attribute

(spontaneous transitions) are matched.

It is allowed for an event descriptor to have a .* suffix for compatibility with

CCXML. Furthermore, it is legal for a transition to specify multiple, space-

separated event descriptors in their event attribute. In this case, an event

matches a transition if one of the transition’s event descriptors matches the

event’s name.

• Enabled Transitions

The set of matching transitions is further reduced by requiring an eventual cond
attribute to evaluate to true on the data-model (usually an embedded scripting

language context). A matched transition with a condition that holds or without a

condition is said to be enabled.
• Optimally Enabled Transitions

For a transition to be optimally enabled, there can be no earlier enabled transition

with the same source state, neither can a transition in a descendant state of our

source be enabled. The first criterion provides an ordering for enabled transitions

within the same state. The second criterion allows to specialize a state-chart’s
behavior in response to events by overriding behavior in a more deeply nested

sub-state of a composite state.

• Optimal Transition Set
Generally, it is not possible for all optimally enabled transitions to be taken in

the same micro-step as they might lead to an invalid subsequent configuration.

Therefore, the optimal transition set is established as the largest set of

non-conflicting, optimally enabled transitions. Here, two transitions are said to

be conflicting, if the intersection of their exit sets is nonempty. For any two such

transitions, the one with the highest priority will be added to the optimal

transition set. The priority of a transition is defined very similar to the prece-

dence with the optimally enabled transition set in such that a transition t1 has a
higher priority than t2 if (1) the source of t1 is a descendant of the source of t2,
(2) or t1 precedes t2 in document order.

The optimal transition set at the end of the above containment hierarchy now

contains all the transitions T that are to be performed in response to an event in the

216 S. Radomski et al.



current microstep(T) iteration. It is crucial for any performant implementation

of SCXML to be able to identify this optimal transition set efficiently as it is

calculated at least twice for any non-ε event: once as the set of transitions to be

taken for the event itself and, subsequently, at least once for the ε event to exhaust

any spontaneous optimal transitions in the new configuration.

We will see later that the transitions in the optimal transition set already define

the microstep’s exit-set (3a) as the set of active states to be exited within the current
micro-step. For any composite state in this set that contains a<history> pseudo

state as a child we will have to remember its active children or, depending on the

histories type, even all its active descendants (3b) to be reentered when the

<history> pseudo state is in the target-set of a subsequent iteration.

The optimal transition set also already defines an intermediate target-set as the
set of states directly referenced in the transitions’ target attributes. From this

target-set, we can establish the entry-set of the optimal transition set (3c) by

calculating its completion, which defines the set of states to be actually entered

within the current micro-step. The completion of a state in the target-set depends on

its type and we will discuss all of them in more detail when we step through the

actual microstep(T) algorithm below.

After we established the exit-, transition-, and entry-set for a given

event in a state-chart’s configuration, we can perform the actual micro-step as (4a)

exiting states, (4b) transitioning and (4c) entering the new states. This will update

the state-chart’s active configuration and invoke anyexecutable content associated
with these activities.

10.2.1 Scope of the Algorithm

The microstep(T) function outlined above is at the core of every SCXML

interpreter and its description constitutes the bulk of the SCXML recommendation.

There are, however, additional responsibilities for a compliant interpreter that we

do not address in the algorithm we are about to describe below:

• We do not concern ourselves with invocations of external components via the

<invoke> element. Such invocations are to be processed prior to dequeueing

an external event, right before the interpreter is said to have performed a macro-

step. It is perfectly possible to trigger these invocations via our algorithm, but the

transformation onto ANSI C we implemented will, currently, only process a

single state-chart per file and virtually all tests defined for <invoke> in

SCXML assume a nested state-chart to be processed.

• We do not support any I/O processor other than the SCXML I/O processor.

• We have not implemented file operations or any retrieval of content referenced

via a URL.

We do, however, support the transformation of executable content into seman-

tically equivalent control flow constructs in ANSI C for various callbacks into

10 SCXML on Resource Constrained Devices 217



user-supplied code as well as various datamodel implementations. Both features are

required to pass any meaningful subset of the SCXML IRP tests and evaluate the

algorithm. The datamodel integration is not part of the actual algorithm but

assumed to be available as a set of respective callback functions that will evaluate

the various expressions.

10.3 Preparing SCXML Data Structures

If we are to target embedded platforms, it seems wasteful not to preprocess the

SCXML documents into a more compact representation. While there are XML

parsers available that compile into binary code as small as 30KB,1 they only offer a

streaming API for XML documents and still require us to establish and maintain a

suitable representation at runtime. As such, we might as well preprocess the

SCXML documents into a native representation and pre-calculate several sets and

relations that will become relevant when we discuss the actual microstep(T)
algorithm below.

10.3.1 States

When we regard the states of an SCXML document, we can encode all the

information required for a semantically equivalent execution of a given state-

chart via the compound data structure given in Listing 10.1. During transformation,

an array of such structures is defined, containing all the states (along with the

pseudo-states and the root state) of an SCXML state-chart. The states in this array

are sorted by document-order, which corresponds to entry-order and reverse exit-

order for the microstep(T) algorithm.

Listing 10.1 Representing a state as a compound data structure

1 struct state {
const char* name;
const uint8_t type;
const uint16_t parent;

5 const exec_content_t on_entry;
const exec_content_t on_exit;
const char children[STATE_BYTES];
const char completion[STATE_BYTES];
const char ancestors[STATE_BYTES];

10 const elem_data* data;
};

1https://dev.yorhel.nl/yxml.

218 S. Radomski et al.

https://dev.yorhel.nl/yxml


• The name field contains the eventual identifier of the state or is NULL if the state

does not specify an identifier. This identifier is only needed for the In
(’state’) predicate and is not used during the actual microstep(T)
algorithm below.

• The type field identifies the states type in the original SCXML document and

can be one of {PARALLEL, COMPOUND, ATOMIC, FINAL, INITIAL,
HIST_DEEP, HIST_SHALLOW}. The most significant bit is reserved for the

HAS_HIST flag, which denotes (1) whether there is a <history> child

element for a composite state or (2) whether there is another <history>
element in the descendants of a given history’s parent state. This flag will

become important later when we complete a history element in the target set

onto its entry set.

• The parent field identifies the index of this state’s parent in the array of all

states per document.

• The on_entry and on_exit fields are pointers to static functions where the

respective executable content is generated.

• The next three fields, children, completion, and ancestors are bit

arrays with a width sufficient to model every state from the original SCXML

document as a single bit. The children and ancestors bit arrays are

initialized such that the bit at index N is set if the state at index N is in the

respective relation to the current state. The semantic of the completion bit

array is more ambiguous and depends on the state’s type:

– For <parallel> states, it identifies all the direct, proper child states.

– For compound <state>s, the completion identifies the first child in

document order or the states from the target set identified by the state’s
initial attribute.

– For <final> and atomic <state>s, the completion is empty.

– For <initial> pseudo states, it identifies the states in the target set of a

contained <transition> element.

– For <history> pseudo states, its semantic is rather complicated. Essen-

tially, it identifies all the parent’s descendant states that are covered by the

history, i.e. the parent’s proper child states for shallow histories. For deep
histories, however, it does not necessarily identify all proper descendant

states, but only those that are not already covered by a nested <history>
pseudo state. We will see later that this construction allows us to model all of

the state-chart’s history as a single bit-array with a width corresponding to the
number of states only.

• Finally, the data element contains a pointer to an NULL terminated array of

compound data structures, representing the optional <data> elements for late

initialization upon first activation with a late data binding. For an early data-

binding, all these<data> elements are attached to the state-chart’s<scxml>
root state.

10 SCXML on Resource Constrained Devices 219



The memory layout of an individual compound data structure for a state is

depicted in Fig. 10.2 with its actual size depending on the target architectures

bit-width and the total number of states in a state-chart. Figure 10.3 shows the

size of a single state structure as a function of the total number of states when

assuming a 16-bit target architecture. It is noteworthy that the three bit-arrays

(children, completion, and ancestors) are the largest contributors to its

size and will completely dominate the required memory for large number of states.

Figure 10.3 also allows to determine the total amount of memory required to

represent all of a state-chart’s states as an array of these compound data structures

by counting the number of all states in an SCXML document and multiplying it

with the function value at the given point (e.g., to encode 100 states, we would need

round about 100� 60 bytes). This is in addition to the memory required for the

string literals for the states’ identifiers pointed to by the name field. If we were

required to reduce this memory, we have many options to trade runtime for memory

in this data structure, e.g. to

Fig. 10.2 The memory representation of a single state structure depends on the target platform’s
bit-width, the total number of states and any eventual padding

0B

20B

40B

60B

80B

100B

120B

140B

50 100 150 200 250 300

Number of states in an SCXML document

Bit Arrays
Parent Index
State's Type

Pointers

S
iz

e 
o
f 
a 

st
at

e 
st

ru
ct

u
re

 (
3
2
 b

it
 p

er
 p

o
in

te
r)

Fig. 10.3 Aggregated size of a single state structure as a function of the total number of states in

an SCXML document without alignment padding

220 S. Radomski et al.



• Calculate the children via the parent relation.

• Calculate the ancestors via the reversed children relation.

• Calculate the completion via the state’s type along with its children
relation.

• Calculate the parent as the most significant bit in the ancestors relation.

However, some of these calculations can be quite expensive (most notably the

completion of deep <history> states with nested <history> elements).

10.3.2 Transitions

Similar to the states above, we can establish an array of structures containing all the

relevant information from the <transition> elements in the original SCXML

state-chart. These compound data structures (Listing 10.2) will also already contain

several pre-calculated, important sets and relations that are static with regard to a

given SCXML state-chart and relevant for the execution of microstep(T). The
array is sorted in post-order traversal of all transitions and we will see later why this

is very beneficial.

Listing 10.2 Representing a transition as a compound data structure

1 struct transition {
const uint16_t source;
const char target[STATE_BYTES];
const char exit_set[STATE_BYTES];

5 const char conflicts[TRANS_BYTES];
const uint8_t type;
const char* event;
const char* condition;
const exec_content_t on_transition;

10 };

• The source of a transition identifies its parent state (proper, or otherwise) by

the state’s index in the array of all states.

• The target field is a bit-array in which a given bit is set, if the

<transition> element identified the respective state in its target
attribute.

• The exit_set field is a bit-array identifying the transition’s complete exit set.
The definition of the actual exit-set from the SCXML standard is as follows:

The exit set of a transition in configuration C is the set of states that are exited

when the transition is taken when the state machine is in C. If the transition does

not contain a target, its exit set is empty. Otherwise (i.e., if the transition

contains a target), if its type is external, its exit set consists of all active
states in C that are proper descendants of the Least Common Compound

Ancestor (LCCA) of the source and target states. Otherwise, if the transition

10 SCXML on Resource Constrained Devices 221



has type internal, its source state is a compound state, and all its target

states are proper descendants of its source state, the exit set consists of all active

states in C that are proper descendants of its source state.

Unfortunately, the exit-set depends on the state-chart’s configuration C. The
implied assumption is that we can calculate the exit-set for the complete

configuration in which every state is active and establish the actual exit-set at

runtime by intersecting each transition’s complete exit-set with the active

configuration. We do not have a proof for this assumption, but it makes sense

given the definition, the calculation in the pseudo-code from Appendix D in the

SCXML recommendation and, indeed, all relevant IRP tests do pass.

• The conflicts field is a bit-array that identifies other transitions which can, for

whatever reason, never occur in an optimal transition set with the given transi-

tion. If we look at the definition of the optimal transition set in the containment

hierarchy from Sect. 10.2, we can syntactically identify several situations in

which two transitions conflict:

1. For two transitions to be active within the same iteration, their source states

need to be active at the same time. This can only be the case if their least

common ancestor is a <parallel> element.

2. For two transitions to be matched at the same time, there has to be an event

that matches both transitions. This can never be the case for event-less and

eventful transitions or two eventful transitions that have no event descriptor

that matches a common event.

3. We cannot exploit any criteria with regard to the enabled transition set as we,
usually, cannot make any assumption about the evaluation of an eventual

cond attribute at transformation time.

4. For two transitions to be optimally enabled, their source states cannot be

identical or ancestrally related.

5. For two transitions to be in the optimal transition set, their exit-sets may not

overlap.

This results in quite a number of sufficient criteria for two transitions to conflict

and minimizes the amount of transitions to consider when establishing the

optimal transition set per micro-step considerably.

• The type field is interpreted as a bit array that specifies the type of the

transition, it might be one or any of {SPONTANEOUS, TARGETLESS,
INTERNAL, HISTORY, INITIAL}. Not all of these are currently used in

the actual algorithm below, though.

• The event field contains a pointer to the constant string literal with the

transition’s event descriptor list and is required to establish the matched
transition set.

• The cond field contains a pointer to the constant string literal with the transi-

tion’s condition and is required to establish the enabled transition set.

• Finally, the on_trans field is a pointer to a static function with the transition’s
executable content.

222 S. Radomski et al.



The memory layout of such a transition structure is given in Fig. 10.4 and, again,

its size depends on the bit-width of the target platform and the total number of states

and transitions in a given SCXML document. The size of this structure as a function

of the total number of states and transitions, when assuming equal numbers and a

16-bit architecture is depicted in Fig. 10.5.

The relation of the structure’s size with regard to the complexity of the complete

document shows the exact same development as the one for states in Fig. 10.3,

though, its increase in size is somewhat dampened if there are more transitions than

states as we only need a single bit-array for transitions.

10.3.3 SCXML Context

The states and transitions above represent immutable, constant data for any given

SCXML document and can be generated during transformation. But there is also a

dynamic part for the interpretation of a state-chart, which we will represent as an

SCXML context (see Listing 10.3). This allows us to maintain multiple instances of

Fig. 10.4 The memory representation of a single transition structure also depends on the target

platform’s bit-width, the total number of states and transitions, as well as any eventual padding

0B

20B

40B

60B

80B

100B

120B

140B

50 100 150 200 250 300

Number of states + transitions in an SCXML document

Bit Arrays for States
Bit Arrays for Transitions

Source Index
State's Type

Pointers

S
iz

e 
o
f 

a 
tr

an
si

ti
o
n
 s

tr
u
ct

u
re

 (
3
2
 b

it
 p

er
 p

o
in

te
r)

Fig. 10.5 Aggregated size of a single transition structure as a function of the total number of states

plus transitions when assuming equal numbers

10 SCXML on Resource Constrained Devices 223



a state-chart at runtime as distinct contexts that share the states and transitions from

above as static data.

Listing 10.3 The context of an SCXML instance at runtime

1 struct ctx {
uint8_t flags;
char config[STATE_BYTES];
char history[STATE_BYTES];

5 char initialized_data[STATE_BYTES];

void* event;
void* user_data;

10 /* miscellaneous user supplied callback functions */
dequeue_internal_t dequeue_internal;
dequeue_external_t dequeue_external;
is_enabled_t is_enabled;
is_true_t is_true;

15 raise_done_event_t raise_done_event;

/* user-supplied callback functions for executable content */
exec_content_log_t exec_content_log;
exec_content_raise_t exec_content_raise;

20 exec_content_send_t exec_content_send;
exec_content_foreach_init_t exec_content_foreach_init;
exec_content_foreach_next_t exec_content_foreach_next;
exec_content_foreach_done_t exec_content_foreach_done;
exec_content_assign_t exec_content_assign;

25 exec_content_init_t exec_content_init;
exec_content_cancel_t exec_content_cancel;

exec_content_script_t exec_content_script;
};

• The flags field is a generic member of the context to remember various boolean

values across invocations of a microstep(T). Currently, it encodes

(1) whether the state-chart’s context is still in pristine condition and some

setup is required (CTX_PRISTINE), (2) whether we already exhausted spon-

taneous transitions (CTX_SPONTANEOUS) and need to dequeue an event, and

(3) whether the state-chart entered a top-level final state and is done

(CTX_TOP_LEVEL_FINAL).
• The config field contains the state-chart’s currently active configuration as a

bit-array, such that the bit at index i is set if the corresponding state in the array

of all states is active.

• The history field is another bit-array that encodes the valuation of all

<history> elements (deep or shallow) from the original state-chart. It is

not obvious how we can encode all of the history in a single bit-array and we will

discuss this point in more detail below.

• The initialized_data field is a bit-array that encodes which states were

already entered. This is only required for SCXML documents with a late data-

binding and allows us to perform the initialization of eventual nested <data>
elements only for the first activation of a state.

224 S. Radomski et al.



• The event field is an opaque pointer to a memory region containing the current

event. The microstep(T) algorithm will indeed not know any details about

the current event as we will just employ the user-supplied is_enabled
callback to determine whether an event matched and enabled any transition

under consideration.

• The user_data field is another opaque pointer, where user-supplied code can

register any additional data that might be required per SCXML interpreter instance

and has no purpose in the scope of the microstep(T) algorithm below.

• All other fields are callbacks into user-supplied code. Most notably:

– The dequeue_internal and dequeue_external functions will

return an opaque pointer for the current event.

– The is_enabled callback is called with a transition structure and the

opaque event pointer to determine whether the given transition is matched

and enabled by the given event.

– The is_true callback determines whether a given expression evaluates to

true on the data-model.

– The raise_done_event is called with a state structure, and the informa-

tion from an optional <donedata> element to raise the respective done.
state.ID event on the internal queue.

The other callbacks are invoked as part of the executable content in the various,

generated on_entry, on_exit, and on_trans functions referenced from the

respective function callbacks in the state and transition structures above.

The total size of the context structure as a function of the number of states in the

SCXML document is given in Fig. 10.6. For documents with only a few states, the

0B

20B

40B

60B

80B

100B

120B

140B

160B

180B

200B

50 100 150 200 250 300

Number of states in an SCXML document

Bit Arrays
Flags

Pointers

S
iz

e 
o
f 

a 
co

n
te

xt
 s

tr
u
ct

u
re

 (
3
2
 b

it
 p

er
 p

o
in

te
r)

Fig. 10.6 Aggregated size of a single context structure as a function of the total number of states

10 SCXML on Resource Constrained Devices 225



size is dominated by the memory required to store the addresses of the callback

functions for executable content and other datamodel queries. When the number of

states increases, however, the size of the bit-arrays required to model the history,

the active configuration and already initialized states start to become the major

contribution. Ultimately, another such bit-array for current invocations per

<invoke> would likely have to be added as well.

10.3.4 Other Elements

In order to enable the processing of executable content, we also need to encode

various other SCXML elements into compound data structures. These merely encode

the information contained within the respective elements and, as opposed to the states

and transitions above, there are no special considerations with regard to their repre-

sentation other than to make the information available to user-supplied code.

• The <data> elements, as children of the <datamodel> elements, are

represented as compound data structures with four pointers to string literals for

(1) their id attribute, (2) the src attribute, (3) the location attribute, and

eventual content. If any of those attributes is unspecified, its value will be

initialized as NULL.
All compound data structures for <data> elements are contained within an

array, with NULL entries in between as delimiters. To reference a consecutive set

of data structures, the address of the first member is taken and a macro is

provided to iterate all subsequent members until the next NULL delimiter.

• A similar approach is taken for all <param> elements. These are encoded in

compound data structures, each with pointers to three string literals as (1) their

name attribute, (2) the location attribute, and (3) their expr attribute.

Again, to reference a consecutive set of such elements, the address of the first

member is taken with macros to test for additional structures.

• The <donedata> elements are also just encoded as a compound data struc-

ture with (1) a source field as the index of the containing state, (2) their

content attribute as a pointer to a string literal with the textual value of any

contained <content> element, or (3) an eventual contentexpr attribute

and (4) a pointer to the first <data> element in the array of all data structures.

• The <foreach>, elements within a document are encoded as simple com-

pound data structures with three pointers to string literals for their attributes (1)

array, (2) index and (3) item. Again, if an attribute is not specified with a

<foreach> element, its value is NULL.
• Finally, <send> elements are encoded with all their possible attributes as

compound data structures as well. Eventual <content> children are given

as string literals in their textual representation and <param> elements are

given as a reference to their first entry in the array of all param data structures.

226 S. Radomski et al.



10.3.5 Executable Content

As part of the transformation from SCXML onto C, we will also transform the

executable content contained as children of the <onexit>, <onentry> and

<transition> elements. This is not strictly required for an implementation of

the microstep(T) algorithm, but it is easily done and extends the domain of the

transformation.

To transform the executable content is to invoke the various callbacks in the

SCXML context (cf. Listing 10.3) in the correct order and under the correct

conditions. Furthermore, we will have to regard the error semantics of the various

blocks. If an error occurs within a block of executable content, a compliant

interpreter is required to raise a respective event and continue processing with the

next block of executable content. To this effect, we encode every individual block

of executable content as a static function that is exited if an error occurs and call

each block sequentially from within a general [ID]_on_entry, [ID]
_on_exit, [ID]_on_trans function. Here, the ID of an element is either

the value of its eventual id attribute or a unique identifier derived from its position

in the SCXML document.

With the callbacks given in the SCXML context and the representation of the

various elements above, it is straightforward to see how we can generate C code to

model the behavior of the executable content. The remaining SCXML elements of

executable content for which we did not define a compound data structure above are

merely passed via their various attributes into the user-supplied callbacks.

10.4 A Compact Algorithm for Interpretation

Now that we have all the data structures and control flow for executable content

from an SCXML document defined, we can present the actual algorithm for

microstep(T). The algorithm is closely aligned with the sequence of activities

from Fig. 10.1 and we will, indeed, describe its workings by presenting each

activity in turn.

10.4.1 Preparations

Currently, the arrays of compound data structures for the transitions, states, and

other SCXML elements are modeled as static global variables accessible through-

out the compilation unit and their identifiers hard-coded into the algorithm. As such,

there is very little preparation required but to allocate memory for a ctx and

register the various callback functions:

10 SCXML on Resource Constrained Devices 227



Listing 10.4 Instantiating a state-machine context

1 int main(int argc, char** argv) {
int err;
ctx ctx;
memset(&ctx, 0, sizeof(ctx));

5
/* register callbacks */
ctx.is_enabled ¼ &is_enabled;
ctx.is_true ¼ &is_true;
...

10
/* run interpreter until done */
while(true) {

err ¼ microstep(&ctx);
if (err ¼¼ ERR_DONE)

15 break;
if (err !¼ ERR_OK)

return EXIT_FAILURE;
}
return EXIT_SUCCESS

20 }

The callbacks are not shown, but we did indeed implement them in order to pass

the SCXML IRP tests.

10.4.2 Dequeuing Events

The first thing to do within the microstep function is to transition into the initial

configuration if the state-machine is still pristine or to set the current event

(Listing 10.5).

Listing 10.5 Initialization the state-chart and dequeing events

1 size_t i, j, k;

int err ¼ ERR_OK;
char conflicts[TRANS_BIT_ARRAY] ¼ TRANS_BIT_ARRAY_INIT;
char target_set[STATE_BIT_ARRAY] ¼ STATE_BIT_ARRAY_INIT;

5 char exit_set[STATE_BIT_ARRAY] ¼ STATE_BIT_ARRAY_INIT;
char trans_set[TRANS_BIT_ARRAY] ¼ TRANS_BIT_ARRAY_INIT;
char entry_set[STATE_BIT_ARRAY] ¼ STATE_BIT_ARRAY_INIT;
char tmp_states[STATE_BIT_ARRAY] ¼ STATE_BIT_ARRAY_INIT;

10 if (ctx->flags & CTX_TOP_LEVEL_FINAL)
return ERR_DONE;

if (ctx->flags ¼¼ CTX_PRISTINE) {
global_script(ctx, &states[0], NULL);

15 bit_or(target_set, states[0].completion);
ctx->flags |¼ CTX_SPONTANEOUS | CTX_INITIALIZED;
goto ESTABLISH_ENTRY_SET;

}

228 S. Radomski et al.



20 if (ctx->flags & CTX_SPONTANEOUS) {
ctx->event ¼ NULL;
goto SELECT_TRANSITIONS;

}
if ((ctx->event ¼ ctx->dequeue_internal(ctx)) !¼ NULL) {

25 goto SELECT_TRANSITIONS;
}
if ((ctx->event ¼ ctx->dequeue_external(ctx)) !¼ NULL) {

goto SELECT_TRANSITIONS;
}

Each iteration of a micro-step starts by allocating memory on the stack for all

variables required in the function’s scope as is required in ANSI C. Afterwards, we
check to see whether the state-chart already entered a top-level final state (line 10–

11), which signifies the end of all processing. If this is not given, we check whether

the state-chart is still in pristine condition, in which case we execute any eventual

global script elements and set the target set to the root state’s completion as defined

for compound states in Sect. 10.3.1 before we continue processing with the com-

pletion of the target set as the entry set (line 13–18). Otherwise we establish the

current event (Fig. 10.1 (1a–c)) as NULL if spontaneous transitions were not yet

exhausted per ctx->flags or attempt to dequeue an event and continue to

establish the optimal transitions set (line 20–29).

10.4.3 Selecting Transitions and Establishing the Exit-Set

The next activity is to establish the optimal transition set (Fig. 10.1 (2)). This is a

crucial section of the algorithm as it will be executed at least twice for any non-null

event. The corresponding pseudo-code from Appendix D in the SCXML recom-

mendation is rather obscure and very elaborate. For the ANSI C implementation in

Listing 10.6, a single iteration of all transitions is sufficient with the majority of

iterations skipped very early.

Listing 10.6 Establishing the optimal transition set

1 SELECT_TRANSITIONS:
for (i ¼ 0; i < NUMBER_TRANSITIONS; i++) {

if (transitions[i].type & (TRANS_HIST | TRANS_INITIAL))
continue;

5
if (BIT_HAS(transitions[i].source, ctx->config)) {

if (!BIT_HAS(i, conflicts)) {
if (ctx->is_enabled(ctx, &transitions[i], ctx->event) > 0) {

bit_or(conflicts, transitions[i].conflicts);
10 bit_or(target_set, transitions[i].target);

bit_or(exit_set, transitions[i].exit_set);
BIT_SET_AT(i, trans_set);
ctx->flags |¼ CTX_TRANSITION_FOUND;

10 SCXML on Resource Constrained Devices 229



}
15 }

}
}

To understand this piece of the algorithm, it is important to realize that the

transitions in transitions are sorted from a post-order traversal of all

<transition> elements in the original SCXML document. This corresponds

to the priority of a transition from the definition for the optimal transition set in

Sect. 10.2: Transitions with the same source state are given in document order and

transitions within descendant source states precede those in ancestor source states.

This means that the first enabled transitions (t1) is necessarily in the optimal

transition set and its conflicts will exclude all other transitions that cannot form

an optimal transition set with t1 included. By iterating all other transitions, we can

successively establish the optimal transition set by adding enabled transitions that

are not conflicting and skipping those that are.

We start the iteration (line 2) and skip any <transition> elements that

originate in an<initial> or<history> element (line 3–4) as we will handle

them differently when completing the target-set as the entry-set below. For the

remaining transitions, we check whether they are active, non-conflicting, and

enabled (line 6–8). The order of these conditions is arbitrary, though, the check

for the enabled status of a transition is potentially expensive and thus the last

condition.

If all these conditions hold for the current transition, we add its conflicts to the

set of conflicting transitions, its targets to the intermediate target-set and its exit-set

to the complete exit-set (line 9–11). Finally we remember the transition as being

part of the optimal transition set in trans_set (line 12) and the fact that we found

a transition at all as flag in the context (line 13).

Finally, we need to intersect the optimal transition set’s exit set with the active

configuration to arrive at the set of states actually exited (Fig. 10.1 (3a)) and

determine whether we need to perform another round of spontaneous transitions

or dequeue an event in the next round (Listing 10.7).

Listing 10.7 Establishing the actual exit-set and determining whether sponta-

neous transitions are exhausted

1 bit_and(exit_set, ctx->config);
if (ctx->flags & CTX_TRANSITION_FOUND) {

ctx->flags |¼ CTX_SPONTANEOUS;
5 ctx->flags &¼ �CTX_TRANSITION_FOUND;

} else {
ctx->flags &¼ �CTX_SPONTANEOUS;

}

Now we have already established (1) the optimal transition set, (2) the exit set,

and (3) an intermediate target set that we will have to complete below.

230 S. Radomski et al.



10.4.4 Remembering the History

Before we can establish the missing entry-set as the completion of the target-set, we

will have to process any <history> elements (Fig. 10.1 (3b)) whose parent

states are in the exit-set as they might eventually be entered within the same micro-

step again (Listing 10.8).

Listing 10.8 Remembering the history

1 REMEMBER_HISTORY:
for (i ¼ 0; i < NUMBER_STATES; i++) {
if (STATE_MASK(states[i].type) ¼¼ STATE_HIST_SHALLOW ||

STATE_MASK(states[i].type) ¼¼ STATE_HIST_DEEP) {
5 if (BIT_HAS(states[i].parent, exit_set)) {

bit_copy(tmp_states, states[i].completion);
bit_and(tmp_states, ctx->config);
bit_and_not(ctx->history, states[i].completion);
bit_or(ctx->history, tmp_states);

10 }
}

}

If control flow reaches the inner-most block, i contains the index of a history

state whose parent is about to be exited within the current micro-step and we have to

remember its history. We defined a history state’s completion as the set of states

that are covered by the history and are not already covered by a nested history (note
that a state can still be covered by more than one history elements with the same

parent state). To remember a histories active states, we set all bits from the histories

completion within the temporary state bit-array (line 6–7). Then, we intersect the

states covered by the history with the active configuration and reset the context’s
history with the new history for the states covered (line 8–10).

Here, the fact that we excluded those states already covered by nested histories

from the histories completion will ensure that no states covered by more deeply

nested history elements are reset. If they are to be reset, we will pass the respective

history element in a later step of the iteration.

10.4.5 Establishing the Entry Set

The next activity to perform is to complete the target-set as the actual entry-set

(Fig. 10.1 (3c)). To this effect we, again, first define the complete entry set and later

intersect it with the non-active states to arrive at the actual entry-set. The first thing

to realize is that if a state (proper or otherwise) is in the target-set, all its ancestors

will necessarily be active in the next configuration. As such, we can just add all

ancestors of states in the target-set (Listing 10.9) and, subsequently complete them.

10 SCXML on Resource Constrained Devices 231



Listing 10.9 Extending the target set with all ancestors

1 ESTABLISH_ENTRY_SET:
bit_copy(entry_set, target_set);
for (i ¼ 0; i < NUMBER_STATES; i++) {

if (BIT_HAS(i, entry_set)) {
5 bit_or(entry_set, states[i].ancestors);

}
}

To complete the target-set and its ancestors more efficiently, we have to make

sure that the states in the completion of a given state s always succeed s in document

order. This seems obvious but is actually not necessarily the case if we targeted an

<initial> or<history> pseudo-state as their completion might be siblings.

As such, we have to postulate that for all children of a given parent, all

<initial> elements precede <history> elements precede proper

<state>s. This is merely a syntactic transformation of the SCXML document

that we will have to perform prior to establishing the array with all state structures

above. If this is given, we can iterate the set of all states in document order and

dispatch on their type to add their completion to the entry set (Listing 10.10).

Listing 10.10 Adding the completion of all states into the entry set

1 for (i ¼ 0; i < NUMBER_STATES; i++) {
if (BIT_HAS(i, entry_set)) {

// mask the MSB with the HAS_HIST flag
switch (STATE_MASK(states[i].type)) {

5 ...
}

}
}

The actual completion of a state from the preliminary uncompleted entry-set

depends on its type as follows:

• case STATE_PARALLEL:

1 bit_or(entry_set, states[i].completion);
break;

If a <parallel> element is in the entry set, all of its child states will have to

be in the complete entry set.

• STATE_INITIAL:

1 for (j ¼ 0; j < NUMBER_TRANSITIONS; j++) {
if (transitions[j].source ¼¼ i) {

BIT_SET_AT(j, trans_set);
CLEARBIT(i, entry_set);

5 bit_or(entry_set, transitions[j].target);
for (k ¼ i + 1; k < NUMBER_STATES; k++) {

232 S. Radomski et al.



if (BIT_HAS(k, transitions[j].target)) {
bit_or(entry_set, states[k].ancestors);

}
10 }

}
}

break;

If a transition or the completion of another state targeted an <initial> state,

we search for its default <transition> and add the transition’s target state
and its ancestors to the complete entry-set. We do know that the initial transi-

tion’s target state succeeds the initial state in document order (as we sorted the

array of states accordingly), and can start the search for the target at the state

succeeding the initial state (line 6).

• STATE_COMPOUND:

1 if (!bit_has_and(entry_set, states[i].children) &&
(!bit_has_and(ctx->config, states[i].children) ||
bit_has_and(exit_set, states[i].children)))

{
5 bit_or(entry_set, states[i].completion);

if (!bit_has_and(states[i].completion, states[i].children)) {
for (j ¼ i + 1; j < NUMBER_STATES; j++) {

if (BIT_HAS(j, states[i].completion)) {
bit_or(entry_set, states[j].ancestors);

10 break;
}

}
}

}
15 break;

When we encounter a compound state while completing the target set and its

ancestors, we first have to check whether it is already complete (line 1–3) in

which case we do not do anything. Otherwise, we add its completion and check

(line 6) whether its completion is referencing a state more deeply nested (e.g.,

via an initial attribute into a non-child descendant), in which case we have to add

the completion ancestors as well (line 8–11).

• case STATE_HIST_SHALLOW:
case STATE_HIST_DEEP:

Completing history states is the most complicated case as we have to account for

various situations and take deep nested histories into account. We can differen-

tiate two general cases first:

– The history is empty:

1 for (j ¼ 0; j < NUMBER_TRANSITIONS; j++) {
if (transitions[j].source ¼¼ i) {
bit_or(entry_set, transitions[j].target);

10 SCXML on Resource Constrained Devices 233



if(STATE_MASK(states[i].type) ¼¼ STATE_HIST_DEEP &&
5 !bit_has_and(transitions[j].target, states[i].children))

{
for (k ¼ i + 1; k < NUMBER_STATES; k++) {

if (BIT_HAS(k, transitions[j].target)) {
bit_or(entry_set, states[k].ancestors);

10 break;
}

}
}
BIT_SET_AT(j, trans_set);

15 break;
}

}

If we never before exited the history’s parent state, we merely need to add its

default transition to the transition-set (to process its eventual executable

content later) and the default transition’s target to the entry-set. If the history

is deep, its default default history configuration may be a descendant of a

sibling, in which case we have to add its ancestors as well (line 4–13). For

shallow histories, the standard mandates that the target is a sibling of the

history.

– We already remembered states for the history:

1 bit_copy(tmp_states, states[i].completion);
bit_and(tmp_states, ctx->history);
bit_or(entry_set, tmp_states);
if (states[i].type ¼¼ (STATE_HAS_HIST | STATE_HIST_DEEP)) {

5 for (j ¼ i + 1; j < NUMBER_STATES; j++) {
if (BIT_HAS(j, states[i].completion) &&

BIT_HAS(j, entry_set) &&
(states[j].type & STATE_HAS_HIST)) {

for (k ¼ j + 1; k < NUMBER_STATES; k++) {
10 if (BIT_HAS(k, states[j].children) &&

(STATE_MASK(states[k].type) ¼¼ STATE_HIST_DEEP ||
STATE_MASK(states[k].type) ¼¼ STATE_HIST_SHALLOW)) {

BIT_SET_AT(k, entry_set);
}

15 }
}

}
}

In this case, we need to add the states we remembered earlier which are

covered by the history to the entry-set (line 1–4). If the current history

element has nested history elements (line 5) and their parents were added to

the entry-set via our coverage (line 7–9), we need to add them as well, to be

processed likewise in a later iteration (line 11–15). Here, we can again exploit

the fact that they will necessarily succeed the current history element in

document order and start iteration at the state succeeding the current history

pseudo state.

234 S. Radomski et al.



Now we have all the sets in place to perform the actual transitions and call

executable content in the following sections.

10.4.6 Exiting States

Listing 10.11 Exiting states in reverse document order

1 size_t i ¼ NUMBER_STATES;
while(i-- > 0) {

if (BIT_HAS(i, exit_set) && BIT_HAS(i, ctx->config)) {
if (states[i].on_exit !¼ NULL) {

5 err ¼ states[i].on_exit(ctx, &states[i], ctx->event);
if (err !¼ ERR_OK)
return err;

}
CLEARBIT(i, ctx->config);

10 }
}

To exit states during a microstep (Fig. 10.1 (4a)) is merely to iterate all states from

the complete exit-set (line 1–2) that are active (line 3) in reverse document order,

invoke their on_exit handlers (line 4–8), and remove them from the active

configuration (line 9).

10.4.7 Taking Transitions

Listing 10.12 Taking transitions in document order

1 for (i ¼ 0; i < NUMBER_TRANSITIONS; i++) {
if (BIT_HAS(i, trans_set) &&

(transitions[i].type & (TRANS_HIST | TRANS_INITIAL)) ¼¼ 0) {
if (transitions[i].on_transition !¼ NULL) {

5 err ¼ transitions[i].on_transition(
ctx,
&states[transitions[i].source],
ctx->event);

if (err !¼ ERR_OK)
10 return err;

}
}

}

After we exited all states from the intersection of the complete exit-set with

the currently active configuration, we need to perform any eventual executable

content associated with transitions in the optimal transition set in document order

10 SCXML on Resource Constrained Devices 235



(Fig. 10.1 (4b)). We do iterate the array with the transition structures in a post-order

sequence, though, the optimal transition subset of all transitions is implicitly

ordered in document-order. This becomes clear if we consider that for a transition

t1 in the optimal transition set, no other transition t2 in the optimal transition set can

precede t1 in post-order and succeed t2 in document-order as it would never be

optimally enabled with its source state being ancestrally related to the source of t1.
In this step, we will not yet perform executable content associated with transi-

tions whose parent is an <initial> or <history> element (line 3) as these

are to be processed after the <onentry> elements of their parent states.

10.4.8 Entering States

As the last activity within a micro-step, we need to enter all states from the

intersection of the complete entry-set with the negated active configuration

(Fig. 10.1 (4c)). There are, however, quite some additional activities associated

with the entering of states that are outlined in Listing 10.13 and detailed below.

Listing 10.13 Entering states in document order.

1 for (i ¼ 0; i < NUMBER_STATES; i++) {
if (BIT_HAS(i, entry_set) && !BIT_HAS(i, ctx->config)) {

if (STATE_MASK(states[i].type) ¼¼ STATE_HIST_DEEP ||
STATE_MASK(states[i].type) ¼¼ STATE_HIST_SHALLOW ||

5 STATE_MASK(states[i].type) ¼¼ STATE_INITIAL)
continue;

BIT_SET_AT(i, ctx->config);
10 // 1. Initialize data

// 2. Perform executable content for on_entry
// 3. Process history and initial transitions
// 4. Raise done events

15 }
}

1. Initialize Data

After we added the new state to the active configuration, we need to initialize

its associated <data> elements if the document has a late data binding.

We do keep a bit-array of states that were already initialized in the inter-

preter’s context and did transform all <data> elements accordingly.

Listing 10.14 Initializing nested data elements for late data binding

1 if (!BIT_HAS(i, ctx->initialized_data)) {
if (states[i].data !¼ NULL && ctx->exec_content_init !¼ NULL) {

ctx->exec_content_init(ctx, states[i].data);
}

5 BIT_SET_AT(i, ctx->initialized_data);
}

236 S. Radomski et al.



(2) Perform Executable Content

To perform the executable content is merely to invoke the states on_entry
callback function for the generated code as introduced in Sect. 10.3.5.

Listing 10.15 Calling executable content for the entry of states

1 if (states[i].on_entry !¼ NULL) {
err ¼ states[i].on_entry(ctx, &states[i], ctx->event);
if (err !¼ ERR_OK)
return err;

5 }

(3) Process History and Initial Transitions

When we completed the target-set as the entry-set above, we did remember

all initial and history transitions that would have to be performed, but

ignored them when we performed the transitions’ executable content after

exiting the states from the exit-set above. Their respective bits are still set in

the transition-set and the standard mandates to invoke their executable

content after the parent states on-entry handlers.

Listing 10.16 Calling executable content for history and initial transitions

1 for (j ¼ 0; j < NUMBER_TRANSITIONS; j++) {
if (BIT_HAS(j, trans_set) &&

(transitions[j].type & (TRANS_HIST | TRANS_INITIAL)) &&
states[transitions[j].source].parent ¼¼ i) {

5 if (transitions[j].on_transition !¼ NULL) {
err ¼ transitions[j].on_transition(ctx,

&states[i],
ctx->event));

if (err !¼ ERR_OK)
10 return err;

}
}

}

(4) Raise Done Events

Special considerations have to be given when entering <final> states as

part of a microstep.

1 if (STATE_MASK(states[i].type) ¼¼ STATE_FINAL) {
...

}

If the parent of the final state is the <scxml> element itself, the interpreter is

done and we set the CTX_TOP_LEVEL_FINAL flag in the interpreter’s context
(Listing 10.17).

10 SCXML on Resource Constrained Devices 237



Listing 10.17 Top-level final state reached

1 if (states[i].ancestors[0] ¼¼ 0x01) {
ctx->flags |¼ CTX_TOP_LEVEL_FINAL;

}

Otherwise, if the final state is the child of a compound state, we need to raise a

done.state.[ID] event on the interpreter’s internal queue and attach any

eventual <donedata> with the event (Listing 10.18).

Listing 10.18 Final state of a compound state entered

1 else {
const elem_donedata* donedata ¼ &elem_donedatas[0];
while(ELEM_DONEDATA_IS_SET(donedata)) {

if unlikely(donedata->source ¼¼ i)
5 break;

donedata++;
}
ctx->raise_done_event(ctx,

&states[states[i].parent],
10 (ELEM_DONEDATA_IS_SET(donedata) ? donedata : NULL));

}

In this last case, we also need to check whether the current final state is the last

one to finalize all children of a parallel ancestor, in which case we need to raise a

done.state.[PARALLEL_ID] event in addition (Listing 10.19).

Listing 10.19 Raising done events for finalized parallel states

1 for (j ¼ 0; j < NUMBER_STATES; j++) {
if (STATE_MASK(states[j].type) ¼¼ STATE_PARALLEL &&

BIT_HAS(j, states[i].ancestors)) {
bit_and_not(tmp_states, tmp_states);

5 for (k ¼ 0; k < NUMBER_STATES; k++) {
if (BIT_HAS(j, states[k].ancestors) &&

BIT_HAS(k, ctx->config)) {
if (STATE_MASK(states[k].type) ¼¼ STATE_FINAL) {

bit_and_not(tmp_states, states[k].ancestors);
10 } else {

BIT_SET_AT(k, tmp_states);
}

}
}

15 if (!bit_any_set(tmp_states)) {
ctx->raise_done_event(ctx, &states[j], NULL);

}
}

}

We start by iterating all states and search for parallel states which are ancestrally

related to the current final state (line 1–3). If we found such a state, we clear out the

temporary bit array of states to remember any active descendant of the parallel (line

238 S. Radomski et al.



5–7). If we found an active state in the descendants of the parallel state under

consideration and it is a final state itself, we clear all its ancestors in the temporary

bit-array, if it is anything else, we set its ancestor’s bits. After we processed all

active descendant states of the parallel in this manner and the temporary bit-array is

empty (line 15–17), all of the parallel’s child states have also entered a final state

and we need to raise the done.state.[PARALLEL_ID] event for the parallel

state.

This concludes the description of the microstep(T) algorithm in ANSI C

and we will evaluate its performance and memory consumption in the following

sections.

10.5 Evaluating the ANSI C Implementation

In this section, we will evaluate the ANSI C algorithm presented above with regard

to its runtime, binary size, and memory consumption. As a baseline, we took the

microstep(T) implementation from our uSCXML implementation, which is

relevant as it, rather literally, employs the pseudo-code from Appendix D of the

SCXML recommendation. Though, even with this baseline implementation, we

already employ some caching, e.g. for state look-ups by identifier, the exit- and

target-set of transitions and proper ancestors of two states. As such, it establishes a

lower bound for any implementation that approaches the microstep(T) algo-

rithm as specified in the recommendation. We are aware that it was never the

intention of said pseudo-code to be performant or small, but many SCXML

interpreters do, indeed, implement the microstep(T) algorithm very similarly.

10.5.1 Methodology

For all our measurements, we transformed all SCXML IRP tests for the

ECMAScript datamodel and generated the compound data structures as introduced

above. We wrote the callback functions as required for the SCXML context

connecting to the respective functionality in the uSCXML2 interpreter and explicitly

excluded:

• 37 tests due to missing support for the <invoke> element.

• 17 tests due to missing support for anything but the SCXML I/O processor.

• 4 tests that attempt to retrieve data from a URL.

• 1 test with an XML node in a variable.

• Some more manual tests.

2https://github.com/tklab-tud/uscxml (accessed January 26th, 2015).

10 SCXML on Resource Constrained Devices 239

https://github.com/tklab-tud/uscxml


This set of tests forms the basis for all subsequent measurements below. All

measurements are taken on a MacBook 13” (early 2015) with Intel Core i7 CPU @

3.1GHz. While this is not exactly a resource constrained device, the actual values
measured give every reason to assume that the implementation is perfectly suited

for resource constrained devices.

10.5.2 Compliance

The set of SCXML IRP tests that is passed by our implementation for the

ECMAScript data-model is given in Table 10.1. Do note that we pass all tests for

core constructs but the one for invocation order (test422) as we did not imple-

ment <invoke> yet. Even though the tests are merely an enumeration of correct

behavior for a compliant interpreter and no proof of compliance, it is a good

indicator of a largely correct implementation of microstep(T).
We also wrote initially failed and ultimately passed three additional tests for

deep completions via the initial attribute and nested history pseudo-states (deep and

shallow) to account for some border cases we realized when designing the algo-

rithm above.

Table 10.1 Number of tests in the SCXML Implementation and Report Plan with corresponding

section from specification

ClasClass #P#Pasass #T#Totalotal
Core constructs 40 (1)
General 2 2
State 1 1
Final 2 2
OnEntry 2 2
OnExit 2 2
History 4 4
Events 4 4
Transition selection 22 23 (1)

Executable content 13
Raise 1 1
If 3 3
Foreach 7 7
Evaluation 2 2

Event I/O processors 28 (1)
SCXML 10 16
Basic HTTP 0 12 (1)

ClasClass #P#Pasass #T#Totalotal
Data model and manipulation 50 (4)
Data 5 7
Assign 4 4
Donedata 1 1
Content 3 3
Param 3 3
Script 3 4 (1)
Expressions 7 8 (3)
System variables 19 20

External communications 51 (3)
Send 16 19 (1)
Cancel 2 3
Invoke 0 29 (2)

Data models 51
NULL 1 1
ECMAScript 15 20
XPath 0 30

Total 140 233 (9)

Brackets indicate manual tests

240 S. Radomski et al.



10.5.3 Performance

For the performance measurements, we instrumented the code-base with timers

using mach_absolute_time as the highest precision monotonic clock avail-

able. It is difficult to get any reliable information about its precision, accuracy or

resolution. However, an example in the official technical QA13983 from Apple

does convert its return value into nanoseconds, suggesting a sufficient granularity

for the measurements. Furthermore, all measurements were averaged over 1.000

iterations and the methodology was the same for the baseline. Still, the approach of

measuring the performance of a given piece of code by averaging its runtime is far

from objective as seemingly unrelated changes in the runtime can have a consid-

erable effect on the measurements [7]. As such, the numbers below are to be

interpreted with some reservations.

Using this approach, we were able to measure the performance of 132 individual

tests, with the remaining 8 tests relying on the timeout of an event, which prevented

us from measuring. We did measure the time to completion for a single interpretation

per test excluding and subtracted the time spent in the data-model’s functions.

The difference was divided by the number of iterations for the microstep(T)
algorithm described above.

Figure 10.7 depicts a distribution for the average duration of such an iteration per

SCXML IRP test with 5 us bins. We can see that for the majority of tests, their

microsteps averaged to about 5–15 us, which translates to 650.000 - 2.000.000

0

10

20

30

40

0us 50us 100us 150us 200us 250us 300us

Interpreted Microstep
Compiled Microstep

N
u
m

b
er

 o
f 

W
3
C
 I

R
P 

T
es

ts

Fig. 10.7 Distribution of the execution speed of a single microstep for the interpreted and

compiled case (averaged per SCXML IRP test)

3https://developer.apple.com/library/mac/qa/qa1398/_index.html (accessed January 26th, 2016).

10 SCXML on Resource Constrained Devices 241

https://developer.apple.com/library/mac/qa/qa1398/_index.html


iterations per second or, at most, 300.000 - 1.000.000 events per second (when

assuming no spontaneous transitions).

We also did a direct comparison for the average duration of amicrostep iteration per

test and Fig. 10.8 depicts a distribution of the speed-up factor when using the algorithm

described above compared to the baseline. We can see that the proposed algorithm

always outperforms a more literal implementation of the pseudo-code from Appendix

D in the SCXML recommendation and, on occasion, is more than 20 times as fast.

10.5.4 Binary Size and Memory

An important consideration when targeting a resource constrained platform is the

memory available. For example, the ATmega8 from Atmel only features 8KB of

flash memory with 512 Byte SRAM for dynamic data, its more powerful counter-

parts up to 256KB flash memory with 8KB SRAM. As such, a compact represen-

tation for the logic representing the control flow from the SCXML document has a

direct consequence for its applicability in this domain. A major problem in this

regard is the employed data-model: A single instance of the JavaScriptCore

ECMAScript implementation will, regardless of actual usage, allocate 8MB of

memory upon instantiation on top of its already considerable binary size; orders of

magnitude more than what would be available on an ATmega8. One scripting

language explicitly touted for scripting on resource constrained devices is Lua

with a binary size of round about 80KB and very conservative memory usage

and, indeed, the uSCXML platform does support a Lua datamodel.

0

5

10

15

1x 5x 10x 15x 20x 25x

Speed-up factor

N
u
m

b
er

 o
f 

W
3
C
 I

R
P 

T
es

ts

Fig. 10.8 Distribution of the speed-up for a single microstep (averaged per SCXML IRP test)

242 S. Radomski et al.



While the SCXML recommendation does provide a normative specification for

an ECMAScript data model and a supplementary W3C note for an XPath data

model, there is no mandatory requirement for a compliant interpreter to implement

either. This offers considerable flexibility, but comes with the cost of reduced

interoperability.

For our measurements, we explicitly excluded the size of the data-model. If one

were to seriously target a resource constrained platform, ultimately, a data-model

that can syntactically transformed onto ANSI C seems most suited as it can directly

be subjected to the compiler for the respective platform without any requirement for

runtime interpretation. As such, we only measured the size of the compiled control

flow logic with all required static data and executable content functions introduced

above and excluded anything linked from the user-supplied callback functions. The

distribution of binary sizes for the 140 IRP tests from Table 10.1 is given in

Fig. 10.9.

Two distributions for different compiler switches are displayed. When optimiz-

ing for speed (-Ofast), the resulting binaries will be anywhere from 3 to 6KB.

When optimizing for size, the resulting binaries are round about the same size, at

times even somewhat larger. With the possible options for reducing the required

memory by dropping some of the bit-arrays in the static data structures introduced

in Sects. 10.3.2 and 10.3.1, this size is perfectly suited to run on a device with 8–

16KB of memory. However, as it is, the size for compiled binaries grows quadratic

with the size of the input SCXML document as each additional state or transition

will increase each relation modeled in the bit-arrays (cf. Figs. 10.3 and 10.5).

0

5

10

15

20

25

0KB 2KB 4KB 6KB 8KB 10KB

Size of Binary (small)
Size of Binary (fast)

N
u
m

b
er

 o
f 

W
3
C
 I

R
P 

T
es

ts

Fig. 10.9 Distribution of the 16-bit binary size for the compiled SCXML IRP tests (state-

transitioning and executable content calls only, horizontal lines denote base size for empty state-
chart)

10 SCXML on Resource Constrained Devices 243



With regard to the dynamic memory requirements at runtime, it is noteworthy

that the algorithm above does, at no point, allocate memory on a heap structure

(malloc) and all allocations are performed on the stack. The sum of memory

required per iteration depends on the number of states and transitions in the original

SCXML document. If we assume an original SCXML document with 50 states and

transitions each, we can calculate its dynamic memory requirements as follows:

Each instance of an interpretation will require round about 90 bytes for its SCXML

context structure (Fig. 10.6) and every iteration of a microstep will instantiate

• 3 unsigned integer variables as indices during iteration for a total of 6 bytes on

a 16-bit architecture.

• 2 bit-arrays for transitions set, namely for the optimal transition set in

trans_set and for conflicting transitions in conflicts, amounting to

2 �ceil(NUMBER_TRANS ∕ 8) bytes.
• 4 bit-arrays for transitions set, namely for the set of states targeted by

transitions in the optimal transition set as target_set, the entry-set in

entry_set and the exit-set in exit_set. One more bit array is allocated as

a general, temporary bit-array tmp_states and used to remember and reenter

history states and when raising the done.state.[PID] event for parallel

states. This amounts to a total of 4 �ceil(NUMBER_STATES ∕ 8) bytes.
• A single additional byte for the return value in err.

If we, again, assume a state-chart with 50 transitions and states, any bit-array

will consist of 7 bytes for a total of 49 bytes allocated on the stack per invocation

(not accounting for alignment padding). The development for the memory require-

ments of static and dynamic memory is depicted in Fig. 10.10, excluding memory

for code and additional elements other than transitions and states.

1B

10B

100B

1KB

10KB

100KB

1MB

50 100 150 200 250 300

R
eq

u
ir
ed

 m
em

o
ry

Number of states + transitions in an SCXML document

Static Memory (Flash)
Dynamic Memory (SRAM)

Fig. 10.10 Static memory required for the data structures (transitions and states) and dynamic

memory (context and microstep stack)

244 S. Radomski et al.



10.6 Transformation for VHDL

While the C implementation of microstep(T) described above will already

allow to address a wide range of off-the-shelf micro-controllers, a single iteration

will still require tens of thousands of cycles. In this section we present a hardware

realization for a subset of SCXML state-charts and discuss its possible perfor-

mance. To this effect, we will not generate C code, but descriptions for hardware

building blocks, expressed in the widely used hardware description language

VHDL. With VHDL, it is possible to program FPGA logic blocks for dynamic

hardware state machines and even to design custom ASICs.

The general description is, again, aligned with the set of steps depicted in

Fig. 10.1 and based on the pre-calculated sets and relations already introduced as

part of the C implementation above. While we already excluded the <invoke>
element, custom I/O processors and some other features for the description of the C

algorithm, the domain of the VHDL transformation will be even more restricted:

• We will not concern ourselves with any data-model, but only describe the

transitioning of active configurations and the corresponding entry-, exit-, and

transition-sets.

• We do not yet address the semantic of the <history> element nor are

<initial> elements supported. The initial attribute is supported though.

• Events are enumerated and expressed as individual lines. Any data attached to an

event would be inaccessible anyway as we do not provide a data-model.

• No executable content other than <raise> and <send> are supported and

these can only address simple events to either the internal or external event

queue.

The general architecture of the hardware realization is depicted in Fig. 10.11 and

consists of a microstepper with an attached event controller. Each microstep is

performed in a single cycle and several outputs are available

Microstepper

Entry Set
Transition 

Set
Exit SetActive 

External 
Queue

Internal 
Queue

Event 
Controller

External 
Event

1a 1b 1c 1d
2

3a 3b

Fig. 10.11 A high level overview of the generated hardware architecture

10 SCXML on Resource Constrained Devices 245



• The Active Configuration (1a) provides the valuation of active states in the

current configuration. It’s realized as a parallel bus, where every line signifies

the activation status of one state, indicating an active state with HIGH and an

inactive state with LOW. The bus width equates to the number of proper states in

the SCXML document.

• The Entry Set (1b) pins provide the information, which states were in the

entry-set when the microstepper transitioned to the active configuration by

setting the corresponding pin to signal HIGH. To save some of the rare I/O

pins, we just generate pins for states, that have defined an <onentry> child

element.

• Analogously, the Exit States (1d) pins provide the information, which states

were in the micro-step’s exit-set by setting the corresponding pin to signal

HIGH. Again, we just generate pins for states, that have an <onexit> child

element.

• The Transition Set (1c) pins provide the information, which <transition>
elements with executable content were in the optimal transition set.

• For the Internal Queue (3a) and the External Queue (3b), the microstepper

offers a writing interface, that provides enough pins to differentiate the individ-

ual events specified in the SCXML document.

Since we cannot, in the general case, give an upper-bound for the maximum

length of either event queue at transformation time [8], it is important to take

carenot to overflow them. If an event is about to be enqueued on a full queue, the

microstepper will, for now, just assume an error state readable through an

interface pin.

The event-controller will, depending on the occurrence of <raise> and

<send> elements in executable content, deliver these events in accordance with

the valuation of the entry-, exit-, and transition-set bus. It is also available to,

asynchronously, deliver additional external events not enqueued by the state-chart

itself (2).

Figure 10.12 illustrates the inside architecture of the microstepper component. It

mainly consists of the event queues (3a–b) and an elaborate Moore state machine

(4a–c), to perform the actual micro-steps. The most relevant parts of the state

machine are the transition logic (4a) and the state memory (4b). These are

described more detailed in the following chapter. As the current state configuration

and relevant sets are available as interface busses, the output logic (4c) is just

responsible for setting the completed signal, which indicates that the state-chart

is in a top-level final state.

With the general architecture of the hardware established, we can now

describe its actual implementation to realize the steps from Fig. 10.1 in more

detail.

246 S. Radomski et al.



10.6.1 Dequeuing Event

The logic depicted in Fig. 10.12 (3a–d) shows how non-null event dequeuing is

implemented: If there is an event enqueued at the internal queue, the int_empty
signal is LOW and the multiplexer (3c) connects the next_event bus to the

internal queue or external queue otherwise. If both the int_empty and

ext_empty signals are HIGH, the event_valid signal goes to LOW to indicate

that no events are available. Both signals along with the spontaneous signal

from the state memory can, subsequently, be used to perform transition selection.

10.6.2 Selecting Transitions

Just as with the C implementation, the next step is to establish the optimal transition

set for the current event (Fig. 10.13). We have already described, in the scope of the

Fig. 10.12 Architecture of the microstepper. (a) Internal and external event queue with bus

selection. (b) Finite-State-Machine Implementation

10 SCXML on Resource Constrained Devices 247



C implementation above, how we can employ a post-order traversal of all transi-

tions to have higher priority transitions precede those with a lower priority. Fur-

thermore, we did introduce a conflicts relation of transitions to prevent the selection
of invalid transition sets. Both are also relevant to select the optimal transition sets

with dedicated hardware.

If the last micro-step did not exhaust spontaneous transitions, the spontane-
ous is still set to HIGH in the state memory and the logic in Fig. 10.13a is applied.

For any given spontaneous transition, we will set its in_optimal_
transition_set line to HIGH (5a) if its parent state is active as per configu-

ration in the state memory and no other spontaneous transition with a higher priority

conflicts (5b). Here, we can just connect all in_optimal_transition_set
lines for conflicting transitions with a higher priority as they are known at trans-

formation time. We also included an eventual is_enabled signal, which would

need to be set by some external component that would realize the data-model.

The case for non-spontaneous transitions, selected for a non-null event, is very

similar, but an enumeration of matching events would need to set the

is_matching signal (5c) to HIGH as well. This will give us the valuation of

signals for the external interface bus at (1c) above.

10.6.3 Establishing the Exit-Set

When we identified the set of in_optimal_transition_set signals that are

set to HIGH for transitions in the optimal transition set, we can instantaneously

establish the exit-set of the current micro-step. In the scope of the C implementa-

tion, we argued that we can identify a transition’s complete exit-set as the exit-set

Fig. 10.13 Establishing the optimal transition set. (a) Transition selection for spontaneous

transitions. (b) Transition selection for non-spontaneous transitions

248 S. Radomski et al.



when assuming the complete configuration. Now, if we intersect the complete exit-

set with the active configuration, we arrive at the micro-step’s actual exit-set

(Fig. 10.14) and can set the respective signals to high on the external interface

bus (1d).

10.6.4 Establishing the Entry-Set

As we do not support <history> elements yet, the next step is to establish the

entry-set of the current micro-step. This is by far the most complicated step, but by

regarding the implementation in C, we can gain some insights that help us to

understand the respective logic.

In the C implementation, there were three general situations for any given proper

state to become part of the complete entry set:

1. The state is targeted directly by a transition in the optimal transition set.

2. The state is added as an ancestor of a targeted state (ancestor completion).

3. The state is added as the completion of a parent state (descendant completion).

If any state is targeted directly, it will set its in_complete_entry_set_up
signal to HIGH, which causes ancestor completion for all its ancestor states

(Fig. 10.15a, b). This signal is received by composite parent states and recursively

passed to their parents causing all targeted states and their ancestors to have the

respective signal set to HIGH. In order to arrive at a valid completion, any

composite states added via ancestor completion will have to be completed as well

(descendant completion). Composite parents of type PARALLEL will, uncondition-

ally, add all their child states to the complete entry set (Fig. 10.15c). Composite

states of type COMPOUND are more complicated: They will only need to be

completed if they are not already complete, that is, if none of their children are

already active and not exited during the current micro-step (Fig. 10.15d) and the

given child state is the default completion per document order or initial
attribute.

This will, recursively, establish the complete entry set which has to be

intersected with the set of states that are active and not in the exit-set (Fig. 10.16)

to arrive at the actual entry set for the external interface bus at (1b).

Fig. 10.14 Establishing the exit-set by intersecting the complete exit-set with the active

configuration

10 SCXML on Resource Constrained Devices 249



Fig. 10.15 Completing the target set as the complete entry set. (a) An atomic state added by being

targeted directly. (b) A composite state added by being targeted directly or via ancestor comple-

tion. (c) A state added by its parallel parent state. (d) A state added as the default completion of a

compound parent state

Fig. 10.16 Establishing the entry-set by intersecting the complete entry-set with the subset of the

active configuration that is not exited

250 S. Radomski et al.



10.6.5 Observable Performance

In the C implementation above, the preparations above triggered the actual exiting,

transitioning, and entering of states. For the hardware implementation, these activ-

ities are to be performed by components connected to the external interface bus and

dispatching over the various sets. As such, we just need to set the follow-up

configuration (Fig. 10.17) as the set of states already active and not exited together

with the set of states entered in the state-memory and process the next microstep.

10.6.6 Evaluation

The transformation from SCXML to VHDL is still very raw with only a select few

language features implemented. As such, it is futile to evaluate its compliance with

regard to the SCXML IRP tests. We did, however, write two simple SCXML state-

charts that we successfully simulated to pass.

The first test in Listing 10.20 employs a parallel state with an atomic and a

compound child state, with the compounds child, in turn, an atomic event raising an

event upon entry on the internal queue that matches a transition in the other atomic

state.

Listing 10.20 VHDL test for a parallel state with nested compound state

1 <parallel id¼"p1">
<state id¼"p1.1">

<transition event¼"foo" target¼"pass"/>
</state>

5 <state id¼"p1.2">
<state id¼"p1.2.1">
<onentry>
<raise event¼"foo" />
</onentry>

10 </state>
</state>

<final id¼"pass" />
<final id¼"fail" />

</parallel>

The second test in Listing 10.21 relies on transition preemption of the first

transition by the more deeply nested second transition to pass.

Fig. 10.17 The new active

configuration is the set of

states already active and not

exited together with the set

of states entered

10 SCXML on Resource Constrained Devices 251



Listing 10.21 VHDL test for transition preemption

1 <state id¼"s1">
<transition event¼"foo" target¼"fail"/>
<state id¼"s1.1">

<onentry>
5 <raise event¼"foo" />

</onentry>
<transition event¼"foo" target¼"pass"/>

</state>
<final id¼"pass" />

10 <final id¼"fail" />
</state>

Ultimately, it is definitely desirable to get a more rigorous evaluation of the

VHDL description’s compliance and we are confident that, by aligning the VHDL

description with the C implementation, we will be able to pass a similar subset.

10.6.6.1 Performance

Since all dynamic functions such as transition-, entry-, and exit-set generation or the

calculation of the next configuration are implemented via combinatorial logic, the

hardware performs one microstep per clock cycle. The maximum frequency for

such a hardware component depends on several properties of the original SCXML

state-chart and the hardware employed:

• Critical Path: The critical path is the longest combinatorial path in the design. A

clock cycle has to be long enough, for a signal to pass through this path and

stabilize. In our implementation it highly depends on the interleaving depth of the

state machine and, as such, the complexity of the original SCXML document.

• Hardware Specifics: In particular the signal propagation time, which depends,

among other things, on fabrication node and core voltage, is an important factor

for the pass-through time of the longest path.

We expect, in any case, that the state controller’s speed will not be the limiting

factor for the overall system, external components like sensors and actuators are

orders of magnitude slower and would stall the microstepper most of the time.

10.6.6.2 Hardware Costs

If we are to mold the VHDL description into an ASIC, we need to estimate the chip

area required for the various transistors in our solution. Since this number depends

on many factors we present a worst case estimation, wherein we treat every state in

the SCXML document as an atomic state, which is the default completion of a

COMPOUND state. We will further assume all of these states to have two transitions

252 S. Radomski et al.



event driven transitions, and to be the target of two transitions each. This hypothet-

ical set of states represents the worst “transistors per transition” relation.

From this assumptions we get

• 04 transistors for the buffer to save the state,

• 16 transistors for the atomic state function,

• 06 transistors for the activation set of the atomic state,

• 12 transistors for the exit set and the exclusive exit line,

• 06 transistors for the additional pins at the parent gates,

• 18 transistors for the transition function,

• 16 transistors for the interface buffers for the sets on the external interface bus,

for a total of 78 transistors per state. For a comparison, an Intel i7 Haswell-E has

around 2.6 billion transistors.

If we are to implement the VHDL on an FPGA we need to estimate the required

logic cells and flip-flop memory cells. Since an FPGA can build logic cells via its

architecture, most vendors give “logic cell equivalent” numbers for their products.

For our assumed worst case scenario above, we get

• 01 flip-flop to save the state,

• 03 gates for the atomic state function,

• 01 gates for the activation set of the atomic state,

• 02 gates for the exit set and the exclusive exit line,

• 03 gates for the additional pins at the parent gates,

• 05 gates for the transition function,

• 05 flip-flops for the interface buffers for the sets on the external interface bus,

for a total of 20 logic cells per state. As a consequence, a Xilinx Spartan 6 SLX9

would hold about 450 states. We choose this FPGA as comparison, because it is the

smallest FPGA which could hold the AX8 as a VHDL description of the AVR

architecture, which would be able to run the C implementation.

10.7 Conclusion

In this chapter we presented two implementation of the microstep(T) algo-

rithm, central to every SCXML interpreter, one in ANSI C, another in VHDL. In the

scope of the ANSI C implementation, we introduced several sets and relations that

can be derived syntactically from a given SCXML document along with a few

important observations:

• Most of the criteria for an optimal transition sets can be derived syntactically and

encoded in a static conflicts(t1,t2)�T�T relation to identify pairs of

transitions that can, for whatever reason, never be part of the same optimal

transition set.

10 SCXML on Resource Constrained Devices 253



• The post-order traversal sorting for transitions is equivalent to the priority of a

transition. Together with the conflicts(t1,t2) relation, this allows to iden-

tify the optimal transition set in a single iteration of transitions with most steps

skipped very early.

• The complete exit set of a transition, as a superset of the actual exit set can be

calculated at transformation time. The actual exit set is the intersection of this

complete exit set with the active configuration. This notion extends to sets of

transitions, i.e. the optimal transition set.

• The same is true for the complete entry set and the actual entry set of a

transition set.

• Sorting the states such that the states in a given state’s completion will always

succeed the given state in document order allows to identify the entry set in a

single iteration after we identified the target sets’ ancestors.
• All of a state-chart’s history can be encoded in a single bit per state.

By exploiting these techniques, we were able to improve the performance for a

microstep(T) implementation considerably. Along with a transformation of an

SCXML document onto a set of native data-structures, we managed to provide

semantically equivalent object code with a size suitable to be deployed for even the

smallest of micro-controllers.

The insights gained from the ANSI C implementation were subsequently applied

for a transformation from SCXML onto VHDL to implement SCXML as dedicated

hardware elements, be it by programming FPGAs or even to mold custom ASICs on

a die. Even though the VHDL transformation was not evaluated with the same

scientific rigor as the ANSI C implementation, we are confident that it provides an

excellent starting point to support a larger set of SCXML language features.

Acknowledgements This work was supported by Institute for Information & communications

Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. B0101-15-

1292, Development of Smart Space to promote the Immersive Screen Media Service) and by the

German Research Foundation (DFG) as part of the projects B02 within the Collaborative Research

Center (CRC) 1053 – MAKI.

References

1. Barnett, J., Bodell, M., Dahl, D., Kliche, I., Larson, J., Porter, B., et al. (2012). Multimodal
architecture and interfaces. W3C recommendation, W3C. http://www.w3.org/TR/2012/REC-

mmi-arch-20121025/.

2. Berjon, R., Faulkner, S., Leithead, T., Pfeiffer, S., O’Connor, E., & Navara, E. D. (2014).

HTML5. Candidate recommendation, W3C. http://www.w3.org/TR/2014/CR-html5-20140731/.

3. Crane, M. L., & Dingel, J. (2005). On the Semantics of UML State Machines: Categorization
and Comparison. Technical Report 2005-501, School of Computing, Queen’s.

4. Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3), 231–274.

254 S. Radomski et al.

http://www.w3.org/TR/2012/REC-mmi-arch-20121025/
http://www.w3.org/TR/2012/REC-mmi-arch-20121025/
http://www.w3.org/TR/2014/CR-html5-20140731/


5. Harel, D., Pnueli, A., Schmidt, J. P., & Sherman, R. (1987). On the formal semantics of

statecharts (extended abstract). In Proceedings of the Symposium on Logic in Computer Science,
Ithaca, NY, USA (pp. 54–64).

6. Hosn, R., Carter, J., Burnett, D., Lager, T., Barnett, J., Raman, T., et al. (2015). State chart XML
(SCXML): State machine notation for control abstraction. W3C recommendation, W3C. http://

www.w3.org/TR/2015/REC-scxml-20150901/.

7. Mytkowicz, T., Diwan, A., Hauswirth, M., & Sweeney, P. F. (2009). Producing wrong data

without doing anything obviously wrong! ACM Sigplan Notices, 44(3), 265–276.
8. Radomski, S. (2015). Formal Verification of Multimodal Dialogs in Pervasive Environments.

Ph.D. thesis, Technische Universität Darmstadt. http://tuprints.ulb.tu-darmstadt.de/5184/

9. von der Beeck, M. (1994). A comparison of statecharts variants. In H. Langmaack, W. P.

de Roever, & J. Vytopil (Eds.), Formal techniques in real-time and fault-tolerant systems.
Lecture notes in computer science (Vol. 863, pp. 128–148). Berlin, Heidelberg: Springer.

10 SCXML on Resource Constrained Devices 255

http://www.w3.org/TR/2015/REC-scxml-20150901/
http://www.w3.org/TR/2015/REC-scxml-20150901/
http://tuprints.ulb.tu-darmstadt.de/5184/


Chapter 11

Standard Portals for Intelligent Services

Deborah A. Dahl

Abstract Some multimodal interpretation services natively support W3C multi-

modal standards, but most still use their own proprietary formats and protocols.

This makes it much more difficult for developers to use different systems because

they have to learn and program to a new API for each vendor. This paper describes

how standards-based servers can wrap proprietary systems in the W3C MMI

Architecture and EMMA 2.0 to allow developers to interact with modality inter-

pretation services in a standard way, even if the service that they are using does not

natively support the standards.

11.1 Introduction

Multimodal technology that supports forms of input (modalities) such as natural

language processing, speech recognition, handwriting recognition, and object rec-

ognition from images is becoming increasingly powerful and is being employed in a

wide variety of useful applications. However, it is currently typical for each vendor

to have its own proprietary application programming interface (API). Because of

this, developing multimodal applications requires mastering a different API for

each vendor. Furthermore, these API’s differ for different vendors’ versions of each
modality. The result is that developing multimodal applications becomes unnec-

essarily complex and difficult. Developers require extensive expertise and experi-

ence in order to master all of these API’s. Acquiring this expertise is especially

difficult for developers at small companies. This situation slows down the rate at

which multimodal applications can be implemented and makes them more expen-

sive than they would be if API’s were uniform.

Standards such as theW3CMultimodal Architecture and Interfaces specification

(MMI Architecture) [1–3] define a generic modality API, but the adoption of this

standard across many vendors and modalities will take time. In the interim, an

D.A. Dahl (*)

Conversational Technologies, Plymouth Meeting, PA, USA

e-mail: dahl@conversational-technologies.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_11

257

mailto:dahl@conversational-technologies.com


alternative approach for developers who would like to take advantage of the

standards would be to use portals that reformat proprietary results in standard

formats.

By providing a standard, generic, modality, and vendor independent API in the

form of the MMI Architecture, standard portals greatly simplify the learning

process for developers. This approach is also much more extensible to new modal-

ities than proprietary approaches. Furthermore, it makes it easier to change modal-

ity vendors if another vendor offers a superior product.

11.2 Overview of a Portal

As stated above, multimodal technology that supports such capabilities as natural

language processing, speech recognition, handwriting recognition, and object rec-

ognition from images is becoming increasingly powerful and is being used in

many applications. There are many products available in this space. Just looking

at natural language processing offerings alone, some examples are wit.ai

(Facebook) [4], api.ai [5], Microsoft LUIS (Language Understanding Intelligent

System) [6], and Amazon Alexa Skills Kit [7], to name just a few of the systems

available in 2016. Similarly, there are a number of API’s for emotion recognition,

including affectiva [8], EmoVu [9], Microsoft Emotion Recognition [10], Kairos [11],

and nViso [12].

However, currently all of these systems have their own proprietary API’s.
Because of this, developing multimodal applications requires mastering a different

API for each modality, and each vendor or even multiple API’s for one modality, if

the application supports multiple modality services.

This problem can be addressed through a standard multimodal web service

portal. A standard portal can provide access to many types of modalities through

a standard API; specifically, the W3C Multimodal Architecture and Interfaces

(MMI Architecture) specification [1–3], as shown in Fig. 11.1. A standard portal

serves as a layer of middleware between client applications and modalities. Devel-

opers of client applications only need to code to the standard MMI Architecture and

the multimodal web service portal will provide the interface to the vendor-specific

API, shielding developers from the details of the proprietary API and simplifying

development. The standard portal is in fact an MMI Architecture Modality Com-

ponent, communicating with clients using MMI Architecture Life Cycle events. A

Client Portal Modality serviceProprietary APIStandard API

Modality Component

Interaction Manager

Fig. 11.1 Portal wrapping a standard API around a proprietary API

258 D.A. Dahl



uniform API also makes it significantly easier to integrate, or fuse, inputs from

multiple components. For example, it would be very useful to integrate speech and

geolocation inputs in order to respond to user questions such as “where is the

nearest Chinese restaurant” or “How far am I from home?” It is easy to see that as

mobile devices add capabilities the problem of integrating multiple API’s becomes

very complex very quickly. While the problem of integrating inputs from multiple

device capabilities is to some extent addressed by standard device API’s such as the
Media Capture and Streams API [13] these API’s are still modality-specific, so that

cross-modality integration of inputs is still up to the developer.

11.3 The Standard API

11.3.1 MMI Architecture

The standard API discussed in this paper consists of two components:

1. The MMI Architecture Life Cycle events for communication between an Inter-

action Manager (IM) and the Modality Components (MC’s) that support the
application.

2. Extensible Multimodal Annotation markup (EMMA 2.0) [14–16] for

representing user input and system output.

TheMMI Architecture includes both components and events. The components are

(1) the Interaction Manager (IM), which coordinates the interaction, and (2) Modality

Components (MC’s). MC’s both interpret multimodal inputs (from users as well as

sensors) and create multimodal outputs. Modality Components communicate only

with the Interaction Manager, they do not communicate directly with each other.

In addition to the components, the MMI Architecture also includes a set of high

level Life Cycle events for communication between the IM and the MC’s. Life
Cycle events focused on controlling components include StartRequest,

PauseRequest, ResumeRequest, and CancelRequest. These are messages sent

from the IM to MC’s. MC’s, upon receiving one of these messages, respond with

Response events, such as StartResponse and PauseResponse, for acknowledging

receipt of the Request events and reporting errors. In addition, MC’s can send a

DoneNotification event when the requested processing is completed. Either the IM

or an MC can also send an ExtensionNotification event at any time.

ExtensionNotification events can contain arbitrary, application-specific data. No

specific syntax is required for Life Cycle events, but XML is used in the examples

in the specification, and will be used in this chapter.

Every Life Cycle event can optionally contain a Data field with additional

information about the event. In the cases where the event pertains to user input or

system output, the Data field contains Extensible Multimodal Annotation (EMMA)

[14–16] data, which represents the user input and/or system output.

11 Standard Portals for Intelligent Services 259



11.3.2 EMMA

EMMA is an XML language that is especially appropriate for representing seman-

tically complex information. The semantics of the information itself is contained in

the <emma:interpretation> element for user input or the <emma:
output> element for system output. In addition to the actual semantics of the

information, EMMA is also able to represent a rich set of metadata related to the

context of the input or output. EMMA metadata includes, for example, processor

confidence, timestamps, alternatives (nbest), medium and mode, the process that

produced the EMMA result, tokens of input and pointers to the original signal (such

as an audio file or image), among many other types of metadata.

In effect, the standard API referred to in this chapter consists of MMI Life Cycle

events containing EMMA to represent interpreted inputs from users or sensors and

system outputs.

11.4 Details of Multimodal Interaction with the Portal

An example architecture of a standard multimodal portal is shown in Fig. 11.2.

Interaction is initiated in the client-side components (1) by the user. Interaction

modalities may include, for example, speech, typing, or mouse input, but may

potentially include many other forms of input. The client-side components include

application logic (2) implemented, for example, in HTML and JavaScript in

5 MMI Architecture
Life Cycle Events +  other markup, e.g. 
EmotionML , InkML, EMMA

9 Third Party 
Web Service

6 Portal Server
MMI Architecture
Modality Components

10 Local
Service

4 Transport -- HTTP,
Web Sockets 12 Handwriting recognition

13 Biometrics

11 Natural Language processing

14 Speech recognition

Examples of Modality Component Services

2 Client application code
(web browser, mobile app, 
desktop application, 
server process)

3 MMI Architecture
Interaction Manager

Standard Multimodal Web Service Portal

8 Third Party 
API’s

7 Logging and archiving

Other modality web 
services

1 Client-side components
(browser or smartphone app)

Fig. 11.2 Architecture of an MMI portal

260 D.A. Dahl



browser-based implementations. The MMI Architecture Interaction Manager

(3) sends over a transport mechanism such as HTTP (4) an MMI Architecture

compliant Life Cycle event (5).

The Life Cycle event instructs the Portal Server (6) to process the user’s input as
required by the nature of the input (natural language understanding for language

input, for example). (7) Logging and archiving of Life Cycle events may optionally

occur at any point in processing.

Most critically, once the Portal Server has determined which third party services

(if any) are required to process the event, it creates an API call (8) to that service (9).

Although these API calls themselves may be proprietary, knowledge of any pro-

prietary details is restricted to the Portal Server and is therefore isolated from the

application developer, who only has to be concerned with sending and receiving

standard MMI Architecture Life Cycle events. Within this architecture, it is also

possible for services to be provided locally, within the portal (10).

Examples of possible (remote or local) modality services include but are not

limited to natural language processing (11), handwriting recognition (12), biometric

processing (13), and speech recognition (14). Once the appropriate service is

contacted, its result is transmitted back to the Portal Server (6), reformulated into

standard Life Cycle events (5), and sent back to the client-side components (1),

specifically to the client Interaction Manager (3). Finally, application-specific code in

the client (2) executes the appropriate action as determined by the processing result.

11.5 Implementing a Portal

Developing a standard portal requires developing several components. Going back

to Fig. 11.2, the first component (2) is an application using client-side code (running

in a web browser or as native code) which captures user input in modalities that are

appropriate to the application. For example, a hand-held translation system requires

speech to be captured for speech to speech translation, or keystrokes to be captured

for translation from typing.

In addition, the client-side code will include functionality that controls the

components with standard MMI Architecture Life Cycle events (that is, it will

include an Interaction Manager (3)). The Interaction Manager can be implemented

as a reusable library (for example, a Javascript library for browser clients) that can

be used in many applications. SCXML [17, 18] is a suggested choice for Interaction

Managers in the MMI Architecture. SCXML as a choice for Interaction Managers is

especially efficient because the SCXML interpreter itself need only be implemented

once for each platform, with the Interaction Managers for specific applications

being implemented in SCMXL markup.

The Portal Server, which processes the Life Cycle events receives events using a

standard transport such as HTTP [19] or Web Sockets [20, 21] (see Fig. 11.3 for an

example of an actual HTTP POST message). The Portal Server is the key to the

portal, because it serves to isolate proprietary API’s (8) from the developer and

enables the developer to access modality component services (11–14) entirely

11 Standard Portals for Intelligent Services 261



through standard mechanisms. Implementing the Portal Server requires developing

code that can (1) interpret MMI Life Cycle events, (2) determine what services are

being requested, (3) translate the user’s request to the native API used by the

service, (4) call the required services, and (5) reformat the results back into standard

MMI Life Cycle events. In addition, a Portal Server can optionally perform other

useful functions such as logging and archiving the event traffic, providing infor-

mation as to what services are available, acting as a security gateway, format

conversions, and managing user credentials.

The Interaction Manager (3) and the Portal Server (6) are essential parts of the

portal. The Interaction Manager creates the Life Cycle events from the user’s input
and interprets the Life Cycle events sent back from the Portal Server. A transport

mechanism (4) is required for the portal, but it is not necessary for the developer to

implement the transport mechanism because a number of standard transport mech-

anisms are already available and are appropriate for use in this architecture,

including HTTP or WebSockets. The Portal Server can be used on its own, without

the ability to access third party components (8, 9, 11–14), just using local services

(10); however, the portal is far more useful if translation from standard Life Cycle

events to third party API’s (8) is implemented for accessing existing third party

services. In addition, logging and archiving services (7), while not necessary, are

extremely useful in production systems for monitoring usage and debugging prob-

lems. Another aspect of a portal that would be very useful, although not required, is

a way for clients to query the Portal Server in order to discover available services.

Discovery and Registration functionality of this kind could be implemented using

the W3C Discovery and Registration approach discussed in [22–24].

POST https://proloquia-nlservice.rhcloud.com/rest/processmessage HTTP/1.1
Host: proloquia-nlservice.rhcloud.com
Connection: keep-alive
Content-Length: 725
Origin: https://proloquia-nlservice.rhcloud.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/47.0.2526.106 Safari/537.36
Content-Type: text/xml
Accept: */*
Referer: https://proloquia-nlservice.rhcloud.com/understanding.html
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.8

<mmi:StartRequest xmlns:mmi="http://www.w3.org/2008/04/mmi-arch" mmi:Context="nlClient0395" 
mmi:RequestID="requestID0249" mmi:Source="ctNLClient" 
mmi:Target="ctNLServer"><mmi:Data><function>understanding</function><emma:emma 
xmlns:emma="http://www.w3.org/2003/04/emma" version="1.1"><emma:interpretation id="initial1" 
emma:function="understanding" emma:tokens="put a couple cans of tomato soup on the 
shopping list" emma:medium="tactile" emma:mode="keys" emma:verbal="true" emma:device-
type="keyboard" emma:end="1452629301869" emma:lang="en-US" emma:expressed-
through="text"><emma:literal>put a couple cans of tomato soup on the shopping 
list</emma:literal></emma:interpretation></emma:emma></mmi:Data></mmi:StartRequest>

Fig. 11.3 HTTP POST request with MMI StartRequest event for “put a couple cans of tomato

soup on the shopping list”

262 D.A. Dahl



11.6 An Example: Home Control

The Internet of Things (IoT) has enormous potential for adding convenience,

comfort, safety, and efficiency to everyday life as well as for supporting larger

scale enterprise applications. However, there will soon be too many items in the IoT

to realistically expect conventional graphical interfaces to support all the ways in

which users might want to interact with them. For this reason, natural language

using a standard API will become very important for these types of interactions.

This section discusses an IoT example in the area of home control.

Home control is a common use case for the IoT. Home control includes control

of lighting, appliances, heating and air conditioning, entertainment and security,

among many other possibilities. Even limiting consideration to items that users will

want to interact with in the home still leaves the possibility of interaction with

hundreds of devices. If each device, or even each vendor of a connected home

system, has its own API, this will quickly become unmanageable for developers

who wish to integrate many devices into an application. Here we will describe an

MMI Architecture approach for controlling lighting with a standard portal.

Figure 11.4 shows a web page with a user interface for natural language control

of lighting. The user can click “Start Recognition” to start recognition and speak, or

the user can type the request into a text box. In this case the user has typed “It’s dark
in here.” The web page Javascript wraps the input in EMMA and the StartRequest

LifeCycle event to produce the event shown in Fig. 11.5. Application-specific

information is contained in “<mmi:Data>”. In this example there is an

application-specific field “function” which determines which function the data

pertains to, in this case “lightControl”. The user input itself, expressed in

EMMA, is also contained in the “<mmi:Data>” field.

Fig. 11.4 Web page for home control

11 Standard Portals for Intelligent Services 263



The StartRequest event is sent to the portal via HTTP POST and the portal is

polled using AJAX [25] for information returned in response to the StartRequest.

The first event returned from the portal is a StartResponse which simply acknowl-

edges that the StartRequest was received. The portal then creates an API request to

a wit.ai [4] natural language processing endpoint which has been trained to under-

stand home control requests. It then sends the native request to the wit.ai service

endpoint. Wit.ai interprets “it’s dark in here” to mean that the user wants to turn on

the light. The wit.ai endpoint returns natural language understanding results in a its

own proprietary JSON format, as shown in Fig. 11.6. However, since the web client

Interaction Manager expects MMI Architecture Life Cycle events, the portal will

reformat the proprietary result into standard EMMA, and place the EMMA into the

Data field of a Life Cycle event. The resultingDoneNotification event which is sent

back to the client is shown in Fig. 11.7, with the actual interpretation boxed and in

bold (see [14, 16] for details of the EMMA XML format).

Comparing the native API result in Fig. 11.6 with the MMI Architecture/EMMA

result in Fig. 11.7, we can note that the semantic information contained in the result

is the same—“it’s dark in here” is interpreted as “turn the light on.” Both formats

also include confidence information. The EMMA result contains additional meta-

data, including timestamps, the language of the input, the process that produced the

result, and information about the modality of the input (emma:mode¼”keys”).
While some of this information is optional in EMMA, including the richer metadata

can become very important for debugging and tuning large-scale, enterprise

<mmi:StartRequest xmlns:mmi="http://www.w3.org/2008/04/mmi-arch" 
mmi:Context="nlClient0515" 
mmi:RequestID="requestID1841" 
mmi:Source="ctNLClient" 
mmi:Target="ctNLServer">

<mmi:Data>
<function>lightControl</function>
<emma:emma xmlns:emma="http://www.w3.org/2003/04/emma" version="2.0">

<emma:interpretation 
id="initial2" 
emma:function="lightControl" 
emma:tokens="It's dark in here" 
emma:medium="acoustic" 
emma:mode="voice" 
emma:verbal="true" 
emma:device-type="microphone" 
emma:end="1451946835723" 
emma:lang="en-US" 
emma:expressed-through="text">
<emma:literal>It's dark in here</emma:literal>

</emma:interpretation>
</emma:emma>

</mmi:Data>
</mmi:StartRequest>

Fig. 11.5 StartRequest Life Cycle event for “it’s dark in here”

264 D.A. Dahl



applications. It is also possible to retain the complete EMMA data on the server

(where it can be used in debugging and tuning) while sending only the minimum

amount of data to a client (for use in interactive dialogs), using mechanisms that

have been newly introduced in EMMA 2.0 [16]. While in this case the native format

of wit.ai is JSON and the MMI/EMMA format is in XML, there are many software

tools available for converting between these formats.

11.7 Existing Portals

A very experimental MMI Architecture client and portal has been implemented by

the author. Please contact the author for access to the portal. This portal includes

demos of emotion recognition from language, natural language understanding, and

part of speech tagging, among others. The portal accepts MMI Architecture Life

Cycle events over HTTP with user inputs represented in EMMA. The examples in

this chapter were produced by this portal.

For emotion recognition, an EmotionML wrapper for the Microsoft Project

Oxford Emotion Recognizer is also available [26]. While not a full MMI Architec-

ture portal, it does wrap a proprietary API with a standard, EmotionML [27, 28],

which is very much in the spirit of providing standard API’s to otherwise

proprietary services.

{
"msg_id": "a81ffcef-4606-4a93-8f63-0ccf9d8a5b05",
"_text": "it's dark in here",
"outcomes": [

{
"_text": "it's dark in here",
"confidence": 0.782,
"intent": "changeState",
"entities": {

"thingType": [
{
"type": "value",
"value": "light"

}
],
"on_off": [

{
"value": "on"

}
]

}
}

]
}

Fig. 11.6 Native wit.ai JSON output

11 Standard Portals for Intelligent Services 265



11.8 Integrating Portals with Other MMI-Standards
Compliant Components

As the standards become more widely integrated into modality services, there will

be increasing native support for EMMA and the MMI Architecture. This develop-

ment will be completely compatible with the portal model. Components supporting

the standards natively will be fully interoperable with a standard portal. For

example, an application for emotion recognition might fuse results from language

Fig. 11.7 DoneNotification event for the interpretation of “it’s dark in here” as “turn the light on”

266 D.A. Dahl



and facial expressions to improve the accuracy of the emotion recognition result.

The language recognition could come from a service provided by a portal, while the

facial expression analysis could come from a service that supports the MMI

Architecture natively. Integration of information from different modalities (fusion)

would be provided by a fusion component, as shown in Fig. 11.8. Of course,

systems can include more than one standard portal, where each portal provides

different modality services.

11.9 Developing Standard Modality Components
and Portals

Given an existing modality processor (for example, handwriting recognition,

speech recognition, object recognition, or emotion recognition) developing a stan-

dard component is straightforward. Following the requirements and documentation

guidelines in [29], the developer provides access to the native capabilities of the

component through MMI Life Cycle events. Thus, the user of the component will

use a standard API call such as the one shown in Fig. 11.5, rather than the

corresponding native call, the HTTP GET message https://api.wit.ai/message?

v¼20141022&q¼it%27s%20dark%20in%20here.

Clearly, the native call is less verbose, but much of the detailed information in

the standard API call is optional. In addition, the additional standard information, if

used, can provide a great deal of detail that is valuable for logging, archiving, and

tuning applications. This kind of information is especially important in large scale

commercial applications.

Multiple modality components can be aggregated into a portal by providing a

single REST endpoint and including information in the mmi:Data field to indicate

which modality component is being requested.

client portal

Proprietary 
component for 
emotion 
recognition from 
language

Native MMI 
component for 
emotion 
recognition from 
facial 
expressions

Multimodal fusion of 
speech and image 
results

EMMA: emma:tokens=“I 
feel very angry today”

EMMA: emma:signal=“(imageURL)”

native API

EMMA/EmotionML:
category=“happy”

EMMA/EmotionML
category=“angry”

System: “I’m not sure if 
you’re  happy or angry. You 
say you’re angry but you 
look happy”

user

User: I feel 
very angry 
today”

Fig. 11.8 Mixing portals with MMI native components

11 Standard Portals for Intelligent Services 267

https://api.wit.ai/message?v=20141022&q=it%27s%20dark%20in%20here
https://api.wit.ai/message?v=20141022&q=it%27s%20dark%20in%20here
https://api.wit.ai/message?v=20141022&q=it%27s%20dark%20in%20here
https://api.wit.ai/message?v=20141022&q=it%27s%20dark%20in%20here


11.10 Conclusions

In summary, standards-based multimodal portals can provide standard interfaces to

otherwise proprietary services, providing a way for developers to use standards

with proprietary systems.

In doing so, they provide the following advantages over proprietary approaches:

1. They reduce the need for developers to learn proprietary API’s.
2. They can foster the adoption of standards by supporting a phased implementa-

tion approach.

3. They increase vendor-independence.

4. They can simplify logging and analysis of inputs for debugging and tuning

because processing results from different vendors’ services will be in the same

format.

5. They simplify adding new modalities to an existing application because inputs

from different modalities will be in the same format.

6. They simplify integration of inputs from components using the MMI Architec-

ture API’s natively with information produced by proprietary systems.

References

1. Barnett, J., Bodell, M., Dahl, D. A., Kliche, I., Larson, J., Porter, B., et al. (2012). Multimodal

architecture and interfaces. World Wide Web Consortium. http://www.w3.org/TR/mmi-arch/.

Accessed 20 Nov 2012.

2. Dahl, D. A. (2013). The W3C multimodal architecture and interfaces standard. Journal on
Multimodal User Interfaces, 1–12 (2013). doi:10.1007/s12193-013-0120-5.

3. Barnett, J. (2016). Introduction to the multimodal architecture. In D. Dahl (Ed.), Multimodal
interaction with W3C standards: Towards natural user interfaces to everything. New York,

NY: Springer.

4. wit.ai (2015). wit.ai. https://wit.ai/. Accessed 17 Mar 2015.

5. api.ai (2015). api.ai. http://api.ai/. Accessed 17 Mar 2015.

6. Microsoft (2015). Language Understanding Intelligent Service (LUIS). Microsoft. http://www.

projectoxford.ai/luis. Accessed 5 June 2015.

7. Amazon (2016). Alexa Skills Kit. Amazon. https://developer.amazon.com/public/solutions/

alexa/alexa-skills-kit. Accessed 6 Jan 2016.

8. affectiva (2016). Affdex emotion sensing and analytics. affectiva. http://www.affectiva.com/

solutions/apis-sdks/. Accessed 11 Jan 2016.

9. EmoVu (2016). EmoVu Cloud API. Eyeris. http://emovu.com/e/developers/api/. Accessed

12 Jan 2016.

10. Microsoft (2016). Project oxford emotion recognition. Microsoft. https://www.projectoxford.

ai/demo/emotion. Accessed 12 Jan 2016.

11. Kairos (2016). Emotion analysis API. Kairos. https://www.kairos.com/emotion-analysis-api.

Accessed 11 Jan 2016.

12. nViso (2016). nViso emotion recognition. nViso. http://www.nviso.ch/index.html. Accessed

11 Jan 2016.

13. Burnett, D., Bergkvist, A., Jennings, C., & Narayanan, A. (2015). Media capture and streams
(14th ed.). Boston, MA: World Wide Web Consortium.

268 D.A. Dahl

http://www.w3.org/TR/mmi-arch/
http://dx.doi.org/10.1007/s12193-013-0120-5
https://wit.ai/
http://api.ai/
http://www.projectoxford.ai/luis
http://www.projectoxford.ai/luis
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit
http://www.affectiva.com/solutions/apis-sdks/
http://www.affectiva.com/solutions/apis-sdks/
http://emovu.com/e/developers/api/
https://www.projectoxford.ai/demo/emotion
https://www.projectoxford.ai/demo/emotion
https://www.kairos.com/emotion-analysis-api
http://www.nviso.ch/index.html


14. Johnston, M. (2016). Extensible multimodal annotation for intelligent interactive systems.

In D. Dahl (Ed.),Multimodal interaction with W3C standards: Towards natural user interfaces
to everything. New York, NY: Springer.

15. Johnston, M., Baggia, P., Burnett, D., Carter, J., Dahl, D. A., McCobb, G., et al. (2009).

EMMA: Extensible MultiModal Annotation markup language. W3C. http://www.w3.org/TR/

emma/. Accessed 9 Nov 2012.

16. Johnston, M., Dahl, D. A., Denny, T., & Kharidi, N. (2015). EMMA: Extensible MultiModal

Annotation markup language Version 2.0. World Wide Web Consortium. http://www.w3.org/

TR/emma20/. Accessed 16 Dec 2015.

17. Barnett, J. (2016). Introduction to SCXML. In D. Dahl (Ed.),Multimodal interaction with W3C
standards: Toward natural user interfaces to everything. New York, NY: Springer.

18. Barnett, J., Akolkar, R., Auburn, R. J., Bodell, M., Burnett, D. C., Carter, J., et al. (2015). State

Chart XML (SCXML): State machine notation for control abstraction. World Wide Web

Consortium. http://www.w3.org/TR/scxml/. Accessed 20 Feb 2016.

19. Fielding, R. T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., et al. (1999). RFC

2616 hypertext transfer protocol—HTTP/1.1. Internet Engineering Task Force (IETF). https://

tools.ietf.org/html/rfc2616. Accessed 12 Jan 2016.

20. Fette, I., & Melnikov, A. (2011). RFC 6455 The WebSocket Protocol. Internet Engineering

Task Force (IETF). https://tools.ietf.org/html/rfc6455. Accessed 12 Jan 2016.

21. Hickson, I. (2012). The WebSocket API. The World Wide Web Consortium. http://www.w3.

org/TR/websockets/. Accessed 20 Nov 2012.

22. Rodrı́guez, B. H., Barnett, J., Dahl, D., Tumuluri, R., Kharidi, N., & Ashimura, K. (2015).

Discovery and registration of multimodal modality components: State handling. World Wide

Web Consortium. https://www.w3.org/TR/mmi-mc-discovery/.

23. Rodriguez, B. H., & Moissinac, J.-C. (2016). Discovery and registration—finding and inte-

grating components into dynamic systems. In D. A. Dahl (Ed.), Multimodal interaction with
W3C standards: Toward natural user interfaces to everything. New York, NY: Springer.

24. Rodriguez, B. H., Wiechno, P., Dahl, D. A., Ashimura, K., & Tumuluri, R. (2012). Registra-

tion & discovery of multimodal modality components in multimodal systems: Use cases and

requirements. World Wide Web Consortium. http://www.w3.org/TR/mmi-discovery/.

Accessed 26 Nov 2012.

25. Garrett, J. J. (2005). Ajax: A new approach to web applications. Adaptive Path. https://web.

archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/

000385.php. Accessed 14 Jan 2016.

26. Hilton, A. (2015). EmotionAPI 0.2.0. Coolfire solutions. https://github.com/Felsig/Emotion-

API. Accessed 11 Jan 2016.

27. Schr€oder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., & Zovato, E. (2014).

Emotion Markup Language (EmotionML) 1.0 World Wide Web Consortium. http://www.

w3.org/TR/emotionml/.

28. Burkhardt, F., Pelachaud, C., & Schuller, B. (2016). Emotion markup language. In D. Dahl

(Ed.), Multimodal interaction with W3C standards: Toward natural user interfaces to every-
thing. New York, NY: Springer.

29. Kliche, I., Dahl, D. A., Larson, J. A., Rodriguez, B. H., & Selvaraj, M. (2011). Best practices

for creating MMI modality components. World Wide Web Consortium. http://www.w3.org/

TR/2011/NOTE-mmi-mcbp-20110301/. Accessed 20 Nov 2012.

11 Standard Portals for Intelligent Services 269

http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/scxml/
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/
https://www.w3.org/TR/mmi-mc-discovery/
http://www.w3.org/TR/mmi-discovery/
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://github.com/Felsig/Emotion-API
https://github.com/Felsig/Emotion-API
http://www.w3.org/TR/emotionml/
http://www.w3.org/TR/emotionml/
http://www.w3.org/TR/2011/NOTE-mmi-mcbp-20110301/
http://www.w3.org/TR/2011/NOTE-mmi-mcbp-20110301/


Chapter 12

Applications of the Multimodal Interaction
Architecture in Ambient Assisted Living

António Teixeira, Nuno Almeida, Carlos Pereira, Miguel Oliveira e Silva,

Diogo Vieira, and Samuel Silva

Abstract Developing applications for ambient assisted living (AAL) scenarios

requires dealing with diverse user groups, heterogeneous environments, and a

large plethora of devices. These requirements pose several challenges on how to

design and develop user interaction with the proposed applications and services. In

this context, the versatility provided by multimodal interaction (MMI) is paramount

and the adopted architecture should be instrumental in harnessing its full potential.

This chapter offers an insight on how AAL challenges can be tackled by

multimodal-based solutions. It presents the authors’ views and research outcomes

in multimodal application development for AAL grounded on an architecture for

MMI aligned with the W3C recommendations.

12.1 Introduction

In our aging society, ambient assisted living (AAL) is defined as an “aim to extend

the time people can live in a decent way in their own home by increasing their

autonomy and self-confidence, the discharge of monotonous everyday activities, to

monitor and care for the elderly or ill person, to enhance security and to save

resources” [1]. AAL is a natural extension of the ambient intelligence paradigm

[2, 3], whose main objective is the integration of a broad range of technologies,

namely smart materials, microelectromechanical components, sensor technologies,

embedded devices, ubiquitous communications, or intelligent interfaces to proac-

tively support people in their daily lives.

In a similar way, as many Internet services are now part of everyday life of

technological non-impaired people, one can envision AAL services as also playing

an important role in the future living environment of everyone, with a special

relevance for those with physical limitations or health problems.

A. Teixeira (*) • N. Almeida • C. Pereira • M. Oliveira e Silva • D. Vieira • S. Silva

DETI—Department of Electronics, Telecommunications and Informatics, IEETA—Institute

of Electronics and Informatics of Aveiro, University of Aveiro, Campus Universitário

de Santiago, Aveiro, Portugal

e-mail: ajst@ua.pt

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_12

271

mailto:ajst@ua.pt


Despite its origins, AAL does not need to be restricted to household scenarios.

Assistance is needed outside and in many other activities. Examples of Pervasive

AAL—or ubiquitous AAL—include assistance for: (a) using new social networks

[4]; (b) patients with their medication [5, 6]; (c) firefighters in emergency situations;

(d) drivers in their cars; (e) tourists in new places [7]; and (f) older or disabled

within environments such as their neighborhood, shopping mall, and other public

places [8]. Many of these new application scenarios are mobile and require distrib-

uted heterogeneous solutions.

The creation of AAL applications and services, particularly Pervasive AAL,

presents a number of challenges to researchers and developers alike. An AAL

scenario with a simple application typically includes several sensors (e.g., [9]),

communication networks, computational devices, and other technologies

[10]. With the fast evolution of concepts such as the Internet of Things (IoT)

[11, 12], these scenarios will rapidly grow and become even more complex to

manage [13]. Testing and fine-tuning a service or an application in one environment

does not guarantee the same performance in another. Environments and contexts of

use change within and among users and this must be taken into consideration when

developing new applications or services.

Within AAL’s objectives [14], multimodality can provide an important push in

shortening the gap between the user and the ambient. By offering different inter-

action methods, developers are not only creating redundancy, but they are also

increasing usability rates. Given the volatility of the environment itself, doing so is

fundamental to ensuring that, regardless of the context, users are able to access

applications and services when needed.

At the same time, several situations point to the need to explore more natural

ways of interaction, usually associated with human to human communication, such

as speech or gestures. Speech, despite the far-from-perfect performance of the state-

of-the-art technologies, has a strong potential in areas such as robot assistants [15]

or assistive technologies [16], particularly by allowing hands-free interaction, at a

distance, and benefiting from its intuitive use, potentially requiring minimal learn-

ing. Use of hands and body gestures can also be very useful, but, in general, hands

will not be free for other tasks and more learning is needed.

Our long-term involvement in designing and developing for generalized assis-

tance scenarios offers exciting opportunities and challenges regarding interaction:

the existence of many sensors capable of providing information on the environ-

ment, user activity, and even user mood, the need to interact at a distance, and to

provide information to the user through small devices, for example. Good AAL

applications require constant adaptation to the user, not only to his/her position,

time of day, or task and environment characteristics, but also to the user’s mood,

preferences, or even disabilities.

In addition to this, the heterogeneity of environments in AAL is a serious issue

both from the technical [17] and user experience perspective. From early on,

developers may try to pay special attention to aspects such as usability or user

experience, and rapidly become frustrated as their application eventually ceases to

operate properly due to changes in the environment. At the extreme, the application

272 A. Teixeira et al.



may not be compatible at all due to irreconcilable differences in the data formats or

adopted infrastructures. In this regard, standardization is crucial not only in foster-

ing an easier design and development of novel applications [18], but also in

enabling interactively rich AAL services that harness the full capabilities of the

environment (devices, sensors, etc.) in favor of higher user acceptance [19] and

improved life experiences.

In line with these views, the remainder of this chapter is organized as follows. In

Sect. 12.2, we start by presenting the context in which our work evolved, resulting

in our adoption of a multimodal interaction (MMI) architecture based on the W3C

recommendations, followed by a brief presentation of the architecture we adopted

for AALMMI. Section 12.3 is then devoted to presenting two practical examples of

AAL works adopting the proposed architecture, highlighting their main features

and how the architecture enabled fulfilling the requirements. Finally, the chapter

ends with some discussion and conclusions regarding the accomplished work and

some views on future lines of development.

12.2 Multimodal Interaction Architecture for AAL Based
on the W3C Standards

Our adoption of the W3C MMI architecture for AAL was the result of a long-term

effort in designing and developing systems and applications for AAL. Therefore, in

what follows, we first provide a brief account of how our approach evolved,

considering several of the challenges faced, followed by a characterization of our

current W3C-based architecture for MMI, including our proposal of generic inter-

action modalities.

12.2.1 Integrating Support for Multimodality in AAL
Architectures

To address the interaction requirements for the AAL scenarios established by

project LUL—Living Usability Lab1 and AAL4ALL2 [20] a novel architecture to

support MMI was proposed, favoring autonomy and decentralization, based on a

distributed paradigm grounded on modules and services. This offered enough

flexibility to encompass scalability, and adaptive capabilities (e.g., to dynamic

environments and user characteristics), particularly relevant for the envisaged

environments. Likewise, a distributed architecture offered an easier integration

and testing of novel components.

1 Project LUL—Living Usability Lab, http://www.livinglab.pt.
2 Project AAL4ALL—Ambient Assisted Living for All, http://www.aal4all.org.

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 273

http://www.livinglab.pt/
http://www.aal4all.org/


To instantiate the architecture, we considered different alternatives. In the first

iteration, we adopted agents and the Java Agent Development Framework (JADE),

allowing the development of agent-based systems, supporting multiple communi-

cation methods among agents, and an agent registration and indexing service.

Considering this first implementation, a method was proposed to adapt the output

to the user and context—codenamed AdaptO—showing the overall capabilities of

the proposed architecture [21].

Since service-oriented architectures (SOA) offer adequate solutions for the main

requirements of AAL services and applications, such as heterogeneity, they have

been widely adopted [22]. Nevertheless, they do not directly address interaction and

it was important to support MMI on the proposed AAL architecture. As a result, a

novel version of the architecture was proposed, adopting web services and HTTP-

based communication.

When deploying this new version of the architecture it was clear that several

aspects required special attention, such as the use of a standard communication

language and the existence of a base set of modalities. The use of a non-standard

communication language made it almost impossible to connect new components

from the different stakeholders, turning development into a hard task, and delaying

the deployment of novel multimodal systems [23]. The lack of support for a basic

modality set would impact negatively on users’ decision to adopt the architecture

at all.

The effort to tackle these challenges naturally resulted in the consideration of

several of the W3C recommendations as an integral part of our architecture,

namely: Extensible MultiModal Annotation markup language (EMMA) [24] for

the representation of data transferred among entities of a multimodal system; life

cycle events, to deal with the communication between modalities and the Interac-

tion Manager (IM); and the modality definition, considering the use of external

services. Beyond enabling us to address these aspects, the adoption of the W3C

standards is also well aligned with the principles of standardization and open

systems that should foster further advances in AAL [18]. This novel iteration of

the architecture is described in what follows.

12.2.2 Multimodal Architecture for AAL: Overview

Our AAL architecture is strongly based on the separation of modalities from the

application and on the use of an IM, as in the W3C architecture. The communica-

tion between the modalities and the IM, and between the IM and the application,

uses the key ideas of the W3C regarding life cycle events, and encoding of

information using EMMA. Figure 12.1 presents a simple example of the life

cycle events generated after an event in the speech recognition, part of the speech

modality.

Due to our goal of enabling simpler and faster MMI, assigning a high priority to

the integration of speech and gesture-based interaction modalities, we consider as

274 A. Teixeira et al.



an integral part of our AAL MMI architecture a set of complex modalities

supporting these interaction features. These modalities should support application

developers in creating MMI interfaces without the need to master modality com-

plexity and, therefore, we opted, in our architecture, for a set of comprehensive

modalities that could be easily configurable for many situations. We consider these

“Generic Modalities” (i.e., complex modalities developed with the purpose of being

easily integrated in any MMI application) as key elements of our architecture.

The alignment with the W3C MMI architecture presents itself as a good solution

to some AAL issues:

• Heterogeneity becomes a smaller issue. The inclusion of a new modality does

not imply revisions to existing applications or in the AAL environment.

• Autonomy can be increased. Given its focus on interaction, the W3C MMI

architecture allows including into input/output modalities some degree of auton-

omy and intelligence. Modalities are capable of receiving updates and adapting

themselves to the present conditions.

• Usability through choice. Applications can communicate with multiple modal-

ities such as speech, gestures, keyboard, and touch, without changes to the core

programming. New modalities can be added at any time. Users can now use

several methods to interact with applications, potentially increasing their overall

usability.

Also, to achieve truly adaptable solutions, we believe that the environment must

constantly evolve. This obviously includes input and output characteristics of our

interfaces. With the adoption of the MMI architecture, especially through the usage

of MMI life cycle events and the EMMA standard, we have been able to make

advancements in tackling some of the difficulties.

The implementation of the multimodal framework implementing the envisaged

architecture follows the W3C standard for multimodal architecture [25].

Fig. 12.1 Simple example

of exchanged life cycle

events

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 275



The framework instantiating our MMI architecture for AAL includes an IM, a

set of modalities, and methods for communication between modalities and

IM. Figure 12.2 presents an overview of the multimodal architecture.

The IM operates as a central service accessible to all modalities. At its core, the

IM operates using a State Chart extensible Markup Language (SCXML) definition

loaded during initialization. Using this definition, the IM parses and answers

modality requests.

All communication is specified using MMI life cycle events and the EMMA

language. As such, the IM receives MMI life cycle Events coming from modalities

via HTTP. However, because communication is bidirectional and can be started by

either the IM or the modalities, the latter can also operate as HTTP servers.

When an MMI life cycle event is received, the IM or the modality parses the

message and analyzes its content. In the case of the IM, depending on the result, it

might trigger an event depending on what is defined in the SCXML file. This

usually involves responding to the incoming message, but it can also involve

modifications to the data model, or contacting other modalities. Modality compo-

nents act according to their own logics and implementation.

Figure 12.3 illustrates the communication between the IM and several

modalities.

12.2.3 Generic Modalities

Considering the multimodal architecture recommendations, modalities should be

decoupled and communicate with the IM using standard MMI life cycle events.

This enables two important features: (1) easily registering novel modalities with

existing applications; and (2) allowing developers with no expertise in particular

Fig. 12.2 Overview of the

adopted multimodal

architecture comprising its

main components

276 A. Teixeira et al.



technologies to easily support them in their applications, keeping their focus solely

on the application development. With this in mind, we have worked on the proposal

of several modalities that could serve any AAL application adopting the

architecture.

A basic set of such generic modalities for AAL needs to include support for

touch, body gestures (particularly hand gestures), speech input and output, and

classical graphical output. Due to the potential of speech for input and output in

AAL scenarios—freeing hands and eyes and allowing interaction at a distances—a

particularly important generic modality was designed and developed for speech.

The generic speech modality follows the W3C multimodal architecture recom-

mendation, implementing the standard MMI life cycle events and EMMA to

communicate with the IM. Since it is a decoupled modality, it is easily improved

and added to other systems using the multimodal framework.

The generic modality can be configured to support speech input and/or output,

resorting to speech recognition and synthesis technologies, and is capable of

recognizing or synthesizing speech for multiple languages, making the modality

useful for multilingual systems. A notable characteristic is that, for example, for

speech input, the modality uses a webservice, capable of translating a given

grammar to other languages and performing semantic parsing to the output of a

speech recognizer [26]. This use of a service for complex processing, providing a

centralized way for handling different languages, is very important in AAL scenar-

ios, since devices running the modality can have limitations regarding memory and

computational power. In addition, it provides a way for manufacturers to deploy

updates to the grammars used by a large set of applications with little effort.

Eventually, the service could also run the speech recognizer (ASR) and receive a

stream with recorded speech, but this would entail higher bandwidth demands.

Fig. 12.3 Illustrative example of the communication between modules for the adopted MMI

architecture

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 277



To create the first instantiation of this generic modality, the Microsoft Speech

Platform3 was used as the speech engine, as it supports a large set of languages and

is simple to expand by adding additional language packs [27].

12.3 AAL Applications

At this time, we have used the described multimodal architecture in several AAL

projects. The following sections present information regarding two application

contexts and how the architecture served their requirements: a telerehabilitation

service and a personal life assistant (PLA).

12.3.1 A New Telerehabilitation Service for the Older Adults

The percentage of people over 60 is increasing more rapidly than any other age

group. By 2025, it is anticipated that there will be 1.2 billion humans over the age of

60 and this will continue to rise to about two billion in 2050. With ageing comes a

decrease in functioning associated with a stronger incidence of multiple chronic

diseases, which motivates an increasing need for healthcare services [28]. This

constitutes a challenging scenario for the traditional healthcare system [29], both

regarding its ability to face the larger number of potential patients and the need to

provide patient specific approaches and follow up. In this context, telerehabilitation

has some advantages [30] for older adults by working as facilitators for operational

optimization of care services [31], increasing, for example, the availability of

therapists, allowing rehabilitation at home, reducing therapist cost, and fighting

isolation.

The new telerehabilitation Service [22, 32] supporting MMI, developed in the

scope of projects LUL—Living Usability Lab4 and AAL4ALL,5 enables patients to

perform rehabilitation sessions, at home or at community centers, under remote

supervision by a health professional (e.g., a physiotherapist).

12.3.1.1 Requirements

In order to develop the telerehabilitation service, the following main requirements

were considered:

3Microsoft Speech Platform, https://msdn.microsoft.com/en-us/library/office/hh361572

(v¼office.14).aspx, accessed March, 2016.
4 See footnote [1].
5 See footnote [2].

278 A. Teixeira et al.

https://msdn.microsoft.com/en-us/library/office/hh361572(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/office/hh361572(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/office/hh361572(v=office.14).aspx


• Functional requirements:

• Remotely manage and monitor the rehabilitation session including the defi-

nition of an exercise plan;

• Remotely provide and receive feedback from the user in order to adjust the

rehabilitation session;

• Enable the simultaneous management of a large number of patients by a

single supervisor.

• Non-functional requirements:

• Guarantee the reliability of the system, including fault-tolerance capabilities

and the ability to recover from communication errors.

• Support the distributed execution of the service, in order to support the

heterogeneous nature of different environments (such as houses or commu-

nity centers).

• Scalable and extensible, thus allowing future iterations and growth.

• Provide high usability rates.

From this list, it is important to highlight the last requirement, high usability, as

it is crucial to the success of the service. Since the user is provided with instructions

by the interface and there is constant interaction between himself and the health

professional, the user must feel comfortable when interacting with the system, and

its operations and functionalities should feel simple and natural to him/her. To

achieve this goal, a new set of requirements exclusively based on HCI were

considered:

• Modality redundancy: The system must be prepared to offer complementary

modalities to improve the chance of message delivery.

• Modality adaptation: Environmental conditions (e.g., light, noise, and distance)

as well as user preferences (e.g., font size, resolution) should be considered as

contextual information and directly influence the behavior of the modalities.

• Multimodal support for the health professional—Multi-touch input should be

available on the health professional side in order to allow him to easily access

information or quickly select a course of action regarding the rehabilitation

sessions.

12.3.1.2 Service Architecture

Taking into account the functional requirements, the health professional can

remotely monitor the patient using video and biosensors (e.g., surface electromy-

ography to monitor muscle activity during exercises); plan, apply, and control an

exercise program; provide feedback regarding their performance. The requirement

for the service to allow a single health professional to supervise a large number of

patients resulted in the option for not having a video feed from supervisor to patient,

being a text-based chat the adopted solution. Since using the chat by the

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 279



patient—reading and writing messages—is often impossible, when doing the exer-

cises, speech input and output is used to complement keyboard, mouse, and display.

To improve its usability, the service includes output adaptation (e.g., font size,

speech volume) to the user based on distance, ambient noise, and lighting of the

room. In what follows we provide an overall view of the service and its features. For

more details regarding the service the reader is referred to [22, 32].

A broad overview of the service is shown in Fig. 12.4. The service provides the

health professional with information from the house and control over the rehabil-

itation session. The user at home receives indications for performing the exercises.

The service depends on two applications, one for the user at home, and the other

for the health professional planning, monitoring, and evaluating the session. Both

were developed supporting MMI tailored for each specific application goal and to

the expected different capabilities of its users.

The health professional application (in Fig. 12.5) is composed by four compo-

nents. The top left window contains the exercise selection panel. This panel pro-

vides the health professional with the ability to create and manage the list of

exercises that the user should perform. On the top right is the biosensor information

panel, containing the sensor data regarding the use of rehabilitation service. On the

bottom left, a messaging window was included with the purpose of allowing direct

communication with the patient via text messages. Finally, the bottom right win-

dow displays a live video feed of the user performing the session.

The second application is for the patient at home. Its interface, presented in

Fig. 12.6, also contains four major components. The top left panel displays visual

illustrations on how to perform the current exercise using a step-by-step approach.

On the top right, an indication of the remaining time for the current exercise is

shown to the user. On the bottom left, a messaging panel is included to allow

communication with the health professional. The bottom right panel displays the

live video feed of the user to allow him/her to analyze and correct their posture.

Fig. 12.4 Global view of the telerehabilitation service

280 A. Teixeira et al.



12.3.1.3 How the Multimodal Architecture Was Used

Both applications of the telerehabilitation system use the framework in its opera-

tion. The two applications are executed and they communicate remotely using

services to exchange information related to the components. As the video from

the patient to the supervisor is only for human use, it is not handled as a modality.

Fig. 12.5 Screen of the health professional application (from [33])

Fig. 12.6 Screen of the patient application (from [33])

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 281



For each application, an IM runs in the same machine, providing multimodal

capabilities to the applications. Both devices are configured to run the generic

speech modality, which has potentially more importance for the patient’s applica-
tion since they are making exercises in front of a TV connected to the computer. For

the health professional, touch may be more suitable to perform tasks. Notwith-

standing, speech is also available. The login to each application can be initiated by

pressing the button “Login” or by speaking “authenticate” or “sign in.”

An important use of the speech recognition modality is the possibility to interact

with the chat component (both applications), the user can speak “dictate message”

to activate the dictation mode and then dictate a message. The message is recog-

nized and shown in the chat component, the user verifies that the message was

correctly recognized, and speaks “send message.” Every time a user receives a chat

message from the other user, an event is generated and sent to the IM, which sends it

to the speech synthesis to be read. With this type of feedback the user does not need

to read the message on the screen.

Many other tasks can be accomplished using touch or speech. For instance, in the

patient application the user can choose to pause or move to the next exercise. On the

health professional side, it is possible to select the sensor in which to focus, or move

the camera direction.

The events generated in the modalities are encoded using the life cycle events,

which contain the markup language with the information of the event in EMMA.

The messages generated also contain attributes relative to the modality, but the

name of the event that generates the same output is the same either in the touch

modality and speech modality. If a user swipes the finger to the right or speaks “turn

the camera right” the event inside the EMMA will always be [ACTION].[VIDEO].

[SWIPE].[DIRECTION].[RIGHT].

A gestures modality, which uses the Kinect sensor, is used to calculate the

distance to the user and, based on thresholds, it generates events so the interface

can be adapted and the areas with more importance, such as the presentation of

exercises, can be presented with a zoom factor.

12.3.1.4 Discussion

This application was our first application considering the MMI architecture. At this

stage, we started to develop the multimodal framework, starting with the IM and

simple modalities to serve only the purpose of this application. While developing

the framework and modalities, the requirements needed to create generic modalities

were acquired, enabling us to design and develop the generic framework allowing a

simpler integration of MMI to new applications.

282 A. Teixeira et al.



12.3.2 AALFred: The Personal Assistant of Project PaeLIFE

In the European AAL Joint Program project PaeLIFE,6 the W3C MMI architecture

was adopted by the consortium as the basis for the MMI. This project developed a

personal assistant named AALFred, that aggregates different social and messaging

services such as email, Facebook®, and Twitter®, and provides news, weather

forecasts, and nearby places of interest. Using a multimodal framework, several

modalities are included, offering users a wider range of ways to interact, readily

available to any module added to the system by any of the partners. With a strong

emphasis on the speech modality, most of the content of the assistant can be

accessed through speech interaction, even dynamic content, and the decoupled

nature of modalities allowed deploying expedite methods to ensure the support of

several languages (Portuguese, English, French, Polish, and Hungarian).

12.3.2.1 Requirements

In order to better perceive the fundamental requirements for the development of a

user friendly and multimodal application, a brainstorm session was conducted with

the main stakeholders. By focusing on the end user itself and the characteristics of

the AAL environments, the following requirements were defined:

• MMI support: With a special focus on natural language via speech;

• Multilingual application: Given the focus of the project as a European project, it

was decided to that each partner’s native language should be supported;

• Decoupled solution: To allow the distribution of modalities across different

devices and to allow a smoother integration of modules developed by partners;

• Modular solution: Not only create modules to support different social services

and other information services, but also allow the future inclusion of third party

modules, if needed, through the creation of a hub for this purpose.

12.3.2.2 General Presentation of AALFred

The AALFred system is a personal assistant application containing a collection of

information and social services developed through the collaboration of multiple

partners from the PaeLIFE consortium. The application integrates the developed

multimodal framework at its core with the main objective of allowing users to

interact with the application using any available modality.

Figure 12.7 illustrates the initial view of the application, the main menu, listing

all accessible options within the application. The menu is based on a set of modules

added through a developed hub, and offers options such as managing the agenda or

6 Project PaeLIFE—Personal Assistant to Enhance the Social Life of Seniors, http://www.paelife.eu.

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 283

http://www.paelife.eu/


the user’s contacts, check the weather and the most recent news, communicate with

others via messaging or access media content such as videos or photos.

Figure 12.8 shows an example of using the agenda. Given the multimodal nature

of the application, users, in accordance with their preference, are able to use either

touch or speech to navigate. During interaction, the AALFred assistant provides the

user with suggestions of possible options using speech synthesis. For instance, it

may inform the user on how to create a new appointment using speech instructions

(“Do you want to create a new appointment? Open a day and say create a new

appointment”).

Through the indication of the user localization (or language preference), the

system automatically adopts the corresponding language for the speech modality.

In the same manner, the interfaces automatically translate existing text to the

correct language.

12.3.2.3 System Architecture

The AALFred architecture features two main parts, one on the cloud and the other

on a local computational device such as a tablet, smart TV, or a personal computer.

The architecture is illustrated in Fig. 12.9. The left side illustrates the user and the

available devices. The right side illustrates the cloud services including a database

for user data management and several modules for accessing external services such

as Facebook or Youtube as well as services to allow improved speech recognition.

Connecting the two sides is an API using web services through the PLA.

Fig. 12.7 The initial screen of AALFred shows the list of available modules

284 A. Teixeira et al.



Fig. 12.8 Interactions flow to create a new appointment in the agenda, the user starts by choosing

the preferred way to interact with the application (touch or speech) to select the day and then select

the option to add a new appointment, then fill the subject with the virtual keyboard, and again

select to save the appointment by touch or speech

Fig. 12.9 AALFred personal life assistant (PLA) system architecture

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 285



12.3.2.4 How the Architecture Was Used

The AALFred personal assistant application adopted the proposed multimodal

framework entirely and, therefore, all events related to the interaction are managed,

without exception, by the IM. An overview of the connected modalities and their

integration is shown in Fig. 12.10.

The graphical user interface mainly encompasses the entire application itself and

as such, it is tightly connected to the application’s business core. The IM controls

the flow of events related to any interaction and informs the application of any new

event. Each time an event occurs in a modality, using speech, touch, or gestures, the

correspondent modality automatically sends a life cycle event notification to the

IM. When received, the event is processed in the IM and sent to the application

which may cause changes in the graphical user interface. It is noteworthy that from

its part, the application may also notify modalities (such as the speech synthesis),

through the IM, to output information to the user.

Regarding the usage of the application, it is possible to perform certain opera-

tions using complementary or redundant actions. For instance, in order to operate

AALFred’s main menu, it is possible to: (1) use touch to drag the content from one

side to the other; (2) use Kinect to scroll horizontally using swipe gestures; or

(3) use simple commands such as “left” or “right” through speech. These options

are shown in Fig. 12.11.

AALFred was the first application in which we made full use of the generic

speech modality and its automatic translation feature using grammars [13].

In addition to the automatic translation feature, speech support for AALFred

allows the users to use different sentences to produce the same result. For instance,

saying “my agenda” or “open agenda” produces the same output thus providing

diversity to the user and promoting a more natural interaction instead of a more

robotic interaction using fixed commands.

After project conclusion, a modality based in eye-tracking was developed and, as

it produced semantic information compatible with the existing modalities,

AALFred could be controlled by gaze without complex changes [34]. Also some

initial work was performed regarding fusion of this new modality with the speech

modality [35].

Fig. 12.10 Integration of AALFred with the Multimodal Framework. All interaction related

events are managed by the Interaction Manager

286 A. Teixeira et al.



12.3.2.5 Discussion

The decoupled nature of the architecture allowed the development of the modules

without having to concern with the complexity of modalities. At the end, by

following the proposed methodology, it is possible to use different modalities,

even modalities not considered during the first stages of the application

development.

Also, the framework simplified the work needed to support different languages,

on the speech modality, due to the automatic translation of grammars.

12.4 Conclusion

This chapter presents the overall characteristics of our W3C-based MMI architec-

ture, developed to serve multimodal application design and development in AAL

scenarios. These scenarios require that users are able to access systems and appli-

cations in different situations, using different devices, and the adopted MMI

architecture enables an easy and scalable solution to adapt to specificities of the

users, tasks, and environments.

The adopted multimodal framework enabled the creation of several multimodal

applications, for which two examples are provided. Reusing modalities was an

important factor, which decreased the development time for each of them, allowing

developers to focus on the features of the application and not worry much with the

interaction aspects. This result is a strong outcome in favor of our inclusion of a

basic set of generic modalities in the architecture, reducing one of the potential

barriers for adopting the W3C architecture.

The adoption of the W3C standards in the AAL context is also an important step

towards increasingly useful and open AAL solutions by addressing standardization,

which is pointed out as one of the key issues to tackle [18] to further develop the field.

The positive impact of adopting a standards-based, loosely coupled architecture is

that it also enables a faster response to technological evolution. For example, with the

Fig. 12.11 Interaction with the application AALFred is possible through different modalities that

can be used interchangeably

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 287



current low cost of eye-tracking technology, gaze interaction will surely be a

common feature in the near future that can easily be added, as a new modality, to

existing applications. One such example is our recent work on expanding AALFred

with a gaze modality [34, 35].

In line with the previous point, one of our visions for the use of the MMI

architecture in AAL encompasses its consideration in the increasingly prominent

IoT scenarios, with the different sensors and devices seen as modalities. These can

be interaction modalities, used directly, or passive modalities, used indirectly (e.g.,

a mood sensor providing data to adjust speech recognition or decide when to

present the user with a warning) or as means for providing context-awareness

(e.g., a sensor providing a “low ambient light” input to the environment). In this

scope, advances in the standardization of aspects such as discovery and registration

of modalities and synchronization among modalities (e.g., an avatar modality

synchronized with a speech output modality) are particularly relevant and will

further increase the applicability of the MMI architecture in AAL.

Finally, providing a basic set of generic modalities, shareable among different

devices, with many of their components running on the cloud, can also strongly

benefit the MMI user experience. In fact, considering their decoupled nature, these

modalities, e.g., the proposed generic speech modality, can be used independently

of the device operating system, or computational resources. Therefore, the modal-

ities, and the data processing associated with them, can be common among devices,

ensuring a uniform user experience. For example, the speech synthesizer for the

media center can be the same as the one used on the smartphone, or watch, and an

improvement on the synthesizer will automatically be propagated to all devices.

12.4.1 Future Work

Following on the positive outcomes of adopting the MMI architecture and propos-

ing generic modalities, there are several aspects that deserve further attention and

should serve as novel research goals. To allow full exploration of multimodality,

one of the key aspects we deem relevant to address in more detail is fusion and

fission. Although they have been addressed for the different applications presented

in this chapter, in our view we still lack a more systematic and versatile approach to

fusion and fission, namely regarding the best placement of these modules. Another

important aspect needing more work is the set of generic modalities that must be

expanded.

Acknowledgements The research was partially funded by IEETA Research Unit funding

(Incentivo/EEI/UI0127/2014), Marie Curie IAPP project IRIS (ref. 610986, FP7-PEOPLE-2013-

IAPP), project Smart Phones for Seniors (S4S), a QREN project (QREN 21541), co-funded by

COMPETE and FEDER, project PaeLIFE (AAL-08-1-2001-0001), and project AAL4ALL

(AAL/0015/2009).

The authors thank all W3C MMI recommendations contributors for their insightful and

inspiring approaches to MMI.

288 A. Teixeira et al.



References

1. Steg, H., Strese, H., Loroff, C., Hull, J., & Schmidt, S. (2006). Ambient assisted living–
European overview report, March 2006. EU Specific Support Action.

2. Kung, A., & Jean-Bart, B. (2010). Making AAL platforms a reality. Ambient Intelligence,
6439, Lecture Notes in Computer Science, 187–196.

3. Mikulecký, P., Lišková, T., Čech, P., & Bureš, V. (2009). Ambient intelligence perspectives:
Selected papers from the First International Ambient Intelligence Forum 2008. Amsterdam:

IOS Press.

4. Hämäläinen, A., Teixeira, A., Almeida, N., Meinedo, H., Fegyó, T., & Dias, M. S. (2015).

Multilingual speech recognition for the elderly: The AALFred personal life assistant. Pro-

ceedings of the 6th International Conference on Software Development and Technologies for

Enhancing Accessibility and Fighting Infoexclusion (DSAI 2015) June 10–12, 2015 Fraunho-

fer FIT, Sankt Augustin, Germany

5. Teixeira, A., Ferreira, F., Almeida, N., Silva, S., Rosa, A. F., Pereira, J. C., et al. (2016). Design

and development of Medication Assistant: older adults centred design to go beyond simple

medication reminders. Universal Access in the Information Society.
6. Jara, A. J., Zamora, M. A., & Skarmeta, A. F. G. (2011). An internet of things–based personal

device for diabetes therapy management in ambient assisted living (AAL). Personal and
Ubiquitous Computing, 15(4), 431–440.

7. Signoretti, A., Martins, A. I., Almeida, N., Vieira, D., Rosa, A. F., Costa, C. M. M., & Teixeira,

A. (2015). Trip 4 all: A gamified app to provide a new way to elderly people to travel. Procedia
Computer Science, 67, 301–311.

8. Li, R., Lu, B., & McDonald-Maier, K. D. (2015). Cognitive assisted living ambient system: A

survey. Digital Communications and Networks, 1(4), 229–252.
9. Dasios, A., Gavalas, D., Pantziou, G., & Konstantopoulos, C. (2015). Hands-on experiences in

deploying cost-effective ambient-assisted living systems. Sensors, 15(6), 14487–14512.
10. Blackman, S., Matlo, C., Bobrovitskiy, C., Waldoch, A., Fang, M. L., Jackson, P., Mihailidis,

A., Nygård, L., Astell, A., & Sixsmith, A. (2016). Ambient assisted living technologies for

aging well: A scoping review. Journal of Intelligent Systems, 25(1), 55–69.
11. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A

vision, architectural elements, and future directions. Future Generation Computer Systems, 29
(7), 1645–1660.

12. Feki, M. A., Kawsar, F., Boussard, M., & Trappeniers, L. (2013). The internet of things: The

next technological revolution. Computer (Long Beach California), 46(2), 24–25.
13. Gomes, B., Muniz, L., da Silva e Silva, F. J., Rı́os, L. E. T., & Endler, M. (2015). A

comprehensive cloud-based IoT software infrastructure for ambient assisted living. In 2015
International Conference on Cloud Technologies and Applications (CloudTech), pp. 1–8.

14. Moschetti, A., Fiorini, L., Aquilano, M., Cavallo, F., & Dario, P. (2014). Preliminary findings

of the AALIANCE2 ambient assisted living roadmap. In S. Longhi, P. Siciliano, M. Germani,

& A. Monteri�u (Eds.), Ambient assisted living: Italian forum 2013 (pp. 335–342). Cham:

Springer.

15. Teixeira, A. (2014). A critical analysis of speech-based interaction in healthcare robots:

Making a case for the increased use of speech in medical and assistive robots. In A. Neustein

(Ed.), Speech and automata in health care (pp. 1–29). Boston: De Gruyter.
16. Teixeira, A., Braga, D., Coelho, L., & Fonseca, A. (2009). Speech as the basic interface for

assistive technology. In International Conference on Software Development for Enhancing
Accessibility and Fighting Info-Exclusion. Lisbon: UTAD.

17. Wu, D., Cai, Y., & Guizani, M. (2015). Asynchronous flow scheduling for green ambient

assisted living communications. IEEE Communications Magazine, 53(1), 64–70.
18. Memon, M., Wagner, S. R., Pedersen, C. F., Beevi, F. H. A., & Hansen, F. O. (2014). Ambient

assisted living healthcare frameworks, platforms, standards, and quality attributes. Sensors, 14
(3), 4312–4341.

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 289



19. G€overcin, M., Meyer, S., Schellenbach, M., Steinhagen-Thiessen, E., Weiss, B., & Haesner,

M. (2016). SmartSenior@home: Acceptance of an integrated ambient assisted living system.

Results of a clinical field trial in 35 households. Informatics for Health and Social Care, 41(4),
430–447.

20. Teixeira, A., Almeida, N., Pereira, C., Silva, M. O., & Pereira, J. C. (2013). Serviços de

Suporte �a Interaç~ao Multimodal. In A. Teixeira, A. Queirós, & N. Rocha (Eds.), Laborat�orio
Vivo de Usabilidade (pp. 151–165). Portugal: ARC Publishing.

21. Teixeira, A., Pereira, C., e Silva, M. O., Pacheco, O., Neves, A., & Casimiro, J. (2011).

AdaptO—Adaptive multimodal output. In Proceedings of PECCS. Vila Moura, Algarve:

INSTICC.

22. Teixeira, A., Pereira, C., e Silva, M. O., Alvarelh~ao, J., Silva, A., Cerqueira, M., et al. (2013).

New telerehabilitation services for the elderly. In M. M. Cruz-Cunha (Ed.), Handbook of
research on ICTs for healthcare and social services: Developments and applications (pp. 109–
132). IGI Global, Hershey, Pennsylvania.

23. Johnston, M. (2009). Building multimodal applications with EMMA. In Proceedings of the
2009 International Conference on Multimodal Interfaces—ICMI-MLMI’09, Cambridge, MA,
USA (p. 47).

24. Baggia, P., Burnett, D. C., Carter, J., Dahl, D. A., McCobb, G., & Raggett, D. EMMA:

Extensible MultiModal Annotation markup language. W3C Recommendation. http://www.

w3.org/TR/emma/. Accessed 10 Feb 2009.

25. Dahl, D. A. (2013). The W3C multimodal architecture and interfaces standard. Journal on
Multimodal User Interfaces, 7(3), 171–182. doi:10.1007/s12193-013-0120-5.

26. Teixeira, A., Francisco, P., Almeida, N., Pereira, C., & Silva, S. (2014). Services to support use

and development of speech input for multilingual multimodal applications for mobile scenar-

ios. In The Ninth International Conference on Internet and Web Applications and Services
(ICIW 2014), Track WSSA—Web Services-based Systems and Applications. IARIA, Paris.

27. Almeida, N., Teixeira, A., Rosa, A. F., Braga, D., Freitas, J., Dias, M. S., et al. (2015). Giving

voices to multimodal applications. In M. Kurosu (Ed.), Human–computer interaction: Inter-
action technologies is a LNCS volume of the Proceedings of the 17th International Conference
HCI International Los Angeles, CA, USA, August 2–7, 2015 (pp. 273–283). Cham: Springer.

28. World Health Organization (2002). Active ageing: A policy framework. A contribution of the

World Health Organization to the Second United Nations World Assembly on Ageing,

Madrid, Spain, April 2002, WHO/NMH/NPH/02.8. http://www.who.int/ageing/publications/

active_ageing/en/

29. Kairy, D., & Lehoux, P. (2009). A systematic review of clinical outcomes, clinical process,

healthcare utilization and costs associated with telerehabilitation. Disability and Rehabilita-
tion, 31(6), 427–447.

30. Burdea, G. (2002). Keynote address: Virtual rehabilitation-benefits and challenges. In 1st
International Workshop on Virtual Reality Rehabilitation (Mental Health, Neurological,
Physical, Vocational) VRMHR, Lausanne, Switzerland (pp. 1–11). Vila Moura, Algarve,

INSTICC Portugal.

31. Siegel, C., Hochgatterer, A., & Dorner, T. E. (2014). Contributions of ambient assisted living

for health and quality of life in the elderly and care services—a qualitative analysis from the

experts’ perspective of care service professionals. BMC Geriatrics, 14(1), 112.
32. Teixeira, A., Pereira, C., Oliveira e Silva, M., Almeida, N., Pinto, J., Teixeira, C., et al. (2012).

Health@home scenario: Creating a new support system for home telerehabilitation. In Pro-
ceedings of the 2nd International Living Usability Lab Workshop on AAL Latest Solutions,
Trends and Applications, AAL 2012, in Conjunction with BIOSTEC 2012 (pp. 37–47).

INSTICC: Vila Moura.

33. Pereira, C., Almeida, N., Martins, A. I., Silva, S., Rosa, A. F., Silva, M. O., et al. (2015).

Evaluation of complex distributed multimodal applications evaluating a telerehabilitation

system when it really matters. In J. Zhou & G. Salvendy (Eds.), Human aspects of IT for the
aged population: Design for everyday life (part II) (Proceedings of the 1st International

290 A. Teixeira et al.

http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma/
http://dx.doi.org/10.1007/s12193-013-0120-5


Conference on Human Aspects of IT for the Aged Population, part of HCI International 2015).

Los Angeles, CA: Springer. published as LNCS volume 9194.

34. Vieira, D. (2015). Enhanced multimodal interaction framework and applications. Master

thesis, Universidade de Aveiro, Aveiro.

35. Vieira, D., Freitas, J. D., Acartürk, C., Teixeira, A., Sousa, L., Silva, S., et al. (2015). Read that
article: Exploring synergies between gaze and speech interaction. In Proceedings of the 17th
International ACM SIGACCESS Conference on Computers and Accessibility (pp. 341–342).

New York, NY.

12 Applications of the Multimodal Interaction Architecture in Ambient. . . 291



Part III

Applications



Chapter 13

Assembling the Jigsaw: How Multiple Open
Standards Are Synergistically Combined
in the HALEF Multimodal Dialog System

Vikram Ramanarayanan, David Suendermann-Oeft, Patrick Lange,
Robert Mundkowsky, Alexei V. Ivanov, Zhou Yu, Yao Qian,

and Keelan Evanini

Abstract As dialog systems become increasingly multimodal and distributed in

nature with advances in technology and computing power, they become that much

more complicated to design and implement. However, open industry and W3C

standards provide a silver lining here, allowing the distributed design of different

components that are nonetheless compliant with each other. In this chapter we

examine how an open-source, modular, multimodal dialog system—HALEF—can

be seamlessly assembled, much like a jigsaw puzzle, by putting together multiple

distributed components that are compliant with the W3C recommendations or other

open industry standards. We highlight the specific standards that HALEF currently

uses along with a perspective on other useful standards that could be included in the

future. HALEF has an open codebase to encourage progressive community contri-

bution and a common standard testbed for multimodal dialog system development

and benchmarking.

13.1 Introduction

Dialog systems nowadays are becoming increasingly multimodal. In other words,

dialog applications, which started off mostly based on voice and text [15], have

increasingly started to encompass other input–output (I/O) modalities such as

V. Ramanarayanan (*) • D. Suendermann-Oeft • P. Lange • A.V. Ivanov • Y. Qian

Educational Testing Service (ETS) R&D, San Francisco, CA, USA

e-mail: vramanarayanan@ets.org

R. Mundkowsky • K. Evanini

Educational Testing Service (ETS) R&D, Princeton, NJ, USA

Z. Yu

Carnegie Mellon University, Pittsburgh, PA, USA

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_13

295

mailto:vramanarayanan@ets.org


video [3], gesture [3, 17], electronic ink [10, 11], avatars or virtual agents [6, 25, 26],

and even embodied agents such as robots [7, 29], among others. While the integration

of such technologies provides a more immersive and natural experience for the users

and enables an analysis of their non-verbal behaviors, it also makes the design of such

multimodal dialog systems more complicated. This is because, among other things,

one needs to ensure a seamless user experience without any reduction in quality of

service—this includes issues such as latency, accuracy, and sensitivity—while

transporting data between each of these multimodal (and possibly disparate) I/O

endpoints and the dialog system. In addition, dialog systems consist of multiple

subsystems; for example, automatic speech recognizers (ASRs), spoken language

understanding (SLU) modules, dialog managers (DMs), and speech synthesizers,

among others, interacting synergistically and often in real-time. Each of these sub-

systems is complex and brings with it design challenges and open research questions in

its own right. As a result, development of such multi-component systems that are

capable of handling a large number of calls is typically done by large industrial

companies and a handful of academic research labs since they require individual

maintenance of multiple individual subsystems [5]. In such scenarios, it is essential

to have industry-standard protocols and specification languages that ensure interoper-

ability and compatibility of different services, irrespective of who designed them or

how they were implemented. Designing systems that adhere to such standards also

allow generalization and accessibility of contributions from a large number of devel-

opers across the globe.

The popularity of commercial telephony-based spoken dialog systems—also

known as interactive voice response (IVR) systems—especially in automating

customer service transactions in the late 1990s, drove industry developers to start

working on standards for such systems [18]. As a core component of an IVR, the

voice browser, essentially responsible for interpreting the dialog flow while simul-

taneously orchestrating all the necessary resources such as speech recognition,

synthesis, and telephony, was one of the early components subject to standardiza-

tion resulting in the VoiceXML standard dating back to 19991 (see Sect. 13.4.1.1

for more details on VoiceXML). Since the vast majority of authors responsible for

creating standards such as VoiceXML come from the industry, most

implementations of spoken dialog systems adhering to these standards are com-

mercial, proprietary, and closed-source applications. Examples of voice browser

implementations include

• Voxeo Prophecy2

• TellMe Studio3

• Plum DEV4

1http://www.w3.org/TR/2000/NOTE-voicexml-20000505.
2https://voxeo.com/prophecy/.
3https://studio.tellme.com/.
4http://www.plumvoice.com/products/plum-d-e-v/.

296 V. Ramanarayanan et al.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505
https://voxeo.com/prophecy/
https://studio.tellme.com/
http://www.plumvoice.com/products/plum-d-e-v/


• Cisco Unified Customer Voice Portal5

• Avaya Voice Portal6

In addition to over 20 commercial closed-source voice browsers,7 we are aware

of a single open-source implementation that has been actively developed over the

past few years:

• JVoiceXML.8

We adopted this voice browser for the creation of the multimodal spoken dialog

system HALEF (Help Assistant–Language-Enabled and Free), which serves as an

example of a standards-based architecture in this chapter.

Note that in addition to industrial implementations of spoken and multimodal

dialog systems, there exists an active academic community engaging in research on

such systems. Prominent examples include

• CMU’s Olympus [4]

• Alex,9 by the Charles University in Prague [12]

• InproTK,10 an incremental spoken dialog system

• OpenDial11

• the Virtual Human Toolkit [9]

• Metalogue,12 a multimodal dialog system

• IrisTK,13 a multimodal dialog system

Many of these examples, along with other (multimodal) dialog systems devel-

oped by the academic community, are built around very specific research objec-

tives. For example, Metalogue provides a multimodal agent with metacognitive

capabilities; InproTK was developed mainly for investigating the impact of incre-

mental speech processing on the naturalness of human–machine conversations;

OpenDial allows one to compare the traditional MDP/POMDP14 dialog manage-

ment paradigm with structured probabilistic modelling [14]. Due to their particular

foci, they often use special architectures, interfaces, and languages paying little

attention to existing speech and multimodal standards (e.g., see the discussions

in [2]). For example, none of the above research systems implements VoiceXML,

MRCP, or EMMA (see Sect. 13.4 for more details on these standards).

5http://www.cisco.com/c/en/us/products/customer-collaboration/unified-customer-voice-portal.
6https://support.avaya.com/products/P0979/voice-portal.
7Find a comprehensive list at https://www.w3.org/Voice/voice-implementations.html.
8https://github.com/JVoiceXML/JVoiceXML.
9https://github.com/UFAL-DSG/alex.
10https://bitbucket.org/inpro/inprotk.
11http://www.opendial-toolkit.net.
12http://www.metalogue.eu.
13http://www.iristk.net.
14Partially Observable Markov Decision Processes.

13 Assembling the Jigsaw. . . 297

http://www.cisco.com/c/en/us/products/customer-collaboration/unified-customer-voice-portal
https://support.avaya.com/products/P0979/voice-portal
https://www.w3.org/Voice/voice-implementations.html
https://github.com/JVoiceXML/JVoiceXML
https://github.com/UFAL-DSG/alex
https://bitbucket.org/inpro/inprotk
http://www.opendial-toolkit.net
http://www.metalogue.eu
http://www.iristk.net


In this chapter, we describe a system that was designed to bridge the gap between

the industrial demand for standardization and the openness, community engage-

ment, and extensibility required by the scientific community. This system, HALEF,

is an open-source cloud-based multimodal dialog system that can be used with

different plug-and-play back-end application modules [21, 24, 30]. In the following

sections, we will first describe the overall architecture of HALEF (Sect. 13.2)

including its operational flow explaining how multimodal interactions are carried

out (in Sect. 13.3). We will then review major components of multimodal dialog

systems that have previously been subject to intensive standardization activity by

the international community and discuss to what extent these standards are cur-

rently reflected (or are planned in the future) in the HALEF framework. These

include

• standards for dialog specification describing system prompts, use of speech

recognition and interpretation, telephony functions, routing logic, etc. (primarily

VoiceXML), see Sect. 13.4.1.1 (also see [1]);

• standards controlling properties of the speech recognizer, primarily grammars,

statistical language models, and semantic interpretation (e.g., JSGF, ARPA,

WFST), see Sect. 13.4.1.2;

• standards controlling properties of the speech synthesizer (primarily SSML);

• standards controlling the communication between the components of the mul-

timodal dialog system (SIP, MRCPv2, WebRTC, EMMA), see Sect. 13.4.2;

• standards describing the dialog flow and how modalities interact (SCXML,

EMMA), see Sect. 13.5.

13.2 The HALEF Dialog System

The multimodal HALEF framework [21, 24, 30] is composed of the following

distributed open-source modules (see Fig. 13.1 for a schematic overview):

• Telephony servers—Asterisk [28] and Freeswitch [16]—that are compatible

with SIP (Session Initiation Protocol), PSTN (Public Switched Telephone Net-

work) and WebRTC (Web Real-Time Communications) standards, and include

support for voice and video communication.

• A voice browser—JVoiceXML [22]—that is compatible with VoiceXML 2.1,

can process SIP traffic, via a voice browser interface called Zanzibar [20] and

incorporates support for multiple grammar standards such as JSGF (Java Speech

Grammar Format), ARPA (Advanced Research Projects Agency), and WFST

(Weighted Finite State Transducer), which are described in Sect. 13.4.1.2.

• An MRCPv2 (Media Resource Control Protocol Version 2) speech server—

which allows the voice browser to control media processing resources such as

speech recorders, speech recognizers, or speech synthesizers over the network. It

relies on other protocols such as SIP for session handling, RTP (Real-time

Transport Protocol) for media streaming, and SDP (Session Description

298 V. Ramanarayanan et al.



Protocol) to allow the exchange of other capabilities such as supported codecs

over the network. HALEF supports multiple speech recognizers (Sphinx [13],

Kaldi [19]) and synthesizers (Mary [23], Festival [27]).

• A webserver—Apache Tomcat15 that can host web applications that serve

dynamic VoiceXML pages, web services, as well as media libraries containing

grammars and audio files.

• OpenVXML, a voice application authoring suite that generates dynamic web

applications that can be housed on the web server (also see Sect. 13.4.1.1).

• A MySQL16 database server for storing call log information. All modules in

HALEF connect to the database and write their log messages to it. We then post-

process this information with stored procedures into easily accessible views.

• A custom-developed, open-source Speech Transcription, Annotation and Rating

(STAR) portal that we implemented using PHP and the JavaScript framework

jQuery. The portal allows one to analyze, listen to (or watch) full-call (video)

recordings, transcribe them, rate them on a variety of dimensions such as caller

experience and latency, and perform various semantic annotation tasks required to

train automatic speech recognition and spoken language understanding modules.

STAR (SPEECH 
TRANSCRIPTION, 
ANNOTATION & 

RATING) 

PORTAL

MAIN 
TELEPHONY 
SERVER & 

PBX (ASTERISK)

JVoiceXML

Zanzibar

CAIRO 
(MRCP server)

SPHINX (ASR)

APACHE

VXML, JSGF, ARPA, 
WFST, WAV

SPEECH SERVER WEB SERVER

VOICE BROWSER

FESTIVAL
(TTS)

MARY (TTS)

HTTP
MRCP(v2)

SIP

SIP

SIP

RTP 
(audio)

HTTP
KALDI

(ASR)
SERVER

TCP

WebRTC
Verto

LOGGING 
DATABASE

(MySQL)

VIDEO 
TELEPHONY 

SERVER
(FREESWITCH)

SIP

RTP 

SPEECHRATER (SPEECH SCORING) 
BACK-END 
MODULES SPEAKER VERIFICATION

MULTIMODAL ASSESSMENT

SFTP

HTTP

HTTP

Amazon 
Elastic 

Compute 
Cloud 
(EC2)

Fig. 13.1 System architecture of the HALEF spoken dialog system depicting the various modular

open-source components as well as W3C standard protocols that are employed

15http://tomcat.apache.org/.
16https://www.mysql.com/.

13 Assembling the Jigsaw. . . 299

http://tomcat.apache.org/
https://www.mysql.com/


• A custom-developed interactive dashboard written in R that allows one to view a

variety of key performance indicators, including completion rate, latency, busy

rate, etc.

We will illustrate the basic architecture and components of the HALEF spoken

dialog system using an example application that is currently deployed in the

educational domain. Finally we will conclude with a discussion of ongoing and

future research and development into the system, including potential support for

additional W3C standards such as EMMA (Extensible Multimodal Annotation),

SSML (Speech Synthesis Markup Language), EmotionML (Emotion Markup Lan-

guage), and SCXML (State Chart XML).

13.3 Operational Flow Schematic

In this section we describe how video and audio data flow to/from the multimodal

HALEF system. In case of regular PSTN telephony, users call into a phone number

which connects them to the telephony server in the cloud where they need to

provide an extension to connect to (different extensions are associated with differ-

ent dialog system instances that in turn have different task content). Alternatively,

users can use softphones (or SIP phones) to connect directly to the IP address of the

cloud-based telephony server using the extension. Even more convenient is the use

of a web application to call directly out of a web browser application on either a

computer, smartphone or tablet device. Here, the only information required by the

user is the URL of the website containing the connection configuration (which

includes the telephony server IP address and the extension). The Media Capture and

Streams API17 enables access to the computer’s audio and video input devices via

the web browser. WebRTC18 is then used via a Javascript implementation to send

video and audio to FreeSWITCH and receive audio back from FreeSWITCH.When

the call comes in from the user, HALEF starts the dialog with an audio prompt that

flows out of the HALEF system via Asterisk over SIP/RTP to FreeSWITCH.

FreeSWITCH then sends the audio to the web browser via WebRTC. The user

then gives a response to the system that flows through WebRTC to FreeSWITCH

and then through SIP/RTP to Asterisk. During the teleconference, the user’s video
and audio interactions are continuously streamed and recorded.

Once the Asterisk server receives the call, it sends a notification to the voice

browser to fetch the VXML code from the web server. The voice browser in turn

identifies the resources that the speech server will need to prepare for this applica-

tion. It then notifies the MRCPv2 server and starts sessions and channels for all

required resources including the provisioning of speech recognition grammars.

17https://www.w3.org/TR/mediacapture-streams.
18http://www.w3.org/TR/webrtc/.

300 V. Ramanarayanan et al.

https://www.w3.org/TR/mediacapture-streams
http://www.w3.org/TR/webrtc/


Finally, the speech server sends a SIP response back to the voice browser and

Asterisk to confirm session initiation. Completion of this process successfully

establishes a communication channel between the user and HALEF’s components.

Once the session is established, Asterisk streams audio via RTP to the speech

server. When the caller starts speaking, the Sphinx engine’s voice activity detector

fires and identifies speech portions; then, the speech is sent to the ASR engine

(HALEF supports both Kaldi and Sphinx) which starts the decoding process. When

the voice activity detector finds that the caller has finished speaking, the recognition

result is sent back to the voice browser, which processes it and sends this answer to

the spoken language understanding module. The output of the natural language

understanding module is subsequently sent to the dialog manager which evaluates

and generates VXML code with the final response to be spoken out by the speech

synthesizer (either Festival or Mary). The voice browser then interprets this VXML

code and sends a synthesis request to the speech server with the response. The

speech synthesizer synthesizes the response and passes the result back via RTP to

Asterisk, which forwards the audio signal to the user. At the same time, Cairo sends

a confirmation signal to the voice browser. After receiving this signal, the voice

browser sends a cleanup request to close all open channels and resources. This ends

the SIP session with Asterisk, which finally triggers Asterisk to send an end-of-call

signal to the user.

There are other endpoints that are supported or likely can be supported by

HALEF. An endpoint is defined as a device at the edge of the network (e.g., a

telephone or a soft phone). Note that HALEF also natively supports audio-only

dialogs with PSTN (public switched telephone network) or soft phone endpoints

(that, for example, can use PSTN/SIP proxies such as ipKall).19 We have success-

fully tested and used SIP clients for this purpose such as Peers20 for PC and 3XC21

for smartphones. We have also used SIP over WebRTC, and SIP/WebRTC clients

such as sipml5,22 jssip,23 etc. to connect to HALEF directly through Asterisk as

well as via webrtc2sip24 to Asterisk.

13.4 Standards Used in HALEF

The following section examines in more detail how different specific industry

standard specifications are synergistically combined within the HALEF multimodal

dialog framework. Since HALEF is primarily a spoken dialog system, we first

19http://www.ipkall.com/.
20http://peers.sourceforge.net/.
21http://www.3cx.com/voip/sip-phone/.
22https://www.doubango.org/sipml5/.
23http://www.jssip.net/.
24http://webrtc2sip.org/.

13 Assembling the Jigsaw. . . 301

http://www.ipkall.com/
http://peers.sourceforge.net/
http://www.3cx.com/voip/sip-phone/
https://www.doubango.org/sipml5/
http://www.jssip.net/
http://webrtc2sip.org/


examine the key voice standards used in its operation. We then describe the various

communication standards used to transport voice and video data across different

components of the dialog system.

13.4.1 Voice Standards

13.4.1.1 VoiceXML

The origins of VoiceXML25 began in 1995 as an XML-based dialog design language

intended to simplify the speech recognition application development process within

anAT&T project called PhoneMarkup Language (PML). VoiceXMLorVXMLwas

designed for creating audio dialogs that feature synthesized speech, digitized audio,

recognition of spoken and DTMF key input, recording of spoken input, telephony,

and mixed initiative conversations. It was conceived to integrate the advantages of

web-based development and content delivery into interactive voice response appli-

cations. The code listing below shows an example VXML page as used by HALEF.

This example VXML page illustrates how various system parameters can be spec-

ified, such as the timeout value of 3 s specified in the timeout variable. Also, this

example shows several of the components required for the interactive conversation,

such as the system prompt (a prerecorded audio file, in this case) specified in the

<prompt> element and the grammar file (see Sect. 13.4.1.2) that controls which user

utterances can be recognized by the ASR system.

<vxml version¼"2.1">
<form id¼"InputRequestForm" scope¼"document">
<field name¼"A_try_peanuts">
<property name¼"bargein" value¼"true"/>
<property name¼"timeout" value¼"3s"/>
<property name¼"confidencelevel" value¼"0.5"/>
<property name¼"sensitivity" value¼"0.5"/>
<property name¼"speedvsaccuracy" value¼"0.5"/>
<property name¼"completetimeout" value¼"3s"/>
<property name¼"incompletetimeout" value¼"3s"/>
<property name¼"maxspeechtimeout" value¼"10s"/>
<property name¼"inputmodes" value¼"voice"/>
<property name¼"com.telera.speechenabled" value¼"true"/>
<prompt bargein¼"true" xml:lang¼"en-US">
<audio

src¼"/7703/-/resources/EPS_Builder_Voice/Default/peanuts_offer.wav"/>
</prompt>
<grammar mode¼"voice" type¼"application/srgs+xml"

src¼"/7703/-/resources/EPS_Builder_Voice/Default/try_peanuts.
gram"/>

<filled>

25http://www.w3.org/TR/voicexml20/.

302 V. Ramanarayanan et al.

http://www.w3.org/TR/voicexml20/


<var name¼"lastresult" expr¼"’<lastresult>’"/>
<submit

next¼"/7703/-/next?Action_216121ee52ce43378ca2e014b92f71b4¼
success.filled"
method¼"post" namelist¼"A_try_peanuts last result"/>

</filled>
<noinput></noinput>
<nomatch></nomatch>
<catch event¼"connection.disconnect.hangup"></catch>
</field>

<catch event¼"externalmessage.cpa.machine"></catch>
<catch event¼"externalmessage.cpa.beep"></catch>
<catch event¼"externalmessage.cpa.machine"></catch>
</form>
<catch event¼"connection.disconnect.hangup"></catch>
</vxml>

However, developers of dialog applications who are not familiar with the VXML

markup language may prefer to define dialog flows using a simpler, flowchart-based

GUI instead of manual coding. Therefore we have integrated the OpenVXML toolkit

into the HALEF framework. OpenVXML is an open-source software package26

written in Java that allows designers to author dialog workflows using an easy-to-use

graphical user interface, and is available as a plugin to the Eclipse IntegratedDeveloper

Environment.27 OpenVXML allows designers to specify the dialog workflow as a

flowchart, including details of specific grammar files to be used by the speech recog-

nizer and text-to-speech prompts that need to be synthesized. In addition, they can

insert “Script” blocks of Javascript code into the workflow that can be used to perform

simple processing steps, such as natural language understanding on the outputs of the

speech recognition. The entire workflow can be exported to a Web Archive (or WAR)

application, which can then be deployed on a web server running Apache Tomcat.

Figure 13.2 shows a simple OpenVXML dialog flow where callers are required to

accept or decline an offer of food in a pragmatically appropriate manner. This example

can be compared to the example VXML page shown in the earlier code listing to

illustrate the differences between designing a dialog directly using VXML or through

the OpenVXML authoring tool. The VXML code therein corresponds to the first block

in Fig. 13.2 in which a system prompt is played (“Would you like some of these

chocolate covered peanuts? . . .”) By double-clicking on this block in the OpenVXML

tool, the designer specifies the prompt that should be played or generated by the TTS

engine (as indicated in the <prompt> element in the VXML page), the grammar that

should be used to recognize the utterance by the ASR system (corresponding to the

<grammar> element in theVXMLpage), aswell as a variety of systemparameters, such

as the timeout variable. This GUI-based representation in OpenVXML is then trans-

lated into VXML pages at run-time so that it can be interpreted by the voice browser.

26https://github.com/OpenMethods/OpenVXML.
27www.eclipse.org.

13 Assembling the Jigsaw. . . 303

https://github.com/OpenMethods/OpenVXML
http://www.eclipse.org


The aforementioned item was designed to measure two primary constructs of

English language proficiency: (1) task comprehension, i.e., correctly understanding

the stimulus material and the questions being asked and (2) pragmatic appropriate-

ness, i.e., the ability to provide a response that is appropriate to the task and the

communicative context. The caller dials into the system and then proceeds to

answer one or more questions, which can either be stored for later analysis (so no

online recognition and natural language understanding is needed) or processed in

the following manner: depending on the semantic class of the callers’ answer to
each question (as determined by the output of the speech recognizer and the natural

language understanding module), they are redirected to the appropriate branch of

the dialog tree and the conversation continues until all such questions are answered.

13.4.1.2 Voice Grammar and Language Model Standards

Grammars are used by speech recognizers to determine what a speech recognizer

should listen for, and so describe the utterances a user may say. This section

describes the standard grammar formats (JGSF, ARPA, WFST, and SRGS) in use

by the spoken dialog community. Note that while currently HALEF only includes

support for the first three, we plan to include support for this in the future.

1. JGSF:
The JSpeech Grammar Format (JSGF28) is a platform- and vendor-independent

textual representation of grammars for use in ASR. It adopts the style and

Contin Continue ontinue

POSITIVE_APPROPRIATE

POSITIVE_INAPPROPRIATE

NEGATIVE_APPROPRIATE

NEGATIVE_INAPPROPRIATE

Continue

Continue

Continue

NO_MATCHContinue

Begin

Would you like
some of these
chocolate covered
peanuts? I always
leave them on the
desk here for
everyone to enjoy.

try_peanuts.script Branch

Return

You're welcome.

Okay.

No problem. If you
change your mind,
feel free to stop by
my desk anytime.

Oh, okay.

I'm sorry, I didn't
catch that.  Would
you like some of
these chocolate
covered peanuts?

Fig. 13.2 Example design of a workplace pragmatics-oriented application targeted at non-native

speakers of English where the caller has to accept or decline an offer of food (peanuts, in this case)

in a pragmatically appropriate manner

28JSGF (see http://www.w3.org/TR/jsgf/) is technically not a W3C standard. It is a member

submission and is published as a W3C note.

304 V. Ramanarayanan et al.

http://www.w3.org/TR/jsgf/


conventions of the Java Programming Language in addition to use of traditional

grammar notations. For example, the following JSGF grammar accepts one of

two speech recognition outputs, “yes” or “no.”

#JSGF V1.0;
grammar yesno;
public <yesno> ¼ yes | no;

2. ARPA:
Although not a W3C recommendation, the Advanced Research Projects Agency

(ARPA) format was one of the first popular ones that allowed specification of

statistical grammars (also called language models or LMs) such as finite state

automata (FSA) or statistical n-gram models. The language model is a list of

possible word sequences. Each sequence listed has an associated statistically

estimated language probability tagged to it. The following listing shows an

example of a yes/no ARPA grammar.

This is an example ARPA-format language model file
\data\
ngram 1¼4
ngram 2¼4
ngram 3¼4

\1-grams:
-0.7782 </s> -0.1761
-0.3010 <s> -0.5228
-0.7782 no -0.3978
-0.7782 yes 0.0000

\2-grams:
-0.1761 </s> <s> -0.0791
-0.3978 <s> no 0.1761
-0.3978 <s> yes -0.2217
-0.1761 no </s> 0.1761

\3-grams:
-0.3010 </s> <s> yes
-0.3010 <s> no </s>
-0.3010 <s> yes </s>
-0.3010 no </s> <s>

\end\

3. WFST:
Speech and dialog system developers nowadays are increasingly moving to the

Weighted Finite State Transducer (WFST) representation to write statistical

grammars for their applications owing to its simplicity and power, even though

it is not an official W3C recommendation. WFSTs are automata where each

transition has an input label, an output label, and a weight. The weights can be

used to represent the cost of taking a particular transition. The following shows an

example of aWFST grammar (in text form) that accepts the words “yes” or “no.”

13 Assembling the Jigsaw. . . 305



# arc format: src dest ilabel olabel [weight]
# final state format: state [weight]
# lines may occur in any order except initial state must be first line
#unspecifiedweightsdefaultto0.0(forthelibrary-defaultWeighttype)
0 1 yes yes 0.5
0 1 no no 1.5
1 2.0
EOF

4. SRGS:
The Speech Recognition Grammar Specification (SRGS29) allows the grammar

syntax to be written in one of two forms—an Augmented Backus-Naur Form

(ABNF) or an Extensible Markup Language (XML) form—which are semanti-

cally mappable to allow transformations between themselves. Note that although

the current version of HALEF does not include support for SRGS grammars, we

plan to include this in the future. The following code snippet shows how a yes/no

grammar can be defined in the ABNF format of SRGS.

#ABNF 1.0 UTF-8;
language en-US; //use the American English pronunciation dictionary.
mode voice; //the input for this grammar will be spoken words.
root $yesorno;
$yes ¼ yes;
$no ¼ no;
$yesorno ¼ $yes | $no;

13.4.2 Communication Standards

WebRTC30 or Web Real-Time Communication is a free, open W3C project that

provides browsers and mobile applications with Real-Time Communications

(RTC) capabilities via simple APIs. It defines a set of ECMAScript APIs in

WebIDL to allow media to be sent to and received from another browser or device

implementing the appropriate set of real-time protocols. As explained earlier,

HALEF leverages the Verto protocol implemented in the Freeswitch video tele-

phony server that is WebRTC-based to transmit video and audio data between the

user and the dialog system.

The Media Resource Control Protocol Version 2 (MRCPv2) is a standard

communication protocol for speech resources (such as speech recognition engines,

speech synthesis engines, etc.) across VoIP networks which is designed to allow a

client device to control media processing resources on the network.

29http://www.w3.org/TR/speech-grammar/.
30See http://www.w3.org/TR/webrtc/ and https://webrtc.org/.

306 V. Ramanarayanan et al.

http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/webrtc/
https://webrtc.org/


13.5 Other Useful Standards for Multimodal
Dialog Systems

There are several other useful standards that we are exploring for potential future

integration into the HALEF framework. This section takes a closer look at some of

these standards.

13.5.1 EMMA

The Extensible MultiModal Annotation (EMMA31) markup language is intended

for use by systems that provide semantic interpretations for a variety of inputs,

including but not necessarily limited to speech, natural language text, GUI, and ink

input. The language is focused on annotating single inputs from users, which may

be either from a single mode or a composite input combining information from

multiple modes, as opposed to information that might have been collected over

multiple turns of a dialog. The language provides a set of elements and attributes

that are focused on enabling annotations on user inputs and interpretations of those

inputs. EMMA would be a very useful standard to integrate into the HALEF

framework given the focus on multimodal dialog, and hence this is one standard

we are looking to include support for in HALEF going forward.

13.5.2 EmotionML

Emotion Markup Language or EmotionML,32 as the name suggests, is “intended to

be a standard specification for processing emotions in applications such as: (1) man-

ual annotation of data; (2) automatic recognition of emotion-related states from user

behavior; and (3) generation of emotion-related system behavior.” Given the

importance and ubiquity of emotions in dialog interactions and the subsequent

requirement for automated analysis and processing of emotional state data, devel-

oping systems that are compatible with EmotionML would extend the accessibility

and generalizability of those systems.

31http://www.w3.org/TR/emma.
32https://www.w3.org/TR/emotionml/.

13 Assembling the Jigsaw. . . 307

http://www.w3.org/TR/emma
https://www.w3.org/TR/emotionml/


13.5.3 SCXML

State Chart XML (SCXML33) is, according to the spec, “a general-purpose event-

based state machine language that combines concepts from Call Control eXtensible

Markup Language (CCXML) and Harel State Tables.” CCXML34 is “an event-

based state machine language designed to support call control features in Voice

Applications (including, but not limited to, VXML). The CCXML 1.0 specification

defines both a state machine and event handing syntax and a standardized set of call

control elements.” Harel State Tables are a state machine notation that was devel-

oped by the mathematician David Harel [8]. They offer a clean and well-thought

out semantics for sophisticated constructs such as parallel states. Although we do

not require an additional state machine language as such in the current version of

HALEF for smooth function, including support for SCXML in HALEF would lead

to an expanded and more versatile dialog functionality, allowing one to specify

dialog trees as generic state machines.

13.5.4 SSML

SSML, or Speech Synthesis Markup Language,35 is an XML-based markup lan-

guage that provides users with a standardized method for controlling different

aspects of the speech output generated by a text-to-speech synthesizer. SSML

allows one to alter prosody attributes such as rate, pitch, and volume. It also

includes support for inserting pauses of any length, changing the speaking voice

while reading, and controlling many other aspects of how the text is read by the

synthetic voice.

13.6 Conclusions and Outlook

We have presented the current state of the art of the HALEF system—a fully open-

source, modular, and standards-compliant spoken dialog system that can be

interfaced with a number of potential back-end applications. We have illustrated

the various open and W3C recommendations such as VoiceXML, WebRTC, and

MRCPv2, among others, associated with different parts of the HALEF operational

flow, demonstrating how these help in seamlessly assembling multiple components

into a fully functional multimodal dialog system. The HALEF sourcecode is open-

source and accessible online.36

33https://www.w3.org/TR/scxml/.
34https://www.w3.org/TR/ccxml/.
35https://www.w3.org/TR/speech-synthesis/.
36http://halef.org.

308 V. Ramanarayanan et al.

https://www.w3.org/TR/scxml/
https://www.w3.org/TR/ccxml/
https://www.w3.org/TR/speech-synthesis/
http://halef.org


There remain many exciting directions for future research and development. For

instance, the current HALEF implementation allows for audio and video input from

the user and can synthesize output audio, but does not support full-fledged multi-

modal synthesis. In the future we would like to be able to incorporate support for

video and emotion generation, as well as the control of avatars and simulations.

Additionally, we would like to incorporate W3C recommendations such as EMMA

and EmotionML into the HALEF architecture.

References

1. Baggia, P., Burnett, D., Marchand, R., & Matula, V. (2016, to appear). The role and impor-

tance of speech standards. In Multimodal interaction with W3C standards: Towards natural
user interfaces to everything. Springer.

2. Baumann, T., Buß, O., & Schlangen, D. (2010). Inprotk in action: Open-source software for
building German-speaking incremental spoken dialogue systems. Fachbereich Informatik:

Hamburg.

3. Bohus, D., & Horvitz, E. (2010). Facilitating multiparty dialog with gaze, gesture, and speech.

In International Conference on Multimodal Interfaces and the Workshop onMachine Learning
for Multimodal Interaction (ICMI-MLMI’10), November 8–12, 2010, Beijing, China (p. 5).

ACM.

4. Bohus, D., Raux, A., Harris, T., Eskenazi, M., & Rudnicky, A.: Olympus: An open-source

framework for conversational spoken language interface research. In Proceedings of the
HLT-NAACL, Rochester (2007).

5. Damnati, G., Béchet, F., & De Mori, R. (2007). Experiments on the France telecom 3000 voice

agency corpus: Academic research on an industrial spoken dialog system. In Proceedings of
the Workshop on Bridging the Gap: Academic and Industrial Research in Dialog Technolo-
gies, NAACL-HLT, Rochester, NY, April 2007 (pp. 48–55). Association for Computational

Linguistics.

6. DeMara, R. F., Gonzalez, A. J., Jones, S., Johnson, A., Hung, V., Leon-Barth, C., et al. (2008).

Towards interactive training with an avatar-based human-computer interface. In The Interser-
vice Industry Training, Simulation & Education Conference, ITSEC (December 2008).
Citeseer.

7. Gorostiza, J. F., Barber, R., Khamis, A. M., Pacheco, M., Rivas, R., Corrales, A., et al. (2006).

Multimodal human-robot interaction framework for a personal robot. In The 15th IEEE
International Symposium on Robot and Human Interactive Communication, 2006. ROMAN
2006 (pp. 39–44). Hatfield, UK: IEEE.

8. Harel, D., & Politi, M. (1998). Modeling reactive systems with statecharts: The STATEMATE
approach. New York: McGraw-Hill, Inc.

9. Hartholt, A., Traum, D., Marsella, S.C., Shapiro, A., Stratou, G., Leuski, A., et al. (2013). All

together now. In Proceedings of the 13th International Conference on Intelligent Virtual
Agents, IVA 2013, Edinburgh, UK, August 29–31, 2013 (pp. 368–381). Berlin/Heidelberg:

Springer.

10. Hastie, H. W., Johnston, M., & Ehlen, P. (2002). Context-sensitive help for multimodal

dialogue. In Proceedings of the 4th IEEE International Conference on Multimodal Interfaces
(p. 93). Washington, DC, USA, IEEE Computer Society.

11. Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, P., Walker, M., et al. (2002).

Match: An architecture for multimodal dialogue systems. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics (ACL), Philadelphia, July 2002

(pp. 376–383).

13 Assembling the Jigsaw. . . 309



12. Jurčı́ček, F., Dušek, O., Plátek, O., & Žilka, L. (2014). Alex: A statistical dialogue systems

framework. In Proceedings of the 17th International Conference on Text, Speech and Dia-
logue, TSD 2014, Brno, Czech Republic, September 8–12, 2014 (pp. 587–594). Switzerland:

Springer.

13. Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., et al. (2003). The CMU

SPHINX-4 speech recognition system. In Proceedings of the ICASSP’03, Hong Kong, China.

14. Lison, P. (2013). Structured probabilistic modelling for dialogue management. Ph.D. thesis,
University of Oslo.

15. López-Cózar, R., Callejas, Z., Griol, D., & Quesada, J. F. (2015). Review of spoken dialogue

systems. Loquens, 1(2), e012.
16. Minessale, A., & Schreiber, D. (2012). FreeSWITCH Cookbook. Packt Publishing Ltd.

17. Neßelrath, R., & Alexandersson, J. (2009). A 3D gesture recognition system for multimodal

dialog systems. In 6th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue
Systems (pp. 46–51).

18. Pieraccini, R., & Huerta, J. (2005). Where do we go from here? Research and commercial

spoken dialog systems. In 6th SIGdial Workshop on Discourse and Dialogue.
19. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al. (2011). The

Kaldi speech recognition toolkit. In Proceedings of the ASRU, HI, USA.
20. Prylipko, D., Schnelle-Walka, D., Lord, S., & Wendemuth, A. (2011). Zanzibar openIVR: An

open-source framework for development of spoken dialog systems. In Proceedings of the TSD,
Pilsen, Czech Republic.

21. Ramanarayanan, V., Suendermann-Oeft, D., Ivanov, A., & Evanini, K. (2015). A distributed

cloud-based dialog system for conversational application development. In 16th Annual
SIGdial Meeting on Discourse and Dialogue (SIGDIAL 2015), Prague, Czech Republic.

22. Schnelle-Walka, D., Radomski, S., & Mühlhäuser, M. (2013). JVoiceXML as a modality

component in the W3C multimodal architecture. Journal on Multimodal User Interfaces 7(3),
183–194.

23. Schr€oder, M., & Trouvain, J. (2003). The German text-to-speech synthesis system MARY:

A tool for research, development and teaching. International Journal of Speech Technology,
6(4), 365–377.

24. Suendermann-Oeft, D., Ramanarayanan, V., Teckenbrock, M., Neutatz, F., & Schmidt,

D. (2015). HALEF: An open-source standard-compliant telephony-based modular spoken

dialog system—A review and an outlook. In Proceedings of the IWSDS Workshop 2015,
Busan, South Korea.

25. Swartout, W., Artstein, R., Forbell, E., Foutz, S., Lane, H.C., Lange, B., et al. (2013). Virtual

humans for learning. AI Magazine, 34(4), 13–30.
26. Swartout, W., Traum, D., Artstein, R., Noren, D., Debevec, P., Bronnenkant, K., et al. (2010).

Ada and grace: Toward realistic and engaging virtual museum guides. In Proceedings of the
10th International Conference on Intelligent Virtual Agents, IVA 2010, Philadelphia, PA,
USA, September 20–22, 2010. Lecture Notes in Computer Science (pp. 286–300).

Berlin/Heidelberg: Springer.

27. Taylor, P., Black, A., & Caley, R. (1998). The architecture of the festival speech synthesis

system. In Proceedings of the ESCA Workshop on Speech Synthesis, Jenolan Caves.

28. van Meggelen, J., Smith, J., & Madsen, L. (2009). Asterisk: The future of telephony. Sebas-
topol: O’Reilly.

29. Yu, Z., Bohus, D., & Horvitz, E. (2015). Incremental coordination: Attention-centric speech

production in a physically situated conversational agent. In 16th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (p. 402).

30. Yu, Z., Ramanarayanan, V., Mundkowsky, R., Lange, P., Ivanov, A., Black, A.W., et al.

(2016). Multimodal HALEF: An open-source modular web-based multimodal dialog frame-

work. In Proceedings of the IWSDS Workshop 2016, Saariselka, Finland.

310 V. Ramanarayanan et al.



Chapter 14

A Case Study of Audio Alignment
for Multimedia Language Learning:
Applications of SRGS and EMMA in Colibro
Publishing

Deborah A. Dahl and Brian Dooner

Abstract The synchronization of read-aloud audio and text in language learning is

a powerful reinforcement for learners at all levels. In order to provide this kind of

synchronized media experience, audio must be aligned with the text so that the

correct audio plays while the related text is being presented or highlighted. One

solution for aligning text and audio in this way is a manual process using an audio

editor, but this is time-consuming, expensive, and error-prone. A much faster and

less expensive alternative is automatic alignment through the use of speech recog-

nition. Since the text and the matching audio are known ahead of time, the speech

recognizer can perform this task with a very low error rate. Further enhancing

accuracy is the fact that read-aloud stories are typically recorded with careful

speech at a lower word-per-minute rate than is typical of conversational speech.

In Colibro Publishing’s approach, a Speech Recognition Grammar Specification

grammar is generated from the text and provided to a speech recognizer, which then

generates Extensible Multimodal Annotation output with the exact audio

timestamps for the beginning and end points of each sentence. The alignment is

then used in the interactive story production process so that the correct audio is

played with highlighted text.

D.A. Dahl (*)

Conversational Technologies, Plymouth Meeting, PA, USA

e-mail: dahl@conversational-technologies.com

B. Dooner

Colibro Publishing, Philadelphia, PA, USA

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_14

311

mailto:dahl@conversational-technologies.com


14.1 Introduction

Whether motivated by business, travel, entertainment, or simply general interest,

language learning is a large and growing industry. In the European Union alone

93% of secondary students are studying at least one foreign language and over 50%

are studying more than one foreign language [1]. Knowing a second language,

especially English, not only increases job options and opens up business opportu-

nities, but bilingual people even perform better on many tests of cognitive

ability [2].

Although many people study foreign languages in traditional classrooms, elec-

tronic and online tools are also becoming more widely available. This is especially

true when traditional classroom learning options are limited by the inability to find a

teacher for the language of interest, by restrictions on taking a class due to work or

family commitments, or for various other reasons. In those cases, e-learning is

sometimes the best option. Of course, e-learning can also supplement traditional

classroom instruction.

One well-recognized approach to language learning is reading for enjoyment,

also called Free Voluntary Reading [3, 4]. Not only is the learner motivated by the

desire to learn the new language, but also by the enjoyment of reading intrinsically

interesting material. However, reading can be frustrating if the material is above the

student’s level. Material that is too difficult interrupts the learner’s focus on the

reading material with too many trips to the dictionary and the grammar reference.

Bilingual texts can help the learner avoid these kinds of digressions, because the

meaning of the text in the learner’s native language is readily available.

Moreover, electronic bilingual texts open up a very exciting opportunity to add

multimedia to the bilingual reading experience. The learner cannot only see and

compare the text in both languages, but he/she can also hear it, spoken in a perfect

native accent. It is particularly helpful if the text and audio are synchronized so that

the corresponding text is highlighted when the audio is played. In this way the text

and speech continually reinforce each other as the learner moves through a story,

which has been shown to increase comprehension [5]. This was our goal in

developing the Colibro technology described in this chapter.

14.2 About Colibro Interactive, Bilingual Stories

Colibro publishes specialized, digital content and develops multimedia reading

technology for the global language learning market. With an emphasis on English

Language Learning or ELL, Colibro’s “recreational language learning” approach

enables students to thrive in a global, connected world with social intelligence and

sensitivity to different cultures.

Instead of focusing on grammar and vocabulary like more traditional language

learning solutions, Colibro’s content and technology is about reading and listening

312 D.A. Dahl and B. Dooner



to fun, engaging narratives presented in bite-size stories which are read aloud by a

native speaker. Colibro employs leveled text that is structured to best benefit a

second language learner at his or her current stage of second language acquisition.

Colibro enables “open learning,” so that mastering a new language can happen

anytime, anywhere. Colibro meets language learners where they are—at their level

and when they want it—in a fast-paced, global, mobile world.

This application is currently available for iPads in the iTunes store.

14.3 Efficient Alignment of Text and Audio

To provide the user experience of simultaneous text and audio, the text and audio

must be aligned during the process of preparing the story. There are several options

for alignment that can be considered:

1. The reader (or voice talent) could be asked to read the story one sentence at a

time, saving each sentence into a separate audio file. This would disrupt the

reading process for the voice talent and result in unnatural prosody.

2. Manual alignment of text and audio can be done using standard audio editors

such as Audacity, or specialized speech research editors. However, the manual

process is slow and error-prone, and is impractical for large quantities of text.

Given that manual approaches are impractical, we can look at approaches to

automatic alignment.

1. Simply searching for silences longer than some threshold in the audio and

assuming that they are sentence boundaries might be considered. However,

this strategy can result in errors both due to missing actual sentence boundaries

and to incorrectly assigning sentence boundaries to sentence-internal pauses.

Automatically quantifying what is meant by “silence” and “length” is also

problematic, since these will differ between recordings, and even between

different utterances in the same recording.

2. Forced alignment of text and audio with a phonetic speech recognizer is an

approach commonly used in speech research, but this capability is complex to

implement and is available only in research systems. In our case, a requirement

for this product was to use a supported, commercially available, speech

recognizer.

In this paper we describe a new approach to alignment for text and audio using

the Extensible Multimodal Annotation (EMMA) [6–8] and Speech Recognition

Grammar Specification (SRGS) [9] standards. In addition, EMMAmetadata such as

timestamps, human language of the input, confidence, and the location of the input

speech signal have all been very helpful.

Although we do not discuss it in detail in this paper, we have also found that

when there is complete control of the recording process, as in our product, the voice

talent can be asked to ensure that there are distinct pauses between sentences,

14 A Case Study of Audio Alignment for Multimedia Language Learning. . . 313



making it possible to use technique 3a as a supplement to the speech recognition-

based process described here. Future research will quantify the incremental benefit

of this technique.

14.4 User Experience

At this point it is useful to provide an example to show what the user experience is

like for a reader of a Colibro book.

Figure 14.1 shows an example of a page from a bilingual English/Spanish

Colibro story, “Dominic the Dragon.” The English and Spanish texts are aligned,

and the user can hear the English audio by pressing one of the “play” buttons. The

user can either hear the audio for each sentence individually or for the entire story.

This page shows how the story appears for an English-speaking learner of Spanish.

In some cases we have also prepared reversible versions of the same story, so that it

can be used, for example, by a Spanish-speaking learner of English.

Fig. 14.1 Page from a Colibro child’s book

314 D.A. Dahl and B. Dooner



14.5 Aligning Text and Audio

This user experience requires alignment of the text and audio so that the matching

sentence text can be highlighted when the audio plays. In Colibro, this process

consists of the following steps:

1. Author text and record audio.

2. Segment text into sentences.

3. Create an SRGS grammar from the sentences where each grammar rule corre-

sponds to one sentence of the text.

4. Recognize the audio using the grammar created from the sentences.

5. Output an EMMA document with timestamp information marking the begin-

nings and ends of the sentences.

6. Integrate the timing information into the story bundle or package for presenta-

tion to the user.

14.6 Steps in the Alignment Process

14.6.1 Text Segmentation into Sentences

The first step in the process is segmentation of the story text into sentences. The

Stanford CoreNLP [10] sentence segmentation module is used for this. The result is a

text file where each sentence appears on a new line. Note that our use of sentence

segmentation in this way means that currently the alignment is only at the sentence

level. The alternative possibility of word-level alignment would mean that there is a

much greater amount of animation in the user interface as each word is highlighted.

Since animation in a GUI interface is known to be distracting [11], we wished to

minimize this. Full sentence alignment is also reasonable for the simple stories

currently available in the Colibro library, because the sentences are short. As the

Colibro library expands to include more advanced books, we will investigate align-

ment of units within sentences, balancing this against the desire to minimize

distracting animations.

14.6.2 Grammar Creation

The next step is to create an SRGS grammar based on the sentence segmentation,

where each sentence corresponds to an alternative rule within a <one-of>
element that spans the entire story. Thus, each sentence in the story is treated as a

possible speech recognition result. Representing the entire story as a single

sequence of grammar rules is not flexible enough, since a problem with one

sentence can result in a “nomatch” for the entire story. While a statistical ngram

language model could also have been used for this purpose, we found in our initial

14 A Case Study of Audio Alignment for Multimedia Language Learning. . . 315



technology assessment that using ngram language models did not lead to suffi-

ciently accurate results. Since the text to be recognized is fixed and known,

robustness to unexpected inputs, a major factor motivating the use of ngram

models, was not a significant factor. Discrepancies between the written text and

the audio will only occur if the reader makes an error.

The grammar creation process is a simple text reformatting step which could be

done with a number of tools such as Perl scripts or, as in our case, with regular

expressions. A grammar showing the result of the grammar creation step is shown

in Fig. 14.2.

Fig. 14.2 SRGS grammar of an English story text

316 D.A. Dahl and B. Dooner



14.6.3 Alignment of Sentence Audio with Text

The next step in the alignment process is to recognize the audio corresponding to

the story text, using the grammar created from the story sentences. We selected

Microsoft Speech Server as the recognizer for this purpose, as it is free, supports

SRGS, and covers 26 languages. Because it is server-based, it also fits well into our

processing pipeline. However, its recognition result is in the form of a SAPI [12]

object, and we needed a standard, vendor-independent text-based format for our

results. We also needed to identify both the timing information and confidence

values. Although we have no specific plans to use a different speech recognizer in

the future, vendor-independence prepares us for this possibility.

The W3C EMMA specification [6–8] provides this detailed metadata, and as

such is ideal for representing our recognition results. It was only necessary to

convert the SAPI speech results to EMMA. This was accomplished by working

with Chant, Inc. (www.chant.net) to design and implement an EMMA wrapper for

SAPI. The fact that EMMA is a standard was an important advantage in our

collaboration with Chant because it meant that the intended output format was

well-documented. Thus, it was easy to define the required output by simply

referring to the EMMA specification.

The resulting EMMA for the first two sentences of the grammar in Fig. 14.2 is

shown in Fig. 14.3. The entire output is contained in an <emma:sequence>
container, with each result in a separate <emma:one-of>. For the purposes of

alignment, the key information is contained in the <offset-to-start> attri-

bute (bold in Fig. 14.3) of each<emma:one-of> which indicates how long after

the beginning of the audio file (the “time-ref-anchor-point”) the input

began. The “duration” attribute, along with the “offset-to-start” attri-

bute, tells when the utterance ended.

In addition to the basic information for alignment, the EMMA result contains

other valuable metadata which can be used for debugging. The attributes “emma:
lang”, “emma:signal”, “emma:process” and “emma:grammar-ref” all
can be used to confirm that the processing pipeline was correctly configured. For

example, “emma:lang” can be used to confirm that the recognizer was set to use

the right language. Similarly, “emma:signal” can be used to confirm that the

correct audio file was used.

We added one piece of non-standard information in the <emma:info> ele-

ment, the extension point of EMMA. This was used to record the time that the audio

file was processed by the recognizer. An actual processing time attribute was not

anticipated in the EMMA standard because the most common use case for EMMA

is real time interaction, where processing occurs during or at least immediately after

the time of the utterance. In contrast, our use case is offline speech recognition

which may occur considerably after the original speech.1

1 In fact, the speech recognition in our application could occur many years after the original

speech. This might happen, for example, if we wanted to align an historic speech with its

14 A Case Study of Audio Alignment for Multimedia Language Learning. . . 317

http://www.chant.net/


The attribute “emma:confidence” is also useful for debugging, since a low

confidence result could result from a mismatch between the audio file and the text.

Mismatches can occur, for example, if the voice talent misreads the text during the

recording process, or if there were problems with audio quality. Similarly, an

“uninterpreted” attribute means that the recognizer was unable to recognize

any utterance in that position, as shown in Fig. 14.4.

Fig. 14.3 EMMA results

transcription. In that case, the standard “emma:start” and “emma:end” timestamps would be

very different from the processing time, since they refer to the start and end of speech.

318 D.A. Dahl and B. Dooner



14.7 The System in Use

The system has been used for over one year to align text and audio in Colibro

stories. Since Colibro is a commercial system rather than a research system, we

have not been quantifying errors in detail. However, we have found that the

efficiency and accuracy of this system is sufficient for its commercial purposes.

Nevertheless, a manual quality control process is in place so that any errors can be

caught and corrected during the story production process. One possible error is the

recognizer failing to recognize a sentence, usually due to quiet audio. This is easy to

detect in the quality control step because there will be an interpretation with an

“uninterpreted¼’true’” value in the EMMA output, as shown in Fig. 14.4.

We have also used this system with Spanish without modification, except to

replace the speech recognizer. Part of an EMMA result from a Mexican Spanish

recognizer is shown in Fig. 14.5. In general we have observed anecdotally that the

recognizers for languages other than US English are slightly more likely to miss

sentences, which may be due to the fact that US English recognizers themselves are

more accurate. However, the performance of the Spanish recognizer nevertheless

meets our requirements for accuracy in a commercial system.

14.8 Related Applications

Alignment of text and audio has many applications, in addition to supporting

speech research, and speech recognition has often been used for this task. For

example, speech recognition has been used for alignment in applications such as

karaoke [13], audio indexing [14], and literacy [15].

Fig. 14.4 Uninterpreted result

14 A Case Study of Audio Alignment for Multimedia Language Learning. . . 319



14.9 Conclusions and Future Directions

The standards discussed in this paper, SRGS and EMMA, were originally devel-

oped to support interactive spoken and multimodal dialogues. However, they also

support automatic alignment of text and audio very well. Because the standards are

fully defined it has been easy to communicate with both vendors and developers

about the precise formats required.

The fact that SRGS is a standard also means that this application can be more

vendor-independent than if we were using a proprietary grammar format.

EMMA also works well for this use case. Nearly all of our requirements for

alignment metadata were already met by the EMMA standard, especially the offset

time for the start of the signal, and duration, because those attributes give us our

alignment. However, the language of input, confidence, tokens of input, process,

and whether the input was interpreted or not are also useful for debugging and

identifying problems with audio files. The only feature that we added (through the

standard “info” element) was the actual time that recognition was performed.

We have found this approach to be sufficiently accurate and efficient for our

commercial product. Future work will provide a fuller and more quantitative

evaluation of our approach.

Fig. 14.5 Mexican Spanish result

320 D.A. Dahl and B. Dooner



References

1. Eurostat (2016). Foreign language learning statistics. European Union. http://ec.europa.eu/eurost

at/statistics-explained/index.php/Foreign_language_learning_statistics. Accessed 18 Jan 2016.

2. Bhattacharjee, Y. (2012). Why bilinguals are smarter. New York Times, March 17.

3. Krashen, S. (1989). We acquire vocabulary and spelling by reading: Additional evidence for

the input hypothesis. Modern Language Journal, 73, 393–407.
4. Krashen, S. (2007). Free voluntary reading. Santa Barbara, CA: ABC-CLIO, LLC.
5. Lomicka, L. L. (1998). To gloss or not to gloss: An investigation of reading comprehension

online. Language Learning and Technology, 1(2), 41–50.
6. Johnston, M. (2016). Extensible multimodal annotation for intelligent interactive systems. In

D. Dahl (Ed.),Multimodal interaction with W3C standards: Towards natural user interfaces to
everything. New York, NY: Springer.

7. Johnston, M., Baggia, P., Burnett, D., Carter, J., Dahl, D. A., McCobb, G., et al. (2009).

EMMA: Extensible MultiModal Annotation markup language. W3C. http://www.w3.org/TR/

emma/. Accessed 9 Nov 2012.

8. Johnston, M., Dahl, D. A., Denny, T., & Kharidi, N. (2015). EMMA: Extensible MultiModal

Annotation markup language Version 2.0. World Wide Web Consortium. http://www.w3.org/

TR/emma20/. Accessed 16 Dec 2015.

9. Hunt, A., & McGlashan, S. (2004). W3C Speech Recognition Grammar Specification (SRGS).

W3C. http://www.w3.org/TR/speech-grammar/. Accessed 9 Nov 2012.

10. Stanford Natural Language Processing Group (2014). Stanford CoreNLP. Stanford University.

http://nlp.stanford.edu/software/corenlp.shtml.

11. Galitz, W. O. (2007). The essential guide to user interface design: An introduction to GUI
design principles and techniques (3rd ed.). Indianapolis, IN: Wiley Publishing, Inc.

12. Microsoft (2007). Microsoft Speech API 5.3 (SAPI). http://msdn2.microsoft.com/en-us/

library/ms723627.aspx.

13. Shenoy, A., Wu, Y., & Wang, Y. (2005). Singing voice detection for karaoke application.

Paper Presented at the Proceedings SPIE 5960, Visual Communications and Image
Processing 2005, Bellingham, WA, USA.

14. Wilcox, L. (1988). Annotation and segmentation for multimedia indexing and retrieval. In

System Sciences, Proceedings of the Thirty-First Hawaii International Conference on System
Sciences (Vol. 252), pp. 259–266. doi:10.1109/HICSS.1998.651708.

15. Lee, K., Hagen, A., Romanyshyn, N., Martin, S., & Pellom, B. (2004). Analysis and detection

of reading miscues for interactive literacy tutors. Paper Presented at the Proceedings of the
20th International Conference on Computational Linguistics, Geneva, Switzerland.

14 A Case Study of Audio Alignment for Multimedia Language Learning. . . 321

http://ec.europa.eu/eurostat/statistics-explained/index.php/Foreign_language_learning_statistics
http://ec.europa.eu/eurostat/statistics-explained/index.php/Foreign_language_learning_statistics
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/speech-grammar/
http://nlp.stanford.edu/software/corenlp.shtml
http://msdn2.microsoft.com/en-us/library/ms723627.aspx
http://msdn2.microsoft.com/en-us/library/ms723627.aspx
http://dx.doi.org/10.1109/HICSS.1998.651708


Part IV

Future Directions



Chapter 15

Discovery and Registration: Finding
and Integrating Components into Dynamic
Systems

B. Helena Rodrı́guez and Jean-Claude Moissinac

Abstract One of the major gaps in the current HTML5 web platform is the lack of

an interoperable means for a multimodal application to discover services and

applications available in a given space and network, for example, in a smart

house with a network of connected objects. To address this gap, the Multimodal

Interaction Working Group has produced a draft specification based on distributed

services, which aims to support the Discovery and Registration of multimodal

components. In this approach, the components are described and virtualized in a

Resources Manager communicating bidirectionally through dedicated events. To

facilitate the fine-grained management of concurrent multimodal interactions, the

Resources Manager registers the distributed components and provides to the Inter-

action Manager the means to control them. In this way, interoperable search,

discovery, and selection of heterogeneous and dynamic features on the Web of

Things can be performed by multimodal applications producing natural interaction

and a semantically rich user experience.

15.1 Introduction

The Multimodal Architecture and Interfaces is a current Recommendation of the

World Wide Consortium (W3C) [1] introducing a generic structure and a commu-

nication protocol to allow the components in a system using multiple interaction

modalities for input and outputs, called a “multimodal system” to communicate with

each other. It proposes a generic event-driven architecture and a general frame of

B.H. Rodrı́guez (*)

W3C’s MMI Working Group Editor for the Discovery and Registration Activity,

Paris, France

e-mail: b.helena@soixante-dix.com

J.-C. Moissinac

Institut Mines Télécom, Télécom ParisTech CNRS, LTCI 46,

Paris Cedex 13, France

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_15

325

mailto:b.helena@soixante-dix.com


reference focused in the control of the flow of data messages [2]. Thus the

documents about the multimodal system architecture published by the W3C’s
Multimodal Interaction Working Group are mainly the description of good prac-

tices to manage multimodal—distributed—interfaces.

This web-oriented frame of reference has been proposed before the current

growing evolution of distributed approaches for systems “in the cloud.” At the

time, the multimodal systems were mostly produced in an ad hoc manner, as shown

by a state-of-the-art overview from 2012 covering 100 relevant multimodal systems

where it was observed that more than 97% of the systems had little or no distribu-

tion and consequently, no discovery and registration support [3].

Thus, for historical reasons the W3C’s MMI Architecture and Interfaces and its

runtime framework [4] were not addressing:

– The component’s discovery and registration to support the fusion (integration)

and the fission (composition) mechanisms.

– The modality component’s data model needed to build this registry.

– The modality component’s description to facilitate the orchestration (and even

the turn-taking) mechanism in a dynamical system.

These are the three issues covered by a new services-oriented proposal, which is

now published as a W3C Working Draft [5].

The proposal is an extension of the MMI Architecture and Interfaces model,

designed to support the automation of the semantic discovery, registration, and

composition of multimodal services. It is also designed to fulfill the requirements of

a high-level Quality of Service such as the accurate selection of components when

these are not available anymore, do not meet the expected functionality or disrupt

the context of use.

With these goals in mind, the Working Draft was structured in three parts:

1. A new addressing method needed for the component’s announcement at

bootstrapping.

2. An architectural extension in order to support the handling of the state of the

multimodal system using a virtual component approach for registration.

3. Two new events for the messaging mechanism, to address the requirements of

discovery and registration in distributed systems.

These three results will be completed by the creation of a common and interop-

erable vocabulary of generic features to allow the gross and generic discovery of

modalities in large networks over a concrete networking layer.

In this chapter we present this work on open standardization as follows: first in

Sect. 15.2 we give an overview of the problem, followed by a study of the related

work, secondly in Sect. 15.3 we describe the work on Discovery and Registration

with a case study for the Web of Things, and finally in Sect. 15.4 we give a

conclusion and some perspectives.

326 B.H. Rodrı́guez and J.-C. Moissinac



15.2 Dynamic Multimodal Systems

Historically, multimodal systems were implemented in stable and well-known

environments [3]. Their complexity demanded laboratory-like implementations

and very few experiences were developed for real-time contexts or the distribution

of components.

Today, this situation has evolved. Due to the evolution of mobile media systems

and networks, the web developer’s community is progressively confronted with the

need of integrate multiple modalities in dynamic contexts. Besides, this challenge is

expected to be huge in the years to come, when large-scale networks like the

Internet of Things (IoT) will attain a state of maturity.

The increasing amount of user-produced and collected data will require a more

dynamic software behavior with a more dynamic and adequate approach. It will be

necessary to handle the user’s technical environment in a context where the demand

for energy supply is getting higher and higher.

15.2.1 The Internet of Things and Distribution

We are also facing the need to encourage and improve the efficiency in consump-

tion by boosting the creation of systems compatible with the IoT including the

smart-grid technologies.

In a context in where many of these technologies existed as silos (communica-

tion modules, mobile, enterprise software, specific single function hardware, home

automation, etc.) now they are becoming integrated and taking shape in a new class

of solutions enabled through information infusion from heterogeneous sources that

needs to be coupled with decision systems.

For example, in Japan [6] (as in European countries) the distributed applications

will play a very strategic role in the reduction of energy consumption, helping to

evolve to an on-demand model. With this goal, the sustainable consumption in

houses must be handled distantly, using data collected by multimodal applications

for the IoT. These applications must interact in a distributed and coordinated

manner collaborating in the energetic efficiency, home automation management,

and user segmentation and profiling.

Today the response to these emerging needs primarily focuses on connecting

things, however, the real value will be produced by giving sense to the “connected

information” that these things collect and by being able to utilize it constructively in

rich applications providing natural interaction. We should focus on end-to-end

scenarios and applications; the user experience has to be given high priority

combined with effectively managing accuracy and reliability of information flow.

Thus, we have multiple issues, concerning the multimodal user interaction with

very heterogeneous features, devices (some of them with low resources), protocols,

and messaging mechanisms to be synchronized in an interoperable way.

15 Discovery and Registration. . . 327



In this context, on one hand, modality discovery and selection for distributed

applications become a new working horizon giving new challenges for multimodal

systems, user-centric design, and web research. And, on the other hand, generic and

interoperable approaches will be unavoidable, preferably using web technologies,

but capable of going beyond the browser model.

Today, there is an enormous variety and quantity of devices interacting with

each other and with services in the cloud: by 2019, according to the Cisco VNI

Forecast of this year, 11.5 billion mobile devices will be connected to the internet

from a total of 149 billions of connected objects that are expected and the vast

majority will use some form of wireless for access [7]. Web technologies are

expected to be at the center of the IoT, thanks to their universal adoption and

huge scalability.

15.2.2 Current Approaches

Nevertheless the definition of a standardized programming model for objects

beyond the page-browser mechanism has not been established yet, and the classical

internet of documents or the internet of knowledge has being built with a series of

architectural premises that could be inadequate and even a foundational obstacle to

this new challenge.

To address it, device-centric technologies, proposals, and protocols are spread-

ing all over the current discussion around the Web of Things, focused on the device

connection through API’s and assuming that the “infinite things problem” will be

resolved by creating a “virtual image” of this reality on IoT systems, classifying

families of products according to the device-vendor models. But this solution will

just transfer a real-world problem to a virtualized one, with the concurrency of

policies, architectures, platforms, protocols, and standards that such a transfer

implies.

On one hand, browser vendors are advocating for browser-based solutions

assuming that a model that works well for web pages (based on the document

model) and web apps (mostly based on client–server models) in computers and

mobiles, can be easily extended to any other kind of objects.

But, how can we model a precipitation sensor as a document? Is it really logical

to communicate with a rice cooker as a “data resource”? How do we apply a client–

server model to reflexive objects in the network, acting at the same time as server

and clients of their own features? Are address registries of devices as stable as the

address directories of web pages or web apps? How to express on, off, or stand-by

states with web technologies? And what will be the environmental and energy price

to these choices?

On the other hand, device vendors are advocating for energy efficient and

lightweight protocols fine-tailored for constrained devices; and willing to provide

a web gateway (using RESTFul interfaces) to allow communication between these

devices and web applications. After nearly 20 years of research, some of the

328 B.H. Rodrı́guez and J.-C. Moissinac



industrial consortia, led by energy providers and home appliance vendors, built a

series of low-level protocols and technologies supported by national policies: KNX

[8], ZigBee SEP 2.0 [9, 33], Z-Wave [10], Echonet [11], ETSI M2M [12], DLNA

[13], UPnP [14], ZeroConf [15], etc.

As the list above shows, these concurrent protocols and technologies have to be

evaluated and selected by a developer or a new device producer. If this panorama of

exploded technologies continues, the situation that mobile developers endured

during years will reappear in the web of objects: heterogeneous operating systems,

closed SDK’s, app distribution circuits, and developing models for an infinity of

objects.

TheW3C is working on a response to a real and urgent need of a vendor-agnostic

model of components and communication, to encompass the diversity of proposals

and technologies of the IoT.

Besides the Multimodal Interaction Working Group two other groups are

addressing this need to reduce the effort of implementation for developers and

app vendors groups. They are the Web of Things Interest Group [16] and the

WebApps Working Group [17].

While these two groups work mainly in the connection to web browser API’s and
the low-level control of distributed devices, our effort in the MMI Working Group

has been always focused to evolve web technologies from device-centric applica-

tions, to natural interaction experiences and user-centered models that will extend

the definition of an application to seamlessly encompass multiple heterogeneous

devices collaborating and sharing resources and computational capabilities, both

locally and across the web.

As an illustration of the problem, in a multimodal system, devices may contain

nested logical devices, as well as functional units, or services.

A functional categorization of devices is currently defined by the UPnP protocol

with 59 standardized device templates and a generic template profile, the Basic

Device. With the same spirit, the Echonet consortium defines a number of eight

device groups, Zigbee classifies the devices with six profiles and KNX proposes

more than 146 functional blocks for a non-defined classification of devices (this

standard is service-oriented). In all cases, the specification defines explicitly the

device’s properties and access methods.

In contrast, more generic protocols like Z-wave use the Generic device approach

and three abstract classes of devices, Zigbee SEP 2.0 defines only three device

categories while BACnet uses 13 Function Groups and five service types.

Classifications of Devices are provided also by the Composite Capability Pref-

erence Profiles Specification or even with the User Agent Profile Specification

extension of CC/PP [18] maintained by the Open Mobile Alliance (formerly the

WAP Forum) with the Specification’s Part 7: Digital Item Adaptation, in which

Terminals and Terminals capabilities are described.

Finally according to the OCDE, the things of the IoT can be classified according

to eight dimensions: mobility, size, complexity, dispersion, power supply, place-

ment, connectivity, and animatedness [19].

15 Discovery and Registration. . . 329



The W3C’s WebApps Working Group [17] is working on a set of heterogeneous

deliverables going from the device object level to very specific features, including

browser extensions, HTML5 extensions, and event networking issues: Vibration

API, Battery Status API, HTML Media Capture, Proximity Events, Ambient Light

Events, Media Capture and Streams, MediaStream Image Capture, Media Capture

Depth Stream Extensions, Network Service Discovery (HTTP-based services

advertised via common discovery protocols within the current network), Wake

Lock API, Menu API, and the sensor API to come.

This example showing the WebApps description proposals illustrates the con-

currency of concerns and approaches around the “Thing” indexing and registration

problem.

On the other hand, the Web of Things Interest Group is working from an avatar

perspective on the duplication of real-life objects through virtualized objects to be

used by applications [16].

This involves the identification of use cases and requirements for direct access to

sensors and actuators from the browser, gateways that bridge IoT technologies and

theWeb, service platforms at the network edge, like home hubs, and scalable cloud-

based platforms. From a networking perspective this group is focused on creating

adapters and gateways to allow low-level technologies used in M2M interaction.

This work can be made more extensible and less driven by the specific capabil-

ities of today’s mobile devices by binding it with the generic, device-independent

multimodal Interfaces API.

It would also be very useful to integrate these proposals with the taxonomic

efforts already made by consortia like Echonet during the last 20 years in a common

and standardized vocabulary and a generic API.

15.2.3 Multimodal Interaction in the Web of Things

We can imagine that the horizon opened by the Web of Things is as exponential as

the technical solutions currently available. This situation explains and supports the

MMI Working Group generic approach and our proposal for a generic discovery

and registration for dynamic Multimodal Components.

Multimodal systems are computer systems endowed with rich capabilities for

human–machine interaction and able to interpret information from various com-

munication modes.

According to [20] the three principal features of multimodal systems are

1. The fusion (integration) of different types of data.

2. Real-time processing and temporal constraints imposed on information

processing.

3. The fission (composition) of restituted data: a process for realizing an abstract

message through output on some combination of the available channels.

330 B.H. Rodrı́guez and J.-C. Moissinac



On these systems, the management of modalities is most of the time hard-coded,

leaving aside the problem of a generic architecture and a dynamic system. This

mode of implementation neglects the issues around extensibility and the need of

discovery, monitoring, and coordination of modalities in real-time with context-

aware solutions.

Consequently, developers manually compose multimodal applications in an ad

hoc and proprietary way, with consequences like time-consuming maintenance and

inadequate interoperability, which increases the cost burden of the industry

stakeholders.

15.2.4 A Standard Approach to Multimodal Interaction

To address this lack of a generic approach, the MMI Architecture and Interfaces

defines an architectural pattern for any system communicating with the user

through different modalities simultaneously instantiated in the same interaction

cycle. In this unique context of interaction the final user or the application automa-

tion can dynamically switch modalities.

This kind of bidirectional system combines inputs and outputs of multiple

sensorial modes and modalities (e.g., voice, gesture, handwriting, biometrics cap-

ture, temperature sensing, etc.) and can be used to identify the meaning of the user’s
behavior or to compose intelligently a more adapted, relevant, and pertinent

message.

The Multimodal Architecture and Interfaces specification uses the Model-View

Controller (MVC) design pattern generalizing the View to the broader context of

the multimodal dynamic presentation, where the information can be rendered in a

combination of various modalities depending on their availability.

Thus, the MMI recommendation distinguishes (Fig. 15.1) three types of com-

ponents: the Interaction Manager which is responsible for controlling the interac-

tion flow, the Data Component which stores the application data, and the Modality

Components, covering the forms of representing information in a known and

recognizable rendered structure.

For example, acoustic data can be expressed as a musical sound modality (e.g., a

human singing) or as a speech modality (e.g., a human talking).

The component representing the presentation layer in the MMI Architecture is,

indeed, a Modality Component in Fig. 15.1. This is a logical entity that handles the

input and output of different hardware devices (e.g., microphone, graphic tablet,

and keyboard) or software services (e.g., motion detection, biometrics sensing).

The Modality Components are loosely coupled software modules that may be

either co-resident on a device or distributed across a network. This aspect promotes

low dependence between Modality Components, reducing the impact of changes

and facilitating their reuse in distributed systems. As a result, these components

have little or no knowledge of the functioning of any other modules and the

15 Discovery and Registration. . . 331



communication between modules is done through the exchange of events following

a protocol provided by the MMI architecture.

Despite this important feature, which provides an excellent support for distribu-

tion, the architecture was focused only on the interaction cycle, leaving aside the

support of the lifecycle of Modality Components from a system perspective, a more

dynamic application behavior, and the non-functional goals of some features to

adapt the application to a particular space, device family and interaction type, using

context-aware techniques.

15.2.5 A Survey of Multimodal Architectures

In a similar way, other multimodal systems also lacked a distributed approach, but

provide us very interesting approaches that will enhance future extensions needed

for the implementation of applications in the Web of Things. We carefully studied

[3] this sample of 16 multimodal architectures that were selected from an analysis

of a larger set of a 100 of multimodal implementations.

Fig. 15.1 The MMI architecture

332 B.H. Rodrı́guez and J.-C. Moissinac



The selection criterion was the amount of information provided by the authors

about the architectural facets of the implementation, its completeness and its

responses for three needs: distribution, the description of modalities, and the use

of semantic technologies to allow a generic selection of features.

Two groups were detected: a first group of emerging systems covering the

discovery and registration criteria in functional topics like event and state handling,

and a second group, covering more transversal topics like the use of generic models,

a distributed architecture and the delegation of control.

15.2.6 Event Handling

The first recurrent topic was event handling. Six architectures tried to address the

management of events, which is normal in the human computer interaction field

because user interfaces are highly event-oriented. In OAA [9], triggers provide a

general mechanism to express conditional requests using a blackboard style of

communication. Each agent in the architecture can install triggers either locally,

on itself, or remotely on its facilitator or on peer agents. These triggers are used for

requesting that some action be taken when some set of conditions is met.

The installation of a trigger within an agent can be thought of as a representation

of that agent’s obligation to carry out the specified action whenever the specified

condition holds true, while programming predefined events. The possible actions

are not hard-coded: in OAA the action to execute may be any compound goal

executable by the dynamic community of agents. When an unanticipated agent

joins the community, no modifications to the existing code are required for an

application to make use of it.

GALATEA [21] uses macro-commands while an Agent Manager that possesses

a macro-command interpreter expands each received macro-command in a

sequence of commands sending them sequentially to the designated modules in a

one-to-many design. This capability of broadcasting is very useful in the Web of

Things applications and is already used by M2M short range technologies like

LonWorks [22], Modbus [23], KNX [24], ZigBee [9], or Z-wave [10].

With task control layers in OPENINTERFACE [25], the communication para-

digm (event-based, remote procedure call, pipe, etc.) is implemented using adapters

and connectors for two types of events: instantaneous events and persistent events.

The mechanism implements the event dispatching following using predefined rules,

as in OAA.

In MEDITOR [26], events are handled with three specialized managers: the

input messages queue, the input messages generator, and the output messages

generator. The temporal order is ensured and disambiguation is handled with a

routing table and predefined rules. Hard-wired reactions are the tool in REA [27],

for quick reactions to stimuli. These stimuli then produce a modification of the

agent’s behavior without much delay, working as predefined events.

15 Discovery and Registration. . . 333



In HEPHAISTK [28], events are handled by the Event Manager, which ensures

the temporal order of events. The application not only is a client, but also is another

input source, and consequently the Event Manager is designed also as a recognition

agent, which communicates through a set of predefined messages.

In contrast to these six multimodal architectures, the MMI Architecture responds

to the event management concern with the Interaction Life-Cycle Events, and the

proposal of a dedicated component: the Interaction Manager. This solution provides

a clear separation between the interaction control and the interaction content data.

Nevertheless, hardwired mechanisms or predefined events are not envisioned

and the event protocol as currently defined only covers user interaction, leaving

aside the announcements for registration or the information about the availability of

components, which the system needs to handle.

The transport queue mechanism implemented in MEDITOR, GPAC [29], and

HEPHAISTK could also be an important support for the fusion/fission of modali-

ties. In consequence, these mechanisms were detected as possible extensions to the

W3C’s Architecture to provide some complementary resources to handle multi-

modal events in an interoperable way.

15.2.7 State Management

The second key topic, recovered from five of the studied architectures is state

management. This feature is oriented to register the evolution of the interaction

cycle and provides the information about any modification of the state of the system

and its components.

State management is designed as a monitoring process in support of the decision

layer (SMARTKOM [30], HEPHAISTK), as a display list manager in support of

the fusion and fission mechanisms (DIRECTOR) or as a blackboard (OAA,

HEPHAISTK) which is a central place where all data coming from the different

sources are standardized, and other interested agents can use them at will. Finally,

the states are handled by an object manager—for decoding and rendering pur-

poses—(GPAC), and even as a routing table (MEDITOR).

Concerning state management the MMI Runtime Framework recommends a

specific component to handle the multimodal session and the state of components;

yet, it does not give details about the interfaces needed to use this component or

about its role in the management of the interaction cycles.

As a result, the Discovery and Registration extension to the MMI Architecture

and Interfaces is conceived to complete this generic description with specific details

about the eventual implementation, behavior, and responsibilities of a resources

manager, which is responsible for the management of the states of the system.

334 B.H. Rodrı́guez and J.-C. Moissinac



15.2.8 Models

In respect to the definition of models 12 architectures propose interesting

approaches for the modeling of the entities that participate in the multimodal

interaction. However, only SMARTKOM addresses the modeling task with a

proposal coming from web semantic technologies.

In addition, depending on the entity, the models are more or less expressive or

homogeneous, and consequently, usable. The modeling of the multimodal interac-

tion (SMARTKOM, HEPHAISTK, and MEDITOR), the multimodal task (GALA-

TEA, OPENINTERFACE, and SQUIDY [31]), the dialog interaction (REA,

GALATEA, and SMARTKOM), and the devices (SMARTKOM) is more exten-

sive, tested and advanced than the modeling of the user (REA), the application

(OAA, SMARTKOM, ELOQUENCE, GPAC, and HEPHAISTK) or the environ-

ment and the context of usage (SMARTKOM).

This growing and common interest on models expressed in SMARTKOM as a

foundational principle opened the way to reinforce the MMI Architecture and

Interfaces recommendation by addressing this issue of data modeling with a

semantic approach, to produce a multimodal vocabulary and a semantic description

and taxonomy of modalities.

15.2.9 Distribution

Concerning the distribution issue, it is tackled with solutions like the remote

installation of triggers (OAA), the distribution of the fusion/fission mechanisms

into nodes and components that can even be external to the multimodal system, for

example, in the cloud (OPENINTERFACE, SQUIDY), the management of inputs

as “sensed” data with the use of broadcasted media containing behavior and

interaction information in distributed streams (GPAC) and finally, the distribution

of application services (SMARTKOM, HEPHAISTK).

The distribution is also reflected on service-oriented proposals of application

services and service advertisement (OAA, SMARTKOM) and the networking

services layer to manage the broadcasted input and output data of a rich application

(GPAC).

The MMI Framework and Architecture addresses this topic with its distributed

nature based on web standards. Nevertheless, there are few current implementations

using the web services or a service-oriented approach for multimodal systems.

The current implementations are oriented to prototype mobile interfaces (Orange

Labs), to provide a multimodal mobile client for health monitoring (Openstream),

to test an authoring tool (Deutsche Telekom R&D), and to complete JVoiceXML,

an open source platform for voice interpretation (TU Darmstadt). We believe that it

is possible that interesting extensions arise from a fully SOA implementation of the

MMI Framework and Architecture standard according to its distributed nature.

15 Discovery and Registration. . . 335



15.2.10 Interaction Management by a Client Application

The transversal topic is the delegation of the interaction management by a client

application. It is present in the form of application agents (CICERO, OAA) or

application services (SMARTKOM, HEPHAISTK).

The MMI Architecture and Interfaces recommendation does not deal with this

subject because the application is meant to be the concrete implementation of the

architecture. A delegation approach supposes that an external functional core can

delegate the management of the interaction to a multimodal system built in accor-

dance with the open standard, and providing multimodal functionalities to the client

application installed on devices with low processing capabilities.

The MMI Architecture and Interfaces do not currently address this problem,

even if it could be the type of requirement of a multimodal browser, a home

gateway virtualization, or a Web of Things application. Our current work on the

W3C’s MMI Working Group addresses the possible extensions that such approach

could bring and how the MMI Architecture standard can support this type of future

implementation.

To sum up, the study of the related work allowed us to express the context and

goals of the current recommendation for Discovery and Registration of Multimodal

Components in order to facilitate the implementation of distributed applications for

the Web of Things. In the following section we will describe the results coming

from this analysis as a new W3C draft recommendation.

15.3 Discovery and Registration for Multimodal Systems

To the best of our knowledge, there is no standardized way to build a web

multimodal application that can dynamically combine and control discovered

components by querying a registry structured according to the modality informa-

tion. At the same time—as we showed in Sect. 15.2—the multimodal research

efforts also lack of this distributed perspective.

Based on this previous analysis the MMI Working Group decided to focus on

three complementary extensions to the MMI Architecture and Interfaces to support

distributed applications:

1. We completed the current addressing method in order to evolve from a client–

server model to an anycast model.

2. We reinforce the management of the “multimodal session” with a dedicated

component to handle the system’s state and support the system’s virtualization of
components.

3. We extend the transport layer with two new events designed to complete and

enhance the interaction Lifecycle Events.

336 B.H. Rodrı́guez and J.-C. Moissinac



15.3.1 Extending the Flow of Events to Support an Anycast
Model

To inform the system about the changes in the state of the Modality Components an

adaptive addressing mechanism is needed. We believe that the combination of

push/pull mechanisms is crucial to extend the MMI Architecture to the Web of

Things.

For example, in the case of the unavailability of a given Modality Component, it

needs to communicate with the control layer. This situation is not necessarily

related to the interaction context itself, but it can affect it, because the interaction

cycle can be stopped or updated according to this change on the global state of the

system.

In the current state of the Multimodal Architecture Specification [1], interaction

events like Prepare or Start, must be triggered only by the Interaction Manager and

sent to the Modality Components.

In result, a Modality Component cannot send messages to the Interaction

Manager other than the message beginning the interaction cycle: the newContex-

tRequest event. Any other event originated by an internal command or like in our

example, by a change on the component’s state cannot be raised.
Nevertheless, to start an interaction cycle the Modality Component needs to be

already part of the system and to be registered. The registration process is part of a

previous phase as Fig. 15.2 shows, when even the presence of the user is not

mandatory and the communication must be bidirectional.

In Fig. 15.2 a Modality Component announces its presence to the network every

200 ms during a minute in order to join a multimodal system. After a while, and

thanks to an event originated by a push mechanism for listening to the requests, the

control layer receives the notification.

With the data provided by the notification the Resources Manager requests from

the Data Component responsible of the registry an identification code for the

Modality Component and verifies if the timeout does not need to change.

If the periodical request needs to change, the Resources Manager calculates the

new value and builds a push request to inform the component. Finally, the Modality

Component confirms that its state has changed.

This is an example of a bootstrapping process using HTTP and bidirectional

communication. The pull mechanism is executed through the UpdateNotification

while the push mechanism is executed using the checkUpdate event.

As Modality Components are reflexive objects in the network, acting at the same

time as server and clients, they need to communicate and to receive messages as

well. The flow of messages always initiated by the Interaction Manager is not

sufficient to address use cases evolving in dynamic environments, like personal

externalized interfaces, smart cars, home gateways, interactive spaces, or in-office

assistance applications.

15 Discovery and Registration. . . 337



In all these cases, Modality Components enter and quit the multimodal system

dynamically, and they must declare their existence, availability, and capabilities to

the system in some way.

To address this need, the bidirectional flow of messages supports a complete

number of addressing methods and preserves a registry of the global state of the

system.

One of the consequences of this new flow of messages is the capability to

produce the advertisement of Modality Components. It allows the Multimodal

System to reach correctness in the Modality Components retrieval and also affects

Fig. 15.2 The first phase of the registering process

338 B.H. Rodrı́guez and J.-C. Moissinac



the completeness in the Modality Component retrieval as required by our current

use cases for discovery [32]. To return all matching instances corresponding to the

user’s needs, the request criteria must match some information previously regis-

tered before the interaction cycle starts, for example, at a minimum, its identifier.

For this reason, the MMI Architecture should provide a means for multimodal

applications to announce the Modality Component’s presence, address, and state.

This was the first step to fulfill the distribution requirements: Modality Components

must be distributed in a centralized, a hybrid, or a fully decentralized way [32].

For Discovery and Registration purposes the distribution of the Modality Com-

ponents influences how many requests the Multimodal System can handle in a

given time interval, and how efficiently it can execute these requests. Even if the

MMI Architecture Specification is distribution-agnostic, with this bidirectional

flow of messages, Modality Components can be located anywhere and communi-

cate their state and their availability to a new dedicated component: the Resources

Manager.

15.3.2 Defining an Architectural Module to Support Device
Virtualization

The new flow of messages between the Modality Components and the control layer

needed a mechanism tracing the relevant data about the session and the system

state. This is the first of the responsibilities for a new module, the Resources

Manager.

This manager is responsible for handling the evolution of the “multimodal
session” and the modifications in any of the participants of the system that could

affect its global state. It is also aware of the system’s capabilities, the address and
features of Modality Components, their availability, and their states.

As Fig. 15.3 shows, according to our recommendation, these states can be: Alive

(the component is in On or Sleep mode), Loading (the component is awake and

loading resources), Registering (the component is following the two step process to

join the multimodal system), Available (the component is registered and capable to

interact), Idle (the component is ready to receive an interaction), Busy Waiting (the

component is not ready, waiting for the process executed on the system), Processing

(the component is busy processing some data), Unregistered (the registration of the

component is no more valid), or Unavailable state (some problem avoids the

component to interact).

Thus, the Resources Manager is nested in the control layer of the multimodal

system and keeps the control of the global state and resources of the system.

This newly extended control layer encompasses the handling of the multimodal

interaction and the management of the resources of the multimodal system. In this

way, with our extension, the architecture preserves its compliance with the MVC

design pattern.

15 Discovery and Registration. . . 339



The data handled by the Resources Manager can be structured and stored in a

virtualized manner. In this way, the Resources Manager can be calibrated for

mediated discovery and federated registering [32].

The Resources Manager uses the scanning features provided by the underlying

network, looking for components tagged in their descriptions with a specific group

label. It can implement a discovery procedure to compose its register based on the

information provided by the network layer.

For example, the Resources Manager can request to the ETSI M2M gateway

technical information about a given device driver in order to register the

virtualization as Modality Component of its features and operations.

First, it can request using HTTP the technical information about the current

implementation of the gateway:

The Resources Manager must parse the response (which is a description of

services including the network structure), to recover the technical metadata that

will be useful to the Interaction Manager in order to command the given device. In

this case, this is a device using the physical layer IEEE 802-15-4 and the device is

designed for Home Automation using ZigBee 1.0.

Fig. 15.3 States of the modality components

340 B.H. Rodrı́guez and J.-C. Moissinac



Second, the Resources Manager can request more functional information if the

technical metadata shows that the device is interesting enough to the current

multimodal application. To take this decision a mapping between the descriptions

provided by the networking layer and the multimodal vocabulary must be done

(The Multimodal Working Group is currently working on this task).

The response provides the information about the registered nodes on the target

hub of nodes (called network in the ETSI M2M technology model).

Given that this list does not provide enough information, the Resources Manager

must iterate over the nodes list in order to recover mode metadata and functional

information to register the modalities and to compose the virtualized Modality

Component.

The iteration must be done in the following way:

The response provides the information about the current services (called appli-

cation in the ETSI M2M technology model):

15 Discovery and Registration. . . 341



The Resources Manager must finally iterate over the services to acquire all the

functional data needed to register the Modality Components on the given gateway:

In the case of the ETSI M2M technology, the response will contain all the

information needed to register the Modality Components.

The description also allows the Resources Manager to communicate with the

services or data points to monitor the state of the Modality Components through

application dependent routines. For example, in our current use case, which is a

controller for a set of lights in an automated house, the Resources Manager has now

the information needed to monitor not only the availability of the lights but also it

can monitor its state to keep track of the environmental conditions for the multi-

modal system.

342 B.H. Rodrı́guez and J.-C. Moissinac



In response, the Resources Manager recovers the current state of the lighting

service on the device.

If the discovered component is not tagged with a group label, or doesn’t provide
enough metadata, the Resources Manager can use some mechanism provided to

allow subscriptions to a generic group.

In this case, the Modality Component should send a request using the new flow

of messages and using one of the new discovery events to the Resources Manager,

subscribing to the register of the generic group.

After recovering the information, not only the Resources Manager translates the

Modality Component’s messages into method calls on the Data Component, like

the MVC pattern proposes, but also the Resources Manager broadcasts to the

Modality Component the changes on the system’s state or notifies it following a

subscription mechanism. Upon reception of the notification, the Modality Compo-

nent updates the user interface according to the information received.

As our use case shows, the implementation of the Resources Manager depends

on the application design, the targeted technologies, and the available networks.

Nevertheless, the procedure of registering of the metadata describing the Modality

Components available and the storage of the functional data needed to communi-

cate with them is generic in most cases.

In this generic approach, the Resources Manager supports the coordination

between virtualized components and their communication through the control

layer. This enables the synchronization of the input constraints across modalities

and also enhances the resolution of input conflicts from distributed modalities

before the actual communication with the devices. It is also the starting point to

declare and process the advertised announcements and to keep them up to date. The

Resources Manager is the core support for mediated and passive discovery and it

can also be used to trigger active discovery using the push mechanism or to execute

some of the tasks on fixed discovery [32].

The Resources Manager is the interface that can be requested to register the

Modality Component’s information. It handles all the communication between

them and the registry. The flow of discovery queries transit through it, which

dispatches the requests to the Data Component and notifies the Interaction Man-

ager, if needed. These queries must be produced using the state handling events

presented in the next section. To summarize, the Resources Manager delivers

information about the state and resources of the multimodal system during and

outside the interaction cycle.

15 Discovery and Registration. . . 343



15.3.3 Two Events for Discovery and Registration

With a new flow of messages and a new component handling the state of the system,

a Modality Component can register its services for a specific period of time. This is

the basis for the handling of the Modality Component’s state. Every Modality

Component can have a lifetime, which begins at discovery and ends in a date

provided at registration. If the Modality Component does not re-register the service

before its lifetime expires, the Modality Component’s index is purged. This

depends on the parameters given by the Application logic, the distribution of the

Modality Components, or the context of interaction.

When the lifetime has no end, the Modality Component is part of the multimodal

system indefinitely. In contrast, in more dynamic environments, a limited lifetime

can be associated with it, and if it is not renewed before expiration, the Modality

Component will be assumed to no longer be part of the multimodal system. Thus,

by the use of this kind of registering, the multimodal system can implement a

procedure to confirm its global state and update the “inventory” of the components

that could eventually participate in the interaction cycle.

Therefore, registering involves some Modality Components’ timeout informa-

tion, which can be always exchanged between components and, in the case of a

dynamic environment, can be updated from time to time. For this reason, a

registration renewal mechanism is needed.

We proposed a registration mechanism based on the use of a timeout attribute

and two new events: the checkUpdate Event and the UpdateNotification, used in

conjunction with an automatic process that ensures periodical requests.

15.3.4 checkUpdate

The checkUpdate Event is provided (a) to verify if there are any changes in the

system side; (b) to recover the eventual message; (c) to adapt the request timeout if

needed, and (d) to trigger automatic notifications about the state of the Modality

Component, if the automaticUpdate attribute in the response is true.

For example, in a multimodal system it could be necessary for the loading of

some audio resources to execute a given task. In the discovery phase the audio

Modality Component must send a CheckUpdateRequest indicating its state

“LOADING” for a given action related to the discovery phase, like the “HAND-

SHAKE” process. This announcement can be addressed directly to the Resources

Manager or it can be broadcasted to the underlying network.

344 B.H. Rodrı́guez and J.-C. Moissinac



If the AutomaticUpdate attribute is defined to True, the timeout will define the

pace for the periodic communication that will follow (in our example 200 ms with a

messaging communication that must begin immediately).

In this way, if a Resources Manager knows that it is useless or disruptive to have

a message each 200 ms—for example, because it knows that its data is only updated

each 2000 ms—then the Resources Manager can use the checkUpdate Event to

change the timeout attribute to 1000 ms and to put the Modality Component on

sleep mode for 100 ms—for example, because it needs some time for changing its

state or for processing some other commands. (See the code below that illustrates

this case.) These changes exchanged in the response enhance input/output synchro-

nization in distributed environments.

15.3.5 UpdateNotification

On the other hand, the UpdateNotification is proposed (a) to periodically inform the

Resources Manager about the state of the Modality Component; and (b) to help in

the decision-making process (on the server side, for example). For the notification

of failures, progress, or delays in distributed processing, the UpdateNotification

event ensures periodical requests informing other components if any important

change occurs in the Modality Component’s state or in the system.

15 Discovery and Registration. . . 345



This can support, for example, grammar updates or image recognition updates

for a subset of differential data (e.g., the face is the same but now there is a smile).

In the example above, the UpdateNotification event is used to inform the system

after a sleep period, that the Modality Component is in Busy Waiting state, for

example, in the case of a motion detector sensor that is not recognizing activity in

a room.

The use of the timeout attribute helps in the management of the validity of the

advertised data. If a Modality Component’s communication is out-of-date, the

system can infer that the data has the risk of being inaccurate or invalid.

Finally, the checkUpdate Event allows the recovery of small subsets of the

information provided by the Interaction Manager, to maintain up to date the data

in the Modality Components as in the Resources Manager.

To sum up, the MMI Architecture responds to its main goal: to ensure interop-

erability between heterogeneous systems coming from very different contexts and

implementations. This is made on three subjects the addressing method needed for

models different than the client–server model, the “multimodal session” component

to handle the system’s state, and the transport layer by completing and reinforcing

the interaction Lifecycle Events.

15.4 Conclusion

The work on standardization produced by the MMI Working Group in the last

2 years is focused on distribution. Today, a generic first step needed to allow the

component’s discovery and registration is done. The multimodal system has now a

means to announce or discover the Modality Component’s capabilities and states

through different addressing modes. Second, the modality component’s data model

needed as a building block for a multimodal registry is founded, starting with a

common taxonomy of generic states (out of the scope of this document) and the

construction of a generic classification system for devices and groups of modes and

modalities. These premises of classification will facilitate the orchestration mech-

anism using the Modality Component’s description. A mechanism that is now

possible, thanks to the extension of the MMI Architecture’s event model with two

events specified for discovery and registration needs.

346 B.H. Rodrı́guez and J.-C. Moissinac



These three issues are covered by our results and now are available to the

community of web developers as a Working Draft. The requirements extracted

from the analysis of the state of the art and a series of use cases provided by the

industry [32] were the basis to produce three pertinent extensions.

To handle multimodal events in an interoperable way, we extended the MMI

Architecture by completing the current addressing method in order to evolve from a

client–server model to an anycast model using bidirectional communication.

To ensure the handling of states we proposed to support the management of the

“multimodal session” by a dedicated component. This component is responsible for

building a registry of devices and services to be used on the multimodal system by

using a virtualization procedure (out of the scope of this document, but available

soon in a new deliverable).

To allow distribution, we proposed extending the transport layer with two new

events, completing and reinforcing the MMI interaction Lifecycle Events. And

finally, to support the delegation of control and to use generic models, the

Resources Manager creates and stores the registry, based on a selection following

a classification of generic multimodal properties and a generic model of states. Both

are used also for keeping the registry up-to-date.

As our use case illustrates, the MMI’s Modality Component is an abstraction

flexible enough for any implementation of the IoT and networking model, while

keeping an interoperable structure.

The MMI Architecture is built around the management of continuous media and

their states not only as outputs (presentations) but also as inputs. This means that the

architecture is fine-tuned to handle issues derived from very dynamic environments

needing session control and recovering with all kinds of media and interaction

modes.

In this paper we presented our current work on Discovery and Registration of

Modality Components from a generic and interoperable technology that will allow

us to face the infinity created by the Web of Things. From an extensive study of the

state of the art, we produced a series of requirements and evaluation criteria that

founds the results presented in Sect. 15.3. In a future activity, the W3C working

group will produce an annotation vocabulary and the support of the semantic

annotation in the “info” dedicated attribute on the new discovery and registration

events. This vocabulary is a first step on the direction of a more expressive

description of the interaction with Modality Components using ontologies and a

more intelligent composition of semantic web services for multimodal applications

with rich interaction features.

Acknowledgments The authors wish to thank the W3C MMI Working Group for its collabora-

tion, with special thanks to Deborah Dahl and Kazuyuki Ashimura, and to Cyril Concolato, Jean

Lefeuvre and Jean Claude Dufour for the very helpful insights and support during this work.

15 Discovery and Registration. . . 347



References

1. W3C’s MMI-Arch. http://www.w3.org/TR/mmi-arch/. Accessed 1 Apr 2015.

2. Rodriguez, B. H. The W3C’s multimodal architecture and interfaces. https://en.wikipedia.org/

wiki/Multimodal_Architecture_and_Inter faces. Accessed 29 Sept 2015.

3. Rodriguez, B. H. (2013). A SOA model, semantic and multimodal, and its support for the
discovery and registration of assistance services. Ph.D. thesis, Institut Mines-Télécom, Tele-

com ParisTech, Paris.

4. W3C’s Multimodal Interaction Framework. http://www.w3.org/TR/mmiframework/.

Accessed 1 Apr 2015.

5. Rodriguez, B. H., Dahl, D., Ashimura, K., Barnett, J., Tumuluri, R., & Kharidi, N. (Eds.)

(2015). Discovery and registration of multimodal modality components: State handling. First

Public Draft 11/06/2015. http://www.w3.org/TR/mmi-mc-discovery/. Accessed 29 Sept 2015.

6. International Symposium on Home Energy Management System—Joint Discussion with the

W3C MMI WG, Keio University Shonan Fujisawa Research Institute. 25–26 Feb 2015.

Organized by the Ministry of Industry, Echonet Consortium and Keio University. Participants:

Mr. Sano, Director Ministry of Economy, Trade and Industry, Mr. Taniguchi, Executive

Director ENNET Corporation, Mr. Kodama, Director ECHONET Consortium, Mr. Isshiki

Director ECHONET HEMS Interoperability test center, Mr. Umejima, Senior Fellow

ECHONET Consortium, Deputy Chair, JSCA, Mr. Murakami, Director ECHONET Consor-

tium, Mr. Aida Leader Iene consortium, Sureswaran Ramadass, Chairman Asia Pacific

Advanced Network, Richard Schomberg, IEC Chair Senior Vice President EDF France,

Patrick Veron, Former Senior Vice President in Cisco Corporation, Ms Dahl chair W3C

MMI Working Group, Ms RODRIGUEZ W3C Discovery and Registration Editor.

7. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019

White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-net

working-indexvni/white_paper_c11-520862.html. Accessed 4 Aug 2016

8. KNX Network Communications Protocol for Intelligent Buildings (EN 50090, ISO/IEC

14543). http://www.knx.org/knx-en/index.php.

9. Martin, D., Cheyer, A., & Moran, D. (1999). The open agent architecture: A framework for

building distributed software systems. Applied Artificial Intelligence, 13(1–2), 91–128.
10. Z-Wave. http://www.z-wave.com.

11. ECHONET Energy Conservation and Homecare Network. http://www.echonet.gr.jp/.

12. ETSI Machine to Machine Communication. http://www.etsi.org/technologies-clusters/technol

ogies/m2m.

13. Digital Living Network Alliance. http://www.dlna.org.

14. Universal Plug and Play. http://www.upnp.org.

15. Zero Configuration Networking. https://developer.apple.com/bonjour/index.html.

16. Web of Things Interest Group. https://www.w3.org/WoT/IG/.

17. WebApps Working Group. http://www.w3.org/2008/webapps/.

18. CC/PP. http://www.w3.org/TR/CCPP-struct-vocab/.

19. Machine-to-machine communications: Connecting billions of devices. OECD Digital Econ-

omy Papers, No. 192, OECD Publishing. doi:10.1787/5k9gsh2gp043-en. Accessed 25 April

2012.

20. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., &Young, R. (1995). Four easy pieces

for assessing the usability of multimodal interaction: The CARE properties. In Proceedings of
the INTERACT’95, Lillehammer.

21. T. Nitta et al. Activities of Interactive Speech Technology Consortium (ISTC) targeting open

software development for MMI systems. Robot and Human Interactive Communication, 2004.

ROMAN 2004. 13th IEEE International Workshop on, 2004, pp. 165-170. doi: 10.1109/

ROMAN.2004.1374749

348 B.H. Rodrı́guez and J.-C. Moissinac

http://www.w3.org/TR/mmi-arch/
https://en.wikipedia.org/wiki/Multimodal_Architecture_and_Inter%20faces
https://en.wikipedia.org/wiki/Multimodal_Architecture_and_Inter%20faces
http://www.w3.org/TR/mmiframework/
http://www.w3.org/TR/mmi-mc-discovery/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-indexvni/white_paper_c11-520862.html.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-indexvni/white_paper_c11-520862.html.
http://www.knx.org/knx-en/index.php
http://www.z-wave.com/
http://www.echonet.gr.jp/
http://www.etsi.org/technologies-clusters/technologies/m2m
http://www.etsi.org/technologies-clusters/technologies/m2m
http://www.dlna.org/
http://www.upnp.org/
https://developer.apple.com/bonjour/index.html
https://www.w3.org/WoT/IG/
http://www.w3.org/2008/webapps/
http://www.w3.org/TR/CCPP-struct-vocab/
http://dx.doi.org/10.1787/5k9gsh2gp043-en
http://dx.doi.org/10.1109/ROMAN.2004.1374749
http://dx.doi.org/10.1109/ROMAN.2004.1374749


22. LonWorks: ISO CEI 14908-1/4 or ASI CEA 709.1. ISO/IEC 14908, Parts 1, 2, 3, and 4

available online: http://downloads.echelon.com/support/documentation/manuals/general/078-

0183-01B_Intro_to_LonWorks_Rev_2.pdf Accessed 4 Aug 2016

23. http://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf. Accessed 1 Jan 2016.

24. KNX: ISO/IEC 14 543-3 (2006). http://www.iso.org/iso/catalogue_detail.htm?csnumber=

59865 Accessed 4 Aug 2016.

25. Serrano, M., Nigay, L., Lawson, J.-Y., Ramsay, L., & Denef, S. (2008). The open-Interface

framework: A tool for multimodal interaction, In: Proceedings of the CHI’08 Extended
Abstracts on Human Factors in Computing Systems—CHI EA08, ACM, New York, NY,

USA, pp. 3501–3506.

26. Bellik, Y. (1995). Interfaces Multimodales: Concepts, Modèles et Architectures. Ph.D. thesis,
University Paris-South 11, Orsay.

27. Cassell, J. (2001). Embodied conversational agents: Representation and intelligence in user

interfaces. AI Magazine, 22(4), 67–83.
28. Dumas, B., Lalanne, D., & Ingol, R. (2008). Démonstration: Hephais TK, une boı̂te �a outils

pour le prototypage d’interfaces multimodales.

29. Le Feuvre, J., et al. (2011). Experimenting with multimedia advances using GPAC. Scottsdale,
AZ: ACM Multimedia.

30. Herzog, G., & Reithinger, N. (2006). The SmartKom architecture: a framework for multimodal

dialogue systems. In W. Wahlster (Ed.), SmartKom: foundations of multimodal dialogue

systems. Heidelberg: Springer. doi:10.1007/3-540-36678-4_4.

31. K€onig, W. A., Rädle, R., & Reiterer, H. (2009). Squidy: A zoomable design environment for

natural user in-terfaces. In Proceedings of the 27th International Conference Extended
Abstracts on Human Factors in Computing Systems (CHI EA’09), ACM, New York, NY,

USA, pp. 4561–4566. doi:10.1145/1520340.1520700.

32. Rodriguez, B. H., Dahl, D., Tumuluri, R., Wiechno, P., & Ashimura, K. (2012). Registration &

discovery of multimodal modality components in multimodal systems: Use cases and require-

ments. W3C Working Group Note 5 July. http://www.w3.org/TR/mmi-discovery/. Accessed 1.

33. The Smart Energy Profile 2. http://www.zigbee.org/zigbee-fordevelopers/applicationstandards/

zigbeesmartenergy/. Accessed 4 Aug 2016

15 Discovery and Registration. . . 349

http://downloads.echelon.com/support/documentation/manuals/general/078-0183-01B_Intro_to_LonWorks_Rev_2.pdf Accessed 4 Aug 2016 
http://downloads.echelon.com/support/documentation/manuals/general/078-0183-01B_Intro_to_LonWorks_Rev_2.pdf Accessed 4 Aug 2016 
http://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=59865 Accessed 4 Aug 2016
http://www.iso.org/iso/catalogue_detail.htm?csnumber=59865 Accessed 4 Aug 2016
http://dx.doi.org/10.1007/3-540-36678-4_4
http://dx.doi.org/10.1145/1520340.1520700
http://www.w3.org/TR/mmi-discovery/
http://www.zigbee.org/zigbee-fordevelopers/applicationstandards/zigbeesmartenergy/
http://www.zigbee.org/zigbee-fordevelopers/applicationstandards/zigbeesmartenergy/


Chapter 16

Multimodal Interactivity in Foreign
Language Testing

Teresa Magal-Royo and Jesús Garcı́a Laborda

Abstract Multimodality in interactive digital environments for second language

acquisition testing has been begun to be used only very lately. Some of the

multimodality concepts have been recently developed in various research projects.

Research into the automation of online university entrance exams has been

prompted by the need to efficiently manage online tests and handle the task of

exam marking semi-automatically. At the same time, we have addressed the use of

multi-platform and/or multi-browser applications to handle the technical and func-

tional validation of accessibility and so enable universal access. The application of

multi-modularity to methods of navigation during the examination is possible in

mobile devices that enable simultaneous interaction when students input data. This

chapter aims to demonstrate the technical feasibility of the implementation process

for an examination in regard to the technological and formal variables of navigation

in the exam. These variables are currently being handled in mobile devices and the

result is a further advancement in the process of Computer Aided Language

Learning, CALL. This paper presents the multimodal approach has been taken

into account in the development of an online prototype which validates the func-

tional and technical assumptions adapted to university entrance exams for foreign

languages.

16.1 Introduction

Language learning is crucial in today’s world. Foreign languages are used for a

variety of purposes from leisure such as visiting different countries to professional

purposes (i.e., for international business). That is why measuring the students’
competence has become an issue of major importance over the years. Students in

many national and international contexts and for a number of purposes such as

university or high school graduation are learning foreign languages. Like teaching

T. Magal-Royo (*)

Universitat Politécnica de Valencia, Valencia, Spain

e-mail: tmagal@degi.upv.es

J. Garcı́a Laborda

Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_16

351

mailto:tmagal@degi.upv.es


methodologies, language teaching has also changed over time [1–3]. Likewise, the

techniques to deliver tests have seen dramatic changes. Obviously, over time most

delivery has been done through pen and paper for written tests and person-to-

person. It would not be until the 1980s when the first tests in BASIC or FORTRAN

were delivered. These consisted of just simple fill-in the gaps or multiple choice

exercises. In the 1990s it was considered that this kind of exam failed to obtain real

evidence of language competence across the skills. After all, language is a lot more

than choosing from a set of responses. At the time, computer-based language testing

was just seen as a convenient and fast way to deliver traditional exams [4]. How-

ever, since the middle 1970s, after the oil crisis, the number of people commuting or

travelling abroad increased dramatically evidencing a great need to develop speak-

ing communicative skills which, in turn, also needed to be measured. Thus,

speaking became prevalent (almost in excess) in language testing. In the 1990s

computer-based speaking tests (when done!) were limited to the deployment of

audio files which students responded either on basic recording computer applica-

tions but more often in cassette recorders. It would not be until the very end of that

decade when the Educational Testing Service began to implement computer speak-

ing tasks [5, 6]. In 2004, the new IB TOEFL™ showed the importance of using a

variety of task types. However, computer tests fall short, even today, since they

have not conveniently solved problems such as ubiquitous testing, naturalness of

test delivery, and more issues which are critical for the future of communicative

language testing. As a consequence, the importance of multimodality is self-evident

in the future of language testing.

Multimodal technology increases the validity of a test by integrating the differ-

ent kinds of modes to assess the student’s competence [3], for instance, in the

aforementioned inclusion of listening, speaking, reading, and writing tasks. In this

way, the student is required to show competence in many more ways than with

traditional paper and pencil exams. As will be seen, for instance, the integration of

images in tasks such as descriptions triggers the use of vocabulary and even

grammatical structures which in turn respond to communicative demands. In

short, there is dramatic shift from written texts as a primary source of assessment

and communication representation to a more realistic situation. This can also be

observed in the way in which students address their study and exams. While in

many contexts they prepare most of their work through hypertexting on computers,

their exams are still delivered in a traditional manner especially in the classroom

where the production of computer-based assessments is more costly. Today’s
students are able to use video, graphics, and apply strategies of interaction with

the text in iPADS or tablet PCs even in test situations which were unthinkable just a

few years ago. This is also connected to their way of integrating semiotic symbols

to improve their navigability and capacity to achieve adequately in language

tasks [7].

In Spain, traditionally the foreign language section of the University Entrance

Examination only includes three types of tasks: reading comprehension, writing,

and grammar composition. The implementation of a computer-based exam online

has been suggested for a long time [8]. In fact, The Spanish Ministry of Education

352 T. Magal-Royo and J. Garcı́a Laborda



has also undertaken some trials in the use of computers for the foreign language

exam in the 4th level of primary which was to be implemented next year but has

been postponed “sine die.”

This chapter addresses a proposal presenting a review of current trends in

computer language testing that lead to the need to use multimodality in language

testing or in language acquisition.

Then, we define the task framework of interactive modality including its defini-

tion in language testing online and finally we address the OPENPAU™ project as

an example of application of multimodality in language testing.

16.2 State of the Art: From Computers to Multimodality
in Foreign Language Testing

Since the beginning of the new millennium, there has been an increasing interest in

implementing computer-based language tests for a number of reasons: efficiency,

equivalence of paper and pencil tests, innovation [9], economy [4], cited by [10],

transference of results, security in test delivery and rating, and contextual validity.

By contextual validity Suvorov and Hegelheimer refer to the enhanced response

triggered by the use of enriched input especially visual enhanced tasks (such as the

use of audiovideo digital format). They consider nine attributes and categories in

describing the framework of computer-assisted language testing (see Table 16.1):

Obviously, although they are all interconnected, for the purpose of this paper we

will focus just on media density, response type, and task type. As mentioned above,

one of the most significant aspects of computer-based language testing is the

inclusion of different types of media, especially videos and podcasts. As Suvorov

and Hegelheimer mention:

The use of multimedia, which may incorporate audio, images, videos, animation, and

graphics, has gained much attention among researchers because it is believed to have the

potential for enhancing the authenticity of language tasks (Suvorov and Hegelheimer [10],

p. 597).

In relation to the type of item in a test or exam, not all of them may be adequate

for the use of an enriched visuals task. For instance, grammar items such as

matching, fill-in the gaps, and others may not provide an adequate ground or

functionality for such inclusion. Besides, not all the students may be eager to use

technology in their tests as not all the students would be happy to use technology-

oriented language instruction [11].

The factors mentioned so far and the rapid advances in use and development of

technology have led to an increase of testing platforms. A number of significant

exams have gone online in the last years [2] which are mostly commercial [9, 12]

due to the high costs of design, implementation, and validation. Among the most

significant projects, the best known is Test of English as a Foreign Language

Internet-Based Test, TOEFL iBT™ [1] but other computer-based tests are currently

16 Multimodal Interactivity in Foreign Language Testing 353



used to assume significant decisions such as BULATS™ Online, Pearson Test of

English (PTE) Academic™, Versant™, English Test BEST Plus™ Computer-

Adaptive Version, IELTS™, the Cambridge Board of Examinations suite

(p.e. Cambridge First, Cambridge Advanced, PET™, and their versions for

schools).

In Spain there have been just a few projects aiming at the design of a computer-

based test for high stakes [13] (see Table 16.2).

Finally, we will add that there is serious research for the development of the

Diploma de Espa~nol como Lengua Extranjera1 (DELE) but so far no formal

implementation in testing conditions has been done.

All these projects lead to the importance of the introduction and use of

multimodality in three directions: (1) in the test implementation as related to task

design and delivery; (2) navigability; and (3) ubiquity.

16.3 Interactive Multimodality Oriented to Language
Testing

For language testing using ubiquitous devices, multimodality is a process in which

devices and users are able to make a joint interaction, whether auditory, visual,

tactile, or gesture, from anywhere, at any one time. Through multimodality the user

can determine the mode or modes of interaction he wants to use to access

Table 16.1 Framework for the description of-assisted language tests

# Attribute Categories

1 Directionality Linear, adaptive, and semiadaptive testing

2 Delivery

format

Computer-based and Web-based testing

3 Media density Single medium and multimedia

4 Target skill Single language skill and integrated skills

5 Scoring

mechanism

Human-based, exact answer matching, and analysis-based scoring

6 Stakes Low stakes, medium stakes, and high stakes

7 Purpose Curriculum-related (achievement, admission, diagnosis, placement, pro-

gress) and non-curriculum-related (proficiency and screening)

8 Response type Selected response and constructed response

9 Task type Selective (e.g., multiple choice), productive (e.g., short answer, cloze

task, written and oral narratives), and interactive (e.g., matching, drag and

drop)

Source: Suvorov and Hegelheimer [10], p. 596

1 http://cvc.cervantes.es/ensenanza/dele/default.htm. Accessed 22/03/2016.

354 T. Magal-Royo and J. Garcı́a Laborda

http://cvc.cervantes.es/ensenanza/dele/default.htm


information via different types of input such as keyboard, mouse, pen, touch screen,

voice, etc., especially developed a specific interface [14] (see Fig. 16.1).

We consider that the most effective option for a language test online in a

ubiquitous device communication would be sequential multimodality applied to

the navigability process of the test because it needs to be sequenced in order to solve

the language tasks without inferences or potential biases originated by the computer

skills of the person taking the test. That means that the use of computers or other

devices should not make a difference according to the platform-use skills but

according to language competence. In the end, a language test should measure

the language abilities only (face to face validity). This is crucial to assist the student

to learn how to use the application despite the mode of interaction that the testing

Table 16.2 Projects developed related to computer-based test for high stakes in Spain

Project and year

Funding

institution Results

HIEO (2005) Generalitat

Valenciana

Design of a computer-based testing tool

SELECTOR

(2007)

Generalitat

Valenciana

It suggests construct, analyze institutional needs, improve

PLEVALEX tool analyzes student reactions

PAULEX-

PAUER (2007)

Ministry of

Education

Defines the construct, addresses the institutional needs,

studies teacher attitudes, develops the PAUER computer

platform, analyzes students’ reactions, students develop and
test the first mobile application, suggests evaluating com-

mercial applications. Uses mobile phones for the test.

OPENPAU

(2012–2014)

Ministry of

Education

It proposes a new construct focused on the implementation

by the universities. Analyzes materials and proposes a test

and new ways of delivering the PAU. Use of mobile phones

and tablet PC for the test.

Source: Garcı́a Laborda

Fig. 16.1 General types of modalities in human sensing and actions task for language learning

testing though mobile devices. Source: Adapted from Sharma et al. [14]

16 Multimodal Interactivity in Foreign Language Testing 355



device can provide. One important fact is that the testee should be able to imple-

ment the test tasks without any technical interference due to interface design. For

instance, if a testee is to read a text for reading to assess his reading comprehension,

the interface and navigation should help him to see and read clearly the text

(as many times as desired by the test administrators, sometimes one and others

more) as well as to confirm or modify the answers as many times as necessary

within the time assigned for that task.

16.3.1 Programming Languages Adapted to Multimodality

One of the fundamental premises of accessibility is that accessibility is device-

independence when entering or displaying data on the Web [15]. In fact, the

challenge for most applications is to provide accessible contents on a growing

number of the different devices with different screen sizes, different methods of

interaction, and various programming languages [16]. That is the reason why it is

necessary to establish user-centered usability and validation tests of the learning

environments that facilitate the student’s performance in a language test [17].

Over the last years, the term multimodal has been revitalized due to technolog-

ical possibilities that most communication devices such as mobile phones, digital

television, computers, and else offer.

One of the future more promising uses of Extensible Multimodal Annotation

Language (EMMA) [18–20] would be as a protocol language. That is used to

exchange data in management of multimodal interaction language testing systems

in ubiquitous device that allows communication between the different components

of a multimodal system. The aim of this kind of language protocol is to integrate

input from users from different resources, and shapes the data to be processed in a

single representation. That will in turn be treated by advanced information

processing components and data processed in an examination language menu [21].

16.4 Multimodality in Language Tests

At present, there are numerous online computer-based applications for foreign

language learning. These platforms allow, on the one hand, the management and

control of digital audiovisual contents and, on the other hand, the creation of

customized training itineraries that students can follow to acquire the language.

They also offer the possibility of designing and using specific tests that allow the

user to monitor his progress periodically through the revision of his speaking,

writing, listening, and speaking performance at different competence benchmarks

(especially the European Common European Framework for the Competence of the

languages, in the US the ACTFL guidelines, etc.).

356 T. Magal-Royo and J. Garcı́a Laborda



In the field of computer assisted language learning (CALL), standardized objec-

tive tests are continuously under revision especially to determine their effect in the

classroom through the washback effect (the effect of testing in how classes are

taught). This research has been empowered in the last 10 years because the data

available on washback from computer-based exams is very limited. Data obtained

on usability and ergonomics is also very limited [22] and sometimes does not

clearly demonstrate whether enriched contexts have a beneficial effect on the

testee’s performance. That is why research projects like OPENPAU™ [13],

PAULEX Universitas™ [22] and HIEO have addressed these two aspects as well

as the students’ and teachers’ attitudes. All these projects created their own plat-

forms for application in different devices and revisited the effect of technology on

the students’ reactions and platform design (see Table 16.2).

What has been especially attractive in this research on design and usability is the

students’ adaptation to online testing and to new devices. This is especially signif-

icant in the evolution of mobile devices. The use of ubiquitous devices would have

a great impact on the online University Entrance Examination in Spain, because as

observed in the field research, many high schools do not have an adequate wifi

connection, computers do not always have an proper maintenance, schools also use

different software, etc. In light of these facts, the use of mobile devices makes it

possible to have the same equipment for all the students, with the same function-

alities, software, etc., leading to fair conditions across schools and educational

districts [23, 24].

The technological advances of ubiquitous devices and methods of interaction for

accessibility are the starting point to analyze the potentiality that could come from

the use of multimodal environments that favor communication and data transmis-

sion from the online language tests [25–29].

One of the most significant benefits that multimodality offers in language testing

in our design in the OPENPAU™ application is to establish multiple access levels

to the information (the language test) adapted to each testee through, at least, three

simultaneous communication channels (i.e., keyboard, tactile, and voice),

according to the type of test task whether oral or written [30–32].

The functional adaptation to the type of task has been developed in an interactive

multimodal prototype application taking into account the technological conditions

of mobile devices for user interactivity [33, 34].

The following sections will the conceptualization and factors implicated in the

development of an interactive multimodal application for language testing along-

side with the observations on the use of the OPENPAU™ platform where the user

can choose from three modes of interactive navigation to take the exams.

Today, most devices use the conventional pattern data input (keyboard–mouse)

and data output (screen–printer) [35]. This also the case for most online language

tests along with the use of adequate media that is required in the specific conditions

of a language exam (such as linguistic saliency, focus on meaning, and adequacy of

tasks to the media) [36, 37]. Besides, research arising from the use of different

methods of interaction [38], have suggested ways improve foreign language skills

but there is not any specific project or research evaluating significantly the use of

16 Multimodal Interactivity in Foreign Language Testing 357



multimodality in exams. Out research goes a step forward, to our knowledge this is

the first time that research seeking information on how multimodality is applied in

language tests has been done.

16.5 Methodology for the Development of a Multimodal
Application for Language Testing

To define a language testing online application we defined tasks, goals, and

technical issues as the starting point for the development of the final prototype

(see Fig. 16.2). Although the use of voice recognition can seem promising in this

application and its use can be suggested for rating, there are a number of problem-

atic issues involved in such use. The difficulty of establishing automatic rating

parameters is not minor because it requires the creation of a recognition database

that can discriminate among native accents without determined models (i.e., inter-

national students do not have a close-to-British or close-to-American accent but a

combination of many) making recognition difficult. The other key issue is about

how to add and deduct points in the scores (whether grammar, pronunciation,

lexical content, speech cohesion, etc.). Thus, we believed that rating should be

carried by traditional human raters and speech recognition should have its major

value for navigation. We focused on:

• Validating an environment of communication with potential test users.

• Applying the concepts of technical accessibility in the creation of a communi-

cative interface for the final user.

• Creating a multimodal navigation interface for testing language skills based on a

series of tasks oriented for use in a ubiquitous device and in a web environment.

The designed interface used three general navigation and data input systems

(touch screen, keyboard, and voice) through which the user can interact

sequentially.

The internal programming of the application allows in its version of voice

recognition, management actions, and processes on the navigation interface during

the exam through the recognition of specific words like next, out, yes, no, etc.,

When the users first enters the test application (see Fig. 16.3), they can indicate the

type of navigation interaction in the different screens created for each task

(Figs. 16.4 and 16.5). This helps the users define the type of communication with

the application they want to use.

As mentioned above, the task features of the test dictated the selection of the

three communication systems. This led to establishing a coherent method of

navigation for the different sections of the test (reading, writing, speaking, and

listening) as well as a unidirectional method to input the student’s production data

that permitted secure storage and retrieval by the raters and administrators for an

358 T. Magal-Royo and J. Garcı́a Laborda



efficient automatized or human rating, the preparation of accurate reports, and the

adequate and fast delivery of the final results to the student (see Fig. 16.6).

For instance, in the case of reading comprehension tasks, we used a system of

consecutive linear interfaces where the person taking the test could first read the test

and then respond to the questions in independent interfaces. We believed that this

would be better than the traditional text deployment together with the questions

Fig. 16.2 Task definition for language learning testing through mobile devices

16 Multimodal Interactivity in Foreign Language Testing 359



Fig. 16.3 OPENPAU™ student testing

Fig. 16.4 Access to the detection system of conventional manual navigation (tactile and key-

board) and access to the multimodal detection system (voice recognition for navigation)

Fig. 16.5 Voice recognition detection

360 T. Magal-Royo and J. Garcı́a Laborda



which may be operational in large screens but not as much in tablet PCs or other

mobile devices.

The platform permits the student to go forward and backwards within the official

time limit assigned to each task. At the end of each section of the exam, the student

has to save the answers. At the end of the exam the student has to do a final

verification and validate the test before it is submitted (see Fig. 16.6).

The final verification interface makes it possible to verify whether all the

sections have been completed and if the testee is ready to finish. As indicated in

the instructions of the test, when the test taker validates the test, he grants permis-

sion to the platform to close the application and to the administrators to proceed to

storage and the rating process.

The system had triple evaluation through experts and designers, through test

takers whose interest was the test itself and users who looked at the design and

presentation. The results indicate that while test takers tend to consider the online

test difficult for younger students, they consider it adequate for 12th graders

(18 years old) [39]. On the other hand, they consider the platform adequate and

highly usable [40]. Limitations in multi-platform have been detected in strategies of

interaction device-testee in cases such as enlargement of test, shadowing, and

others that favor the use of tablet PC versus that tradition desktop PC. That

means, IPad takers would have some advantages in front of traditional desktop

users. Voice recognition could be used in both cases in a similar manner and with

similar features.

Fig. 16.6 OPENPAU™ multimodal prototype

16 Multimodal Interactivity in Foreign Language Testing 361



As a summary of the process of creation of the user-oriented final interface (both

for students and teachers), the importance of selecting the type of initial navigation

test can be observed. An early decision in the mode of browsing increases the user’s
potential for the test. Thus an adequate decision of this type does not only favor the

navigation but also enhances his potential for language test completion by reducing

potential problems due to navigation.

16.6 Conclusions and Further Research

The results of the project research so far have served to implement and validate a

future a real and effective multimodal prototype which has been designed by

experts of different fields and expertise in language testing in cooperation with

the target students (see Fig. 16.7).

Future research will have to look at the students’ perceptions, teachers’ and
administrators’ attitudes towards the use of multimodal applications oriented to

second language acquisition and to create a new way to develop a test and exams

online.

We will include design validation through questionnaires and field annotations

in a multimodal prototype applied to the entire exam, not only navigation, but in the

introduction and development of the same test and which is compatible with

standards established by the W3C Multimodal Interaction Working Group [41].

Fig. 16.7 Multimodal prototype as seen in the research Tablet PC

362 T. Magal-Royo and J. Garcı́a Laborda



Acknowledgements The authors would like to thank the Ministry of Economy and Competi-

tiveness for funding the research project (with co-financing by ERDF) within the framework of the

National R +D+ I (2011–2014) “Guidance, proposals and teaching for English section in the

entrance examination to the University” (Reference FFI2011-22442). The researchers would

also thank the Spanish Ministry of Education, Culture, and Sports because without the grant for

the Senior Researchers Mobility this paper would probably have not been possible.

References

1. Chapelle, C. A., Enright, M. K., & Jamieson, J. M. (2007). Building a validity argument for the
test of English as a foreign language™. New York, NY: Routledge.

2. Garcı́a Laborda, J. (2007). On the net: Introducing standardized EFL/ESL exams. Language
Learning and Technology, 11(2), 3–9.

3. Weir, C. (2005). Language testing and validation: An evidence-based approach. New York,

NY: Palgrave Macmillan.

4. Garrett, N. (1991). Technology in the service of language learning: Trends and issues.Modern
Language Journal, 75, 74–101.

5. Roever, C. (2001). Web-based language testing. Language Learning and Technology, 5(2),
84–94.

6. Stricker, L. J., Wilder, G. S., & Rock, D. A. (2004). Attitudes about the computer-based test of

English as a foreign language. Computers in Human Behavior, 20, 37–54.
7. Garcı́a Laborda, J., Magal-Royo, T., & Enriquez Carrasco, E. V. (2010). Teachers’ trialing

procedures for Computer Assisted Language Testing Implementation. Eurasian Journal of
Educational Research, 39, 161–174.

8. Garcı́a Laborda, J. (2010). Necesitan las universidades espa~nolas una prueba de acceso

informatizada? El caso de la definición del constructo y la previsión del efecto en la ense~nanza
para idiomas extranjeros. Revista de orientaci�on y Psicopadagogía, 21(1), 71–80.

9. Chapelle, C. A., & Douglas, D. (2006). Assessing language through computer technology.
New York, NY: CUP.

10. Suvorov, R., & Hegelheimer, V. (2013). Computer-assisted language testing. In A. J. Kunnan

(Ed.), Companion to language assessment (pp. 593–613). Malden, MA: Wiley-Blackwell.

11. Karabulut, A., LeVelle, K., Li, J., & Suvorov, R. (2012). Technology for French learning: A

mismatch between expectations and reality. CALICO Journal, 29(2), 341–366.
12. Chalhoub-Deville, M. (2010). Technology in standardized language assessments. In R. Kaplan

(Ed.), Oxford handbook of applied linguistics (2nd ed.). Oxford: Oxford University Press.

13. Garcı́a Laborda, J., Magal Royo, T., Litzler, M. F., & Giménez López, J. L. (2014). Mobile

phones for a University Entrance Examination language test in Spain. Educational Technology
and Society, 17(2), 17–30.

14. Sharma, R., Pavlovi, V. I., & Huang, T. S. (1998). Toward multimodal human–computer

interface. Proceedings of the IEEE, 86(5), 853–869.
15. World Wide Web Consortium, W3C (2003). Device independence principles. http://www.w3.

org/TR/2003/NOTE-di-princ-20030901. Accessed 12 Dec 2015.

16. Larson, J. A. (2010). Standard languages for developing multimodal applications. www.

larson-tech.com/Writings/multimodal.pdf. Accessed 12 Dec 2015.

17. Zander, T. O., Kothe, C., Jatzev, S., & Gaertner, M. (2010). Enhancing human–computer

interaction with input from active and passive brain–computer interfaces. Human-Computer
Interaction Series, 0(3), 181–199. doi:10.1007/978-1-84996-272-8_11. Accessed 12 Dec

2015.

16 Multimodal Interactivity in Foreign Language Testing 363

http://www.w3.org/TR/2003/NOTE-di-princ-20030901
http://www.w3.org/TR/2003/NOTE-di-princ-20030901
http://www.larson-tech.com/Writings/multimodal.pdf
http://www.larson-tech.com/Writings/multimodal.pdf
http://dx.doi.org/10.1007/978-1-84996-272-8_11


18. World Wide Web Consortium, W3C (2009). EMMA: Extensible MultiModal Annotation

markup language. http://www.w3.org/TR/2009/REC-emma-20090210. Accessed 12 Dec

2015.

19. World Wide Web Consortium, W3C (2009). Guı́a Breve de Interacción Multimodal. Oficina

Espa~nola del W3C. http://www.w3c.es/divulgacion/guiasbreves/Multimodalidad. Accessed

12 Dec 2015.

20. World Wide Web Consortium, W3C (2009). Multimodal architecture and interfaces. http://

www.w3.org/TR/2009/WD-mmi-arch-20091201. Accessed 12 Dec 2015.

21. Oviatt, S., DeAngeli, A., & Kuhn K. (1997). Integration and synchronization of input modes

during multimodal human–computer interaction. In Proceedings of Conference Human Fac-
tors in Computing Systems, CHI’97, Atlanta, pp. 415–422.

22. Garcı́a Laborda, J., Magal-Royo, T., Da Rocha Siqueira, J. M., & Fernández Alvarez, M.

(2010). Ergonomics factors in English as a foreign language testing: The case of PLEVALEX.

Computers and Education, 54(2), 384–391.
23. Giménez-López, J. L., Magal-Royo, T., Garde Calvo, F., & Prefasi Gomar, S. (2009). The

adaptation of contents for the creation of foreign language learning exams for mobile devices.

IMCL2009. International Journal of Interactive Mobile Technologies, 3, Special Issue ISSN:
1865–7923.

24. Giménez-López, J. L., Magal-Royo, T., Garcı́a Laborda, J., & Garde Calvo, F. (2010).

Methods of adapting digital content for the learning process via mobile devices. Procedia—
Social and Behavioral Sciences, 1, 2673–2677.

25. Fuster-Duran, A. (1996). Perception of conflicting audio-visual speech: An examination across

Spanish and German. In D. G. Stork & M. E. Hennecke (Eds.), Speech reading by humans and
machines: Models, systems and applications (pp. 135–143). New York, NY: Springer.

26. Magal-Royo, T., Garcı́a Laborda, J., Peris-Fajarnes, G., & Spachtholz, P. (2007). Visual

learning through guided iconography in wireless scenarios. In Proceedings of ECEL 2007.
6th European Conference on e-Learning, pp. 415–418.

27. Magal-Royo, T., Peris-Fajarnes, G., Tortajada Monta~nana, I., & Defez Garcı́a, B. (2007).

Evaluation methods on usability of m-learning environments. International Journal of Inter-
active Mobile Technologies, 1(1), ISSN: 1865–7923.

28. Magal-Royo, T., Gimenez-Lopez, J. L., & Pairy, B. (2011). Multimodal applications for

foreign language teaching. In 14th International Conference on Interactive Collaborative
Learning, ICL, Piestany, Slovakia, pp. 145–148.

29. Magal-Royo, T., Laborda, G. J., & Gimenez-Lopez, J. L. (2011). Accessible multimodal

interaction for language learning on mobile devices. In Q. Y. Zhou (Ed.) International

Conference on Applied Social Science (ICASS 2011) Changsha, China, March 19–20.

30. Campillo, L., & Lanos, L. (2010). Tecnologı́as del habla y análisis de la voz. Aplicaciones en

la ense~nanza de la lengua. Revista Dialogo de la lengua. http://www.dialogodelalengua.com/

articulo/pdf/2/1_campillos_DL_2010.pdf. Accessed 12 Dec 2015.

31. Lingle, V., & Deshpande, A. (2010). Online multimodal interaction for speech interpretation.

International Journal of Computer Applications, 1(19), 81–85.
32. Magal-Royo, T., & Giménez Lopez, J. L. (2012). Multimodal interactivity in the foreign

language section of the Spanish university admission examination. Revista Educacion, 357,
163–176.

33. Chittaro, L. (2010). Distinctive aspects of mobile interaction and their implications for the

design of multimodal interfaces. Journal on Multimodal User Interfaces, 3(3), 157–165.
SpringerLink (Ed.).

34. K€onig, W. A., Rädle, R., & Reiterer, H. (2010). Interactive design of multimodal user

interfaces. Reducing technical and visual complexity. Journal on Multimodal User Interfaces,
3(3), 197–213. doi:10.1007/s12193-010-0044-2. SpringerLink Ed.

35. Tan D., & Nijholt, A. (2010).Brain–computer interfaces and human–computer interaction.

Brain-Computer Interfaces. Human-Computer Interaction Series, 0(1), 3–19. doi:10.1007/
978-1-84996-272-8_1. Accessed 12 Dec 2015.

364 T. Magal-Royo and J. Garcı́a Laborda

http://www.w3.org/TR/2009/REC-emma-20090210
http://www.w3c.es/divulgacion/guiasbreves/Multimodalidad
http://www.w3.org/TR/2009/WD-mmi-arch-20091201
http://www.w3.org/TR/2009/WD-mmi-arch-20091201
http://www.dialogodelalengua.com/articulo/pdf/2/1_campillos_DL_2010.pdf
http://www.dialogodelalengua.com/articulo/pdf/2/1_campillos_DL_2010.pdf
http://dx.doi.org/10.1007/s12193-010-0044-2
http://dx.doi.org/10.1007/978-1-84996-272-8_1
http://dx.doi.org/10.1007/978-1-84996-272-8_1


36. Alseid, M., & Rigas, D. (2008). An empirical Investigation into the use of multimodal

E-learning interfaces. In S. Pinder (Ed.), Advances in human-computer interaction (Vol. 5,

pp. 85–100). USA: Hindawi Publishing Corporation.

37. MCgee-lennon, M., Nigay, L., & Gray, P. (2010). The challenges of engineering multimodal

interaction. Journal on Multimodal User Interfaces, 3(3), 155–156. SpringerLink Ed. www.

springerlink.com/index/y55w472191907011.pdf. Accessed 12 Dec 2015.

38. Alwan, A., Vijian, B., Black, M., Casey, L., Gerosa, M., Heritage, M., et al. (2007). A system

for technology based assessment of language and literacy in young children: The role of

multiple information sources. In IEEE 9th Workshop on Multimedia Signal Processing, pp.
26–30. http://diana.icsl.ucla.edu/Tball/publications/tball_mmsp07.pdf. Accessed 12 Dec

2015.

39. Garcı́a Laborda, J., & Litzler, M. F. (in press). Students’ opinions about ubiquitous delivery of
standardized English exams. Porta Linguarum.

40. Garcı́a Laborda, J., Magal-Royo, T., & Bakieva, M. (2016). Looking to the future of language

assessment: Tablet PCs usability in language testing. Journal of Universal Computer Science,
22(1).

41. Duarte, C. (2008). Design and evaluation of adaptive multimodal systems. Doctoral theses,
Departamento de Informática, Universidad de Lisboa. http://hdl.handle.net/10455/3123.

Accessed 12 Dec 2015.

16 Multimodal Interactivity in Foreign Language Testing 365

http://www.springerlink.com/index/y55w472191907011.pdf
http://www.springerlink.com/index/y55w472191907011.pdf
http://diana.icsl.ucla.edu/Tball/publications/tball_mmsp07.pdf
http://hdl.handle.net/10455/3123


Chapter 17

Multi-Device Applications Using
the Multimodal Architecture

Nuno Almeida, Samuel Silva, António Teixeira, and Diogo Vieira

Abstract Nowadays, users have access to a multitude of devices at their homes,

workplaces or that they can carry around. Each of these devices, given its features

(e.g., interaction modalities, screen size), might be more suitable for particular

users, tasks, and contexts. While having one application installed in several devices

might be common, they mostly work isolated, not exploring the possibilities of

several devices working together to provide a more versatile and richer interaction

scenario. Adopting a multimodal interaction (MMI) architecture based on the W3C

recommendations, beyond the advantages to the design and development of MMI,

provides, we argue, an elegant approach to tackle multi-device interaction scenar-

ios. In this regard, this chapter conveys our views and research outcomes addressing

this subject, presenting concrete application examples.

17.1 Introduction

Mobile devices, smart TVs, media centers, and game boxes are widespread and

used on a daily basis by millions around the world. These devices are important

means for providing users with applications and services that support many aspects

of their personal and professional life. Multimodal interaction (MMI) is a common

feature for many of them. Each of these devices presents a set of characteristics

(e.g., mobile nature and available input and output modalities) that make them more

suitable for particular contexts, and being able to seamlessly change from one

device to another while performing a task, commuting among environments (e.g.,

from a smartphone on the street to a tablet at home), following the concept of

migratory interfaces [1], would provide a desirable degree of flexibility and user

adaptation.

In addition, multiple devices, if used together, can provide new means for

interacting with an application, whether providing complementary features to a

N. Almeida • S. Silva (*) • A. Teixeira • D. Vieira

DETI—Department of Electronics, Telecommunications and Informatics, IEETA—Institute

of Electronics and Informatics of Aveiro, University of Aveiro, Campus Universitário de

Santiago, Aveiro, Portugal

e-mail: sss@ua.pt

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_17

367

mailto:sss@ua.pt


single user or supporting collaboration among users. The output modalities should

also be able to provide feedback in multiple ways, adapting to the current device

ecosystem, with the information made available in one device potentially adding to

the contents provided by other accessible devices.

Therefore, the coexistence of multiple devices and applications provides (and

demands) new interaction possibilities, posing challenges regarding how different

devices can be used simultaneously to access a specific application, taking the most

out of each device features (e.g., screen size) and sharing input and output

modalities.

Designing and developing a single application to run on multiple devices, taking

advantage of each device characteristics, and harnessing the power of multiple

devices simultaneously, presents a number of challenges. These concern decisions

on where the application logic will be instantiated and how the different modalities

are managed and used to attain a seamless and fluid interaction experience. The

main goal is that the experience with the different devices and modalities blends to

the point that what is in focus is the interaction with the ecosystem for which each

of the devices can be seen as a nested or complex modality component [2]. For

multimodality, we aim at providing a versatile experience through a set of modal-

ities, used simultaneously or not, to widen the data bandwidth between users and

systems. With multi-device we aim to serve the same purposes at a higher level.

While working on the design and development of multimodal applications, in a

variety of scenarios provided, for example, by projects AAL4All,1 Paelife,2

Smartphones for Seniors,3 and Marie Curie IAPP project IRIS4 [3], we envisaged

several contexts where multiple devices are available and can be explored to

enhance interaction, and in which several users may interact simultaneously over

the same contents making use of their personal devices.

The support for multi-device interaction is the focus of several works presented

in the literature. From the early multi-device proposals, such as those by Rekimoto

[4], to recent works, e.g., Diehl [5], the design approaches vary considerably and

despite interesting results having been attained, serving multimodal multi-device

purposes, most approaches propose their own architectures with a potential nega-

tive impact on their dissemination and compatibility. Proposing approaches that

build on existing standards should be, in our opinion, and to the extent that those

standards serve the targeted use cases, our first option.

In our work context, we approach multi-device support starting from the

multimodality perspective and we argue that the MMI architecture, adopted for

the different projects, and proposed based on the W3C recommendations, provides

enough flexibility to integrate all the features that would enable multi-device

support. This is also emphasized by our view, conveyed above, that a multi-device

1 http://www.aal4all.org/.
2 http://www.paelife.eu/.
3 http://www.smartphones4seniors.org/.
4 http://iris-interaction.eu.

368 N. Almeida et al.

http://www.aal4all.org/
http://www.paelife.eu/
http://www.smartphones4seniors.org/
http://iris-interaction.eu/


setting can be viewed as a set of complex (or nested) modality components (the

devices) used to interact with the macro application made available to users on

more than one device. This approach would exhibit two advantages: (1) an

approach to multi-device mostly performed at the architecture level, rather than

at application level, potentially enabling easier multi-device support to the set of

applications running over the MMI architecture; and (2) a standards-based

approach, serving the goals of a loosely coupled architecture.

This chapter presents our views and proposals to support multi-device applica-

tions based on the W3C MMI architecture. After a brief contextualization of the

architectural and technical background at stake for our work, in Sect. 17.2, we

describe two different multi-device approaches in Sect. 17.3. Then, Sect. 17.4 is

devoted to two application examples extracted from our ongoing work on ambient

assisted living and interactive visualization. While the first example shows how

multi-device support can be easily added to an existing multimodal application, the

second is a first step in exploring multi-device visualization. Finally, Sect. 17.5

presents some conclusions and discusses routes for further development.

17.2 Background

Our work on multimodal applications spans over a wide range of applications

covering services in ambient assisted living, such as personal life assistants [6, 7]

and telerehabilitation [8], medication adherence [9], and a recent evolution of other

lines of research into the MMI domain concerning autism spectrum disorders [10],

and interactive visualization [11]. Our work also includes research on interaction

modalities, such as speech [12, 13] and gaze [14], in an effort to provide what we

call generic modalities [11–13]. In many of these works there is a rising opportunity

and need of addressing multimodal multi-device interaction and this section pro-

vides a very brief account of one of the most recent scenarios we are considering for

requirement elicitation, in line with the use cases proposed, for example, in [15],

and summarizes relevant aspects of our previous developments regarding the

adopted MMI architecture and its role on multi-device support.

17.2.1 Research Context: Multimodal Multi-Device
Scenarios

One of the scenarios motivating our interest in further developing and exploring

multi-device MMI, and a representative example of our research context, is pro-

vided by the Marie Curie IAPP project IRIS [3]. One of the main goals of IRIS is to

provide a natural interaction communication platform accessible and adapted for all

users, particularly for people with speech impairments and elderly in indoor

17 Multi-Device Applications Using the Multimodal Architecture 369



scenarios. The particular scenario under consideration, a household, where a family

lives (parents, two children, one diagnosed with autism spectrum disorder, and a

grandmother), and where different devices exist around the house, and are owned

by the different family members, is the perfect setting for evolving multi-device

MMI. In our view, communication can go beyond the exchange of messages

through these media and profit from the dynamic multi-device ecosystem, where

similar contents (e.g., a photo blog from the latest weekend activities or the family

agenda) can be viewed in different manners, adapted to the device and user

preferences, and supporting a collaborative interaction effort.

17.2.2 Multimodal Interaction Architecture

Our multimodal architecture [6, 12, 16–18], initially developed for AAL [6, 19],

adopts the W3C recommendations and, as depicted in Fig. 17.1, can briefly be

described as being composed of four main components [2, 17]: interaction manager

(IM), data component, modality components, and the runtime framework.

The runtime framework provides the infrastructure to run the entire system, start

components, and manage communication. Modality components enable the differ-

ent inputs and outputs. The data component stores data related to the application

and only the IM has access to it. The IM is a central component as it manages all

received events from the modality components. It is a state chart configured through

the State Chart extensible Markup Language (SCXML) [20].

The communication between components (or modalities) and the IM is

performed by exchanging life cycle events, which contain Extensible MultiModal

Annotation (EMMA) markup language [21], used to describe the events generated

by modalities.

The implementation of the IM uses the Apache Commons SCXML5 to manage

the state machine defining the application logic. We extended the use of the

SCXML to parse multimodal architecture life cycle events and trigger them into

the state machine. The extension also includes the generation of the life cycle

events to be transmitted to the modalities.

17.3 Multi-Device Support Using the W3C MMI
Architecture

Our work on making multi-device interaction possible started from a set of simple

ideas we considered as grounds for our first experiments: (1) have a unique

application, running in the various devices, to reduce development cost, integrating

5 http://commons.apache.org/proper/commons-scxml/.

370 N. Almeida et al.

http://commons.apache.org/proper/commons-scxml/


means to adapt to the device, user, context, and to the existence and status of other

devices running the same application; (2) make information from each of the

existing device modalities available to the applications running in other devices;

and (3) rely on the W3C MMI architecture standards and on our implementation of

the MMI architecture to accomplish all the required features.

In our proposal, the IMmodule assumes the most importance. By using the IM as

a pseudo-modality for applications running in other devices we were able to create a

loosely coupled and extensible architecture that supports multiple modalities and

the distribution of modalities across multiple devices, such as PCs, tablets, and

smartphones. The architecture provides a flexible approach, allowing changing or

adding modalities to the system without the other components being aware.

Two variants of the solution were proposed and prototyped, one considering an

IM residing in each device, and other deploying the IM as a service, in the cloud,

enabling the existence of a central IM per application, as detailed in the following

sections.

17.3.1 Per Device Interaction Manager

Our first approach to multi-device applications considers that each device must run

one IM. Figure 17.2 shows an illustration of a scenario with two devices, each

running the application with a GUI modality, one IM, and any additional modali-

ties, which can be different for each device. In this multi-device scenario, one IM

behaves as a modality to the other. Following this approach, it is possible to

disconnect the two devices and work with each device separately.

To enable each IM to discover the other, we use an UPnP server allowing all IMs

to register their address. Each IM periodically sends broadcast requests to find

UPnP servers with the service “MMI Discovery,” registers its address on it, and

Fig. 17.1 Main

components of the

multimodal architecture as

recommended by the W3C

(adapted from https://www.

w3.org/TR/mmi-arch)

17 Multi-Device Applications Using the Multimodal Architecture 371

https://www.w3.org/TR/mmi-arch
https://www.w3.org/TR/mmi-arch


obtains a list of existing IMs. From this point on, both IMs know of the other’s
existence and where to send the messages. Besides this process of discovery, all the

communication between the IMs and the modalities is accomplished using the

HTTP GET/POST protocol encapsulating the MMI life cycle events.

Only the IMs can exchange messages between devices. If a new event occurs in

one modality of Device 1, this modality only sends the message to the local IM,

which in turn, if it has information regarding the other device, sends the message to

the other IM (Device 2). The IM for Device 2 processes that message as if it was

sent by one of its modalities. Figure 17.3 presents an example of the messages

between IMs and modalities after discovery.

Besides the simple registration of available devices, described above, a modality

providing information regarding proximity among devices can be used in the multi-

device application context as a trigger between single and multi-device use. As a

proof of concept, and considering the scenario of a living room with a main unit

(Home computer + TV) and a portable unit (tablet), we developed a proximity

modality using wireless RSSI that computes the approximate distance between a

tablet and the access point (placed near the main unit). Although this measurement

is not accurate, it serves the purpose of identifying if the user is near or far away.

Additionally, when the user is in front of the main unit, a Kinect is used to compute

the distance between the devices. Proximity data is sent to the local IM that informs

the other(s). With this information, the IM decides whether to use both devices for

interaction. Figure 17.4 illustrates a scenario where the user is in different locations,

enabling or not the use of the multi-device mode.

Fig. 17.2 Overview of the architecture supporting multi-device MMI considering an Interaction

Manager for each device

372 N. Almeida et al.



17.3.2 Cloud-Based Interaction Manager

The approach described above allowed, to some extent, the use of multiple devices

to improve the access to a particular application, profiting from all the available

Fig. 17.3 Illustrative example of the communication between components for an MMI multi-

device scenario. The touch and speech events, issued on one of the devices, are propagated to the

other device through the Interaction Managers

Fig. 17.4 Proximity modality in use illustrated for a fixed and a mobile device. The devices only

enter multi-device mode when they are positioned near each other

17 Multi-Device Applications Using the Multimodal Architecture 373



modalities and enabling a richer and more versatile output modality. Nonetheless,

regarding the technical aspects of deploying these applications, a few issues arise,

particularly for Microsoft Windows platforms. When making applications available

through the Microsoft App Store, one of the limitations is that those applications,

when installed, cannot communicate to internal services running on the device.

Therefore, communication with the service providing the IM was compromised,

which lead us to move into a solution with the IM located externally, in the cloud.

This change in how our MMI architecture was implemented yielded a more generic

approach to multimodal multi-device interaction.

In this novel proposal to creating multi-device applications, only one central IM

was considered, located in the cloud, and capable of managing multiple devices and

multiple clients. To enable multiple clients in the central IM, each modality

registers in the IM with a unique identifier. Figure 17.5 presents the overview of

the target architecture.

This approach is more generic and can encompass a larger number of devices

with less complexity than the first approach without a central IM. Furthermore,

despite the overall differences between the two approaches, the way the modalities

and IM communicate is the same, i.e., the same life cycle events, containing the

same EMMA markup. So, applications adopting the first approach to multi-device

support can be easily migrated to this more versatile solution.

17.4 Application Examples

The following sections illustrate how the described features have been used in the

context of two different applications, each using one of the alternative approaches

described earlier. The first example builds on our work for ambient assisted

living. It enables the use of a personal life assistant taking advantage of multiple

Fig. 17.5 Overall architecture for multi-device MMI supports using a single Interaction Manager

located in the cloud

374 N. Almeida et al.



devices to provide additional display space for accessing information by consid-

ering devices in the user’s proximity. The second example concerns data and

information visualization and is aimed at being an experimental platform to

explore multimodal multi-device interactive visualization. Instead of the usual

setting of custom applications to support collaborative multimodal interactive

visualization and analysis, we argue that such features can be supported at the

architecture level, enabling a more generalized use of such features among

everyday applications.

17.4.1 AAL Device-Rich Scenarios: A Multi-Device Personal
Life Assistant

This first example illustrates how an existing multimodal application, a personal

life assistant [6] providing a set of modules such as news, weather, and a messaging

hub, was evolved to support multi-device features.

The requirements for this application include not only the ones initially consid-

ered for the AALFred assistant [6], regarding the support for MMI including

speech, touch, and gestures, but also new requirements were determined to create

a multi-device experience. The application should be capable of running indepen-

dently, connect among devices running it, change between autonomous or joint use,

based on proximity, and allow showing the same or alternative content in each of

the devices. Furthermore, the interface should be as similar as possible in both units,

to minimize the need for additional learning.

In the first stage, only the news module was addressed, as a proof of concept for

the multi-device features, updating the single device news module developed for

the AALFred assistant. We considered, as the typical multi-device scenario, a static

main unit (fixed computer) connected to a television and a mobile unit (tablet or

smartphone), each working independently but simultaneously interoperable. In this

multi-device scenario interaction can potentially be performed in three different

ways: (a) through the main unit; (b) through the mobile unit; and (c) through both

the main and mobile units.

Interaction through the main unit means that interaction is performed using only

the modalities made available by the fixed-position device. In our prototype there

are two main interaction modalities: voice (body), gestures and graphical output. In

the interaction through the mobile unit, the user will interact by only using the

modalities available on the tablet, particularly touch and graphical output. These

two ways of interacting with the application are the typical single device scenario,

although one should note that it is actually the same application running on each of

the devices and not separate custom versions.

17 Multi-Device Applications Using the Multimodal Architecture 375



Interaction considering the two units takes advantage of the interaction capabil-

ities of both devices to improve the usability of the system and implement new

features. For example, when detecting that the user is within the range of the main

unit, the application can allow using the main screen to visualize content while

using the tablet as a controller.

In the news module there are three main information components that users can

access: a list of the available news, an image illustration for the news content, and

the news text. Considering these components, there are several content combina-

tions possible when in the presence of two devices. For example, and without loss

of generality, for a large TV set and a tablet, three combinations were considered, as

depicted in Fig. 17.6: (1) TV and tablet showing the news content; (2) TV showing

the image illustration in full screen and the tablet showing the complete news

content; and (3) TV showing the whole news content and the tablet showing the

list of news, serving as a news navigation device. If one of the applications is set to

display only the news list and it starts working alone (the other device is not near)

the application automatically reverts to working in single device mode.

This example depicts our first experiment with multi-device support. One of the

first aspects that should be noted is that it consisted in adding multi-device capa-

bilities to an existing multimodal application and, despite the changes to the IM,

only minimal adjustments were required to the application, mostly concerning the

extension of the output modality to support the different modes. In this example,

even though, from the technical perspective, it would be possible to do so, we did

not address the use of different input modalities connected to both devices, and the

main unit was mostly used for its output capabilities. Although this example is for a

particular scenario of two devices, this approach can be considered for any number

of devices. Nonetheless, as previously mentioned, it would not serve the purpose of

making the application available in the Windows App Store.

17.4.2 Collaborative Data and Information Visualization

The use of natural and MMI in Visualization, still a rather unexplored field of

research [22], e.g., based on speech and touch, might bring advantages at different

levels. The use of multiple interaction modalities can help bridge the gap between

visualizations and certain audiences, by providing, for example, alternatives for the

less technologically savvy, improving the visibility of certain aspects of the data, or

by ensuring a richer communication channel between the user and the application.

By supporting a multitude of interaction options, a system can also favor a more

versatile scenario when it comes to the analysis of the data, enabling an active

search for insight that otherwise might not have been foreseen by the interface

designer [22]. In this regard, it is important to explore and understand the strengths

and weaknesses of multimodality when used in the context of Interactive

376 N. Almeida et al.



Visualization [23], exploring the potential advantages deriving from a richer inter-

action scenario, allowing adaptability to different contexts [24], and a wider

communication bandwidth between the user and the application [25]. Furthermore,

deriving from the wide range of devices available (smart TVs, tablet, smartphones,

etc.), it is also relevant to explore how these multiple devices might be used to

support visualization [26], whether individually, providing views adapted to the

device characteristics [24], or simultaneously, providing multiple (complementary)

views of the same dataset [27], fostering a richer interaction experience, or as the

grounds for collaborative work [28].

To this purpose, we started the development of a prototype application that

should allow for exploring the different challenges of collaborative multimodal

interactive visualization [11] and how the MMI architecture could serve its

requirements.

Fig. 17.6 Multiple ways to

present the information

available for a news content

in a multi-device scenario

including a TV and a tablet.

From top to bottom: (a) both
devices show the same

content; (b) the TV shows a

large image and the tablet

the complete news contents;

and (c) the TV shows the

complete news contents and

the tablet shows a news

navigation menu

17 Multi-Device Applications Using the Multimodal Architecture 377



The application context that served as grounds for the prototype was inherited

from our work on the proposal of evaluation frameworks for dynamic multimodal

systems. Dynamic Evaluation as a Service (DynEaaS) [29] is a platform that

supports the evaluation of complex multimodal distributed systems. The platform

collects all data concerning the users’ interaction with a system. The collected data

is organized in a hierarchical form, according to the application components. Some

insights of the users’ performance with the application can be extracted by analyz-

ing this data. Considering the amount and complexity of the resulting data, partic-

ularly in evaluation scenarios with complex tasks and several participants, it is

important to create visualizations of the data allowing experts to interact, explore,

and discuss the data.

To guide the design of the prototype application, we settled on a basic context

scenario. In a meeting room, equipped with a TV connected to a computer, three

experts meet to discuss some results of a previous system evaluation session. Each

expert has a device capable of running the visualization application (each

supporting multiple input and output modalities). One of the users is interacting

with the TV, another user has a smartphone, and the other a tablet. The visualization

modality adapts the default view to the screen size of each device. Also, users can

choose a different visualization to be used in their device only. The outcomes of any

user interaction over the visualization, through any of the available input modali-

ties, are reflected in what the other users are seeing in their devices.

In the described context, the initial requirements for our prototype included:

(1) Visualizations using different data representations, i.e., showing the same data

but in a different way; (2) Multiple devices, adapting visualization to the screen

size; and (3) Collaborative interactive visualization in a multi-device scenario.

The visualization system adopts the multimodal framework and, in this

approach, only one IM is used (see Fig. 17.7) and is responsible for managing all

the life cycle events coming from all devices. At this stage, we managed all the

visualization modes as part of a single modality, the touch modality is part of the

application, and the remaining modalities are allowed to connect to the framework.

One additional modality was created that took into consideration a smartphone-

specific capability, using the accelerometer to detect the smartphone motion. The

user can rotate the smartphone 90� to the right or left to navigate through data.

Following on the environment used in previous works, the application supports

devices with Microsoft Windows, either desktop, tablets, and smartphones. To

implement the visualization the D3js framework [30] was used as it naturally

provides a large set of data and information representations.

For this first instantiation of the prototype, we opted for four different data

representation alternatives, as depicted in Fig. 17.8: the sunburst visualization

with breadcrumb and tooltips, the treemap, the treeview, and the timeline with

tooltips. The consideration of the treeview, in particular, was meant to offer a

compact representation that could be used in a device with a small display such

as a small smartphone.

At its current stage, the prototype already illustrates some of the basic features

we deem important as a proof of concept for a multimodal multi-device interactive

378 N. Almeida et al.



Fig. 17.7 Overview of the multi-device Visualization application architecture. Multiple devices,

allowing multimodal interaction with different representations of the considered information, are

connected to a central Interaction Manager located in the cloud

Fig. 17.8 Different data representations supported by the multi-device visualization application

17 Multi-Device Applications Using the Multimodal Architecture 379



visualization tool. By using the architecture to support the main features regarding

the coordination between applications and the propagation of interaction, we place

a complex aspect of such systems outside the application, yielding easier applica-

tion development. In fact, from our point of view, this can be a first step towards a

more general approach to multi-device support, where any application running over

the multimodal framework can support, by default, multi-device features. One of

the innovative features of using this second approach to multi-device is the deploy-

ment of the IM in the cloud, instead of an IM instance in each device.

17.5 Conclusions

Supporting interaction based on multiple devices is, we argue, fundamental to

tackling the dynamic, device-rich interaction scenarios that have become so com-

mon nowadays. Supporting this feature at architecture level, as proposed, provides

a simple and elegant approach that moves most of the need to support such features

from the application into the architecture. In our view, such approach is critical to

enabling widespread consideration of multi-device interaction not only in very

specific applications, but also as a general feature available through the MMI

architecture to all applications.

In our proposal we consider an approach to multi-device support where the IM is

responsible for registering the available modalities. As to the discovery of modal-

ities, in our first approach, we assume each device has an IM and finds other IMs in

the network through an uPnP server; in a second approach, we consider a central IM

located in the cloud and every modality connects to it. Regarding discovery and

registration, it is worth noting that the W3C has recently published a first working

draft for the discovery and registration of multimodal modality components [31].

As what is described in this chapter consists mainly of the adopted principles and

some initial proofs-of-concept, there are several aspects that need to be addressed to

attain the full extent of the desired multimodal multi-device interaction capabilities.

A first line of work must address the scalability issues of the IM in the cloud.

Another important aspect that should be further explored is the expansion of the

output modality. For example, the graphical output modality should become more

complex and autonomous to adapt to different devices and layouts in line with what

we proposed for a complex speech modality [12]. New research is also needed to

provide information regarding proximity between devices for the version with the

IM in the cloud.

Finally, to get the most out of the multi-device capabilities, one could envisage

complex interaction patterns considering, for example, that modalities made avail-

able by different devices can be used together. For instance, the user points to a

large screen, equipped with a Kinect, and says “Show me this,” with the speech

recognized by her smartphone. Or several users may be in a room, analyzing the

animation of a dynamic dataset, but given various computational and display

characteristics of their personal devices, different representations are used for

380 N. Almeida et al.



each (e.g., high resolution, graphical, text, and mixed). For both these examples, the

timing for the different events assumes high relevance, and the importance of

synchronization among the different devices and modalities is made clear.

Addressing this challenge would largely benefit the evolution of multimodal

multi-device interaction.

Acknowledgements The work presented in this chapter has been partially funded by IEETA

Research Unit funding (Incentivo/EEI/UI0127/2014), Marie Curie IAPP project IRIS (ref. 610986,

FP7-PEOPLE-2013-IAPP), project PaeLife (AAL-08-1-2001-0001), and QREN projects Smart

Phones for Seniors (S4S), AAL4ALL and EMIF—European Medical Information Framework

(EU FP7), co-funded by COMPETE and FEDER.

The authors thank all W3C MMI recommendations contributors for their insightful and

inspiring approaches to MMI.

References

1. Ghiani, G., Polet, J., Antila, V., & Mäntyjärvi, J. (2015). Evaluating context-aware user

interface migration in multi-device environments. Journal of Ambient Intelligence and
Humanized Computing, 6(2), 259–277.

2. Dahl, D. A. (2013). The W3C multimodal architecture and interfaces standard. Journal on
Multimodal User Interfaces, 7(3), 171–182.

3. Freitas, J., Candeias, S., Dias, M. S., Lleida, E., Ortega, A., Teixeira, A., et al. (2014). The IRIS

project: A liaison between industry and academia towards natural multimodal communication.

In Proceedings of Iberspeech, Las Palmas de Gran Canaria, Spain, pp. 338–347.
4. Rekimoto, J. (1998). A multiple device approach for supporting whiteboard-based interac-

tions. In Proceedings of the Conference on Human Factors in Computing Systems (CHI’98),
Los Angeles, CA, pp. 344–351.

5. Diehl, J., & Borchers, J. O. (2014). Supporting multi-device iteraction in the wild by exposing
application state. (PhD thesis, No. RWTH-CONV-144030). Aachen:Fachgruppe Informatik.

6. Teixeira, A., Hämäläinen, A., Avelar, J., Almeida, N., Németh, G., Fegyó, T., et al. (2013).

Speech-centric multimodal interaction for easy-to-access online services: A personal life

assistant for the elderly. In Proceedings DSAI 2013, Procedia Computer Science, Vigo,
Spain, pp. 389–397.

7. Hämäläinen, A., Teixeira, A., Almeida, N., Meinedo, H., Fegyó, T., & Dias, M. S. (2015).

Multilingual speech recognition for the elderly: the AALFred personal life assistant. Procedia
Computer Science, 67, 283–292.

8. Teixeira, A. J. S., Pereira, C., Oliveira e Silva, M., Alvarelh~ao, J., Silva, A., Cerqueira, M., et

al. (2013). New telerehabilitation services for the elderly. In I. M. Miranda & M. M. Cruz-

Cunha (Eds.), Handbook of research on ICTs for healthcare and social services: Develop-
ments and applications. Hershey, PA: IGI Global.

9. Ferreira, F., Almeida, N., Rosa, A. F., Oliveira, A., Casimiro, J., Silva, S., et al. (2013). Elderly

centered design for Interaction—the case of the S4SMedication Assistant. In 5th International
Conference on Software Development and Technologies for Enhancing Accessibility and
Fighting Info-exclusion, DSAI, Vigo, Spain.

10. Leal, A., Teixeira, A., & Silva, S. (2016). On the creation of a persona to support the

development of technologies for children with autism spectrum disorder. In Proc. HCI
International LNCS 9739, Toronto, Canada, 213–223. doi: 10.1007/978-3-319-40238-3_21

17 Multi-Device Applications Using the Multimodal Architecture 381

http://dx.doi.org/10.1007/978-3-319-40238-3_21


11. Almeida, N., Silva, S., Santos, B. S., & Teixeira, A. (2016). Interactive, multi-device visual-

ization supported by a multimodal interaction framework: Proof of concept. In Proc. HCI
International. LNCS 9754, Toronto, Canada, 279–289. doi: 10.1007/978-3-319-39943-0_27

12. Almeida, N., Silva, S., & Teixeira, A. (2014). Design and development of speech interaction: a

methodology. In Proc. HCI International, LNCS 8511, Crete, Greece, 370–381.
13. Teixeira, A., Francisco, P., Almeida, N., Pereira, C., & Silva, S. (2014). Services to support use

and development of speech input for multilingual multimodal applications for mobile scenar-

ios. In The Ninth International Conference on Internet and Web Applications and Services
(ICIW 2014), Track WSSA—Web Services-based Systems and Applications, Paris, France.

14. Vieira, D., Freitas, J. D., Acartürk, C., Teixeira, A., Sousa, L., Silva, S., Candeias, S., and Sales
Dias, M. (2015). "Read that article": Exploring synergies between gaze and speech interaction.

In Proc. 17th International ACM SIGACCESS Conference on Computers & Accessibility
(ASSETS ’15). ACM, New York, NY, USA, 341–342. doi: 10.1145/2700648.2811369

15. Wiechno, P., Dahl, D., Ashimura, K., & Tumuluri, R. (2012). Registration & discovery of

multimodal modality components in multimodal systems: Use cases and requirements.

[Online]. https://www.w3.org/TR/mmi-discovery/. Accessed 1 Jan 2016.

16. Almeida, N., Silva, S., & Teixeira, A. J. S. (2014). Multimodal multi-device application

supported by an SCXML state chart machine. InWorkshop on Engineering Interactive Systems
with SCXML, The sixth ACM SIGCHI Symposium on Computing Systems, Toronto, Canada.

17. Almeida N., & Teixeira A. (2013). Enhanced interaction for the elderly supported by the W3C

Multimodal Architecture. In Proc. 5a Conf. Nacional sobre Interacç~ao, Vila Real, Portugal.
18. Teixeira, A., Almeida, N., Pereira, C., e Silva, M. O., & Pereira, J. C. (2013). Serviços de

Suporte �a Interaç~ao Multimodal. In A. Teixeira, A. Queirós, & N. Rocha (Eds.), Laborat�orio
Vivo de Usabilidade (pp. 151–165). ARC Publishing.

19. Teixeira, A., Almeida, N., Pereira, C., e Silva, M. O., Vieira, D., & Silva, S. (2016).

Applications in ambient assisted living. In D. Dahl (Ed.), Multimodal Interaction with W3C
Standards. Springer.

20. Barnett, J., Akolkar, R., Auburn, R. J., Bodell, M., Burnett, D. C., Carter, J., et al. (2015), State

chart XML (SCXML): State machine notation for control abstraction. W3C Recommendation.

https://www.w3.org/TR/scxml/. Accessed 29 Jul 2016.

21. Baggia, P., Burnett, D. C., Carter, J., Dahl, D. A., McCobb, G., & Raggett, D. (2009). EMMA:

Extensible multimodal annotation markup language. https://www.w3.org/TR/emma/.

Accessed 1 Jan 2016.

22. Lee, B., Isenberg, P., Riche, N. H., & Carpendale, S. (2012). Beyond mouse and keyboard:

Expanding design considerations for information visualization interactions. IEEE Transac-
tions on Visualization and Computer Graphics, 18(12), 2689–2698.

23. Ward, M. O., Grinstein, G., & Keim, D. (2010). Interactive data visualization: Foundations,
techniques, and applications. Natick, MA: CRC Press.

24. Roberts, J. C., Ritsos, P. D., Badam, S. K., Brodbeck, D., Kennedy, J., & Elmqvist, N. (2014).

Visualization beyond the desktop—the next big thing. IEEE Computer Graphics and Appli-
cations, 34(6), 26–34.

25. Jaimes, A., & Sebe, N. (2007). Multimodal human-computer interaction: A survey. Computer
Vision and Image Understanding, 108(1–2), 116–134.

26. Schmidt, B. (2014). Facilitating data exploration in casual mobile settings with multi-device
interaction. Universitat Stuttgart, Holzgartenstr. 16, 70174 Stuttgart.

27. Chung, H., North, C., Self, J. Z., Chu, S., & Quek, F. (2014). VisPorter: Facilitating informa-

tion sharing for collaborative sensemaking on multiple displays. Personal and Ubiquitous
Computing, 18(5), 1169–1186.

28. Isenberg, P., Elmqvist, N., Scholtz, J., Cernea, D., Ma, K.-L., & Hagen, H. (2011). Colla-

borative visualization: Definition, challenges, and research agenda. Information Visualization,
10(4), 310–326.

29. Pereira, C., Almeida, N., Martins, A. I., Silva, S., Rosa, A. F., Oliveira e Silva, M., & Teixeira,

A. (2015). Evaluation of complex distributed multimodal applications: evaluating a

382 N. Almeida et al.

http://dx.doi.org/10.1007/978-3-319-39943-0_27
http://dx.doi.org/10.1145/2700648.2811369
https://www.w3.org/TR/mmi-discovery/
https://www.w3.org/TR/emma/


telerehabilitation system when it really matters. In Proc. HCI International, LNCS 9194, Los
Angeles, CA, USA, 146–157, doi:10.1007/978-3-319-20913-5_14

30. Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3: Data-driven documents. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12), 2301–2309.

31. Barnett, J., Dahl, D., Tumuluri, R., Kharidi, N., & Ashimura, K. (2016). Discovery and

registration of multimodal modality components: State handling. [Online]. https://www.w3.

org/TR/mmi-mc-discovery/. Accessed 15 Mar 2016.

17 Multi-Device Applications Using the Multimodal Architecture 383

http://dx.doi.org/10.1007/978-3-319-20913-5_14
https://www.w3.org/TR/mmi-mc-discovery/
https://www.w3.org/TR/mmi-mc-discovery/


Chapter 18

Multimodal Interaction Description
Language Based on Data Modeling

Masahiro Araki

Abstract A methodology for developing a multimodal interactive system is

required to be implemented as the number of input and output devices is increasing.

Previous MMI (MultiModal Interaction) description languages used a state transi-

tion model for defining interaction, which has low maintainability and extensibility.

In this paper, we design and implement a new MMI description language named

MrailsScript from the software engineering point of view. MrailsScript consists of

the data model definition that can be inherited from existing semantic web class. By

expanding the existing web application development framework, our Mrails frame-

work can automatically generate prototype code of MMI applications that are

based on the MVC (Model-View-Controller) model referring to the annotations

of task type and dialogue initiative. We also develop a helper application for the

MMI system, MrailsBuilder, which assists in the coding of MrailsScript and

contents management using semantic web standards, such as OWL, RDFS,

and RDF.

18.1 Introduction

There has been continuing interest in the development methodology of multimodal

dialogue systems (MDS). In recent years, statistical methods such as [1, 2] are

attracting a lot of attention as a data-driven (i.e., corpus-driven) approach that can

reduce the dependence on the troublesome handcrafted coding of dialogue man-

agement rules. Although statistical methods can also be applied to other compo-

nents of MDS, such as the semi-automatic construction of semantic interpreters and

response generators, the overall development process, including the connections

with background applications and domain adaptation of speech/language compo-

nents, has yet to be covered.

M. Araki (*)

Department of Information Science, Kyoto Institute of Technology, Kyoto, Japan

e-mail: araki@kit.ac.jp

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_18

385

mailto:araki@kit.ac.jp


There has been another “data-driven” approach, such as [3, 4], which covers the

development process of all the components of dialogue systems and aims toward

rapid construction of the entire system. These approaches start with a data model

definition (hence, can be regarded as data-modeling driven approaches) and add

some rules and templates that are used as task dependent information in the

dialogue systems. As a data model definition, Kogure and Nakagawa [4] used a

relational database (RDB) schema and Heinroth et al. [3] used OWL, which is an

ontology definition language for the semantic web [5]. Although these data model-

ing schemes are familiar to the developers of web applications, the additional

definitions of rules and templates for MDS are troublesome for ordinary web

developers because such MDS related rules require some knowledge of linguistics

and speech applications.

In this paper, we propose a new data-modeling driven approach for rapid

development of MDS, which is based on collaboratively constructed semantic

resources (CSRs). We show the automatic generation mechanism of code and

data for simple MDSs. In addition, we compare the proposed approach with the

ordinary data-modeling driven approach based on RDB. By using CSRs and the

Rails framework of web application development, a large portion of troublesome

definitions of rules and templates for MDS can be eliminated.

18.2 Data Modeling Driven Approach Based on CSRs

In this section, we explain our data-modeling driven approach and describe its

usage of CSRs.

We proposed a data-modeling driven framework for rapid prototyping of mul-

timodal dialogue systems [6, 7]. The overall architecture of our framework is shown

in Fig. 18.1.

We define a data model definition language called MrailsScript. The framework,

which is called Mrails, automatically generates the model, view, and controller

(MVC) code from the data model definition written in MrailsScript. Mrails is

implemented as wrapper program of Grails,1 which is one of the popular web

application development frameworks based on the MVC model. These frameworks

realize rapid prototyping based on the “convention over configuration” concept and

the extensibility of the prototype is brought by clearly separated MVC files. We add

the use of existing ontology in defining a data model and the functionality of task-

oriented interaction capability by the task type annotation and initiative type

annotation.

We designed a class library which is based on class hierarchy and attribute

definitions of existing semantic web ontology, Schema.org.2 This class library is

1 https://grails.org/
2 https://schema.org/

386 M. Araki

https://grails.org/
https://schema.org/


used as a base class of application-specific class definitions. An example of the class

definitions is shown in Fig. 18.2.

The MyBook class inherits the Book class of the Schema.org ontology, which is

the default ontology of MrailsScript. From this data model definition and attached

annotation information, indicating the task type (Database search) and the initiative

(system initiative) of the generated MMI system, the interpreter of Mrails automat-

ically generates necessary view codes (such as create, list, and edit the instance),

controller code (according to task type annotations such as slot-filling type,

DB-search type, and explanation type), and model code, which accesses the

backend database.

In Mrails, multimodal capabilities, such as speech input/output, are realized by

adding JavaScript speech functions to the generated HTML5 view code, as shown

in Fig. 18.3.

HTML5 contains the functionality of handling various types of modalities.

Therefore, the developer can easily add modalities to the template of each

view code.

18.3 Development Support: MrailsBuilder

We developed an MDS development support system called MrailsBuilder [8]. The

overall concept of MrailsBuilder is shown in Fig. 18.4.

The development process of the MMI system in MrailsBuilder begins with the

data model definition. As the base class of MrailsScript, CSRs cover popular

Data model
definition

Groovy+Scala

Mix-in of
traits

embed
application
logic

State
definition

generate

Web Flow

convert

Grails

Data model
definition

Groovy
generate

extended
HTML
code

Model

Controller

View

Fig. 18.1 Overview of the data-modeling driven MDS development framework

18 Multimodal Interaction Description Language Based on Data Modeling 387



content for web applications. Therefore, it is a good practice for the developers to

consult the existing data schema, which describes the target class in detail, to select

appropriate properties dealt with by the target system. MrailsBuilder supports the

data model definition process, which resembles the coding support of the popular

IDE, as shown in Fig. 18.5.

The value of each property must be a literal. However, it is not easy to

distinguish between a class and a literal based solely on the name of the property.

MrailsBuilder supports this distinction by color highlighting (blue highlighting

indicates a literal). Additionally, hovering the cursor over the target property will

give a description of the target in a pop-up window. The contents of the pop-up

window explanation are dynamically generated using the rdf:description
property of each concept.

@task.DBSearch
@initiative.System
class MyBook extends Book {

static constraints = {
isbn()
name(onsearch:"like")
publisher.name(onserach:"like")
author.name(onsearch:"like")

}
}

Fig. 18.2 An example of class definitions extending an existing class library

Fig. 18.3 Adding speech modality to generated view code

388 M. Araki



Figure 18.6 shows a screenshot of the MrailsBuilder that demonstrates the

selection process of properties by consulting the class property description.

Based on this data definition, MrailsBuilder automatically generates SPARQL

queries [9] that retrieve the contents of open semantic web resources, such as

DBpedia.3 The retrieved contents are stored in the graph database engine.

Fig. 18.4 The overall concept of MrailsBuilder

Fig. 18.5 Code highlighting and pop-up hint

3 http://wiki.dbpedia.org/

18 Multimodal Interaction Description Language Based on Data Modeling 389

http://wiki.dbpedia.org/


18.4 Example and Qualitative Evaluation

As an example application, we developed a book search MMI system using

MrailsBuilder. The data model is defined in Fig. 18.7.

The SPARQL query is automatically generated and the contents of the target

system can be retrieved from DBpedia. Using the Grails framework, we can easily

generate MVC code. The templates of view code are written independent of the

modalities. The speech modality specified in [10] is added at the stage of working

code generation from these templates by consulting the Groovy Server Pages (GSP)

tag definition, as shown in Fig. 18.3. By adding speech functionality to the template

of the view code, we can implement the prototype book search MMI system shown

in Fig. 18.8.

This system does not depend on the task or domain. To create multimedia

archive systems, such as a motion learning system for traditional skills, the devel-

oper only needs to create a data model definition by following the already prepared

schema of multimedia data [11].

In addition, this system does not depend on the language. The semantic web

ontology itself is not dependent on the language. Although the contents are

described in an individual language, this system can specify the language of the

retrieved results by indicating the lang attribute [12].

Fig. 18.6 Tree representation of class information

390 M. Araki



@initiative.System
@task.DBSearch
class MyBook extends Book {

static hasMany = 
[author:MyAuthor]

static constraints = {
name( onsearch:"ilike" )
description()

}
}

Book
name
description

Author
name
description
nationality

Resource

DBpedia

Schema.org

inherit
inherit

author

write

Fig. 18.7 Data model of the experimental system

Fig. 18.8 Prototype book search system

18 Multimodal Interaction Description Language Based on Data Modeling 391



18.5 Conclusion

In the present paper, we introduced MrailsScript, a multimodal dialogue system

description language, Mrails, a multimodal interactive system development envi-

ronment and MrailsBuilder, a helper application for MDS development. These are

based on semantic web standards, such as OWL, RDFS, and RDF. Therefore, this

development set utilizes CSRs as contents of the MDS systems. The HTML5 view

codes are generated from the templates. It makes easy for developers to add

multimodal functionality by customizing these templates.

In the future, we intend to implement a multi-domain dialogue system using this

development environment and evaluate the efficiency of the development process.

Acknowledgment The collaborator of this research is Mr. Daisuke Takegoshi.

References

1. Hori, C., Ohtake, K., Misu, T., Kashioka, H., & Nakamura, S. (2009). Statistical dialog

management applied to WFST-based dialog systems. In Proceedings of ICASSP 2009, Taipei,
Taiwan, pp. 4793–4796.

2. Williams, J. D., & Young, S. (2007). Partially observable Markov decision processes for

spoken dialog systems. Computer Speech and Language, 21(2), 393–422.
3. Heinroth, T., Denich, D., & Bertrand, G. (2009). Ontology-based spoken dialogue modeling.

In Proceedings of the IWSDS 2009, Irsee, Germany
4. Kogure, S., & Nakagawa, S. (2001). A development tool for spoken dialogue systems and its

evaluation. In Proceedings of TSD2001 (LNAI 2166), Zelezna Ruda, Czech Republic, pp.
373–380.

5. Dean, M., & Schreiber, G. (Eds.). (2004). OWL Web Ontology Language Reference, W3C

Recommendation. 10 February 2004. https://www.w3.org/TR/2004/REC-owl-ref-20040210/.

6. Araki, M., & Mizukami, Y. (2011). Development of a data-driven framework for multimodal

interactive systems. In Proceedings of IWSDS 2011, Granada, Spain, pp. 91–101.
7. Araki, M. (2012a). Rapid development process of spoken dialogue systems using collabora-

tively constructed semantic resources. In Proceedings of SIGDial 2012, Seoul, South Korea,
pp. 70–73.

8. Takegoshi, D., & Araki, M. (2014). Development environment for multimodal interactive

system based on ontological knowledge. In Proceedings of IIAI AAI 2014, Kitakyushu, Japan,
pp. 785–788. doi:10.1109/IIAI-AAI.2014.158.

9. Prud’hommeaux, E., & Seaborne, A. (Eds.). (2008). SPARQL Query Language for RDF. W3C

Recommendation 15 January 2008. https://www.w3.org/TR/rdf-sparql-query/.

10. Shires, G., & Wennborg, H. (Eds.). (2012). Web Speech API Specification. https://dvcs.w3.

org/hg/speech-api/raw-file/tip/speechapi.html.

11. Araki, M. (2012b). Multimodal motion learning system for traditional arts. In Proceedings of
AHFE2012, San Francisco, USA, pp. 5274–5281.

12. Araki, M., & Takegoshi, D. (2012). A rapid development framework for multilingual spoken

dialogue systems. In Proceedings of COMPSAC 2012, Izmir, Turkey, pp. 195–202.

392 M. Araki

https://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://dx.doi.org/10.1109/IIAI-AAI.2014.158
https://www.w3.org/TR/rdf-sparql-query/
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html


Chapter 19

Multimodal Fusion and Fission within
the W3C MMI Architectural Pattern

Dirk Schnelle-Walka, Carlos Duarte, and Stefan Radomski

Abstract The current W3C recommendation for multimodal interfaces provides a

standard for the message exchange and overall structure of modality components in

multimodal applications. However, the details for multimodal fusion to combine

inputs coming from modality components and for multimodal fission to prepare

multimodal presentations are left unspecified. This chapter provides a first analysis

of possible integrations for several approaches for fusion and fission and their

implications with regard to the standard.

19.1 Introduction

With the advent of the W3C Multimodal Architecture and Interfaces recommen-

dation a first promising candidate to standardize multimodal systems is avail-

able [2]. However, the actual approach on how input from multiple sources is

fused into a coherent meaning (multimodal fusion) as well as state-of-the-art

concepts on how to deliver information using more than a single available modality

(multimodal fission) is addressed only superficially in the respective standards. As

Schnelle-Walka et al. pointed out in [24], the W3C already suggests several markup

languages to cope with the issues in a general multimodal architecture (see

Fig. 19.1).

They argue that the W3C MMI architecture is reduced to a specification of the

relationship of interaction managers and modality components communicating via

D. Schnelle-Walka (*)

Harman International, Connected Car Division, Stuttgart, Germany

e-mail: dirk.schnelle-walka@harmn.com

C. Duarte

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

e-mail: caduarte@fc.ul.pt

S. Radomski

Telecooperation Lab, Technische Universität Darmstadt, Darmstadt, Germany

e-mail: radomski@tk.informatik.tu-darmstadt.de

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_19

393

mailto:dirk.schnelle-walka@harmn.com
mailto:caduarte@fc.ul.pt
mailto:radomski@tk.informatik.tu-darmstadt.de


life-cycle events. In contrast, the earlier W3C MMI Framework made an attempt to

consider the specifics of multimodal fusion and multimodal fission as well. The aim

of the earlier approach was closer to what has been the state of the art for

multimodal fusion and multimodal fission. In this chapter, we will, based on actual

applications in the smart home context (e.g., [23]), elaborate on different

approaches to integrate today’s proposals, as detailed in the following sections,

into the W3C MMI architecture. It is our hope that this will stimulate respective

discussions, eventually resulting in respective standards as well.

19.2 Multimodal Fusion

Multimodal fusion has been the subject of research for more than two decades. This

resulted in diverse solutions consisting of different levels, architectures, and algo-

rithms. Sharma et al. [26] proposed one of the earliest classification schemes with

three levels for fusion of incoming data: sensor-level (or data-level) fusion, feature-

level fusion, and decision-level fusion. Later, Sanderson and Paliwal [22] defined

another set of terms, with similar meanings: pre-mapping, midst-mapping, and

post-mapping fusion. The proposed levels essentially differ at which time informa-

tion combination takes place.

• Pre-mapping data-level fusion deals with raw data coming from recognizers.

This represents the richest form of information available from a quantitative

perspective. Given that the signal is directly processed, there is no loss of

information. On the other hand, this makes it very susceptible to noise and

Input Fusion Fission Output

Text
(Keyboard)

Speech
(Microphon)

Gesture
(Camera)

...

Dialog Manager

Feature
Fusion

Semantic 
Fusion

Integration

Dialog 
Control

Text
(Monitor)

Audio & Voice
(Speakers)

Video
(Monitor)

Knowledge

External 
Systems

Modality 
Selection

Content 
Generation

Synchronize ...

Available W3C Standards

InkML

EMMA

SCXML

XHTML

EMMA

SCXML CC/PP

SMIL

VoiceXML

SISR

SRGS CCXML

XHTML

VoiceXML

SSML

EmotionML

PLS

PLS

MMI Framework & MMI Architecture & Discovery and Registration

SCXML

EmotionML

SVG

EMMA2.0

Fig. 19.1 High-level architecture of amultimodal dialog system and availableW3C standards [24]

394 D. Schnelle-Walka et al.



failures. As a consequence of the heavy processing required by this type of

fusion, it is better suited for situations where multiple streams of a single

modality are involved.

• Pre-mapping feature-level fusion is oriented for closely coupled or time-

synchronized modalities, e.g., speech and lips movement recognition. In

feature-level fusion, features are extracted from sensor-collected data. If the

features are commensurate they can be combined. Compared to data-level

fusion, feature-level fusion has better noise interference management, but is

more susceptible to data loss.

• Midst-mapping fusion processes a group of streams concurrently, while the

mapping of the sensor-data/features space to the decisions/opinions space takes

place. Given its nature, this type of fusion is also oriented for closely coupled

modalities.

• Decision-level fusion allows multimodal systems to make effective use of

loosely coupled modalities, which makes it one of the more popular forms of

fusion. With this architecture, the fusion engine does not need to deal with issues

of noise and failure, given that it receives information that has already been

processed. This means that the engine is responsible for deriving the semantic

meaning from the combination of partial semantic information coming from

each input mode. Each preprocessed information constitutes a concrete decision

that was made by one or more recognizers.

• Opinion-level fusion (also known as score-level fusion) is very similar to

decision-level fusion. Both operate after the mapping of data/feature space

into decision/opinion space. In fact, some authors [9] consider the former a

subset of the latter. However, other authors [22] prefer to distinguish between

them, given that in opinion-level fusion a group of experts (i.e., recognizers)

provide opinions instead of hard decisions. Opinions can be combined through,

e.g. weighted summation or weighted product approaches, before using a clas-

sification criterion in order to reach a final decision.

In addition to the classification through their architecture of fusion type, fusion

engines can also be classified bywhether they are adaptive or non-adaptive [16]. The

main concept of adaptive, or quality fusion, is to assign different weights to

different modalities. This allows to imprint adaptive features to a fusion system,

by setting the reliability and discrimination of experts through time according to the

state of the environment, signal quality, knowledge regarding users, or application

logic. Several options have been proposed for implementing the different

approaches. In particular for decision-level fusion, Dumas et al. [5] consider the

following ones:

• Frame-based fusion using data structures known as frames for meaning repre-

sentation of data originating from various sources, modeling objects as attribute-

value pairs.

• Unification-based fusion based on merging, recursively, attribute-value struc-

tures to obtain a logical meaning representation.

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 395



• Symbolical/statistical fusion an evolution of standard unification-based

approaches, adding statistical processing techniques.

We will elaborate on these approaches in the following sections. As an example

consider a user standing in the living room of a smart home. He/She points to a

shutter and utters “close.” In this case, we have two modalities: speech (MS) and

gesture (MG). For each fusion type we will consider a proper recognition result, as

well as the case of the pointing gesture being falsely interpreted as a move up

gesture to open the shutter in addition to pointing to the wanted shutter.

For now, we expect cooperative users. This means that the user does not provide

contradicting inputs. For instance, he/she will not point to a shutter and ask the

system by voice to turn it off.

19.2.1 Frame-Based Fusion

The concept of frame-based fusion was introduced by Vo and Wood [8]. An

overview of the concept is illustrated in Fig. 19.2.

Modality processors are responsible for capturing input per modality and extract

knowledge in form of semantic frames. Frames are usually related information slots

occurring in unison. Each modality Mi may fill in the slots Sk with a value Vk as it

can be retrieved in a dialog turn and assign it a score pk. Hence in feature fusion the
information provided per modality results in the set

IMi
¼ fðS1ðV1Þ, p1Þ, ðS2ðV2Þ, p2Þ, . . . , ðSnðVnÞ, pnÞg ð19:1Þ

In a subsequent step of semantic fusion, a multimodal interpreter combines the

input of the various modality processors as a union of values per slot Sk.

Input Feature Fusion

Speech
(Microphon)

Gesture
(Camera)

...

S
lo

t S
,1

S
lo

t S
,2

S
lo

t S
,n

S
lo

t P
,1

S
lo

t P
,2

S
lo

t P
,n

Semantic Fusion Integration

SlotS,1 SlotP,1

SlotS,2

SlotS,3 SlotP,2

SlotP,1

SlotS,2

SlotS,3

Fusion

Fig. 19.2 Frame-based multimodal fusion

396 D. Schnelle-Walka et al.



IM ¼
[
i

IMi
¼

[
Sk

fðSkðVM1
Þ, pM1

Þ, ðSkðVM2
Þ, pM2

Þ, . . . , ðSkðVMl
Þ, pMl

Þg ð19:2Þ

Next, the values of the slots that have the same value for a slot are added. Hence,

the information IS provided per slot

IS ¼
[
l

ðfðSkðVlÞ,
X
l

pðlÞÞjVl ¼ VkgÞ ð19:3Þ

Finally, in an integration step the values with the maximum score are selected

per slot as the best hypothesis.

ÎMi
¼ fðS1ðV1Þ,maxðp1ÞÞ, ðS2ðV2Þ,maxðp2ÞÞ, . . . , ðSnðVnÞ,maxðpnÞÞg ð19:4Þ

In our example the output of feature fusion is

IMS
¼ fðSactionð“close”Þ, 0:9Þg

IMG
¼ fðSactionð“close”Þ, 0:2Þ, ðSobjectð“shutter”Þ:0:8Þg

This leads in the semantic fusion to

Saction ¼ fðSactionð“close”Þ, 0:9Þ, ðSactionð“close”Þ, 0:2Þg
Sobject ¼ fSobjectð“shutter”Þ:0:8Þg

The result of integrating the results is

Saction ¼ fðSactionð“close”Þ, 1:1Þg
Sobject ¼ fSobjectð“shutter”Þ:0:8Þg

The example with the false interpretation of an open command will lead to

IMS
¼ fðSactionð“close”Þ, 0:9Þg

IMG
¼ fðSactionð“open”Þ, 0:2Þ, ðSobjectð“shutter”Þ:0:8Þg

For semantic fusion this leads to

Saction ¼ fðSactionð“close”Þ, 0:9Þ, ðSactionð“open”Þ, 0:2Þg
Sobject ¼ fSobjectð“shutter”Þ:0:8Þg

and integrates to

Saction ¼ fðSactionð“close”Þ, 0:9Þg
Sobject ¼ fSobjectð“shutter”Þ:0:8Þg

As a result, the shutter will still be closed as with the correct recognition.

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 397



19.2.2 Unification-Based Fusion

The concept of unification-based fusion was introduced by Johnston et al. [11]. An

overview of the functionality is shown in Fig. 19.3.

They based their concept on Prolog to unify data structures. Similar to frame-

based fusion, this concept relies on slot-value pairs to produce the common set of

pairs as a result of the fusion. Hence, the feature fusion produces a list of value

candidates per slot.

IMi
¼ fS1ðV1Þ, S2ðV2Þ, . . . , SnðVnÞÞg ð19:5Þ

These are considered to express fragments of an intended meaning. Now,

unification � is used to arrive at a predefined command pattern Ck to express.

Ck ¼ �
i
IMi

ð19:6Þ

In case there are insufficient interpretations to fulfill any command, this leads to

no result such that Ck¼∅.

If the same value has different or conflicting values, unification will result in a

set of results suited to resolve the command pattern.

C ¼ fCkjCk 6¼ ∅g ð19:7Þ

In our example the output of feature fusion is

IMS
¼ fSactionð“close”Þ, SobjectðÞg

IMG
¼ fSactionðÞ, Sobjectð“shutter”Þg

The expected command C will receive an action and an object. This leads to

Input Feature Fusion

Speech
(Microphon)

Gesture
(Camera)

...

F
ea

tu
re

1

F
ea

tu
re

n

Semantic Fusion Integration

Fusion

F
ea

tu
re

2

Feature1

Feature2

Featuren

Feature1

Feature2

Featurep

Fig. 19.3 Unification-based multimodal fusion

398 D. Schnelle-Walka et al.



Ck ¼ IMS
� IMG

¼ fSactionð“close”Þ, SobjectðÞg�
fSactionðÞ, Sobjectð“shutter”Þg

¼ fSactionð“close”Þ, Sobjectð“shutter”Þg
In case the user also made a move up gesture in addition to pointing to the shutter

to indicate opening it, two results would be produced.

Ck ¼ IMS
� IMG

¼ fSactionð“close”Þ, SobjectðÞg�
fSactionð“open”Þ, Sobjectð“shutter”Þg

¼ fðSactionð“close”Þ, Sobjectð“shutter”ÞÞ, Sactionð“open”Þ, Sobjectð“shutter”Þg
In contrast to frame-based fusion, confidence values are not able to select one

meaning over the other. As a result, the dialog manager will have to disambiguate

both possible meanings.

19.2.3 Symbolic/statistical Fusion

Symbolic/statistical fusion was introduced by Wu et al. [27] with the metaphor of

members to teams to committee. The concept is shown in Fig. 19.4.

The fusion is based on a-posteriors. Let I¼ {I1, I2, . . ., In} be a set of input

features and T¼ { T1,T2, . . ., Tm} a set of recognition targets. Then, the goal of

multimodal fusion, described as the a-posteriori probability per target, i.e. the

mapping of input to a defined recognition target with the largest probability, is

defined by

Input Feature Fusion

Speech
(Microphon)

Gesture
(Camera)

...

Semantic Fusion Integration

Fusion

P̂
(T

1
|I,

S
s
)

P̂
(T

2
|I,

S
s
)

P̂
(T

m
|I,

S
s
)

P̂
(T

1
|I,

S
p
)

P̂
(T

2
|I,

S
p
)

P̂
(T

m
|I,

S
p
)

P̂ 1(T1|I)

P̂ 1(T2|I)

P̂ 1(Tm|I)

P̂ l(T1|I)

P̂ l(T2|I)

P̂ l(Tm|I)

P̂ 1(T2|I)

P̂ 3(T1|I)

P̂ 2(Tm−2|I)

Fig. 19.4 Symbolic/statistical multimodal fusion

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 399



PðTkjIÞ; for K ¼ 1, . . . ,m ð19:8Þ

Wu et al. propose a 3-stage calculation as described below.

Fusion data is calculated in the feature fusion stage per modality. This is also

called the member stage. Therefore, Wu et al. rely on modeling specifications. Such
a specification includes (1) the model type, (2) the model complexity, (3) the

extraction of input features,(4) the training and validation data, and (5) the learning

algorithm.

In this case, an estimate for the a-posteriors forM modalities and Si being the ith
modeling specification is defined by

bPðTkjI, SiÞ; for K ¼ 1, . . . ,m and i ¼ 1, . . . ,M ð19:9Þ

Semantic fusion integrates the a-posteriori probabilities into teams. Let Pk(S� I)
be the mode probability of the kth target associated by the ith combination of

modeling specifications.

bPðTkjIÞ ¼
XM
i¼1

bPðTkjI, SiÞPkðSiÞÞ; for k ¼ 1, . . . ,M ð19:10Þ

This results in a mode probability matrix with entries if the lth way of deter-

mining the mode probability out of L

bPðlÞðTkjIÞ; for K ¼ 1, . . . ,m and l ¼ 1, . . . , L ð19:11Þ

This is ranked within the committee based on the empirical distribution of their

a-posteriori probabilities to an N-best list of multimodal commands. Therefore, a

significance matrix H is determined as an m � m matrix for the recognition targets

Tk. The entries hij are calculated as

hij ¼
1, bPðlÞðTijIÞ▹bPðlÞðTjjIÞ

� 1, bPðlÞðTijIÞ◃bPðlÞðTjjIÞ
0, else

8<
: ð19:12Þ

where a ▹ b indicates that a is significantly greater than b.
Now, a significance vector V is computed by summing up the values in the rows

to the significance values vi.

vi ¼
Xm
k¼1

hik ð19:13Þ

In a final step the significance values are ranked. The best value is m � 1,

indicating that the input matches the target value. Higher values result in higher

400 D. Schnelle-Walka et al.



rankings. If all values are smaller than m � 1, no confidence can be calculated

without requiring further external information.

In contrast to the previously described two approaches, this type of multimodal

fusion is able to work with the raw data coming from the various modalities. In our

illustrative use case, these are, for instance, the room coordinates of the left index

finger for the gesture modality and the recorded audio signal for spoken input.

This would require applying machine learning to train the a-posteriors of the

team members. A description of how this can be done for 2D gesture strokes to

recognize handwriting is given by Wu et al. [27]. Essentially, we are interested in

obtaining the a-posteriors per modality.

bPðTi
GjIGÞ; for i ¼ 1, . . . ,mG ð19:14Þ

bPðTj
SjISÞ; for j ¼ 1, . . . ,mS ð19:15Þ

This does not necessarily have to be raw data but, e.g., in the case of spoken

input, can rely on a word sequence as ASR output.

The team integrates the output of both to

bPð1ÞðTkjIG, ISÞ ¼ bPðTi
GjIGÞ þ bPðTj

SjISÞ ð19:16Þ

for a single team member (L¼ 1) and m commands to recognize (k ¼ 1, . . . ,m).
Imagine that there are four commands, i.e., the targets Tk to distinguish (1) turn

the light on (T1), (2) turn the light off (T2), (3) open the shutter (T3), and (4) close the
shutter (T4). In case the significance matrix H in the committee could be

H ¼
0 �1 1 0

1 0 1 1

�1 �1 0 0

0 1 0 0

0
BB@

1
CCA ð19:17Þ

then, the significance vector V and rank are

V ¼
0

3

�2

1

0
BB@

1
CCA; Rank ¼

2

1

4

3

0
BB@

1
CCA ð19:18Þ

The highest significance values of 4, results in selection of the third command T3
as the most probable one and the fourth command T4 as the best alternative.

Consequently, the user most likely wanted to close the shutter but it is possible

he/she maybe wanted to open it.

The differentiation of a false recognition of the gesture is already integrated with

this approach and needs no further elaboration.

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 401



Note that passing values for entities that are hard to express by targets, e.g., the

amount to increase and decrease when dimming the light, cannot be handled with

this approach. In these cases, a subsequent step employing unification-based mul-

timodal fusion is suggested.

19.3 Multimodal Fusion within the W3C MMI
Architecture

While multimodal fusion is not covered in the current W3C MMI architecture, it

was part of the earlier multimodal framework [12]. The envisioned concept was

pretty close to the state of the art in multimodal architectures of that time. An

overview is given in Fig. 19.5.

The authors also thought of dedicated components for session handling and to

access the environment. Application specific functions were added to the central

interaction manager. It also employed fusion as a three-tiered process (1) recogni-

tion, (2) semantic interpretation, and (3) integration. The fusion concepts men-

tioned above rely on similar concepts. However, this work was discontinued and

eventually replaced by the W3C MMI architecture [2]. The concept of a modality

component can be more elaborate than a pure recognizer per modality. Hence, it can

also be responsible for a preliminary semantic interpretation for the modality to be

forwarded to the upper interaction manager. The current architectural pattern also

allows for multiple interaction managers, despite the topmost instance. Following

the principle of a Russian doll, each modality component can interact as an upper

interaction manager to lower modality components. Consequently, multimodal

fusion may happen at each node, i.e. interaction manager, in the tree-like structure.

Recognition

Modality 
Component

Modality 
Component

System 
Generated 

Input

Modality 
Component

Semantic Interpretation

Interpretation

Interpretation

Interpretation

Integration

In
te

gr
at

io
n

Interaction
Manager

Application 
Function

Application 
Function

Application 
Function

EMMA

EMMA

EMMA

EMMA

EMMA

Fig. 19.5 Input components with the W3C multimodal framework (after [12])

402 D. Schnelle-Walka et al.



Following the architecture described in [23] and [25] we suggest a dedicated

modality component MCfus to cope with multimodal fusion as shown in Fig. 19.6.

The internal handling highly depends on the employed type of multimodal

fusion. In the following, we will discuss the implementation within the W3C

MMI architecture for the three fusion types described above.

19.3.1 Frame-Based Fusion

For frame-based multimodal fusion, we follow the approach of Schnelle-Walka

et al. [23]. The output of the various modality components is first transformed into a

modality independent format. Following the recommendation of the W3C MMI

architectural pattern, this happens in the data attribute of an extension or done

notification.

For instance, the notification of the speech modality component in our use case

to notify the recognition of the close action in MCvoice to MCfus is shown in

Listing 19.1.

Listing 19.1 EMMA notification for Frame-based multimodal fusion

<mmi:mmixmlns:mmi¼”http://www.w3.org/2008/04/mmi�arch”version¼”1.0”

xmlns:emma¼”http://www.w3.org/2003/04/emma”>

<mmi:ExtensionNotificationmmi:Source¼”http://localhost/VoiceXML”

mmi:Target¼”http://localhost/Fusion”mmi:Context¼”42”mmi:RequestID¼”43”>

<mmi:Data>

<emma:emma version¼”2.0”>

<emma:interpretation id¼”asr�1” emma:medium¼”acoustic”

emma:confidence¼”.75” emma:mode¼”voice”

emma:tokens¼”close it”>

<action>close</action>

</emma:interpretation>

</emma:emma>

</mmi:Data>

</mmi:ExtensionNotification>

</mmi:mmi>

The EMMA interpretation tag is well suited to capture the semantic inter-

pretation as slots. Ideally, slots appear as tags for easy access. We employed JBoss

Drools1 as a rule engine for the actual fusion of the frame values arriving from the

modality components.

Once MCfus receives information to be fused, it stores it in a knowledge base,

modeled as a data component, for later retrieval. This is important to wait for

1http://www.drools.org/.

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 403

http://www.drools.org/


possible addition input from the other modalities. The timeout is started only after

the first EMMA content was received to avoid further delays. When the timeout

expires, semantic fusion starts. Therefore, all available information is retrieved

from the knowledge base to create the union of values per slot.

The integration rules select those values with the maximum confidence per slot

as the hypothesis that should be forwarded to the upper interaction manager IM. The

forwarded EMMA document can also make use of the derived-from annotation

element to indicate the sources, as shown in Listing 19.2.

Listing 19.2 EMMA notification of an integrated fusion result

<mmi:mmixmlns:mmi¼”http://www.w3.org/2008/04/mmi�arch”version¼”1.0”

xmlns:emma¼”http://www.w3.org/2003/04/emma”>

<mmi:ExtensionNotificationmmi:Source¼”http://localhost/VoiceXML”

mmi:Target¼”http://localhost/Fusion”mmi:Context¼”42”mmi:RequestID¼”43”>

<mmi:Data>

<emma:emma version¼”2.0”>

<emma:interpretation id¼”asr�1” emma:medium¼”acoustic”

emma:confidence¼”.75” emma:mode¼”voice”

emma:tokens¼”close it”>

<action>close</action>

</emma:interpretation>

<emma:interpretation id¼”gesture�1” emma:medium¼”tactile”

emma:confidence¼”.9” emma:mode¼”gesture”>

<object>shutter</object>

</emma:interpretation>

<emma:interpretationid¼”gesture�1”emma:medium¼”acoustictactile”

emma:confidence¼”.9” emma:mode¼”speech gesture”>

<action>close</action>

<object>shutter</object>

Modality 
Component

Modality 
Component

Modality 
Component

Datamodel

Fusion 
Modality 

Component

Interaction
ManagerEMMA

E
M

M
A

Fig. 19.6 Frame-based-multimodal fusion within the W3C MMI architectural pattern

404 D. Schnelle-Walka et al.



<emma:derived�from resource¼”#asr�1” composite¼”true”/>

<emma:derived�from resource¼”#gesture�1” composite¼”true”/>

</emma:interpretation>

</emma:emma>

</mmi:Data>

</mmi:ExtensionNotification>

</mmi:mmi>

This may be exploited to also forward, e.g., the recognized utterance to be

displayed.

It is important to cleanup the knowledge-base after the message has been sent out

to avoid confusion with follow-up input. There are, however, scenarios where it

may be desirable to keep the information. If the user did not provide all the required

information right away, the application should ask for the missing information. In

these cases, Schnelle-Walka et al. suggest to forward the obtained information after

a predefined timeout expired [23]. Not unlike grounding in the information state

update approach [13], the information will be kept, thus requiring the user to deliver

only the missing part of information. This can be fused with the information from

the previous dialog turn as described above.

19.3.2 Unification-Based Fusion

The situation to implement unification-based multimodal fusion is comparable to

what has been described in the previous section for frame-based fusion.

The biggest difference lies in the way multimodal fusion is actually handled,

with the same messages arriving from the modality components shown in Fig. 19.6.

Here, unification is needed which is available, e.g., with Prolog. A first approach to

integrate Prolog as a datamodel with SCXML was described by Radomski

et al. [18]. Since SCXML is a suggested W3C standard for interaction managers,

it is a good candidate to be the controlling instance in anMCfus for unification-based

multimodal fusion. MCfus can be modeled with three states as shown in Fig. 19.7.

The corresponding SCXML code is shown in the following listing.

Listing 19.3 SCXML for unification-based multimodal fusion

<scxml datamodel¼”prolog” name¼”mc�fusion”>

<datamodel>

<data src¼”fusion.pl”/>

</datamodel>

<state id¼”Start”>

<invoke type¼”umundo” id¼”dialogInput”>

<param name¼”type” expr¼”ExtensionNotification.proto” />

<param name¼”channel” expr¼”fusioninput” />

<finalize>

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 405



<log expr¼”event(X)” />

</finalize>

</invoke>

<invoke type¼”umundo” id¼”dialogOutput”>

<param name¼”type” expr¼”ExtensionNotification.proto” />

<param name¼”channel” expr¼”fusionoutput” />

<finalize>

<log expr¼”result(X)” />

</finalize>

</invoke>

<state id¼”WaitForAction”>

<onentry>

<log label¼”Waiting for actions...” />

</onentry>

<transition target¼”Fusion”

event¼”umundo.rcvd”>

</transition>

</state>

<state id¼”Fusion”>

<onentry>

<script type¼”query”>feature_fusion.</script>

<script type¼”query”>semantic_fusion.</script>

<script type¼”query”>integration.</script>

</onentry>

<transition target¼”IssueFusionResult” />

</state>

<state id¼”IssueFusionResult”>

<onentry>

<send target¼”#_dialogOutput”>

start

Fusion

IssueFusionResult

ReceivedEvent

WaitForAction

Fig. 19.7 SCXML

statechart for unification-

based multimodal fusion

406 D. Schnelle-Walka et al.



<param name¼”type” expr¼”event(data(Type))”/>

<content expr¼”result(X)” />

</send>

</onentry>

<transition target¼”WaitForAction” />

</state>

</state>

<state id¼”End” final¼”true” />

</scxml>

We employed uMundo2 for the event and transport layer to deliver MMI

messages encoded as Protobuf3 messages. Incoming events can be obtained via

event(X) to resolve X to the incoming MMI message. Hence, the EMMA code in

the data attribute Y is resolved by event(data(Y)). Furthermore, the implemen-

tation allows to script Prolog expressions, where we provided three predicates

(1) feature_fusion/0, (2) semantic_fusion/0, and (3) integration/0 for

each of the fusion stages. Feature fusion will assert the slot values per modality.

In subsequent steps they will be fused and integrated. If result(X) resolves to a

suitable fusion result, a corresponding MMI extension notification will be sent.

Note that a foreach tag will be needed to cope with multiple solutions. We left it

out to reduce complexity.

19.3.3 Symbolic/Statistical Fusion

One of the key concerns for this type of fusion is which data to deliver from the

modality components to MCfus. Two options are available.

1. The modality component sends the raw data to the fusion modality component

for further processing or

2. the modality component sends semantically derived data.

This includes the decision if, e.g., a gesture modality component sends their raw

3D data toMCfus or the detected gesture. This is in essence the decision, if modality

components are eligible for the evaluation values as team members. As a positive

aspect, modality recognizers that have already been developed could be used as

is. On the other hand, the modality components will have to be aware of fusion

targets. In the other case, implementers will need to train their own recognizers or

move them from the modality component to the fusion engine. Also, more data will

have to be transmitted. As a positive aspect, modality components can be kept

dumb without the need for further knowledge. Both options are possible.

2https://github.com/tklab-tud/umundo.
3https://developers.google.com/protocol-buffers/.

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 407

https://github.com/tklab-tud/umundo
https://developers.google.com/protocol-buffers/


The associated data can easily be transmitted via EMMA. For now we are not able

to come up with a recommendation.

19.4 Multimodal Fission

Multimodal fission has also been evolving since the nineties, with the earlier

systems combining text and graphics (e.g., COMET [7]). Recent systems consider

a larger number of modalities: speech, haptic, graphics, text, 2D and 3D animations,

or avatars (e.g., SmartKom [19], MIAMM [20]). Still, most applications continue to

use a limited number of output modalities, meaning that the fission techniques

applied are straightforward. Those dealing with the above-mentioned combination

of outputs need to process complex presentations that are difficult to coordinate and

in need of ensuring their coherence. To guarantee these objectives are met, Oviatt

formalized the three tasks fission engines should follow [14]:

• Message construction—This includes the steps required for selection and

structuring of the presentation content. In this task, it is necessary to decompose

the semantic information provided by the dialog manager into the elementary

data that will be presented to the user. Two main approaches for content

selection and structuring have been identified: (1) schema-based [6] and

(2) plan-based [3].

• Modality selection—After message construction, its presentation must be

planned, i.e., each elementary data must be allocated to a multimodal presenta-

tion according to the interaction context. The planning process follows a behav-

ioral model specifying the components (mode, modality and medium) that are to

be used. The selection and coordination of the available modalities should be

informed by the type of information they can handle, the perceptual tasks they

support, the characteristics of the information to present, the user’s profile, and
the resource limitations. For this process, three approaches have been typically

considered: (1) rule based [1], (2) composite based [6], and (3) agent based [10].

• Output coordination—After presentation planning, the output must be instan-

tiated, i.e., accessing the lexical and syntactic content and the modalities’
attributes. The process begins with the selection of the concrete content to

render, and is followed by deciding attributes, such as modality attributes and

spatial and temporal parameters for coordination purposes.

The above approach as shown in Fig. 19.8 was conceptualized as What-Which-

How-Then (WWHT) by Rousseau et al. [21]. According to this model, the fission

engine must know what information to present, which modalities to choose to

present it, how to present the information with those modalities and to coordinate

the flow of the presentation. This conceptual model proved to be general enough to

accommodate the requirements of an adaptive multimodal fission engine, as the one

used in the GUIDE project [4].

408 D. Schnelle-Walka et al.



As an alternate approach to WWHT, Pitsikalis et al. [15] trained Hidden

Markov Models for multimodal fission. HMMs also proved to be useful when

fusing input from multiple modalities. Potamianos et al. [17] rely on HMM for

audiovisual ASR, i.e. multimodal fusion. In order to actually train the models,

sufficient data is required which may be obtained by the rule based approach

described later on.

19.5 Multimodal Fission within the W3C MMI
Architecture

Similar to the input components for multimodal fusion described in Sect. 19.3 the

W3C MMI framework [12] also described output components for the multimodal

fission. An overview is shown in Fig. 19.9.

The authors thought of three stages: (1) generation, (2) styling, and (3) rendering.

Compared with the WWHT approach, generation would comprise the stages what
and which, styling would be how and rendering would be mapped to then.

For the W3C MMI architecture, a fission modality component MCfis can be

integrated as shown in Fig. 19.10.

As a proof of concept we employed JBoss Drools for the multimodal fission, as

described in [23]. Here, we implemented knowledge about the available modalities

and user preferences as rules.

Imagine the simple scenario where a user, watching television, shall be informed

that someone is at the door. After MCfis received a StartRequest with the output

information encoded as EMMA in the Data attribute, it stores the information in the

knowledge base for further processing. Decomposition of this semantic information

MPi

HowWhichWhat

IUx

EIU1

EIUn

MPiMod1 Med1

Mod1 Med1

Modn Medm

EIU2

Modk Medj

Modl Medm

Modn Medo

Value1
Value2

Valuen

Value1
Value2

Valuen

Semantic Fission Election

Fig. 19.8 The stages of WWHT (adapted from [21])

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 409



unit IU comprises two elementary information units EIUs: (1) presence of a visitor
and (2) identity of the visitor if it can be determined, e.g. by a camera and face

recognition.

Depending on the abilities of the user (level of visual and hearing impairment,

etc.) these EIUs will have to be mapped in the which stage to the available devices

as modality (Mod)–medium (Med) pairs: (1) acoustically via the door bell, (2) tex-

tual on the TV screen, or (3) image on the TV screen. In the subsequent how stage,

the system will select the best values for each medium-modality pair. For instance,

the system may decide that it will be best to show a well-known photo of the visitor

on the TV screen and display the textual information Horst is at the door.

Modality 
Component

Modality 
Component

Modality 
Component

Datamodel

Fission 
Modality 

Component

Interaction
ManagerEMMA2.0

Fig. 19.10 Multimodal fission within the W3C MMI architectural pattern

StylingRendering

Modality 
Component

Modality 
Component

Modality 
Component

Modality 
Component

Interpretation

Interpretation

Interpretation

G
en

er
at

io
n

Interaction
Manager

Application 
Function

Session 
Component

System & 
Environment

Fig. 19.9 Output components with the W3C multimodal framework (after [12])

410 D. Schnelle-Walka et al.



The decision may be based on the fact that it is already late and the user’s wife is
already sleeping. For the then stage, MCfis will issue a StartRequest with the

information to be rendered to the TV modality component.

19.6 MMI Messaging with Fusion and Fission Components

Multimodal fusion and fission requires a clear separation of input and output

modality components. If a modality component is responsible for both input and

output, it will have to be addressed byMCfus andMCfis. This contradicts the demand

of the MMI architectural pattern for a tree like structure. In this case, a modality

component will have more than a single upper interaction manager. This was

already criticized by Schnelle-Walka et al. [24]. However, this has only minor

consequences for the overall messaging concept at the heart of the standard.

Table 19.1 lists all the life-cycle events along with their purpose as they are defined

by the standard. It is copied from [24] for your convenience.

Message exchange between the modality components and the upper interaction

manager will simply be forwarded byMCfus andMCfis. What is lost is the actual issuer

of the message, since the value of the Source attribute will be overwritten by the

fusion and fission engines. This is in line with the intention of the W3C to be able to

respond to the message by using this value as the Target of a message. Fusion and

fission components will have to take care to forward messages to the intended

modality component. This is also something that a modality component with the

role of an interaction manager would do. While this can easily be achieved with the

help of the RequestID for the NewContextResponse it may become trickier for the

other requests to modality components residing as children of MCfus. Before intro-

ducing the fusion modality component, the interaction manager was able to only start,
e.g., keyboard input since voice input became inappropriate because of a noisy

environment. MCfus has no means to decide upon that. While a pragmatic solution

may be to employ the Data attribute to carry the information, the decision logic may

better be handled byMCfis. It already has to consider similar issues for the output.

Consequently, we suggest that all requests from IM to any lower MC should be

sent to MCfis. The decision logic to address specific modalities for input will be

shifted from IM to MCfis as a specialist.

This creates a messaging circle as shown in Fig. 19.11.

Responses to, e.g., StartRequests, that still go back over MCfis from the

modality components are not shown.

Another important aspect to consider is that this messaging circle may be present

at several nodes in the MMI nested structure. This is in contrast to traditional
approaches where this happened only before the events were passed to and from the

central dialog manager.

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 411



Table 19.1 Life-cycle events between IMs and MCs in the W3C MMI architecture (taken

from [24])

Event Origin Description

IM to MC

Prepare Request IM Initialize and preload data. Can be sent multiple times prior to

starting.

Start Request IM Initiate processing of the document given as part of the request

or per URL.

Pause Request IM Suspend processing of the current start request.

Resume Request IM Resume processing of the current start request.

Cancel Request IM Cancel processing of the current start request.

ClearContext

Request

IM Context no longer needed, free resources and terminate if

appropriate.

Status Request IM Keep-alive request.

NewContext

Response

MC Acknowledgement of success or failure for a NewContext

Request.

MC to IM

Prepare Response IM If successful, the MC must respond with minimal delay to start

requests.

Start Response IM Acknowledgement of success or failure.

Pause Response IM Acknowledge suspension.

Resume Response IM Acknowledgement of success or failure.

Cancel Response IM Acknowledgement of cancellation.

ClearContext

Response

IM Acknowledge end of context.

Status Response IM Keep-alive response if context is known, undefined otherwise.

Done Notification MC End of processing reached.

NewContext

Request

MC Request for a new context from the interaction manager.

Any Direction

Extension

Notification

Any Application specific extensions with arbitrary data.

Modality 
Component

Modality 
Component

Modality 
Component

Fission Modality 
Component

Interaction Manager

Fusion Modality 
Component

Prepare Request

Start Request

Pause Request

Resume Request

Cancel Request

ClearContext Request

Status Request

NewContext Response

Extension

Prepare Response

Start Response

Pause Response

Resume Response

Cancel Response

ClearContext Response

Status Response

NewContext Request

Extension
Done

Fig. 19.11 Messaging circle with W3C fusion and fission modality components

412 D. Schnelle-Walka et al.



19.7 Summary

In this chapter we introduced a way to integrate multimodal fusion and fission with

the W3CMMI architectural pattern. As an example we focused on three established

multimodal fusion approaches that we consider highly compatible with EMMA as a

means of transporting the needed information: 1. frame-based fusion, 2. unification-

based fusion, and 3. symbolical/statistical fusion. They range from well-known slot

filling, over unification, to more modern statistical approaches. For each of them,

we provided detailed descriptions on the internal handling of the usual three fusion

stages: (1) modality-specific feature fusion, (2) semantic fusion, and (3) integration.

For multimodal fission we were in favor of the WWHT approach. It features the

following stages:

(1) What is the information to process,

(2) Which modalities should we use to present this information,

(3) How to present the information using these modalities and

(4) and Then, how to handle the evolution of the resulting presentation.

We also described an integration into the W3C MMI architecture and described

the consequences for the original structuring of elements and messaging of the

standard. Here, we focused on architectural aspects as some first steps in this

direction. In order to arrive at a standard, an evaluation of how they behave in

real-world applications is needed. This also includes strategies to deal with

conflicting user input.

Another aspect that we did not address in this chapter is the inclusion of

contextual knowledge for fusion engines. This is needed to know, e.g. if the window

is subject or object of an action and consequently fill in the right slot-value pairs.

Contextual knowledge can be shared through attached data models, which we need

to investigate in future work.

References

1. Bateman, J., Kleinz, J., Kamps, T., & Reichenberger, K. (2001). Towards constructive text,

diagram, and layout generation for information presentation. Computational Linguistics, 27(3),
409–449. doi:10.1162/089120101317066131. http://dx.doi.org/10.1162/089120101317066131.

2. Bodell, M., Dahl, D., Kliche, I., Larson, J., Porter, B., Raggett, D., et al. (2012). Multimodal
architecture and interfaces. W3C Recommendation, W3C. http://www.w3.org/TR/mmi-arch/.

3. Duarte, C. (2008). Design and Evaluation of Adaptive Multimodal System. Ph.D. thesis,
University of Lisbon.

4. Duarte, C., Costa, D., Feiteira, P., & Costa, D. (2013). Building an adaptive multimodal

framework for resource constrained systems. In P. Biswas, C. Duarte, P. Langdon, L. Almeida,

& C. Jung (Eds.), A multimodal end-2-end approach to accessible computing.
Human–computer interaction series (pp. 155–173). London: Springer. doi:10.1007/978-1-

4471-5082-4_8. http://dx.doi.org/10.1007/978-1-4471-5082-4_8.

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 413

http://dx.doi.org/10.1162/089120101317066131
http://dx.doi.org/10.1162/089120101317066131
http://www.w3.org/TR/mmi-arch/
http://dx.doi.org/10.1007/978-1-4471-5082-4
http://dx.doi.org/10.1007/978-1-4471-5082-4
http://dx.doi.org/10.1007/978-1-4471-5082-4_8


5. Dumas, B., Lalanne, D., & Oviatt, S. (2009). Multimodal interfaces: A survey of principles,

models and frameworks. In Human machine interaction (pp. 3–26). Berlin, Heidelberg:

Springer. doi:10.1007/978-3-642-00437-7_1. http://dx.doi.org/10.1007/978-3-642-00437-7_1

6. Fasciano, M., & Lapalme, G. (2000). Intentions in the coordinated generation of graphics and

text from tabular data. Knowledge and Information Systems, 2(3), 310–339. doi:10.1007/
PL00011645. http://dx.doi.org/10.1007/PL00011645

7. Feiner, S. K., & McKeown, K. R. (1993). Automating the generation of coordinated multime-

dia explanations. In Intelligent multimedia interfaces (pp. 117–138). Menlo Park, CA: Amer-

ican Association for Artificial Intelligence. http://dl.acm.org/citation.cfm?id¼162477.162493

8. Goubran, R. A., & Wood, C. (1996). Building an application framework for speech and pen

input integration in multimodal learning interfaces. In Proceedings of the Acoustics, Speech,
and Signal Processing, 1996. On Conference Proceedings, 1996 I.E. International Conference
- Volume 06, ICASSP ’96 (pp. 3545–3548). Washington, DC: IEEE Computer Society. doi:10.

1109/ICASSP.1996.550794. http://dx.doi.org/10.1109/ICASSP.1996.550794

9. Hall, D., & Llinas, J. (2001). Multisensor data fusion. In Handbook of multisensor data fusion

(pp. 1–10). Boca Raton: CRC Press.

10. Han, Y., & Zukerman, I. (1997). A mechanism for multimodal presentation planning based on

agent cooperation and negotiation. International Journal of Human-Computer Interaction, 12
(1), 187–226. doi:10.1207/s15327051hci1201&2_6. http://dx.doi.org/10.1207/

s15327051hci1201&2_6

11. Johnston, M., Cohen, P. R., McGee, D., Oviatt, S. L., Pittman, J. A., & Smith, I. (1997).

Unification-based multimodal integration. In Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics and Eighth Conference of the European Chapter of
the Association for Computational Linguistics, ACL ’98 (pp. 281–288). Stroudsburg, PA:

Association for Computational Linguistics. doi:10.3115/976909.979653. http://dx.doi.org/10.

3115/976909.979653

12. Larson, J. A., Raggett, D., & Raman, T. V. (2003). W3C multimodal interaction framework.

W3C Note, W3C. http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/

13. Larsson, S. (2002). Issue-based Dialogue Management. Ph.D. thesis, University of

Gothenburg.

14. Oviatt, S. (2003). Multimodal information fusion. In The human–computer interaction hand-
book: Fundamentals, evolving technologies and emerging application (pp. 286–304).

Hillsdale: L. Erlbaum Associates Inc.

15. Pitsikalis, V., Katsamanis, A., & Papandreou, G. (2009). Adaptive multimodal fusion by

uncertainty compensation. In IEEE Transactions on Audio, Speech, and Language Processing
16. Poh, N., Bourlai, T., & Kittler, J. (2010). Multimodal information fusion. InMultimodal signal

processing theory and applications for human computer interaction (p. 153). London:

Academic.

17. Potamianos, G., Huang, J., Marcheret, E., Libal, V., Balchandran, R., Epstein, M., et al. (2008).

Far-field multimodal speech processing and conversational interaction in smart spaces. In

Hands-Free Speech Communication and Microphone Arrays, 2008. HSCMA 2008
(pp. 119–123). doi:10.1109/HSCMA.2008.4538701

18. Radomski, S., Schnelle-Walka, D., & Radeck-Arneth, S. (2013). A prolog datamodel for state

chart XML. In Proceedings of the SIGDIAL 2013 Conference (pp. 127–131)
19. Reithinger, N., Alexandersson, J., Becker, T., Blocher, A., Engel, R., L€ockelt, M., et al. (2003).

Adaptive and flexible multimodal access to multiple applications. In Proceedings of the 5th
International Conference on Multimodal Interfaces, ICMI ’03 (pp. 101–108). New York, NY:

ACM. doi:10.1145/958432.958454. http://doi.acm.org/10.1145/958432.958454

20. Reithinger, N., Fedeler, D., Kumar, A., Lauer, C., Pecourt, E., & Romary, L. (2005). Miamm -

A multimodal dialogue system using haptics. In J. van Kuppevelt, L. Dybkj~a, & N. Bernsen

(Eds.), Advances in natural multimodal dialogue systems. Text, speech and language technol-
ogy (Vol. 30, pp. 307–332). Netherlands: Springer. doi:10.1007/1-4020-3933-6_14. http://dx.
doi.org/10.1007/1-4020-3933-6_14

414 D. Schnelle-Walka et al.

http://dx.doi.org/10.1007/978-3-642-00437-7
http://dx.doi.org/10.1007/978-3-642-00437-7_1
http://dx.doi.org/10.1007/PL00011645
http://dx.doi.org/10.1007/PL00011645
http://dx.doi.org/10.1007/PL00011645
http://dl.acm.org/citation.cfm?id=162477.162493
http://dl.acm.org/citation.cfm?id=162477.162493
http://dx.doi.org/10.1109/ICASSP.1996.550794
http://dx.doi.org/10.1109/ICASSP.1996.550794
http://dx.doi.org/10.1109/ICASSP.1996.550794
http://dx.doi.org/10.1207/s15327051hci1201
http://dx.doi.org/10.1207/s15327051hci1201%5C;%26;2
http://dx.doi.org/10.1207/s15327051hci1201%5C;%26;2
http://dx.doi.org/10.3115/976909.979653
http://dx.doi.org/10.3115/976909.979653
http://dx.doi.org/10.3115/976909.979653
http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/
http://dx.doi.org/10.1109/HSCMA.2008.4538701
http://dx.doi.org/10.1145/958432.958454
http://doi.acm.org/10.1145/958432.958454
http://dx.doi.org/10.1007/1-4020-3933-6
http://dx.doi.org/10.1007/1-4020-3933-6_14
http://dx.doi.org/10.1007/1-4020-3933-6_14


21. Rousseau, C., Bellik, Y., Vernier, F., & Bazalgette, D. (2006). A framework for the intelligent

multimodal presentation of information. Signal Processing, 86(12), 3696–3713. doi:10.1016/j.
sigpro.2006.02.041. http://dx.doi.org/10.1016/j.sigpro.2006.02.041

22. Sanderson, C., & Paliwal, K. K. (2004). Information fusion and person verification using

speech & face information. Digital Signal Processing, 14(5), 449–480. doi:10.1016/j.dsp.
2004.05.001.

23. Schnelle-Walka, D., Radeck-Arnet, S., & Striebinger, J. (2015). Multimodal

dialogmanagement in a smart home context with SCXML. In Proceedings of the 2nd Work-
shop on Engineering Interactive Systems with SCXML.

24. Schnelle-Walka, D., Radomski, S., & Mühlhäuser, M. (2013). JVoiceXML as a modality

component in the W3C multimodal architecture. Journal on Multimodal User Interfaces, 7(3),
183–194. doi:10.1007/s12193-013-0119-y. http://dx.doi.org/10.1007/s12193-013-0119-y

25. Schnelle-Walka, D., Radomski, S., & Mühlhäuser, M. (2014). Multimodal fusion and fission

within W3C standards for nonverbal communication with blind persons. In K. Miesenberger,

D. Fels, D. Archambault, P. Peňáz, & W. Zagler (Eds.), Computers helping people with
special needs. Lecture notes in computer science (Vol. 8547, pp. 209–213). Paris, Cham: Springer

International Publishing. doi:10.1007/978-3-319-08596-8_33. http://dx.doi.org/10.1007/978-3-

319-08596-8_33

26. Sharma, R., Pavlovic, V., & Huang, T. (1998). Toward multimodal human–computer

interface. Proceedings of the IEEE, 86(5), 853–869. doi:10.1109/5.664275.
27. Wu, L., Oviatt, S. L., & Cohen, P. R. (2002). From members to teams to committee—A robust

approach to gestural and multimodal recognition. IEEE Transactions on Neural Networks, 13
(4), 972–982. doi:10.1109/TNN.2002.1021897. http://dx.doi.org/10.1109/TNN.2002.1021897

19 Multimodal Fusion and Fission within the W3C MMI Architectural Pattern 415

http://dx.doi.org/10.1016/j.sigpro.2006.02.041
http://dx.doi.org/10.1016/j.sigpro.2006.02.041
http://dx.doi.org/10.1016/j.sigpro.2006.02.041
http://dx.doi.org/10.1016/j.dsp.2004.05.001
http://dx.doi.org/10.1016/j.dsp.2004.05.001
http://dx.doi.org/10.1007/s12193-013-0119-y
http://dx.doi.org/10.1007/s12193-013-0119-y
http://dx.doi.org/10.1007/978-3-319-08596-8
http://dx.doi.org/10.1007/978-3-319-08596-8_33
http://dx.doi.org/10.1007/978-3-319-08596-8_33
http://dx.doi.org/10.1109/5.664275
http://dx.doi.org/10.1109/TNN.2002.1021897
http://dx.doi.org/10.1109/TNN.2002.1021897


Index

A
AAL4AII, 368

AALFred, 283–288, 375

Accessibility, 296, 307, 355, 357, 358

Action tendency, 70, 73

Affective computing, 76, 79

Affective Presentation Markup Language

(APML), 68

AffectML, 69

Aging, 271

A Layered Model of Affect (ALMA), 68–69

Alignment, 76, 90

ALMA. See A Layered Model of Affect

(ALMA)

Amazon Alexa, 22, 45, 65

Amazon Echo, 23, 52, 74

Ambient assisted living (AAL), xxvii, 32, 85,

91, 271–288, 369, 370, 374–376

Ambient light, 288

events, 33

Ambiguity, 78, 295

AMI corpus, 121, 127

A-modal, 138–144

Annotation, 37–61, 66, 109–133, 205–210,

259, 274, 299, 347, 356, 386, 404

ANVIL tool, 68, 127, 131

Anycast, 337–339, 347

Apache Commons SCXML, 370

API. See Application Programming Interface

(API)

Api.ai, 258

Application Programming Interface (API),

xxv, vii, 15, 29, 76, 142, 155, 156, 186,

218, 257–265, 267, 268, 284, 300, 306,

322, 328–330

Appraisal, 66, 68, 70, 73, 74

ARIA-VALUSPA, 77

ARPA, 298, 304, 305

Artificial intelligence, 78

ASC-Inclusion project, 76, 77

ASR. See Speech recognition

Assistive technologies, 272

Asynchronous event, 142

Audio, xxiv, xxvii, xxiii, 23, 24, 26, 28, 29, 43,

55, 57, 58, 68, 72, 76, 77, 131, 156–158,

161, 162, 166, 184, 210, 260, 300–302,

306, 309, 311–320, 344, 352, 353, 401

Auditory modality, 354

Augmented Backus-Naur Form (ABNF), 26,

176, 192, 306

Autism, 77, 369, 370

Automatic speech recognition. See Speech
recognition

Avatar, 31, 288, 296, 309, 330, 408

AVEC competition, 76

B
BACnet, 329

Barge-in, 5, 6, 142, 145

Battery Status API, 330

Behavior Markup Language (BML), 77, 205,

228

Big Six Emotions, 74

Bilingual, 312–314

books, xxvii

text, 312

Biosensor, 279, 280

BML. See Behavior Markup Language

(BML)

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1

417



Browser, xxv, xxviii, 25, 149, 151, 156–159,

162–166, 261, 306, 328–330, 336

C
Call Control Markup Language (CCXML), 21,

23, 28, 176, 216, 308

Camera, 43, 44, 61, 76, 155–157, 161, 166,

189, 198, 201, 202, 205, 282, 410

CAN-Bus, 76

CancelRequest, 9, 11, 259, 412

CancelResponse, 9, 11

CheckUpdate, 337, 344–346

CICERO, 336

Client-server, 155, 328, 346, 347

Collaboratively constructed semantic resources

(CSR), 386–387, 392

Communicative function, 109, 110, 114–117,

119, 124–126, 128, 129

ComParE competition, 76

Component Process Model, 74–75

Computer Assisted Language Learning

(CALL), 357

Confidence, 25, 38–40, 42–48, 57, 58, 67, 70,

71, 188, 201, 260, 264, 313, 317, 318,

320, 399, 401, 403, 404

threshold, 46

Confusion network, 50, 51

Context, xxiv, 7–10, 16, 22, 24, 25, 49, 68, 71,

120, 156, 173–210, 216, 223–228, 230,

231, 236, 237, 239, 244, 260, 272–274,

278, 304, 326–328, 331, 332, 335–337,

344, 368–372, 374, 376, 378, 394,

408, 412

CSS, 176

D
DAMSL, 110, 124, 131

DARPA, xxi, 6

Database, 68, 174, 178, 179, 189, 284, 299,

358, 387, 389

Data component, 5, 331, 337, 343, 370, 403

Data model, xxviii, 6, 13, 16, 43, 83–85, 87, 89,

92, 100, 102, 104, 106, 142, 174, 182,

183, 185, 195, 196, 216, 225, 240–243,

245, 248, 276, 326, 346, 386–388, 390,

391, 413

DBOX corpus, 122–123

DBPedia, 389, 390

Declarative language, 53

De-ENIGMA, 77

Dependence relations, 110, 112–113, 115, 116,

127, 130, 131

Deutsche Telekom, 20, 76, 335

Dialog, xxi, 20, 38, 81, 110, 138, 196, 265,

295–309, 320, 335, 384, 394

Dialog act, 119, 124

Dialog Act Markup Language

(DiAML), 114–116, 119, 124, 125,

127–131

DIalogBank, 125, 127

Dialog segmentation, 110, 114

DiAML. See Dialog Act Markup Language

(DiAML)

DIAMOND corpus, 117, 130

Disability, 272

Discovery, 326, 328, 330, 331, 340, 343, 344,

371, 372, 380

Discovery and Registration, 6, 210, 262, 288,

325–347, 371, 372, 380

Distributed systems, 326, 331, 378

DIT, 110, 112, 116–118, 127, 130, 131

DLNA, 329

DocEmoX, 76

Domain, 22, 28, 30, 68, 71, 82, 83, 106, 227,

242, 245, 300, 369, 385, 390, 392

DoneNotification, 9–11, 13, 39, 259, 264,

266, 412

Dual Tone Multi-Frequency (DTMF), 24–26,

29, 302

Dutch Map Task, 127

Dynamic systems, 325–347, 378

E
Echonet, 329, 330

ECMAScript, 24, 27–29, 83, 84, 106, 160,

182, 183, 185, 195, 239, 240, 242,

243, 306

Elderly, 271, 369–370

Electronic ink (e-ink), xxii, 296

ELL. See English language learning (ELL)

ELOQUENCE, 335

Embodied conversational agent (ECA), 68, 77

EMMA 2.0, xxv, xxvi, 32, 38–40, 44, 55, 57,

59, 201, 202, 259, 265

Emotion, xxii, xxv, 66–68

Emotion Markup Language (EmotionML),

xxv, xxvii, 32, 65–78, 115, 265, 300,

307, 309

EmotionML. See Emotion Markup Language

(EmotionML)

Emotion vocabulary, 70, 74

EmotiW, 76

Encapsulation, 69

English language learning (ELL), 312

Entity, 71, 72, 87, 115, 163, 331, 335, 410

ETSI M2M, 329, 340–342

Eureka project, 122

418 Index



Event, 4, 19, 39, 67, 82, 138, 156, 177, 214,

258, 274, 305, 325, 370, 394

Everyday Emotions, 74

Extensible Markup Language, xxiii, xxiv, xxv,

7, 16, 23, 24, 26, 28, 39, 40, 42, 44, 45,

59–61, 67, 69–71, 77, 115, 125, 127,

128, 130, 176, 180–182, 214, 218, 239,

259, 265

Extensible MultiModal Annotation (EMMA),

xxi, xxv, 9, 31, 37–61, 68, 138, 188,

259, 274, 297, 300, 307, 311–320, 356,

370, 403

ExtensionNotification, 9, 10, 13–16, 144, 259,

407, 412

EyesWeb, 76

Eye-tracking, 286, 288

F
Facebook, 166, 258, 283, 284

FIA. See Form Interpretation Algorithm (FIA)

FML, 77

Form Interpretation Algorithm (FIA), 13, 24,

25, 33, 141

Free Voluntary Reading, 312

Functional dependence relations, 271

G
GALATEA, 146, 149, 333, 335

Galaxy, xi, 6

Gaze, 71, 77, 286, 288, 369

GPAC, 334, 335

Grammar, xxi, xxiii, 8–11, 21, 23, 24, 26–29,

39, 40, 43, 44, 59, 141, 150, 176, 177,

182, 184, 185, 188, 192, 194–197, 277,

286, 287, 298–300, 302–306, 312–317,

320, 352, 353, 358

Graph, xx, 50, 389

Graphical user interface (GUI), xx, 5, 10–15,

42, 92, 140, 174, 176–179, 184, 187,

195–197, 286, 303, 307, 315, 371

Greta, 77

Gtrace, 75

GUI. See Graphical user interface (GUI)

H
HALEF, xxvii, 295–309

Handwriting recognition, xxv, 51, 257, 258,

261, 267

Haptic

input, xx

modality, 408

Harel State Charts, xxiv, 22, 82, 182, 185,

214, 215

HCRC Map Task, 110, 137

HEPHAISTK, 334–336

Hidden Markov Model (HMM), 77, 120, 409

HMM. See Hidden Markov Model (HMM)

Home Automation, 327, 340

HTML5, 3–5, 58, 155, 156, 184, 330, 387, 392

HTTP, xix, xxiv, 6, 15, 16, 20, 21, 26, 28, 83,

89, 106, 162, 179, 180, 261, 262, 264,

265, 267, 274, 276, 330, 337, 340, 372

HUMAINE database, 68

Human annotators, 61, 116, 117, 121

Hypothesis, 215, 397, 404

I
IHEARu-PLAY, 76

IM. See Interaction manager (IM)

Indeterminacy, 58

InkML, xxv, 45, 175

Intent, xxvi, 31, 38, 77

Interaction manager (IM), xxiv, 5–16, 31, 32,

174–176, 178–182, 184, 186–190,

195–198, 259, 261, 262, 264, 274, 276,

277, 286, 331, 334, 337, 340, 346,

370–375, 378–380, 402, 404, 411, 412

Interactive systems, 37–61

Interactive voice response (IVR), 19–25, 29,

30, 32, 33, 40, 176, 296, 302

Inter-annotator agreement, 116, 118, 122–124

Internet, 20, 156–159, 162, 164, 271, 328, 353

Internet of Things (IoT), xxvii, xxviii, 22, 32,

38, 166, 214, 263, 272, 288,

327–330, 347

Interoperability, xix, xxi, xxvii, 3, 16, 21, 33,

66, 73, 74, 164, 174, 243, 331

IoT. See Internet of Things (IoT)
IRIS, 368, 369

ISO, xxvi, xxvii, 110, 125, 127, 128

ISO 24617-2, 109–133

IVR. See Interactive voice response (IVR)

J
JavaScript, xxviii, 39, 59, 149, 155, 160,

163–165, 177, 183, 196, 260, 261, 263,

299, 300, 303, 387

JavaScript Object Notation (JSON), xxiv, 7,

39, 40, 59–61, 264, 265

Java speech grammar format (JSGF), 176, 298,

304, 305

Index 419



Jibo, 31

JSGF. See Java speech grammar format (JSGF)

Julius, 146, 149

JVoiceXML, 297, 298, 335

K
Kappa, 116, 117, 122

Keyboard, xxi, 78, 190, 275, 280, 285, 331,

355, 357, 358, 360, 411

Kinect, 76, 282, 286, 372, 380

KNX, 329, 333

L
Language learning, 311–320, 351, 356, 357,

359

Language testing, xxviii, 351–362

Lattice, 40, 47, 50–53

Lexicon, xxiii, 21, 23, 28

Life cycle event, xxiv, 143, 182, 258, 261–265,

267, 274–277, 282, 286, 334, 336, 346,

347, 370, 372, 374, 378, 394, 411, 412

LonWorks, 333

Loosely coupled architecture, 287, 369

M
Machine learning, 401

MARY TTS, 77

MATCH, 304

Media, 5, 29, 30, 38, 47, 72, 155–166, 284, 288,

298, 299, 306, 327, 335, 347, 353, 354,

357, 367, 370

capture, 155, 157, 159, 161–162, 259, 300,

330

MediaEval, 76

Media Fragment URI, 72

Media Resource Control Protocol (MRCP),

xxv, 29, 40, 297, 306

MEDITOR, 333–335

Metadata, xxv, 38–42, 44, 47, 61, 69, 71, 74,

260, 264, 313, 317, 320, 340, 341, 343

Microphone, 43, 157, 158, 198, 331

Microsoft LUIS, 258

MIME type, 43, 45, 58, 59

Modality component (MC), 5, 31, 173, 259,

326, 368, 393

Modbus, 333

Model-view-controller (MVC), 138, 174, 331,

339, 343, 386, 390

Mouse, xx, 75, 260, 355, 357

MPEG-4, 77

MRCP. See Media Resource Control Protocol

(MRCP)

MRDA, 110, 131

Multi-device, 367–381

Multidimensional annotation, 110, 116, 117

Multilingual, 77, 277, 283

Multimodal architecture, xxiv, xxvi, xxvii,

xxviii, 3–16, 38, 39, 173–210, 214, 257,

258, 274–278, 325, 331, 337,

367–381, 393

Multimodal fission, xxvi, 58, 393, 394,

408–410, 413

Multimodal fusion, 38, 41, 42, 55, 393–413

Multimodal Interaction Working Group, xxi,

19, 182, 326, 329, 362

Multimodal session, 334, 336, 346, 347

Multimodal systems, xxiv, 3, 38, 58, 61, 182,

274, 325, 326, 329, 335–339, 343, 344,

346, 347, 356

N
Natural language processing (NLP), 258, 261,

264

Natural language understanding (NLU), xix,

xxi, xxv, 38, 41, 42, 48, 59, 261, 264,

265, 303, 304

N-best, 40, 47–51, 53

NewContextRequest, 8, 143, 145, 187, 412

NewContextResponse, 8, 145, 411, 412

Ngram, 120, 305, 315, 316

NLP. See Natural language processing (NLP)

NLU. See Natural language understanding
(NLU)

O
OAA, 333–336

Object recognition, xxii, 267

OCC, 68, 74

OCDE, 329

Ontology, 142, 386, 387, 390

OpenEAR, 76

OPENINTERFACE, 333, 335

Open Mobile Alliance, 329

OPENPAU™, 353, 355, 357, 360, 361

OpenSMILE, 76, 77

Openstream, xxvii, 198, 335

Orange Labs, 335

OVIS corpus, 121

OWL, xxviii, 386, 392

P
Paelife, 283–287, 368

Parser, 46, 181, 184

Parsing, 46, 61, 277

420 Index



PauseRequest, 9, 259, 412

PauseResponse, 9, 259, 412

Penn Discourse Treebank (PDTB), 123

Penn Treebank, 123

Personal life assistant (PLA), 278, 283–285,

369, 374

Pitch contour, 77

Pleasure-arousal-dominance, 74

Pointing, 55, 70, 149, 152, 396, 399

Portal, 76, 258–259, 261–267, 297, 299

Pragmatics, 116, 304, 411

Pronunciation lexicon specification (PLS),

xxiii, 28

Prosodic features, 27, 67

Prosody, 27, 77, 118, 308, 313

Q
Qualifiers, 110, 112, 115, 121, 122, 127–131

R
RDF. See Resource description framework

(RDF)

REA, 333, 335

Registry, 326, 336–338, 343, 346, 347

Resource description framework (RDF), xxviii,

78, 392

Resources manager (RM), 337, 339–343,

345–347

REST, 267

RESTful interface,

Rhetorical relations, 110, 113–114, 116,

123–124, 127–131

RM. See Resources manager (RM)

Robot, 31, 38, 71, 83, 137, 198, 203, 272,

286, 296

Russian doll model, 138, 142

S
SALT. See Speech application language tags

(SALT)

SAPI, 317

Schiphol corpus, 127

SDK, 329

Second language acquisition, 313, 362

SEMAINE, 76, 77

Semantic

annotation, 78, 115, 299

representation, 38, 41, 45, 55, 58–60

Semantic Web, xxviii, 335, 347, 386, 389,

390, 392

Sensor, 32, 67, 71, 271, 280, 282, 288, 328,

330, 346, 394, 395

Sentiment, xxv, 110, 112, 116, 122, 131

analysis, 77, 78

Signal, 38, 43–47, 50, 53, 77, 96, 125, 163,

246–249, 252, 260, 301, 320,

394–395, 401

Siri, xx, 31

Smart home, 61, 394, 396

SMARTKOM, 334–336, 408

Smartphone, 173, 288, 300, 375,

378, 380

Smartphones for Seniors (S4S), 368

Smart watch, 288

Social media, 30

SPARQL, 389, 390

Speechalyzer, 76

Speech application language tags (SALT), 3, 4,

29, 140, xxi

Speech recognition, xix, xxiv, xxv, 5, 12, 16,

24, 26, 27, 29, 31, 37, 38, 40, 43, 44, 48,

51–53, 97, 140, 141, 166, 184, 198, 203,

258, 261, 267, 274, 277, 282, 284, 288,

296, 299, 300, 302, 303, 305, 306,

313–315, 317, 319

Speech recognition grammar specification

(SRGS), 26, 306

Speech synthesis, xxiii, xxv, 21, 23, 24, 27, 31,

32, 55, 77, 140, 141, 149, 282, 284, 300,

306, 308

Speech Synthesis Markup Language (SSML),

xxiii, xxiv, 21, 23, 24, 27–29, 31, 58,

140, 298, 300, 308

SQUIDY, 335

SRGS. See speech recognition grammar

specification (SRGS)

SSML. See Speech Synthesis Markup

Language (SSML)

Stanford CoreNLP, 314

StartRequest, 8–12, 14, 259, 262–264, 409,

411, 412

StartResponse, 8, 10–14, 259, 264, 412

State Chart XML (SCXML), xxiii, xxiv,

xxvii, 5–7, 15, 22, 23, 28, 31–33,

81–106, 141, 176, 182, 183, 185,

189–191, 213–254, 261, 276, 300,

308, 405, 406

StatusRequest, 10, 143–145, 412

StatusResponse, 10, 145, 412

Stimulus Evaluation Checks, 74

SVG, 140

SWBD-DAMSL, 110, 124, 125, 128

SWBD-ISO corpus, 124–127

Switchboard corpus, 120, 124,

125, 127

Synchronized Multimedia Integration

Language (SMIL), 141, 205

Index 421



System output, xxii, xxv, xxvi, 40, 57, 58, 61,

259, 260

T
Tactile medium, 45

TARDIS, 77

Task control, 138, 142–144, 333

Telephony, 21, 25, 28, 33, 39, 162, 296, 298,

300, 302

Telerehabilitation, 278–282, 369

Test of English as a Foreign Language

(TOEFL), 352–354

Text Encoding Initiative (TEI), 131

Text message, 76, 280

Text to speech (TTS), 8, 9, 21, 27, 29, 30, 58,

77, 198, 303, 308, xxi, xxiii

TIMEML, 57

Timestamp, 38–40, 42, 57–59, 260, 264, 313,

314, 318

Token, 43, 45, 48, 93, 120, 121, 124, 128, 131,

158, 159, 320

TRAINS, 121, 122, 127, 130

Transition, 25, 50, 83, 141, 182, 215, 305

Translation, 43, 155, 159, 261, 262, 286, 287

Transport, 6, 7, 15, 16, 29, 83, 157, 261, 262,

296, 298, 302, 334, 336, 346, 347,

407, 413

Twitter, 30, 283

U
Uniform resource identifier (URI), 43, 55, 58,

70, 72, 89, 90, 162, 180

UpdateNotification, 337, 344–346

UPnP, 329, 371–372, 380

URI. See Uniform resource identifier (URI)

URL, 8, 10–12, 177, 180, 187–189, 192, 195,

197, 198, 217, 239, 300, 412

Usability, 33, 111, 117, 272, 273, 275,

278–280, 356, 357, 376

User experience, xx, 61, 272, 288, 296, 314,

327

User input, xxii, xxiv, xxv, xxvi, 9, 42,

259–261, 263, 413

User model, 142–146

V
Verbmobil, 110, 120

Vibration API, 330

Video, xxiv, 3, 42, 43, 68, 72, 76, 123,

156–158, 162, 167, 198, 202, 279–281,

284, 296, 298–300, 302, 306, 309,

352, 353

Virtual assistants (VAs), 31–32

Virtual Human Markup Language, 68

Visualization, 369, 374, 376–380

Visual modality, 187

Voice browser, xxi, 19, 21–24, 28, 29,

296–298, 300, 301, 303

Voice Browser Working Group, 19, 81, 82,

xxi, xxii

VoiceXML, 4, 20, 81, 140, 176, 296, 335

VoiceXML Forum, 20–23, 25, 26, 33

VoIP, 28, 162, 306

W
WAP Forum, 329

Web Apps, 328–330

WebApps Working Group, 329, 330

Web browser, xxvii, 16, 29, 106, 146, 149,

155–157, 159, 165, 176, 184, 261,

300, 329

Web of Things (WoT), 326–332, 336

Web of Things Interest Group, 329, 330

WebRTC, xxvii, 155–166

Web Services Description Language (WSDL),

347

Web Sockets, 162, 261, 262, xxiv

Web Speech API,

Weighted Finite State Transducer (WFST),

298, 304, 305

Wii, 76

Wit.ai, 258, 264, 265

World Wide Web, xxi, xxii, 156

World Wide Web Consortium (W3C),

X
XHTML + Voice (X+V), 394

XISL, 141, 146, 150, 151, 156

XML, xxiii, xxiv, xxv, 7, 16, 23, 24, 26, 28, 39,

40, 42, 44, 45, 59–61, 67, 69–71, 77,

115, 125, 127, 128, 130, 176, 180–182,

214, 218, 239, 259, 265

XPath, 84, 89, 240, 243

Y
Youth Parliament Debate Data (YP), 123–124,

131

YP. See Youth Parliament Debate Data (YP)

Z
ZeroConf, 329

ZigBee, 329, 333, 340

Z-Wave, 329, 333

422 Index


	Foreword
	Preface
	Acknowledgments
	Contents
	Introduction
	Multimodal Interaction Standards
	Speech and Multimodal Interaction
	Multimodal Interaction Standards
	How the Standards Fit Together
	Formats for Controlling Processors
	Communications Among Components
	Representation of Input and Output
	Representing Uninterpreted Input
	Representing Interpreted User Input
	Extensible Multimodal Annotation
	Emotion ML

	Representing the Semantics of System Output
	EMMA 2.0



	Overview of Sections
	Part I Standards
	Part II Platforms
	Part III Applications
	Part IV Future Directions

	References

	Part I: Standards
	Chapter 1: Introduction to the Multimodal Architecture Specification
	1.1 Overview
	1.2 The Architecture
	1.3 The Interfaces
	1.4 Some Examples
	1.5 Adding a New Modality Component
	1.6 Conclusion
	References

	Chapter 2: The Role and Importance of Speech Standards
	2.1 Introduction
	2.2 Quick Tour of W3C VBWG Major Standards
	2.2.1 VoiceXML 2.0
	2.2.2 VoiceXML 2.1
	2.2.3 SRGS 1.0
	2.2.4 SISR 1.0
	2.2.5 SSML 1.0 and 1.1
	2.2.6 PLS 1.0
	2.2.7 CCXML 1.0

	2.3 IETF, Companion Protocols
	2.4 Current Trends and Future Evolutions
	2.4.1 IVR in the Multi-Channel World
	2.4.2 Virtual Assistants
	2.4.3 Multimodal Interfaces
	2.4.4 Internet of Things

	2.5 Conclusion
	References

	Chapter 3: Extensible Multimodal Annotation for Intelligent Interactive Systems
	3.1 Introduction
	3.2 The Basics of EMMA
	3.3 Capturing Ambiguity and Non-determinacy
	3.4 Groups, Sequences, and Derivations
	3.5 Extending EMMA to System Outputs
	3.6 JSON Representation for EMMA
	3.7 Conclusion
	References

	4: EmotionML
	4.1 Introduction
	4.2 Use Cases and Requirements
	4.3 Previous Work
	4.4 Emotion Markup Language Elements
	4.4.1 Representations of Emotion
	4.4.2 Mechanism for Referring to an Emotion Vocabulary
	4.4.3 Meta-Information
	4.4.4 References to the ``Rest of the World´´
	4.4.5 Time
	4.4.6 Representing Continuous Values and Dynamic Changes

	4.5 Vocabularies
	4.6 Applications
	4.6.1 Data Annotation
	4.6.2 Emotion Recognition
	4.6.3 Emotion Generation
	4.6.4 Platforms and Projects

	4.7 Conclusions
	References

	Chapter 5: Introduction to SCXML
	5.1 Overview
	5.2 Basic State Machine Concepts
	5.3 Extensions to Basic State Machines
	5.3.1 Data Model

	5.4 Operations and Conditions
	5.5 Executable Content
	5.6 External Communications
	5.7 Invoking Platform Resources
	5.8 Compound States
	5.9 Selecting Transitions
	5.10 Parallel States
	5.11 Conclusion
	References

	6: Dialogue Act Annotation with the ISO 24617-2 Standard
	6.1 Introduction
	6.2 Annotating with ISO 24617-2
	6.2.1 Features of the ISO 25617-2 Annotation Standard
	6.2.2 Multidimensional Segmentation
	6.2.3 The Dialogue Act Markup Language (DiAML)

	6.3 Experiences in the Use of ISO 24617-2
	6.3.1 Communicative Function Recognition
	6.3.2 Dimension Recognition
	6.3.3 Machine-Learned Dialogue Act Recognition
	6.3.4 Qualifier Recognition

	6.4 Annotated Corpora
	6.4.1 The DBOX Corpus
	6.4.2 Youth Parliament Debate Data
	6.4.3 The SWBD-ISO Corpus
	6.4.4 The DialogBank
	6.4.4.1 Map Task and DBOX Dialogues
	6.4.4.2 Switchboard Dialogues
	6.4.4.3 Other Annotated Dialogues and Their Representation


	6.5 Conclusions and Perspectives
	Appendix
	References

	Chapter 7: Six-Layered Model for Multimodal Interaction Systems
	7.1 Background
	7.2 Six-Layered Model for Multimodal Interaction Systems
	7.2.1 Six Layers and User/Device Model
	7.2.1.1 Input-Output Device Layer (First Layer)
	7.2.1.2 Modality-Dependent Layer (Second Layer)
	7.2.1.3 A-Modal  Multimodal Conversion Layer (Third Layer)
	7.2.1.4 A-Modal Dialogue Control Layer (Fourth Layer)
	7.2.1.5 Task Control Layer (Fifth Layer)
	7.2.1.6 Application Layer (Sixth Layer)
	7.2.1.7 User Model and Device Model

	7.2.2 Events Transferred Between Layers
	7.2.2.1 The Interface Between Second (Modality Dependent) and Third (A-Modal  Multimodal Conversion) Layers
	7.2.2.2 The Interface Between Third (A-Modal  Multimodal Conversion) and Fourth (A-Modal Dialogue Control) Layers and Inside T...
	7.2.2.3 The Interface Between the Fourth (A-Modal Dialogue Control) and Fifth (Task Control) Layers
	7.2.2.4 The Interface Between Each Layer and Device/User Model Component

	7.2.3 Some Examples of Event Transfer

	7.3 Practical Implementation in the Web-Based MMI System
	7.3.1 Outline of the Web-Based MMI System
	7.3.2 Implementation of Each Layer
	7.3.2.1 Implementation of the First Layer
	7.3.2.2 Implementation of the Second Layer
	7.3.2.3 Implementation of the Third Layer
	7.3.2.4 Implementation of the Fourth and Fifth Layers
	7.3.2.5 An Application Constructed Using the Web-Based MMI System


	7.4 Conclusions
	References

	Chapter 8: WebRTC: Handling Media on the Web
	8.1 Introduction
	8.2 The Mechanics
	8.3 Developing with WebRTC
	8.3.1 Promises
	8.3.2 Media Capture
	8.3.3 Signaling
	8.3.4 Media Transmission

	8.4 Support
	8.5 Tools and Services
	8.6 Uses of WebRTC Today
	8.7 Multimodal Use
	References

	Part II: Implementations
	Chapter 9: Developing Portable Context-Aware Multimodal Applications for Connected Devices Using the W3C Multimodal Architectu...
	9.1 Introduction
	9.2 Architecture Overview
	9.2.1 Run-Time Framework
	9.2.2 Core Run-time Framework Components
	9.2.3 Other Components for Multimodal Applications
	9.2.4 Anatomy of a Multimodal Application
	9.2.5 Basic Application Development Steps
	9.2.6 Application Components Overview
	9.2.6.1 Application Server
	9.2.6.2 Interaction Manager

	9.2.7 XML Language Parser
	9.2.8 State Machine
	9.2.9 Event Queue
	9.2.10 Data Model
	9.2.11 X-SCXML Markup Language
	9.2.12 Cue-me Multimodal Server
	9.2.13 Voice Component
	9.2.14 GUI Modality

	9.3 X-SCXML Processing
	9.3.1 Introduction
	9.3.2 Data Model
	9.3.3 Initial and Final
	9.3.4 States
	9.3.4.1 State Transitions
	9.3.4.2 Event Handlers
	9.3.4.3 On Entry and On Exit Processing

	9.3.5 Event Types
	9.3.5.1 Voice Client Event Types
	9.3.5.2 Visual (GUI) Modality Event Types

	9.3.6 Example getField, getFieldResponse, and playText
	9.3.7 Example Noinput and Message
	9.3.7.1 The Event Object
	9.3.7.2 URL Macros


	9.4 Application Development
	9.4.1 HTML Editor with Interaction Context (SCXML) Palette
	9.4.2 Multimodal Interactions (SCXML)
	9.4.2.1 Components
	9.4.2.2 Action Events
	9.4.2.3 Raised Events


	9.5 Example: The Chinese Food Order Application
	9.5.1 Chinese Food Order Global Grammar
	9.5.2 Chinese Food Order Grammar Help Text
	9.5.2.1 Interaction Integration with X-SCXML

	9.5.3 Initial Section
	9.5.4 Data Model Section
	9.5.5 Order Form State
	9.5.6 Set Field with ID Contained in the Event Object´s Name Property
	9.5.7 Final Section
	9.5.7.1 Add a Cookie to the Home Page
	9.5.7.2 ``IM-Loc´´ Cookie for the X-SCXML URL


	9.6 Extending the MMI Architecture to Connected Devices
	9.6.1 Development of a Prototype Multimodal Robot Using MMI
	9.6.2 Design of EHA
	9.6.3 Motion Detection
	9.6.4 Face Recognition
	9.6.5 Face Tracking
	9.6.6 TTS and Speech Recognition
	9.6.7 EEG Headset
	9.6.8 Bluetooth Integration
	9.6.9 Ink and Speech Annotation

	9.7 Conclusion
	References
	URL´s

	10: SCXML on Resource Constrained Devices
	10.1 Introduction
	10.2 Semantic of SCXML
	10.2.1 Scope of the Algorithm

	10.3 Preparing SCXML Data Structures
	10.3.1 States
	10.3.2 Transitions
	10.3.3 SCXML Context
	10.3.4 Other Elements
	10.3.5 Executable Content

	10.4 A Compact Algorithm for Interpretation
	10.4.1 Preparations
	10.4.2 Dequeuing Events
	10.4.3 Selecting Transitions and Establishing the Exit-Set
	10.4.4 Remembering the History
	10.4.5 Establishing the Entry Set
	10.4.6 Exiting States
	10.4.7 Taking Transitions
	10.4.8 Entering States

	10.5 Evaluating the ANSI C Implementation
	10.5.1 Methodology
	10.5.2 Compliance
	10.5.3 Performance
	10.5.4 Binary Size and Memory

	10.6 Transformation for VHDL
	10.6.1 Dequeuing Event
	10.6.2 Selecting Transitions
	10.6.3 Establishing the Exit-Set
	10.6.4 Establishing the Entry-Set
	10.6.5 Observable Performance
	10.6.6 Evaluation
	10.6.6.1 Performance
	10.6.6.2 Hardware Costs


	10.7 Conclusion
	References

	Chapter 11: Standard Portals for Intelligent Services
	11.1 Introduction
	11.2 Overview of a Portal
	11.3 The Standard API
	11.3.1 MMI Architecture
	11.3.2 EMMA

	11.4 Details of Multimodal Interaction with the Portal
	11.5 Implementing a Portal
	11.6 An Example: Home Control
	11.7 Existing Portals
	11.8 Integrating Portals with Other MMI-Standards Compliant Components
	11.9 Developing Standard Modality Components and Portals
	11.10 Conclusions
	References

	Chapter 12: Applications of the Multimodal Interaction Architecture in Ambient Assisted Living
	12.1 Introduction
	12.2 Multimodal Interaction Architecture for AAL Based on the W3C Standards
	12.2.1 Integrating Support for Multimodality in AAL Architectures
	12.2.2 Multimodal Architecture for AAL: Overview
	12.2.3 Generic Modalities

	12.3 AAL Applications
	12.3.1 A New Telerehabilitation Service for the Older Adults
	12.3.1.1 Requirements
	12.3.1.2 Service Architecture
	12.3.1.3 How the Multimodal Architecture Was Used
	12.3.1.4 Discussion

	12.3.2 AALFred: The Personal Assistant of Project PaeLIFE
	12.3.2.1 Requirements
	12.3.2.2 General Presentation of AALFred
	12.3.2.3 System Architecture
	12.3.2.4 How the Architecture Was Used
	12.3.2.5 Discussion


	12.4 Conclusion
	12.4.1 Future Work

	References

	Part III: Applications
	13: Assembling the Jigsaw: How Multiple Open Standards Are Synergistically Combined in the HALEF Multimodal Dialog System
	13.1 Introduction
	13.2 The HALEF Dialog System
	13.3 Operational Flow Schematic
	13.4 Standards Used in HALEF
	13.4.1 Voice Standards
	13.4.1.1 VoiceXML
	13.4.1.2 Voice Grammar and Language Model Standards

	13.4.2 Communication Standards

	13.5 Other Useful Standards for Multimodal Dialog Systems
	13.5.1 EMMA
	13.5.2 EmotionML
	13.5.3 SCXML
	13.5.4 SSML

	13.6 Conclusions and Outlook
	References

	Chapter 14: A Case Study of Audio Alignment for Multimedia Language Learning: Applications of SRGS and EMMA in Colibro Publish...
	14.1 Introduction
	14.2 About Colibro Interactive, Bilingual Stories
	14.3 Efficient Alignment of Text and Audio
	14.4 User Experience
	14.5 Aligning Text and Audio
	14.6 Steps in the Alignment Process
	14.6.1 Text Segmentation into Sentences
	14.6.2 Grammar Creation
	14.6.3 Alignment of Sentence Audio with Text

	14.7 The System in Use
	14.8 Related Applications
	14.9 Conclusions and Future Directions
	References

	Part IV: Future Directions
	Chapter 15: Discovery and Registration: Finding and Integrating Components into Dynamic Systems
	15.1 Introduction
	15.2 Dynamic Multimodal Systems
	15.2.1 The Internet of Things and Distribution
	15.2.2 Current Approaches
	15.2.3 Multimodal Interaction in the Web of Things
	15.2.4 A Standard Approach to Multimodal Interaction
	15.2.5 A Survey of Multimodal Architectures
	15.2.6 Event Handling
	15.2.7 State Management
	15.2.8 Models
	15.2.9 Distribution
	15.2.10 Interaction Management by a Client Application

	15.3 Discovery and Registration for Multimodal Systems
	15.3.1 Extending the Flow of Events to Support an Anycast Model
	15.3.2 Defining an Architectural Module to Support Device Virtualization
	15.3.3 Two Events for Discovery and Registration
	15.3.4 checkUpdate
	15.3.5 UpdateNotification

	15.4 Conclusion
	References

	Chapter 16: Multimodal Interactivity in Foreign Language Testing
	16.1 Introduction
	16.2 State of the Art: From Computers to Multimodality in Foreign Language Testing
	16.3 Interactive Multimodality Oriented to Language Testing
	16.3.1 Programming Languages Adapted to Multimodality

	16.4 Multimodality in Language Tests
	16.5 Methodology for the Development of a Multimodal Application for Language Testing
	16.6 Conclusions and Further Research
	References

	Chapter 17: Multi-Device Applications Using the Multimodal Architecture
	17.1 Introduction
	17.2 Background
	17.2.1 Research Context: Multimodal Multi-Device Scenarios
	17.2.2 Multimodal Interaction Architecture

	17.3 Multi-Device Support Using the W3C MMI Architecture
	17.3.1 Per Device Interaction Manager
	17.3.2 Cloud-Based Interaction Manager

	17.4 Application Examples
	17.4.1 AAL Device-Rich Scenarios: A Multi-Device Personal Life Assistant
	17.4.2 Collaborative Data and Information Visualization

	17.5 Conclusions
	References

	Chapter 18: Multimodal Interaction Description Language Based on Data Modeling
	18.1 Introduction
	18.2 Data Modeling Driven Approach Based on CSRs
	18.3 Development Support: MrailsBuilder
	18.4 Example and Qualitative Evaluation
	18.5 Conclusion
	References

	19: Multimodal Fusion and Fission within the W3C MMI Architectural Pattern
	19.1 Introduction
	19.2 Multimodal Fusion
	19.2.1 Frame-Based Fusion
	19.2.2 Unification-Based Fusion
	19.2.3 Symbolic/statistical Fusion

	19.3 Multimodal Fusion within the W3C MMI Architecture
	19.3.1 Frame-Based Fusion
	19.3.2 Unification-Based Fusion
	19.3.3 Symbolic/Statistical Fusion

	19.4 Multimodal Fission
	19.5 Multimodal Fission within the W3C MMI Architecture
	19.6 MMI Messaging with Fusion and Fission Components
	19.7 Summary
	References

	Index



